

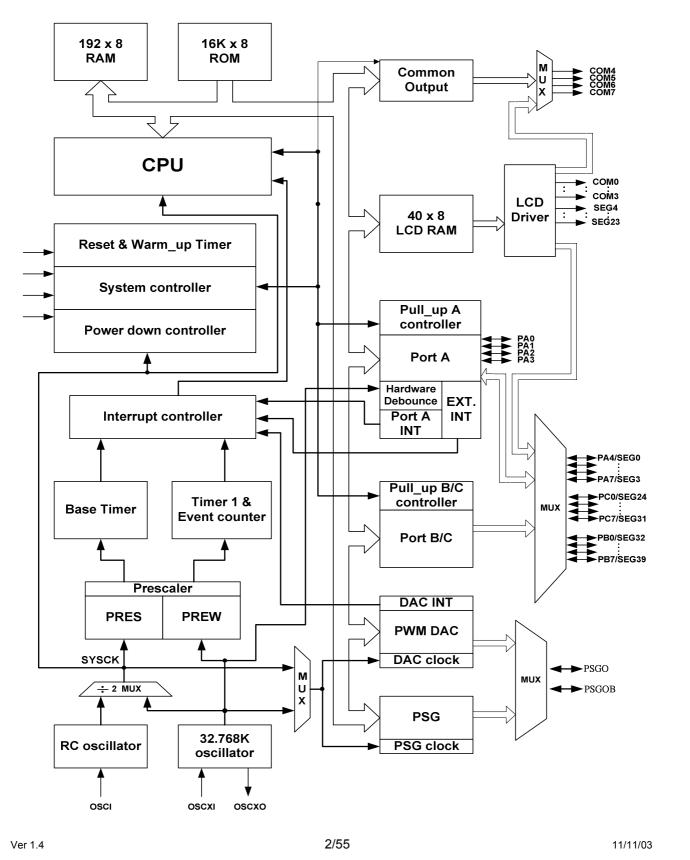
Sitronix

ST2016A

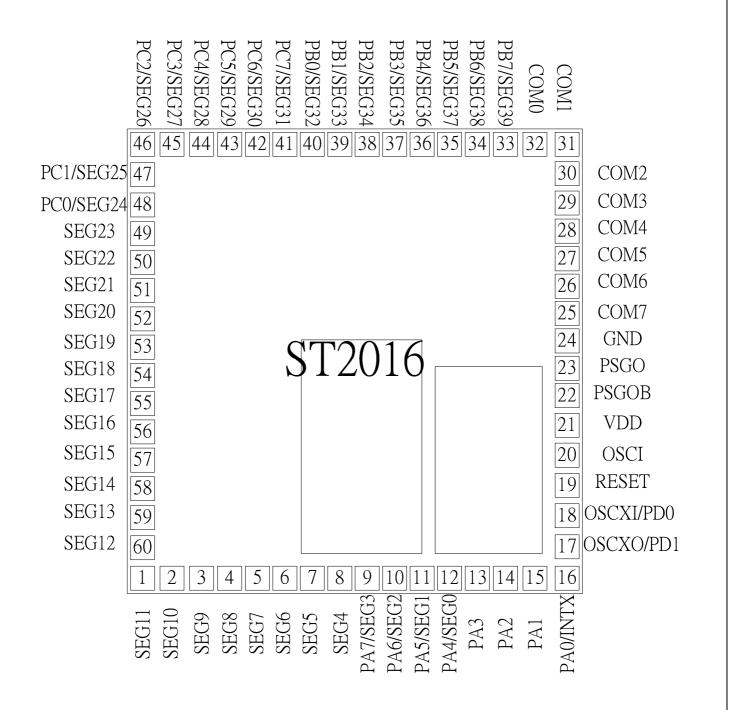
16K 8-bit Single Chip Microcontroller

1. FEATURES

- 8-bit static pipeline CPU
- ROM: 16K x 8 bits
- RAM: 192 x 8 bits
- Operation voltage : 2.4V ~ 3.6V
- 24 CMOS Bi-directional bit programmable I/O pins
 - Twenty (Port-A high nibble & Port-B/C) are shared with LCD drives
- 6 Output pins (Four are shared with LCD common and two are shared with PSG)
- 2 Input pins (code option: Shared with OSCX)
- Hardware debounce option for input port
- Bit programmable PULL-UP for input port
- Timer/Counter :
 - One 8-bit timer / 16-bit event counter One 8-bit BASE timer
 - Five powerful interrupt sources :
 - External interrupt (edge trigger)
 - TIMER1 interrupt
 - BASE timer interrupt
 - PORTA[7~0] interrupt (transition trigger)
 - DAC reload interrupt


- 32-level deep stack
 - Dual clock source :
- OSCX: Crystal oscillator: 32768Hz
- OSC: RC oscillator 500K ~ 4M Hz
- Build-in oscillator with warm-up timer
- LCD controller driver:
 - 16 level contrast control
 - 320 (8x40) dots (1/8 duty, 1/4 bias, programmable) 160 (4x40) dots (1/4 duty, 1/3 bias, programmable)

 - Two clock source options: RC and resonator oscillator
 - Keyboard scan function supported on 20 shared segment drives
 - Internal bias resistors(1/4 bias & 1/3 bias) with 32 level driving strength control
- Programmable Sound Generator (PSG) includes :
 - Tone generator
 - Sound effect generator
 - 16 level volume control
 - Digital DAC for speech / tone
- Three power down modes :
 - WAI0 mode
 - WAI1 mode
 - STP mode


2. GENERAL DESCRIPTION

ST2016A is a low-cost, high-performance, fully static, 8-bit microcontroller designed with CMOS silicon gate technology. It comes with 8-bit pipeline CPU core, SRAM, timer, LCD driver, I/O port, PSG and mask program ROM. A build-in dual oscillator is specially integrated to enhance chip performance. For business equipment and consumer applications. Such as watch, calculator, LCD game and IR remote control, ST2016A is definitely a perfect solution for implementation.

3. BLOCK DIAGRAM

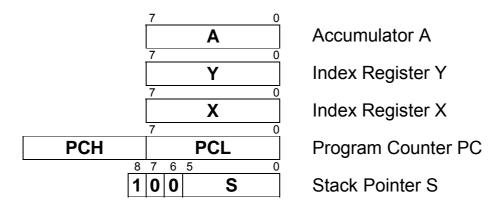
4. PAD DIAGRAM

•

5. Bonding Information

		PAD C	ENTER	DAD #		PAD C	ENTER
PAD #	NAME	X	Y	PAD #	NAME	X	Y
1	SEG11	57.5	57.5	31	COM1	1642.5	1682.5
2	SEG10	167.50	57.5	32	COM0	1522.50	1682.5
3	SEG9	277.50	57.5	33	PB7/SEG39	1412.50	1682.5
4	SEG8	382.50	57.5	34	PB6/SEG38	1307.50	1682.5
5	SEG7	486.25	57.5	35	PB5/SEG37	1203.75	1682.5
6	SEG6	588.75	57.5	36	PB4/SEG36	1101.25	1682.5
7	SEG5	691.25	57.5	37	PB3/SEG35	998.75	1682.5
8	SEG4	793.75	57.5	38	PB2/SEG34	896.25	1682.5
9	PA7/SEG3	896.25	57.5	39	PB1/SEG33	793.75	1682.5
10	PA6/SEG2	998.75	57.5	40	PB0/SEG32	691.25	1682.5
11	PA5/SEG1	1101.25	57.5	41	PC7/SEG31	588.75	1682.5
12	PA4/SEG0	1203.75	57.5	42	PC6/SEG30	486.25	1682.5
13	PA3	1307.5	57.5	43	PC5/SEG29	382.50	1682.5
14	PA2	1412.5	57.5	44	PC4/SEG28	277.50	1682.5
15	PA1	1522.5	57.5	45	PC3/SEG27	167.50	1682.5
16	PA0/INTX	1642.5	57.5	46	PC2/SEG26	57.5	1682.5
17	OSCXO/PD1	1642.5	175.35	47	PC1/SEG25	57.5	1568.70
18	OSCXI/PD0	1642.5	291.25	48	PC0/SEG24	57.5	1455.65
19	RESET	1642.5	405.25	49	SEG23	57.5	1347.35
20	OSCI	1642.5	518.25	50	SEG22	57.5	1240.30
21	VDD	1642.5	630.25	51	SEG21	57.5	1134.50
22	PSGOB	1642.5	741.25	52	SEG20	57.5	1028.70
23	PSGO	1642.5	843.75	53	SEG19	57.5	922.90
24	GND	1642.5	946.25	54	SEG18	57.5	817.10
25	COM7	1642.5	1048.75	55	SEG17	57.5	711.30
26	COM6	1642.5	1151.25	56	SEG16	57.5	605.50
27	COM5	1642.5	1253.75	57	SEG15	57.5	499.70
28	COM4	1642.5	1357.50	58	SEG14	57.5	392.65
29	СОМЗ	1642.5	1462.50	59	SEG13	57.5	284.35
30	COM2	1642.5	1572.50	60	SEG12	57.5	171.30

$Chip\ Size:\ 1700\ X\ 1740\ \mu m$ The chip substrate should be wired to GND pin.


