ADC08061/ADC08062

500 ns A/D Converter with S/H Function and Input Multiplexer

General Description

Using a patented multi-step A/D conversion technique, the 8 -bit ADC08061 and ADC08062 CMOS ADCs offer 500 ns (typ) conversion time, internal sample-and-hold (S/H), and dissipate only 125 mW of power. The ADC08062 has a twochannel multiplexer. The ADC08061/2 family performs an 8 -bit conversion using a 2-bit voltage estimator that generates the 2 MSBs and two low-resolution (3-bit) flashes that generate the 6 LSBs.
Input track-and-hold circuitry eliminates the need for an external sample-and-hold. The ADC08061/2 family performs accurate conversions of full-scale input signals that have a frequency range of DC to 300 kHz (full-power bandwidth) without need of an external S/H.
The digital interface has been designed to ease connection to microprocessors and allows the parts to be I/O or memory mapped.

Key Specifications

- Resolution
- Conversion Time
- Full Power Bandwidth
- Throughput rate

8 bits
1.5 MHz

Power Dissipation

- Total Unadjusted Error $560 \mathrm{~ns} \max (\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode)

300 kHz 100 mW max

Features

- 1 or 2 input channels
- No external clock required
- Analog input voltage range from GND to V^{+}
- Overflow output available for cascading (ADC08061)

■ ADC08061 pin-compatible with the industry standard ADC0820

Applications

■ Mobile telecommunications

- Hard disk drives
- Instrumentation
- High-speed data acquisition systems

Block Diagram

*ADC08061
TL/H/11086-1
**ADC08062

[^0]| Absolute Maximum Ratings (Notes 1 \& 2) | |
| :---: | :---: |
| If Military/Aerospace specified please contact the National Office/Distributors for availability | evices are required, miconductor Sales and specifications. |
| Supply Voltage (V+) | 6 V |
| Logic Control Inputs | -0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$ |
| Voltage at Other Inputs and Outputs | -0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$ |
| Input Current at Any Pin (Note 3) | 5 mA |
| Package Input Current (Note 3) | 20 mA |
| Power Dissipation (Note 4) | |
| J Package | 875 mW |
| N Package | 875 mW |
| WM Package | 875 mW |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Lead Temperature (Note 5)	
J Package (Soldering, 10 sec.)	$+300^{\circ} \mathrm{C}$
N Package (Soldering, 10 sec.$)$	$+260^{\circ} \mathrm{C}$
WM Package (Vapor Phase, 60 sec.)	$+215^{\circ} \mathrm{C}$
WM Package (Infrared, 15 sec .)	$+220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 6)	2 kV
Operating Ratings (Notes 1\&2)	
Temperature Range	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
ADC08061/2BIN,	
ADC08061/2CIN,	
ADC08061/2BIWM,	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
ADC08061/2CIWM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
ADC08061CMJ/883	4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\overline{\mathrm{RD}}$ Mode, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}}=$ GND unless otherwise specified.
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
INL	Integral Non Linearity	ADC08061/2 BIN, BIWM		$\pm 1 / 2$	LSB (max)
		ADC08061/2 CIN, CIWM, CMJ		± 1	LSB (max)
TUE	Total Unadjusted Error	ADC08061/2 BIN, BIWM		$\pm 1 / 2$	LSB (max)
		ADC08061/2 CIN, CIWM, CMJ		± 1	LSB (max)
	Missing Codes			0	Bits (max)
	Reference Input Resistance		$\begin{aligned} & 700 \\ & 700 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 1250 \end{gathered}$	$\begin{gathered} \Omega(\min) \\ \Omega(\max) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {REF }+}$	Positive Reference Input Voltage			VREF V ${ }^{+}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
$\mathrm{V}_{\text {REF - }}$	Negative Reference Input Voltage			GND VREF+	$\begin{aligned} & \hline \mathrm{V}(\min) \\ & \mathrm{V}(\max) \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {IN }}$	Analog Input Voltage	(Note 10)		$\begin{gathered} \text { GND - } \mathbf{0 . 1} \\ \mathbf{V}++\mathbf{0 . 1} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \\ & \hline \end{aligned}$
	On Channel Input Current	$\begin{aligned} & \text { On Channel Input }=5 \mathrm{~V}, \\ & \text { Off Channel Input }=0 \mathrm{~V} \text { (Note 11) } \end{aligned}$	-0.4	-20	$\mu \mathrm{A}$ (max)
		$\begin{aligned} & \text { On Channel Input }=0 \mathrm{~V}, \\ & \text { Off Channel Input }=5 \mathrm{~V}(\text { Note 11) } \end{aligned}$	-0.4	-20	$\mu \mathrm{A}$ (max)
PSS	Power Supply Sensitivity	$\mathrm{V}^{+}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{REF}}=4.75 \mathrm{~V}$ All Codes Tested	$\pm 1 / 16$	$\pm 1 / 2$	LSB (max)
	Effective Bits		7.8		Bits
	Full-Power Bandwidth		300		kHz
THD	Total Harmonic Distortion		0.5		\%
S/N	Signal-to-Noise Ratio		50		dB
IMD	Intermodulation Distortion		50		dB

