

High-Performance 8-Bit Microcontrollers

Z8 Encore![®] Z8F0823 Series

Product Specification

PS025203-0405

PRELIMINARY

ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126-3432 Telephone: 408.558.8500 • Fax: 408.558.8300 • <u>www.ZiLOG.com</u>

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Date	Revision Level	Description	
April 2005	01	Initial Release.	
April 2005	02	Incorporated minor changes through out document to reflect final product configuration.	All
April 2005	03	Incorporated minor changes to standarize product nomenclature.	All

Table 1. Revision History of this Document

Table of Contents

Revision History
Table of Contentsiv
List of Figures
List of Tables xiii
Overview
Features
Part Selection Guide 2
Block Diagram
CPU and Peripheral Overview
eZ8 CPU Features 4
General Purpose I/O 4
Flash Controller
Internal Precision Oscillator 5
10-Bit Analog-to-Digital Converter
Analog Comparator
UART
Interrupt Controller
Reset Controller
On-Chip Debugger
Pin Description
Overview
Available Packages
Pin Configurations
Signal Descriptions
Pin Characteristics
Address Space
Overview
Register File 13
Program Memory
Flash Information Area 14
Register Map

V

Reset and STOP Mode Recovery 20	20
Overview	20
Reset Types	20
Reset Sources	21
Power-On Reset	
Voltage Brown-Out Reset	
Watch-Dog Timer Reset	
External Reset Input	
On-Chip Debugger Initiated Reset	
STOP Mode Recovery	
STOP Mode Recovery Using Watch-Dog Timer Time-Out	
STOP Mode Recovery Using a GPIO Port Pin Transition	
STOP Mode Recovery Using the External RESET Pin 2	7
Reset Register Definitions 2	27
Low-Power Modes	9
Overview	9
STOP Mode	9
HALT Mode	9
Peripheral-Level Power Control 30	0
Power Control Register Definitions	0
General-Purpose I/O	2
Overview	2
GPIO Port Availability By Device	2
Architecture	2
GPIO Alternate Functions	3
Direct LED Drive	4
Shared Reset Pin 34	4
Shared Debug Pin 34	4
Crystal Oscillator Override 34	4
5V Tolerance	4
External Clock Setup	5
GPIO Interrupts	9
GPIO Control Register Definitions	9
Port A–C Address Registers 40	-
Port A–C Control Registers 40	
Port A–C Data Direction Sub-Registers4	.1

Port A–C Alternate Function Sub-Registers41Port A–C Input Data Registers45Port A–C Output Data Register46LED Drive Enable Register46LED Drive Level High Register47LED Drive Level Low Register47
Interrupt Controller
Overview
Interrupt Vector Listing
Architecture
Operation
Master Interrupt Enable 50
Interrupt Vectors and Priority 51
Interrupt Assertion
Software Interrupt Assertion 52
Interrupt Control Register Definitions 52
Interrupt Request 0 Register 52
Interrupt Request 1 Register 53
Interrupt Request 2 Register 54
IRQ0 Enable High and Low Bit Registers
IRQ1 Enable High and Low Bit Registers
IRQ2 Enable High and Low Bit Registers
Interrupt Edge Select Register
Shared Interrupt Select Register 58
Interrupt Control Register 59
Timers
Overview
Architecture
Operation
Timer Operating Modes
Reading the Timer Count Values
Timer Pin Signal Operation
Timer Control Register Definitions
Timer 0–1 High and Low Byte Registers
Timer Reload High and Low Byte Registers
Timer 0-1 PWM High and Low Byte Registers
Timer 0–1 Control Registers
Watch-Dog Timer

Overview
Operation
Watch-Dog Timer Time-Out Response
Watch-Dog Timer Reload Unlock Sequence
Watch-Dog Timer Control Register Definitions
Watch-Dog Timer Control Register 84
Watch-Dog Timer Reload Upper, High and Low Byte Registers
UART
Overview
Architecture
Operation
Data Format
Transmitting Data using the Polled Method
Transmitting Data using the Interrupt-Driven Method
Receiving Data using the Polled Method 90 Receiving Data using the Interrupt-Driven Method 91
Clear To Send (CTS) Operation
MULTIPROCESSOR (9-bit) Mode
External Driver Enable
UART Interrupts
UART Baud Rate Generator
UART Control Register Definitions
UART Transmit Data Register
UART Receive Data Register
UART Status 1 Register
UART Control 0 and Control 1 Registers
UART Address Compare Register 102
UART Baud Rate High and Low Byte Registers 103
Infrared Encoder/Decoder
Overview
Architecture
Operation
Transmitting IrDA Data
Receiving IrDA Data 107
Infrared Encoder/Decoder Control Register Definitions
Analog-to-Digital Converter 109

viii

Overview	109
Architecture	
Operation	110
Data Format	
Automatic Powerdown	
Single-Shot Conversion	
Calibration and Compensation	
ADC Control Register Definitions	
ADC Control Register 0	
ADC Control/Status Register 1	
ADC Data High Byte Register	
ADC Data Low Bits Register	117
Comparator	118
Overview	118
Operation	118
Comparator Control Register Definitions	119
Flash Memory	120
Overview	120
Flash Information Area	121
Operation	122
Flash Operation Timing Using the Flash Frequency Registers	124
Flash Code Protection Against External Access	124
5 5	124
Byte Programming	126
Page Erase	
Mass Erase	
Flash Controller Bypass	
Flash Controller Behavior in Debug Mode	
Flash Control Register Definitions	
5	128
5	128
Flash Page Select Register	
5	130
	130
Flash Option Bits	132
Overview	132

Operation	32
Option Bit Configuration By Reset 1	32
Option Bit Types 1	33
Flash Option Bit Control Register Definitions 1	34
Trim Bit Address Register 1	34
Trim Bit Data Register 1	34
Flash Option Bit Address Space 1	34
Flash Program Memory Address 0000H 1	35
Flash Program Memory Address 0001H 1	36
Trim Bit Address Space 1	36
Trim Bit Address 0000H—Reserved 1	
Trim Bit Address 0001H—Reserved 1	36
Trim Bit Address 0002H 1	
Trim Bit Address 0003H—Reserved 1	
Trim Bit Address 0004H—Reserved 1	37
ZiLOG Calibration Bits 1	
ADC Calibration Bits 1	37
On-Chip Debugger	38
Overview	
Architecture	
Operation	
OCD Interface	
DEBUG Mode	
OCD Data Format	
OCD Auto-Baud Detector/Generator	
OCD Serial Errors	42
Breakpoints 1	42
Runtime Counter 1	42
On-Chip Debugger Commands 1	43
On-Chip Debugger Control Register Definitions	47
OCD Control Register 1	
	48
Oscillator Control	50
	50
	50
	50
Clock Failure Detection and Recovery	
Oscillator Control Register Definitions	
	22

Internal Precision Oscillator	154
Overview	154
Operation	154
eZ8 CPU Instruction Set	155
Assembly Language Programming Introduction	155
Assembly Language Syntax	156
eZ8 CPU Instruction Notation	156
eZ8 CPU Instruction Classes	158
eZ8 CPU Instruction Summary	163
Opcode Maps	172
Electrical Characteristics	176
Absolute Maximum Ratings	176
DC Characteristics	177
AC Characteristics	179
On-Chip Peripheral AC and DC Electrical Characteristics	180
General Purpose I/O Port Input Data Sample Timing	
General Purpose I/O Port Output Timing	
Packaging	188
Ordering Information	196
Customer Feedback Form	200
Index	202

List of Figures

Figure 1. Z8 Encore! [®] Z8F0823 Series Block Diagram
Figure 2. Z8F0823 and Z8F0813 in 8-Pin SOIC or PDIP Package*
Figure 3. Z8F0823 and Z8F0813 in 20-Pin SOIC, SSOP or PDIP Package* \ldots 8
Figure 4. Z8F0823 and Z8F0813 in 28-Pin SOIC, SSOP or PDIP Package* \ldots 8
Figure 5. Power-On Reset Operation 23
Figure 6. Voltage Brown-Out Reset Operation 24
Figure 7. GPIO Port Pin Block Diagram
Figure 8. Interrupt Controller Block Diagram 50
Figure 9. Timer Block Diagram 61
Figure 10. UART Block Diagram
Figure 11. UART Asynchronous Data Format without Parity
Figure 12. UART Asynchronous Data Format with Parity
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format 92
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)
Figure 15. UART Receiver Interrupt Service Routine Flow
Figure 16. Infrared Data Communication System Block Diagram 105
Figure 17. Infrared Data Transmission 106
Figure 18. IrDA Data Reception 107
Figure 19. Analog-to-Digital Converter Block Diagram 110
Figure 20. Flash Memory Arrangement 121
Figure 21. Flash Controller Operation Flow Chart 123
Figure 22. On-Chip Debugger Block Diagram 138
Figure 23. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (1) 139
Figure 24. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2) 140
Figure 25. OCD Data Format 141
Figure 26. Opcode Map Cell Description

Figure 27. First Opcode Map 174
Figure 28. Second Opcode Map after 1FH 175
Figure 29. ICC Versus System Clock Frequency 178
Figure 30. Port Input Sample Timing 183
Figure 31. GPIO Port Output Timing 184
Figure 32. On-Chip Debugger Timing 185
Figure 33. UART Timing With CTS 186
Figure 34. UART Timing Without CTS 187
Figure 35. 8-Pin Plastic Dual Inline Package (PDIP) 188
Figure 36. 8-Pin Small Outline Integrated Circuit Package (SOIC) 189
Figure 37. 20-Pin Plastic Dual Inline Package (PDIP) 190
Figure 38. 20-Pin Small Outline Integrated Circuit Package (SOIC) 191
Figure 39. 20-Pin Small Shrink Outline Package (SSOP) 192
Figure 40. 28-Pin Plastic Dual Inline Package (PDIP) 193
Figure 41. 28-Pin Small Outline Integrated Circuit Package (SOIC) 194
Figure 42. 28-Pin Small Shrink Outline Package (SSOP) 195

List of Tables

Table 1. Revision History of this Document
Table 2. Z8 Encore! [®] Z8F0823 Series Family Part Selection Guide 2
Table 3. Z8 Encore! [®] Z8F0823 Series Package Options. 7
Table 4. Signal Descriptions. 9
Table 5. Pin Characteristics (20- and 28-pin Devices)
Table 6. Pin Characteristics (8-Pin Devices) 12
Table 7. Z8 Encore! [®] Z8F0823 Series Series Program Memory Maps 14
Table 8. Z8 Encore! [®] Z8F0823 Series Flash Memory Information Area Map 15
Table 9. Register File Address Map
Table 10. Reset and STOP Mode Recovery Characteristics and Latency 20
Table 11. Reset Sources and Resulting Reset Type 22
Table 12. STOP Mode Recovery Sources and Resulting Action
Table 13. Reset Status Register (RSTSTAT). 27
Table 14. Power Control Register 0 (PWRCTL0). 31
Table 15. Port Availability by Device and Package Type 32
Table 16. Port Alternate Function Mapping (Non 8-Pin Parts)
Table 17. Port Alternate Function Mapping (8-Pin Parts). 38
Table 18. GPIO Port Registers and Sub-Registers 39
Table 19. Port A–C GPIO Address Registers (PxADDR). 40
Table 20. Port A–C Control Registers (PxCTL) 41
Table 21. Port A–C Data Direction Sub-Registers (PxDD) 41
Table 22. Port A–C Alternate Function Sub-Registers (PxAF). 42
Table 23. Port A–C Output Control Sub-Registers (PxOC) 42
Table 24. Port A–C High Drive Enable Sub-Registers (PxHDE) 43
Table 25. Port A–C STOP Mode Recovery Source Enable Sub-Registers (Px-SMRE) SMRE) 43
Table 26. Port A–C Pull-Up Enable Sub-Registers (PxPUE)
Table 27. Port A–C Alternate Function Set 1 Sub-Registers (PxAFS1) 44

Table 28. Port A–C Alternate Function Set 2 Sub-Registers (PxAFS2) 45
Table 29. Port A–C Input Data Registers (PxIN) 45
Table 30. Port A–C Output Data Register (PxOUT)
Table 31. LED Drive Enable (LEDEN) 46
Table 32. LED Drive Level High Register (LEDLVLH) 47
Table 33. LED Drive Level Low Register (LEDLVLL). 47
Table 34. Trap and Interrupt Vectors in Order of Priority 49
Table 35. Interrupt Request 0 Register (IRQ0) 53
Table 36. Interrupt Request 1 Register (IRQ1) 54
Table 37. Interrupt Request 2 Register (IRQ2) 54
Table 38. IRQ0 Enable and Priority Encoding 55
Table 39. IRQ0 Enable High Bit Register (IRQ0ENH) 55
Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)
Table 41. IRQ1 Enable and Priority Encoding 56
Table 42. IRQ1 Enable High Bit Register (IRQ1ENH) 56
Table 43. IRQ1 Enable Low Bit Register (IRQ1ENL). 57
Table 44. IRQ2 Enable and Priority Encoding 57
Table 45. IRQ2 Enable High Bit Register (IRQ2ENH) 57
Table 46. IRQ2 Enable Low Bit Register (IRQ2ENL)
Table 47. Interrupt Edge Select Register (IRQES). 58
Table 48. Shared Interrupt Select Register (IRQSS) 59
Table 49. Interrupt Control Register (IRQCTL) 59
Table 50. Timer 0–1 High Byte Register (TxH) 74
Table 51. Timer 0–1 Low Byte Register (TxL) 74
Table 52. Timer 0–1 Reload High Byte Register (TxRH) 75
Table 53. Timer 0–1 Reload Low Byte Register (TxRL). 75
Table 54. Timer 0–1 PWM High Byte Register (TxPWMH) 75
Table 55. Timer 0–1 Control Register 0 (TxCTL0)
Table 56. Timer 0–1 PWM Low Byte Register (TxPWML)
Table 57. Timer 0–1 Control Register 1 (TxCTL1)

Table 58. Watch-Dog Timer Approximate Time-Out Delays 82
Table 59. Watch-Dog Timer Control Register (WDTCTL) 84
Table 60. Watch-Dog Timer Reload Upper Byte Register (WDTU) 85
Table 61. Watch-Dog Timer Reload High Byte Register (WDTH) 85
Table 62. Watch-Dog Timer Reload Low Byte Register (WDTL)
Table 63. UART Transmit Data Register (U0TXD) 97
Table 64. UART Receive Data Register (U0RXD)
Table 65. UART Status 0 Register (U0STAT0) 98
Table 66. UART Status 1 Register (U0STAT1) 99
Table 67. UART Control 0 Register (U0CTL0)
Table 68. UART Control 1 Register (U0CTL1). 101
Table 69. UART Address Compare Register (U0ADDR)
Table 70. UART Baud Rate High Byte Register (U0BRH) 103
Table 71. UART Baud Rate Low Byte Register (U0BRL) 103
Table 72. UART Baud Rates 104
Table 73. ADC Control Register 0 (ADCCTL0) 114
Table 74. ADC Control/Status Register 1 (ADCCTL1). 116
Table 75. ADC Data High Byte Register (ADCD_H) 116
Table 76. ADC Data Low Bits Register (ADCD_L). 117
Table 77. Comparator Control Register (CMP0) 119
Table 78. Z8 Encore!® Z8F0823 Series Flash Memory Configurations 120
Table 79. Flash Code Protection Using the Flash Option Bits 125
Table 80. Flash Control Register (FCTL) 128
Table 81. Flash Status Register (FSTAT) 128
Table 82. Flash Page Select Register (FPS) 129
Table 83. Flash Sector Protect Register (FPROT)
Table 84. Flash Frequency High Byte Register (FFREQH) 131
Table 85. Flash Frequency Low Byte Register (FFREQL)
Table 86. Trim Bit Address Register (TRMADR) 134
Table 87. Trim Bit Data Register (TRMDR) 134

Table 88. Flash Option Bits at Program Memory Address 0000H 135
Table 89. Flash Options Bits at Program Memory Address 0001H 136
Table 90. Trim Option Bits at 0002H (TIPO) 136
Table 91. ADC Calibration Bits at 0060H-007DH. 137
Table 92. ADC Calibration Data Location 137
Table 93. OCD Baud-Rate Limits. 141
Table 94. OCD Control Register (OCDCTL) 148
Table 95. OCD Status Register (OCDSTAT) 149
Table 96. Oscillator Configuration and Selection
Table 97. Oscillator Control Register (OSCCTL) 153
Table 98. Assembly Language Syntax Example 1
Table 99. Assembly Language Syntax Example 2
Table 100. Notational Shorthand
Table 101. Additional Symbols. 158
Table 102. Arithmetic Instructions 159
Table 103. Bit Manipulation Instructions 160
Table 104. Block Transfer Instructions
Table 105. CPU Control Instructions 160
Table 106. Logical Instructions. 161
Table 107. Load Instructions 161
Table 108. Program Control Instructions 162
Table 109. Rotate and Shift Instructions 162
Table 110. eZ8 CPU Instruction Summary. 163
Table 111. Opcode Map Abbreviations 173
Table 112. Absolute Maximum Ratings 176
Table 113. DC Characteristics 177
Table 114. AC Characteristics 179
Table 115. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing 180
Table 116. Flash Memory Electrical Characteristics and Timing
Table 117. Watch-Dog Timer Electrical Characteristics and Timing

Table 118. Analog-to-Digital Converter Electrical Characteristics and Timing.	181
Table 119. Comparator Electrical Characteristics	182
Table 120. GPIO Port Input Timing	183
Table 121. GPIO Port Output Timing	184
Table 122. On-Chip Debugger Timing	185
Table 123. UART Timing With CTS	186
Table 124. UART Timing Without CTS	187

Overview

The Z8 Encore![®] MCU family of products are the first in a line of ZiLOG[®] microcontroller products based upon the 8-bit eZ8 CPU. The Z8 Encore![®] Z8F0823 Series products expand upon ZiLOG's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of the Z8 Encore![®] Z8F0823 Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

- 5MHz eZ8 CPU
- 8KB Flash memory with in-circuit programming capability
- 1KB register RAM
- 6 to 24 I/O pins depending upon package
- Internal Precision Oscillator
- Full-duplex UART
- Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watch-Dog Timer (WDT) with dedicated internal RC oscillator
- On-Chip Debugger
- Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)
- On-Chip analog comparator
- Up to 20 vectored interrupts
- Direct LED drive with programmable drive strengths
- Voltage Brown-out Protection (VBO)
- Power-On Reset (POR)
- 2.7 to 3.6V operating voltage
- Up to thirteen 5V-tolerant input pins
- 8-, 20- and 28-pin packages

• 0° to +70°C and -40° to +105°C for operating temperature ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Encore![®] Z8F0823 Series product line.

				,	
Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F0823	8	1024	6–22	4–8	8-, 20- and 28-pins
Z8F0813	8	1024	6–24	0	8-, 20- and 28-pins

Table 1. Z8 Encore![®] Z8F0823 Series Family Part Selection Guide

Block Diagram

Figure 1 illustrates the block diagram of the architecture of the Z8 Encore![®] Z8F0823 Series devices.

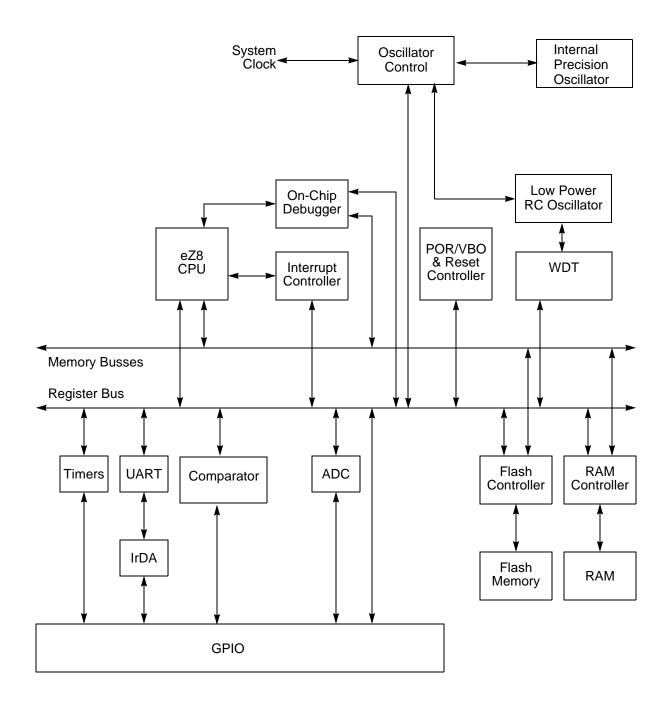


Figure 1. Z8 Encore![®] Z8F0823 Series Block Diagram

CPU and Peripheral Overview

eZ8 CPU Features

The eZ8 CPU, ZiLOG[®]'s latest 8-bit Central Processing Unit (CPU), meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original Z8[®] instruction set. The eZ8 CPU features include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks
- Compatible with existing Z8[®] code
- Expanded internal Register File allows access of up to 4KB
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C
- Pipelined instruction fetch and execution
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL
- New instructions support 12-bit linear addressing of the Register File
- Up to 10 MIPS operation
- C-Compiler friendly
- 2 to 9 clock cycles per instruction

For more information regarding the eZ8 CPU, refer to the *eZ8 CPU User Manual* available for download at <u>www.zilog.com</u>.

General Purpose I/O

The Z8 Encore![®] Z8F0823 Series features 6 to 25 port pins (Ports A–D) for general purpose I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable.

Flash Controller

The Flash Controller programs and erases Flash memory. The Flash Controller supports protection against accidental program and erasure.

Internal Precision Oscillator

The Internal Precision Oscillator (IPO) is a trimmable clock source that requires no external components.

10-Bit Analog-to-Digital Converter

The optional Analog-to-Digital Converter (ADC) converts an analog input signal to a 10bit binary number. The ADC accepts inputs from 8 different analog input pins in both single-ended and differential modes.

Analog Comparator

The analog comparator compares the signal at an input pin with either an internal programmable voltage reference or a second input pin. The comparator output can be used to drive either an output pin or to generate an interrupt.

UART

The UART is full-duplex and capable of handling asynchronous data transfers. The UART supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-drop address processing in hardware.

Timers

Two enhanced 16-bit reloadable timers can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in One-Shot, Continuous, Gated, Capture, Capture Restart, Compare, Capture and Compare, PWM Single Output and PWM Dual Output modes.

Interrupt Controller

The Z8 Encore![®] Z8F0823 Series products support up to 20 interrupts. These interrupts consist of 8 internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources. The interrupts have 3 levels of programmable interrupt priority.

Reset Controller

The Z8 Encore![®] Z8F0823 Series products can be reset using the $\overline{\text{RESET}}$ pin, power-on reset, Watch-Dog Timer (WDT) time-out, STOP mode exit, or Voltage Brown-Out (VBO) warning signal. The $\overline{\text{RESET}}$ pin is bi-directional, meaning it functions as reset source as well as a reset indicator.

On-Chip Debugger

The Z8 Encore![®] Z8F0823 Series products feature an integrated On-Chip Debugger (OCD). The OCD provides a rich set of debugging capabilities, such as reading and writing registers, programming Flash memory, setting breakpoints and executing code. A single-pin interface provides communication to the OCD.

Pin Description

Overview

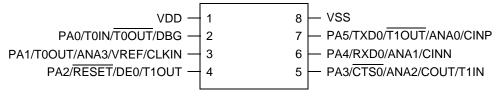
The Z8 Encore![®] Z8F0823 Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information regarding the physical package specifications, refer to the chapter **"Packaging" on page 188**.

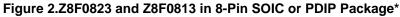
Available Packages

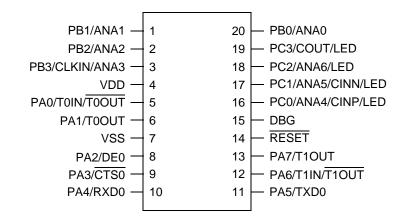
Table 2 identifies the package styles that are available for each device in the Z8 Encore![®] Z8F0823 Series product line.

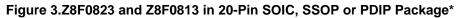
Part Number	ADC	8-pin PDIP	8-pin SOIC	20-pin PDIP	20-pin SOIC	20-pin SSOP	28-pin PDIP	28-pin SOIC	28-pin SSOP
Z8F0823	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0813	No	Х	Х	Х	Х	Х	Х	Х	Х

Table 2. Z8 Encore![®] Z8F0823 Series Package Options


Pin Configurations


Figures 2 through Figure 4 illustrate the pin configurations for all of the packages available in the Z8 Encore![®] Z8F0823 Series. Refer to Table 3 for a description of the signals. The analog input alternate functions (ANA*x*) are not available on the Z8F0813 devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts, and are replaced by PB6 and PB7.


At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise.


The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

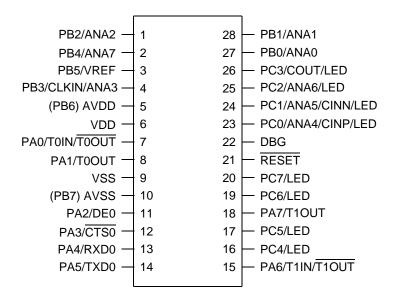


Figure 4.Z8F0823 and Z8F0813 in 28-Pin SOIC, SSOP or PDIP Package*

* Analog input alternate functions (ANA) are not available on the Z8F0813 devices

Note:

Signal Descriptions

Table 3 describes the Z8 Encore![®] Z8F0823 Series signals. Refer to the section "**Pin Con-figurations**" on page 7 to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description					
General-Purpose I/O Ports A–D							
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.					
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.					
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.					
Note: PB6 and PB7 they are replaced by		v available in 28-pin packages without ADC. In 28-pin packages with ADC, and AV _{SS} .					
UART Controllers							
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.					
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.					
CTS0	Ι	Clear To Send. This signal is the flow control input for the UART.					
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal may be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.					
Timers							
T0OUT/T1OUT	0	Timer Output 0–1. These signals are output from the timers.					
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.					
T0IN/T1IN	I	Timer Input 0–1. These signals are used as the <u>capture</u> , gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.					
Comparator							
CINP/CINN	I	Comparator Inputs. These signals are the positive and negative inputs to the comparator.					
COUT	0	Comparator Output. This is the output of the comparator.					