Ver 1.4

6. PAD DESCRIPTION

Designation	Pad #	Туре	Description
SEG0/PA4 ~	12~9	0	LCD Segment output
SEG3/PA7	12~9	I/O	Port-A bit programmable I/O
SEG4 ~ SEG23	8 ~ 1 60 ~ 49	0	LCD Segment output
SEG24/PC0 ~	48~41	0	LCD Segment output
SEG31/PC7	40~41	I/O	Port-C bit programmable I/O
SEG32/PB0 ~	40 ~ 33	0	LCD Segment output
SEG39/PB7	40~ 33	I/O	Port-B bit programmable I/O
COM 0 – 3	32 ~ 29	0	LCD Common output
COM 4 - 7	28 ~ 25	0	LCD Common output
COIVI 4 - 7	20~25	0	Output port
RESET	19	Ι	Pad reset input (HIGH Active)
GND	24	Р	Ground Input and chip substrate
		I/O	Port-A bit programmable I/O
PA0/INTX	16	Ι	Edge-trigger Interrupt.
PAU/INTA	10	Ι	Transition-trigger Interrupt
		Ι	Programmable Timer1 clock source
PA 1-7	15~13	I/O	Port-A bit programmable I/O
PA 1-7	15~13	Ι	Transition-trigger Interrupt
PSGO,PSGOB	23,22	0	PSG/DAC Output
V _{DD}	21	Р	Power supply
000000000	40	I	OSC input pin. For 32768Hz crystal
OSCXI/PD0	18	Ι	Port-D input
	47	0	OSC output pin. For 32768Hz crystal
OSCXO/PD1	17	Ι	Port-D input
OSCI	20	I	OSC input pin. toward to external resistor

Legend: I = input, O = output, I/O = input/output, P = power.

7. CPU

CPU REGISTER MODEL

7.1 Accumulator (A)

The accumulator is a general purpose 8-bit register which stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of the two data words used in these operations.

7.2 Index Registers (X,Y)

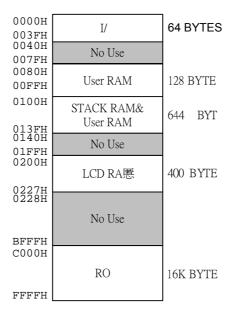
There are two 8-bit Index Registers (X and Y) which may be used to count program steps or to provide and index value to be used in generating an effective address. When executing an instruction which specifies indexed addressing, the CPU fetches the OP code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre or post-indexing of indirect addresses is possible.

7.3 Stack Pointer (S)

The stack Pointer is an 8-bit register which is used to control the addressing of the variable-length stack. It's range from 100H to 13FH total for 64 bytes (32-level deep). The stack pointer is automatically incremented and decrement under control of the microprocessor to perform stack manipulations under direction of either the program or interrupts (IRQ). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer is initialized by the user's software.

7.4 Program Counter (PC)

The 16-bit Program Counter register provides the address which step the microprocessor through sequential program instructions. Each time the microprocessor fetches and instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order bits of the address bus and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched from program memory.


7.5 Status Register (P)

The 8-bit Processor Status Register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU. The instruction set contains a member of conditional branch instructions which are designed to allow testing of these flags.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Ν	V	/ 1 B D I Z C										
Bit 7:	1 = Neg	N : Signed flag by arithmetic 1 = Negative 0 = Positive										
Bit 6:	1 = Neg	V : Overflow of signed Arithmetic flag 1 = Negative 0 = Positive										
Bit 4:	1 = BR	B : BRK interrupt flag * 1 = BRK interrupt occur 0 = Non BRK interrupt occur										
Bit 3:	1 = Dec	mal mode imal mode ary mode										
Bit 2:	1 = Inte	upt disable rrupt disat rrupt enab	ole									
Bit 1:	Z : Zero 1 = Zero 0 = Non	ວັ										
Bit 0:	C : Carry flag 1 = Carry 0 = Non carry											

TABLE 7-1: STATUS REGISTER (P)

8. MEMORY CONFIGURATION

8.1 ROM (\$C000~\$FFFF)

The ST2016A has 16K bytes ROM used for program, data and vector address.

Vector address mapping :

\$FFFE	Software BRK operation vector
\$FFFC	RESET vector.
\$FFFA	Reserved.
\$FFF8	INTX (PA0) edge interrupter.
\$FFF6	Reload DAC data interrupter.
\$FFF4	Reserved.
\$FFF2	Timer1 interrupter.
\$FFF0	PORTA transition interrupter.
\$FFEE	Base Timer interrupter.

8.2 RAM

The RAM mapping includes Control Registers, Data RAM, Stack RAM and LCD RAM.

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$000	PA	R/W	PA[7]	PA[6]	PA[5]	PA[4]	PA[3]	PA[2]	PA[1]	PA[0]	1111 1111
\$001	PB	R/W	PB[7]	PB[6]	PB[5]	PB[4]	PB[3]	PB[2]	PB[1]	PB[0]	1111 1111
\$002	PC	R/W	PC[7]	PC[6]	PC[5]	PC[4]	PC[3]	PC[2]	PC[1]	PC[0]	1111 1111
\$003	PD	R/W	-	-	-	-	-	-	PD[1]	PD[0]	11
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000
\$009	РСВ	R/W	PCB[7]	PCB[6]	PCB[5]	PCB[4]	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000 0000
\$00A	PCC	R/W	PCC[7]	PCC[6]	PCC[5]	PCC[4]	PCC[3]	PCC[2]	PCC[1]	PCC[0]	0000 0000
\$00E	PAK	R/W	PAK[7]	PAK[6]	PAK[5]	PAK[4]	PAK[3]	PAK[2]	PAK[1]	PAK[0]	0000 0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100
\$010	PSG0L	R/W	PSG0[7]	PSG0[6]	PSG0[5]	PSG0[4]	PSG0[3]	PSG0[2]	PSG0[1]	PSG0[0]	0000 0000
\$011	PSG0H	R/W	-	-	-	-	PSG0[11]	PSG0[10]	PSG0[9]	PSG0[8]	0000
\$012	PSG1L	R/W	PSG1[7]	PSG1[6]	PSG1[5]	PSG1[4]	PSG1[3]	PSG1[2]	PSG1[1]	PSG1[0]	0000 0000
\$013	PSG1H	R/W	-	-	-	-	PSG1[11]	PSG1[10]	PSG1[9]	PSG1[8]	0000
\$014	DAC	R/W	DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	0000 0000
\$015	PSGC2	R/W	-	-	-	-	PSGOD	PSGOBD	PSGOE	PSGOBE	1111
\$016	PSGC	R/W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	C0EN	DACE=0	-000 0000
ψυτυ		R/W	-	PCK[2]	PCK[1]	PCK[0]	DMD[1]	DMD[0]	INH	DACE=1	-000 0000
\$017	VOL	R/W	VOL1[3]	VOL1[2]	VOL1[1]	VOL1[0]	VOL0[3]	VOL0[2]	VOL0[1]	VOL0[0]	0000 0000
\$020	LCK	R/W	DRV[4]	DRV[3]	DRV[2]	DRV[1]	DRV[0]	LCK[2]	LCK[1]	LCK[0]	0000 0100
\$021	BTM	R/W	-	-	-	-	BTM[3]	BTM[2]	BTM[1]	BTM[0]	0000
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000
		W	SRES	SENA	SENT	-	-	-	-	-	000
\$026	T1M	R/W	-	-	-	T1M[4]	T1M[3]	T1M[2]	T1M[1]	T1M[0]	0 0000
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	-	-	0000 00
\$039	LSEL	R/W	LSEL[7]	-	-	LSEL[4]	LSEL[3]	LSEL[2]	LSEL[1]	LSEL[0]	11 1111
\$03A	LCTL	W	LPWR	BLANK	DUTY	SCAN	CTR[3]	CTR[2]	CTR[1]	CTR[0]	1000 0000
\$03B	СОМ	R/W	COM[7]	COM[6]	COM[5]	COM[4]	-	-	-	-	0000
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	IRDAC	IRX	11 1-11
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	IEDAC	IEX	00 0-00

TABLE 8-2: CONTROL REGISTERS (\$0000~\$003E)

Note: 1. Some addresses of I/O area, \$3~\$7, \$B~\$E, \$15, \$18~\$1F, \$22, \$24~\$25, \$28~\$2F, \$31~ \$39, \$3D,\$3F, are no used.

