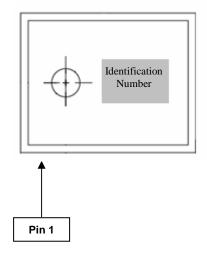


Halogen Free SiSonicTM Switchable Gain Microphone with RF Protection

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143


1. DESCRIPTION AND APPLICATION

1.1 Description

Switchable Gain Surface Mount Silicon Microphone allows logic-controlled 'switch' from high gain setting to low gain setting. Microphone has enhanced RF protection. – Halogen Free 1.2 Application

Hand held telecommunication devices. Ideal for mobile phones utilizing hands-free feature.

2. PART MARKING

Identification Number Convention

S 1 2 3 4 5 6 7

S: Manufacturing Location
"S" – Knowles Electronics Suzhou
Suzhou, China

"No Alpha Character" – Knowles Electronics Itasca Itasca, IL USA

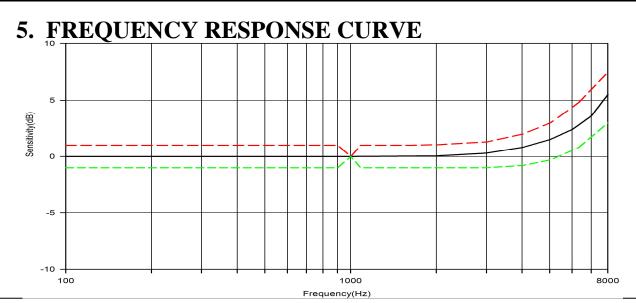
"E" – Engineering Samples

Digits 1 – 7: Job Identification Number

3. TEMPERATURE RANGE

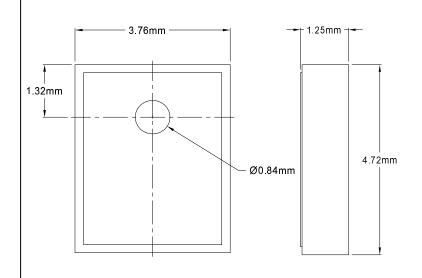
3.1 Operating Temperature Range: -40°C to +100°C

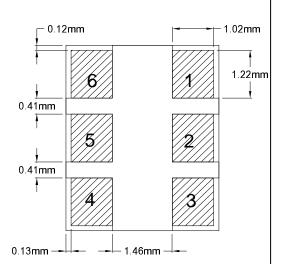
3.2 Storage Temperature Range: -40°C to +100°C



4. ACOUSTIC & ELECTRICAL SPECIFICATIONS

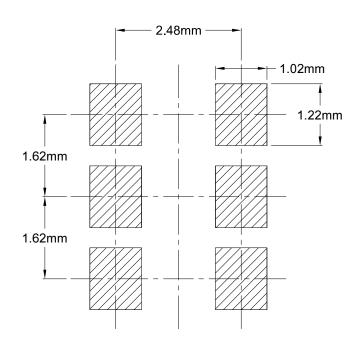
Test Conditions: +20°C, 60-70% R.H.


	G 1.1	G 199	Limits		T1 */		
	Symbol	Condition	Min.	Nom.	Max.	Unit	
Directivity		Omni-directional					
Nominal Sensitivity Range			-42		-22	dB	
Sensitivity (maximum)	S _{max}	@ 1kHz (0dB=1V/Pa) $V_{switch} = High$	-26	-22	-18	dB	
Sensitivity (minimum)	S_{\min}	@ 1kHz (0dB=1V/Pa) $V_{switch} = Low$	-46	-42	-38	dB	
Switching Voltage High	V _{switch}	High gain switch	1.5		5.5	V	
Switching Voltage Low	V _{switch}	Low gain switch	0.0		0.4	V	
Supply Voltage	Vs	Operating voltage	1.5		5.5	V	
Output impedance	Z _{OUT}	@ 1kHz (0dB=1V/Pa)			100	Ω	
Current Consumption	I_{DSS}	across 1.5 to 5.5 volts	0.100		0.370	mA	
Signal to Noise Ratio	SNR	@ 1kHz (0dB=1V/Pa)	55	59		dB	
Typical Input Referred Noise	ENL	A-weighted		35		dBA SPL	
Sensitivity Loss across Voltage		Change in sensitivity over 5.5v to 1.5v	No Change Across Voltage Range		dB		
Maximum Input Sound Level		At 100dB SPL, THD < 1% At 115dB SPL, THD = < 10%			dB		
Frequency Range		100 - 10,000				Hz	