AC Electrical Characteristics
The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Typical (Note 7)	AD08061 and ADC08062 with BIN, BIWM, CIN and CIWM suffixes Limits (Note 8)	ADC08061CMJ	Units (Limit)
					$\begin{aligned} & \text { (Limit) } \\ & \text { (Note 8) } \end{aligned}$	
twR	Write Time	Mode Pin to V ${ }^{+}$; (Figures 2a, 2b, and 3)	100	100	100	ns (min)
t_{RD}	Read Time (Time from Falling Edge of $\overline{W R}$ to Falling Edge of $\overline{\mathrm{RD}}$)	Mode Pin to V^{+}; (Figure 2a)	350	350	515	ns (min)
tRDW	$\overline{\mathrm{RD}}$ Width	Mode Pin to GND; (Figure 4)	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$\begin{aligned} & \text { ns (min) } \\ & \text { ns (max) } \end{aligned}$
tCONV	$\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ Mode Conversion Time $\left(\mathrm{t}_{\mathrm{WR}}+\mathrm{t}_{\mathrm{RD}}+\mathrm{t}_{\mathrm{ACC}}\right)$	Mode Pin to V^{+}; (Figure 2a)	500	560	790	ns (max)
$\mathrm{t}_{\mathrm{C}} \overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$ Mode Conversion Time	Mode Pin to GND; (Figure 1)	655	900	940	ns (max)
$\mathrm{t}_{\text {ACCO }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF} \\ & \text { Mode Pin to GND; (Figure 1) } \end{aligned}$	640	900	940	ns (max)
$\mathrm{t}_{\mathrm{ACC} 1}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Mode Pin to } \mathrm{V}^{+}, \mathrm{t}_{\mathrm{RD}} \leq \mathrm{t}_{\mathrm{INTL}} \\ & \text { (Figure 2a) } \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	110	175	ns (max)
$\mathrm{t}_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \operatorname{tra}_{\mathrm{RD}}>\mathrm{t} \text { INTL; (Figures } 2 b \text { and } 4 \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	55	60	ns (max)
t_{OH}	TRI-STATE ${ }^{\circledR}$ Control (Delay from Rising Edge of RD to HI-Z State)	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	60	60	ns (max)
$\mathrm{t}_{1} \mathrm{H}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{HI}-\mathrm{Z}$ State)	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	60	60	ns (max)
tiNTL	Delay from Rising Edge of $\overline{W R}$ to Falling Edge of INT	(Figures 2b, and 3) Mode Pin $=\mathrm{V}^{+}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	520	690	690	ns (max)
tinth	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of INT	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \text { (Figures 1, 2a, } \\ & 2 b \text {, and 4) } \end{aligned}$	50	95	100	ns (max)
tiNTH	Delay from Rising Edge of $\overline{W R}$ to Rising Edge of INT	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; (Figure 3)	45	95	100	ns (max)
$\mathrm{t}_{\text {RDY }}$	Delay from $\overline{\mathrm{CS}}$ to RDY	$\begin{aligned} & \text { Mode Pin }=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { (Figure 1) } \end{aligned}$	25	45	50	ns (max)
t_{ID}	Delay from INT to Output Valid	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ;$ (Figure 3)	0	15	15	ns (max)
t_{RI}	Delay from $\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$	Mode Pin $=\mathrm{V}^{+}$, $\mathrm{t}_{\mathrm{RD}} \leq \mathrm{t}_{\mathrm{tNT}}$; (Figure 2a)	60	115	175	ns (max)
t_{N}	Time between End of $\overline{R D}$ and Start of New Conversion	(Figures 1, 2a, 2b, 3 and 4)	50	50	50	ns (min)
$\mathrm{t}_{\text {AH }}$	Channel Address Hold Time	(Figures 1, 2a, 2b, 3 and 4)	10	60	60	ns (min)
t_{AS}	Channel Address Setup Time	(Figures 1, 2a, 2b, 3 and 4)	0	0	0	ns (max)
tess	$\overline{\text { CS Setup Time }}$	(Figures 1, 2a, 2b, 3 and 4)	0	0	0	ns (max)
tesh	$\overline{\text { CS Hold Time }}$	(Figures 1, 2a, 2b, 3 and 4)	0	0	0	ns (min)
$\mathrm{C}_{\mathrm{VIN}}$	Analog Input Capacitance		25			pF
CoUT	Logic Output Capacitance		5			pF
$\mathrm{C}_{\text {IN }}$	Logic Input Capacitance		5			pF