2. User should never use undefined addresses and bits.

3. Do not use Bit instructions for write-only registers, such as RMBx, SMBx....

4. E.V.B 's RAM Power On Initial Value are Same as Real Chip.

8.2.2 DATA RAM (\$0080~\$00FF)

DATA RAM are organized in 128 bytes.

8.2.3 STACK RAM (\$0100~\$013F)

STACK RAM are organized in 64 bytes. It provides for a maximum of 32-level subroutine stacks And can be used as data memory.

8.2.4 LCD RAM (\$0200~\$0227)

Resident LCD-RAM, accessible through write and read instructions, are organized in 40 bytes for 40x8 LCD display. Note that this area can also be used as data memory.

9. INTERRUPTS

Name	Signal	Vector address	Priority	Comment
BRK	Internal	\$FFFF,\$FFFE	8	Software BRK operation vector
RESET	External	\$FFFD,\$FFFC	1	RESET vector
-	-	\$FFFB,\$FFFA	-	Reserved
INTX	External	\$FFF9,\$FFF8	2	PA0 edge interrupt
DAC	Internal	\$FFF7,\$FFF6	3	Reload DAC data interrupt
-	-	\$FFF5,\$FFF4	-	Reserved
T1	INT/EXT	\$FFF3,\$FFF2	4	Timer1 interrupt
PT	External	\$FFF1,\$FFF0	5	Port-A transition interrupt
BT	Internal	\$FFEF,\$FFEE	6	Base Timer interrupt

TABLE 9-3: PREDEFINED VECTORS FOR INTERRUPT

9.2 Interrupt description

Brk

Instruction 'BRK' will cause software interrupt when interrupt disable flag (I) is cleared. Hardware will <u>push 'PC', 'P'</u> <u>Register to stack and set interrupt disable flag (I)</u>. Program counter then will be loaded with the BRK vector from locations <u>\$7FFE and \$7FFF</u>.

RESET

A positive transition of RESET pin will then cause an initialization sequence to begin. After the system has been operating, a high on this line of a least <u>two clock</u> cycles will cease ST2016AST2016A activity. When a positive edge is detected, there is an initialization sequence lasting <u>six clock</u> cycles. Then the <u>interrupt mask flag is set</u>, the <u>decimal mode</u> <u>is cleared</u> and the program counter will loaded with the restart vector from locations <u>\$FFFC (low byte) and \$FFFD</u> (high byte). This is the start location for program control. This input should be low in normal operation.

INTX interrupt

The IRX (INTX interrupt request) flag will be set while INTX edge signal occurs. The INTX interrupt will be active once IEX (INTX interrupt enable) is set, and interrupt mask flag is cleared. Hardware will <u>push 'PC', 'P' Register to stack and set interrupt mask flag (I)</u>. Program counter will be loaded with the INTX vector from locations <u>\$FFF8 and \$FFF9</u>.

DAC interrupt

The IRDAC (DAC interrupt request) flag will be set while reload signal of DAC occurs. Then the DAC interrupt will be executed when IEDAC (DAC interrupt enable) is set, and interrupt mask flag is cleared. Hardware will <u>push 'PC', 'P'</u> <u>Register to stack and set interrupt mask flag (I)</u>. Program counter will be loaded with the DAC vector from locations \$FFF6 and \$FFF7.

T1 interrupt

The IRT1 (TIMER1 interrupt request) flag will be set while T1 overflows. With IET1 (TIMER1 interrupt enable) being set, the T1 interrupt will executed, and interrupt mask flag will be cleared. Hardware will <u>push 'PC', 'P' Register to stack and set interrupt mask flag (I)</u>. Program counter will be loaded with the T1 vector from locations <u>\$FFF2 and \$FFF3</u>.

PT interrupt

The IRPT (Port-A interrupt request) flag will be set while Port-A transition signal occurs. With IEPT (PT interrupt enable)being set, the PT interrupt will be execute, and interrupt mask flag will be cleared. Hardware will <u>push 'PC'</u>, <u>'P' Register to stack and set interrupt mask flag (I)</u>. program counter will be loaded with the PT vector from locations <u>\$FFF0 and \$FFF1</u>.

BT interrupt

The IRBT (Base timer interrupt request) flag will be set when Base Timer overflows. The BT interrupt will be executed once the IEBT (BT interrupt enable) is set and the interrupt mask flag is cleared. Hardware will <u>push 'PC', 'P' Register</u> to stack and set interrupt mask flag (I). Program counter will be loaded with the BT vector from locations <u>\$FFEE</u> and <u>\$FFEE</u>.

Interrupt request clear 9.3

Interrupt request flag can be cleared by two methods. One is service routine when interrupt or automatically clear the Interrupt flag.

service routine when interrupt occurs. Hardware will

TABLE 9-4: INTERRUPT REQUEST REGISTER (IREQ)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	IRDAC	IRX	11 1-11	
Bit 5:	1 = Tim	e base in	er Interrupt terrupt occ terrupt do	urs								
Bit 4:	IRPT: Port-A Interrupt Request bit 1 = Port-A transition interrupt occurs 0 = Port-A transition interrupt doesn't occur											
Bit 3:	IRT1: Timer1 Interrupt Request bit 1 = Timer1 overflow interrupt occurs 0 = Timer1 overflow interrupt doesn't occur											
Bit 1:	IRDAC: DAC reload Interrupt Request bit 1 = DAC time out interrupt occurs 0 = DAC time out interrupt doesn't occur											
Bit 0:	IRX: INTX Interrupt Request bit 1 = INTX edge interrupt occurs 0 = INTX edge interrupt doesn't occur											

TABLE 9-5: INTERRUPT ENABLE REGISTER (IENA)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default		
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	IEDAC	IEX	00 0-00		
Bit 5:	IEBT: Base Timer Interrupt Enable bit 1 = Time base interrupt enable 0 = Time base interrupt disable												
Bit 4:	1 = Port	IEPT: Port-A Interrupt Enable bit 1 = Port-A transition interrupt enable 0 = Port-A transition interrupt disable											
Bit 3:	1 = Tim	IET1: Timer1 Interrupt Enable bit 1 = Timer1 overflow interrupt enable 0 = Timer1 overflow interrupt disable											
Bit 1:	IEDAC: DAC reload Interrupt Enable bit 1 = DAC time out interrupt enable 0 = DAC time out interrupt disable												
Bit 0:	1 = INT.	X edge in	ipt Enable terrupt ena iterrupt dis	able									

<u>ST2016A</u> 10. I/O PORTS

ST2016A can supply total 24 GPIOs divided into three I/O ports, Port-A, Port-B, and Port-C. Besides I/O function, Port-B/C & Port-A's high nibble can also be used as LCD

segment drives. For detail pin assignment, please refer to TABLE 10-6:

PORT NAME	PAD NAME	PAD NUMBER	PIN TYPE	FEATURE
	PA0/INTX	16	I/O	
	PA1	15	I/O	
	PA2	14	I/O	
Port-A	PA3	13	I/O	Programmable input/output pin
FOIL-A	PA4/SEG0	12	I/O	
	PA5/SEG1	11	I/O	
	PA6/SEG2	10	I/O	
	PA7/SEG3	9	I/O	
	SEG32/PB0	40	I/O	
	SEG33/PB1	39	I/O	
	SEG34/PB2	38	I/O	
Port-B	SEG35/PB3	37	I/O	Programmable input/output pin
POIL-B	SEG36/PB4	36	I/O	
	SEG37/PB5	35	I/O	
	SEG38/PB6	34	I/O	
	SEG39/PB7	33	I/O	
	SEG24/PC0	48	I/O	
	SEG25/PC1	47	I/O	
	SEG26/PC2	46	I/O	
Port-C	SEG27/PC3	45	I/O	Programmable input/output pin
FOIL-C	SEG28/PC4	44	I/O	
	SEG29/PC5	43	I/O	
	SEG30/PC6	42	I/O	
	SEG31/PC7	41	I/O	
	COM4	28	0	
COM[4~7]	COM5	27	0	Programmable output pin
COW[4~/]	COM6	26	0	
	COM7	25	0	<u> </u>

TABLE 10-6: I/O DESCRIPTION

10.2 PORT-A

Port-A is a bit-programmable bi-direction I/O port, which is controlled by PCA register. It also provides bit programmable pull-up resistor for each input pin. Two interrupts can be triggered by Port-A, de-bounced interrupt for keyboard scan and edge sensitive interrupt (PA0 only) for external event. Four of these I/Os can change into LCD segment drives. LSEL[7] of control register LSEL specifies which of these I/Os are LCD drives(<u>Please refer to 15.4.1.1</u> LCD Segment Number Selection Register (LSEL)).

