AN8049SH

1.8-volt 3-channel step-up, step-down, and polarity inverting DC-DC converter control IC

Overview

The AN8049SH is a three-channel PWM DC-DC converter control IC that features low-voltage operation. This IC can form a power supply that provides two stepup outputs and one step-down or polarity inverted output with a minimal number of external components. The AN8049SH features the ability to operate from a supply voltage as low as 1.8 V , and thus can be operated from two dry-batteries.

- Features

- Wide operating supply voltage range: 1.8 V to 14 V
- High-precision reference voltage circuit
- $\mathrm{V}_{\text {REF }}$ pin voltage: $\pm 1 \%$
- Error amplifier: $\pm 1.5 \%$
- Surface mounting package for miniaturized and thinner power supplies

Note) The package of this product will be changed to lead-free type (SSOP024-P-0300D). See the new package dimensions section later of this datasheet.

- Supports control over a wide output frequency range: 20 kHz to 1 MHz
- On/off (sequence control) pins provided for each channel for easy sequence control setup
- The negative supply error amplifier supports 0 -volt input.

Common-mode input voltage range: -0.1 V to $\mathrm{V}_{\mathrm{CC}}-1.4 \mathrm{~V}$
This allows the number of external components to be reduced by tworesistors.

- Fixed duty factor: 86%

However, the duty can be adjusted to anywhere from 0% to 100% with an external resistor.

- Timer latch short-circuit protection circuit (charge current: 11 $\mu \mathrm{A}$ typieal)
- Low input voltage malfunction prevention circuit (U.V.LiO.) (operation start voltage: 1.67 V typical)
- Standby function (active-high control input, standby mode current: $1 \mu \mathrm{~A}$ maximum)
- Alternate package versions also available.

Part No.: AN8049FHN
Package: QFN024-P-0405A (Lead-free package)
$0.5-\mathrm{mm}$ lead pitch
Width $\quad 5.20 \mathrm{~mm} \pm 0,10 \mathrm{~mm}$
Depth $\quad 4.20 \mathrm{~mm} 40.10 \mathrm{~mm}$
Thickness 0.8 mm (max.)

Applications

- Electronic equipment that requires a power supply system

■ Block Diagram

Pin Descriptions

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	14.2	V
Off pin allowable application voltage	$\mathrm{V}_{\mathrm{OFF}}$	14.2	V
CTL pin allowable application voltage	$\mathrm{V}_{\mathrm{CTL}}$	$\mathrm{V}_{\mathrm{CC}}-0.2$	V
Error amplifier input pin allowable application voltage ${ }^{* 2}$	$\mathrm{~V}_{\mathrm{IN}}$	6	V
Supply current	I_{CC}	-	mA
OUT1 and OUT2 pin output	$\mathrm{I}_{\text {SO(OUT) }}$	-50	mA
source current			mA
OUT3 pin output current	I_{O}		146
Power dissipation ${ }^{* 1}$	P_{D}	-30 to +85	mW
Operating temperature	$\mathrm{T}_{\text {opr }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$

Note) 1. Do not apply external currents or voltages to any pins not specifically mentioned. For circuit currents, '+' denetes current flowing into the IC, and '-' denotes current flowing out of the IC.
2. Items other than the storage temperature, operating temperature, and power dissipation are all stipulated for an ambient temperature $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
3. $* 1: \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$. See the "Application Notes" for details on the relationship between IC power dissipation and the ambient temperature.
*2: When $\mathrm{V}_{\mathrm{CC}}<6 \mathrm{~V}$, the following condition must hold: $\mathrm{V}_{\mathrm{IN}-1}=\mathrm{V}_{\mathrm{IN}-2}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Recommended Operating Range

Parameter	Symbol	, Range	Unit
Off pin application voltage	$\mathrm{V}_{\text {OFF }}$	$\bigcirc{ }^{\circ} 0$ to 14	V
OUT1 and QUT2 pin output source current	$\mathrm{I}_{\text {SO(OUT) }}$	c -40 to -1	mA
OUT3 pin output current	P_{0}	40 (max.)	
Timing resistance	$\mathrm{R}_{\mathrm{T}}{ }^{\circ}$	3 to 33	$\mathrm{k} \Omega$
Timing capacitance	- C_{T}	100 to 10000	pF
Oscillator frequency	$\mathrm{f}_{\text {OUT }}$	20 to 1000	kHz
Short-circuit protection time-constant setting capacitance	$\mathrm{C}_{\text {SCP }}$	1000 (min.)	pF
Output current setting resistance 5	R_{B}	750 to 15000	Ω

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Reference voltage block | $\mathrm{V}_{\text {REF }}$ | $\mathrm{I}_{\text {REF }}=-0.1 \mathrm{~mA}$ | 1.247 | 1.26 | 1.273 | V |
| Reference voltage | Line | $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to 14 V | - | 2 | 20 | mV |
| Line regulation with input fluctuation | | -20 | -3 | - | mV | |
| Load regulation | $\mathrm{I}_{\text {REF }}=-0.1 \mathrm{~mA}$ to -1 mA | | | | | |
| U.V.L.O. block | | | | | | |
| Circuit operation start voltage | $\mathrm{V}_{\mathrm{UON}}$ | | 1.59 | 1.67 | 1.75 | V |

