

Data sheet acquired from Harris Semiconductor SCHS099B – Revised January 2003

CD40109B Types

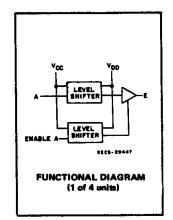
CMOS Quad Low-to-High Voltage Level Shifter Fe

High-Voltage Types (20-Volt Rating)

CD401098 contains four low-to-high-voltage level-shifting circuits. Each circuit will shift a low-voltage digital-logic input signal (A, B, C, D) with logical 1 = V_{CC} and logical 0 = V_{SS} to a higher-voltage out-put signal (E, F, G, H) with logical 1 = V_{DD} and logical 0 = V_{SS}.

The CD40109, unlike other low-to-high level-shifting circuits, does not require the presence of the high-voltage supply (VDD) before the application of either the low-voltage supply (V_{CC}) or the input signals. There are no restrictions on the sequence of application of VDD, VCC, or the input signals. In addition, with one exception there are no restrictions on the relative magnitudes of the supply voltages or input signals within the device maximum ratings, provided that the input signal swings between VSS and at least 0.7 VCC; V_{CC} may exceed V_{DD} , and input signals may exceed V_{CC} and V_{DD} . When operated in the mode $V_{CC} > V_{DD}$, the CD40109 will operate as a high-to-low level-shifter.

The CD40109 also features individual threestate output capability. A low level on any of the separately enabled three-state output controls produces a high-impedance-state in the corresponding output.


The CD40109B-Series types are supplied in 16-lead ceramic dual-in-line packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Applications:

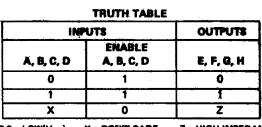
- High-or-low level-shifting with three-state outputs for unidirectional or bidirectional bussing
- Isolation of logic subsystems using separate power supplies from supply sequencing, supply loss and supply regulation considerations

Features:

- Independence of power supply sequence considerations—V_{CC} can exceed V_{DD}, input signals can exceed both V_{CC} and V_{DD}
- Up and down level-shifting capability
- Three-state outputs with separate enable controls
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range)
 - = 1 V at V_{CC} = 5 V, V_{DD} = 10 V
 - = 2 V at V_{CC} = 10 V, V_{DD} = 15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:


0114 D 4 077 010710	Lil	1 1011 74		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For TA =				
Full Package-Temperature Range)	3	18	V.	

MAXIMUM RATINGS, Absolute-Maximum Values:

LEAD TEMPERATURE (DURING SOLDERING):

DC SUPPLY-VOLTAGE RANGE, (V _{DD})
Voltages referenced to VSS Terminal)0.5V to +20V
OUTPUT VOLTAGE RANGE, ALL OUTPUTS0.5 V to V _{DD} +0.5 V
DC INPUT CURRENT, ANY ONE INPUT ±10mA
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tato)65°C to +150°C

At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max +265°C

LOGIC 0 - LOW(V_{SS}) X - DON'T CARE Z - HIGH IMPEDANCE LOGIC 1 - V_{CC} at INPUTS and V_{DD} at OUTPUTS

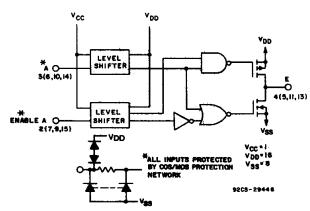


Fig.1 - CD40109B logic diagram (1 of 4 units).