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$000	PA	R/W	PA[7]	PA[6]	PA[5]	PA[4]	PA[3]	PA[2]	PA[1]	PA[0]	1111 1111
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000
\$00E	PAK	R/W	PAK[7]	PAK[6]	PAK[5]	PAK[4]	PAK[3]	PAK[2]	PAK[1]	PAK[0]	0000 0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	IRDAC	IRX	11 1-11
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	IEDAC	IEX	00 0-00
\$039	LSEL	R/W	LSEL[7]	-	-	LSEL[4]	LSEL[3]	LSEL[2]	LSEL[1]	LSEL[0]	11 1111

TABLE 10-7: SUMMARY FOR PORT-A REGISTERS

10.2.2 PORT-A I/O control

Direction of Port-A is controlled by PCA. Every bit of PCA[7~0] is mapped to the I/O direction of PA[7~0]

correspondingly, with "1" for output mode, and "0" for input mode.

TABLE 10-8: PORT-A CONTROL REGISTER (PCA)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000
Bit 7~0: PCA[7~0] : Port-A directional bits											

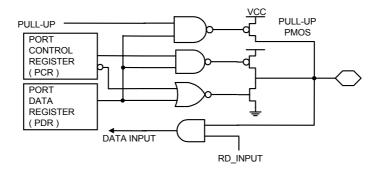
1 = Output mode

0 = Input mode

10.2.3 Port-A used as keyboard return line

When LCD Keyboard Awaking Pulses function is enabled (Please refer to <u>15.6 Keyboard-scan Function on LCD drives)</u>, the LCD waveform is always affected by Port-A signal if Port-A was used as keyboard return line and any key was being pressed. In order to reduce the effect from port-A, **PAK**

register must be set. The function will active when LCD on , LCD keyboard awaking pulses enable and **PAK[7~0]** is set to "1".


TABLE 10-9: Port-A used as keyboard return line selection

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00E	PAK	R/W	PAK[7]	PAK[6]	PAK[5]	PAK[4]	PAK[3]	PAK[2]	PAK[1]	PAK[0]	0000 0000
Bit 7~0		t-A used	as keyboa as keyboa								

10.2.4 PORT-A PULL-UP OPTION

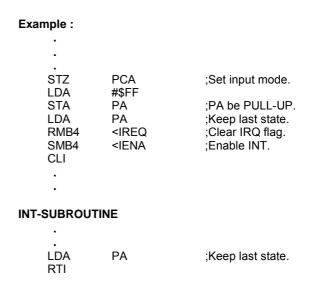
PORT-A contains pull-up MOS transistors controlled by software. When an I/O is used as an input. The ON/OFF of the pull-up MOS transistor will be controlled by port data register (PA) and the pull-up MOS will be enabled with "1"

for data bit and disable with "0" for data bit. The PULL control bit of PMCR controls the ON/OFF of all the pull-up MOS simultaneously. Please refer to the Figure 9-1.

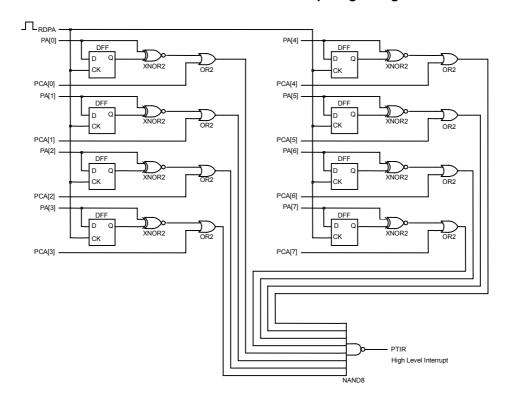
FIGURE 10-1: Port-A Configuration Function Block Diagram

TABLE 10-10: PORT CONDITION CONTROL REGISTER (PMCR)

		•		10. 1.0						01.7	
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100
Bit 7:	1 = Ena	able pull-u	II pull-up for p function up function	l							
Bit 6:	1 = Del	bounce fo	Port-A inte r Port-A in e for Port-A	terrupt							
Bit 5:	1 = Ris	: INTX int ing edge ling edge	errupt edg	le select b	it						


10.2.5 Port-A interrupt

Port-A, a programmable I/O, can be used as a port interrupt when it is in the input mode. Any edge transition of the Port-A input pin will generate an interrupt request. <u>The last</u> <u>state of Port-A must be kept before I/O transition and this</u> <u>can be accomplished by reading Port-A</u>.


Operating Port-A interrupt step by step :

- 1. Set input mode.
- 2. Read Port-A.
- 3. Clear interrupt request flag (IRPT).
- 4. Set interrupt enable flag (IEPT).
- 5. Clear CPU interrupt disable flag (I).
- 6. <u>Read Port-A before 'RTI' instruction in</u> INT-Subroutine.

When programmer enables INTX and PT interrupts, PA0 trigger occur. INTX and PT interrupts will therefore happen sequentially. Please refer to the Figure 9-2.

FIGURE 10-2: Port Interrupt Logic Diagram

10.2.5.2 Port-A interrupt debounce

ST2016A has hardware debounce option for Port-A interrupt. The debounce will be enabled with "1" and disable with "0" for PDBN. The debounce will active when Port-A transition occurs, PDBN enable and **OSCX enable**.

The debounce time is <u>OSCX x 512 cycles(about 16 ms)</u>. Refer to the TABLE 9-10.

TABLE 10-11: PORT CONDITION CONTROL REGISTER (PMCR)

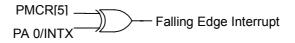
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100

Bit 6: **PDBN :** Enable Port-A interrupt debounce bit 1 = Debounce for Port-A interrupt

0 = No debounce for Port-A interrupt

10.2.6 PA0/INTX

PA0 can be used as an external interrupt input(INTX). Falling or Rising edge is controlled by INTEG(PMCR[5]) and the external interrupt is set up with "0" for falling edge and "1" for rising edge. Please refer to the Figure 9-3.


Operating INTX interrupt step by step :

- 1. Set PA0 pin into input mode. (PCA[0])
- 2. Select edge level. (INTEG)
- 3. Clear INTX interrupt request flag. (IRX)
- 4. Set INTX interrupt enable bits. (IEX)
- 5. Clear CPU interrupt mask flag (I).

When programmer enables INTX and PT interrupts, PA0 trigger will occur. Both INTX and PT interrupts will happen sequentially. Pelase refer to the operating steps.

;Set input mode. ;Rising edge. ;Clear IRQ flag. ;Enable INTX interrupt.

FIGURE 10-3: INTX Logic Diagram

10.3 Port-B and Port-C

10.3.1 General Description

Port-B and Port-C are bit-programmable bi-direction I/O ports, controlled by PCB and PCC registers. There is also bit programmable pull-up resistor for each input pin. All of the 16 I/Os can change into LCD segment drives. Control register

LSEL specifies which of these I/Os are LCD drives<u>(Please refer to 15.4.1.1</u> LCD Segment Number Selection Register (LSEL)).

TABLE 10-12: Summary of Port-B AND Port-C Registers

									<u> </u>		
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$001	PB	R/W	PB[7]	PB[6]	PB[5]	PB[4]	PB[3]	PB[2]	PB[1]	PB[0]	1111 1111
\$002	PC	R/W	PC[7]	PC[6]	PC[5]	PC[4]	PC[3]	PC[2]	PC[1]	PC[0]	1111 1111
\$009	PCB	R/W	PCB[7]	PCB[6]	PCB[5]	PCB[4]	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000 0000
\$00A	PCC	R/W	PCC[7]	PCC[6]	PCC[5]	PCC[4]	PCC[3]	PCC[2]	PCC[1]	PCC[0]	0000 0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100
\$039	LSEL	R/W	LSEL[7]	-	-	LSEL[4]	LSEL[3]	LSEL[2]	LSEL[1]	LSEL[0]	1 1 1111

10.3.2 Input/Output Control

PCB/PCC controls the I/O direction of Port-B/C. Each bit of PCB[7~0]/PCC[7~0] controls the direction of one single bit of

Port-B/C respectively, with "1" for output mode, and "0" for input mode.

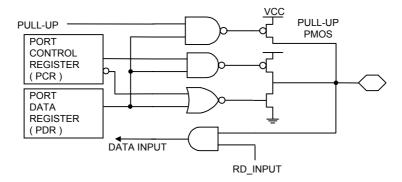
Т	ABLE 10)-13: PO	RT-B Co	ontrol Re	gister (P	CB)	
							-

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$009	РСВ	R/W	PCB[7]	PCB[6]	PCB[5]	PCB[4]	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000 0000

Bit 7~0: PCB[7~0] : Port-B directional bits

1 = Output mode

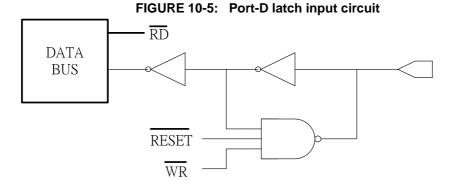
0 = Input mode


TABLE 10-14: PORT-C Control Register (PCC)

			-					9.0.0. (.			
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00A	PCC	R/W	PCC[7]	PCC[6]	PCC[5]	PCC[4]	PCC[3]	PCC[2]	PCC[1]	PCC[0]	0000 0000
Bit 7~0	1 = 0	'~0] : Port Dutput mo		onal bits							

10.3.3 Port-B and Port-C PULL-UP option

Port-B/C contains PMOS transistors of pull-up resistor controlled by software in bit-manner. In case of input direction, on/off of the pull-up PMOS transistor is controlled by the data wrote to data register, PB/PC. "1" is for enable and "0" is for disable. Above all, whole pull-up control is by PULL bit of PMCR. Refer to FIGURE 10-4: for the block description.


TABLE 10-15: Port Control Register (PMCR)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	-	-	100	
Bit 7: F	1 = Ena	ible pull-u	pull-up fun Ip function up functior	l								

10.4 PORT-D

Port-D only can be used as input. These two pins(PD0,PD1) are shared with OSCXI and OSCXO by one **code option**. The structure of input is different from Port-A/B/C. It has a

latch circuit to keep input value. Once low or high voltages are inputted, the circuit will latch "0" or "1" respectively. If the input pin is floating, it keeps the latest value.

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03	PD	R/W	-	-	-	-	-	-	PD[1]	PD[0]	11

Bit 1~0: **PD[1~0]**:

. If the input pin is floating, it keeps the latest value.

10.5 COMMON-PORT

The COM4~COM7 can be used as LCD drivers or output ports. In output port mode, COM[7~4] will be map to COM7~COM4 output ports, which pin assignment will be

decided by Bit 5 of LCTL[5], Please refer to the following table.

TABLE 10-16: LCD CONTROL REGISTER (LCTL)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03A	LCTL	W	LPWR	BLANK	DUTY	SCAN	CTR[3]	CTR[2]	CTR[1]	CTR[0]	1000 0000
Bit 5:				election bit OM7 used		common p	ins				

1 = 1/8 duty and COM4~COM7 used as LCD Common pins 0 = 1/4 duty and COM4~COM7 used as output pins

TABLE 10-17: COMMON OUTPUT REGISTER (COM)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03B	СОМ	R/W	COM[7]	COM[6]	COM[5]	COM[4]	-	-	-	-	0000
Bit 4:	1 = CO	: COM4 M4 outpu M4 outpu		ut bit							
Bit 5:	1 = CO	: COM5 M5 outpu M5 outpu		ut bit							
Bit 6:	1 = CO	: COM6 M6 outpu M6 outpu		ut bit							
Bit 7:	1 = CO	: COM7 M7 outpu M7 outpu		ut bit							

11. Oscillator

ST2016A is with dual-clock system. Programmer can choose between OSC(RC) and OSCX(32.768k), or both as clock source through program. The system clock(SYSCK) also can be switched between OSC and OSCX. The OSC will be switch with "0" and OSCX will be switch with "1" for **XSEL**. Whenever system clock be switch, the warm-up

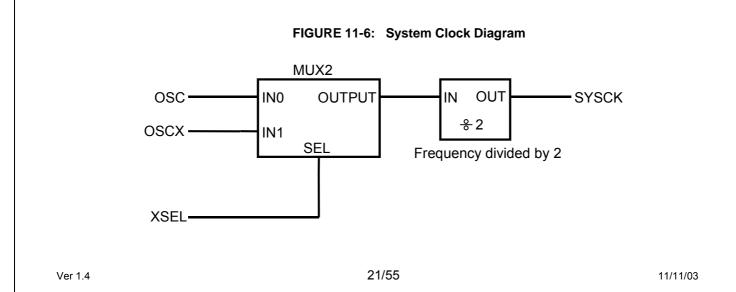

cycles are occur at the same time. That is confirm SYSCK really switched when read **XSEL** bit. LCD driver, Timer1, Base Timer and PSG can utilize these two clock sources as well.

TABLE 11-18: SYSTEM CONTROL REGISTER (SYS)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	-	-	0000 00
Bit 7:	XSEL : 1 = OS 0 = OS	CX	clock selec	ct(write) / c	confirm(rea	ad) bit					
Bit 6:	1 = Dis	: OSC sto able OSC able OSC		bit							
Bit 5:	1 = Dis	OSCX st able OSC able OSC		bit							
Bit 4:	1 = OS	: OSCX d CX norma CX heavy		y load bit							
Bit 3:	1 = Wa	rm-up to	warm-up o 16 oscillat 256 oscilla	ion cycles							
Bit 2:	1 = WA	Al instructi	VAI-1mod on causes on causes	the chip	to enter W	AI-1 mode		MODE)			

Note:

1. The XSEL(SYS[7]) bit will show which real working mode is when it is read.

12. TIMER/EVENT COUNTER

The ST2016A has two timers: Base timer/Timer1, and two prescalers (PRES and PREW). There are two clock sources

for PRES and one clock source(OSCX) for PREW. Please refer to the following table:

TABLE 12-19: CLOCK SOURCE (TCLK) FOR PRES

SENT	Clock source(TCLK)	MODE
1	INTX	Event counter
0	SYSCK	Timer

TABLE 12-20: SUMMART FOR TIMER REGISTERS												
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$021	BTM	R/W	-	-	-	-	BTM[3]	BTM[2]	BTM[1]	BTM[0]	0000	
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000	
QUZ 3	FRO	W	SRES	SENA	SENT	-	-	-	-	-	000	
\$026	T1M	R/W	-	-	-	T1M[4]	T1M[3]	T1M[2]	T1M[1]	T1M[0]	0 0000	
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000	
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	-	-	0000 00	
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	IRDAC	IRX	11 1-11	
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	IEDAC	IEX	00 0-00	

TABLE 12-20: SUMMARY FOR TIMER REGISTERS

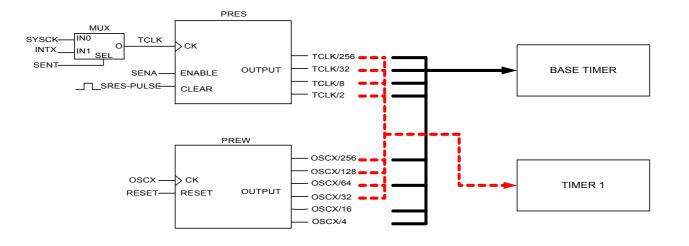


FIGURE 12-7: Prescaler for Timers

12.2 PRES

The prescaler PRES is an 8-bits counter as shown in Figure 11-6. Which provides four clock sources for base timer and timer1, and it is controlled by register PRS. The instruction read toward PRS will bring out the content of PRES and the

instruction write toward PRS will reset, enable or select clock sources for PRES.

When user set external interrupt as the input of PRES for event counter, combining PRES and Timer1 will get a 16bit-event counter.

TABLE 12-21 :	PRESCALER CONTR	OL REGISTER (PRS)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000
φ023	FNJ	W	SRES	SENA	SENT	-	-	-	-	-	000
READ Bit 7~0:	PRS[7-	~ 0] : <u>1's c</u>	omplemen	it of PRES	<u>counter</u>						
-			⁻ Reset bit the presca		7~0])						
Bit 6:	0 = Dis	able pres	r enable bi caler coun caler count	ting							
Bit 5:	0 = Clo	ck source	urce(TCLK from syst from exte	em clock '	"SYSCK"	aller PRE	S				

12.3 PREW

The prescaler PREW is an 8-bits counter as shown in Figure 11-6. PREW provides four clock source for base timer and

timer1. It stops counting only if OSCX stops or hardware reset occurs.

12.4 Base timer

Base timer is an 8-bit up counting timer. When it overflows from \$FF to \$00, a timer interrupt request IRBT will be generated. Please refer to Figure 11-7. :

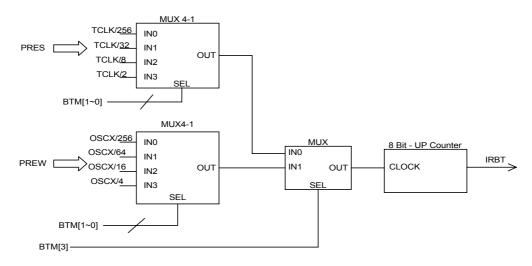


FIGURE 12-8: Structure of Base Timer

12.4.2 Clock source control for Base Timer

Several clock sources can be selected for Base Timer. Please refer to the following table:

* SENA	BTM[3]	BTM[2]	BTM[1]	BTM[0]	Base Timer source clock
0	0	Х	Х	Х	STOP
1	0	Х	0	0	TCLK / 256
1	0	Х	0	1	TCLK / 32
1	0	Х	1	0	TCLK / 8
1	0	Х	1	1	TCLK / 2
Х	1	Х	0	0	OSCX / 256
Х	1	Х	0	1	OSCX / 64
Х	1	Х	1	0	OSCX / 16
Х	1	Х	1	1	OSCX / 4

TABLE 12-22: CLOCK SOURCE FOR BASE TIMER

* TCLK will stop when an '0' is written to SENA(PRS[6]).