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Error amplifier 1 block						
Input threshold voltage 1	$\mathrm{V}_{\text {TH1 }}$		1.241	1.26	1.279	V
Input bias current 1	$\mathrm{I}_{\mathrm{B} 1}$		-	0.1	0.2	$\mu \mathrm{A}$
High-level output voltage 1	$\mathrm{V}_{\text {EH1 }}$		1.0	1.2	1.4	V
Low-level output voltage 1	$\mathrm{V}_{\text {EL1 }}$		-	-	0.2	V
Output source current 1	$\mathrm{I}_{\text {SO(FB) } 1}$		-38	-31	-24	$\mu \mathrm{A}$
Output sink current 1	$\mathrm{I}_{\text {SI(FB) } 1}$				-	mA
Error amplifier 2 block						
Input threshold voltage 2	$\mathrm{V}_{\text {TH2 }}$		1.241	1.26	1.279	V
Input bias current 2	$\mathrm{I}_{\mathrm{B} 2}$		-	0.1	0.2	$\mu \mathrm{A}$
High-level output voltage 2	$\mathrm{V}_{\mathrm{EH} 2}$		1.0	1.2	1.4	V
Low-level output voltage 2	$\mathrm{V}_{\text {EL2 }}$			-	0.2	V
Output source current 2	$\mathrm{I}_{\mathrm{SO}(\mathrm{FB}) 2}$	\checkmark	38	-31	-24	$\mu \mathrm{A}$
Output sink current 2	$\mathrm{I}_{\mathrm{SI}(\mathrm{FB}) 2}$		0.5		O	mA
Error amplifier 3 block						
Input offset voltage	$V_{\text {IO }}$		-6.	-	6	mV
Common-mode input voltage range	V_{ICR}		-0.1	-	$\mathrm{V}_{\mathrm{CC}}-1.4$	V
Input bias current 3	$\mathrm{I}_{\mathrm{B} 3}$	-	-0.6	-0.3	-	$\mu \mathrm{A}$
High-level output voltage 3	$\mathrm{V}_{\text {EH3 }}$	-	90	1.2	1.4	V
Low-level output voltage 3	$\mathrm{V}_{\text {EL3 }}$		-	-	0.2	V
Output source current 3	$\mathrm{I}_{\mathrm{SO}(\mathrm{FB}) 3}$	0	-38	-31	-24	$\mu \mathrm{A}$
Output sink current 3	$\mathrm{I}_{\text {SI(FB) } 3}$	\checkmark	0.5	-	-	mA
Oscillator block						
Oscillator frequency	$\mathrm{f}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{T}}=7.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF}$	170	190	210	kHz
Output 1 block						
Output duty factor 1	Du_{1}.	$\mathrm{R}_{\mathrm{T}}=7 \times \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF}$	80	86	92	\%
High-level output voltage 1	$\mathrm{V}_{\mathrm{OHT}}$	$\mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-1$	-	-	V
Low-level output voltage 1	$9_{\mathrm{OL} 1}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	-	-	0.2	V
Output source current 1	$\mathrm{I}_{\text {SO(OUT) } 1}$	$\mathrm{V}_{\mathrm{O}}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	-34	-29	-24	mA
Output sink current 3	$\mathrm{I}_{\text {SI(OUT)1 }}$	$\mathrm{V}_{\mathrm{O}}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	40	-	-	mA
Pull-down resistor 1	$\mathrm{R}_{\mathrm{O} 1}$		17	27	37	$\mathrm{k} \Omega$
Output 2 block						
Output duty factor 2	Du_{2}	$\mathrm{R}_{\mathrm{T}}=7.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF}$	80	86	92	\%
High-level output voltage 2	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-1$	-	-	V
Low-level output voltage 2	$\mathrm{V}_{\text {OL2 }}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	-	-	0.2	V
Output source current 2	$\mathrm{I}_{\text {SO(OUT)2 }}$	$\mathrm{V}_{\mathrm{O}}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	-34	-29	-24	mA
Output sink current 2	$\mathrm{I}_{\text {SI(OUT)2 }}$	$\mathrm{V}_{\mathrm{O}}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$	40	-	-	mA