DC Electrical Characteristics The following specifications apply for $\mathrm{V}+=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }} ;$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
V_{IH}	Logic " 1 " Input Voltage	$\mathrm{V}^{+}=5.5 \mathrm{~V}$ Mode Pin		3.5	V (min)
		ADC08062 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{AO}$ Pins		2.2	V (min)
		ADC08061 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ Pins		2.0	V (min)
VIL	Logic "0" Input Voltage	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ Mode Pin		1.5	V (max)
		ADC08062 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{A} 0$ Pins		0.7	V (max)
		ADC08061 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ Pins		0.8	V (max)
$\mathrm{IIH}^{\text {H}}$	Logic "1" Input Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V} \\ & \overline{\mathrm{CS}}, \overline{\mathrm{RD}, \mathrm{~A} 0 \text { Pins }} \\ & \overline{\mathrm{WR}} \text { Pin } \\ & \text { Mode Pin } \end{aligned}$	$\begin{gathered} 0.005 \\ 0.1 \\ 50 \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
ILL	Logic "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0$ Pins Mode Pin	-0.005	-2	$\mu \mathrm{A}$ (max)
V_{OH}	Logic " 1 " Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \overline{\mathrm{INT}} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \mathrm{DBO}-\mathrm{DB7}, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \text { (min) } \\ & \mathrm{V} \text { (min) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Logic "0" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.75 \mathrm{~V} \\ & \text { lout }=1.6 \mathrm{~mA} \\ & \mathrm{DBO}-\mathrm{DB} 7, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}}, \mathrm{RDY} \end{aligned}$		0.4	V (max)
${ }^{1} 0$	TRI-STATE Output Current	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V} \\ & \text { DB0-DB7, RDY } \end{aligned}$	0.1	3	$\mu \mathrm{A}$ (max)
		$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{DBO}-\mathrm{DB7}, \mathrm{RDY} \end{aligned}$	-0.1	-3	$\mu \mathrm{A}$ (max)
ISOURCE	Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \text { DB0-DB7, } \overline{\text { OFL, }} \text {, } \mathrm{NT} \end{aligned}$	-26	-6	mA (min)
IsINK	Output Sink Current	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \\ & \text { DBO-DB7, } \overline{\mathrm{OFL}}, \text { INT, RDY } \end{aligned}$	24	7	mA (min)
Ic	Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0$	11.5	20	mA (max)

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings. Operating Ratings indicate conditions for which the device is functional, but do not guarantee performance limits For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to the GND pin, unless otherwise specified.
Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supply voltage ($\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$), the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current specification limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.

Note 4: The power dissipation of this device under normal operation should never exceed 875 mW (Quiescent Power Dissipation + the loads on the digital outputs). Caution should be taken not to exceed absolute maximum power rating when the device is operating in a severe fault condition (e.g., when any input or output exceeds the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), $\theta_{J A}$ (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $\mathrm{PD}_{\max }=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The table below details $T_{J M A X}$ and $\theta_{J A}$ for the various packages and versions of the ADC08061/2.