12.5 Timer 1

The Timer1 is an 8-bit up counter. It can be used as a timer or an event counter. T1C(\$27) is a real time read/write counter. When an overflow from \$FF to \$00, a timer interrupt request IRT1 will be generated. <u>Timer1 will stop counting when system clock stops.</u> Please refer to Figure 11-8.

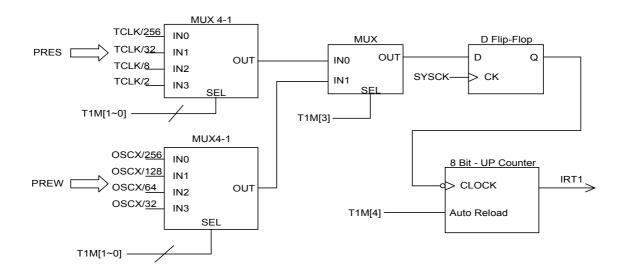


FIGURE 12-9: Timer1 Structure Diagram

TABLE 12-23: TIMER1 COUNTING REGISTER (T1C)

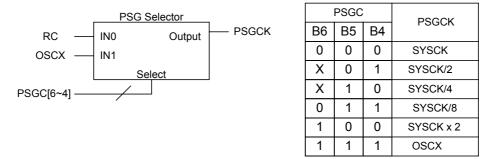
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000
12.5.1.2 Bit 7-0:	T1C[7	7-0] : Tim	er1 up cou	unter regis	ter						

12.5.2 Clock source control for Timer1

Several clock source can be chosen from for Timer1. It's very important that Timer1 can keep counting as long as SYSCK stays active. Refer to the following table:

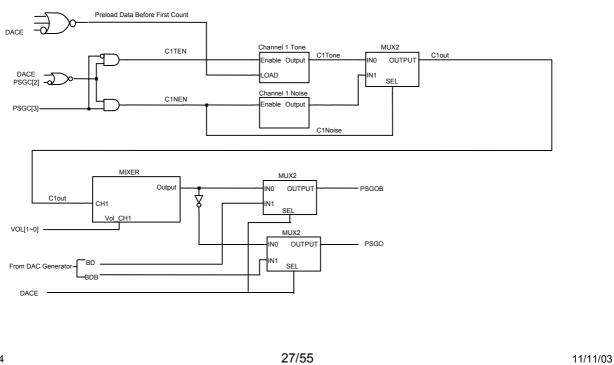
	TABLE 12-24: CLOCK SOURCE FOR TIMER1											
* SENA	T1M[4]	T1M[3]	T1M[2]	T1M[1]	T1M[0]	Clock source	Auto-Reload					
0	Х	0	Х	Х	Х	STOP	-					
1	0	0	Х	0	0	TCLK / 256	No					
1	0	0	Х	0	1	TCLK / 32	No					
1	0	0	Х	1	0	TCLK / 8	No					
1	0	0	Х	1	1	TCLK / 2	No					
Х	0	1	Х	0	0	OSCX / 256	No					
Х	0	1	Х	0	1	OSCX / 128	No					
Х	0	1	Х	1	0	OSCX / 64	No					
Х	0	1	Х	1	1	OSCX / 32	No					
1	1	0	Х	0	0	TCLK / 256	Yes					
1	1	0	Х	0	1	TCLK / 32	Yes					
1	1	0	Х	1	0	TCLK / 8	Yes					
1	1	0	Х	1	1	TCLK / 2	Yes					
Х	1	1	Х	0	0	OSCX / 256	Yes					
Х	1	1	Х	0	1	OSCX / 128	Yes					
Х	1	1	Х	1	0	OSCX / 64	Yes					
Х	1	1	Х	1	1	OSCX / 32	Yes					

TABLE 12-24: CLOCK SOURCE FOR TIMER1


* TCLK would stop when SENA is set to 0.

13. PSG


13.1 Function description


The built-in dual channel Programmable Sound Generator (PSG) is controlled by registers. Its flexibility makes it useful in applications such as music synthesis, sound effects generation, audible alarms and tone signaling. In order to generate sound effects while allowing the processor to perform other tasks, the PSG can continue to produce sound after the initial commands have been given by the CPU. The structure of PSG was shown in FIGURE 13-11: and the

PSG clock source is shown in FIGURE 13-10: . ST2016A has three playing modes. First is that both channel0 (CH0) and channel1 (CH1) output square type tones. Second is CH0 outputs square tone, and CH1 outputs noise. Third mode is PWM DAC mode. Sounds of two channels are mixed into one signal and are outputted in the form of digital waveform from two pins, PSGOB/PSGO. Therefore one AC waveform can be performed.

FIGURE 13-10: Clock Source for PSG

13.2 SUMMARY FOR PSG REGISTERS

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$010	PSG0L	R/W	PSG0[7]	PSG0[6]	PSG0[5]	PSG0[4]	PSG0[3]	PSG0[2]	PSG0[1]	PSG0[0]	0000 0000
\$011	PSG0H	R/W	-	-	-	-	PSG0[11]	PSG0[10]	PSG0[9]	PSG0[8]	0000
\$012	PSG1L	R/W	PSG1[7]	PSG1[6]	PSG1[5]	PSG1[4]	PSG1[3]	PSG1[2]	PSG1[1]	PSG1[0]	0000 0000
\$013	PSG1H	R/W	-	-	-	-	PSG1[11]	PSG1[10]	PSG1[9]	PSG1[8]	0000
\$015	PSGC2	R/W	-	-	-	-	PSGOD	PSGOBD	PSGOE	PSGOBE	1111
\$016	PSGC	R/W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	C0EN	DACE=0	- 000 0000
φυτο	F30C	R/W	-	PCK[2]	PCK[1]	PCK[0]	DMD[1]	DMD[0]	INH	DACE=1	- 000 0000
\$017	VOL	R/W	VOL1[3]	VOL1[2]	VOL1[1]	VOL1[0]	VOL0[3]	VOL0[2]	VOL0[1]	VOL0[0]	0000 0000

TABLE 13-25: CONTROL REGISTER FOR PSG OUTPUT (PSGC2)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$015	PSGC2	R/W	-	-	-	-	PSGOD	PSGOBD	PSGOE	PSGOBE	1111

Bit 3: **PSGOD** : Data bit if PSGO is used as normal output pin. 1 = PSGO is output High. 0 = PSGO is output Low

- Bit 2: **PSGOBD :** Data bit if PSGOB is used as normal output pin. 1 = PSGOB is output High. 0 = PSGOB is output Low
- Bit 1: **PSGOE** : PSG output enable bit 1 = PSGO is PSG data output pin. 0 = PSGO is normal output pin
- Bit 0: **PSGOBE :** PSG inverse signal output enable bit 1 = PSGOB is PSG inverse data output pin. 0 = PSGOB is normal output pin

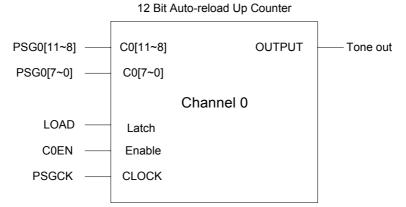
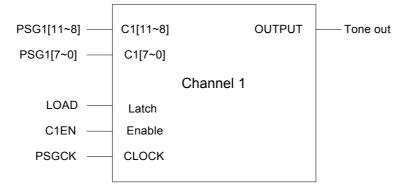

TABLE 13-26: CONTROL REGISTER FOR PSG VOLUME (VOL)

	TABLE 13-20. CONTROL REGISTER FOR F3G VOLUME (VOL)												
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default		
\$017	VOL	R/W	VOL1[3]	VOL1[2]	VOL1[1]	VOL1[0]	VOL0[3]	VOL0[2]	VOL0[1]	VOL0[0]	0000 0000		
	* 0000 = 0001 = 0010 = : 1110 =	No soun = 1/16 vol = 2/16 vol = 15/16 vol	ume ume	(PSGCK	must >= 3	,							
	= 0000 + 0001 =	[3~0] : PS No soun = 1/16 vol = 2/16 vol	ume	e control bi (PSGCK		20K Hz)							
		= 15/16 ve = Maximu	olume m volume	(PSGCK	must >= 2	0K Hz)							
Only use	Channel	-0 and V	DL=0FFH	, volume i	s maximu	m.							