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output 2 block (continued)						
Pull-down resistor 2	$\mathrm{R}_{\mathrm{O} 2}$		17	27	37	k Ω
Output 3 block						
Output duty factor 3	Du_{3}	$\mathrm{R}_{\mathrm{T}}=7.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF}$	80	86	92	\%
Output saturation voltage	$\mathrm{V}_{\text {O(SAT }}$	$\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}$		-	0.5	V
Output leakage current	$\mathrm{I}_{\text {OLE }}$	$\mathrm{V} 13=14 \mathrm{~V}$		-	1	$\mu \mathrm{A}$
Short-circuit protection circuit block						
Input standby voltage	$\mathrm{V}_{\text {STBY }}$				0.1	V
Input threshold voltage	$\mathrm{V}_{\text {THPC }}$		0.8	0.9	1.0	V
Input latch voltage	$\mathrm{V}_{\text {IN }}$		-		0.1	V
Charge current	$\mathrm{I}_{\text {CHG }}$	$\mathrm{V}_{\text {SCP }}=0 \mathrm{~V}$	-1.43	-1.1	-0.77	$\mu \mathrm{A}$
On/off control block						
Input threshold voltage	$\mathrm{V}_{\text {ON(TH) }}$			0.9	1.2	V
CTL block						
Input threshold voltage	$\mathrm{V}_{\text {тнстL }}$		1.07	126	1.45	V
Charge current	$\mathrm{I}_{\text {CTL }}$	0	-1.43	-1.1	-0.77	$\mu \mathrm{A}$
Whole Device						
Average consumption curr	$\mathrm{I}_{\text {CC(OFF) }}$	$\mathrm{R}_{\mathrm{B}}=9.1 \mathrm{k} \Omega$, duty $=50 \%$	\rightarrow		5.5	mA
Standby mode current	$\mathrm{I}_{\text {CC(SB) }}$		5	-	1	$\mu \mathrm{A}$

- Design reference data

Note: The characteristics listed below are reference values related to the IC designand are not guaranteed.

Parameter	Symbol	Conditions5	Min	Typ	Max	Unit
Reference voltage block in						
$\mathrm{V}_{\text {REF }}$ temperature characteristics	$\mathrm{V}_{\text {RFEdT }}$	$\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	1	-	\%
Error amplifier 1 block						
$\mathrm{V}_{\text {TH }}$ temperature characteristics	$\mathrm{V}_{\text {THdTI }} S \mathrm{~T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-	1.5	-	\%
Open loop gain 1	$\mathrm{A}_{\mathrm{y} 1}$		-	80	-	dB
Error amplifier 2 block						
$\mathrm{V}_{\text {TH }}$ temperature variation	$\mathrm{V}_{\text {THaT2 }}$		-	1.5	-	\%
Open loop gain 2	$\mathrm{A}_{\mathrm{V} 2}$		-	80	-	dB
Error amplifier 3 block						
Open loop gain 3	$\mathrm{A}_{\mathrm{V} 3}$		-	80	-	dB
Oscillator block						
Frequency supply voltage characteristics	f_{DV}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \text { to } 14 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{T}}=7.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF} \end{aligned}$	-	1	-	\%
Frequency temperature characteristics	f_{DT}	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{T}}=7.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=680 \mathrm{pF} \end{aligned}$	-	3	-	\%

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data (continued)

Note: The characteristics listed below are reference values related to the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Short-circuit protection circuit block	-	1.26	-	V		
Comparator threshold voltage	$\mathrm{V}_{\text {THL }}$		-	38	-	$\mu \mathrm{A}$
On/off control block						
Off pin current	$\mathrm{I}_{\text {OFF }}$	$\mathrm{V}_{\text {OFF }}=5 \mathrm{~V}$				

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	1/0
1		S.C.P. Connection for the capacitor that sets the timer latch short-circuit protection circuit time constant. Use a capacitor with a value of 1000 pF or higher. The charge current $\mathrm{I}_{\mathrm{CHG}}$ is $1,1 \mathrm{~mA}$ typical.	O
2		DT3: Sets the channel 3 soft start fime. Set the time by connecting a capacitor between this pin and ground (See the "Application Netes, [7]" section.) Note that although the channel 3 maximum on duty is set internally to 86%, the maximum on duty can be adjusted by connecting resistors -between this pin and ground, and between this pin and the $V_{\text {ReF }}$ pin. (See the "Application Notes, [6]" section.)	I
		DT2: Sets the channel 2 soft start time. Set the time by connecting a capacitor between this pin and ground. (See the "Application Notes, [7]" section.) Note that although the channel 2 maximum on duty is set internally to 86%, the maximum on duty can be adjusted by connecting resistors between this pin and ground, and between this pin and the $\mathrm{V}_{\text {REF }} \mathrm{pin}$. (See the "Application Notes, [6]" section.)	I