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER	CONDITIONS			LIN	IITS AT	INDICA	TED TE	MPERATURES (°C)			UNITS
ISTIC	Vo (V)	VIN (V)	V _{DD} (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	
Quiescent Device	_	0,5	5	1	1	30	30		0.02	1	
Current,	- 1	0,10	10	2	2	60	60		0.02	2	١ .
IDD Max.	- 1	0,15	15	4	- 4	120	120	-	0.02	4	μΑ
	_	0,20	20	20	20	600 .	600		0.04	20	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		100
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3 4	6.8		
Output High	4.6	.0,5	5 .	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	_ှ -3.2	-	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	=
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	2.4	-3.4	-6.8	. –	
Output Voltage:	_	0,5	5	5 0.05				_	0	0.05	
Low-Level,	_	0,10	10		0	.05		_	0	0.05	
VOL Max.		0,15	15		0	.05			0	0.05	V
Output Voltage:		0,5	5		4	95		4.95	. 5	-	. *
High-Level,	· -	0,10	10		. 9	.95		9.95	10		
VOH Min.		0,15	15		14	:95		14.95	15	_	1 :
Input Current IIN Max.		0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μΑ
3-State Output Leakage Current IOUT Max.		0,18	18	±0.4	±0.4	±12	±12	: 2.73 —	±10 ⁻⁴	±0.4	μΑ
	35	Vcc (V)	V _{DD} (V)	:		y 1		n i e			
Input Low Voltage,	1,9	5	10			.5			_	1.5	
VIL Max.	1.5, 13.5	10	15			3		_	_	3	
Input High	1,9	5	10			3.5	,	3.5		-	\ \
Voltage, VIH Min.	1.5,13.5	10	15			7 		7	19 <u>14 </u> 19 1 4 1 1	_	

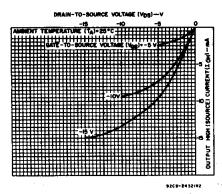


Fig.5 - Minimum output high (source)current characteristics.

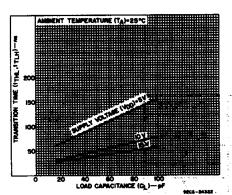


Fig.6 - Typical transition time as a function of load capacitance.

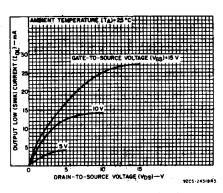


Fig.2 - Typical output low (sink) current characteristics.

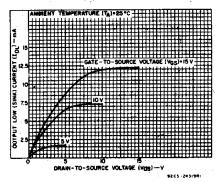


Fig.3 – Minimum output low (sink) current characteristics.

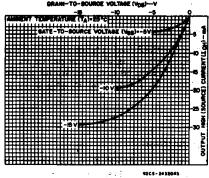


Fig.4 - Typical output high (source).

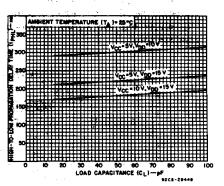


Fig.7 - Typical high-to-low propagation delay time as a function of load capacitance.

CD40109B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_A$ = 25°C, Input t $_r$, t $_f$ = 20 ns, C $_L$ = 50 pF, R $_L$ = 200 k Ω unless otherwise specified

	SHIFTING	Vcc	V _{DD}	LIMITS		
CHARACTERISTIC	MODE	(V)	(V)	Тур.	Max.	UNITS
Propagation Delay - Data Input	-	5	10	300	600	
to Output:	L-H	5	15	220	440	
Mah sa Laur Laur La		10	15	180	360	
High-to-Low Level, tpHL		10	5	250	500	ns
	H_L	15	5	250	500	
		15	10	120	240	
		5	10	130	260	
	L-H	5	15	120	240	
Low-to-High Level, tpLH		10	15	70	140	
Edw-to-riigh cever, tPLH		10	5	230	460	ns
	H-L	15	5	230	460	
		15	10	80	160	
3-State Disable Delay:		5	10	60	120	
R _L = 1 kΩ	L-H	5	15	75	150	
Output High to High		10	15	35	70	ns
Impedance, tpHZ		10	5	200	400	115
	H-L	15	5	200	400	
		15	10	40	80	
·	. L-H	5	10	370	740	ns
Output Low to High		5	15	300	600	
Impedance, tp_Z		10	15	250	500	
#		10	5	250	500	
:	H-L	15	5	250	500	
		15	10	130	260	
,		5	10	320	640	
High Impedance to	L–H	5	15	230	460	
Output High, tpZH		10	15	180	360	ns
		10	5	300	600	,,,,
	H-L	15 15	5 10	300 130	600 260	
		5	10			
	L-H	5 5	15	100 80	200 160	
High Impedance to	L-n	10	15	40	80	
Output Low, tpZL		10	5	200	400	ns
	H-L	15	5	200	400	
	,,	15	10	40	80	
7 Turkeya (199 -1994)	要学生	* 25	¥ 10	50	100	-
	L-H	1 5	15	40	80	
2 Jan 17 Jan 18		10.	15	40	80	
Transition Time, TTHL, TTLH	1.4	10 🐗	5	100	200	ns
	H-L	15	- 5	100	200	
		15	10	50	100	
Input Capacitance, C		Any	Input	5	7.5	ρF
	Tr.	14		L		

