- Second-Generation PLD Architecture

- High-Performance Operation:

$$
f_{\text {max }} \text { (External Feedback) . . . } 80 \mathrm{MHz}
$$ Propagation Delay ... 7.5 ns Max

- Increased Logic Power - Up to 22 Inputs and 10 Outputs
- Increased Product Terms - Average of 12 Per Output
- Variable Product Term Distribution Allows More Complex Functions to Be Implemented
- Each Output Is User Programmable for Registered or Combinational Operation, Polarity, and Output Enable Control
- Power-Up Clear on Registered Outputs
- TTL-Level Preload for Improved Testability
- Extra Terms Provide Logical Synchronous Set and Asynchronous Reset Capability
- Fast Programming, High Programming Yield, and Unsurpassed Reliability Ensured Using Ti-W Fuses
- AC and DC Testing Done at the Factory Utilizing Special Designed-In Test Features
- Package Options Include Both Plastic Chip Carrier and Plastic DIP

description

NT PACKAGE(TOP VIEW)	
CLKII 1	${ }_{24} \mathrm{~V}_{\mathrm{CC}}$
102	${ }_{23} 1 / \mathrm{O} / \mathrm{Q}$
103	22 I/O/Q
$1[4$	21 I/O/Q
105	$20] 1 / \mathrm{O} / \mathrm{Q}$
106	19 I/O/Q
107	18 I/O/Q
108	$17 \mathrm{I} / \mathrm{O} / \mathrm{Q}$
109	16 I/O/Q
1010	15 I/O/Q
1011	14 I/O/Q
GND 12	${ }^{13} 1$

FN PACKAGE (TOP VIEW)

NC - No internal connection
Pin assignments in operating mode

The TIBPAL22V10-7C is a programmable array logic device featuring high speed and functional equivalency when compared to presently available devices. The TIBPAL22V10-7C is implemented with the familiar sum-of-products (AND-OR) logic structure featuring programmable output logic macrocells. This IMPACT-XTM circuit combines the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic.
This device contains up to 22 inputs and 10 outputs. It incorporates the unique capability of defining and programming the architecture of each output on an individual basis. Outputs can be registered or nonregistered and inverting or noninverting as shown in the output logic macrocell diagram. The ten potential outputs are enabled through the use of individual product terms.

description (continued)

Further advantages can be seen in the introduction of variable product term distribution. This technique allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output. This variable allocation of terms allows far more complex functions to be implemented than in previously available devices.

Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term. These functions are common to all registers. When the synchronous set product term is a logic 1, the output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous reset product term is a logic 1 , the output registers are loaded with a logic 0 . The output logic level after set or reset depends on the polarity selected during programming. Output registers can be preloaded to any desired state during testing. Preloading permits full logical verification during product testing.

With features such as programmable output logic macrocells and variable product term distribution, the TIBPAL22V10' offers quick design and development of custom LSI functions with complexities of 500 to 800 equivalent gates. Since each of the ten output pins may be individually configured as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10 outputs are possible.
A power-up clear function is supplied that forces all registered outputs to a predetermined state after power is applied to the device. Registered outputs selected as active-low power up with their outputs high. Registered outputs selected as active-high power up with their outputs low.

A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns. Once blown, the verification circuitry is disabled and all other fuses will appear to be open.

The TIBPAL22V10-7C is characterized for operation from $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
functional block diagram (positive logic)

\backsim denotes fused inputs

HIGH-PERFORMANCE IMPACT-X ${ }^{\text {TM }}$ PROGRAMMABLE ARRAY LOGIC CIRCUITS

Fuse number = First fuse number + Increment
Inside each MACROCELL the " P " fuse is the polarity fuse and the " R " fuse is the register fuse.

output logic macrocell diagram

REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATIONAL, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATIONAL, ACTIVE-LOW OUTPUT

MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE

FUSE SELECT			FEEDBACK AND OUTPUT CONFIGURATION	
S1	S0			
	0	Register feedback	Registered	Active low
0	1	Register feedback	Registered	Active high
1	0	I/O feedback	Combinational	Active low
1	1	I/O feedback	Combinational	Active high

0 = unblown fuse, 1 = blown fuse
S1 and S0 are select-function fuses as shown in the output logic macrocell diagram.

Figure 1. Resultant Macrocell Feedback and Output Logic After Programming

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	7 V
Input voltage range (see Note 1)	-1.2 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Voltage range applied to disabled output (see Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating free-air temperature range	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE 1: These ratings apply except for programming pins during a programming cycle or during a preload cycle.
recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.75	5	5.25	V
V_{IH}	High-level input voltage (see Note 2)		2		5.5	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage (see Note 2)				0.8	V
IOH	High-level output current				-3.2	mA
IOL	Low-level output current				16	mA
${ }^{\text {tw }}$	Pulse duration	Clock high or low	4			ns
		Asynchronous reset high or low	6			
${ }^{\text {tsu }}$	Setup time before clock \uparrow	Input	5.5			ns
		Feedback	5.5			
		Synchronous preset (active)	8			
		Synchronous preset (inactive)	8			
		Asynchronous reset (inactive)	6			
th	Hold time, input, set, or feedback after clock \uparrow		0			ns
T_{A}	Operating free-air temperature		0		75	${ }^{\circ} \mathrm{C}$

NOTE 2: These are absolute voltage levels with respect to the ground terminal of the device and includes all overshoots due to system and/or tester noise. Testing these parameters should not be attempted without suitable equipment.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS	MIN	TYP† MAX	UNIT
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	2.4		V
V ${ }_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=16 \mathrm{~mA}$		0.350 .5	V
${ }^{\text {l }}{ }^{\text {OZH }}{ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		0.1	mA
${ }^{\text {IOZL }}{ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-0.1	mA
1	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		1	mA
${ }_{1 / 1}{ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$		25	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-0.25	mA
IL				-0.1	
los§	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	-30	-130	mA
ICC	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$, Outputs open		210	mA
C_{i}	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$		6	pF
C_{0}	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$		8	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger \mathrm{I} / \mathrm{O}$ leakage is the worst case of $\mathrm{I}_{\mathrm{OLL}}$ and I_{IL} or $\mathrm{I}_{\mathrm{OZH}}$ and I_{IH}, respectively.
\S Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. V_{O} is set at 0.5 V to avoid test problems caused by test equipment ground degradation.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TIBPAL22V10-7CFN		TIBPAL22V10-7CNT		UNIT
				MIN	MAX	MIN	MAX	
$f_{\text {max }}{ }^{\text {I }}$	Without feedback		$\begin{aligned} & \mathrm{R} 1=300 \Omega, \\ & \mathrm{R} 2=300 \Omega, \\ & \text { See Figure } 6 \end{aligned}$	125		125		MHz
	With internal feedback (counter configuration)			100		100		
	With external feedback			87		80		
tpd	I, I/O	I/O		3	7.5	3	7.5	ns
tpd	I, I/O (reset)	Q			12		12	ns
tpd	CLK	Q		1.5	6	1.5	7	ns
tpd ${ }^{\text {\# }}$	CLK	Feedback			4.5		4.5	ns
$\mathrm{t}_{\text {en }}$	I, I/O	I/O, Q			8		8	ns
$\mathrm{t}_{\text {dis }}$	I, I/O	I/O, Q			7.5		7.5	ns

$\|_{f_{\text {max }}}$ (without feedback) $=\frac{1}{t_{w}(\text { low })+t_{w}(\text { high })}$
$f_{\max }($ with internal feedback $)=\frac{1}{\mathrm{t}_{\text {Su }}+{ }_{\mathrm{t}_{\text {pd }}}(\text { CLK to feedback })}$
$f_{\text {max }}($ with external feedback $)=\frac{1}{t_{\text {su }}+t_{p d}(\text { CLK to } Q)}$
\# This parameter is calculated from the measured $\mathrm{f}_{\max }$ with internal feedback in the counter configuration.

preload procedure for registered outputs (see Notes 3 and 4)

The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below:

Step 1. With V_{CC} at 5 V and pin 1 at V_{IL}, raise pin 13 to $\mathrm{V}_{\mathrm{IHH}}$.
Step 2. Apply either $\mathrm{V}_{I L}$ or $\mathrm{V}_{I H}$ to the output corresponding to the register to be preloaded.
Step 3. Pulse pin 1, clocking in preload data.
Step 4. Remove output voltage, then lower pin 13 to V_{IL}. Preload can be verified by observing the voltage level at the output pin.

Figure 2. Preload Waveforms
NOTES: 3. Pin numbers shown are for the NT package only. If chip-carrier socket adapter is not used, pin numbers must be changed accordingly.
4. $\mathrm{t}_{\mathrm{d}}=\mathrm{t}_{\mathrm{su}}=\mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$ to $1000 \mathrm{~ns} . \mathrm{V}_{\mathrm{IHH}}=10.25 \mathrm{~V}$ to 10.75 V .

power-up reset

Following power up, all registers are reset to zero. The output level depends on the polarity selected during programming. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the rise of V_{CC} be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met.

\dagger This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.
\ddagger This is the setup time for input or feedback.
Figure 3. Power-Up Reset Waveforms

programming information

Texas Instruments programmable logic devices can be programmed using widely available software and inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments programmable logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

THERMAL INFORMATION

thermal management of the TIBPAL22V10-7C

Thermal management of the TIBPAL22V10-7CNT and TIBPAL22V10-7CFN is necessary when operating at certain conditions of frequency, output loading, and outputs switching simultaneously. The device and system application will determine the appropriate level of management.
Determining the level of thermal management is based on factors such as power dissipation (P_{D}), ambient temperature (T_{A}), and transverse airflow (FPM). Figures 4 (a) and 4 (b) show the relationship between ambient temperature and transverse airflow at given power dissipation levels. The required transverse airflow can be determined at a particular ambient temperature and device power dissipation level in order to ensure the device specifications.
Figure 5 illustrates how power dissipation varies as a function of frequency and the number of outputs switching simultaneously. It should be noted that all outputs are fully loaded ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$). Since the condition of ten fully loaded outputs represents the worst-case condition, each application must be evaluated accordingly.

Figure 4

THERMAL INFORMATION

Figure 5

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. C_{L} includes probe and jig capacitance and is 50 pF for t_{pd} and $\mathrm{t}_{\mathrm{en}}, 5 \mathrm{pF}$ for $\mathrm{t}_{\text {dis }}$.
B. All input pulses have the following characteristics: PRR $\leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. When measuring propagation delay times of 3 -state outputs, switch S 1 is closed.
E. Equivalent loads may be used for testing.

Figure 6. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 7

PROPAGATION DELAY TIME
VS
SUPPLY VOLTAGE

Figure 8

PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE

Figure 10

TYPICAL CHARACTERISTICS

Figure 11

WORST-CASE PROPAGATION DELAY TIME
vs NUMBER OF OUTPUTS SWITCHING NT PACKAGE

Figure 12

POWER DISSIPATION
vs
FREQUENCY
10-BIT COUNTER MODE

Figure 13

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