Table 3. Signal Descriptions

Signal Mnemonic	I/O	Description
Analog		
ANA[7:0]	Ι	Analog Port. These signals are used as inputs to the analog-to-digital converter (ADC). The ANA0, ANA1 and ANA2 pins can also access the inputs and output of the integrated transimpedance amplifier.
VREF	I/O	Analog-to-digital converter reference voltage input.
Clock Input		
CLKIN	Ι	Clock Input Signal. This pin may be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	0	Direct LED drive capability. All port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG Caution:	I/O	Debug. This signal is the control and data input and output to and from the On-Chip Debugger. The DBG pin is open-drain and requires an external pull-up resistor to ensure proper operation.
Reset		
RESET	I/O	RESET. Generates a Reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! [®] Z8F0823 forces this pin low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.
Power Supply		
V _{DD}	I	Digital Power Supply.
AV _{DD}	I	Analog Power Supply.
V _{SS}		Digital Ground.
AV _{SS}	I	Analog Ground.

Table 3. Signal Descriptions (Continued)

Note: The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

Pin Characteristics

Table 4 provides detailed information about the characteristics for each pin available on the Z8 Encore![®] Z8F0823 Series 20- and 28-pin devices. Data in Table 4 is sorted alphabetically by the pin symbol mnemonic.

Table 5 provides detailed information about the characteristics for each pin available on the Z8 Encore![®] Z8F0823 Series 8-pin devices,

Note: All six I/O pins on the 8-pin packages are 5V-tolerant (unless the pull-up devices are enabled). The column in Table 4 below describes 5V-tolerance for the 20 and 28-pin packages only.

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt Trigger Input	Open Drain Output	5V Tolerance
AVDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AVSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
DBG	I/O	I	N/A	Yes	No	Yes	Yes	Yes
PA[7:0]	I/O	Ι	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PA[7:2] only
PB[7:0]	I/O	Ι	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PB[7:6] only
PC[7:0]	I/O	Ι	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PC[7:3] only
RESET	I/O	I/O (<u>defaults</u> to RESET)	Low (in Reset mode)	Yes (PD0 only)	Always on for RESET	Yes	Always on for RESET	Yes
VDD	N/A	N/A	N/A	N/A			N/A	N/A
VSS	N/A	N/A	N/A	N/A			N/A	N/A

Table 4. Pin Characteristics (20- and 28-pin Devices)

Note: PB6 and PB7 are available only in those devices without ADC.

>

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt Trigger Input	Open Drain Output	5V Tolerance
PA0/DBG	I/O	I (but can change during reset if key sequence detected)	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
PA1	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
RESET/ PA2	I/O	I/O (defaults <u>to</u> RESET)	N/A	Yes	Programmable for PA2; always on for RESET	Yes	programmable for PA2 <u>; always</u> on for RESET	Yes, unless pull-ups enabled
PA[5:3]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
VDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
VSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 5. Pin Characteristics	(8-Pin Devices)
------------------------------	-----------------

Address Space

Overview

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to the eZ8 CPU User Manual available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore![®] MCU is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore![®] Z8F0823 Series devices contain 1KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. The Z8 Encore![®] Z8F0823 Series devices contain 8KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory Maps for the Z8 Encore![®] Z8F0823 Series products.

Program Memory Address (Hex)	Function			
Z8F0823 and Z8F0813 Products				
0000–0001	Flash Option Bits			
0002–0003	Reset Vector			
0004–0005	WDT Interrupt Vector			
0006–0007	Illegal Instruction Trap			
0008–0037	Interrupt Vectors*			
0038–003D	Oscillator Fail Traps*			
003E–1FFF Program Memory				
* See Table 33 on page 49 for a list of the interrupt vectors and traps.				

Table 6. Z8 Encore![®] Z8F0823 Series Series Program Memory Maps

Data Memory

The Z8 Encore![®] Z8F0823 Series does not use the eZ8 CPU's 64KB Data Memory address space.

Flash Information Area

Table 7 describes the Z8 Encore![®] Z8F0823 Series Flash Information Area. This 128B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	ZiLOG Option Bits
FE40–FE53	Part Number 20-character ASCII alphanumeric code Left justified and filled with FH
FE54–FE5F	Reserved
FE60–FE7F	ZiLOG Calibration Data
FE80–FFFF	Reserved

Table 7. Z8 Encore![®] Z8F0823 Series Flash Memory Information Area Map

Register Map

Table 8 provides the address map for the Register File of the Z8 Encore![®] Z8F0823 Series Series devices. Not all devices and package styles in the Z8 Encore![®] Z8F0823 Series support the ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as Reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
General Purpos	e RAM			
000–3FF	General-Purpose Register File RAM	_	XX	
400–EFF	Reserved	—	XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	74
F01	Timer 0 Low Byte	TOL	01	74
F02	Timer 0 Reload High Byte	TORH	FF	75
F03	Timer 0 Reload Low Byte	TORL	FF	75
F04	Timer 0 PWM High Byte	TOPWMH	00	75
F05	Timer 0 PWM Low Byte	T0PWML	00	76
F06	Timer 0 Control 0	T0CTL0	00	76
F07	Timer 0 Control 1	T0CTL1	00	77
Timer 1				
F08	Timer 1 High Byte	T1H	00	74
F09	Timer 1 Low Byte	T1L	01	74
F0A	Timer 1 Reload High Byte	T1RH	FF	75
F0B	Timer 1 Reload Low Byte	T1RL	FF	75
F0C	Timer 1 PWM High Byte	T1PWMH	00	75
F0D	Timer 1 PWM Low Byte	T1PWML	00	76
F0E	Timer 1 Control 0	T1CTL0	00	76
F0F	Timer 1 Control 1	T1CTL1	00	74
F10–F3F	Reserved		XX	
UART0				
F40	UART0 Transmit Data	U0TXD	XX	99
	UART0 Receive Data	U0RXD	XX	100
F41	UART0 Status 0	U0STAT0	0000011Xb	100

Table 8. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
F42	UART0 Control 0	U0CTL0	00	102
F43	UART0 Control 1	U0CTL1	00	103
F44	UART0 Status 1	U0STAT1	00	101
F45	UART0 Address Compare	U0ADDR	00	105
F46	UART0 Baud Rate High Byte	U0BRH	FF	105
F47	UART0 Baud Rate Low Byte	U0BRL	FF	105
F48–F6F	Reserved		XX	
Analog-to-Digit	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	114
F71	ADC Control 1	ADCCTL1	80	114
F72	ADC Data High Byte	ADCD_H	XX	116
F73	ADC Data Low Bits	ADCD_L	XX	116
F74–F7F	Reserved	_	XX	
Low Power Con	itrol			
F80	Power Control 0	PWRCTL0	80	31
F81	Reserved		XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	46
F83	LED Drive Level High Byte	LEDLVLH	00	47
F84	LED Drive Level Low Byte	LEDLVLL	00	47
F85	Reserved	_	XX	
Oscillator Cont	rol			
F86	Oscillator Control	OSCCTL	A0	153
F87–F8F	Reserved		XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	119
F91–FBF	Reserved		XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	53
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	55
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	55
FC3	Interrupt Request 1	IRQ1	00	54
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	56
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	57

Table 8. Register File Address Map (Continued)

17

18

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
FC6	Interrupt Request 2	IRQ2	00	54
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	57
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	58
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	59
FCE	Shared Interrupt Select	IRQSS	00	59
FCF	Interrupt Control	IRQCTL	00	59
GPIO Port A				
FD0	Port A Address	PAADDR	00	39
FD1	Port A Control	PACTL	00	41
FD2	Port A Input Data	PAIN	XX	41
FD3	Port A Output Data	PAOUT	00	41
GPIO Port B				
FD4	Port B Address	PBADDR	00	39
FD5	Port B Control	PBCTL	00	41
FD6	Port B Input Data	PBIN	XX	41
FD7	Port B Output Data	PBOUT	00	41
GPIO Port C				
FD8	Port C Address	PCADDR	00	39
FD9	Port C Control	PCCTL	00	41
FDA	Port C Input Data	PCIN	XX	41
FDB	Port C Output Data	PCOUT	00	41
FDC-FEF	Reserved		XX	
Watch-Dog Tim	er (WDT)			
FF0	Reset Status	RSTSTAT	XX	84
	Watch-Dog Timer Control	WDTCTL	XX	84
FF1	Watch-Dog Timer Reload Upper Byte	WDTU	FF	85
FF2	Watch-Dog Timer Reload High Byte	WDTH	FF	85
FF3	Watch-Dog Timer Reload Low Byte	WDTL	FF	85
FF4–FF5	Reserved		XX	
Trim Bit Contro	01			
FF6	Trim Bit Address	TRMADR	00	134
FF7	Trim Data	TRMDR	XX	134
XX=Undefined				

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #	
Flash Memory (Controller				
FF8	Flash Control	FCTL	00	128	
FF8	Flash Status	FSTAT	00	128	
FF9	Flash Page Select	FPS	00	129	
	Flash Sector Protect	FPROT	00	130	
FFA	Flash Programming Frequency High Byte	FFREQH	00	131	
FFB	Flash Programming Frequency Low Byte	FFREQL	00	131	
eZ8 CPU					
FFC	Flags	_	XX	Refer to the	
FFD	Register Pointer	RP	XX	eZ8 CPU Use Manual	
FFE	Stack Pointer High Byte	SPH	XX		
FFF	Stack Pointer Low Byte	SPL	XX	—	
XX=Undefined					

Table 8. Register File Address Map (Continued)

Reset and STOP Mode Recovery

Overview

The Reset Controller within the Z8 Encore![®] Z8F0823 Series controls Reset and STOP Mode Recovery operation and provides indication of low supply voltage conditions. In typical operation, the following events cause a Reset:

- Power-On Reset (POR)
- Voltage Brown-Out (VBO)
- Watch-Dog Timer time-out (when configured by the WDT_RES Flash Option Bit to initiate a reset)
- External **RESET** pin assertion (when the alternate **RESET** function is enabled by the GPIO register)
- On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the device is in STOP mode, a STOP Mode Recovery is initiated by either of the following:

- Watch-Dog Timer time-out
- GPIO Port input pin transition on an enabled STOP Mode Recovery source

The VBO circuitry on the device performs the following function:

• Generates the VBO reset when the supply voltage drops below a minimum safe level

Reset Types

The Z8 Encore![®] Z8F0823 Series provides several different types of Reset operation. STOP Mode Recovery is considered a form of Reset. Table 9 lists the types of Reset and their operating characteristics. The System Reset is longer if the external crystal oscillator is enabled by the Flash option bits, allowing additional time for oscillator start-up.

Table 9. Reset and STOP Mode Recovery Characteristics and Latency

	Reset Characteristics and Latency				
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)		
System Reset	Reset (as applicable)	Reset	66 Internal Precision Oscillator Cycles		
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	5000 Internal Precision Oscillator Cycles		

	Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)			
STOP Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	66 Internal Precision Oscillator Cycles			
STOP Mode Recovery with Crystal Oscillator Enabled	•	Reset	5000 Internal Precision Oscillator Cycles			

Table 9. Reset and STOP Mode Recovery Characteristics and Latency (Continued)

During a System Reset or STOP Mode Recovery, the Internal Precision Oscillator requires 4 μ s to start up. Then the Z8 Encore![®] Z8F0823 Series device is held in Reset for 66 cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option bits, this reset period is increased to 5000 IPO cycles. When a reset occurs because of a low voltage condition or power on reset, this delay is measured from the time that the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor disabled.

During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watch-Dog Timer oscillator continue to run.

Upon Reset, control registers within the Register File that have a defined Reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address.

Because the control registers are re-initialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, such that the correct system clock source is enabled and selected.

Reset Sources

Table 10 lists the possible sources of a system reset.

Operating Mode	Reset Source	Special Conditions
NORMAL or HALT modes	Power-On Reset / Voltage Brown- Out	Reset delay begins after supply voltage exceeds POR level
	Watch-Dog Timer time-out when configured for Reset	None
	RESET pin assertion	All reset pulses less than three system clocks in width are ignored.
	On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)	System Reset, except the On-Chip Debugger is unaffected by the reset
STOP mode	Power-On Reset / Voltage Brown- Out	Reset delay begins after supply voltage exceeds POR level
	RESET pin assertion	All reset pulses less than the specified analog delay are ignored. See "Electrical Characteristics" on page 176.
	DBG pin driven Low	None

Table 10. Reset Sources and Resulting Reset Type

Power-On Reset

Each device in the Z8 Encore![®] Z8F0823 Series contains an internal Power-On Reset (POR) circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR Counter has timed out. If the crystal oscillator is enabled by the option bits, this timeout is longer.

After the Z8 Encore![®] Z8F0823 Series device exits the Power-On Reset state, the eZ8 CPU fetches the Reset vector. Following Power-On Reset, the POR status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

Figure 5 illustrates Power-On Reset operation. Refer to the "Electrical Characteristics" on page 176 for the POR threshold voltage (V_{POR}).

Z8 Encore![®] Z8F0823 Series Product Specification

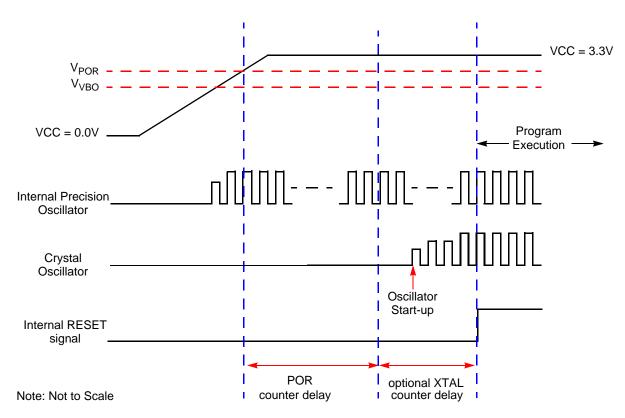


Figure 5. Power-On Reset Operation

Voltage Brown-Out Reset

The devices in the Z8 Encore![®] Z8F0823 Series provide low Voltage Brown-Out (VBO) protection. The VBO circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold voltage) and forces the device into the Reset state. While the supply voltage remains below the Power-On Reset voltage threshold (V_{POR}), the VBO block holds the device in the Reset.

After the supply voltage again exceeds the Power-On Reset voltage threshold, the device progresses through a full System Reset sequence, as described in the Power-On Reset section. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) register is set to 1. Figure 6 illustrates Voltage Brown-Out operation. Refer to the chapter "Electrical Characteristics" on page 176 for the VBO and POR threshold voltages (V_{VBO} and V_{POR}).

The Voltage Brown-Out circuit can be either enabled or disabled during STOP mode. Operation during STOP mode is set by the VBO_AO Flash Option Bit. Refer to the Flash Option Bits chapter for information about configuring VBO_AO.

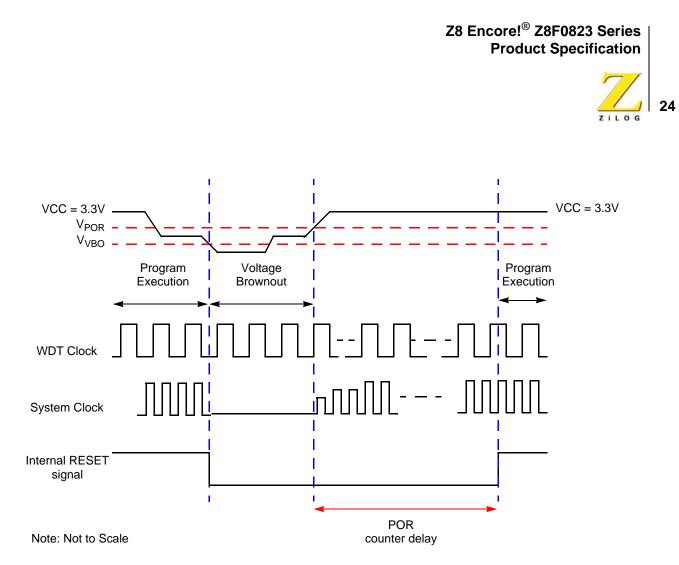


Figure 6.Voltage Brown-Out Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a power on reset after recovering from a VBO condition.

Watch-Dog Timer Reset

If the device is in NORMAL or STOP mode, the Watch-Dog Timer can initiate a System Reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it configures the Watch-Dog Timer to cause an interrupt, not a System Reset, at time-out. The WDT status bit in the WDT Control register is set to signify that the reset was initiated by the Watch-Dog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up resistor. Once the $\overline{\text{RESET}}$ pin is asserted for a minimum of 4 system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration may be as short as three clock periods

and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a pulse four cycles in duration always triggers a reset.

While the $\overline{\text{RESET}}$ input pin is asserted Low, the Z8 Encore![®] Z8F0823 Series devices remain in the Reset state. If the $\overline{\text{RESET}}$ pin is held Low beyond the System Reset time-out, the device exits the Reset state on the system clock rising edge following $\overline{\text{RESET}}$ pin deassertion. Following a System Reset initiated by the external $\overline{\text{RESET}}$ pin, the EXT status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

External Reset Indicator

During System Reset or when enabled by the GPIO logic (see See "Port A–C Control Registers" on page 40.), the RESET pin functions as an open-drain (active low) reset mode indicator in addition to the input functionality. This reset output feature allows an Z8 Encore![®] Z8F0823 Series device to reset other components to which it is connected, even if that reset is caused by internal sources such as POR, VBO or WDT events.

After an internal reset event occurs, the internal circuitry begins driving the $\overline{\text{RESET}}$ pin Low. The $\overline{\text{RESET}}$ pin is held Low by the internal circuitry until the appropriate delay listed in Table 9 has elapsed.

On-Chip Debugger Initiated Reset

A Power-On Reset can be initiated using the On-Chip Debugger by setting the RST bit in the OCD Control register. The On-Chip Debugger block is not reset but the rest of the chip goes through a normal system reset. The RST bit automatically clears during the system reset. Following the system reset the POR bit in the WDT Control register is set.

STOP Mode Recovery

STOP mode is entered by execution of a STOP instruction by the eZ8 CPU. Refer to the chapter "**Low-Power Modes**" on page 29 for detailed STOP mode information. During STOP Mode Recovery, the CPU is held in reset for 66 IPO cycles if the crystal oscillator is disabled or 5000 cycles if it is enabled.

STOP Mode Recovery does not affect onchip registers other than the Watchdog Timer Control register (WDTCTL) and the Oscillator Control register (OSCCTL). After any STOP Mode Recovery, the IPO is enabled and selected as the system clock. If another system clock source is required or IPO disabling is required, the STOP Mode Recovery code must reconfigure the oscillator control block such that the correct system clock source is enabled and selected.

The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following STOP Mode Recovery, the STOP bit in the Watch-Dog Timer Con-

trol Register is set to 1. Table 11 lists the STOP Mode Recovery sources and resulting actions. The text following provides more detailed information about each of the STOP Mode Recovery sources.

Operating Mode	STOP Mode Recovery Source	Action
STOP mode	Watch-Dog Timer time-out when configured for Reset	STOP Mode Recovery
	Watch-Dog Timer time-out when configured for interrupt	STOP Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a STOP Mode Recovery source	STOP Mode Recovery
	Assertion of external RESET Pin	System Reset
	Debug Pin driven Low	System Reset

Table 11. STOP Mode Recovery Sources and Resulting Action

STOP Mode Recovery Using Watch-Dog Timer Time-Out

If the Watch-Dog Timer times out during STOP mode, the device undergoes a STOP Mode Recovery sequence. In the Watch-Dog Timer Control register, the WDT and STOP bits are set to 1. If the Watch-Dog Timer is configured to generate an interrupt upon time-out and the Z8 Encore![®] Z8F0823 Series device is configured to respond to interrupts, the eZ8 CPU services the Watch-Dog Timer interrupt request following the normal STOP Mode Recovery sequence.

STOP Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO Port pins may be configured as a STOP Mode Recovery input source. On any GPIO pin enabled as a STOP Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates STOP Mode Recovery. In the Watch-Dog Timer Control register, the STOP bit is set to 1.

Caution: In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the Port transition only if the signal stays on the Port pin through the end of the STOP Mode Recovery delay. As a result, short pulses on the Port pin can initiate STOP Mode Recovery without being written to the Port Input Data register or without initiating an interrupt (if enabled for that pin).

STOP Mode Recovery Using the External RESET Pin

When the Z8 Encore![®] Z8F0823 Series device is in STOP Mode and the external $\overline{\text{RESET}}$ pin is driven Low, a system reset occurs. Because of a glitch filter operating on the $\overline{\text{RESET}}$ pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See "Electrical Characteristics" on page 176 for details.

Reset Register Definitions

Reset Status Register

The Reset Status (RSTSTAT) register is a read-only register that indicates the source of the most recent Reset event, indicates a STOP Mode Recovery event, and indicates a Watch-Dog Timer time-out. Reading this register resets the upper four bits to 0.

This register shares its address with the Watch-Dog Timer control register, which is writeonly (Table 12).

BITS	7	6	5	4	3	2	1	0
FIELD	POR	STOP	WDT	EXT	Reserved			
RESET	See descriptions below			0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
ADDR		FFOH						

Table 12. Reset Status Register (RSTSTAT)

Reset or STOP Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watch-Dog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
STOP Mode Recovery using GPIO pin transition	0	1	0	0
STOP Mode Recovery using Watch-Dog Timer time-out	0	1	1	0

POR—Power-On Reset Indicator

If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT timeout or STOP Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—STOP Mode Recovery Indicator

If this bit is set to 1, a STOP Mode Recovery occurred. If the STOP and WDT bits are both

set to 1, the STOP Mode Recovery occurred because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the STOP Mode Recovery was not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP mode. Reading this register also resets this bit.

WDT—Watch-Dog Timer Time-Out Indicator

If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A STOP Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.

EXT-External Reset Indicator

If this bit is set to 1, a Reset initiated by the external $\overline{\text{RESET}}$ pin occurred. A Power-On Reset or a STOP Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.

Reserved—Must be 0.

Low-Power Modes

Overview

The Z8 Encore![®] Z8F0823 Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode. The next lower level of power reduction is provided by the HALT mode.

Further power savings can be implemented by disabling individual peripheral blocks while in Normal mode.

STOP Mode

Executing the eZ8 CPU's STOP instruction places the device into STOP mode. In STOP mode, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers
- System clock is stopped
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watch-Dog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control Register
- If enabled, the Watch-Dog Timer logic continues to operate
- If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltagebrown out protection circuit continues to operate
- All other on-chip peripherals are idle

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). The device can be brought out of STOP mode using STOP Mode Recovery. For more information about STOP Mode Recovery refer to "**Reset and STOP Mode Recovery**" on page 20.

HALT Mode

Executing the eZ8 CPU's HALT instruction places the device into HALT mode. In HALT mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate
- System clock is enabled and continues to operate
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watch-Dog Timer's internal RC oscillator continues to operate
- If enabled, the Watch-Dog Timer continues to operate
- All other on-chip peripherals continue to operate

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

- Interrupt
- Watch-Dog Timer time-out (interrupt or reset)
- Power-on reset
- Voltage-brown out reset
- External **RESET** pin assertion

To minimize current in HALT mode, all GPIO pins that are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Peripheral-Level Power Control

In addition to the STOP and Halt modes, it is possible to disable each peripheral on each of the Z8 Encore![®] Z8F0823 Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block.

Note: This register is only reset during a power-on reset sequence. Other system reset events do not affect it.

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	Rese	erved	VBO	Reserved	ADC	COMP	Reserved
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		F80H						

Table 13. Power Control Register 0 (PWRCTL0)

Reserved—Must be 0.

VBO—Voltage Brown-Out Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO Enabled

1 = VBO Disabled

ADC—Analog-to-Digital Converter Disable

0 = Analog-to-Digital Converter Enabled

1 = Analog-to-Digital Converter Disabled

COMP—Comparator Disable

0 =Comparator is Enabled

1 =Comparator is Disabled

Reserved—Must be 0.

General-Purpose I/O

Overview

The Z8 Encore![®] Z8F0823 Series products support a maximum of 24 port pins (Ports A–D) for general-purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, STOP Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability By Device

Table 14 lists the port pins available with each device and package type.

Devices	Package	10-Bit ADC	Port A	Port B	Port C	Total I/O
Z8F0823SB, Z8F0823PB	8-pin	Yes	[5:0]	No	No	6
Z8F0813SB, Z8F0813PB	8-pin	No	[5:0]	No	No	6
Z8F0823PH, Z8F0823HH	20-pin	Yes	[7:0]	[3:0]	[3:0]	16
Z8F0813PH, Z8F0813HH	20-pin	No	[7:0]	[3:0]	[3:0]	16
Z8F0823PJ, Z8F0823SJ	28-pin	Yes	[7:0]	[5:0]	[7:0]	22
Z8F0813PJ, Z8F0813SJ	28-pin	No	[7:0]	[7:0]	[7:0]	24

Table 14. Port Availability by Device and Package Type

Architecture

Figure 7 illustrates a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not illustrated.

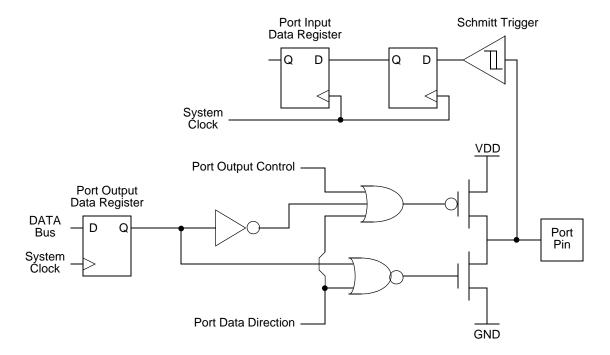


Figure 7.GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins can be used for general-purpose I/O and access to on-chip peripheral functions such as the timers and serial communication devices. The Port A–D Alternate Function sub-registers configure these pins for either General-Purpose I/O or alternate function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D Data Direction registers to the alternate function assigned to this pin. Table 15 on page 35 lists the alternate functions possible with each port pin. The alternate function associated at a pin is defined through Alternate Function Sets sub-registers AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, those pins function as input and output for the crystal oscillator.

PA0 and PA6 contain two different timer functions, a timer input and a complementary timer output. Both of these functions require the same GPIO configuration, the selection between the two is based on the timer mode. See **"Timers" on page 60** for more details.

Direct LED Drive

The Port C pins provide a current sinked output capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels of 3mA, 7mA, 13mA and 20mA. This mode is enabled through the Alternate Function sub-register AFS1 and is programmable through the LED control registers.

For correct function, the LED anode must be connected to $V_{\mbox{\scriptsize DD}}$ and the cathode to the GPIO pin.

Using all Port C pins in LED drive mode with maximum current may result in excessive total current. Refer to the "Electrical Characteristics" on page 176 for the maximum total current for the applicable package.

Shared Reset Pin

On the 8-pin product versions, the reset pin is shared with PortA2, but the pin is not limited to output-only when in GPIO mode.

Shared Debug Pin

On the 8-pin version of this device only, the Debug pin shares function with the PortA0 GPIO pin. This pin performs as a general purpose input pin on power-up, but the debug logic monitors this pin during the reset sequence to determine if the unlock sequence occurs. If the unlock sequence is present, the debug function is unlocked and the pin no longer functions as a GPIO pin. If it is not present, the debug feature is disabled until/ unless another reset event occurs. For more details, see **"On-Chip Debugger" on page 138**

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see "Oscillator Control Register Definitions" on page 152), the GPIO settings are overridden and PA0 and PA1 are disabled.

5V Tolerance

All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is **not** 5V-tolerant, including PA[1:0], PB[5:0] and PC[2:0]. All other signal pins are 5V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

>

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (page 152) such that the external oscillator is selected as the system clock For 8-pin devices use PA1 instead of PB3.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0 / IrDA 0 Receive Data	-
		Reserved		-
	PA5	TXD0/IRTX0	UART 0 / IrDA 0 Transmit Data	-
		Reserved		-
	PA6	T1IN/T1OUT	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		-
	PA7	T1OUT	Timer 1 Output	-
		Reserved		-

Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in "Port A–C Alternate Function Sub-Registers" on page 41 automatically enables the associated alternate function.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved		AFS1[0]: 0
		ANA0	ADC Analog Input	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1	ADC Analog Input	AFS1[1]: 1
_	PB2	Reserved		AFS1[2]: 0
		ANA2	ADC Analog Input	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 15. Port Alternate Function Mapping (Continued)(Non 8-Pin Parts)

Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in "Port A–C Alternate Function Sub-Registers" on page 41 must also be enabled.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port C	PC0	Reserved		AFS1[0]: 0
		ANA4/CINP/LED Drive	ADC or Comparator Input, or LED drive	AFS1[0]: 1
	PC1	Reserved		AFS1[1]: 0
		ANA5/CINN/ LED Drive	ADC or Comparator Input, or LED drive	AFS1[1]: 1
	PC2	Reserved		AFS1[2]: 0
		ANA6/LED	ADC Analog Input or LED Drive	AFS1[2]: 1
	PC3	COUT	Comparator Output	AFS1[3]: 0
		LED	LED drive	AFS1[3]: 1
	PC4	Reserved		AFS1[4]: 0
		LED	LED Drive	AFS1[4]: 1
	PC5	Reserved		AFS1[5]: 0
		LED	LED Drive	AFS1[5]: 1
	PC6	Reserved		AFS1[6]: 0
		LED	LED Drive	AFS1[6]: 1
	PC7	Reserved		AFS1[7]: 0
		LED	LED Drive	AFS1[7]: 1

Table 15. Port Alternate Function Mapping (Continued)(Non 8-Pin Parts)

Note: Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in "Port A–C Alternate Function Sub-Registers" on page 41 must also be enabled.

38

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A PA0	TOIN	Timer 0 Input	AFS1[0]: 0	AFS1[0]: 0	
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		TOOUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	TOOUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
		RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
		Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
		Analog Functions*	ADC Analog Input	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T1OUT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
Port A (Cont)		Reserved		AFS2[5]: 1	AFS1[5]: 0
		Analog Functions*	ADC/Comparator Input (P)	AFS2[5]: 1	AFS1[5]: 1

Table 16. Port Alternate Function Mapping (8-Pin Parts)

* Analog Functions include ADC inputs, ADC reference and comparator inputs

Note: Also, alternate function selection as described in "Port A–C Alternate Function Sub-Registers" on page 41 must be enabled.

GPIO Interrupts

Many of the GPIO port pins can be used as interrupt sources. Some port pins can be configured to generate an interrupt request on either the rising edge or falling edge of the pin input signal. Other port pin interrupt sources generate an interrupt when any edge occurs (both rising and falling). Refer to the chapter "Interrupt Controller" on page 48 for more information about interrupts using the GPIO pins.

GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data. Table 17 lists these Port registers. Use the Port A–D Address and Control registers together to provide access to sub-registers for Port configuration and control.

Port Register Mnemonic	Port Register Name
P <i>x</i> ADDR	Port A–D Address Register (Selects sub-registers)
P <i>x</i> CTL	Port A–D Control Register (Provides access to sub-registers)
PxIN	Port A–D Input Data Register
P <i>x</i> OUT	Port A–D Output Data Register
Port Sub-Register Mnemonic	Port Register Name
P <i>x</i> DD	Data Direction
PxAF	Alternate Function
PxOC	Output Control (Open-Drain)
P <i>x</i> HDE	High Drive Enable
P <i>x</i> SMRE	STOP Mode Recovery Source Enable
P <i>x</i> PUE	Pull-up Enable
PxAFS1	Alternate Function Set 1
PxAFS2	Alternate Function Set 2

Port A–C Address Registers

The Port A–C Address registers select the GPIO Port functionality accessible through the Port A–C Control registers. The Port A–C Address and Control registers combine to provide access to all GPIO Port controls (Table 18).

BITS	7	6	5	4	3	2	1	0
FIELD		PADDR[7:0]						
RESET		00H						
R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR		FD0H, FD4H, FD8H						

Table 18. Port A–C GPIO Address Registers (PxADDR)

PADDR[7:0]—Port Address

The Port Address selects one of the sub-registers accessible through the Port Control register.

PADDR[7:0]	Port Control sub-register accessible using the Port A–C Control Registers
00H	No function. Provides some protection against accidental Port reconfiguration.
01H	Data Direction
02H	Alternate Function
03H	Output Control (Open-Drain)
04H	High Drive Enable
05H	STOP Mode Recovery Source Enable.
06H	Pull-up Enable
07H	Alternate Function Set 1
08H	Alternate Function Set 2
09H–FFH	No function

Port A–C Control Registers

The Port A–C Control registers set the GPIO port operation. The value in the corresponding Port A–C Address register determines which sub-register is read from or written to by a Port A–C Control register transaction (Table 19).

Table 19. Port A–C Control Registers (PxCTL)

BITS	7	6	5	4	3	2	1	0
FIELD		PCTL						
RESET		00H						
R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR		FD1H, FD5H, FD9H						

PCTL[7:0]—Port Control

The Port Control register provides access to all sub-registers that configure the GPIO Port operation.

Port A–C Data Direction Sub-Registers

The Port A–C Data Direction sub-register is accessed through the Port A–C Control register by writing 01H to the Port A–C Address register (Table 20).

BITS	7	6	5	4	3	2	1	0
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 01H i	If 01H in Port A–C Address Register, accessible through the Port A–C Control Register						

Table 20. Port A–C Data Direction Sub-Registers (PxDD)

DD[7:0]—Data Direction

These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 = Output. Data in the Port A–C Output Data register is driven onto the port pin.

1 = Input. The port pin is sampled and the value written into the Port A–C Input Data Register. The output driver is tristated.

Port A–C Alternate Function Sub-Registers

The Port A–C Alternate Function sub-register (Table 21) is accessed through the Port A–C Control register by writing 02H to the Port A–C Address register. The Port A–C Alternate Function sub-registers enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the "Port A–C Alternate Function Set 1 Sub-Registers" on page 44 and "Port A–C Alternate Function Set 2 Sub-Registers" on page 45. Refer to the "GPIO Alternate Functions" on page 33 to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline can result in unpredictable operation.

BITS	7	6	5	4	3	2	1	0
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0
RESET		00H (Ports A–C); 04H (Port A of 8-pin device)						
R/W		R/W						
ADDR	lf 02H i	If 02H in Port A–C Address Register, accessible through the Port A–C Control Register						

Table 21. Port A–C Alternate Function Sub-Registers (PxAF)

AF[7:0]—Port Alternate Function enabled

0 = The port pin is in normal mode and the DDx bit in the Port A–C Data Direction subregister determines the direction of the pin.

1 = The alternate function selected through Alternate Function Set sub-registers is enabled. Port pin operation is controlled by the alternate function.

Port A–C Output Control Sub-Registers

The Port A–C Output Control sub-register (Table 22) is accessed through the Port A–C Control register by writing 03H to the Port A–C Address register. Setting the bits in the Port A–C Output Control sub-registers to 1 configures the specified port pins for opendrain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

BITS	7	6	5	4	3	2	1	0
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 03H i	If 03H in Port A–C Address Register, accessible through the Port A–C Control Register						

Table 22. Port A–C Output Control Sub-Registers (PxOC)

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and always disable the drains if set to 1.

0 = The drains are enabled for any output mode (unless overridden by the alternate function).

1 = The drain of the associated pin is disabled (open-drain mode).

Port A–C High Drive Enable Sub-Registers

The Port A–C High Drive Enable sub-register (Table 23) is accessed through the Port A–C Control register by writing 04H to the Port A–C Address register. Setting the bits in the Port A–C High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–C High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

Table 23. Port A–C High Drive Enable Sub-Registers (PxHDE)

BITS	7	6	5	4	3	2	1	0
FIELD	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 04H i	n Port A–C /	Address Reg	gister, acces	sible through	n the Port A-	-C Control F	Register

PHDE[7:0]—Port High Drive Enabled

0 = The Port pin is configured for standard output current drive.

1 = The Port pin is configured for high output current drive.

Port A–C STOP Mode Recovery Source Enable Sub-Registers

The Port A–C STOP Mode Recovery Source Enable sub-register (Table 24) is accessed through the Port A–C Control register by writing 05H to the Port A–C Address register. Setting the bits in the Port A–C STOP Mode Recovery Source Enable sub-registers to 1 configures the specified Port pins as a STOP Mode Recovery source. During STOP Mode, any logic transition on a Port pin enabled as a STOP Mode Recovery source initiates STOP Mode Recovery.

Table 24. Port A–C STOP Mode Recovery Source Enable Sub-Registers (PxSMRE)

BITS	7	6	5	4	3	2	1	0
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 05H i	n Port A–C /	Address Reg	gister, acces	sible throug	n the Port A-	-C Control F	Register

PSMRE[7:0]—Port STOP Mode Recovery Source Enabled

0 = The Port pin is not configured as a STOP Mode Recovery source. Transitions on this pin during STOP mode do not initiate STOP Mode Recovery.

1 = The Port pin is configured as a STOP Mode Recovery source. Any logic transition on this pin during STOP mode initiates STOP Mode Recovery.

Port A–C Pull-up Enable Sub-Registers

The Port A–C Pull-up Enable sub-register (Table 25) is accessed through the Port A–C Control register by writing 06H to the Port A–C Address register. Setting the bits in the Port A–C Pull-up Enable sub-registers enables a weak internal resistive pull-up on the specified Port pins.

BITS	7	6	5	4	3	2	1	0
FIELD	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
ADDR	lf 06H i	If 06H in Port A–C Address Register, accessible through the Port A–C Control Register						

Table 25. Port A-C Pull-U	p Enable Sub-Registers (PxPUE)
---------------------------	--------------------------------

PPUE[7:0]—Port Pull-up Enabled

0 = The weak pull-up on the Port pin is disabled.

1 = The weak pull-up on the Port pin is enabled.

Port A–C Alternate Function Set 1 Sub-Registers

The Port A–C Alternate Function Set1 sub-register (Table 26) is accessed through the Port A–C Control register by writing 07H to the Port A–C Address register. The Alternate Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in "GPIO Alternate Functions" on page 33.

Note: Alternate function selection on port pins must also be enabled as decribed in "**Port A–C** Alternate Function Sub-Registers" on page 41.

BITS	7	6	5	4	3	2	1	0		
FIELD	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10		
RESET		00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR	lf 07H i	n Port A–C	Address Reg	gister, acces	sible throug	h the Port A-	-C Control F	Register		

Table 26. Port A–C Alternate Function Set 1 Sub-Registers (PxAFS1)

PAFS1[7:0]—Port Alternate Function Set 1

0 = Port Alternate Function selected as defined in Table 14 in the **GPIO** Alternate Functions section.

1 = Port Alternate Function selected as defined in Table 14 in the **GPIO** Alternate Functions section.

Port A–C Alternate Function Set 2 Sub-Registers

The Port A–C Alternate Function Set 2 sub-register (Table 27) is accessed through the Port A–C Control register by writing 08H to the Port A–C Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 14 in the section "GPIO Alternate Functions" on page 33.

Note: Alternate function selection on port pins must also be enabled as decribed in "**Port A–C** Alternate Function Sub-Registers" on page 41.

BITS	7	6	5	4	3	2	1	0		
FIELD	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20		
RESET		00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR	lf 08H i	n Port A–C /	Address Reg	gister, acces	sible through	n the Port A-	-C Control F	Register		

Table 27. Port A–C Alternate Function Set 2 Sub-Registers (PxAFS2)

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in Table 14 GPIO Alternate Functions section.

1 = Port Alternate Function selected as defined in Table 14 GPIO Alternate Functions section.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 28) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

BITS	7	6	5	4	3	2	1	0	
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
ADDR		FD2H, FD6H, FDAH							

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low).

1 = Input data is logical 1 (High).

Port A–C Output Data Register

The Port A–C Output Data register (Table 29) controls the output data to the pins.

Table 29. Port A–C C	Output Data Registe	r (P <i>x</i> OUT)
----------------------	---------------------	--------------------

BITS	7	6	5	4	3	2	1	0
FIELD	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FD3H, FD7H, FDBH						

POUT[7:0]—Port Output Data

These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function operation.

0 =Drive a logical 0 (Low).

1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control register bit to 1.

LED Drive Enable Register

The LED Drive Enable register (Table 30) activates the controlled current drive. The Port C pin must first be enabled by setting the Alternate Function register to select the LED function.

BITS	7	6	5	4	3	2	1	0
FIELD		LEDEN[7:0]						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	2H			

Table 30. LED Drive Enable (LEDEN)

LEDEN[7:0]—LED Drive Enable

These bits determine which Port C pins are connected to an internal current sink.

0 =Tristate the Port C pin.

1= Connect controlled current sink to the Port C pin.

LED Drive Level High Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 31). These two bits select between four programmable drive levels. Each pin is individually programmable.

BITS	7	6	5	4	3	2	1	0
FIELD				LEDLV	LH[7:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		F83H						

Table 31. LED Drive Level High Register (LEDLVLH)

LEDLVLH[7:0]—LED Level High Bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA 01 = 7 mA 10 = 13 mA11 = 20 mA

LED Drive Level Low Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 32). These two bits select between four programmable drive levels. Each pin is individually programmable.

BITS	7	6	5	4	3	2	1	0
FIELD		LEDLVLL[7:0]						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	4H			

Table 32. LED Drive Level Low Register (LEDLVLL)

LEDLVLH[7:0]—LED Level High Bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA

01 = 7 mA

10 = 13 mA

11 = 20 mA

Interrupt Controller

Overview

The interrupt controller on the Z8 Encore![®] Z8F0823 Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller include the following:

- 20 unique interrupt vectors:
 - 12 GPIO port pin interrupt sources (two are shared)
 - 10 on-chip peripheral interrupt sources (two are shared)
- Flexible GPIO interrupts
 - 8 selectable rising and falling edge GPIO interrupts
 - 4 dual-edge interrupts
- 3 levels of individually programmable interrupt priority
- Watch-Dog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt controller has no effect on operation. Refer to the *eZ8 CPU User Manual* for more information regarding interrupt servicing by the eZ8 CPU. The *eZ8 CPU User Manual* is available for download at <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 33 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even Program Memory address and the least significant byte (LSB) at the following odd Program Memory address.

Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watch-Dog Timer (see Watch-Dog Timer chapter)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A7, selectable rising or falling input edge
	001AH	Port A6, selectable rising or falling input edge or Comparator Output
	001CH	Port A5, selectable rising or falling input edge
	001EH	Port A4, selectable rising or falling input edge
	0020H	Port A3 or Port D3, selectable rising or falling input edge
	0022H	Port A2 or Port D2, selectable rising or falling input edge
	0024H	Port A1, selectable rising or falling input edge
	0026H	Port A0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C3, both input edges
	0032H	Port C2, both input edges
	0034H	Port C1, both input edges

Table 33. Trap and Interrupt Vectors in Order of Priority

	Program Memory	
Priority	Vector Address	Interrupt or Trap Source
Lowest	0036H	Port C0, both input edges
	0038H	Reserved

Table 33. Trap and Interrupt Vectors in Order of Priority (Continued)

Architecture

Figure 8 illustrates the interrupt controller block diagram.

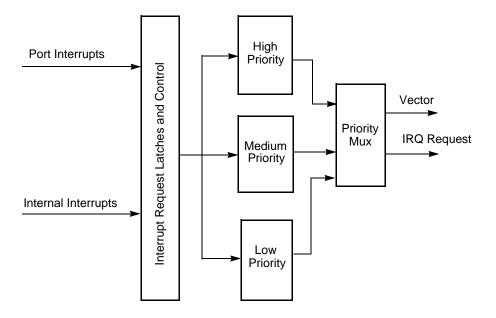


Figure 8.Interrupt Controller Block Diagram

Operation

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

Interrupts are globally enabled by any of the following actions:

- Execution of an EI (Enable Interrupt) instruction
- Execution of an IRET (Return from Interrupt) instruction

• Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:

- Execution of a DI (Disable Interrupt) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control register
- Reset
- Execution of a Trap instruction
- Illegal Instruction Trap
- Primary Oscillator Fail Trap
- Watch-Dog Oscillator Fail Trap

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of the interrupts are enabled with identical interrupt priority (all as Level 2 interrupts, for example), the interrupt priority is assigned from highest to lowest as specified in Table 33 on page 49. Level 3 interrupts are always assigned higher priority than Level 2 interrupts which, in turn, always are assigned higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 33, above. Reset, Watch-Dog Timer interrupt (if enabled), Primary Oscillator Fail Trap, Watchdog Oscillator Fail Trap, and Illegal Instruction Trap always have highest (level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt request.

Caution: The following coding style that clears bits in the Interrupt Request registers is **NOT** recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0 AND r0, MASK LDX IRQ0, r0

To avoid missing interrupts, use the following coding style to clear bits in the Interrupt Request 0 register:

Good coding style that avoids lost interrupt requests: ANDX IRQ0, MASK

Software Interrupt Assertion

Program code can generate interrupts directly. Writing a 1 to the correct bit in the Interrupt Request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is automatically cleared to 0.

Caution: The following coding style used to generate software interrupts by setting bits in the Interrupt Request registers is **NOT** recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests: LDX r0, IRQ0 OR r0, MASK LDX IRQ0, r0

Caution: To avoid missing interrupts, use the following coding style to set bits in the Interrupt Request registers:

Good coding style that avoids lost interrupt requests: ORX IRQ0, MASK

Interrupt Control Register Definitions

For all interrupts other than the Watch-Dog Timer interrupt, the Primary Oscillator Fail Trap, and the Watchdog Oscillator Fail Trap, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 34) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1I	ТОІ	U0RXI	U0TXI	Reserved	Reserved	ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	0H		·	

Table 34. Interrupt Request 0 Register (IRQ0)

Reserved—Must be 0.

T1I—Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI—UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the Analog-to-Digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 35) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC3H							

Table 35. Interrupt Request 1 Register (IRQ1)

PA7VI—Port A7 Interrupt Request

0 = No interrupt request is pending for GPIO Port A

1 = An interrupt request from GPIO Port A or LVD.

PA6CI—Port A6 or Comparator Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Comparator.

1 = An interrupt request from GPIO Port A or Comparator.

PAxI—Port A Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin x.

1 = An interrupt request from GPIO Port A pin x is awaiting service.

where *x* indicates the specific GPIO Port pin number (0-5).

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) register (Table 36) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FC6H						

Table 36.	Interrupt	Request 2	Register	(IRQ2)
-----------	-----------	------------------	----------	--------

Reserved—Must be 0.

PCxI—Port C Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin *x*.

1 = An interrupt request from GPIO Port C pin x is awaiting service.

where *x* indicates the specific GPIO Port C pin number (0-3).

IRQ0 Enable High and Low Bit Registers

Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit registers (Tables 38 and 39) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register.

IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 37. IRQ0 Enable and Priority Encoding

where x indicates the register bits from 0–7.

Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC1H							

Reserved—Must be 0.

T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENL	T0ENL	UORENL	U0TENL	Reserved	Reserved	ADCENL
RESET	0	0	0	0	0	0	0	0
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W
ADDR	FC2H							

Reserved—Must be 0.

T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit U0RENL—UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Tables 41 and 42) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 40. IRQ1 Enable and Priority Encoding

where x indicates the register bits from 0–7.

Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)

BITS	7	6	5	4	3	2	1	0		
FIELD	PA7VENH	PA6CENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH	PA1ENH	PA0ENH		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR		FC4H								

PA7VENH—Port A Bit[7] Interrupt Request Enable High Bit PA6CENH—Port A Bit[7] or Comparator Interrupt Request Enable High Bit PAxENH—Port A Bit[x] Interrupt Request Enable High Bit

Refer to the Shared Interrupt register for selection of Port A as the interrupt source.

BITS	7	6	5	4	3	2	1	0		
FIELD	PA7VENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W R/W R/W R/W R/W R/W								
ADDR		FC5H								

Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL)

PA7VENH—Port A Bit[7] Interrupt Request Enable Low Bit PA6CENH—Port A Bit[6] or Comparator Interrupt Request Enable Low Bit PAxENL—Port A Bit[x] Interrupt Request Enable Low Bit

IRQ2 Enable High and Low Bit Registers

Table 43 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit registers (Tables 44 and 45) form a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is generated by setting bits in each register.

IRQ2ENH[x] IRQ2ENL[x] Priority Description Disabled Disabled 0 0 0 Level 1 1 Low Level 2 1 0 Nominal 1 1 Level 3 High

Table 43. IRQ2 Enable and Priority Encoding

where x indicates the register bits from 0-7.

Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	7H			

Reserved—Must be 0.

C3ENH—Port C3 Interrupt Request Enable High Bit C2ENH—Port C2 Interrupt Request Enable High Bit

C1ENH—Port C1 Interrupt Request Enable High Bit C0ENH—Port C0 Interrupt Request Enable High Bit

Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	8H			

Reserved—Must be 0.

C3ENL—Port C3 Interrupt Request Enable Low Bit C2ENL—Port C2 Interrupt Request Enable Low Bit C1ENL—Port C1 Interrupt Request Enable Low Bit C0ENL—Port C0 Interrupt Request Enable Low Bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

BITS	7	6	5	4	3	2	1	0		
FIELD	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	V R/W R/W R/W R/W R/W R/W								
ADDR		FCDH								

Table 46. Interrupt Edge Select Register (IRQES)

IES*x*—Interrupt Edge Select *x*

0 = An interrupt request is generated on the falling edge of the PAx input or PDx.

1 = An interrupt request is generated on the rising edge of the PAx input PDx.

where x indicates the specific GPIO Port pin number (0 through 7).

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) register (Table 47) determines the source of the PADxS interrupts. The Shared Interrupt Select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Table 47. Shared Interrupt Select Register (IRQSS)	
--	--

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved	PA6CS		Reserved						
RESET	0	0	0	0 0 0 0 0 0						
R/W	R/W	R/W	R/W	R/W R/W R/W R/W R/W						
ADDR				FC	EH					

PA6CS—PA6/Comparator Selection

0 = PA6 is used for the interrupt for PA6CS interrupt request.

1 = The Comparator is used for the interrupt for PA6CS interrupt request.

Reserved—Must be 0.

Interrupt Control Register

The Interrupt Control (IRQCTL) register (Table 48) contains the master enable bit for all interrupts.

 Table 48. Interrupt Control Register (IRQCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	IRQE		Reserved						
RESET	0	0	0 0 0 0 0 0 0						
R/W	R/W	R	R R R R R R R						
ADDR				FC	FH				

IRQE—Interrupt Request Enable

This bit is set to 1 by executing an EI (Enable Interrupts) or IRET (Interrupt Return) instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, Reset or by a direct register write of a 0 to this bit.

- 0 = Interrupts are disabled.
- 1 = Interrupts are enabled.

Reserved—Must be 0.

Timers

Overview

These Z8 Encore![®] Z8F0823 Series products contain up to two 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generator of the UART (if unused) may also provide basic timing functionality. Refer to chapter "UART" on page 86 for information about using the Baud Rate Generator as an additional timer.

Architecture

Figure 9 illustrates the architecture of the timers.

Z8 Encore![®] Z8F0823 Series Product Specification

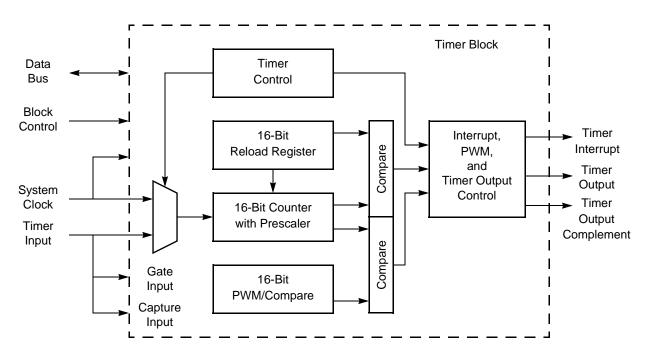


Figure 9. Timer Block Diagram

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If

it is appropriate to have the Timer Output make a state change at a One-Shot time-out (rather than a single cycle pulse), first set the TPOL bit in the Timer Control Register to the start value before enabling ONE-SHOT mode. After starting the timer, set TPOL to the opposite bit value.

The steps for configuring a timer for ONE-SHOT mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for ONE-SHOT mode.
 - Set the prescale value.
 - Set the initial output level (High or Low) if using the Timer Output alternate function.
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In ONE-SHOT mode, the system clock always provides the timer input. The timer period is given by the following equation:

CONTINUOUS Mode

In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

The steps for configuring a timer for CONTINUOUS mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for CONTINUOUS mode.
 - Set the prescale value.

- If using the Timer Output alternate function, set the initial output level (High or Low).
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H). This action only affects the first pass in CONTINUOUS mode. After the first timer Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin (if using the Timer Output function) for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer period is given by the following equation:

Continuous Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT mode equation to determine the first time-out period.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

Caution: The input frequency of the Timer Input signal must not exceed one-fourth the system clock frequency.

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

The steps for configuring a timer for COUNTER mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for COUNTER mode

- Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

Counter Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-ATOR COUNTER mode, the prescaler is disabled.