Part Number	T JMAX	$\theta_{\text {JA }}$
ADC08061/2BIN	105	51
ADC08061/2CIN	105	51
ADC08061/2BIWM	105	85
ADC08061/2CIWM	105	85
ADC08061/2CMJ	125	76

Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor
Note 7: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 9: Total unadjusted error includes offset, full-scale, and linearity errors.
Note 10: Two on-chip diodes are tied to each analog input and are reversed biased during normal operation. One is connected to $\mathrm{V}+$ and the other is connected to GND. They will become forward biased and conduct when an analog input voltage is equal to or greater than one diode drop above V^{+}or below GND. Therefore, caution should be exercised when testing with $\mathrm{V}^{+}=4.5 \mathrm{~V}$. Analog inputs with magnitudes equal to 5 V can cause an input diode to conduct, especially at elevated emperatures. This can create conversion errors for analog signals near full-scale. The specification allows 50 mV forward bias on either diode; e.g., the output code will be correct as long as the analog input signal does not exceed the supply voltage by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel. An absolute analog input signal voltage range of $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}$ can be achieved by ensuring that the minimum supply voltage applied to V^{+}is 4.950 V over temperature variations, initial tolerance, and loading.
Note 11: Off-channel leakage current is measured after the on-channel selection.

TRI-STATE Test Circuits and Waveforms

TL/H/11086-3

$\mathrm{t}_{\mathrm{r}}=10 \mathrm{~ns}$
$\overline{R D}$
$\mathrm{t}_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

TL/H/11086-5
$\mathrm{t}_{\mathrm{r}}=10 \mathrm{~ns}$

Timing Diagrams

Timing Diagrams (Continued)

FIGURE 2a. $\overline{\text { WR }}-\overline{R D}$ Mode (Mode Pin is High and $\mathrm{t}_{\mathbf{R D}} \leq \mathrm{t}_{\mathbf{I N T L}}$)

Timing Diagrams (Continued)

FIGURE 3. $\overline{\text { WR}}-\overline{R D}$ Mode (Mode Pin is High) Reduced Interface System Connection ($\overline{\mathbf{C S}}=\overline{\mathbf{R D}}=\mathbf{0})^{\mathrm{TL} / \mathrm{H} / 11086-9}$

TL/H/11086-10
FIGURE 4. $\overline{\text { RD }}$ Mode (Pipeline Operation) (Mode Pin is Low and $\mathrm{t}_{\overline{\mathrm{RD}} \mathrm{w}}$ must be between 200 ns and 400 ns)

Typical Performance Characteristics

Linearity Error vs

TL/H/11086-24

Connection Diagrams

TL/H/11086-14
Dual-In-Line and Wide-Body Small-Outline
Packages J20A, N20A or M20B

Dual-In-Line and Wide-Body Small-Outline
Packages N20A or M20B

Ordering Information

Industrial ($-\mathbf{4 0}{ }^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}^{\circ} \mathbf{C}$)	Package
ADC08061BIN, ADC08061CIN, ADC08062BIN, ADC08062CIN	N20A
ADC08061BIWM, ADC08061CIWM, ADC08062BIWM, ADC08062CIWM	M20B
ADC08061CMJ/883,5962	J20A

Pin Description

$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {IN1-8 }}$	These are analog inputs. The input range is GND-50 $\mathrm{mV} \leq \mathrm{V}_{\text {INPUT }} \leq \mathrm{V}^{+}+50 \mathrm{mV}$. The ADC08061 has a single input $\left(\mathrm{V}_{\mathrm{IN}}\right)$ and the ADC08062 has a two-channel multiplexer ($\mathrm{V}_{\mathrm{IN} 1-2}$).	$V_{\text {REF }}$ $V_{\text {REF }}+$
DB0-DB7	TRI-STATE data outputs-bit 0 (LSB) through bit 7 (MSB).	
$\overline{\text { WR/RDY }}$	$\overline{\text { WR}}$ - $\overline{R D}$ Mode (Logic high applied to MODE pin) $\overline{\text { WR: With }} \overline{\mathrm{CS}}$ low, the conversion is started on the falling edge of $\overline{W R}$. The digital result will be strobed into the output latch at the end of conversion (see Figures 2a, 2b, and 3).	
	$\overline{\mathbf{R D}}$ Mode (Logic low applied to MODE pin) RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{C S}$ and return high at the end of conversion.	$\overline{\mathrm{CS}}$
MODE	Mode: Mode ($\overline{\mathbf{R D}}$ or $\overline{\mathbf{W R}}-\overline{\mathrm{RD}})$ selection inputThis pin is pulled to a logic low through an internal $50 \mu \mathrm{~A}$ current sink when left unconnected. $\overline{\mathbf{R D}}$ Mode is selected if the MODE pin is left unconnected or externally forced low. A complete conversion is accomplished by pulling $\overline{\mathrm{RD}}$	
	low until output data appears.	NC
	$\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ Mode is selected when a high is applied to the MODE pin. A conversion starts with the $\overline{\mathrm{WR}}$ signal's rising edge and then using $\overline{\mathrm{RD}}$ to access the data.	A0
	$\overline{\text { WR}-\overline{R D}}$ Mode (logic high on the MODE pin)	
$\overline{\mathrm{RD}}$	This is the active low Read input. With a logic low applied to the $\overline{\mathrm{CS}}$ pin, the TRI-STATE data outputs (DB0-DB7) will be activated when $\overline{\mathrm{RD}}$ goes low (see Figures 2a, $2 b$ and 3).	
	$\overline{\mathrm{RD}}$ Mode (logic low on the MODE pin) With $\overline{\mathrm{CS}}$ low, a conversion starts on the falling edge of RD. Output data appears on DB0-DB7 at the end of conversion (see Figures 1 and 4).	V ${ }^{+}$
INT	This is an active low output that indicates that a conversion is complete and the data is in the output latch. $\overline{\mathrm{NT}}$ is reset by the rising edge of $\overline{\mathrm{RD}}$.	
GND	This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.	