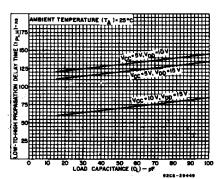


Fig.8 — Typical low-to-high propagation delay time as a function of load capacitance.

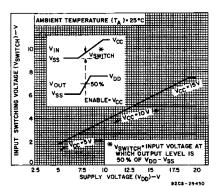


Fig.9 — Typical input switching as a function of high-level supply voltage.

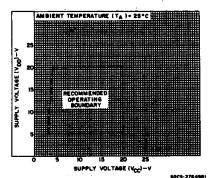


Fig. 10 — High-level supply voltage vs. low-level supply voltage.

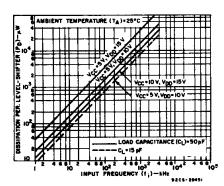


Fig.11 — Typical dynamic power dissipation as a function of input frequency.

CD40109B Types

TEST CIRCUITS

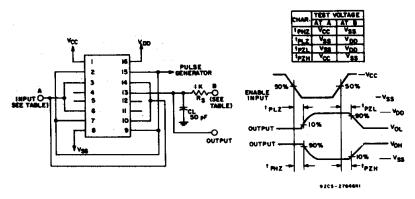


Fig. 12 - Output enable delay times test circuit and waveforms.

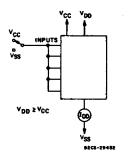


Fig. 13 - Quiescent device current.

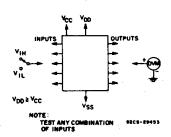


Fig. 14 - Input voltage.

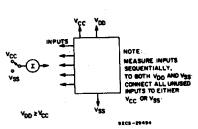


Fig. 15 - input current.

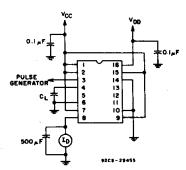
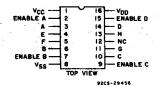
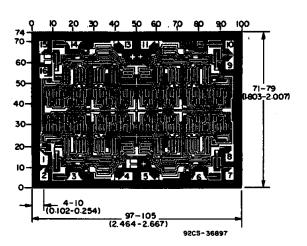




Fig. 16 - Dynamic power dissipation test circuit.

CD40109B TERMINAL ASSIGNMENT

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Dimensions and pad layout for CD401098H.

i.com 10-Mar-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
CD40109BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD40109BF	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
CD40109BF3A	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
CD40109BNSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD40109BPW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
CD40109BPWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