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	I/O
4		DT1: Sets the channel 1 soft start time. Set the time by connecting a capacitor between this pin and ground. (See the "Application Notes, [7]" section.) Note that although the channel 1 maximum on duty is set internally to 86%, the maximum on duty can be adjusted by connecting resistors between this pin and ground, and between this pin and the $V_{\text {REF }}$ pin. (See the "Application Notes, [6]" section.)	I
5		CTL3: Controls the on/off state of channel 3. A delay can be provided in the power supply turn-on start time by comnecting a capacitor between this pin and ground. (See the "Application Notes, [9]" section.? $\mathrm{t}_{\mathrm{DLY3}}=1.26(\mathrm{~V}) \times \mathrm{C}_{\mathrm{CTL} 3}(\mu \mathrm{~F}) / 1.1(\mu \mathrm{~A})(\mathrm{s})$ This pin can also be used to control the on/off state with an external signal In that case, the allowable input voltage range is from 0 V to V_{CC}. Note that during U.V.U.O. and timer latch operation, this pin is connected to ground through a $20 \mathrm{k} \Omega$ resistor	I
6		CTL2: Controls the on/off state of channel 2. A delay can be provided in the power supply turn-on start - time by connecting a capacitor between this pin and ground. (See the "Application Notes, [9]" section.) $\mathrm{L}_{\text {DLY2 }}=1.26(\mathrm{~V}) \times \mathrm{C}_{\mathrm{CTL} 2}(\mu \mathrm{~F}) / 1.1(\mu \mathrm{~A}) \quad(\mathrm{s})$ This pin can also be used to control the on/off state with an external signal. In that case, the allowable input voltage range is from 0 V to V_{CC}. Note that during U.V.L.O. and timer latch operation, this pin is connected to ground through a $20 \mathrm{k} \Omega$ resistor.	I

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	I/O
7		CTL1: Controls the on/off state of channel 1. A delay can be provided in the power supply turn-on start time by connecting a capacitor between this pin and ground. (See the "Application Notes, [9]" section.) $\mathrm{t}_{\text {DLY3 }}=1.26(\mathrm{~V}) \times \mathrm{C}_{\mathrm{CTL} 1}(\mu \mathrm{~F}) / 1.1(\mu \mathrm{~A}) \quad(\mathrm{s})$ This pin can also be used to control the on/off state with an external signal. In that case, the allowable input voltage range is from 0 V to V_{CC}. Note that during U.V.L.O. and timer latch operation, this pin is connected to ground through a $20 \mathrm{k} \Omega$ resistor.	I
8		Off: Controls the on/off state. When the input is high: normal operation ($\mathrm{V}_{\mathrm{OFF}}>1.2 \mathrm{~V}$) When the input is low: standby mode $\left(\mathrm{V}_{\mathrm{OFF}}<0.6 \mathrm{~V}\right)$ In standby mode, the total current consumption is held to under $1 \mu \mathrm{~A}$.	I
9		$\mathrm{V}_{\text {REF: }}$: Outputs the internal referenee voltage. The reference voltage (18) 1.26 V (allowance: $\pm 1 \%$) when V_{CC} is 2.4 V and $\mathrm{I}_{\mathrm{REF}}$ is -0.1 mA . Insert a capacitor of at least $0.1 \mu \mathrm{~F}$ between $\mathrm{V}_{\text {REF }}$ and ground for phase compensation.	O
		RB2: Connection for a resistor that sets the channel 2 output current. Use a resistor in the range 750Ω to $15 \mathrm{k} \Omega$.	I
11	(16)	RB1: Connection for a resistor that sets the channel 1 output current. Use a resistor in the range 750Ω to $15 \mathrm{k} \Omega$.	I

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	I/O
12	See pin 11.	OUT1: Push-pull output. The absolute maximum rating for the output source current is -50 mA . The output source current is set by the external resistor connected to the RB1 pin.	O
13	See pin 10.	OUT2: Push-pull output. The absolute maximum rating for the output source current is -50 mA . The output source current is set by the external resistor connected to the RB2 pin.	O
14		GND: Ground	-
15	(16)	OUT3: Open-collector output. The absolute maximum rating for the output current is +50 mA .	O
16		V_{CC} : Power supply. Provide the operating supply voltage in the range 1.8 V to $14 \mathrm{y} . \quad \mathrm{C}^{\circ}$	-
		OSC. Connectionfor the capacitor and resistor that determine the oscillator frequency. Use a capacitor in the range 100 pF to 1000 pF and a resistor in the range $3 \mathrm{k} \Omega$ to $33 \mathrm{k} \Omega$. Use an oscillator frequency in the range 20 kHz to 1 MHz .	O
18	(16)	$\mathrm{IN}+3:$ Noninverting input to the error amplifier 3.	I
19		IN-3: Inverting input to the error amplifier 3.	I
20		FB3: Output from the error amplifier 3. This circuit can provide a source current of -31 $\mu \mathrm{A}$ or a sink current of 0.5 mA (minimum).	O

Terminal Equivalent Circuits (continued)
Pin No.

Usage Notes

[1] Allowable power dissipation

1. Since the power dissipation (P) in this IC increases proportionally with the supply voltage, applications must be careful to operate so that the loss does not exceed the allowable power dissipation, P_{D}, for the package. See the $P_{D}-T_{a}$ curve.

Reference formula:

$$
\begin{aligned}
& \mathrm{P}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BEQ} 1}\right) \times \mathrm{I}_{\mathrm{SO}(\mathrm{OUT}) 1} \times \mathrm{Du}_{1}+\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BEQ} 2}\right) \times \mathrm{I}_{\mathrm{SO}(\mathrm{OUT}) 2} \times \mathrm{Du}_{2}+\mathrm{V}_{\mathrm{O}(\mathrm{SAT}) 3} \times \mathrm{I}_{\mathrm{OUT} 3} \times \mathrm{Du}_{3}+\mathrm{V}_{\mathrm{CC}} \times \mathrm{I}_{\mathrm{CC}} \\
& <\mathrm{P}_{\mathrm{D}} \\
& \mathrm{~V}_{\text {BEQ1 }} \text { : The voltage between the base and emitter of the channel } 1 \mathrm{npn} \text { transistor } \\
& \mathrm{I}_{\mathrm{SO}(\mathrm{OUT}) 1} \text { : The OUT1 pin output source current } \\
& \text { (This is set by the resistor connected to the RB1 pin. When } R_{B} \text { is } 1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{SO}(\text { OUT }) 1} \text { will be } 34 \mathrm{~mA} \text {, } \\
& \mathrm{Du}_{1} \quad \text { : The output } 1 \text { on-duty } \\
& \mathrm{V}_{\text {BEQ2 }} \text { : The voltage between the base and emitter of the channel } 2 \text { npn transistor } \\
& \mathrm{I}_{\mathrm{SO}(\mathrm{OUT}) 2} \text { : The OUT2 pin output source current } \\
& \text { (This is set by the resistor connected to the RB2 pin. When } R_{B} \text { is } 1 \mathrm{k} \Omega \text {, } I_{\text {SO(OUT) } 2} \text { will be } 34 \mathrm{~mA} \text {, } \\
& \text { maximum.) } \\
& \mathrm{Du}_{2} \quad \text { : The output } 2 \text { on-duty } \\
& \mathrm{V}_{\mathrm{O}(\mathrm{SAT}) 3} \text { : The OUT3 pin saturation voltage (} 0.5 \mathrm{~V} \text { maximum when } \mathrm{I}_{\text {OUT3 }} \text { is } 40 \mathrm{~mA} \text {.) } \\
& \mathrm{I}_{\mathrm{OUT3}} \text { : The OUT3 pin current (This will be }\left\{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BEQ} 3}-\mathrm{V}_{\mathrm{O}(\mathrm{SAT} 3}\right\} / \mathrm{R}_{\mathrm{O3}} \text {.) } \\
& \mathrm{Du}_{3} \quad: \text { The output } 3 \text { on-duty } \\
& \mathrm{I}_{\mathrm{CC}} \quad \text { : The } \mathrm{V}_{\mathrm{CC}} \text { pin current }
\end{aligned}
$$

2. If the IC is shorted to ground, shorted to $V_{C C}$, or inserted incorrectly, either the deviceitself or peripheral components will be destroyed.
[2] Allowable V_{CC} ripple
V_{CC} ripple due to the switching transistor being turned on and off can cause this IC'SU.V.L.O. circuit, which is biased by V_{CC}, to operate incorrectly, and can cause the S.C.P. capacitor charging operation to fail to start when the output is shorted.

The figure shows the allowable range for V_{CC} ripple. Applications should reduce V_{CC} ripple either by inserting a ripple filter in the $V_{C C}$ line or by inserting a capacitor between the $C C$ GND and $V_{C C}$ pins and locating that capacitor as close to the IC as possible.

Note that the allowable range shown here is the result of testing thelC independently, and that the allowable range may differ depending on the actual system of the power supply circuit. Also note that this allowable range is a design target, and is not guaranteed by testing of all samples.

Usage Notes (continued)

[3] Notes on MOS drive

Since the AN8049SH channel 1 and 2 output circuits were designed to drive bipolar transistors, the following points require care if this device is used to drive n-channel MOS transistors directly.

1. Use an n-channel MOS transistor with a low input capacitance.

The AN8049SH is designed to drive bipolar transistors, and adopts a circuit structure that can provide a constant-current (50 mA maximum) output source current. Furthermore, it has a sink current capacity of 80 mA maximum. This means that designs must be concerned about increased loss due to longer rise- and fall-times. If a problem occurs, an inverter may be inserted as shown in figure 1 to provide amplification.
2. Use an n-channel MOS transistor with a low gate-threshold voltage.

Since the AN8049SH OUT1 and OUT2 pin high-level output voltage is $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ (minimum), low V_{T} MOS transistors with an adequately low on-resistance must be used. Also, if a large V_{GS} is required, one solution is to use a transformer as shown in figure 2,

Figure 1. Output bootstrap circuit

Figure 2. Gate drive oltage bootstrap technique

Application Notes

[1] $P_{D}-T_{a}$ curves of SSOP024-P-0300A

Application Notes (continued)

[2] Main characteristics

Timing capacitance - Oscillator frequency

C_{T} (F)

DT3 pin voltage - Maximum on-duty

DT1 and DT2 pin voltage - Maximum on-duty

$\mathrm{f}_{\text {OSC }}$ - Maximum output duty

$\mathrm{f}_{\text {OSC }}(\mathrm{Hz})$

$\mathrm{f}_{\text {OSC }}(\mathrm{Hz})$

Application Notes (continued)
[2] Main characteristics (continued)

Application Notes (continued)
[3] Timing charts

Application Notes (continued)

[4] Function descriptions

1. Reference voltage block

This circuit is composed of a band gap circuit, and outputs a 1.26 V (typical) reference voltage that is temperature compensated to a precision of $\pm 1 \%$. This reference voltage is stabilized when the supply voltage is 1.8 V or higher. This reference voltage is used by error amplifiers 1 and 2.
2. Triangular wave generator

This circuit generates a triangular wave like a sawtooth with a peak of 0.7 V and a trough of 0.2 V using a capacitor C_{T} (for the time constant) and resistor R_{T} connected to the OSC1 pin (pin 17). The oscillator frequency can be set to an arbitrary value by selecting appropriate values for the external capacitor C_{T} and resistor R_{T}. This IC can use an oscillator frequency in the range 20 kHz to 1 MHz . The triangular wave signal is provided to the noninverting input of the PWM comparator in each channel internally to the IC. Use the formulas below for rough calculation of the oscillator

Figure 1. Triangular oscillator waveform frequency.

$$
\mathrm{f}_{\mathrm{OSC}} \approx-\frac{1}{\mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}} \times \ln \frac{\mathrm{V}_{\mathrm{OSCL}}}{\mathrm{~V}_{\mathrm{OSCH}}}} \approx 0.8 \times \frac{1}{\mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}}(\mathrm{~Hz})
$$

Note, however, that the above formulas do not take the rapid charge time, overshoot, and undershoot into account. See the experimentally determined graph of the oscillator frequency vs.timing capacitance value provided in the main characteristics section.
3. Error amplifier 1

This circuit is an npn-transistor input error amplifier that detects and amplifies the DC-DC converter output voltage, and inputs that signal to a PWM comparator. The 1.26 V internal reference voltage is applied to the noninverting input. Arbitrary gain and phase compensation can be set up by inserting a resistor and capacitor in series between the FB1 pin (pin 24) and the IN-1 pin (pin 23). The output voltage $V_{\text {OUT1 }}$ can be set ûsing the circuit shown in the figure.
4. Error amplifier 2

This circuit is an npn-transistor input error amplifier that detects and amplifies the DC-DC converter output voltage and inputs that signal to a PWM comparator. The 1.26 V internal reference voltage is applied to the noninverting input. Arbitrary gain and phase compensation can be set up by inserting a resistor and capacitor in series between the FB2 pin (pin 22) and the $\mathrm{IN}-2$ pin (pin 21). The output voltage $\mathrm{V}_{\text {OUT2 }}$ can be set using the circuit shown in the figure.

Figure 2. Connection method of error amplifier 1
(Step-up output)

Figure 3. Connection method of error amplifier 2
(Step-up output)

Application Notes (continued)

[4] Function descriptions (continued)

5. Error amplifier 3

This circuit is an pnp-transistor input error amplifier that detects and amplifies the DC-DC converter output voltage and inputs that signal to a PWM comparator. Arbitrary gain and phase compensation can be set up by inserting a resistor and capacitor in series between the FB3 pin (pin 20) and the IN-3 pin (pin 19). The output voltage $\mathrm{V}_{\text {OUT3 }}$ can be set using the circuit shown in the figure.

Figure 4. Connection method of error amplifier 3
6. Timer latch short-circuit protection circuit

This circuit protects the external main switching elements, flywheel diodes, choke-coils, and other components against degradation or destruction if an excessive load or a short circuit of the power supply output continues for longer than a certain fixed period.

The timer latch short-circuit protection circuit detects the output of theerror amplifiers. If the DC-DC converter output voltage drops and an FB pin (pins 20, 22, or 24) voltage exceeds 0.9 V , theS.C.P. comparator outputs a low level and the timer circuit starts. This starts charging the external protection circuit delay time capacitor.

If the error amplifier output does not return to the normal voltage range before that capacitor reaches 1.26 V , the latch circuit latches, the output drive transistors are turned off, and-the dead-time is set to 100%. (See the "[5] Time constant setup for the timer latch short-circuit protection circuit" section later in this document.)
Low input voltage malfunction prevention circuit (U.V.L.O.)
This circuit protects the system against degradation or destruction due to incorrect control operation when the power supply voltage falls during power on or power off.

The low input voltage malfunction preventioncircuit detects the internal reference voltage that changes with the supply voltage level. While the supply voltage is rising, this circuit cuts off the output drive transistor until the reference voltage reaches 1.67 V . It also sets the dead-time to 100% and at the same time holds the S.C.P. pin (pin 1) and the DT pins (pins 2, 3, and 4) at 0 V , and the OSC pin (pin 17) at about 1.2 V .
8. PWM comparators

The PWM comparators control the on-period of the output pulse according to their input voltage. The PWM 1 and PWM 2 comparators reverse the logic of their inputs when adjusting the on-period of their respective output.

The output transistors are turned on during periods when the OSC pin (pin 17) triangular waveform is lower than both of the corresponding FB pin (pins 20, 22, or 24) and the corresponding DT pin (pins 2, 3, or 4).

The maximum duty is set to 86% internally, but can be set to a value in the range 0% to 100% by inserting a resistor between the DT pin and ground, or the DT pin and $\mathrm{V}_{\text {REF }}$ pin. (See the "[6] Setting the maximum duty" section later in this document.)