This logic input is used to select one of the ADC08062's input multiplexer channels. A channel is selected as shown in the table below.

ADC08062 A0	Channel
0	$\mathrm{~V}_{\text {IN1 }}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

Positive power supply voltage input. Nominal operating supply voltage is +5 V . The supply pin should be bypassed with a $10 \mu \mathrm{~F}$ bead tantalum in parallel with a 0.1 ceramic capacitor. Lead length should be as short as possible.

Application Information

1.0 FUNCTIONAL DESCRIPTION

The ADC08061 and ADC08062 perform an 8-bit analog-todigital conversion using a multi-step flash technique. The first flash generates the five most significant bits (MSBs) and the second flash generates the three least significant bits (LSBs). Figure 5 shows the major functional blocks of the ADC08061/2's multi-step flash converter. It consists of an over-encoded $21 / 2$-bit Voltage Estimator, an internal DAC with two different voltage spans, a 3-bit half-flash converter and a comparator multiplexer.
The resistor string near the center of the block diagram in Figure 5 forms the internal main DAC. Each of the eight resistors at the bottom of the string is equal to $1 / 256$ of the total string resistance. These resistors form the LSB Ladder and have a voltage drop of $1 / 256$ of the total reference voltage ($\mathrm{V}_{\mathrm{REF}}+-\mathrm{V}_{\mathrm{REF}}$) across them. The remaining resistors make up the MSB Ladder. They are made up of eight groups of four resistors connected in series. Each MSB Ladder section has $1 / 8$ of the total reference voltage across it. Within a given MSB Ladder section, each of the MSB resistors has $8 / 256$, or $1 / 32$ of the total reference
voltage across it. Tap points are found between all of the resistors in both the MSB and LSB Ladders. Through the Comparator Multiplexer these tap points can be connected, in groups of eight, to the eight comparators shown at the right of Figure 5. This function provides the necessary reference voltages to the comparators during each flash conversion.
The six comparators, seven-resistor string (estimator DAC), and Estimator Decoder at the left of Figure 5 form the Voltage Estimator. The estimator DAC connected between $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF - generates }}$ the reference voltages for the six Voltage Estimator comparators. These comparators perform a very low resolution A/D conversion to obtain an "estimate" of the input voltage. This estimate is then used to control the Comparator Multiplexer, connecting the appropriate MSB Ladder section to the eight flash comparators. Only 14 comparators, six in the Voltage Estimator and eight in the flash converter, are needed to achieve the full eight-bit resolution, instead of 32 comparators that would be needed by traditional half-flash methods.