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

The steps for configuring a timer for COMPARATOR COUNTER mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for COMPARATOR COUNTER mode

- Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER mode. After the first timer Reload in COMPARATOR COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer.

In COMPARATOR COUNTER mode, the number of comparator output transitions since the timer start is given by the following equation:

Comparator Output Transitions = Current Count Value – Start Value

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT mode, the timer outputs a Pulse-Width Modulator (PWM) output signal through a GPIO Port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

The steps for configuring a timer for PWM Single Output mode and initiating the PWM operation are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for PWM mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

PWM Period (s) = Reload Value × Prescale System Clock Frequency (Hz)

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT mode equation to determine the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{PWM Value}}{\text{Reload Value}} \times 100$

PWM Dual Output Mode

In PWM DUAL OUTPUT mode, the timer outputs a Pulse-Width Modulated (PWM) output signal pair (basic PWM signal and its complement) through two GPIO Port pins. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value

stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

The timer also generates a second PWM output signal Timer Output Complement. The Timer Output Complement is the complement of the Timer Output PWM signal. A programmable deadband delay can be configured to time delay (0 to 128 system clock cycles) PWM output transitions on these two pins from a low to a high (inactive to active). This ensures a time gap between the deassertion of one PWM output to the assertion of its complement.

The steps for configuring a timer for PWM Dual Output mode and initiating the PWM operation are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for PWM Dual Output mode. Setting the mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the PWM Control register to set the PWM dead band delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as defined by the PWM high and low byte registers). It must also be less than the duration of the negative phase of the PWM signal (as defined by the difference between the PWM registers and the Timer Reload registers).
- 5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.

- 6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 7. Configure the associated GPIO port pin for the Timer Output and Timer Output Complement alternate functions. The Timer Output Complement function is shared with the Timer Input function for both timers. Setting the timer mode to Dual PWM automatically switches the function from Timer In to Timer Out Complement.
- 8. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

PWM Period (s) = Reload Value × Prescale System Clock Frequency (Hz)

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation determines the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) =
$$\frac{\text{PWM Value}}{\text{Reload Value}} \times 100$$

CAPTURE Mode

In CAPTURE mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is because of an input capture event.

The timer continues counting up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt and continues counting. The INPCAP bit in TxCTL1 register clears indicating the timer interrupt is not because of an input capture event.

The steps for configuring a timer for CAPTURE mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for CAPTURE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows user software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

CAPTURE RESTART Mode

In CAPTURE RESTART mode, the current timer count value is recorded when the acceptable external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is because of an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not caused by an input capture event.

The steps for configuring a timer for CAPTURE RESTART mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for CAPTURE RESTART mode. Setting the mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows user software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

The steps for configuring a timer for COMPARE mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Compare mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate.
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In Compare mode, the system clock always provides the timer input. The Compare time can be calculated by the following equation:

Compare Mode Time (s) = (Compare Value – Start Value) × Prescale System Clock Frequency (Hz)

GATED Mode

In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal remains asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

The steps for configuring a timer for GATED mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Gated mode.
 - Set the prescale value.

- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is caused by an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not because of an input capture event.

The steps for configuring a timer for CAPTURE/COMPARE mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for CAPTURE/COMPARE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.By default, the timer interrupt are generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Counting begins on the first appropriate transition of the Timer Input signal. No interrupt is generated by this first edge.

In CAPTURE/COMPARE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

Reading the Timer Count Values

The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte register is read, the contents of the Timer Low Byte register are placed in a holding register. A subsequent read from the Timer Low Byte register returns the value in the holding register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte register returns the actual value in the counter.

Timer Pin Signal Operation

Timer Output is a GPIO Port pin alternate function. The Timer Output is toggled every time the counter is reloaded.

The timer input can be used as a selectable counting source. It shares the same pin as the complementary timer output. When selected by the GPIO Alternate Function Registers, this pin functions as a timer input in all modes except for the DUAL PWM OUTPUT mode. For this mode, there is no timer input available.

Timer Control Register Definitions

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers (Tables 49 and 39) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TxL reads the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

BITS	7	6	5	4	3	2	1	0		
FIELD		TH								
RESET	0	0 0 0 0 0 0 0 0								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR		F00H, F08H								

Table 49. Timer 0–1 High Byte Register (TxH)

Table 50. Timer 0–1 Low Byte Register (TxL)

BITS	7	6	5	4	3	2	1	0		
FIELD		TL								
RESET	0	0 0 0 0 0 0 1								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR				F01H,	F09H					

TH and TL—Timer High and Low Bytes

These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Tables 51 and 41) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer

Reload value. In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

BITS	7	6	5	4	3	2	1	0		
FIELD		TRH								
RESET	1	1 1 1 1 1 1 1 1								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR		F02H, F0AH								

Table 51. Timer 0–1 Reload High Byte Register (TxRH)

Table 52. Timer 0–1 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0	
FIELD	TRL								
RESET	1	1 1 1 1 1 1 1 1							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR				F03H,	F0BH				

TRH and TRL—Timer Reload Register High and Low

These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value which initiates a timer reload to 0001H. In Compare mode, these two bytes form the 16-bit Compare value.

Timer 0-1 PWM High and Low Byte Registers

The Timer 0-1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Tables 53 and 43) control Pulse-Width Modulator (PWM) operations. These registers also store the Capture values for the CAPTURE and CAPTURE/COMPARE modes.

Table 53. Timer 0–1 PWM High	Byte Register (TxPWMH)
------------------------------	------------------------

BITS	7	6	5	4	3	2	1	0	
FIELD	PWMH								
RESET	0	0 0 0 0 0 0 0 0							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR				F04H,	F0CH				

BITS	7	6	5	4	3	2	1	0		
FIELD	PWML									
RESET	0	0 0 0 0 0 0 0								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
ADDR				F05H,	F0DH					

Table 54. Timer 0–1 PWM Low Byte Register (TxPWML)

PWMH and PWML—Pulse-Width Modulator High and Low Bytes These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1) register.

The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in Capture or Capture/Compare modes.

Timer 0–1 Control Registers

Time 0–1 Control Register 0

The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) determine the timer operating mode. It also includes a programmable PWM deadband delay, two bits to configure timer interrupt definition, and a status bit to identify if the most recent timer interrupt is caused by an input capture event.

BITS	7	6	5	4	3	2	1	0		
FIELD	TMODEHI	TICONFIG		Reserved	PWMD			INPCAP		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W R/W R/W R/W R/W						R/W		
ADDR		F06H, F0EH								

Table 55	. Timer 0–1	Control	Register 0	(TxCTL0)
----------	-------------	---------	-------------------	----------

TMODEHI—Timer Mode High Bit

This bit along with the TMODE field in TxCTL1 register determines the operating mode of the timer. This is the most significant bit of the Timer mode selection value. See the TxCTL1 register description on the next page for additional details.

TICONFIG—Timer Interrupt Configuration

This field configures timer interrupt definition.

- 0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events
- 10 = Timer Interrupt only on defined Input Capture/Deassertion Events
- 11 = Timer Interrupt only on defined Reload/Compare Events

Reserved—Must be 0.

PWMD—PWM Delay value

This field is a programmable delay to control the number of system clock cycles delay before the Timer Output and the Timer Output Complement are forced to their active state.

000 = No delay 001 = 2 cycles delay 010 = 4 cycles delay 011 = 8 cycles delay 100 = 16 cycles delay 101 = 32 cycles delay 110 = 64 cycles delay 111 = 128 cycles delay

INPCAP—Input Capture Event

This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event.

- 0 = Previous timer interrupt is not a result of Timer Input Capture Event
- 1 = Previous timer interrupt is a result of Timer Input Capture Event

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

Table 56. Timer 0–1 Control Register 1 (TxCTL1)

BITS	7	6	5	4	3	2	1	0		
FIELD	TEN	TPOL		PRES		TMODE				
RESET	0	0	0	0	0	0 0 0				
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						R/W		
ADDR		F07H, F0FH								

TEN—Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.

When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

PWM SINGLE OUTPUT mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 =Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT mode

0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the

number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).

1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

CAPTURE RESTART mode

0 = Count is captured on the rising edge of the Timer Input signal. 1 = Count is captured on the falling edge of the Timer Input signal.

COMPARATOR COUNTER mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, Tx-OUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

PRES—Prescale value.

The timer input clock is divided by 2^{PRES} , where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This reset ensures proper clock division each time the Timer is restarted.

000 = Divide by 1 001 = Divide by 2 010 = Divide by 4 011 = Divide by 8 100 = Divide by 16 101 = Divide by 32 110 = Divide by 64 111 = Divide by 128

TMODE—Timer mode

This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of the timer. TMODEHI is the most significant bit of the Timer mode selection value.

0000 = One-Shot mode 0001 = Continuous mode 0010 = Counter mode

Z8 Encore![®] Z8F0823 Series Product Specification

- 0011 = PWM Single Output mode
- 0100 = Capture mode
- 0101 =Compare mode
- 0110 = Gated mode
- 0111 = Capture/Compare mode
- 1000 = PWM Dual Output mode
- 1001 = Capture Restart mode
- 1010 = Comparator Counter Mode

Watch-Dog Timer

Overview

The Watch-Dog Timer (WDT) protects against corrupt or unreliable software, power faults, and other system-level problems which may place the Z8 Encore![®] Z8F0823 Series devices into unsuitable operating states. The Watch-Dog Timer includes the following features:

- On-chip RC oscillator
- A selectable time-out response: reset or interrupt
- 24-bit programmable time-out value

Operation

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets or interrupts the Z8 Encore![®] Z8F0823 Series devices when the WDT reaches its terminal count. The Watch-Dog Timer uses a dedicated on-chip RC oscillator as its clock source. The Watch-Dog Timer operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash Option Bit. The WDT_AO bit forces the Watch-Dog Timer to operate immediately upon reset, even if a WDT instruction has not been executed.

The Watch-Dog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watch-Dog Timer RC oscillator frequency is 10KHz. The Watch-Dog Timer cannot be refreshed after it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 57 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

WDT Reload Value	WDT Reload Value —	Approximate Time-Out Delay (with 10KHz typical WDT oscillator frequency)				
(Hex)	(Decimal)	Typical	Description			
000004	4	400 μs	Minimum time-out delay			
FFFFF	16,777,215	28 minutes	Maximum time-out delay			

Table 57. Watch-Dog Timer Approximate Time-Out Delays

Watch-Dog Timer Refresh

When first enabled, the Watch-Dog Timer is loaded with the value in the Watch-Dog Timer Reload registers. The Watch-Dog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watch-Dog Timer Reload registers. Counting resumes following the reload operation.

When the Z8 Encore![®] Z8F0823 Series devices are operating in DEBUG Mode (using the On-Chip Debugger), the Watch-Dog Timer is continuously refreshed to prevent any Watch-Dog Timer time-outs.

Watch-Dog Timer Time-Out Response

The Watch-Dog Timer times out when the counter reaches 000000H. A time-out of the Watch-Dog Timer generates either an interrupt or a system reset. The WDT_RES Flash Option Bit determines the time-out response of the Watch-Dog Timer. Refer to the chapter **"Flash Option Bits" on page 132** for information regarding programming of the WDT_RES Flash Option Bit.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watch-Dog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Watch-Dog Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watch-Dog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watch-Dog Timer counter is not automatically returned to its Reload Value.

The Reset Status Register (page 27) must be read before clearing the WDT interrupt. This read clears the WDT timeout flag and prevents further WDT interrupts for immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore![®] Z8F0823 Series are in STOP mode, the Watch-Dog Timer automatically initiates a STOP Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watch-Dog Timer Control register are set to 1 following a WDT time-out in STOP mode. Refer to the chapter "**Reset and STOP Mode Recovery**" on page 20 for more information about STOP Mode Recovery.

If interrupts are enabled, following completion of the STOP Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and executing code from the vector address.

WDT Reset in NORMAL Operation

If configured to generate a Reset when a time-out occurs, the Watch-Dog Timer forces the device into the System Reset state. The WDT status bit in the Watch-Dog Timer Control register is set to 1. Refer to the chapter "**Reset and STOP Mode Recovery**" on page 20 for more information about system reset.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watch-Dog Timer initiates a STOP Mode Recovery. Both the WDT status bit and the STOP bit in the Watch-Dog Timer Control register are set to 1 following WDT time-out in STOP mode. Refer to the chapter "**Reset and STOP Mode Recovery**" on page 20 for more information.

Watch-Dog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watch-Dog Timer (WDTCTL) Control register address unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. The following sequence is required to unlock the Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watch-Dog Timer Control register (WDTCTL).
- 2. Write AAH to the Watch-Dog Timer Control register (WDTCTL).
- 3. Write the Watch-Dog Timer Reload Upper Byte register (WDTU).
- 4. Write the Watch-Dog Timer Reload High Byte register (WDTH).
- 5. Write the Watch-Dog Timer Reload Low Byte register (WDTL).

All three Watch-Dog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur unless the sequence is restarted. The value in the Watch-Dog Timer Reload registers is loaded into the counter when the Watch-Dog Timer is first enabled and every time a WDT instruction is executed.

Watch-Dog Timer Control Register Definitions

Watch-Dog Timer Control Register

The Watch-Dog Timer Control (WDTCTL) register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL register address unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.

This register address is shared with the read-only Reset Status Register.

BITS	7	6	5	4	3	2	1	0	
FIELD	WDTUNLK								
RESET	Х								
R/W	W	w w w w w w w							
ADDR		FFOH							

Table 58. Watch-Dog Timer Control Register (WDTCTL)

WDTUNLK—Watch-Dog Timer Unlock

The user software must write the correct unlocking sequence to this register before it is allowed to modify the contents of the watch-dog timer reload registers.

Watch-Dog Timer Reload Upper, High and Low Byte Registers

The Watch-Dog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (Tables 59 through 61) form the 24-bit reload value that is loaded into the Watch-Dog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate Reload Value. Reading from these registers returns the current Watch-Dog Timer count value.

Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.

Table 59. Watch-Dog Timer Reload Upper Byte Register (WDTU)

BITS	7	6	5	4	3	2	1	0			
FIELD	WDTU										
RESET	1	1 1 1 1 1 1 1 1									
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*			
ADDR	FF1H										

R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.

WDTU—WDT Reload Upper Byte

Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 60. Watch-Dog Timer Reload High Byte Register (WDTH)

BITS	7	6	5	4	3	2	1	0		
FIELD	WDTH									
RESET	1	1 1 1 1 1 1 1 1								
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
ADDR	FF2H									
R/W* - Re	ad returns t	he current W	VDT count va	alue. Write s	ets the appr	opriate Relo	ad Value.			

WDTH—WDT Reload High Byte

Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 61. Watch-Dog Timer Reload Low Byte Register (WDTL)

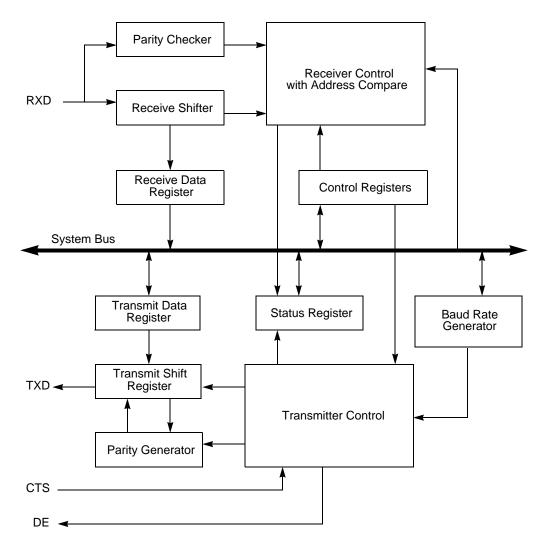
BITS	7	6	5	4	3	2	1	0
FIELD	WDTL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W*							
ADDR	FF3H							
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.								

WDTL—WDT Reload Low

Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

UART

Overview


The Universal Asynchronous Receiver/Transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer
- Selectable even- and odd-parity generation and checking
- Option of one or two STOP bits
- Separate transmit and receive interrupts
- Framing, parity, overrun and break detection
- Separate transmit and receive enables
- 16-bit Baud Rate Generator (BRG)
- Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes
- Baud Rate Generator timer mode
- Driver Enable output for external bus transceivers

Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 illustrates the UART architecture.

Operation

Data Format

The UART always transmits and receives data in an 8-bit data format, least-significant bit first. An even or odd parity bit can be added to the data stream. Each character begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits. Figures 11 and 12 illustrates the asynchronous data format employed by the UART without parity and with parity, respectively.

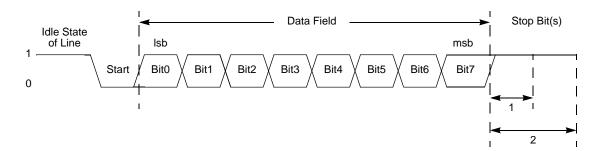


Figure 11.UART Asynchronous Data Format without Parity

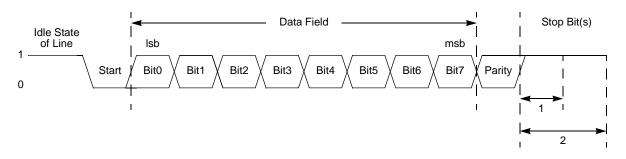


Figure 12.UART Asynchronous Data Format with Parity

Transmitting Data using the Polled Method

Follow these steps to transmit data using the polled method of operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Write to the UART Control 1 register, if MULTIPROCESSOR mode is appropriate, to enable MULTIPROCESSOR (9-bit) mode functions.
- 4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR mode.
- 5. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR mode is not enabled, and select either even or odd parity (PSEL).
 - Set or clear the CTSE bit to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin.

- 6. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data register becomes available to receive new data.
- 7. Write the UART Control 1 register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR mode is enabled,.
- 11. To transmit additional bytes, return to Step 5.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data register to accept new data for transmission. Follow these steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode functions, if MULTIPROCESSOR mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
- 7. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
 - Set or clear CTSE to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin.
- 8. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. Because the UART Transmit Data register is empty, an interrupt is generated immediately. When the UART Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the following:

1. Write the UART Control 1 register to select the multiprocessor bit for the byte to be transmitted:

Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.

- 2. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.
- 4. Execute the IRET instruction to return from the interrupt-service routine and wait for the Transmit Data register to again become empty.

Receiving Data using the Polled Method

Follow these steps to configure the UART for polled data reception:

- 5. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud rate for the incoming data stream.
- 6. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 7. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions, if appropriate.
- 8. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if Multiprocessor mode is not enabled, and select either even or odd parity.
- 9. Check the RDA bit in the UART Status 0 register to determine if the Receive Data register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate available data, continue to Step 5. If the Receive Data register is empty (indicated by a 0), continue to monitor the RDA bit awaiting reception of the valid data.
- Read data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR mode bits MPMD[1:0].
- 11. Return to Step 4 to receive additional data.

Receiving Data using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Follow these steps to configure the UART receiver for interrupt-driven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the acceptable priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
- 6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode functions, if appropriate.
 - Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
 - Set the Multiprocessor Mode Bits, MPMD[1:0], to select the acceptable address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore![®] devices without a DMA block)
- 7. Write the device address to the Address Compare Register (automatic MULTIPROCESSOR modes only).
- 8. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if multiprocessor mode is not enabled, and select either even or odd parity.
- 9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the following:

- 1. Checks the UART Status 0 register to determine the source of the interrupt error, break, or received data.
- 2. Reads the data from the UART Receive Data register if the interrupt was because of data available. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR mode bits MPMD[1:0].
- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.

4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTI-PROCESSOR mode (also referred to as 9-Bit mode), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as illustrated in Figure 13. The character format is:

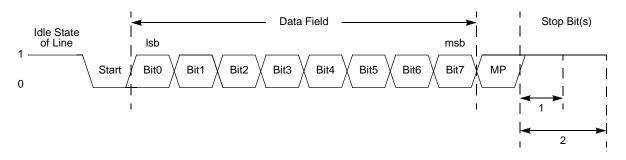


Figure 13.UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multiprocessor control bit. The UART Control 1 and Status 1 registers provide MULTIPRO-CESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor configuration bits. In general, the address compare feature reduces the load on the CPU, because it does not require access to the UART when it receives data directed to other

devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes
- Interrupt on matched address bytes and correctly framed data bytes
- Interrupt only on correctly framed data bytes

These modes are selected with MPMD [1:0] in the UART Control 1 Register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD[0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD[1:0] to 10B and write the UART's address into the UART Address Compare Register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each succesive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as illustrated in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal

Z8 Encore![®] Z8F0823 Series Product Specification

asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The Depol bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 14.UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

• A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, software must respond to this received data available condition before the next character is completely received.

Note: In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received
- An overrun is detected
- A data framing error is detected

UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. However, because the overrun error occurred, this byte may not contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits is the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

UART Data and Error Handling Procedure

Figure 15 illustrates the recommended procedure for use in UART receiver interrupt service routines.

Z8 Encore![®] Z8F0823 Series Product Specification

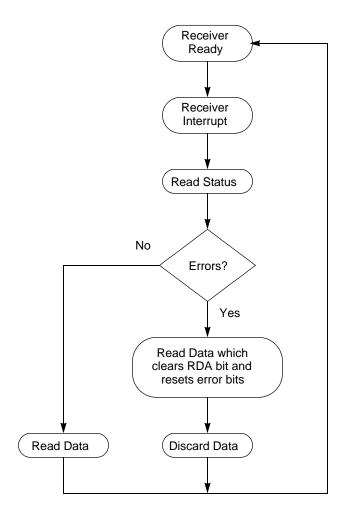


Figure 15.UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the Baud Rate Generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This condition allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information about the infrared operation, refer to the **Infrared Encoder/Decoder** chapter on page 105.

UART Transmit Data Register

Data bytes written to the UART Transmit Data register (Table 62) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0
FIELD				Tک	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
ADDR				F4	0H			

Table 62. UART Transmit Data Register (U0TXD)

TXD—Transmit Data UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXD*x* pin are stored in the UART Receive Data register (Table 63). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

BITS	7	6	5	4	3	2	1	0
FIELD				R۷	(D		·	
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR				F4	0H			

Table 63. UART Receive Data Register (U0RXD)

RXD—Receive Data

UART receiver data byte from the RXDx pin

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 64 and 54) identify the current UART operating configuration and status.

BITS	7	6	5	4	3	2	1	0
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS
RESET	0	0	0	0	0	1	1	Х
R/W	R	R	R	R	R	R	R	R
ADDR				F4	1H			

Table 64. UART Status 0 Register (U0STAT0)

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty.

1 = There is a byte in the UART Receive Data register.

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred. 1 = A parity error has occurred.

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, reading the UART Receive Data register clears this bit.

0 = No overrun error occurred.

1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

0 = No framing error occurred.

1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit. 0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

 $CTS \longrightarrow \overline{CTS}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 65. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved							MPRX
RESET	0	0	0	0	0	0	0	0

Table 65. UART Status 1 Register (U0STAT1)

R/W	R	R	R	R	R/W	R/W	R	R
ADDR				F4	4H			

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (Tables 66 and 67) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F4	2H			

Table 66. UART Control 0 Register (U0CTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

- 0 = Receiver disabled.
- 1 =Receiver enabled.

CTSE—CTS Enable

 $0 = \text{The } \overline{\text{CTS}}$ signal has no effect on the transmitter.

1 = The UART recognizes the $\overline{\text{CTS}}$ signal as an enable control from the transmitter.

PEN—Parity Enable

This bit enables or disables parity. Even or odd is determined by the PSEL bit.

0 = Parity is disabled.

1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit.

PSEL—Parity Select

0 = Even parity is transmitted and expected on all received data.

1 = Odd parity is transmitted and expected on all received data.

SBRK—Send Break

This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit.

0 = No break is sent.

1 = Forces a break condition by setting the output of the transmitter to zero.

STOP—Stop Bit Select

0 = The transmitter sends one stop bit.

1 = The transmitter sends two stop bits.

LBEN—Loop Back Enable

0 = Normal operation.

1 = All transmitted data is looped back to the receiver.

Table 67. UART Control 1 Register (U0CTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F4	3H			

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

01 = The UART generates an interrupt request only on received address bytes.

10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs.

11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare Register.

MPEN—MULTIPROCESSOR (9-bit) Enable

This bit is used to enable MULTIPROCESSOR (9-bit) mode.

0 = Disable MULTIPROCESSOR (9-bit) mode.

1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—Multiprocessor Bit Transmit

This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information.

0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).

1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).

DEPOL—Driver Enable Polarity

0 = DE signal is Active High.

1 = DE signal is Active Low.

BRGCTL—Baud Rate Control

This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register.

When the UART receiver is **not** enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value 1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value.

When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Registers to return the BRG count value instead of the Reload Value.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value. 1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High Byte is read.

RDAIRQ—Receive Data Interrupt Enable

0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller.

1 = Received data does not generate an interrupt request to the Interrupt Controller. Only receiver errors generate an interrupt request.

IREN—Infrared Encoder/Decoder Enable

0 =Infrared Encoder/Decoder is disabled. UART operates normally.

1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

UART Address Compare Register

The UART Address Compare register stores the multi-node network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

BITS	7	6	5	4	3	2	1	0
FIELD				COMP	_ADDR			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F4	5H			

Table 68. UART Address Compare Register (U0ADDR)

COMP_ADDR—Compare Address

This 8-bit value is compared to incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (Tables 69 and 70) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Table 69. UART Baud Rate High Byte Register (U0BRH)

BITS	7	6	5	4	3	2	1	0
FIELD				BF	RH			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F4	6H			

Table 70. UART Baud Rate Low Byte Register (U0BRL)

BITS	7	6	5	4	3	2	1	0
FIELD				BF	٦L			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F4	7H			

The UART data rate is calculated using the following equation:

UART Baud Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

For a given UART data rate, calculate the integer baud rate divisor value using the following equation:

UART Baud Rate Divisor Value (BRG) = $Round\left(\frac{System Clock Frequency (Hz)}{16 \times UART Data Rate (bits/s)}\right)$

The baud rate error relative to the acceptable baud rate is calculated using the following equation:

UART Baud Rate Error (%) = 100 × (Actual Data Rate – Desired Data Rate Desired Data Rate)

For reliable communication, the UART baud rate error must never exceed 5 percent. Table 71 provides information about data rate errors for 5.5296 MHz System Clock.

