

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {SS }}+12 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	
Molded DIP Package, Board Mount	2W*
Molded DIP Package, Socket Mount	1.8W**

Junction Temperature
$+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$
${ }^{*}$ Molded DIP Package, Board Mount, $\theta_{\mathrm{JA}}=61^{\circ} \mathrm{C} / \mathrm{W}$, Derate $16.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
${ }^{* *}$ Molded DIP Package, Socket Mount, $\theta_{\mathrm{JA}}=67^{\circ} \mathrm{C} / \mathrm{W}$, Derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$	Power Supply		4.75		11	V
I_{DD}	Power Supply Current	Excluding Output Loads			7	mA
$\mathrm{V}_{\text {IL }}$	Input Voltages Logical "0" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias	-0.3		0.8	V
V_{IH}	Logical "1" Level	$4.75 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25$	2.2		$\mathrm{V}_{\text {DD }}$	V
		$V_{D D}>5.25$	$\mathrm{V}_{\mathrm{DD}}-2$		$V_{D D}$	V
I_{BR}	Brightness Input Current (Note 2)		0		0.75	mA
${ }^{\mathrm{IOH}}$	Output Sink Current (Note 3) Segment OFF	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$			10.0	$\mu \mathrm{A}$
lOL	Segment ON	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ (Note 4) Brightness Input $=0 \mu \mathrm{~A}$ Brightness Input $=100 \mu \mathrm{~A}$ Brightness Input $=750 \mu \mathrm{~A}$	$\begin{gathered} 0 \\ 2.0 \\ 15.0 \end{gathered}$	2.7	$\begin{gathered} 10.0 \\ 4.0 \\ 25.0 \end{gathered}$	$\mu \mathrm{A}$ mA mA
$\mathrm{V}_{\text {IBR }}$	Brightness Input Voltage (Pin 9)	Input Current $=750 \mu \mathrm{~A}$	3.0		4.3	V
OM	Output Matching (Note 1)				± 20	\%

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
f_{C}	Clock Input Frequency	(Notes 5 and 6)	DC		500	kHz
t_{h}	High Time		950			ns
t_{I}	Low Time		950			ns
	Data Input					
t_{DS}	Set-Up Time	300		ns		
t_{DH}	Hold Time		300		ns	
$\mathrm{t}_{\text {DES }}$	Data Enable Input		100		ns	

Note 1: Output matching is calculated as the percent variation from $I_{\mathrm{MAX}}+\mathrm{I}_{\mathrm{MIN}} / 2$.
Note 2: With a fixed resistor on the brightness input pin some variation in brightness will occur from one device to another. Maximum brightness input current can be 2 mA as long as Note 3 and junction temperature equation are compiled with.

Note 3: Absolute maximum for each output should be limited to 40 mA .
Note 4: The VOUT voltage should be regulated by the user.
Note 5: AC input waveform specification for test purpose: $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}, \mathrm{f}=500 \mathrm{kHz}, 50 \% \pm 10 \%$ duty cycle.
Note 6: Clock input rise and fall times must not exceed 300 ns .

Functional Description

The MM5481 uses the MM5450 die which is packaged to operate 2-digit alphanumeric displays with minimal interference to the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36 th bit is complete, thus providing nonmultiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A $0.001 \mu \mathrm{~F}$ capacitor should be connected to brightness control, pin 9, to prevent possible oscillations.
A block diagram is shown in Figure 1. The output current is typically 20 times greater than the current into pin 9 , which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 4 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the positive-going-edge of the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are a static master-slave configuration. There is no clear for the master portion of the first shift register, thus allowing continous operation.
There must be a complete set of 36 clocks (high/low edges) or the shift registers will not clear.

Data Enable

This active low signal enables the data input pin. If high, the shift register sees zeroes clocked in.
To blank the display at any time, (i.e., power on), clock in 36 or more zeroes, followed by a 'one' (start bit), followed by 36 or more zeroes.
Figure 5 shows the Output Data Format for the MM5481. Because it uses only 14 of the possible 34 outputs, 20 of the bits are 'Don't Cares'. Note that only alternate groups of 4 outputs are used.
Figure 3 shows the timing relationships between data, clock, and data enable. A maximum clock frequency of 0.5 MHz is assumed.

For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than 1 V V OUT. The following equation can be used for calculations.
$\mathrm{T}_{\mathrm{j}}=\left(\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{l}_{\text {LED }}\right)$ (No. of segments) $\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}$ where:
$\mathrm{T}_{\mathrm{j}}=$ junction temperature, $150^{\circ} \mathrm{C}$ max.
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
lLED $=$ the LED current
$\theta_{\mathrm{JA}}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
$\theta_{\mathrm{JA}}\left(\right.$ Socket Mount) $=67^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}($ Board Mount $)=61^{\circ} \mathrm{C} / \mathrm{W}$

FIGURE 4. Input Data Format

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package
 Order Number MM5481N
 NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