13.3 Tone Generator

The tone frequency is decided by PSGCK and 12-bit programmable divider (PSG0[11~0]) and (PSG1[11~0]) Please refert Figure 12-11.


FIGURE 13-12: Channel0 PSG Tone Counter

Frequency of Channel 0 Tone = PSGCK/(1000H-PSG0[11~0])/2

FIGURE 13-13: Channel1 PSG Tone Counter

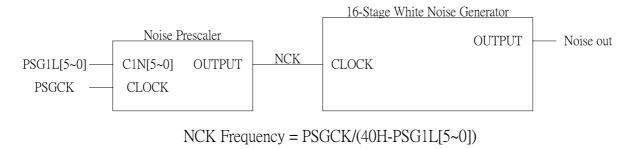
12 Bit Auto-reload Up Counter

Frequency of Channel 1 Tone = PSGCK/(1000H-PSG1[11~0])/2

13.4 PSG Tone programming

To program tone generator, Tone or DAC function is defined by DACE, writing to C1EN will enable tone generator when

PSG is in tone function. Noise or tone function is selected by PRBS.

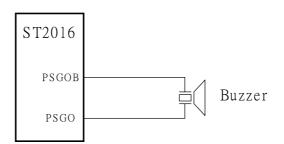

TABLE 13-27: PSG CONTROL REGISTER (PSGC)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$016	PSGC -	R/W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	C0EN	DACE=0	- 000 0000
\$010	F36C	R/W	-	PCK[2]	PCK[1]	PCK[0]	DMD[1]	DMD[0]	INH	DACE=1	- 000 0000
Bit 0:	1 = P\$	SG is use	d as the D	AC Gener DAC gener one(Noise	rator						
Bit 1:	1 = PS	: PSG Cł SG0 enab SG0 disab	le `	one) enat	ole bit						
Bit 2:	1 = PS	G1 (Tone	nannel-1(T e or Noise e or Noise		ise) enabl	le bit					
Bit 3:	1 = No	: Tone or bise gene one gener	rator	nerator se	election bit						
Bit 6~4:	000 = X01 = X10 = 011 = 100 =	2~0]: cloo SYSCK SYSCK / SYSCK / SYSCK / SYSCK * OSCX	2 4 8	PSGCK) s	election fo	or PSG an	d DAC				

13.5 Noise Generator Control

Noise generator is shown in Figure 12-12., which base frequency is controlled by PSG1L[5~0].

FIGURE 13-14: Noise Generator Diagram


13.6 PSG Noise programming

To program noise generator, Noise or DAC function is defined by DACE. Writing a "1" to C1EN will enable noise generator when PSG is in noise mode.

13.7 PSG Applicaion Circuit

Sounds of two channels are modulated by PSGCK and combine together into one AC signal. Then it outputs on

PSGOB and PSGO. Positive part of the AC signal is output from PSGO while the negative part is from PSGOB.

FIGURE 13-15: PSG application circuit

14. Digital DAC

A built-in digital DAC is for analog sampling data or voice signals. The structure of DAC is shown in Figure 13-13. There is an interrupt signal from DAC to CPU whenever DAC

data update is needed and the same signal will decide the sampling rate of voice. In DAC mode, the OSC can't less 4 M Hz.

·											
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$012	PSG1L	R/W	PSG1[7]	PSG1[6]	PSG1[5]	PSG1[4]	PSG1[3]	PSG1[2]	PSG1[1]	PSG1[0]	0000 0000
\$013	PSG1H	R/W	-	-	-	-	PSG1[11]	PSG1[10]	PSG1[9]	PSG1[8]	0000
\$014	DAC	R/W	DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	0000 0000
\$015	PSGC2	R/W	-	-	-	-	PSGOD	PSGOBD	PSGOE	PSGOBE	1111
\$016	PSGC	R/W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	C0EN	DACE=0	- 000 0000
φυτο	F 360	R/W	-	PCK[2]	PCK[1]	PCK[0]	DMD[1]	DMD[0]	INH	DACE=1	- 000 0000

TABLE 14-28: SUMMARY FOR DAC REGISTERS

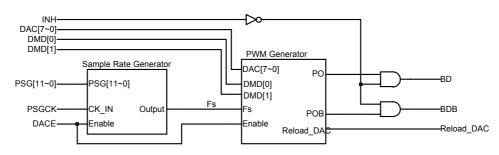
TABLE 14-29: DAC DATA REGISTER (DAC)

Address Nam	e R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$014 DAC	R/W	DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	0000 0000

Bit 7~0: DAC[7~0] : DAC output data

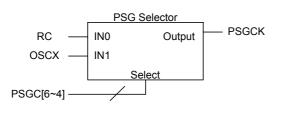
Note: For Single-Pin Single Ended mode, the effective output resolution is 7 bit.

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$016	PSGC	R/W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	-	DACE=0	- 000 00-0
		R/W	-	PCK[2]	PCK[1]	PCK[0]	DMD[1]	DMD[0]	INH	DACE=1	- 000 0000
Bit 0:	0: DACE : PSG play as Tone(Noise) or DAC Generator selection bit 1 = PSG is used as DAC Generator 0 = PSG is used as Tone(Noise) Generator										
Bit 1:	 INH : DAC output inhibit control bit 1 = DAC output inhibit 0 = DAC output enable 										
Bit 3~2:	I:: DMD[1~0] : DAC output mode selection 00 = Single-Pin mode : 7 bit resolution 01 = Two-Pin Two Ended mode : 8 bit resolution 10 = Reserved : 8 bit resolution 11 = Two-Pin Push Pull mode : 8 bit resolution										
Bit 6~4:	t 6~4: PCK[2~0] : PSGCK selection for PSG and DAC 000 = SYSCK / 2 X01 = SYSCK / 4 X10 = SYSCK / 8 011 = SYSCK / 16 100 = SYSCK * 111 = OSCX										


TABLE 14-30: DAC CONTROL REGISTER (PSGC)

* In DAC mode, PSGCK must select SYSCK.

14.2 Sampling Rate Control


The sample rate is controlled by PSG1L and PSG1H. PSG1[11~7] controls sample rate/post scaling and <u>PSG1[6]</u> must set '0' and <u>PSG1[5~0]</u> must set '1'. The input clock

source is controlled by $PCK[2\sim0]$. The block diagram is shown as the following:

FIGURE 14-16: DAC Generator Diagram

FIGURE 14-17: Clock Source for DAC

	PSGC		PSGCK		
B6	B5	B4	FOUCK		
0	0	0	SYSCK		
Х	0	1	SYSCK/2		
Х	1	0	SYSCK/4		
0	1	1	SYSCK/8		
1	0	0	SYSCK x 2		
1	1	1	OSCX		

TABLE 14-31: DAC Sample Rate Description (RCosc = 2MHz)

DAC interrupt frequency	PSGC b6, b5, b4	PSG1H, PSG1L		
8К	100	00001111, 00111111		
16K	100	00001111, 10111111		

14.3 PWM DAC Mode Select

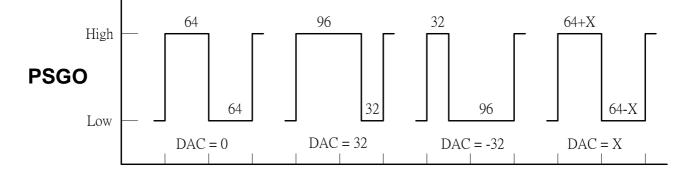
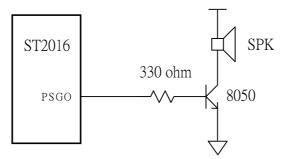
The PWM DAC generator has three modes, Single-pin mode, Two-pin two ended mode and Two-pin push pull

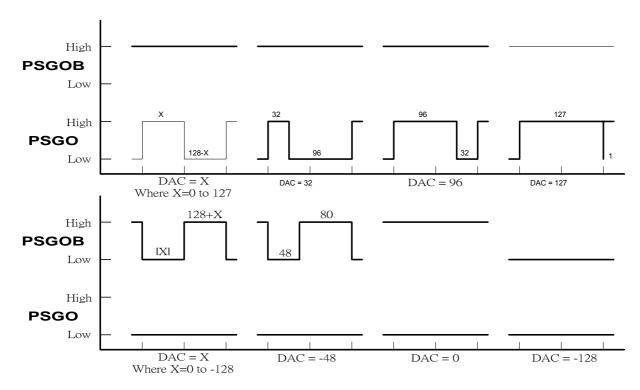
mode. They are depended on the application used. The DAC mode is controlled by DMD[1~0]. (TABLE 13-31)

14.3.1 Single-Pin Mode (Accurate to 7 bits)

Single-pin mode is designed for use with a single-transistor amplifier. It has 7 bits of resolution. The duty cycle of the **PSGO** is proportional to the output value. If the output value is 0, the duty cycle is 50%. As the output value increases from 0 to 63, the duty cycle goes from being high 50% of the

time up to 100% high. As the value goes from 0 to -64, the duty cycle decreases from 50% high to 0%. **PSGOB** is inverse of **PSGO**'s waveform. Figure 13-15 shows the **PSGO** wave-forms.