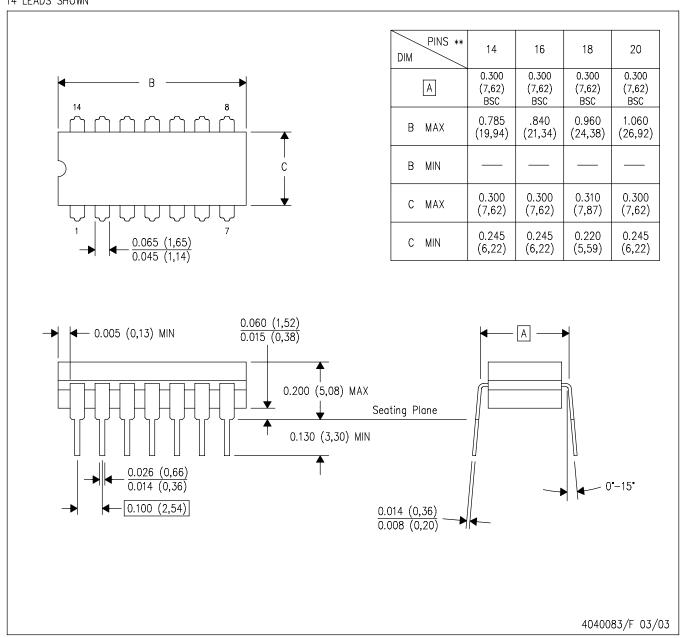
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

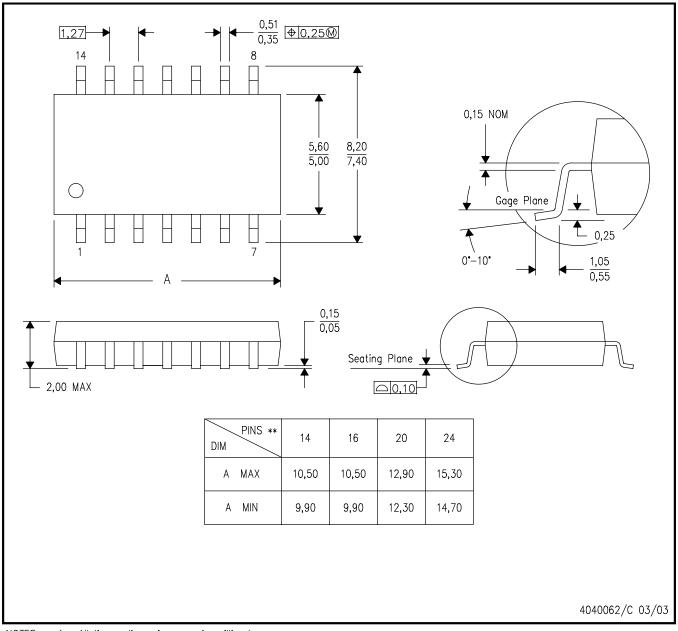
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



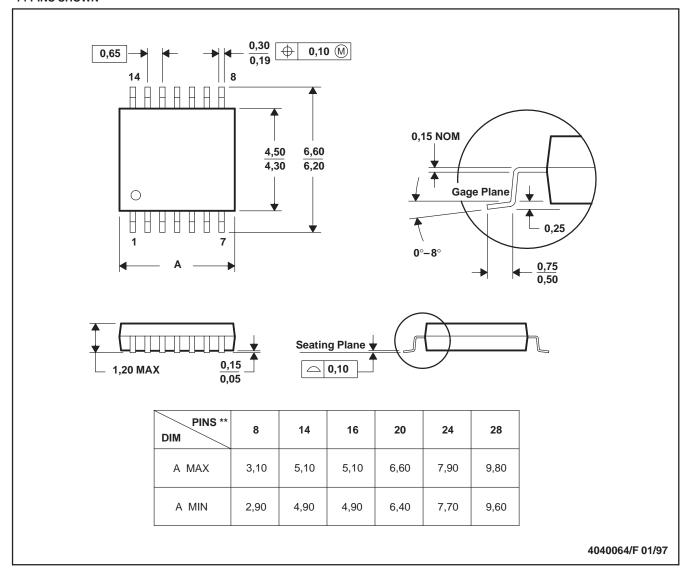
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated