

DP8303A 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting)

General Description

This family of high speed Schottky 8-bit TRI-STATE bidirectional transceivers are designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (V_{OH}) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.

DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/ \overline{R}) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 are featured with Transmit (\overline{T}) and Receive (\overline{R}) control inputs.

Features

- 8-bit directional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high voltage interfaces with TTL, MOS, and CMOS
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Transmit/Receive and chip disable simplify control logic
- Compact 20-pin dual-in-line package
- Bus port glitch free power up/down

© 1996 National Semiconductor Corporation TL/F/5856

RRD-B30M36/Printed in U. S. A.

http://www.national.com

DP8303A 8-Bit TRI-STATE Bidirectional Transceiver (Inverting)

February 1996

If Military/Aerospace specified devices	are required,	Storage Temperature		-65°C to	o +150°C
please contact the National Semico Office/Distributors for availability and s	nductor Sales pecifications.	Lead Temperature (solde	ring, 4 secor	nds)	260°C
Supply Voltage	7V	Recommended	Operat	ting	
Input Voltage	5.5V	Conditions	•	•	
Output Voltage	5.5V	· · · · · · · · · · · · · · · · · · ·	Min	Мах	Units
Maximum Power Dissipation* at 25°C		Supply Voltage (V _{CC})			
Cavity Package	1667 mW	DP8303A	4.75	5.25	V
Molded Package	1832 mW	Temperature (T _A)			
*Derate cavity package 11.1 mW/°C above 25°C; dera 14.7 mW/°C.	ate molded package	DP8303A	0	70	°C

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
A PORT	(A0-A7)						
VIH	Logical "1" Input Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$		2.0			V
VIL	Logical "0" Input Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$				0.7	V
V _{OH}	Logical "1" Output Voltage	$CD = T/\overline{R} = V_{IL}$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	$V_{\text{CC}} - 0.7$		v
		$V_{IL} = 0.5V$	$I_{OH} = -3 \text{ mA}$	2.7	3.95		V
V _{OL}	Logical "0" Output Voltage	$CD = T/\overline{R} = V_{IL}$	$I_{OL} = 16 \text{ mA}$		0.35	0.5	v
		$V_{IL} = 0.5V$	$I_{OL} = 8 \text{ mA}$		0.3	0.4	v
los	Output Short Circuit Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_O = 0V,$ $V_{CC} = Max, (Note 4)$		-10	-38	-75	mA
I _{IH}	Logical "1" Input Current	$CD = V_{IL}, T/\overline{R} = 2.0V, V$	/ _{IH} = 2.7V		0.1	80	μΑ
lį	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC} = Max, V_{IH} = 5.25V$				1	mA
IIL	Logical "0" Input Current	$CD = V_{IL}, T/\overline{R} = 2.0V, V_{IN} = 0.4V$			-70	-200	μΑ
V _{CLAMP}	Input Clamp Voltage	$CD = 2.0V, I_{IN} = -12 \text{ mA}$			-0.7	-1.5	V
I _{OD}	Output/Input	CD = 2.0V	$V_{IN} = 0.4V$			-200	μΑ
	TRI-STATE Current		$V_{IN} = 4.0V$			80	μΑ
B PORT	(B0–B7)						
VIH	Logical "1" Input Voltage	$CD = V_{IL}, T/\overline{R} = V_{IL}$		2.0			V
VIL	Logical "0" Input Voltage	$CD = V_{IL}, T/\overline{R} = V_{IL}$				0.7	V
V _{OH} Logical "1" Output Voltage	$\begin{array}{l} CD = V_{IL}, T/\overline{R} = 2.0V \\ V_{IL} = 0.5V \end{array}$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	V _{CC} -0.8		V	
		$I_{OH} = -5 \text{ mA}$	2.7	3.9		V	
			$I_{OH} = -10 \text{ mA}$	2.4	3.6		v
V _{OL}	V _{OL} Logical "0" Output Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$	$I_{OL} = 20 \text{ mA}$		0.3	0.4	V
			$I_{OL} = 48 \text{ mA}$		0.4	0.5	V
los	Output Short Circuit Current	$CD = V_{IL}$, $T/\overline{R} = 2.0V$, $V_O = 0V$, $V_{CC} = Max$, (Note 4)		-25	-50	-150	mA
IIH	Logical "1" Input Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IH} = 2.7V$			0.1	80	μΑ
lı	Input Current at Maximum Input Voltage	$\text{CD}=\text{2.0V}, \text{V}_{\text{CC}}=\text{Max}, \text{V}_{\text{IH}}=\text{5.25V}$				1	mA
Ι _{ΙL}	Logical "0" Input Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IN} = 0.4V$			-70	-200	μΑ
V _{CLAMP}	Input Clamp Voltage	$CD = 2.0V, I_{IN} = -12 \text{ mA}$			-0.7	- 1.5	V
I _{OD} Output/Input TRI-STATE Current	CD = 2.0V	$V_{IN} = 0.4V$			-200	μA	
		$V_{IN} = 0.4V$			+ 200	μA	