FIGURE 5. Block Diagram of the ADC08061/2 Multi-Step Flash Architecture

Application Information (Continued)

A conversion begins with the Voltage Estimator comparing the analog input signal against the six tap voltages on the estimator DAC. The estimator decoder then selects one of the groups of tap points along the MSB Ladder. These eight tap points are then connected to the eight flash comparators. For example, if the analog input signal applied to $\mathrm{V}_{\text {IN }}$ is between 0 and $3 / 1{ }_{16}$ of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right)$, the estimator decoder instructs the comparator multiplexer to select the eight tap points between 8/256 and 2/8 of $V_{\text {REF }}$ and connects them to the eight flash comparators. The first flash conversion is now performed, producing the five MSBs of data.
The remaining three LSBs are generated next using the same eight comparators that were used for the first flash conversion. As determined by the results of the MSB flash, a voltage from the MSB Ladder equivalent to the magnitude of the five MSBs is subtracted from the analog input voltage as the upper switch is moved from position one to position two. The resulting remainder voltage is applied to the eight flash comparators and, with the lower switch in position two, compared with the eight tap points from the LSB Ladder.
By using the same eight comparators for both flash conversions, the number of comparators needed by the multi-step converter is significantly reduced when compared to standard half-flash techniques.
Voltage Estimator errors as large as $1 / 16$ of $\mathrm{V}_{\text {REF }}$ (16 LSBs) will be corrected since the flash comparators are connected to ladder voltages that extend beyond the range specified by the Voltage Estimator. For example, if $7 / 1{ }_{16} \mathrm{~V}_{\text {REF }}<\mathrm{V}_{\text {IN }}<$ $9 / 16 V_{\text {REF }}$ the Voltage Estimator's comparators tied to the tap points below $9 / 16 V_{\text {REF will output " } 1 \text { "'s (000111). This is }}$ decoded by the estimator decoder to " 10 ". The eight flash comparators will be placed at the MSB Ladder tap points between $3 / 8 \mathrm{~V}_{\text {REF }}$ and $5 / 8 \mathrm{~V}_{\text {REF }}$. The overlap of $1 / 16 \mathrm{~V}_{\text {REF }}$ on each side of the Voltage Estimator's span will automatically correct an error of up to 16 LSBs ($16 \mathrm{LSBs}=312.5 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$). If the first flash conversion determines that the input voltage is between $3 / 8 \mathrm{~V}_{\text {REF }}$ and $4 / 8 \mathrm{~V}_{\text {REF }}-\mathrm{LSB} / 2$, the Voltage Estimator's output code will be corrected by subtracting " 1 ". This results in a corrected value of " 01 ". If the first flash conversion determines that the input voltage is between $8 / 16 \mathrm{~V}_{\text {REF }}$ - LSB/2 and $5 / 8 \mathrm{~V}_{\text {REF }}$, the Voltage Estimator's output code remains unchanged.
After correction, the 2-bit data from both the Voltage Estimator and the first flash conversion are decoded to produce the five MSBs. Decoding is similar to that of a 5 -bit flash converter since there are 32 tap points on the MSB Ladder. However, 31 comparators are not needed since the Voltage Estimator places the eight comparators along the MSB Ladder where reference tap voltages are present that fall above and below the magnitude of V_{IN}. Comparators are not needed outside this selected range. If a comparator's output is a " 0 ", all comparators above it will also have outputs of " 0 " and if a comparator's output is a " 1 ", all comparators below it will also have outputs of " 1 ".

2.0 DIGITAL INTERFACE

The ADC08061/2 has two basic interface modes which are selected by connecting the MODE pin to a logic high or low.

2.1 RD Mode

With a logic low applied to the MODE pin, the converter is set to Read mode. In this configuration (see Figure 1), a complete version is done by pulling $\overline{\mathrm{RD}}$ low, and holding low, until the conversion is complete and output data appears. This typically takes 655 ns . The INT (interrupt) line goes low at the end of conversion. A typical delay of 50 ns is needed between the rising edge of RD (after the end of a conversion) and the start of the next conversion (by pulling $\overline{\mathrm{RD}}$ low). The RDY output goes low after the falling edge of $\overline{\mathrm{CS}}$ and goes high at the end-of-conversion. It can be used to signal a processor that the converter is busy or serve as a system Transfer Acknowledge signal. For the ADC08062 the data generated by the first conversion cycle after powerup is from an unknown channel

$2.2 \overline{\mathrm{RD}}$ Mode Pipelined Operation

Applications that require shorter $\overline{\mathrm{RD}}$ pulse widths than those used in the Read mode as described above can be achieved by setting $\overline{R D}$'s width between $200 \mathrm{~ns}-400 \mathrm{~ns}$ (Figure 4). $\overline{\mathrm{RD}}$ pulse widths outside this range will create conversion linearity errors. These errors are caused by exercising internal interface logic circuitry using $\overline{\mathrm{CS}}$ and/or $\overline{\mathrm{RD}}$ during a conversion.
When $\overline{\mathrm{RD}}$ goes low, a conversion is initiated and the data from the previous conversion is available on the DB0-DB7 outputs. Reading D0-D7 for the first two times after powerup produces random data. The data will be valid during the third $\overline{\mathrm{RD}}$ pulse that occurs after the first conversion.

