National semiconductor		jay 1995
MM5486 LED Display Driver		
General Description		
	- Wide oowerestupy opeation	
and	- 35 unupus, 15 ma smk capabuily	
	- Apphaumeric capabily	
setting a reference current through a variable resistor con	Applications	
Features		

Block and Connection Diagrams

FIGURE 1

Dual-In-Line Package		
vss -1	40	- OUTPUT BIT 17
OUTPUT BIT 16 - 2	39	- OUTPUT BIT 18
OUTPUT BIT 15 -3	38	- OUTPUT BIT 19
OUTPUT BIT 14 - 4	37	- OUIPUT BIT 20
OUTPUT BIT $13-5$	36	- OUTPUT BIT 21
OUTPUT BIT 12 -6	35	- OUTPUT BIT 22
OUTPUT BIT $11-7$	34	- OUIPUT BIT 23
OUTPUT BIT 10 - 8	33	- OUIPUT BIT 24
OUTPUT BIT 9 - 9	32	- OUIPUT BIT 25
OUTPUT BIT 8 - 10	MM5486 31	- OUTPUT BIT 26
OUTPUT BIT 7 - 11	MM5486 $\quad 30$	- OUTPUT BIT 27
OUTPUT BIT $6-12$	29	- OUTPUT BIT 28
OUTPUT BIT 5 - 13	28	- OUTPUT BIT 29
OUTPUT BIT 4 - 14	27	- OUTPUT BIt 30
OUTPUT BIT 3 - 15	26	- OUTPUT BIT 31
OUTPUT BIT 2 - 16	25	- OUTPUT BIt 32
OUTPUT BIT 1 - 17	24	OUTPUT BIT 33
DATA OUT - 18	23	- LOAD
BRIGHTNESS CONTROL ${ }^{19}$	22	- data in
$V_{D D}-20$	21	CLOCK IN
		TL/F/6142-2
Top View		

Order Number MM5486N See NS Package Number N40A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin
Operating Temperature
V_{SS} to $\mathrm{V}_{\mathrm{SS}}+12 \mathrm{~V}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation at $25^{\circ} \mathrm{C}$
Molded DIP Package, Board Mount 2.5W* Molded DIP Package, Socket Mount 2.3W**
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
${ }^{*}$ Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=49^{\circ} \mathrm{C} / \mathrm{W}$, Derate $20.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
${ }^{* *}$ Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=54^{\circ} \mathrm{C} / \mathrm{W}$, Derate $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics

T_{A} within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$	Power Supply		4.75		11	V
IDD	Power Supply Current	Excluding Output Loads			7	mA
$\begin{aligned} & V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltages Logic "0" Level Logic "1" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25$	$\begin{gathered} -0.3 \\ 2.2 \end{gathered}$		$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$V_{D D}>5.25$	$\mathrm{V}_{\mathrm{DD}}-2$		$V_{D D}$	V
I_{BR}	Brightness Input (Note 2)		0		0.75	mA
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { Output Sink Current (Note 3) } \\ & \text { Segment OFF } \\ & \text { Segment ON } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ (Note 4) Brightness Input $=0 \mu \mathrm{~A}$ Brightness Input $=100 \mu \mathrm{~A}$ Brightness Input $=750 \mu \mathrm{~A}$	$\begin{gathered} 0 \\ 2.0 \\ 15 \end{gathered}$	2.7	$\begin{gathered} 10 \\ 10 \\ 4 \\ 25 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
10	Maximum Segment Current				40	mA
$\mathrm{V}_{\text {IBR }}$	Brightness Input Voltage (Pin 19)	Input Current $=750 \mu \mathrm{~A}$	3.0		4.3	V
OM	Output Matching (Note 1)				± 20	\%
V_{OL} V_{OH}	Data Output Logical "0" Level Logical "1" Level	$\begin{aligned} & \text { IOUT }=0.5 \mathrm{~mA} \\ & \text { IOUT }=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{S S} \\ & 2.4 \end{aligned}$		$\begin{gathered} 0.4 \\ \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{f}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \mathrm{t}_{\mathrm{l}} \end{aligned}$	Clock Input Frequency High Time Low Time	(Notes 5 and 6)	$\begin{aligned} & 950 \\ & 950 \end{aligned}$		500	kHz ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \end{aligned}$	Data Input Set-Up Time Hold Time		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note 1: Output matching is calculated as the percent variation $\left(I_{\text {MAX }}+I_{\text {MIN }}\right) / 2$.
Note 2: With a fixed resistor on the brightness input pin, some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are complied with.
Note 3: Absolute maximum for each output should be limited to 40 mA .
Note 4: The $\mathrm{V}_{\text {OUT }}$ voltage should be regulated by the user. See Figures 6 and 7 for allowable $V_{\text {OUT }}$ vs lout operation.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Functional Description

The MM5486 is specifically designed to operate four-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 3 signals, serial data, clock, and load. The data bits are latched by a positive-level load signal, thus providing non-multiplexed, direct drive to the display. When load is high, the data in the shift registers is displayed on the output drivers. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A $0.001 \mu \mathrm{~F}$ capacitor should be connected to brightness control, pin 19, to prevent possible oscillations. The output current is typically 20 times greater than the current into pin 19, which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
A block diagram is shown in Figure 1.
Figure 4 shows the input data format. Bit " 1 " is the first bit into the data input pin and it will appear on pin 17. A logical " 1 " at the input will turn on the appropriate LED. The load signal latches the 33 bits of the shift register into the latches. The data out pin allows for cascading the shift registers for more than 33 output drivers.

When the chip first powers ON, an internal power ON reset signal is generated which resets all registers and latches. The leading clock returns the chip to its normal operation.
Figure 3 shows the timing relationship between data, clock and data enable. A maximum clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than $1 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$. The following equation can be used for calculations:

$$
\mathrm{T}_{\mathrm{J}}=\left(\mathrm{V}_{\mathrm{OUT}}\right)\left(\mathrm{l}_{\mathrm{LED}}\right)(\text { No. of segments })\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}
$$

where:
$T_{J}=$ junction temperature, $150^{\circ} \mathrm{C}$ max.
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$l_{\text {LED }}=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
θ_{JA} (Socket Mount) $=54^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{JA}$ (Board Mount) $=49^{\circ} \mathrm{C} / \mathrm{W}$
The above equation was used to plot Figure 6, Figure 7, and Figure 8.

TL/F/6142-3
FIGURE 3

*This leading clock is necessary only after power ON.
FIGURE 4. Input Data Format

FIGURE 5

Typical Applications

FIGURE 9. Constant Current Brightness Control

Typical Applications (Continued)

TL/F/6142-11

Duplexing 8 Digits with One MM5486

Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