6. MECHANICAL SPECIFICATIONS

Pin Output		
Pin#	Function	
1	Output	
2	High Gain Switch	
3	Gain Control	
4	Ground	
5	No Connect or Ground	
6	Power	

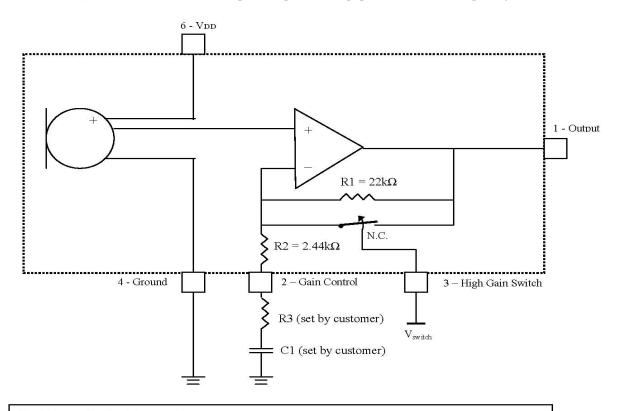

<u>ltem</u>	<u>Dim.</u>	<u>Tol. (+/-)</u>	<u>Units</u>
Height	1.25	0.10	mm
Length	4.72	0.10	mm
Width	3.76	0.10	mm
Short Edge to C.L. Port	1.32	0.25	mm
Long Edge to C.L. Port	1.88	0.25	mm
Weight	0.08	grams	

(Note: Tolerance +/-0.15mm unless otherwise specified) * = Final Height dimension under review.

7. RECOMMENDED CUSTOMER LAND PATTERN

8. RECOMMENDED SOLDER STENCIL PATTERN

N/A



9. RECOMMENDED INTERFACE CIRCUIT

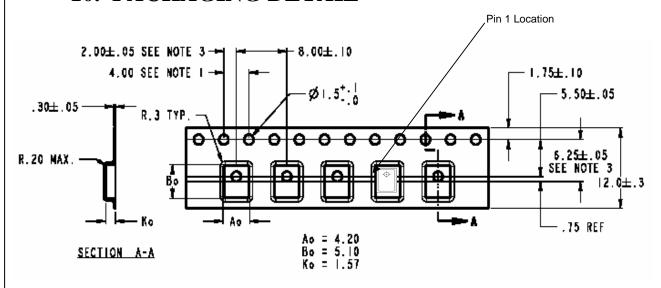
Gain Setting Guidelines		
Desired Gain (dB)	Method	
0 dB	$V_{\mathrm{switch}} = \mathrm{Low}$	
20 dB	$V_{\text{switch}} = \text{High, C1} > 0.47 \text{uF*}$	
Customer adjusted gain	Add R3 and C1 to achieve specific gain	
(between 0 to 20dB)	and highpass crossover frequency	

^{*} Selection of actual value of C1 depends upon the highpass crossover frequency desired

Setting Gain Formulas:

High Gain setting is determined as:

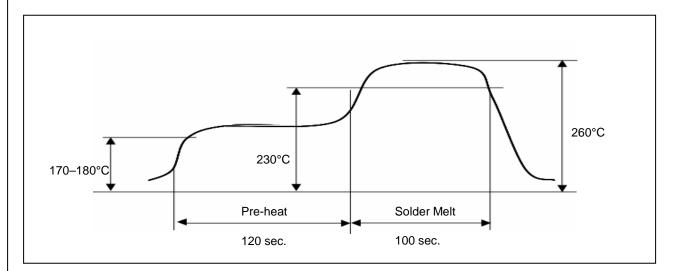
 $G=1+ \{R1 / (R2 + R3)\}$ Gain(dB) = 20 * log(G)


High-pass-filter Corner Frequency:

 $C.F. = 1 / \{2*pi*(R2 + R3) * C1\}$

10. PACKAGING DETAIL

- 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2.
 2. CAMBER IN COMPLIANCE WITH EIA 481.
 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET.