The IC's soft start function operates to gradually increase the width of the output pulse on-period during startup if a capacitor is inserted between the DT pin and ground. See the "[7] Setting the soft start time" section later in this document.

Application Notes (continued)

[4] Function descriptions (continued)
9. Output 1 and output 2 blocks

These output circuits have a totem pole structure. A constant-current source output with good line regulation can be set up freely by connecting current setting resistors to the RB pins (pins 10 and 11).

See the "[2] Main characteristics" section earlier in this document for details on the R_{B} vs. $I_{S O(O U T)}$ and R_{B} vs. $\mathrm{I}_{\text {SI(OUT) }}$ characteristics.
10. Output 3 block

This output circuit has an open collector structure.
An output current of up to 50 mA can be provided, and the output pin has a breakdown voltage of 14.2 V .

11. CTL block

This block controls the on/off state of each channel. See the "[9] Sequential operation" section later in this document.

[5] Time constant setup for the timer latch short-circuit protection circuit

Figure 6 shows the structure of the timer latch short-circuit protection circuit. The short-circuit protection comparator continuously compares a 0.9 V reference voltage with the $\mathrm{FB} 1, \mathrm{FB} 2$, and FB 3 error amplifier outputs.

When the DC-DC converter output load conditions are stable, the short-circuit protection comparator holds its average value since there are no fluctuations in the error amplifier outputs. At this time, the output transistor Q1 will be in the conducting state, and the S.C.P. pin will be held at 0 V .

If the output load conditions change rapidly and a high-level signal $(0.9 \mathrm{~V}$ or higher $)$ is input to the short-circuit protection comparator from the error amplifier output, the short-circuit protection comparator will output a low level and the output transistor Q1 will shut off. Then, the capacitor $\mathrm{C}_{\mathrm{SCP}}$ connected to the S.C.P.pin will start to charge. When the external capacitor $\mathrm{O}_{\mathrm{SCP}}$ is charged to about 1.26 V by the constant current of about 1.1 mA , the latch circuit will latch and the dead-time will be set to 100% with the output held fixed at the low leyel. Once the latch circuit has latched, the S.C.P. pin capacitor will be discharged to about 0 V , but the latch circuitwill notreset unless either power is turned off or the power supply is re-started by on/off control.

At power supply startup, the output appears to be in the shorted state, and the IC starts to charge the S.C.P. pin capacitor. Therefore, users must select an external capacitor that allows the DG-DC con verter output voltage to rise before the latch circuit in the later stage latches. In particular, care is required if the soft start function is used, since that function makes the startup timelonger.

Figure 5. S.C.P. pin charging waveform

Figure 6. Short-circuit protection circuit

Application Notes (continued)

[6] Setting the maximum duty

The maximum duty is set to 86% internally to the IC. However, this setting can be changed to be any value in the range 0% to 100% by adding an external resistor.

1. To use a duty lower than the current duty (80% to 92%)

Insert the resistor R_{DT} between the DT pin and ground.
Determine the DT pin voltage for the required duty from the provided DT pin voltage vs. maximum on-duty characteristics in the "[2] Main characteristics" section and determine the value of the external resistor R_{DT} from formula A.

Note that there is a sample-to-sample variation of -19% to $+33 \%$ due to temperature characteristics and sample-to-sample variations of the internal resistors R1 and R2. (However, the direction of the sample-to-sample variations is identical for R1 and R2.) Determine the size of the sample-to-sample variations in the $D T$ pin voltage $V_{D T}$ from formula B, and estimate the size of the sample-to-sample variation in the duty from the provided DT pin voltage vs. maximum on-duty characteristics in the "[2] Main characteristics" section .

	ch.1, 2	ch.3
R1	$45 \mathrm{k} \Omega$	$44 \mathrm{k} \Omega$
R2	$55 \mathrm{k} \Omega$	$56 \mathrm{k} \Omega$

2. To use a duty higher than the current duty $(80 \%$ to $92 \%)$

Insert the resistor $R_{D T}$ between the $D T$ pin and the $V_{\text {REF }}$ pin.
Use formulas C and D to determine the value of the external resistor $R_{D T}$ and the size of the sample-to-sample variations in the same manner as in item 1 above.

$$
\mathrm{R}_{\mathrm{DT}}=\frac{\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{DT}}}{\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \times \mathrm{V}_{\mathrm{DT}}-\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}_{1}}}
$$

$$
\mathrm{V}_{\mathrm{DT}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{2}+\mathrm{R}_{1} / \mathrm{R}_{\mathrm{DT}}} \times \mathrm{V}_{\mathrm{REF}}
$$

[7] Setting the soft start time
The soft start time is determined by the value of the capacitorconnected between the DT pin and ground.