Symbol	Parameter	Conditions Mi			Min	Ту	р	Max	Units
CONTRO	L INPUTS CD, T/R								
V _{IH}	Logical "1" Input Voltage				2.0				٧
V _{IL}	Logical "0" Input Voltage							0.7	V
I _{IH}	Logical "1" Input Current	$V_{IH} = 2.7V$				0.9	5	20	μA
l _l	Maximum Input Current	$V_{CC} = Max, V_{IH} = 5.25V$						1.0	mA
IIL	Logical "0" Input Current	$V_{IL} = 0.4V$ T/ \overline{R}			-0	.1	-0.25	mA	
				CD		-0.	25	-0.5	mA
V _{CLAMP}	Input Clamp Voltage	$I_{IN} = -12 \text{ mA}$				-0	.8	-1.5	V
POWER S	UPPLY CURRENT								
ICC	Power Supply Current CD = 2.0		, V_{IN} , $V_{CC} = Max$			70	>	100	mA
		CD = 0.4V	$D = 0.4V, V_{INA} = T/\overline{R} = 2V, V_{CC} = Max$			100		150	mA
AC EI	ectrical Character	istics v _{co}	$_{\rm C} = 5$ V, T _A = 25°C						
Symbol	Parameter		Con	ditions		Min	Тур	Max	Units
A PORT D	ATA/MODE SPECIFICATIO	IS						•	
t _{PDHLA}	Propagation Delay to a Logic B Port to A Port	cal "0" from	$CD = 0.4V, T/\overline{R} = 0.4V$ (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF			8	12	ns	
t _{PDLHA}	Propagation Delay to a Logic B Port to A Port	cal "1" from	CD = 0.4V, T/ \overline{R} = 0.4V (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF				11	16	ns
t _{PLZA}	Propagation Delay from a Lo TRI-STATE from CD to A Po	ogical ''0'' to rt	B0 to B7 = 2.4V, T/ \overline{R} = 0.4V (Figure C S3 = 1, R5 = 1k, C4 = 15 pF				10	15	ns
t _{PHZA}	Propagation Delay from a Lo TRI-STATE from CD to A Po	ogical ''1'' to rt	B0 to B7 = 0.4V, T/\overline{R} = 0.4V (<i>Figure C</i> S3 = 0, R5 = 1k, C4 = 15 pF				8	15	ns
t _{PZLA}	Propagation Delay from TRI a Logical "0" from CD to A F	STATE to	B0 to B7 = 2.4V, T/ \overline{R} = 0.4V (Figure C) S3 = 1, R5 = 1k, C4 = 30 pF		re C)		20	30	ns
t _{PZHA}	Propagation Delay from TRI a Logical "1" from CD to A F	STATE to bort B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/ \overline{R} = 0.4V (Figure 1) B0 to B7 = 0.4V, T/\overline{R}		re C)		19	30	ns	
B PORT D	ATA/MODE SPECIFICATIO	IS							
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port		$\begin{array}{l} \text{CD} = 0.4\text{V}, \text{T}/\overline{\text{R}} = 2.4\text{V} (\textit{Figure A}) \\ \text{R1} = 100\Omega, \text{R2} = 1\text{k}, \text{C1} = 300 \text{pF} \\ \text{R1} = 667\Omega, \text{R2} = 5\text{k}, \text{C1} = 45 \text{pF} \end{array}$		-		12 7	18 12	ns ns
t _{PDLHB}	Propagation Delay to a Logical "1" from A Port to B Port		$\begin{array}{l} \text{CD} = \ 0.4 \text{V}, \ \text{T} / \overline{\text{R}} = \ 2.4 \text{V} \ (\textit{Figure A}) \\ \text{R1} = \ 100 \Omega, \ \text{R2} = \ 1 \text{k}, \ \text{C1} = \ 300 \ \text{pF} \\ \text{R1} = \ 667 \Omega, \ \text{R2} = \ 5 \text{k}, \ \text{C1} = \ 45 \ \text{pF} \end{array}$		-		15 9	20 14	ns ns
t _{PLZB}	Propagation Delay from a Logical "0" to TRI-STATE from CD to B Port		A0 to A7 = 2.4V, T/\overline{R} = 2.4V (Figure C) S3 = 1, R5 = 1k, C4 = 15 pF		re C)		13	18	ns
t _{PHZB}	Propagation Delay from a Logical "1" to TRI-STATE from CD to B Port		A0 to A7 = 0.4V, T/ \overline{R} = 2.4V (Figure C) S3 = 0, R5 = 1k, C4 = 15 pF		re C)		8	15	ns
t _{PLZB}	Propagation Delay from TRI a Logical "0" from CD to B F	STATE to Port	A0 to A7 = 2.4V, T/ \overline{R} = 2.4V (<i>Figure C</i>) S3 = 1, R5 = 100 Ω , C4 = 300 pF S3 = 1, R5 = 667 Ω , C4 = 45 pF				25 16	35 25	ns ns
t _{PZHB}	Propagation Delay from TRI- a Logical "1" from CD to B F	STATE to Port	A0 to A7 = 0.4V, T/\overline{R} = 2.4V (Figure C) S3 = 0, R5 = 1k, C4 = 300 pF S3 = 0, R5 = 5k0, C4 = 45 pF				22 14	35 25	ns ns

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TRANSM	IT/RECEIVE MODE SPECIFICATIONS					
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "0", T/\overline{R} to A Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{(Figure B)} \\ \text{S1} = 1, \text{R4} = 100 \Omega, \text{C3} = 5 \mbox{ pF} \\ \text{S2} = 1, \text{R3} = 1 \text{k}, \text{C2} = 30 \mbox{ pF} \end{array}$		23	35	ns
t _{TRH}	Propagation Delay from Transmit Mode to Receive a Logical "1", T/\overline{R} to A Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{(Figure B)} \\ \text{S1} = 0, \text{R4} = 100 \Omega, \text{C3} = 5 \mbox{ pF} \\ \text{S2} = 0, \text{R3} = 5 \text{k}, \text{C2} = 30 \mbox{ pF} \end{array}$		23	35	ns
t _{RTL}	Propagation Delay from Receive Mode to Transmit a Logical "0", T/\overline{R} to B Port	$\begin{array}{l} \text{CD} = 0.4 \text{V} \mbox{(Figure B)} \\ \text{S1} = 1, \text{R4} = 100 \Omega, \text{C3} = 300 \mbox{ pF} \\ \text{S2} = 1, \text{R3} = 300 \Omega, \text{C2} = 5 \mbox{ pF} \end{array}$		23	35	ns
t _{RTH}	Propagation Delay from Receive Mode to Transmit a Logical "1", T/\overline{R} to B Port	$\begin{array}{l} \text{CD} = \ 0.4 \text{V} \ (\textit{Figure B}) \\ \text{S1} = \ 0, \text{R4} = \ 1 \text{k}, \text{C3} = \ 300 \ \text{pF} \\ \text{S2} = \ 0, \text{R3} = \ 300 \ \Omega, \text{C2} = \ 5 \ \text{pF} \end{array}$		27	35	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com