Table 71. UART Baud Rate

Acceptable Rate (KHz)	BRG Divisor (Decimal)	Actual Rate (KHz)	Error (%)
1250.0	N/A	N/A	N/A
625.0	N/A	N/A	N/A
250.0	1	345.6	38.24
115.2	3	115.2	0.00
57.6	6	57.6	0.00
38.4	9	38.4	0.00
19.2	18	19.2	0.00
9.60	36	9.60	0.00
4.80	72	4.80	0.00
2.40	144	2.40	0.00
1.20	288	1.20	0.00
0.60	576	0.60	0.00
0.30	1152	0.30	0.00

5.5296 MHz System Clock

Infrared Encoder/Decoder

Overview

The Z8 Encore![®] Z8F0823 Series products contain a fully-functional, high-performance UART to Infrared Encoder/Decoder (Endec). The Infrared Endec is integrated with an onchip UART to allow easy communication between the Z8 Encore! and IrDA Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers and other infrared enabled devices.

Architecture

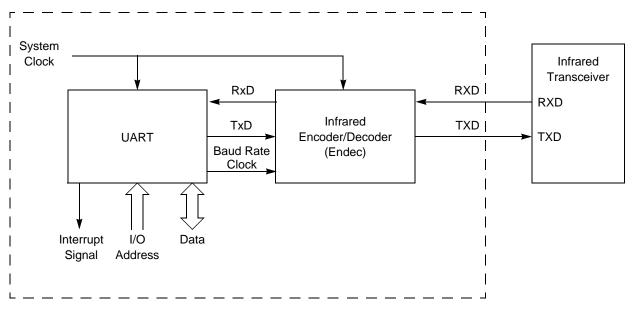


Figure 16 illustrates the architecture of the Infrared Endec.

Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Likewise, data received from the infrared transceiver

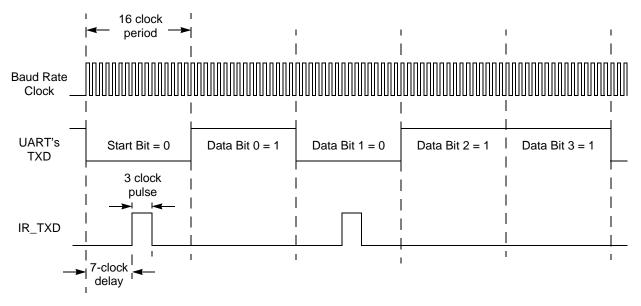
is passed to the Infrared Endec through the RXD pin, decoded by the Infrared Endec, and passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

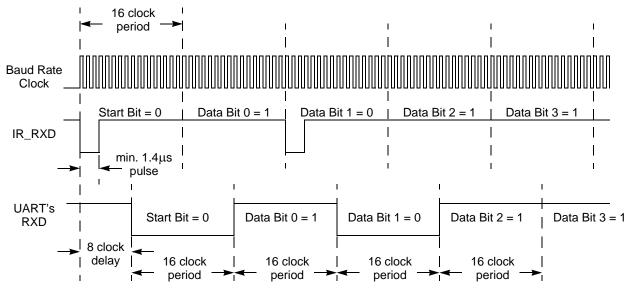
The baud rate is set by the UART's Baud Rate Generator and supports IrDA standard baud rates from 9600 baud to 115.2 Kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 illustrates IrDA data transmission. When the Infrared Endec is enabled, the UART's TXD signal is internal to the Z8 Encore![®] Z8F0823 Series products while the IR_TXD signal is output through the TXD pin.




Figure 17.Infrared Data Transmission

Z8 Encore![®] Z8F0823 Series Product Specification

Receiving IrDA Data

Data received from the infrared transceiver using the IR_RXD signal through the RXD pin is decoded by the Infrared Endec and passed to the UART. The UART's baud rate clock is used by the Infrared Endec to generate the demodulated signal (RXD) that drives the UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 illustrates data reception. When the Infrared Endec is enabled, the UART's RXD signal is internal to the Z8 Encore![®] Z8F0823 Series products while the IR_RXD signal is received through the RXD pin.

Infrared Data Reception

Caution: The system clock frequency must be at least 1.0MHz to ensure proper reception of the 1.4μ s minimum width pulses allowed by the IrDA standard.

Endec Receiver Synchronization

The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate an input stream for the UART and to create a sampling window for detection of incoming pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods with respect to the incoming IrDA data stream. When a falling edge in the input data stream is detected, the Endec counter is reset. When the count reaches a value of 8, the UART RXD value is updated to reflect the value of the decoded data. When the count reaches 12 baud clock periods, the sampling window for the next incoming pulse opens. The window remains open until the count again reaches 8 (in other words, 24 baud clock periods since the previous pulse was detected), giving the Endec a sampling window of

<u>/ľ</u>

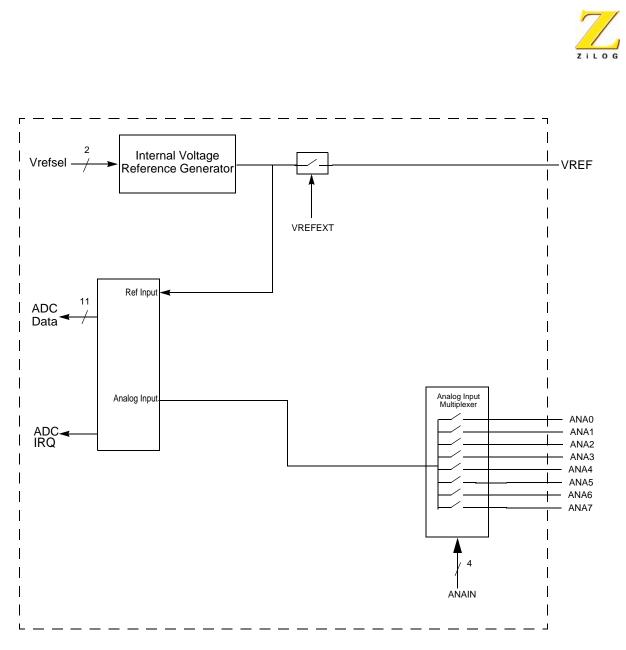
minus four baud rate clocks to plus eight baud rate clocks around the expected time of an incoming pulse. If an incoming pulse is detected inside this window this process is repeated. If the incoming data is a logical 1 (no pulse), the Endec returns to the initial state and waits for the next falling edge. As each falling edge is detected, the Endec clock counter is reset, resynchronizing the Endec to the incoming signal, allowing the Endec to tolerate jitter and baud rate errors in the incoming datastream. Resynchronizing the Endec does not alter the operation of the UART, which ultimately receives the data. The UART is only synchronized to the incoming data stream when a Start bit is received.

Infrared Encoder/Decoder Control Register Definitions

All Infrared Endec configuration and status information is set by the UART control registers as defined beginning on page 86.

Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART Control 1 register to 1 to enable the Infrared Encoder/Decoder **before** enabling the GPIO Port alternate function for the corresponding pin.

Analog-to-Digital Converter


Overview

The Analog-to-Digital Converter (ADC) converts an analog input signal to its digital representation. The features of this sigma-delta ADC include:

- 10-bit resolution
- 8 single-ended analog input sources are multiplexed with general-purpose I/O ports
- Interrupt upon conversion complete
- Internal voltage reference generator with three selectable levels
- Factory offset and gain calibration

Architecture

Figure 19 illustrates the major functional blocks of the ADC. An analog multiplexer network selects the ADC input from the available analog pins, ANA0 through ANA7.

Operation

Data Format

The output of the ADC is an 11- bit, signed, two's complement digital value. The output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers return 13 bits of data, but the two LSBs are intended for compensation use only. When the compensation routine is performed on the 13 bit raw ADC value, two

Z8 Encore![®] Z8F0823 Series

Product Specification

110

bits of resolution are lost because of a rounding error. As a result, the final value is an 11bit number.

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this powerdown state, the ADC requires 40 system clock cycles to powerup. The ADC powers up when a conversion is requested by the ADC Control register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. The steps for setting up the ADC and initiating a single-shot conversion are as follows:

- 1. Enable the acceptable analog inputs by configuring the general-purpose I/O pins for alternate function. This configuration disables the digital input and output drivers.
- 2. Write the ADC Control/Status Register 1 to configure the ADC
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the ADC Control/Status Register 1.
- 3. Write to the **ADC Control Register 0** to configure the ADC and begin the conversion. The bit fields in the ADC Control register can be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device)
 - Clear CONT to 0 to select a single-shot conversion.
 - If the internal voltage reference must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in the **ADC Control Register 0**.
 - Set CEN to 1 to start the conversion.
- 4. CEN remains 1 while the conversion is in progress. A single-shot conversion requires 5129 system clock cycles to complete. If a single-shot conversion is requested from an ADC powered-down state, the ADC uses 40 additional clock cycles to power-up before beginning the 5129 cycle conversion.
- 5. When the conversion is complete, the ADC control logic performs the following operations:

- 11-bit two's-complement result written to {ADCD_H[7:0], ADCD_L[7:5]}.
- CEN resets to 0 to indicate the conversion is complete.
- 6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered-down.

Continuous Conversion

When configured for continuous conversion, the ADC continuously performs an analogto-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated after each conversion.

Caution: In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not detected at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

Follow these steps for setting up the ADC and initiating continuous conversion:

- 1. Enable the acceptable analog input by configuring the general-purpose I/O pins for alternate function. This action disables the digital input and output driver.
- 2. Write the ADC Control/Status Register 1 to configure the ADC
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the ADC Control/Status Register 1.
- 3. Write to the **ADC Control Register 0** to configure the ADC for continuous conversion. The bit fields in the ADC Control register may be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device)
 - Set CONT to 1 to select continuous conversion.
 - If the internal VREF must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in ADC Control Register 0.
 - Set CEN to 1 to start the conversions.
- 4. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations:
 - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation.

- An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete.
- 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 11-bit two's complement result to {ADCD_H[7:0], ADCD_L[7:5]}.
 - An interrupt request to the Interrupt Controller denoting conversion complete.
- 6. To disable continuous conversion, clear the CONT bit in the ADC Control Register to 0.

Interrupts

The ADC is able to interrupt the CPU whenever a conversion has been completed and the ADC is enabled.

When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

The Z8 Encore![®] Z8F0823 Series ADC can be factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, user code can perform its own calibration, storing the values into Flash themselves.

Factory Calibration

Devices that have been factory calibrated contain 9 bytes of calibration data in the Flash option bit space. This data consists of 3 bytes for each reference type. See "ZiLOG Calibration Bits" on page 137 for a list of input modes for which calibration data exists. There is 1 byte for offset, 2 bytes for gain correction.

User Calibration

If the user has precision references available, its own external calibration can be performed and storing the values into Flash themselves.

Software Compensation Procedure

The value read from the ADC high and low byte registers are uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following formula yields the compensated value:

 $ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL)*GAINCAL)/2^{16}$

where GAINCAL is the gain calibration byte, OFFCAL is the offset calibration byte and ADC_{uncomp} is the uncompensated value read from the ADC. The OFFCAL value is in two's complement format, as are the compensated and uncompensated ADC values.

Note: The offset compensation is performed first, followed by the gain compensation. One bit of resolution is lost because of rounding on both the offset and gain computations. As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and 10 data bits.

Also note that in the second term, the multiplication should be performed before the division by 2^{16} . Otherwise, the the second term will incorrectly evaluate to zero.

Caution: Although the ADC can be used without the gain and offset compensation, it does exhibit non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC range but requires the ADC results to be scaled by a factor of 8/7.

ADC Control Register Definitions

ADC Control Register 0

The ADC Control register selects the analog input channel and initiates the analog-to-digital conversion.

BITS	7	6	5	4	3	2	1	0
FIELD	CEN	REFSELL	REFEXT	CONT	ANAIN[3:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F70H							

Table 72. ADC Control Register 0 (ADCCTL0)

CEN—Conversion Enable

0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion is complete.

1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit (REFSELH) in **ADC Control/Status Register 1**, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; note that this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

REFEXT - External Reference Select

0 = External reference buffer is disabled; Vref pin is available for GPIO functions

1 = The internal ADC reference is buffered and connected to the Vref pin

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles

1 = Continuous conversion. ADC data updated every 256 system clock cycles

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8 Encore![®] Z8F0823 Series. Refer to the chapter "**Pin Description**" **on page 7** for information regarding the Port pins available with each package style. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in **ADC Control/Status Register 1**.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

Single-Ended:

0000 = ANA00001 = ANA10010 = ANA20011 = ANA30100 = ANA40101 = ANA50110 = ANA60111 = ANA71000 = Reserved1001 = Reserved1010 = Reserved1011 = Reserved1100 = Reserved1101 = Reserved1110 = Reserved1111 = Reserved

ADC Control/Status Register 1

The second ADC Control register contains the voltage reference level selection bit.

Table 73. ADC Control/Statu	is Register 1	(ADCCTL1)
-----------------------------	---------------	-----------

BITS	7	6	5	4	3	2	1	0
FIELD	REFSELH		Reserved					
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		F71H						

REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit (REFSELL) in **ADC Control Register 0**, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

ADC Data High Byte Register

The ADC Data High Byte register contains the upper eight bits of the ADC output. The output is an 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

BITS	7	6	5	4	3	2	1	0
FIELD		ADCDH						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R R R R R R R						
ADDR	F72H							

Table 74. ADC Data High Byte Register (ADCD_H)

ADCDH—ADC Data High Byte

This byte contains the upper eight bits of the ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the most recent conversion output is held in this register. These bits are undefined after a Reset.

ADC Data Low Bits Register

The ADC Data Low Byte register contains the lower bits of the ADC output as well as an overflow status bit. The output is a 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data Low Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

BITS	7	6	5	4	3	2	1	0
FIELD	ADCDL			Reserved				OVF
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR	F73H							

Table 75.	ADC Data	Low Bits	Register	(ADCD I	
			Register		_,

ADCDL—ADC Data Low Bits

These bits are the least significant three bits of the 11-bits of the ADC output. These bits are undefined after a Reset.

Reserved—Must be undefined.

OVF—Overflow Status

0= An overflow did not occur in the digital filter for the current sample.

1= An overflow did occur in the digital filter for the current sample.

Comparator

Overview

The Z8 Encore![®] Z8F0823 Series devices feature a general purpose comparator that compares two analog input signals. A GPIO (CINP) pin provides the positive comparator input. The negative input (CINN) may be taken from either an external GPIO pin or an internal reference. The output is available as an interrupt source or can be routed to an external pin using the GPIO multiplex. Features include:

- 2 inputs which can be connected up using the GPIO multiplex (MUX)
- 1 input can be connected to a programmable internal reference
- 1 input can be connected to the on-chip temperature sensor
- Output can be either an interrupt source or an output to an external pin

Operation

One of the comparator inputs may be connected to an internal reference which is a user selectable reference that is user programmable with 200 mV resolution.

The comparator may be powered down to save on supply current. See the **Power Control Register 0** on page 30 for details.

Caution: Because of the propagation delay of the comparator, it is not recommended to enable the comparator without first disabling interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts after comparator enabling. The following example shows how to safely enable the comparator:

```
di
ld cmp0
nop
, wait for output to settle
clr irq0; clear any spurious interrupts pending
ei
```


Comparator Control Register Definitions

Comparator Control Register

The Comparator Control Register (CMPCTL) configures the comparator inputs and sets the value of the internal voltage reference.

BITS	7	6	5	4	3	2	1	0		
FIELD	INPSEL	INNSEL		REFLVL				Reserved		
RESET	0	0	0	1	0	1	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	F90H									

Table 76. Comparator Control Register (CMP0)

INPSEL—Signal Select for Positive Input

0 =GPIO pin used as positive comparator input

1 = temperature sensor used as positive comparator input

INNSEL—Signal Select for Negative Input

0 = internal reference disabled, GPIO pin used as negative comparator input

1 = internal reference enabled as negative comparator input

REFLVL—Internal Reference Voltage Level (note that this reference is independent of the ADC voltage reference)

0000 = 0.0 V 0001 = 0.2 V 0010 = 0.4 V 0011 = 0.6 V 0100 = 0.8 V 0101 = 1.0 V (Default) 0110 = 1.2 V 0111 = 1.4 V 1000 = 1.6 V 1001 = 1.8 V1010-1111 = Reserved

Flash Memory

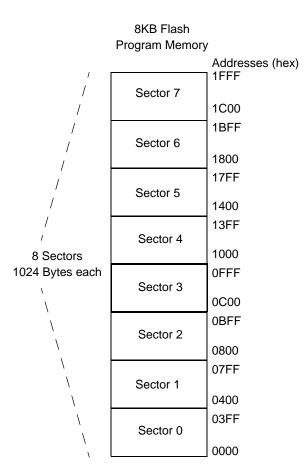
Overview

The products in the Z8 Encore![®] Z8F0823 Series features 8KB (8192 bytes) of non-volatile Flash memory with read/write/erase capability. The Flash Memory can be programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes.

For program/data protection, the Flash memory is also divided into sectors. In the Z8 Encore![®] Z8F0823 Series, these sectors are 1024 bytes in size; each sector maps to two pages.

The first 2 bytes of the Flash Program memory are used as Flash Option Bits. Refer to the chapter **"Flash Option Bits" on page 132** for more information about their operation.


Table 77 describes the Flash memory configuration for each device in the Z8 Encore![®] Z8F0823 Series. Figure 20 illustrates the Flash memory arrangement.

Part Number	Flash Size	Flash	Program Memory	Flash Sector
	KB (Bytes)	Pages	Addresses	Size (bytes)
Z8F08x3	8 (8192)	16	0000H-1FFFH	1024

Table 77. Z8 Encore![®] Z8F0823 Series Flash Memory Configurations

Z8 Encore![®] Z8F0823 Series Product Specification

Figure 20.Flash Memory Arrangement

Flash Information Area

The Flash information area is separate from program memory and is mapped to the address range FE00H to FFFFH. Not all of these addresses are user accessible. Factory trim values for the analog peripherals are stored here. Factory calibration data for the ADC is also stored here.

Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides the proper Flash controls and timing for byte programming, Page Erase, and Mass Erase of Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector and full-memory levels.

The Flow Chart in Figure 21 illustrates basic Flash Controller operation. The following subsections provide details about the various operations (Lock, Unlock, Byte Programming, Page Protect, Page Unprotect, Page Select Page Erase, and Mass Erase) listed in Figure 21.

Z8 Encore![®] Z8F0823 Series Product Specification

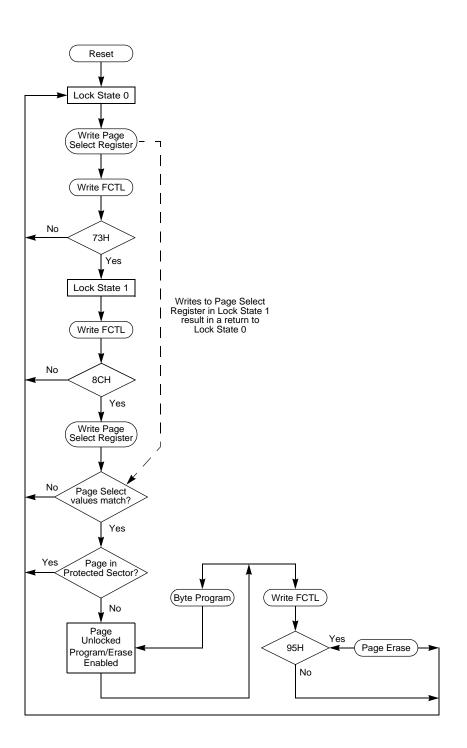


Figure 21.Flash Controller Operation Flow Chart

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a program or erase operation on Flash memory, the user must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 32KHz (32768Hz) through 20MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in KHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 32KHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore![®] Z8F0823 Series devices.

Flash Code Protection Against External Access

The user code contained within the Flash memory can be protected against external access with the On-Chip Debugger. Programming the FRP Flash Option Bit prevents reading of the user code with the On-Chip Debugger. Refer to the chapter "Flash Option Bits" on page 132 and the chapter "On-Chip Debugger" on page 138 for more information.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore![®] Z8F0823 Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash Option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FHSWP and FWP Flash Option Bits combine to provide three levels of Flash Program Memory protection as listed in Table 78. Refer to the chapter **"Flash Option Bits" on page 132** for more information.

FHSWP	FWP	Flash Code Protection Description
0	0	Programming and erasing disabled for all of Flash Program Memory. In user code programming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On-Chip Debugger.
0 or 1	1	Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Table 78. Flash Code Protection Using the Flash Option Bits

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or erase the Flash memory, first write the Page Select Register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control register with the values 73H and 8CH, sequentially. The Page Select Register must be rewritten with the same page previously stored there. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. See Figure 21 for details.

After unlocking a specific page, the user can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug Port.

After unlocking a specific page, the user can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register cause the active page to revert to a locked state.

Sector Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore![®] devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total size of the Flash memory, unless this value is smaller than the page size, in which case the sector and page sizes are equal. On the Z8 Encore![®] Z8F0823 Series devices, the sector size is 1024 bytes, equal to twice the page size.

The Sector Protect Register controls the protection state of each Flash sector. This register is shared with the Page Select Register. It is accessed by writing 73H followed by 5EH to the Flash controller. The next write to the Flash Control Register targets the Sector Protect Register.

The Sector Protect Register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding

sector can no longer be written or erased. After a bit of the Sector Protect Register has been set, it can not be cleared except by powering down the device.

Byte Programming

The Flash Memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is unlocked and Mass Erase is successfully enabled, all Program Memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and Page Erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.

Byte Programming can be accomplished using the On-Chip Debugger's Write Memory command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the *eZ8 CPU User Manual* (available for download at <u>www.zilog.com</u>)for a description of the LDC and LDCI instructions. While the Flash Controller programs the Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control register, except the Mass Erase or Page Erase commands.

Caution: The byte at each address of the Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs.

Page Erase

//\

The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash memory sets all bytes in that page to the value FFH. The Flash Page Select register identifies the page to be erased. Only a page residing in an unprotected sector can be erased. With the Flash Controller unlocked and the active page set, writing the value 95h to the Flash Control register initiates the Page Erase operation. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. If the Page Erase operation is performed using the On-Chip Debugger, poll the Flash Status register to determine when the Page Erase operation is complete. When the Page Erase is complete, the Flash Controller returns to its locked state.

Mass Erase

The Flash memory can also be Mass Erased using the Flash Controller, but only by using the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH. With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the value 63H to the Flash Control register initiates the Mass Erase operation. While the Flash

Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash Status register to determine when the Mass Erase operation is complete. When the Mass Erase is complete, the Flash Controller returns to its locked state.

Flash Controller Bypass

The Flash Controller can be bypassed and the control signals for the Flash memory brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Programming algorithms by controlling the Flash programming signals directly.

Row programing is recommended for gang programming applications and large volume customers who do not require in-circuit initial programming of the Flash memory. Mass Erase and Page Erase operations are also supported when the Flash Controller is bypassed.

Please refer to the document entitled *Third-Party Flash Programming Support for Z8 Encore!*[®] for more information about bypassing the Flash Controller. This document is available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in Debug Mode

The following changes in behavior of the Flash Controller occur when the Flash Controller is accessed using the On-Chip Debugger:

- The Flash Write Protect option bit is ignored.
- The Flash Sector Protect register is ignored for programming and erase operations.
- Programming operations are not limited to the page selected in the Page Select register.
- Bits in the Flash Sector Protect register can be written to one or zero.
- The second write of the Page Select register to unlock the Flash Controller is not necessary.
- The Page Select register can be written when the Flash Controller is unlocked.
- The Mass Erase command is enabled through the Flash Control register.

Caution: For security reasons, flash controller allows only a single page to be opened for write/ erase. When writing multiple flash pages, the flash controller must go through the unlock sequence again to select another page.

Flash Control Register Definitions

Flash Control Register

The Flash Controller must be unlocked using the Flash Control register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the appropriate enable command to the FCTL. Page Erase applies only to the active page selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register

BITS	7	6	5	4	3	2	1	0			
FIELD		FCMD									
RESET	0	0 0 0 0 0 0 0 0									
R/W	W	w w w w w w w									
ADDR		FF8H									

Table 79.	Flash	Control	Register	(FCTL)
-----------	-------	---------	----------	--------

FCMD—Flash Command

73H = First unlock command.

8CH = Second unlock command.

95H = Page Erase command (must be third command in sequence to initiate Page Erase).

63H = Mass Erase command (must be third command in sequence to initiate Mass Erase).

5EH = Enable Flash Sector Protect Register Access

Flash Status Register

The Flash Status register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its Register File address with the Write-only Flash Control Register.

BITS	7	6	5	4	3	2	1	0
FIELD	Rese	erved			FS	TAT		
RESET	0	0	0 0 0 0 0					0

Table 80. Flash Status Register (FSTAT)

Table 80. Flash Status Register (FSTAT)

R/W	R	R	R	R	R	R	R	R	
ADDR		FF8H							

Reserved—Must be 0.

FSTAT—Flash Controller Status

000000 = Flash Controller locked.

000001 = First unlock command received (73H written).

000010 = Second unlock command received (8CH written).

000011 = Flash Controller unlocked.

000100 = Sector protect register selected.

001xxx = Program operation in progress.

010xxx = Page erase operation in progress.

100xxx = Mass erase operation in progress

Flash Page Select Register

The Flash Page Select register shares address space with the Flash Sector Protect Register. Unless the Flash controller is unlocked and written with 5EH, writes to this address target the Flash Page Select Register.

The register is used to select one of the 8 available Flash memory pages to be programmed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7-bits given by FPS[6:0] are chosen for program/erase operation.

BITS	7	6	5	4	3	2	1	0			
FIELD	INFO_EN		PAGE								
RESET	0	0	0 0 0 0 0 0 0								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FF9H									

Table 81. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking.

Program Memory Address[15:9] = PAGE[6:0]. For the Z8F0823 devices, the upper 3 bits must always be 0.

Flash Sector Protect Register

The Flash Sector Protect register is shared with the Flash Page Select Register. When the **Flash Control Register** is written with 73H followed by 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the 8 available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared) without powering down the device.

 Table 82. Flash Sector Protect Register (FPROT)

BITS	7	6	5	4	3	2	1	0		
FIELD	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FF9H								

SPROT7-SPROT0—Sector Protection

Each bit corresponds to a 1024 bytes Flash sector. For the Z8F0823 devices all bits are used.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in KHz) and is calculated using the following equation:.

$FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 20KHz or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure proper operation of the device.