Use the following formula to set the soft start time t_{D}.

$$
\mathrm{t}_{\mathrm{D}}=-\mathrm{R}_{2} \times \mathrm{C}_{\mathrm{DT}} \times \ln \left(1-\frac{\mathrm{V}_{\mathrm{DT}}}{\mathrm{~V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{DT}}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)
$$

	ch.1, 2	ch.3
R1	$45 \mathrm{k} \Omega$	$44 \mathrm{k} \Omega$
R2	$55 \mathrm{k} \Omega$	$56 \mathrm{k} \Omega$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{DT}}=\frac{\mathrm{V}_{\mathrm{DT}}}{\frac{\mathrm{~V}_{\text {REF }}}{\mathrm{R}_{1}}-\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \times \mathrm{V}_{\mathrm{DT}}} \\
& V_{D T}=\frac{R_{2} / R_{D T}}{R_{1}+R_{2} / R_{D T}} \times V_{\text {REF }}
\end{aligned}
$$

Application Notes (continued)

[8] Parallel synchronous operation of multiple ICs
Multiple instances of this IC can be operated in parallel. If the OSC pins (pin 17) and OFF pins (pin 8) are connected to each other as shown in figure 7, the ICs will operate at the same frequency.

It is also possible to operate a one-channel control IC (e.g. the AN8016SH or AN8016NSH) and a two-channel control IC (e.g. the AN8017SA or AN8018SA) in this parallel synchronous mode. In this case, short the OSC and Off pins together.

Notes on parallel operation:

1. The remote on/off state of each individual IC cannot be controlled independently.

In this sort of circuit, always connect all the Off pins together, andcontrol the on/off states of the multiple ICs at the same time.

The reason for this is that if, for example, IC1 is solelygurned on/off, the sawtooth wave will be stopped temporarily and the OSC pin held fixed at about 1.2 V . AS a result the IC2 OUT1 to OUT3 pins will be forced temporarily to the full off-state and the DC-DCconverfer output voltage will fall.
2. All ICs are shut down when an output shorted state occurs.

For example, if the IC1 output voltage falls, its output short-circuit protection circuit will operate, and the latch circuit will latch. When this happen \mathcal{S}, the IC1 output stops, and at the same time the sawtooth oscillator stops, and the OSC pin is held fixed at abput 1.2 V .

As a result, the IC2 OUTRto OUT3 pins temporarily go to the full off-state, and the DC-DC converter output voltage will drop. Finally, the IC2 output short-circuit protection circuit will operate, and the latch will go to the latched state. This behavior will also occur if the IC2 output falls first.

Application Notes (continued)

[9] Sequential operation
Sequential operation under the control of external capacitors
Delays can be provided in the startup times by inserting capacitors ($\mathrm{C}_{\mathrm{CTL}}$) between the CTL pins and ground.
Delay time: $\mathrm{t}_{\mathrm{DLY}}=1.26(\mathrm{~V}) \times \mathrm{C}_{\mathrm{CTL}}(\mu \mathrm{F}) / 1.1(\mu \mathrm{~A}) \quad(\mathrm{s})$

$\mathrm{C}_{\mathrm{CTL} 1}<\mathrm{C}_{\mathrm{CTL} 2}<\mathrm{C}_{\mathrm{CTL} 3}$
U.V.L.O. cleared

Figure 8. Sequential operation using externaleapacitors

Application Notes (continued)

[10] Notes on power supply printed circuit board design
Careful attention must be paid to the following points when designing the printed circuit board layout to achieve low noise and high efficiency.

1. Use extremely wide lines for the ground lines, and isolate the IC ground from the power system ground.

In particular, during light-load operation (when the on-duty is low) switching noise can enter the system at the lower limit of the sawtooth waveform causing the operating frequency to vary every period and resulting in unstable control.
Take measures described as 1) and 2) below, and assure that switching noise does not appear on the sawtooth waveform.

1) Use a ground line separate from the power system ground for the capacitor and resistor connected to the OSC pin.
2) Lower the OSC pin impedance by either decreasing the value of the resistor R_{T} or increasing the value of the capacitor C_{T}.
(See the figures below.)

Noise is picked up and the IC switches from charge to discharge operation.
2. Position input filter capacitors as close as possible to the V_{CC} and ground pins.

If switching noise cannot be suppressed even with exceptionally large capacitors, or if there are limitations on the size of capacitors that can be used, install an CR filter in the input to reduce switching noise. Problems may occur if switching noise enters the IC by any route.
3. Keep the length of the line between the OUT pin and the switching device as short as possible to provide a clean switching waveform to the switching device.
4. Use longer lines for the low-impedance side of the output voltage detection resistors.

Application Notes (continued)

[11] Differences between this IC and the AN8049FHN
The pin arrangements differ. The AN8049FHN is a alternative package version of this IC.

AN8049SH

AN8049FHN

Application Notes (continued)

[12] Error amplifier frequency characteristics

1. Error amplifiers 1 and 2
(Test circuit)
(

2. Error amplifier 3
(Test circuit)

Application Circuit Example

Evaluation Board

1. The element numbers of the board pair with the ones of the circuit.
2. "JP" of the board shows the jumper. Short circuit.

- Circuit

- Board

New Package Dimensions (Unit: mm)

- SSOP024-P-0300D (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