Model Number	Suffix	Reel Diameter	Qty per Reel
SPM0207HE3	-2	7"	1,200
SPM0207HE3	-6	13"	4,800

Tape & Reel	Available in 13" and 7" diameter.
Leader Length	800mm or minimum of 100 empty pockets
Label	Label applied to external package and direct to reel. Per JEDEC.
Empty Units	No consecutive empty pockets; No more than 3 empty pockets per reel. (Does not include empty pockets for leader/follower)

11. SOLDER REFLOW PROFILE

<u>Stage</u>	<u>Temperature Profile</u>	<u>Time (maximum)</u>
Pre-heat	170 ~ 180 C	120 sec.
Solder Melt	Above 230 C	100 sec.
Peak	260 C maximum	30 sec.

Notes:

- 1. <u>Do not pull a vacuum</u> over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device.
- Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- 3. Number of Reflow = recommend no more than 3 cycles.

12. ADDITIONAL NOTES

- (A) Packaging (reference SiSonic_Packaging_Spec.pdf)
- (B) Shelf life: Twelve (12) months when devices are to be stored in factory supplied, unopened ESD moisture sensitive bag under maximum environmental conditions of 30°C, 70% R.H.
- (C) Exposure: Devices should not be exposed to high humidity, high temperature environment. MSL (moisture sensitivity level) Class 2A.
- (D) Out of bag: Maximum of 90 days out of ESD moisture sensitive bag, assuming maximum conditions of 30°C/70% R.H.

13. RELIABILITY SPECIFICATIONS

Note: After test conditions are performed, the sensitivity of the microphone shall not deviate more than 3dB from its initial value.

Test	Description
Thermal Shock	Microphone unit must operate when exposed to air-to-air thermal shock 100 cycles, from –40°C to +125°C. (IEC 68-2-4),
High Temperature Storage Test	Microphone unit must maintain sensitivity after storage at +105°C for 1,000 hours. (IEC 68-2-2 Test Ba)
Low Temperature Storage Test	Microphone unit must maintain sensitivity after storage at -40°C for 1,000 hours. (IEC 68-2-1 Test Aa)
High Temperature Operating Test	Microphone unit must operate within sensitivity specifications for 1,000 hours at 105°C. (IEC 68-2-2 Test Ba)
Low Temperature Operating Test	Microphone unit must operate within sensitivity specifications for 1,000 hours at -40°C. (IEC 68-2-1 Test Aa)
Humidity Test	Tested under Bias at 85°C/85% R.H. for 1,000 hours. (JESD22-A101A-B)
Vibration Test	Microphone unit must operate under test condition: 4 cycles, from 20 to 2,000 Hz in each direction (x,y,z), 48 minutes, using peak acceleration of 20g (+20%, -0%). (MIL 883E, method 2007.2, A)
Electrostatic Discharge	Tested to 8kV direct contact discharge to lid (mounted to PCB). 1kV direct contact to I/O pin.
Reflow	Microphone is tested to 5 passes through reflow oven, with microphone mounted upside-down under conditions of 260°C for 30 seconds maximum.
Mechanical Shock	Microphone must operate after exposure to shock test of 10,000 G per IEC 68-2-27, Ea.

14. SPECIFICATION REVISIONS

Revision	Detailed Specification Changes	Date
А	Preliminary Specification Release	12-28-2006
В	Section 6 Mechanical Specifications: Corrected descriptions for Pins 2 and 3	06-11-2007
С	Specification Release. Update Section 2: Identification Number Convention	05-28-2008

