

RFW322-M Transceiver Module

The company's products are covered by one or more of the following:

Taiwan Patent No. 155994, Taiwan Patent No. 176767, USA Patent No. 6,535,545. Other patents pending

DESCRIPTION

The RFW322-M ISM Transceiver Module is a shortrange wireless radio transceiver, designed by Vishay RFWaves*. The transceiver is intended for use in the world wide unlicensed Industrial, Scientific and Medical (ISM) band of 2400 - 2483.5 MHz, complying with worldwide regulations and standards.

The module core consists of 2 chips, offering small size, low power consumption and simple integration with applications.

The module antenna interface reflects a 200 Ω differential impedance.

Module has 3 digital control lines. The data I/O line is a serial interface. RFW322-M the transceiver was designed for low power consumption. During standby, the transceiver almost does not consume any power (0.1 μ A at Vcc = 3 V). It features a very short wakeup

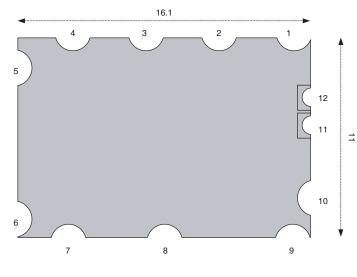
FEATURES

- Designed for short range wireless communication in the 2.4 GHz world wide license free band
- Data rate up to 3 mbit/s
- Simple 3 line digital interface
- Low power consumption ideal for battery operated devices
- + 6 dBm typical peak output transmission power
- 73 dBm typical sensitivity
- Complies with FCC regulations
- Wide range operating voltage (2.6 3.5 V)
- Unique Direct Sequence Spread Spectrum Code
- Short signal acquisition time (1.2 μs)

time of 20 μ s, and the signal acquisition time is only 1.2 μ s. Thus, by using the standby mode in a frequent manner, an efficient power consumption management method can be applied.

The communication link between the transceivers is based on a unique Direct Sequence Spread Spectrum (DSSS) pulse pipe. The modulation scheme is 100 % Amplitude Shift Keying (ASK).

The module interface has 12 pads and is soldered on a motherboard PCB like a regular SMT component.


* Vishay Advanced Technologies ltd. -RFWaves division

RFW322-M

Vishay RFWaves

PIN OUT AND MECHANICAL DIMENSIONS in millimeters

19579

Top View

PINOUT			
1	VCC RF	7	TX/RX
2	ACT	8	TXD/RXD
3	VCC PD	9	VCC GD
4	GND	10	VCC OSC
5	GND	11	RF1
6	RSSI	12	RF2

MECHANICAL DIMENSIONS (mm)				
Overall length	16.1			
Overall width	11			
PCB thickness	0.6			
Max overall thickness	2.5			

ABSOLUTE MAXIMUM RATING

PARAMETER	MIN	MAX	UNIT			
Supply voltage	- 0.3	6.0	V			
All input or output voltages with respect to ground	- 0.3	V _{cc} + 0.3	V			
Temperature under bias	- 10	70	°C			
Storage temperature	- 60	100	°C			
Digital output short-circuit duration (to GND)	continues					

Stresses exceeding those listed under "Absolute Maximum Rating" may cause permanent damage to the devices. These are stress ratings only, and functional operation of the devices at these or any other conditions, beyond those indicated in the operational sections of the datasheet, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect devices reliability.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the I/O buffers.

Life Support Policy and Use in Safety-Critical Applications

Vishay RFWaves' products are not authorized for use in life-support or saftey-critical applications.

TRANSCEIVER INTERFACE The RFW322-M transceiver includes the following 12 pads interface.				
NAME	CHARACTERISTIC			
V _{CC} GD	Transmitter pulse generator power supply input. A regulated voltage of 2.6 - 3.5 Volts.			
V _{CC} RF	RF amplifier power supply input. A regulated voltage of 2.6 - 3.5 Volts.			
V _{CC} OSC	Oscillator power supply input. A regulated voltage of 2.6 - 3.5 Volts.			
V _{CC} PD	Receiver peak detector power supply input. A regulated voltage of 2.6 - 3.5 Volts.			
GND	Apply the supply ground to this pin.			
GND	Apply the supply ground to this pin.			
Tx/Rx*	Mode selection input. Apply V _{cc} for transmit mode.			
	Apply 0 V (GND) for receive mode.			
ACT*	Apply 0 V (GND) for standby mode.			
	Apply V_{cc} to this pin to turn the module on.			
	It typically takes the module 20 μs to wake up into a fully operational mode.			
	CMOS-level pin.			
TxD/RxD*	In Tx mode this is an input pin, positive edge trigger. Every time TxD goes from GND to			
	V _{cc} , a spread bit is transmitted.			
	In Rx mode this is an output pin.			
	CMOS-level pin.			
RSSI	When used, reflects the average RF power detected by the receiver.			
	Connect to the RSSI port in the RFW-D100 or any equivalent interface.			
RF1 / RF2	Connect a 200 ohm differential impedance antenna to this port, or a proper matching			
	circuit to any other antenna.			