2.3 $\overline{\mathbf{W R}}$ - $\overline{\mathrm{RD}}$ ($\overline{\mathrm{WR}}$ then $\overline{\mathrm{RD}}$) Mode

The ADC08061/2 is in the $\overline{\mathbf{W R}}-\overline{\mathrm{RD}}$ mode with the MODE pin tied high. A conversion starts on the falling edge of the $\overline{W R}$ signal. There are two options for reading the output data which relate to interface timing. If an interrupt-driven scheme is desired, the user can wait for the INT output to go low before reading the conversion result (see Figure $2 b$). Typically, INT will go low 520 ns , maximum, after WR's rising edge. However, if a shorter conversion time is desired, the processor need not wait for INT and can exercise a read after only 350 ns (see Figure 2a). If $\overline{\mathrm{RD}}$ is pulled low before $\overline{\mathrm{NT}}$ goes low, $\overline{\mathrm{INT}}$ will immediately go low and data will appear at the outputs. This is the fastest operating mode (trD $\leq \mathrm{t}_{\mathrm{INTL}}$) with a conversion time, including data access time, of 560 ns . Allowing 100 ns for reading the conversion data and the delay between conversions gives a total throughput time of 660 ns (throughput rate of 1.5 MHz).

2.4 $\overline{\text { WR}}-\overline{\mathrm{RD}}$ Mode with Reduced Interface System Connection

$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ can be tied low, using only $\overline{\mathrm{WR}}$ to control the start of conversion for applications that require reduced digital interface while operating in the $\overline{\mathbf{W R}}$ - $\overline{\mathrm{RD}}$ mode (Figure 3). Data will be valid approximately 705 ns following $\overline{\mathrm{WR}}$'s rising edge.

2.5 Multiplexer Addressing

The ADC08062 has 2 multiplexer inputs. These are selected using the AO multiplexer channel selection input. Table I

Application Information (Continued)

shows the input code needed to select a given channel. The multiplexer address is latched when received but the multiplexer channel is updated after the completion of the current conversion

TABLE I. Multiplexer Addressing

ADC08062 A0	Channel
0	$\mathrm{~V}_{\mathrm{IN} 1}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

The multiplexer address data must be valid at the time of $\overline{R D}$'s falling edge, remain valid during the conversion, and can go high after $\overline{\mathrm{RD}}$ goes high when operating in the Read Mode.
The multiplexer address data should be valid at or before the time of WR's falling edge, remain valid while WR is low, and go invalid after $\overline{W R}$ goes high when operating in the $\overline{\text { WR}}$-RD Mode.

3.0 REFERENCE INPUTS

The two $V_{\text {REF }}$ inputs of the ADC08061/2 are fully differential and define the zero to full-scale input range of the A to D converter. This allows the designer to vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF-. }}$. Transducers with minimum output voltages above GND can also be compensated by connecting $\mathrm{V}_{\text {REF }}$ - to a voltage that is equal to this minimum voltage. By reducing $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}+\right.$ - $\mathrm{V}_{\text {REF- }}$) to less than 5 V , the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$, then $1 \mathrm{LSB}=$ 9.8 mV). The ADC08061/2's reference arrangement also facilitates ratiometric operation and in many cases the ADC08061/2's power supply can be used for transducer power as well as the $\mathrm{V}_{\text {REF }}$ source. Ratiometric operation is achieved by connecting $V_{\text {REF - }}$ to GND and connecting $\mathrm{V}_{\text {REF }}+$ and a transducer's power supply input to V^{+}. The ADC08061/2's linearity degrades when $\mathrm{V}_{\text {REF }}+-\left|\mathrm{V}_{\text {REF }}\right|$ is less than 2.0 V .
The voltage at $\mathrm{V}_{\text {REF - sets }}$ se input level that produces a digital output of all zeros. Though $\mathrm{V}_{I N}$ is not itself differential, the reference design affords nearly differential-input capability for some measurement applications. Figure 6 shows one possible differential configuration.
It should be noted that, while the two $\mathrm{V}_{\text {REF }}$ inputs are fully differential, the digital output will be zero for any analog input voltage if $\mathrm{V}_{\text {REF }}-\geq \mathrm{V}_{\text {REF }}+$