Table 83. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0			
FIELD		FFREQH									
RESET	0	0 0 0 0 0 0 0 0									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FFAH									

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value.

BITS 7 5 4 3 1 0 6 2 FFREQL FIELD 0 RESET R/W R/W FFBH ADDR

Table 84. Flash Frequency Low Byte Register (FFREQL)

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value.

Flash Option Bits

Overview

Programmable Flash Option Bits allow user configuration of certain aspects of Z8 Encore![®] Z8F0823 Series operation. The feature configuration data is stored in the Flash Program Memory and read during Reset. The features available for control through the Flash Option Bits are:

- Watch-Dog Timer time-out response selection-interrupt or system reset
- Watch-Dog Timer enabled at Reset
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brown-Out configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Voltage Brown-Out response selection-interrupt or System Reset
- Factory trimming information for the Internal Precision Oscillator
- Factory calibration values for ADC compensation

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, system reset, or STOP Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore![®] Z8F0823 Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Option Bit Types

User Option Bits

The user option bits are contained in the first two bytes of program memory. User access to these bits has been provided because these locations contain application-specific device configurations. The information contained here is lost when page 0 of the program memory is erased.

Trim Option Bits

The trim option bits are contained in the information page of the Flash memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered by the user. Program memory may be erased without endangering these values. It is possible to alter working values of these bits by accessing the Trim Bit Address and Data Registers, but these working values are lost after a power loss.

There are 32 bytes of trim data. To modify one of these values the user code must first write a value between 00H and 1FH into the Trim Bit Address Register. The next write to the Trim Bit Data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the Trim Bit Address Register. The next read from the Trim Bit Data register returns the working value of the target trim data byte.

Note: The trim address range is from information address 20-3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

Calibration Option Bits

The calibration option bits are also contained in the information page. These bits are factory programmed values intended for use in software correcting the device's analog performance. To read these values, the user code must employ the LDC instruction to access the information area of the address space as defined in See "Flash Information Area" on page 14.

The following code example shows how to read the calibration data from the flash information area.

; get value at info address 60 (FE60h)
ldx FPS, #%80 ; enable access to flash info page
ld R0, #%FE
ld R1, #%60
ldc R2, @RR0 ; R2 now contains the calibration value

Flash Option Bit Control Register Definitions

Trim Bit Address Register

This register contains the target address for an access to the trim option bits.

Table 85. Trim Bit Address Register (TRMADR)

BITS	7	6	5	4	3	2	1	0			
FIELD		TRMADR - Trim Bit Address (00H to 1FH)									
RESET	0	0 0 0 0 0 0 0 0									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FF6H									

Trim Bit Data Register

This register contains the read or write data for access to the trim option bits.

 Table 86. Trim Bit Data Register (TRMDR)

BITS	7	6	5	4	3	2	1	0			
FIELD		TRMDR - Trim Bit Data									
RESET	0	0 0 0 0 0 0 0 0									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FF7H									

Flash Option Bit Address Space

The first two bytes of Flash Program Memory at addresses 0000H and 0001H are reserved for the user-programmable Flash Option Bits.

Flash Program Memory Address 0000H Table 87. Flash Option Bits at Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0		
FIELD	WDT_RES	WDT_AO	Rese	Reserved		FRP	Reserved	FWP		
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Program Memory 0000H									
Note: U = Unchanged by Reset. R/W = Read/Write.										

WDT_RES—Watch-Dog Timer Reset

0 = Watch-Dog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watch-Dog Timer time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watch-Dog Timer Always On

0 = Watch-Dog Timer is automatically enabled upon application of system power. Watch-Dog Timer can not be disabled.

1 = Watch-Dog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watch-Dog Timer can only be disabled by a Reset or STOP Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Reserved—Must be 1

VBO_AO—Voltage Brown-Out Protection Always On

0 = Voltage Brown-Out Protection is disabled in STOP mode to reduce total power consumption.

1 = Voltage Brown-Out Protection is always enabled including during STOP mode. This setting is the default for unprogrammed (erased) Flash.

FRP—Flash Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Reserved—Must be 1.

FWP—Flash Write Protect

This Option Bit provides Flash Program Memory protection:

0 = Programming and erasure disabled for all of Flash Program Memory. Programming,

Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger.

1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Program Memory Address 0001H

 Table 88. Flash Options Bits at Program Memory Address 0001H

BITS	7	6	5	4	3	2	1	0			
FIELD		Reserved									
RESET	U	U U U U U U U U									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR	Program Memory 0001H										
Note: U = Unchanged by Reset. R/W = Read/Write.											

one. U = Unchanged by Reset. R/W = Read/Write.

Reserved—Must be 1.

Trim Bit Address Space

Trim Bit Address 0000H—Reserved

Trim Bit Address 0001H—Reserved

Trim Bit Address 0002H

Table 89. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0			
FIELD	IPO_TRIM										
RESET		U									
R/W		R/W									
ADDR		Information Page Memory 0022H									
Note: U =	lote: U = Unchanged by Reset. R/W = Read/Write.										

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H—Reserved

Trim Bit Address 0004H—Reserved

ZiLOG Calibration Bits

ADC Calibration Bits

Table 90. ADC Calibration Bits at 0060H-007DH

BITS	7	6	5	4	3	2	1	0	
FIELD	ADC_CAL								
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Information Page Memory 0060H–007DH								
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.								

ADC_CAL—Analog to Digital Converter Calibration Values

Contains factory calibrated values for ADC gain and offset compensation. Each of the three supported reference types has one byte of offset calibration and two bytes of gain calibration. These values are read by user software to compensate ADC measurements as detailed in "Software Compensation Procedure" on page 113. The location of each calibration byte is provided in Table 91.

Table 91. ADC Calibration Data Location

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0V

On-Chip Debugger

Overview

The Z8 Encore![®] Z8F0823 Series devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features including:

- Reading and writing of the Register File
- Reading and writing of Program and Data Memory
- Setting of Breakpoints and Watchpoints
- Executing eZ8 CPU instructions

Architecture

The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. Figure 22 illustrates the architecture of the On-Chip Debugger

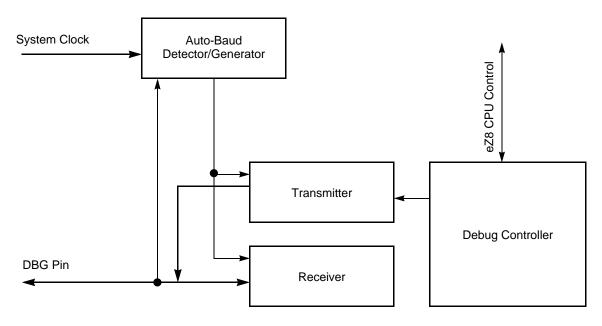


Figure 22.On-Chip Debugger Block Diagram

Operation

OCD Interface

The On-Chip Debugger uses the DBG pin for communication with an external host. This one-pin interface is a bi-directional open-drain interface that transmits and receives data. Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously. The serial data on the DBG pin is sent using the standard asynchronous data format defined in RS-232. This pin creates an interface from the Z8 Encore![®] Z8F0823 Series products to the serial port of a host PC using minimal external hardware. Two different methods for connecting the DBG pin to an RS-232 interface are depicted in Figures 23 and 24. The recommended method is the buffered implementation depicted in Figure 24. The DBG pin must always be connected to V_{DD} through an external pull-up resistor.

Caution:

For operation of the On-Chip Debugger, all power pins (V_{DD} and AV_{DD}) must be supplied with power, and all ground pins (V_{SS} and AV_{SS}) must be properly grounded.

The DBG pin is open-drain and must always be connected to V_{DD} through an external pull-up resistor to insure proper operation.

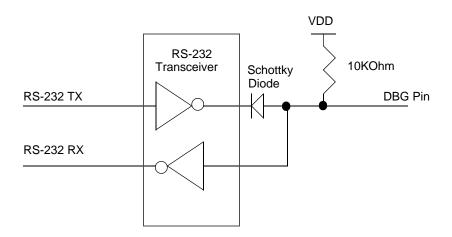
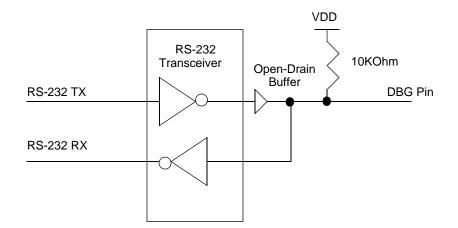



Figure 23.Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (1)

Z8 Encore![®] Z8F0823 Series Product Specification

Figure 24.Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2)

DEBUG Mode

The operating characteristics of the devices in DEBUG mode are:

- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions
- The system clock operates unless in STOP mode
- All enabled on-chip peripherals operate unless in STOP mode
- Automatically exits HALT mode
- Constantly refreshes the Watch-Dog Timer, if enabled

Entering DEBUG Mode

- The device enters DEBUG mode after the eZ8 CPU executes a BRK (Breakpoint) instruction.
- If the DBG pin is held Low during the most recent clock cycle of system reset, the part enters DEBUG mode upon exiting system reset.

Exiting DEBUG Mode

The device exits DEBUG mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0.
- Power-on reset
- Voltage Brown-Out reset
- Watch-Dog Timer reset

- Asserting the RESET pin Low to initiate a Reset.
- Driving the DBG pin Low while the device is in STOP mode initiates a System Reset.

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits (Figure 25)

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
START	D0	D1	D2	D3	D4	D5	D6	D7	STOP

Figure 25.OCD Data Format

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous datastreams, the maximum recommended baud rate is the system clock frequency divided by 8. The maximum possible baud rate for asynchronous datastreams is the system clock frequency divided by 4, but this theoretical maximum is possible only for low noise designs with clean signals. Table 92 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Recommended Standard PC Baud Rate (bps)	Minimum Baud Rate (Kbps)
5.5296	1382.4	691,200	1.08
0.032768 (32KHz)	4.096	2400	0.064

Table 92. OCD Baud-Rate	Limits
-------------------------	--------

If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud Detector/Generator resets. Reconfigure the Auto-Baud Detector/Generator by sending 80H.

OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to the Z8 Encore![®] Z8F0823 Series devices or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the required break address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Runtime Counter

The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles between Breakpoints. The counter starts counting when the On-Chip Debugger leaves DEBUG mode and stops counting when it enters DEBUG mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG mode, all OCD commands become available unless the user code and control registers are protected by programming the Flash Read Protect Option bit (FRP). The Flash Read Protect Option bit prevents the code in memory from being read out of the Z8 Encore![®] Z8F0823 Series products. When this option is enabled, several of the OCD commands are disabled. Table 93 on page 148 is a summary of the On-Chip Debugger commands. Each OCD command is described in further detail in the bulleted list following this table. Table 93 also indicates those commands that operate when the device is not in DEBUG mode (normal operation) and those commands that are disabled by programming the Flash Read Protect Option bit.

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Read OCD Revision	00H	Yes	_
Reserved	01H	_	_
Read OCD Status Register	02H	Yes	_
Read Runtime Counter	03H	_	_
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	_
Write Program Counter	06H	-	Disabled
Read Program Counter	07H	-	Disabled
Write Register	08H	-	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled
Write Program Memory	0AH	-	Disabled
Read Program Memory	0BH	-	Disabled
Write Data Memory	0CH	-	Yes
Read Data Memory	0DH	_	_
Read Program Memory CRC	0EH	_	_
Reserved	0FH	_	_
Step Instruction	10H	_	Disabled
Stuff Instruction	11H	-	Disabled

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Execute Instruction	12H	-	Disabled
Reserved	13H–FFH	-	-

In the following bulleted list of OCD Commands, data and commands sent from the host to the On-Chip Debugger are identified by 'DBG \leftarrow Command/Data'. Data sent from the On-Chip Debugger back to the host is identified by 'DBG \rightarrow Data'

• **Read OCD Revision (00H)**—The Read OCD Revision command determines the version of the On-Chip Debugger. If OCD commands are added, removed, or changed, this revision number changes.

```
DBG \leftarrow 00H
DBG \rightarrow OCDRev[15:8] (Major revision number)
DBG \rightarrow OCDRev[7:0] (Minor revision number)
```

• **Read OCD Status Register (02H)**—The Read OCD Status Register command reads the OCDSTAT register.

```
DBG \leftarrow 02H
DBG \rightarrow OCDSTAT[7:0]
```

• **Read Runtime Counter (03H)**—The Runtime Counter counts system clock cycles in between Breakpoints. The 16-bit Runtime Counter counts up from 0000H and stops at the maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memory, Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction, Stuff Instruction, and Execute Instruction commands.

```
DBG \leftarrow 03H
DBG \rightarrow RuntimeCounter[15:8]
DBG \rightarrow RuntimeCounter[7:0]
```

• Write OCD Control Register (04H)—The Write OCD Control Register command writes the data that follows to the OCDCTL register. When the Flash Read Protect Option Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0 and the only method of returning the device to normal operating mode is to reset the device.

```
DBG \leftarrow 04H
DBG \leftarrow OCDCTL[7:0]
```

• **Read OCD Control Register (05H)**—The Read OCD Control Register command reads the value of the OCDCTL register.

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```


• Write Program Counter (06H)—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are discarded.

```
DBG \leftarrow 06H
DBG \leftarrow ProgramCounter[15:8]
DBG \leftarrow ProgramCounter[7:0]
```

• **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

• Write Register (08H)—The Write Register command writes data to the Register File. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG mode, the address and data values are discarded. If the Flash Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed and all other register write data values are discarded.

```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

• **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.


```
DBG \leftarrow 0AH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Data Memory (0DH)**—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

• **Read Program Memory CRC (0EH)**—The Read Program Memory CRC command computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this command re-

turns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value, and returns the result. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

```
DBG \leftarrow 0EH
DBG \rightarrow CRC[15:8]
DBG \rightarrow CRC[7:0]
```

• Step Instruction (10H)—The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG \leftarrow 10H

• Stuff Instruction (11H)—The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a Breakpoint. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

```
DBG ← 11H
DBG ← opcode[7:0]
```

• **Execute Instruction (12H)**—The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints. The number of bytes to send for the instruction depends on the opcode. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command reads and discards one byte.

DBG \leftarrow 12H DBG \leftarrow 1-5 byte opcode

On-Chip Debugger Control Register Definitions

OCD Control Register

The OCD Control register controls the state of the On-Chip Debugger. This register is used to enter or exit DEBUG mode and to enable the BRK instruction. It can also reset the Z8 Encore![®] Z8F0823 Series device.

A reset and stop function can be achieved by writing 81H to this register. A reset and go function can be achieved by writing 41H to this register. If the device is in DEBUG mode, a run function can be implemented by writing 40H to this register.

148

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK	Reserved				RST
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W

Table 93. OCD Control Register (OCDCTL)

DBGMODE—Debug Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

 $0 = \text{The } Z8 \text{ Encore!}^{\$} Z8F0823 \text{ Series device is operating in NORMAL mode.}$ $1 = \text{The } Z8 \text{ Encore!}^{\$} Z8F0823 \text{ Series device is in DEBUG mode.}$

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, Breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

0 = Breakpoints are disabled.

1 = Breakpoints are enabled.

DBGACK—Debug Acknowledge

This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.

0 = Debug Acknowledge is disabled.

1 =Debug Acknowledge is enabled.

Reserved—Must be 0.

RST—Reset

Setting this bit to 1 resets the Encore![®] Z8F0823 Series device. The device goes through a normal Power-On Reset sequence with the exception that the On-Chip Debugger is not reset. This bit is automatically cleared to 0 at the end of reset.

0 = No effect.

1 = Reset the Flash Read Protect Option Bit device.

OCD Status Register

The OCD Status register reports status information about the current state of the debugger and the system.

Table 94. OCD Status Register (OCDSTAT)

BITS	7	6	5	4	3	2	1	0
FIELD	DBG	HALT	FRPENB			Reserved		
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R

DBG—Debug Status

0 = NORMAL mode

1 = DEBUG mode

HALT—HALT Mode

0 = Not in HALT mode

1 = In HALT mode

FRPENB—Flash Read Protect Option Bit Enable

0 = FRP bit enabled, that allows disabling of many OCD commands

1 = FRP bit has no effect

Reserved—Must be 0.

Oscillator Control

Overview

The Z8 Encore![®] Z8F0823 Series devices uses three possible clocking schemes, each user-selectable:

- On-chip precision trimmed RC oscillator
- External clock drive
- On-chip low precision Watch-Dog Timer oscillator

In addition, Z8 Encore![®] Z8F0823 Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined elsewhere in this document. The detailed description of the Watch-Dog Timer Oscillator starts on page 81, the Internal Precision Oscillator description begins on page 154 of this document.

System Clock Selection

The oscillator control block selects from the available clocks. Table 95 details each clock source and its usage.

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	 32.8KHz or 5.53MHz ± 4% accuracy when trimmed No external components required 	Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8KHz

Table 95. Oscillator Configuration and Selection

Clock Source	Characteristics	Required Setup
External Clock Drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10KHz nominal ± 40% accuracy; no external components required Low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Table 95. Oscillator Configuration and Selection (Continued)

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values E7H followed by 18H. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

When selecting a new clock source, the primary oscillator failure detection circuitry and the Watch-Dog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the oscillator control register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it may be appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

Clock Failure Detection and Recovery

Primary Oscillator Failure

The Z8 Encore![®] Z8F0823 Series devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watch-Dog Timer oscillator to drive the system clock. The Watch-Dog Timer oscillator must be enabled to allow the recovery.

Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switchover is not available if the Watch-Dog Timer is the primary oscillator. It is also unavailable if the Watch-Dog Timer oscillator is disabled, though it is not necessary to enable the Watch-Dog Timer reset function outlined in the Watch-Dog Timer chapter of this document on page 81.

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1KHz \pm 50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (POFEN must be deasserted in the OSCCTL register).

Watch-Dog Timer Failure

In the event of a Watch-Dog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watch-Dog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watch-Dog Timer is used as the primary oscillator or if the Watch-Dog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watch-Dog Timer oscillator failure detection circuit counts system clocks while looking for a Watch-Dog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watch-Dog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore![®] Z8F0823 Series device ceases functioning and can only be recovered by Power-On-Reset.

Oscillator Control Register Definitions

Oscillator Control Register

The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

153

BITS	7	6	5	4	3	2	1	0
FIELD	INTEN	Reserved	WDTEN	POFEN	WDFEN		SCKSEL	
RESET	1	0	1	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	6H			

Table 96. Oscillator Control Register (OSCCTL)

INTEN—Internal Precision Oscillator Enable

1 = Internal precision oscillator is enabled

0 = Internal precision oscillator is disabled

Reserved—Must be 0

WDTEN—Watchdog Timer Oscillator Enable

1 = Watch-Dog Timer oscillator is enabled

0 = Watch-Dog Timer oscillator is disabled

POFEN—Primary Oscillator Failure Detection Enable

1 = Failure detection and recovery of primary oscillator is enabled

0 = Failure detection and recovery of primary oscillator is disabled

WDFEN—Watchdog Timer Oscillator Failure Detection Enable

1 = Failure detection of Watch-Dog Timer oscillator is enabled

0 = Failure detection of Watch-Dog Timer oscillator is disabled

SCKSEL—System Clock Oscillator Select

000 = Internal precision oscillator functions as system clock at 5.53MHz

001 = Internal precision oscillator functions as system clock at 32KHz

010 = Reserved

011 = Watch-Dog Timer oscillator functions as system clock

100 = External clock signal on PB3 functions as system clock

- 101 = Reserved
- 110 = Reserved
- 111 = Reserved

Internal Precision Oscillator

Overview

The Internal Precision Oscillator (IPO) is designed for use without external components. The user can either manually trim the oscillator for a non-standard frequency or use the automatic factory-trimmed version to achieve a 5.53MHz frequency. IPO features include:

- On-chip RC oscillator that does not require external components
- Output frequency of either 5.53MHz or 32.8KHz (contains both a fast and a slow mode)
- Trimming possible through Flash option bits with user override
- Elimination of crystals or ceramic resonators in applications where high timing accuracy is not required.

Operation

The internal oscillator is an RC relaxation oscillator that has had its sensitivity to power supply variation minimized. By using ratio tracking thresholds, the effect of power supply voltage is cancelled out. The dominant source of oscillator error is the absolute variance of chip level fabricated components, such as capacitors. An 8-bit trimming register, incorporated into the design, compensates for absolute variation of oscillator frequency. Once trimmed the oscillator frequency is stable and does not require subsequent calibration. Trimming was performed during manufacturing and is not necessary for the user to repeat unless a frequency other than 5.53MHz (fast mode) or 32.8kHz (slow mode) is required.

Power down this block for minimum system power.

By default, the oscillator is configured through the Flash Option bits. However, the user code can override these trim values as described in "Trim Bit Address Space" on page 136.

Select one of two frequencies for the oscillator: 5.53MHz and 32.8KHz, using the OSC-SEL bits in the "Oscillator Control" on page 150.

eZ8 CPU Instruction Set

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (opcodes and operands) to represent the instructions themselves. The opcodes identify the instruction while the operands represent memory locations, registers, or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	; A label called "START". The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working Register R4, is the destination. The second operand, ; Working Register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #%01	; Another Load (LD) instruction with two operands. ; The first operand, Extended Mode Register Address 234H, ; identifies the destination. The second operand, Immediate Data
	; value 01H, is the source. The value 01H is written into the ; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 97. Assembly	^v Language Synta	x Example 1
--------------------	-----------------------------	-------------

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

 Table 98. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 99

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
СС	Condition Code	—	See Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
Ir	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 – 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to – 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
Х	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.
. <u> </u>			-128 range.

Table 99. Notational Shorthand

Table 100 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Η	Hexadecimal Number Suffix

Table 100. Additional Symbols

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control
- Rotate and Shift

Tables 101 through 108 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instruction can be considered as a subset of more than one category. Within these tables, the source operand is identified as 'src', the destination operand is 'dst' and a condition code is 'cc'.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
СРХ	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 101. Arithmetic Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
ТСМХ	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 102. Bit Manipulation Instructions

Table 103. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses

Table 104. CPU Control Instructions

Operands	Instruction
_	Atomic Execution
_	Complement Carry Flag
—	Disable Interrupts
—	Enable Interrupts
—	Halt Mode
—	No Operation
_	Reset Carry Flag
_	Set Carry Flag
src	Set Register Pointer

Table 104. CPU Control Instructions

Mnemonic	Operands	Instruction
STOP	_	STOP Mode
WDT	_	Watch-Dog Timer Refresh

Table 105. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Table 106. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing

Table 106. Logical Instructions

Mnemonic	Operands	Instruction
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Mnemonic	Operands	Instruction						
BRK	_	On-Chip Debugger Break						
BTJ	p, bit, src, DA	Bit Test and Jump						
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero						
BTJZ	bit, src, DA	Bit Test and Jump if Zero						
CALL	dst	Call Procedure						
DJNZ	dst, src, RA	Decrement and Jump Non-Zero						
IRET	_	Interrupt Return						
JP	dst	Jump						
JP cc	dst	Jump Conditional						
JR	DA	Jump Relative						
JR cc	DA	Jump Relative Conditional						
RET	_	Return						
TRAP	vector	Software Trap						

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry
RR	dst	Rotate Right
RRC	dst	Rotate Right through Carry
SRA	dst	Shift Right Arithmetic

Mnemonic	Operands	Instruction
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

Table 108. Rotate and Shift Instructions

eZ8 CPU Instruction Summary

Table 109 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instruction fetch, and the number of CPU clock cycles required for the instruction.

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s)			FI	ags	Fetch	Instr.		
		dst	src	(Hex)	С	Ζ	S	۷	D	Н		Cycles
ADC dst, src	$dst \gets dst + src + C$	r	r	12	*	*	*	*	0	*	2	3
		r	lr	13	-						2	4
		R	R	14	-						3	3
		R	IR	15	-						3	4
		R	IM	16	-						3	3
		IR	IM	17	-						3	4
ADCX dst, src	$dst \gets dst + src + C$	ER	ER	18	*	*	*	*	0	*	4	3
		ER	IM	19	-						4	3
ADD dst, src	$dst \gets dst + src$	r	r	02	*	*	*	*	0	*	2	3
		r	lr	03	-						2	4
		R	R	04	-						3	3
		R	IR	05	-						3	4
		R	IM	06	-						3	3
		IR	IM	07	-						3	4
ADDX dst, src	$dst \gets dst + src$	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09	-						4	3
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the result	of the o	peration.	-	⊧ Re ⊧ Se		to (1)			

Table 109. eZ8 CPU Instruction Summary

Assembly		Addres	s Mode	Opcode(s)			FI	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	_	*	*	0	-	-	2	3
		r	Ir	53	-						2	4
		R	R	54	-						3	3
		R	IR	55	-						3	4
		R	IM	56	-						3	3
		IR	IM	57	-						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	_	*	*	0	_	_	4	3
		ER	IM	59	-						4	3
АТМ	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	_	_	_	_	_	_	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	-	*	*	0	_	-	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	-	*	*	0	-	-	2	2
BRK	Debugger Break			00	-	_	_	_	-	-	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	_	*	*	0	_	_	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Х	*	*	0	_	-	2	2
BTJ p, bit, src, dst	if src[bit] = p		r	F6	_	-	_	_	_	-	3	3
	$PC \leftarrow PC + X$		Ir	F7	-						3	4
BTJNZ bit, src, dst			r	F6	-	_	_	_	_	-	3	3
	$PC \leftarrow PC + X$		Ir	F7	-						3	4
BTJZ bit, src, dst	if src[bit] = 0		r	F6	_	_	_	_	_	-	3	3
	$PC \leftarrow PC + X$		Ir	F7	-						3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	-	_	_	_	-	-	2	6
	$@SP \leftarrow PC$ PC \leftarrow dst	DA		D6	-						3	3
CCF	C ← ~C			EF	*	_	_	_	_		1	2
CLR dst	dst ← 00H	R		B0	-	_	_	_	_	-	2	2
		IR		B1	-						2	3
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	the result	of the o	peration.		Re Se		to (1)			

Assembly		Addres	s Mode	Opcode(s)			FI	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	۷	D	Н	Cycles	
COM dst	$dst \leftarrow \sim dst$	R		60	_	*	*	0	_	_	2	2
		IR		61	-						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	-	2	3
		r	lr	A3							2	4
		R	R	A4	_						3	3
		R	IR	A5	_						3	4
		R	IM	A6	_						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	-	3	3
		r	lr	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9	-						4	3
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	_	-	2	2
		IR		41	-						2	3
DEC dst	dst ← dst - 1	R		30	_	*	*	*	-	-	2	2
		IR		31	-						2	3
DECW dst	dst ← dst - 1	RR		80	-	*	*	*	-	-	2	5
		IRR		81	-						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	_	_	_	_	_	_	1	2
DJNZ dst, RA	dst \leftarrow dst – 1 if dst \neq 0 PC \leftarrow PC + X	r		0A-FA	_	-	_	_	-	_	2	3
EI	$IRQCTL[7] \leftarrow 1$			9F	-	-	_	-	-	-	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the result	of the o	peration.		Re Se		to (1)			

Assembly		Addres	s Mode	Opcode(s)			FI	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
HALT	Halt Mode			7F	_	_	_	_	_	_	1	2
INC dst	dst \leftarrow dst + 1	R		20	_	*	*	_	-	-	2	2
		IR		21	-						2	3
		r		0E-FE	-						1	2
INCW dst	dst ← dst + 1	RR		A0	-	*	*	*	_	-	2	5
		IRR		A1	-						2	6
IRET	$FLAGS \leftarrow @SP$ $SP \leftarrow SP + 1$ $PC \leftarrow @SP$ $SP \leftarrow SP + 2$ $IRQCTL[7] \leftarrow 1$			BF	*	*	*	*	*	*	1	5
JP dst	$PC \gets dst$	DA		8D	_	_	_	_	_	-	3	2
		IRR		C4	-						2	3
JP cc, dst	if cc is true PC \leftarrow dst	DA		0D-FD	-	-	_	-	_	_	3	2
JR dst	$PC \gets PC + X$	DA		8B	_	_	_	-	-	-	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	-	-	_	-	-	_	2	2
LD dst, rc	$dst \leftarrow src$	r	IM	0C-FC	_	_	_	_	_	_	2	2
		r	X(r)	C7	-						3	3
		X(r)	r	D7	_						3	4
		r	Ir	E3	_						2	3
		R	R	E4	_						3	2
		R	IR	E5	_						3	4
		R	IM	E6	_						3	2
		IR	IM	E7	_						3	3
		Ir	r	F3	_						2	3
		IR	R	F5							3	3
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	f the result	of the o	peration.		⊧ Re ⊧ Se		to (1)			

Assembly		Addres	s Mode	Opcode(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
LDC dst, src	$dst \leftarrow src$	r	Irr	C2	_	_	_	_	_	_	2	5
		lr	Irr	C5	-						2	9
		Irr	r	D2	-						2	5
LDCI dst, src	dst ← src	lr	Irr	C3	_	_	_	_	_	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	-						2	9
LDE dst, src	$dst \leftarrow src$	r	Irr	82	_	_	_	-	_	_	2	5
		Irr	r	92	-						2	5
LDEI dst, src	dst ← src	lr	Irr	83	_	_	_	-	-	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	-						2	9
LDWX dst, src	$dst \leftarrow src$	ER	ER	1FE8	_	_	_	-	-	-	5	4
LDX dst, src	$dst \leftarrow src$	r	ER	84	_	_	_	_	_	_	3	2
		Ir	ER	85	-						3	3
		R	IRR	86	-						3	4
		IR	IRR	87	-						3	5
		r	X(rr)	88	-						3	4
		X(rr)	r	89	-						3	4
		ER	r	94	-						3	2
		ER	lr	95	-						3	3
		IRR	R	96	-						3	4
		IRR	IR	97	-						3	5
		ER	ER	E8	-						4	2
		ER	IM	E9	-						4	2
LEA dst, X(src)	$dst \gets src + X$	r	X(r)	98	_	_	_	_	_	_	3	3
		rr	X(rr)	99	-						3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	_	_	-	-	-	2	8
NOP	No operation			0F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the result	of the o	peration.		Re Se		to (1)			

Assembly		Addres	s Mode	Opcode(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
OR dst, src	$dst \gets dst \ OR \ src$	r	r	42	_	*	*	0	_	-	2	3
		r	lr	43	-						2	4
		R	R	44	-						3	3
		R	IR	45	-						3	4
		R	IM	46	-						3	3
		IR	IM	47	-						3	4
ORX dst, src	$dst \gets dst \ OR \ src$	ER	ER	48	_	*	*	0	_	_	4	3
		ER	IM	49	-						4	3
POP dst	$dst \gets @SP$	R		50	_	-	_	_	_	-	2	2
	$SP \leftarrow SP + 1$	IR		51	-						2	3
POPX dst	dst $\leftarrow @SP$ SP \leftarrow SP + 1	ER		D8	-	-	-	-	-	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	_	_	_	_	_	-	2	2
	$@SP \leftarrow src$	IR		71	-						2	3
		IM		IF70	-						3	2
PUSHX src	$SP \leftarrow SP - 1$ @SP ← src	ER		C8	_	_	_	_	_	_	3	2
RCF	C ← 0			CF	0	_	_	_	_	-	1	2
RET	$PC \leftarrow @SP$ $SP \leftarrow SP + 2$			AF	-	_	_	-	-	-	1	4
RL dst		R		90	*	*	*	*	_	-	2	2
	C - D7 D6 D5 D4 D3 D2 D1 D0 - dst	IR		91	-						2	3
RLC dst		R		10	*	*	*	*	_	_	2	2
	C ◀ D7 D6 D5 D4 D3 D2 D1 D0 ◀ dst	IR		11	-						2	3
Flags Notation:	* = Value is a function of t - = Unaffected X = Undefined	he result	of the o	peration.		= Re = Se		to (1	C			

Assembly		Addres	s Mode				FI	ags			Fatak	Incta
Mnemonic	Symbolic Operation	dst	src	Opcode(s) (Hex)	С	z		V	D	н	Fetch Cycles	Instr. Cycles
RR dst		R		E0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 C dst	IR		E1	-						2	3
RRC dst	「」	R		C0	*	*	*	*	_	_	2	2
	► <u>D7D6D5D4D3D2D1D0</u> ► C dst	IR		C1	_						2	3
SBC dst, src	dst ← dst – src - C	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33	-						2	4
		R	R	34	-						3	3
		R	IR	35	-						3	4
		R	IM	36	-						3	3
		IR	IM	37	_						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39	-						4	3
SCF	C ← 1			DF	1	-	_	-	-	_	1	2
SRA dst		R		D0	*	*	*	0	_	-	2	2
	D7D6D5D4D3D2D1D0 ► C	IR		D1	-						2	3
SRL dst	0 - D7 D6 D5 D4 D3 D2 D1 D0 - C	R		1F C0	*	*	0	*	_	_	3	2
	dst	IR		1F C1	_						3	3
SRP src	$RP \leftarrow src$		IM	01	_	_	_	_	_	_	2	2
STOP	STOP Mode			6F	_	_	_	_	_	_	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
		r	lr	23	-						2	4
		R	R	24	-						3	3
		R	IR	25	-						3	4
		R	IM	26	-						3	3
		IR	IM	27	-						3	4
Flags Notation:	* = Value is a function of th - = Unaffected X = Undefined	ne result	of the o	peration.		Re Se		to (1)			

Assembly		Addre	ss Mode	Opcode(s)			FI	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		Cycles
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	-						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	_	_	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	_	_	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	_	-	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	-	2	3
		r	lr	73	_						2	4
		R	R	74	_						3	3
		R	IR	75	_						3	4
		R	IM	76	_						3	3
		IR	IM	77							3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	_	4	3
		ER	IM	79							4	3
TRAP Vector	$\begin{array}{l} SP \leftarrow SP - 2\\ @SP \leftarrow PC\\ SP \leftarrow SP - 1\\ @SP \leftarrow FLAGS\\ PC \leftarrow @Vector \end{array}$		Vector	F2	_	_	-	_	_	_	2	6
WDT				5F	_	-	_	-	-	_	1	2
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	f the resu	It of the o	peration.		= Re = Se		to (1	C			

Assembly		Addres	s Mode	Opcode(s)			FI	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		Cycles
XOR dst, src	$dst \gets dst \ XOR \ src$	r	r	B2	_	*	*	0	_	_	2	3
		r	lr	B3	-						2	4
		R	R	B4	-						3	3
		R	IR	B5	-						3	4
		R	IM	B6	-						3	3
		IR	IM	B7	-						3	4
XORX dst, src	$dst \gets dst \ XOR \ src$	ER	ER	B8	_	*	*	0	-	_	4	3
		ER	IM	B9	-						4	3
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	f the result	of the o	peration.		= Re = Se		to (1)			

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 26. Figures 27 and 32 provide information about each of the eZ8 CPU instructions. Table 110 lists Opcode Map abbreviations.

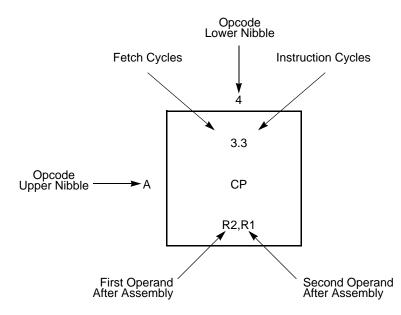


Figure 26.Opcode Map Cell Description

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
сс	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displacement	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
lr	Indirect Working Register	RA	Relative
IR	Indirect register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 110. Opcode Map Abbreviations

							Le	ower Nil	oble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.1 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Opcode Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						1, 2 ATM
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX IM,ER1						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR R2,R1	3.4 OR IR2,R1	3.3 OR R1,IM	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP R1	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	3.3 AND R2,R1	3.4 AND IR2,R1	3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						1.2 WDT
6	2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						1.2 STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1,r2	2.4 TM r1,lr2	3.3 TM R2,R1	3.4 TM IR2,R1	3.3 TM R1,IM	3.4 TM IR1,IM	4.3 TMX ER2,ER1	4.3 TMX IM,ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,Irr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX lr1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2 RL R1	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX lr2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
А	2.5 INCW RR1	2.6 INCW IRR1	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
В	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
с	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,Irr2	2.9 LDCI lr1,lrr2	2.3 JP IRR1	2.9 LDC lr1,lrr2		3.4 LD r1,r2,X	3.2 PUSHX ER2							1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI lr2,lrr1	2.6 CALL IRR1	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
Е	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			V	V	▼	▼	▼	

Figure 27.First Opcode Map

Upper Nibble (Hex)

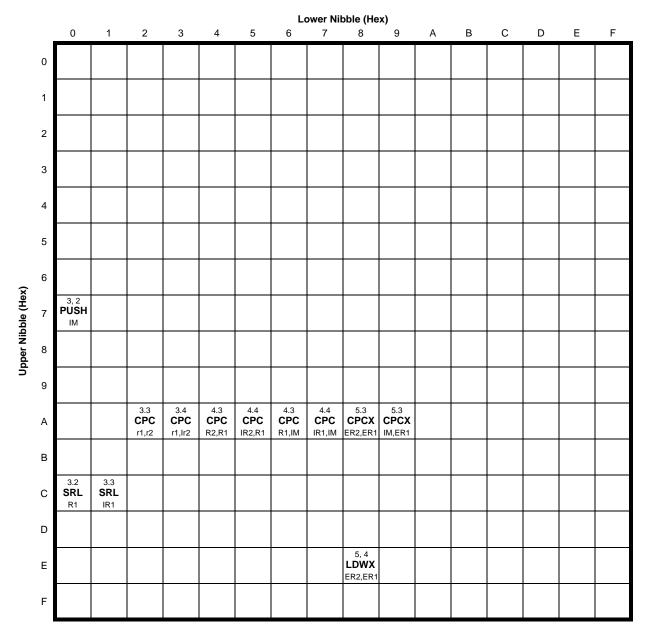


Figure 28.Second Opcode Map after 1FH

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 111 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+105	°C	1
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		450	mW	
Maximum current into V_{DD} or out of V_{SS}		125	mA	

Table 111. Absolute Maximum Ratings

Operating temperature is specified in DC Characteristics

This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins but V_{DD}.

DC Characteristics

Table 112 lists the DC characteristics of the Z8 Encore![®] Z8F0823 Series products. All voltages are referenced to V_{SS}, the primary system ground.

		$T_A =$	-40°C to +1	05°C		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{DD}	Supply Voltage	2.7	_	3.6	V	
V _{IL1}	Low Level Input Voltage	-0.3	-	0.3*V _{DD}	V	For all input pins except RESET.
V _{IL2}	Low Level Input Voltage	-0.3	-	0.8	V	For RESET.
V _{IH1}	High Level Input Voltage	2.0	_	5.5	V	For all input pins without analog or oscillator function. For all signal pins on the 8-pin devices.
V _{IH2}	High Level Input Voltage	2.0	-	V _{DD} +0.3	V	For those pins with analog or oscillator function.
V _{OL1}	Low Level Output Voltage	-	-	0.4	V	I _{OL} = 2mA; V _{DD} = 3.0V High Output Drive disabled.
V _{OH1}	High Level Output Voltage	2.4	_	_	V	I _{OH} = -2mA; V _{DD} = 3.0V High Output Drive disabled.
V _{OL2}	Low Level Output Voltage	-	-	0.6	V	I _{OL} = 20mA; V _{DD} = 3.3V High Output Drive enabled.
V _{OH2}	High Level Output Voltage	2.4	-	_	V	I _{OH} = -20mA; V _{DD} = 3.3V High Output Drive enabled.
I _{IL}	Input Leakage Current	-5	-	+5	μA	$V_{DD} = 3.6V;$ $V_{IN} = V_{DD} \text{ or VSS}^1$
I _{TL}	Tristate Leakage Current	-5	_	+5	μA	V _{DD} = 3.6V
I _{LED}	Controlled Current Drive	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}
		2.8	7	10.5	mA	${AFS2,AFS1} = {0,1}$
		7.8	13	19.5	mA	{AFS2,AFS1} = {1,0}
		12	20	30	mA	{AFS2,AFS1} = {1,1}
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF	ТВО
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0 - 3.6V

Table 112. DC Characteristics

		$T_A = -40^{\circ}C$ to $+105^{\circ}C$							
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions			
ICCH	Supply Current in Halt Mode		TBD		mA	TBD			
ICCS	Supply Current in STOP Mode		2		μA	With watchdog timer running			
 ¹ This condition excludes all pins that have on-chip pull-ups, when driven Low. ² These values are provided for design guidance only and are not tested in production. 									

Table 112. DC Characteristics (Continued)

Figure 29 illustrates the typical current consumption while operating at 25°C, 3.3V, versus the system clock frequency.

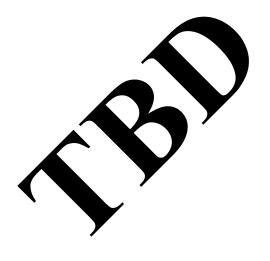


Figure 29. ICC Versus System Clock Frequency

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50pF on all outputs.

		$\label{eq:VDD} \begin{array}{c} V_{\rm DD} = 2.7 \text{ to } 3.6V \\ T_{\rm A} = -40^{\circ}\text{C to} + 105^{\circ}\text{C} \\ \hline \\ $			
Symbol	Parameter			Units	Conditions
F _{SYSCLK}	System Clock Frequency	-	20.0	MHz	Read-only from Flash memory
		0.032768	20.0	MHz	Program or erasure of the Flash memory
F _{IPO}	Internal Precision Oscillator Frequency	0.032768	5.5296	MHz	Oscillator is not adjustable over the entire range. User may select Min or Max value only.
F _{IPO}	Internal Precision Oscillator Frequency	5.31	5.75	MHz	High speed with trimming
F _{IPO}	Internal Precision Oscillator Frequency	4.15	6.91	MHz	High speed without trimming
F _{IPO}	Internal Precision Oscillator Frequency	30.7	33.3	KHz	Low speed with trimming
F _{IPO}	Internal Precision Oscillator Frequency	24	40	KHz	Low speed without trimming
T _{XIN}	System Clock Period	50	_	ns	T _{CLK} = 1/F _{sysclk}
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50ns
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50ns

Table 113. AC Characteristics

On-Chip Peripheral AC and DC Electrical Characteristics

		T _A =	= -40°C to +1	105°C			
Symbol	Parameter	Minimum	Typical ¹	Maximum	Units	Conditions	
V _{POR}	Power-On Reset Voltage Threshold	2.20	2.45	2.70	V	V _{DD} = V _{POR} (default VBO trim)	
V _{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$ (default VBO trim)	
	V_{POR} to V_{VBO} hysteresis		50	75	mV		
	Starting V _{DD} voltage to ensure valid Power-On Reset.	_	V _{SS}	_	V		
T _{ANA}	Power-On Reset Analog Delay	-	50	-	μS	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}	
T _{POR}	Power-On Reset Digital Delay	TBD	16	TBD	μS	66 Internal Precision Oscillator cycles	
T _{SMR}	STOP Mode Recovery with crystal oscillator disabled	TBD	16	TBD	μs	66 Internal Precision Oscillator cycles	
Т _{VBO}	Voltage Brown-Out Pulse Rejection Period	_	10	_	μs	V _{DD} < V _{VBO} to generate a Reset.	
T _{RAMP}	Time for V_{DD} to transition from V_{SS} to V_{POR} to ensure valid Reset	0.10	-	100	ms		

Table 114. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

	$V_{DD} = 2.7 \text{ to } 3.6 \text{V}$ $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$				
Parameter	Minimum	Typical	Maximum	Units	Notes
Flash Byte Read Time	100	_	_	ns	
Flash Byte Program Time	20	_	40	μS	
Flash Page Erase Time	10	_	_	ms	

	$V_{DD} = 2.7 \text{ to } 3.6V$ $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$				
Parameter	Minimum	Typical	Maximum	Units	Notes
Flash Mass Erase Time	200	_	_	ms	
Writes to Single Address Before Next Erase	-	-	2		
Flash Row Program Time	-	-	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.
Data Retention	100	_	_	years	25°C
Endurance	10,000	_	_	cycles	Program / erase cycles

Table 115. Flash Memory Electrical Characteristics and Timing

Table 116. Watch-Dog Timer Electrical Characteristics and Timing

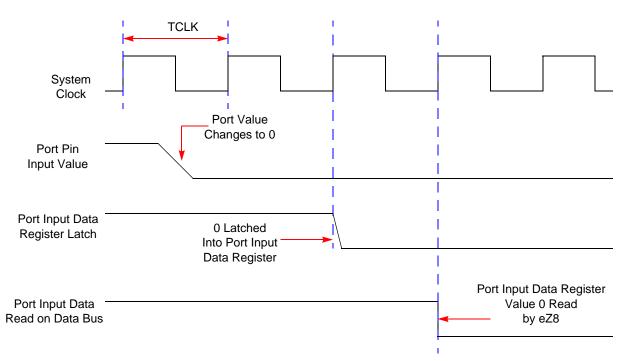
			$V_{\rm DD} = 2.7 - 3.0$ = -40°C to +2			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency		10		KHz	

Table 117. Analog-to-Digital Converter Electrical Characteristics and Timing

			$V_{\rm DD} = 2.7 \text{ to}$ = -40°C to -							
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions				
	Resolution	-	10	-	bits	External V _{REF} = 3.0V; R _S \leftarrow 3.0K Ω				
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB	External V _{REF} = 3.0V; R _S \leftarrow 3.0K Ω				
	Integral Nonlinearity (INL)	-3.0	-	3.0	LSB	External V _{REF} = 3.0V; R _S \leftarrow 3.0K Ω				
¹ Analoç time.	¹ Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling									

			V _{DD} = 2.7 to = -40°C to -				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
	Offset Error (single-ended)	-35	-	25	mV	Note: All values are uncompensated	
V _{REF}	Internal Reference Voltage	0.9 1.8	1.0 2.0	1.1 2.2	V	REFSEL=01 REFSEL=10	
	Single-Shot Conversion Time	-	5129	_	cycles	System clock cycles	
	Continuous Conversion Time	-	256	_	cycles	System clock cycles	
	Sampling Rate	Sy	System Clock /256		Hz		
	Signal Input Bandwidth	-	10		KHz	As defined by -3dB point	
R _S	Analog Source Impedance	-	-	10	kΩ		
Zin	Input Impedance	TBD	150		kΩ	In unbuffered mode	
Vin	Input Voltage Range	0		V _{DD}	V		

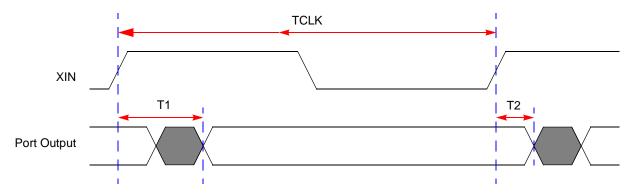
Table 117. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)


Table 118. Comparator Electrical Characteristics

			_{DD} = 2.7 to 3 = -40°C to +			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{OS}	Input DC Offset		5		mV	
V _{CREF}	Programmable Internal Reference Voltage Range	0		1.8	V	User-programmable in 200mV step
V _{CREF}	Programmable Internal Reference Voltage	0.92	1.0	1.08	V	Default (CMP0[REFLVL]=5H)
T _{PROP}	Propagation Delay		100		ns	
V _{HYS}	Input Hysteresis		4		mV	

General Purpose I/O Port Input Data Sample Timing

Figure 30 illustrates timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.


Table 119. GPIO Port Input Timing

			y (ns)	
Parameter	Abbreviation	Minimum	Maximum	
T _{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	-	
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0	-	
T _{SMR}	GPIO Port Pin Pulse Width to ensure STOP Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1μs		

General Purpose I/O Port Output Timing

Figure 31 and Table 120 provide timing information for GPIO Port pins.

Figure 31. GPIO Port Output Timing

		Delay (ns)		
Parameter	Abbreviation		Minimum	Maximum
GPIO Port p	ins			
T ₁	XIN Rise to Port Output Valid Delay		_	15
T ₂	XIN Rise to Port Output Hold Time		2	-

Table 120. GPIO Port Output Timing

On-Chip Debugger Timing

Figure 32 and Table 121 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4ns maximum rise and fall time.

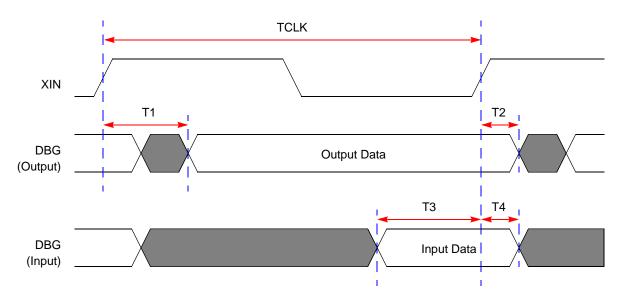


Figure 32. On-Chip Debugger Timing

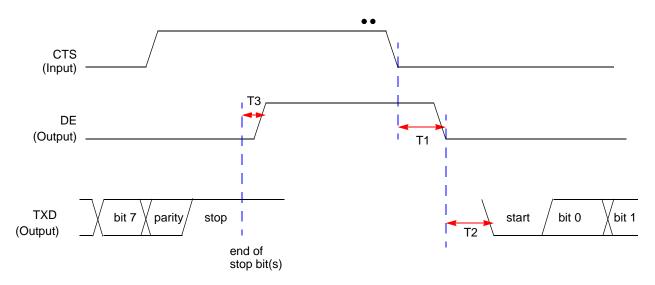

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
DBG						
T ₁	XIN Rise to DBG Valid Delay	_	15			
T ₂	XIN Rise to DBG Output Hold Time	2	_			
T ₃	DBG to XIN Rise Input Setup Time	5	_			
T ₄	DBG to XIN Rise Input Hold Time	5	_			

Table 121.	On-Chip	Debugger	Timina
		Dowaggo.	

UART Timing

Figure 33 and Table 122 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

Figure 33	UART	Timing	With	CTS
-----------	------	--------	------	-----

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
UART					
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time		
T ₂	DE assertion to TXD falling edge (start bit) delay	′±5			
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5			

Table 122. UART Timing With CTS

Figure 34 and Table 123 provide timing information for UART pins for the case where CTS is not used for flow control. DE asserts after the transmit data register has been written. DE remains asserted for multiple characters as long as the transmit data register is written with the next character before the current character has completed.

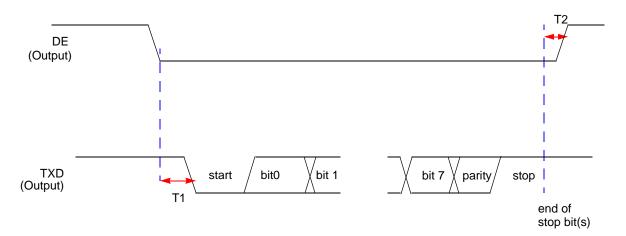


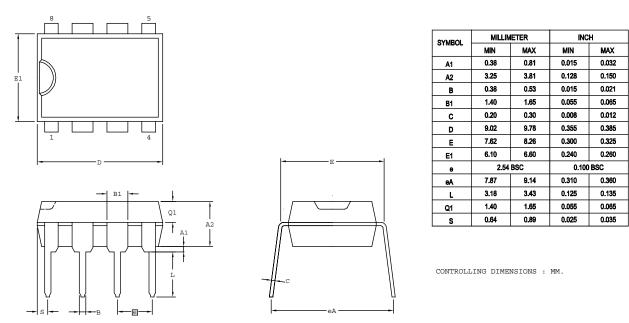
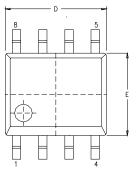
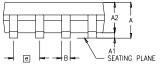
Figure 34. UART Timing Without CTS

Table 12	23. UART	Timing	Without CTS
----------	----------	--------	-------------

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
UART					
T ₁	DE assertion to TXD falling edge (start bit) delay	1 * XIN period	1 bit time		
T ₂	End of Stop Bit(s) to DE deassertion delay (Tx data register is empty)	± 5			

Packaging

Figure 35 illustrates the 8-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore![®] Z8F0823 Series devices.

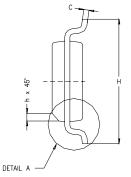

Figure 35.8-Pin Plastic Dual Inline Package (PDIP)

Figure 36 illustrates the 8-pin Small Outline Integrated Circuit package (SOIC) available for the Z8 Encore![®] Z8F0823 Series devices.

0/4/00/	MILLIN	IETER	INCH				
SYMBOL	MIN	MAX	MIN	MAX			
A	1.55	1.73	0.061	0.068			
A1	0.10	0.25	0.004	0.010			
A2	1.40	1.55	0.055	0.061			
В	0.36	0.48	0.014	0.019			
С	0.18	0.25	0.007	0.010			
D	4.80	4.98	0.189	0.196			
E	3.81	3.99	0.150	0.157			
e	1.27	BSC	.050	BSC			
Н	5.84	6.15	0.230	0.242			
h	0.25	0.40	0.010	0.016			
L	0.46	0.81	0.018	0.032			
	-						

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

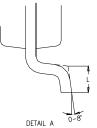


Figure 36. 8-Pin Small Outline Integrated Circuit Package (SOIC)

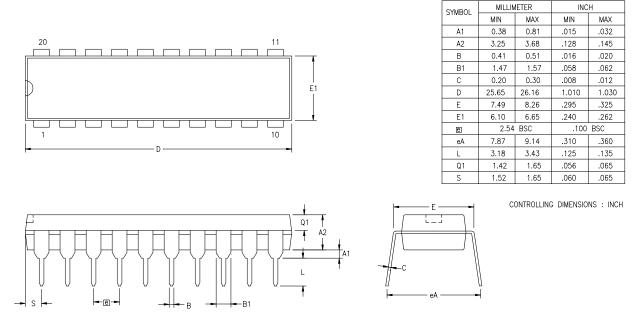


Figure 37 illustrates the 20-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore![®] Z8F0823 Series devices.

Figure 37.20-Pin Plastic Dual Inline Package (PDIP)

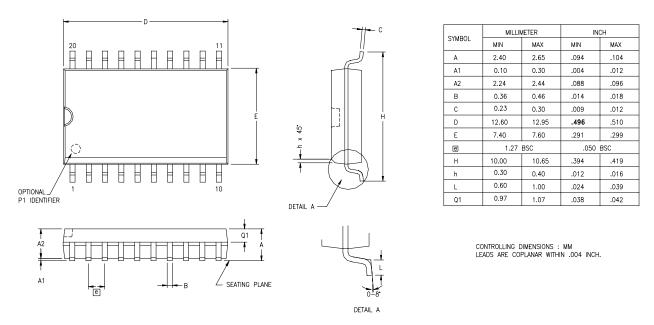


Figure 38 illustrates the 20-pin Small Outline Integrated Circuit Package (SOIC) available for the Z8 Encore![®] Z8F0823 Series devices.

Figure 38.20-Pin Small Outline Integrated Circuit Package (SOIC)

Figure 39 illustrates the 20-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore![®] Z8F0823 Series devices.

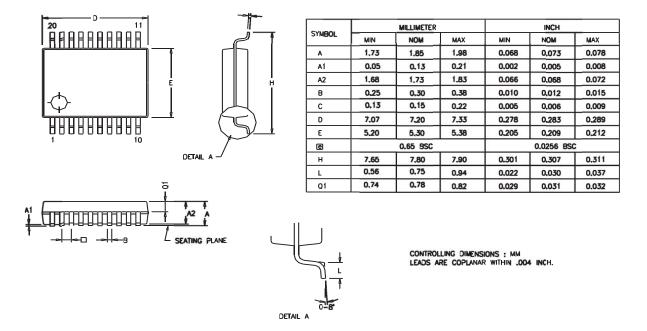
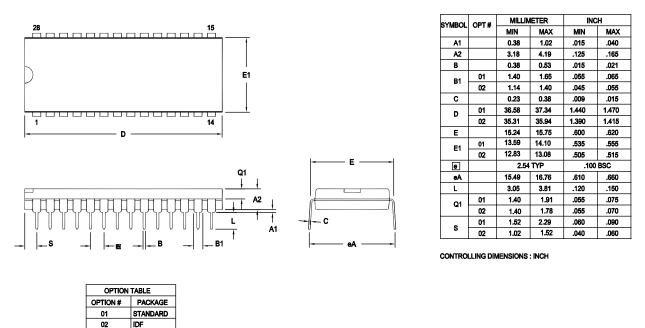



Figure 40 illustrates the 28-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore![®] Z8F0823 Series devices.

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 40.28-Pin Plastic Dual Inline Package (PDIP)

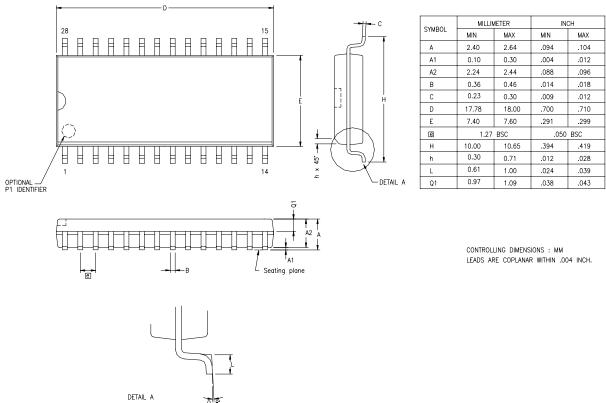
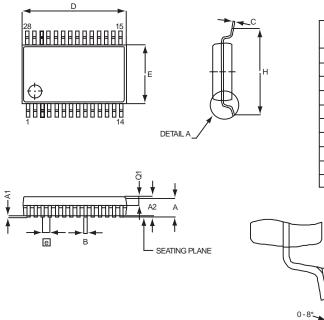



Figure 41 illustrates the 28-pin Small Outline Integrated Circuit package (SOIC) available in the Z8 Encore![®] Z8F0823 Series devices.

Figure 41.28-Pin Small Outline Integrated Circuit Package (SOIC)

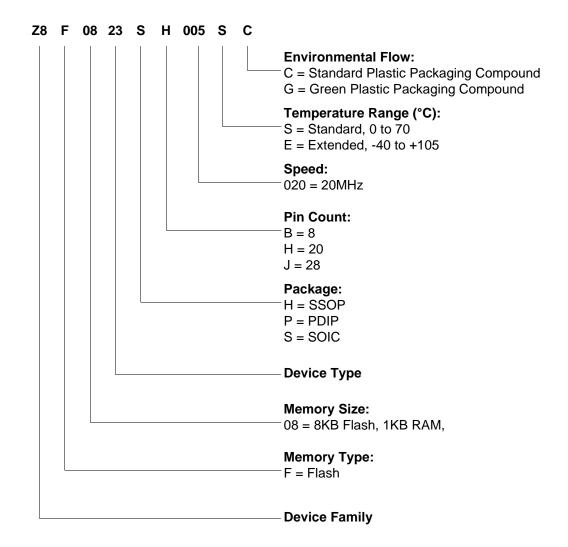
Figure 42 illustrates the 28-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore![®] Z8F0823 Series devices.

		MILLIMETER	2	INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.73	1.86	1.99	0.068	0.073	0.078	
A1	0.05	0.13	0.21	0.002	0.005	0.008	
A2	1.68	1.73	1.78	0.066	0.068	0.070	
В	0.25		0.38	0.010		0.015	
С	0.09	-	0.20	0.004	0.006	0.008	
D	10.07	10.20	10.33	0.397	0.402	0.407	
E	5.20	5.30	5.38	0.205	0.209	0.212	
е		0.65 TYP			0.0256 TYF	>	
н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.63	0.75	0.95	0.025	0.030	0.037	

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

Figure 42.28-Pin Small Shrink Outline Package (SSOP)

Ordering Information


				(0	6-Bit Timers w/PWM	0-Bit A/D Channels	th IrDA	tor	6
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Tir	10-Bit A/I	UART with IrDA	Comparator	Description
Z8 Encore! [®] Z8F082	3 Series	with 8KB	Flash	n, 1 0-E	Bit A	hal	og-	to-l	Digital Converter
Standard Temperatu	re: 0° to	70°C							
Z8F0823PB005SC	8KB	1KB	6	12	2	4	1	1	PDIP 8-pin package
Z8F0823SB005SC	8KB	1KB	6	12	2	4	1	1	SOIC 8-pin package
Z8F0823SH005SC	8KB	1KB	16	18	2	7	1	1	SOIC 20-pin package
Z8F0823HH005SC	8KB	1KB	16	18	2	7	1	1	SSOP 20-pin package
Z8F0823PH005SC	8KB	1KB	16	18	2	7	1	1	PDIP 20-pin package
Z8F0823SJ005SC	8KB	1KB	22	18	2	8	1	1	SOIC 28-pin package
Z8F0823HJ005SC	8KB	1KB	22	18	2	8	1	1	SSOP 28-pin package
Z8F0823PJ005SC	8KB	1KB	22	18	2	8	1	1	PDIP 28-pin package
Extended Temperatu	ure: -40° t	to 105°C							
Z8F0823PB005EC	8KB	1KB	6	12	2	4	1	1	PDIP 8-pin package
Z8F0823SB005EC	8KB	1KB	6	12	2	4	1	1	SOIC 8-pin package
Z8F0823SH005EC	8KB	1KB	16	18	2	7	1	1	SOIC 20-pin package
Z8F0823HH005EC	8KB	1KB	16	18	2	7	1	1	SSOP 20-pin package
Z8F0823PH005EC	8KB	1KB	16	18	2	7	1	1	PDIP 20-pin package
Z8F0823SJ005EC	8KB	1KB	22	18	2	8	1	1	SOIC 28-pin package
Z8F0823HJ005EC	8KB	1KB	22	18	2	8	1	1	SSOP 28-pin package
Z8F0823PJ005EC	8KB	1KB	22	18	2	8	1	1	PDIP 28-pin package
Replace C with G for	Lead-Fre	e Packag	ing						

Part Number	Flash	RAM	/O Lines	Interrupts	6-Bit Timers w/PWM	0-Bit A/D Channels	UART with IrDA	Comparator	Description
				Int	16	,	Ŋ	ပိ	Ď
Z8 Encore!® Z8F082			-lash						
Standard Temperatu	re: 0° to	70°C							
Z8F0813PB005SC	8KB	1KB	6	12	2	0	1	1	PDIP 8-pin package
Z8F0813SB005SC	8KB	1KB	6	12	2	0	1	1	SOIC 8-pin package
Z8F0813SH005SC	8KB	1KB	16	18	2	0	1	1	SOIC 20-pin package
Z8F0813HH005SC	8KB	1KB	16	18	2	0	1	1	SSOP 20-pin package
Z8F0813PH005SC	8KB	1KB	16	18	2	0	1	1	PDIP 20-pin package
Z8F0813SJ005SC	8KB	1KB	24	18	2	0	1	1	SOIC 28-pin package
Z8F0813HJ005SC	8KB	1KB	24	18	2	0	1	1	SSOP 28-pin package
Z8F0813PJ005SC	8KB	1KB	24	18	2	0	1	1	PDIP 28-pin package
Extended Temperatu	ure: -40° t	o 105°C							
Z8F0813PB005EC	8KB	1KB	6	12	2	0	1	1	PDIP 8-pin package
Z8F0813SB005EC	8KB	1KB	6	12	2	0	1	1	SOIC 8-pin package
Z8F0813SH005EC	8KB	1KB	16	18	2	0	1	1	SOIC 20-pin package
Z8F0813HH005EC	8KB	1KB	16	18	2	0	1	1	SSOP 20-pin package
Z8F0813PH005EC	8KB	1KB	16	18	2	0	1	1	PDIP 20-pin package
Z8F0813SJ005EC	8KB	1KB	24	18	2	0	1	1	SOIC 28-pin package
Z8F0813HJ005EC	8KB	1KB	24	18	2	0	1	1	SSOP 28-pin package
Z8F0813PJ005EC	8KB	1KB	24	18	2	0	1	1	PDIP 28-pin package
Replace C with G for	Lead-Free	e Packag	ing						
Z8F08A28100KIT									

Part Number Suffix Designations

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, because of start-up yield issues.

ZiLOG, Inc. 532 Race Street San Jose, CA 95126 Telephone (408) 558-8500 FAX 408 558-8300 Internet: www.zilog.com

Customer Support

For valuable information about downloading other relevant documents or for hardware and software development tools, visit the ZiLOG web site at <u>www.zilog.com</u>.

Customer Feedback Form

Z8 Encorel[®] Z8F0823 Series Product Specification

If you experience any problems while operating this product, or if you note any inaccuracies while reading this document, please copy and complete this form and mail it to the address below or go to <u>www.zilog.com</u> (see Return Information, below). We also welcome your suggestions!

Customer Information

Name	Country
Company	Phone
Address	Fax
City/State/Zip	Email

Product Information

Serial # or Board Fab #/Rev. #		
Software Version		
Document Number		
Host Computer Description/Type		

Return Information

ZiLOG System Test/Customer Support 532 Race Street San Jose, CA 95126-3432 www.zilog.com

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are reporting a specific problem, include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.

Index

Symbols

158 % 158 @ 158

Numerics

10-bit ADC 4 40-lead plastic dual-inline package 194, 195

A

absolute maximum ratings 176 AC characteristics 179 ADC 159 architecture 109 automatic power-down 110 block diagram 110 continuous conversion 112 control register 114, 116 control register definitions 114 data high byte register 116 data low bits register 117 electrical characteristics and timing 181 operation 110 single-shot conversion 111 ADCCTL register 114, 116 ADCDH register 116 ADCDL register 117 **ADCX 159** ADD 159 add - extended addressing 159 add with carry 159 add with carry - extended addressing 159 additional symbols 158 address space 13 ADDX 159 analog signals 10 analog-to-digital converter (ADC) 109 AND 161

ANDX 161 arithmetic instructions 159 assembly language programming 155 assembly language syntax 156

В

B 158 b 157 baud rate generator, UART 96 **BCLR 160** binary number suffix 158 **BIT 160** bit 157 clear 160 manipulation instructions 160 set 160 set or clear 160 swap 160 test and jump 162 test and jump if non-zero 162 test and jump if zero 162 bit jump and test if non-zero 162 bit swap 162 block diagram 2 block transfer instructions 160 **BRK 162 BSET 160** BSWAP 160, 162 BTJ 162 **BTJNZ 162 BTJZ 162**

С

CALL procedure 162 capture mode 78, 79 capture/compare mode 78 cc 157 CCF 160 characteristics, electrical 176 clear 161 CLR 161 COM 161

compare 78 compare - extended addressing 159 compare mode 78 compare with carry 159 compare with carry - extended addressing 159 complement 161 complement carry flag 160 condition code 157 continuous conversion (ADC) 112 continuous mode 78 control register definition, UART 97 Control Registers 13, 16 counter modes 78 CP 159 **CPC 159 CPCX 159** CPU and peripheral overview 4 **CPU** control instructions 160 **CPX 159** Customer Feedback Form 200 **Customer Information 200**

D

DA 157, 159 data memory 14 DC characteristics 177 debugger, on-chip 138 **DEC 159** decimal adjust 159 decrement 159 decrement and jump non-zero 162 decrement word 159 **DECW 159** destination operand 158 device, port availability 32 DI 160 direct address 157 disable interrupts 160 **DJNZ 162** dst 158

Ε

EI 160 electrical characteristics 176 ADC 181 flash memory and timing 180 GPIO input data sample timing 183 watch-dog timer 181, 182 enable interrupt 160 ER 157 extended addressing register 157 external pin reset 24 eZ8 CPU features 4 eZ8 CPU features 4 eZ8 CPU instruction classes 158 eZ8 CPU instruction notation 156 eZ8 CPU instruction set 155 eZ8 CPU instruction summary 163

F

FCTL register 128, 134 features, Z8 Encore! 1 first opcode map 174 **FLAGS 158** flags register 158 flash controller 4 option bit address space 134 option bit configuration - reset 132 program memory address 0000H 135 program memory address 0001H 136 flash memory 120 arrrangement 121 byte programming 126 code protection 124 configurations 120 control register definitions 128, 134 controller bypass 127 electrical characteristics and timing 180 flash control register 128, 134 flash option bits 125 flash status register 128 flow chart 123 frequency high and low byte registers 130 mass erase 126

operation 122 operation timing 124 page erase 126 page select register 129, 130 FPS register 129, 130 FSTAT register 128

G

gated mode 78 general-purpose I/O 32 GPIO 4, 32 alternate functions 33 architecture 32 control register definitions 39 input data sample timing 183 interrupts 39 port A-C pull-up enable sub-registers 44, 45 port A-H address registers 40 port A-H alternate function sub-registers 41 port A-H control registers 40 port A-H data direction sub-registers 41 port A-H high drive enable sub-registers 43 port A-H input data registers 45 port A-H output control sub-registers 42 port A-H output data registers 46 port A-H stop mode recovery sub-registers 43 port availability by device 32 port input timing 183 port output timing 184

Η

H 158 HALT 160 halt mode 29, 160 hexadecimal number prefix/suffix 158

I

I2C 4 IM 157 immediate data 157 immediate operand prefix 158 **INC 159** increment 159 increment word 159 **INCW 159** indexed 157 indirect address prefix 158 indirect register 157 indirect register pair 157 indirect working register 157 indirect working register pair 157 infrared encoder/decoder (IrDA) 105 Instruction Set 155 instruction set, ez8 CPU 155 instructions ADC 159 **ADCX 159** ADD 159 ADDX 159 AND 161 ANDX 161 arithmetic 159 **BCLR 160 BIT 160** bit manipulation 160 block transfer 160 **BRK 162 BSET 160** BSWAP 160, 162 BTJ 162 **BTJNZ 162 BTJZ 162 CALL 162** CCF 160 CLR 161 COM 161 CP 159 CPC 159 **CPCX 159** CPU control 160 **CPX 159** DA 159 **DEC 159**

DECW 159 DI 160 **DJNZ 162** EI 160 **HALT 160 INC 159 INCW 159 IRET 162** JP 162 LD 161 LDC 161 LDCI 160, 161 LDE 161 LDEI 160 LDX 161 LEA 161 load 161 logical 161 **MULT 159** NOP 160 OR 161 ORX 161 POP 161 **POPX 161** program control 162 **PUSH 161** PUSHX 161 **RCF 160 RET 162** RL 162 **RLC 162** rotate and shift 162 RR 162 **RRC 162 SBC 159** SCF 160 SRA 162 SRL 163 SRP 160 **STOP 161** SUB 159 SUBX 159 **SWAP 163 TCM 160**

TCMX 160 TM 160 TMX 160 **TRAP 162** watch-dog timer refresh 161 XOR 162 **XORX 162** instructions, eZ8 classes of 158 interrupt control register 59 interrupt controller 48 architecture 48 interrupt assertion types 51 interrupt vectors and priority 51 operation 50 register definitions 52 software interrupt assertion 52 interrupt edge select register 58 interrupt request 0 register 52 interrupt request 1 register 53 interrupt request 2 register 54 interrupt return 162 interrupt vector listing 48 interrupts **UART 94** IR 157 lr 157 IrDA architecture 105 block diagram 105 control register definitions 108 operation 105 receiving data 107 transmitting data 106 **IRET 162** IRQ0 enable high and low bit registers 55 IRQ1 enable high and low bit registers 56 IRQ2 enable high and low bit registers 57 IRR 157 Irr 157

J

JP 162 jump, conditional, relative, and relative condi-

tional 162

L

LD 161 LDC 161 LDCI 160, 161 LDE 161 LDEI 160, 161 LDX 161 LEA 161 load 161 load constant 160 load constant to/from program memory 161 load constant with auto-increment addresses 161 load effective address 161 load external data 161 load external data to/from data memory and auto-increment addresses 160 load external to/from data memory and auto-increment addresses 161 load instructions 161 load using extended addressing 161 logical AND 161 logical AND/extended addressing 161 logical exclusive OR 162 logical exclusive OR/extended addressing 162 logical instructions 161 logical OR 161 logical OR/extended addressing 161 low power modes 29

Μ

master interrupt enable 50 memory data 14 program 14 mode capture 78, 79 capture/compare 78 continuous 78 counter 78 gated 78 one-shot 77 PWM 78 modes 78 MULT 159 multiply 159 multiprocessor mode, UART 92

Ν

NOP (no operation) 160 notation b 157 cc 157 DA 157 ER 157 IM 157 IR 157 lr 157 **IRR 157** Irr 157 p 157 R 157 r 157 RA 157 RR 157 rr 157 vector 157 X 157 notational shorthand 157

0

OCD architecture 138 auto-baud detector/generator 141 baud rate limits 141 block diagram 138 breakpoints 142 commands 143 control register 147 data format 141 DBG pin to RS-232 Interface 139 debug mode 140

debugger break 162 interface 139 serial errors 142 status register 148 timing 185 OCD commands execute instruction (12H) 147 read data memory (0DH) 146 read OCD control register (05H) 144 read OCD revision (00H) 144 read OCD status register (02H) 144 read program counter (07H) 145 read program memory (0BH) 146 read program memory CRC (0EH) 146 read register (09H) 145 read runtime counter (03H) 144 step instruction (10H) 147 stuff instruction (11H) 147 write data memory (0CH) 146 write OCD control register (04H) 144 write program counter (06H) 145 write program memory (0AH) 145 write register (08H) 145 on-chip debugger (OCD) 138 on-chip debugger signals 10 one-shot mode 77 opcode map abbreviations 173 cell description 172 first 174 second after 1FH 175 Operational Description 20, 29, 32, 48, 60, 81, 86, 105, 109, 118, 120, 132, 138, 150, 154 OR 161 ordering information 196 **ORX 161**

Ρ

p 157 packaging 20-pin PDIP 190, 191 20-pin SSOP 192, 195 28-pin PDIP 193

28-pin SOIC 194 8-pin PDIP 188 8-pin SOIC 189 PDIP 194, 195 part selection guide 2 PC 158 PDIP 194, 195 peripheral AC and DC electrical characteristics 180 pin characteristics 10 Pin Descriptions 7 polarity 157 POP 161 pop using extended addressing 161 **POPX 161** port availability, device 32 port input timing (GPIO) 183 port output timing, GPIO 184 power supply signals 10 power-down, automatic (ADC) 110 power-on and voltage brown-out electrical characteristics and timing 180 power-on reset (POR) 22 Problem Description or Suggestion 201 **Product Information 200** program control instructions 162 program counter 158 program memory 14 **PUSH 161** push using extended addressing 161 PUSHX 161 PWM mode 78 PxADDR register 40 PxCTL register 41

R

R 157 r 157 RA register address 157 RCF 160 receive IrDA data 107

receiving UART data-interrupt-driven method 91 receiving UART data-polled method 90 register 157 ADC control (ADCCTL) 114, 116 ADC data high byte (ADCDH) 116 ADC data low bits (ADCDL) 117 flash control (FCTL) 128, 134 flash high and low byte (FFREQH and FREEQL) 130 flash page select (FPS) 129, 130 flash status (FSTAT) 128 GPIO port A-H address (PxADDR) 40 GPIO port A-H alternate function sub-registers 42 GPIO port A-H control address (PxCTL) 41 GPIO port A-H data direction sub-registers 41 OCD control 147 OCD status 148 UARTx baud rate high byte (UxBRH) 103 UARTx baud rate low byte (UxBRL) 103 UARTx Control 0 (UxCTL0) 100, 103 UARTx control 1 (UxCTL1) 101 UARTx receive data (UxRXD) 98 UARTx status 0 (UxSTAT0) 98 UARTx status 1 (UxSTAT1) 99 UARTx transmit data (UxTXD) 97 watch-dog timer control (WDTCTL) 27, 84, 119, 153 watch-dog timer reload high byte (WDTH) 85 watch-dog timer reload low byte (WDTL) 85 watch-dog timer reload upper byte (WDTU) 85 register file 13 register pair 157 register pointer 158 reset and stop mode characteristics 20 and stop mode recovery 20 carry flag 160 sources 21

RET 162 return 162 Return Information 200 RL 162 RLC 162 rotate and shift instuctions 162 rotate left 162 rotate left through carry 162 rotate right 162 rotate right through carry 162 RP 158 RR 157, 162 rr 157 RRC 162

S

SBC 159 SCF 160 second opcode map after 1FH 175 set carry flag 160 set register pointer 160 shift right arithmatic 162 shift right logical 163 signal descriptions 9 single-sho conversion (ADC) 111 software trap 162 source operand 158 SP 158 SRA 162 src 158 SRL 163 **SRP 160** stack pointer 158 **STOP 161** stop mode 29, 161 stop mode recovery sources 25 using a GPIO port pin transition 26, 27 using watch-dog timer time-out 26 SUB 159 subtract 159 subtract - extended addressing 159 subtract with carry 159

subtract with carry - extended addressing 159 SUBX 159 SWAP 163 swap nibbles 163 symbols, additional 158

Т

TCM 160 **TCMX 160** test complement under mask 160 test complement under mask - extended addressing 160 test under mask 160 test under mask - extended addressing 160 timer signals 9 timers 60 architecture 60 block diagram 61 capture mode 68, 69, 78, 79 capture/compare mode 72, 78 compare mode 70, 78 continuous mode 62.78 counter mode 63. 64 counter modes 78 dated mode 71, 78 one-shot mode 61, 77 operating mode 61 PWM mode 65, 66, 78 reading the timer count values 73 reload high and low byte registers 74 timer control register definitions 74 timer output signal operation 73 timers 0-3 control registers 76, 77 high and low byte registers 74, 75 TM 160 TMX 160 tools, hardware and software 199 transmit IrDA data 106 transmitting UART data-polled method 88 transmitting UART dat-interrupt-driven method 89

TRAP 162

U

UART 4

architecture 86 baud rate generator 96 control register definitions 97 controller signals 9 data format 87 interrupts 94 multiprocessor mode 92 receiving data using interrupt-driven method 91 receiving data using the polled method 90 transmitting data usin the interrupt-driven method 89 transmitting data using the polled method 88 x baud rate high and low registers 103 x control 0 and control 1 registers 100 x status 0 and status 1 registers 98, 99 UxBRH register 103 UxBRL register 103 UxCTL0 register 100, 103 UxCTL1 register 101 **UxRXD** register 98 UxSTAT0 register 98 UxSTAT1 register 99 UxTXD register 97

V

vector 157 voltage brown-out reset (VBR) 23

W

watch-dog timer approximate time-out delay 82 approximate time-out delays 81, 118, 150, 154 CNTL 23 control register 84, 119, 152

electrical characteristics and timing 181, 182 interrupt in noromal operation 82 interrupt in stop mode 83 operation 81, 118, 150, 154 refresh 82, 161 reload unlock sequence 83 reload upper, high and low registers 84 reset 24 reset in normal operation 83 reset in Stop mode 83 time-out response 82 WDTCTL register 27, 84, 119, 153 WDTH register 85 WDTL register 85 working register 157 working register pair 157 WTDU register 85

Х

X 157 XOR 162 XORX 162

Ζ

Z8 Encore! block diagram 2 features 1 part selection guide 2