* ESD protected pin.

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Supply voltage (All 3 ports)		V _{CC}	2.6	3.3	3.5	V
Operating ambient temperature		T _a	0	+ 25	+ 50	°C
Current consumption in standby mode	ACT = GND I/O = High Z at V _{cc} = 3 V	I _{shdn}		0.1		μΑ
Wakeup time		T _{wa}		20		μs
All input pins (TxD/RxD, ACT, Tx/	/Rx)					
Rise time		T _r	8		1000	ns
Fall time		Τ _f	8		1000	ns
Input capacitance		C _{in}			10	PF
ACT			•			
Logic high input		V _{ih act}	V _{cc} - 0.8		V _{cc}	V
Logic low input		V _{il act}	GND		0.8	V
Sink current	$ACT = V_{cc}$	I _{si_act}		24	50	μA
Source current	ACT = GND	I _{src_act}			1	μA
Tx/Rx		•	•			•
Logic high input		V _{ih tr}	V _{cc} - 0.8		V _{cc}	V
Logic low input		V _{il tr}	GND		0.8	V
Source current		I _{src_tr}			1	μA
Sink current	ACT = GND	I _{si_shdn}			1	μA
TxD/RxD			•			
Source current in standby and transmit mode	ACT = GND	I _{src_shdn}			1	μA
Sink current in standby and transmit mode	ACT = GND	I _{si_shdn}			1	μΑ
Transmit to receive transition time		T _{t_to_r}	2.5			μS
Receive to transmit transition time		T _{r_to_t}	2.5			μs
Bit rate					3	Mb/s

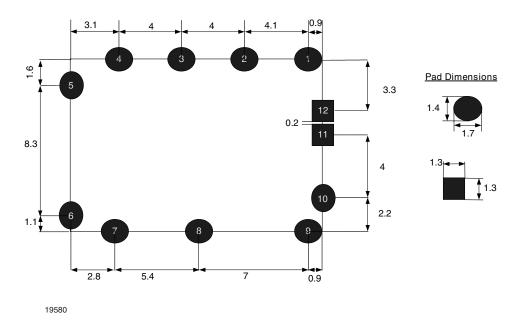
RFW322-M

Vishay RFWaves

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Signal acquisition time		T _{acq}		1.2	1.5	μS
Sensitivity	at BER = 10 ⁻³	Sens		- 73	- 70	dBm peak
RxD					•	•
Output voltage high	1 mA load sync current	RxDVH	V _{cc} - 0.8		V _{cc}	V
Output voltage low	1 mA load source current	RxDVL	0		0.8	V
Output capacitance		C _{out}			10	pF
Pulse length		T _{pw}				ns
Current consumption RF power at antenna port < - 40 dBm peak	Bit rate = 3 Mb/s	ls		34		mA
Emission level between 30 MHz and 1 GHz					- 57	dBm
Emission level between 1 GHz and 12.75 GHz					- 47	dBm
RSSI					•	•
Allowed source current		I _{src RS}			50	nA
Allowed sink current		I _{si_RS}			50	nA
Allowed load capacitance		C _{lo RS}			20	pf
Output voltage		V_SAT	0.4		1.2	V
Voltage to received power slope		V to P		6		mV / dl

TRANSMITTER CHARACTERISTICS T = 25 °C, V_{CC} = 2.7 V to 3.3 V, unless otherwise specified.						
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Transmit power peak		Pout _{max}	2	6		dBm
TxD	•					
Logic high input		V _{ih d}	V _{cc} - 0.8		V _{cc}	V
Logic low input		V _{il d}	GND		0.8	V
Source current		I _{src_di}			1	μA
Sink current		I _{si_di}			1	μA
Pulse length		T _{dil}	20		Not limited	ns
Current consumption	Bit rate = $3 \text{ Mb/s}^{(1)}$	ls		34		mA
Current consumption - No data transmitted	TxD/RxD = 0	Isnd		7		mA
Bandwidth	at - 10 dBc	BW		30		MHz
Out of band spurious (> 1 GHz) ⁽²⁾	at RBW = 1 MHz; at VBW = 1 MHz	Spur			- 20	dBm
Time from data into output power		T _d	400	450	500	ns
Central frequency		Cf	2.439	2.440	2.441	GHz

⁽¹⁾ When transmitting a uniform distribution of '1' and '0' bits. This assuption is not relevant in 3 Mbps!


(2) Depends on test platform.

FOOTPRINT

The following diagram shows the physical footprint of the RFW322-M module, which should be implemented.

*****Note**: The pcb area under the module (CS layer only) must be considered as void and not include any conducting metal.

Footprint

**All figures are in mm units. Measurements are taken from the middle of the solder pads.

NOTICE

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone one its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.