4.0 ANALOG INPUT AND SOURCE IMPEDANCE

The ADC08061/2's analog input circuitry includes an analog switch with an "on" resistance of 70Ω and capacitance of 1.4 pF and 12 pF (see Figure 6). The switch is closed during the A/D's input signal acquisition time (while $\overline{W R}$ is low when using the $\overline{W R}-\overline{R D}$ Mode). A small transient current flows into the input pin each time the switch closes. A transient voltage, whose magnitude can increase as the source impedance increases, may be present at the input. So long as the source impedance is less than 500Ω, the input voltage transient will not cause errors and need not be filtered. Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (100 ns maximum). A signal source with a high output impedance should have its output buffered with an operational amplifier. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Correct conversion results will be obtained for input voltages greater than GND - 100 mV and less than $\mathrm{V}^{+}+$ 100 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than $\mathrm{V}+$, or more than 300 mV lower than GND. The current flowing through any analog input pin should be limited to 5 mA or less to avoid permanent damage to the IC if an analog input pin is forced beyond these voltages. The sum of all the overdrive currents into all pins must be less than 20 mA . Some sort of protection scheme should be used when the input signal is expected to extend more than 300 mV beyond the power supply limits. A simple protection network using resistors and diodes is shown in Figure 8.

6.0 INHERENT SAMPLE-AND-HOLD

An important benefit of the ADC08061/2's input architecture is the inherent sample-and-hold (S/H) and its ability to measure relatively high speed signals without the help of an external S/H. In a non-sampling converter, regardless of its speed, the input must remain stable to at least $1 / 2$ LSB throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled and held stationary during the conversion.
The ADC08061 and ADC08062 are suitable for DSP-based systems because of the direct control of the S/H through

Application Information (Continued)

Note: Bypass capacitors consist of a $0.1 \mu \mathrm{~F}$ ceramic in parallel with a $10 \mu \mathrm{~F}$ bead tantalum.
FIGURE 7. Analog Input Options

TL/H/11086-23 Note the multiple bypass capacitors on the reference and power supply pins. $V_{\text {REF - should be bypass to analog ground using multiple capacitors if it is not }}$ grounded (see Section 7.0 "Layout, Grounds, and Bypassing"). $\mathrm{V}_{\mathrm{IN} 1}$ is shown with an optional input protection network.

FIGURE 8. Typical Connection

the $\overline{W R}$ signal. The $\overline{W R}$ input signal allows the A / D to be synchronized to a DSP system's sampling rate or to other ADC08061 and ADC08062s.
The ADC08061 can perform accurate conversions of fullscale input signals at frequencies from dc to more than 300 kHz (full power bandwidth) without the need of an external sample-and-hold (S/H).

7.0 LAYOUT, GROUNDS, AND BYPASSING

In order to ensure fast, accurate conversions from the ADC08061/2, it is necessary to use appropriate circuit board layout techniques. Ideally, the analog-to-digital converter's ground reference should be low impedance and free of noise from other parts of the system. Digital circuits can produce a great deal of noise on their ground returns
and, therefore, should have their own separate ground lines. Best performance is obtained using separate ground planes for the digital and analog parts of the system.
The analog inputs should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., an input filter capacitor) connected across the inputs should be returned to a very clean ground point. Incorrectly grounding the ADC08061/2 will result in reduced conversion accuracy.
The V^{+}supply pin, $\mathrm{V}_{\text {REF }}$, and $\mathrm{V}_{\text {REF - }}$ (if not grounded) should be bypassed with a parallel combination of a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor placed as close as possible to the supply pin using short circuit board traces. See Figures 7 and 8.

Physical Dimensions inches (millimeters) (Continued)

Dual-In-Line Package (N)
Order Number ADC08061BIN, ADC08061CIN, ADC08062BIN or ADC08062CIN NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 http://www.national.com	National Semiconductor Europe Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 8585 English Tel: +49 (0) 180-532 7832 Français Tel: +49 (0) 180-532 9358 Italiano Tel: +49(0) 180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2308 Fax: 81-043-299-2408

[^0]: TRI-STATE ${ }^{\circledR}$ is a registered trademark of National Semiconductor Corporation.