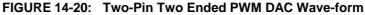
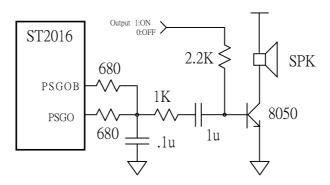



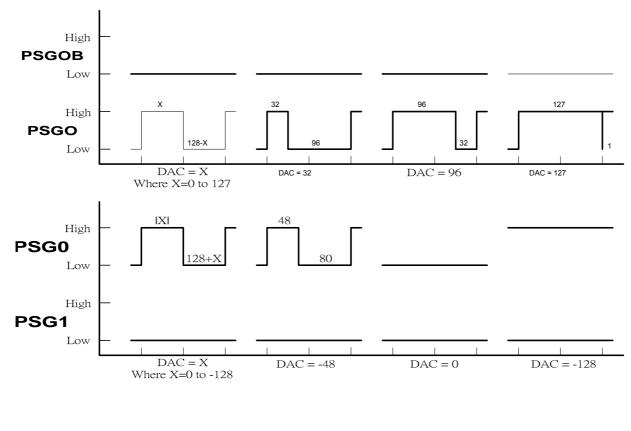

FIGURE 14-19: Single-Pin Application Circuit

14.3.2 Two-Pin Two Ended mode (Accurate to 8 bits)

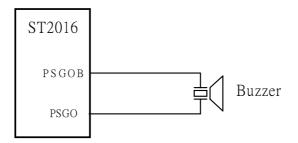
Two-Pin Two Ended mode is designed for use with a single transistor amplifier. It requires two pins that **PSGOB** and **PSGO**. When the DAC value is positive, **PSGO** goes high with a duty cycle proportional to the output value, while **PSGOB** stays high. When the DAC value is negative, **PSGOB** goes low with a duty cycle proportional to the output value, while **PSGOB** goes low with a duty cycle proportional to the output value, while **PSGOB** stays low. This mode offers a resolution of 8 bits.

Figure 13-17 shows examples of DAC output waveforms with different output values. Each pulse of the DAC is divided into 128 segments per sample period. For a positive output value x=0 to 127, **PSGO** goes high for X segments while **PSGOB** stays high. For a negative output value x=0 to -127, **PSGOB** goes low for |X| segments while **PSGO** stays low.

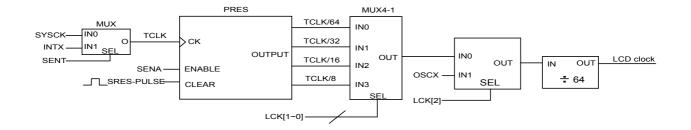



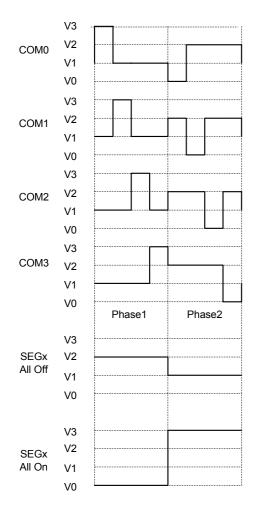

FIGURE 14-21: Two-Pin Two Ended mode Application Circuit

Ver 1.4

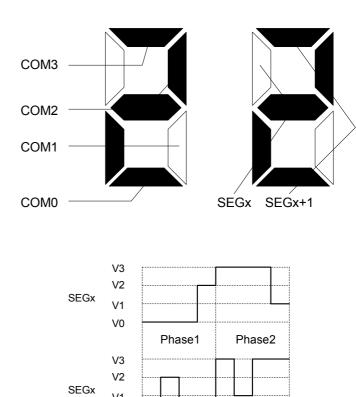

14.3.3 Two-Pin Push Pull mode (Accurate to 8 bits)

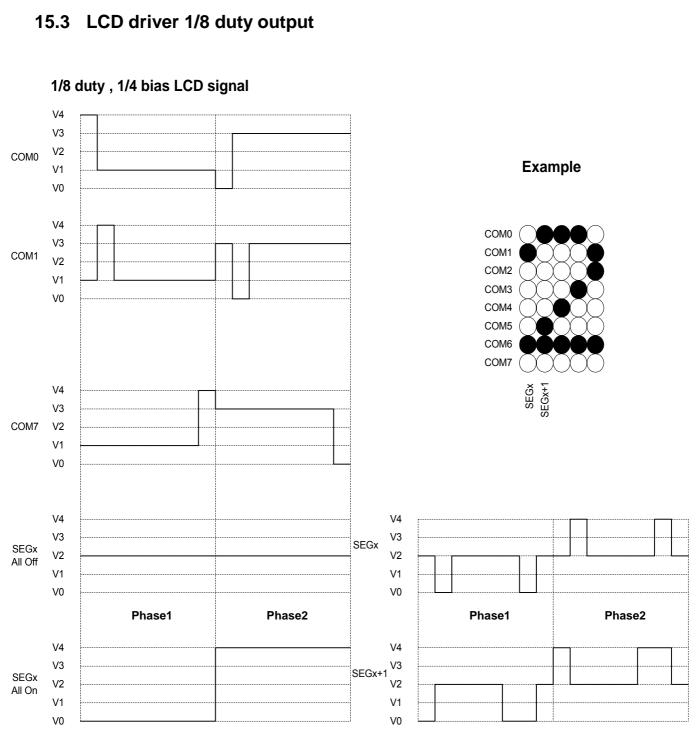
Two-Pin Push Pull mode is designed for buzzer. It requires two pins that **PSGOB** and **PSGO**. When the DAC value is 0, both pins are low. When the DAC value is positive, **PSGO** goes high with a duty cycle proportional to the output value, while **PSGOB** stays low. When the DAC value is negative, **PSGOB** goes high with a duty cycle proportional to the output value, while **PSGO** stays low. This mode offers a resolution of 8 bits. Figure 13-19 shows examples of DAC output waveforms with different output values. Each pulse of the DAC is divided into 128 segments per sample period. For a positive output value x=0 to 127, **PSGO** goes high for X segments while **PSGOB** stays low. For a negative output value x=0 to -127, **PSGOB** goes high for |X| segments while **PSGO** stays low.




15. LCD

The ST2016A can drive up to 320 dots of LCD panel directly. The LCD driver can control by 1/4 duty(160 dots) and 1/8 duty (320 dots). LCD block include display RAM (\$200~ \$227) for storing the display data, 40-segment output pins (SEG0~SEG39), 8-common output pins (COM0~COM7). All LCD RAM are random after power on reset. The bias voltage circuits of the LCD display is built-in and no external resistor is needs.


FIGURE 15-24: Clock source of LCD


15.2 LCD driver 1/4 duty output

1/4 duty , 1/3 bias LCD signal

V1 V0 Example

Ver 1.4

15.4 LCD Control Register

15.4.1.1	LCD Segment Number Selection Register (LSEL)											
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$039	LSEL	R/W	LSEL[7]	-	-	LSEL[4]	LSEL[3]	LSEL[2]	LSEL[1]	LSEL[0]	00 0000	

Bit 7 LSEL[7] :

1 = PA[7~4] will use as LCD segment driver SEG[3~0] 0 = PA[7~4] will be general purpose I/O

Bit 4~0: LSEL[4~0] : LCD segment number selection

		Pad Definition														
LSEL[4:0]	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD	PAD
0 xxxx	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0000	SEG24	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0001	SEG24	SEG25	PC2	PC3	PC4	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0010	SEG24	SEG25	SEG26	PC3	PC4	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0011	SEG24	SEG25	SEG26	SEG27	PC4	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0100	SEG24	SEG25	SEG26	SEG27	SEG28	PC5	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0101	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	PC6	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0110	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	PC7	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 0111	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 1000	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	PB1	PB2	PB3	PB4	PB5	PB6	PB7
1 1001	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	PB2	PB3	PB4	PB5	PB6	PB7
1 1010	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	PB3	PB4	PB5	PB6	PB7
1 1011	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	PB4	PB5	PB6	PB7
1 1100	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	SEG36	PB5	PB6	PB7
1 1101	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	PB6	PB7
1 1110	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	SEG38	PB7
1 1111	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	SEG38	SEG39

15.5 LCD control register

Default Address Name R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LCK 0000 0000 \$020 R/W DRV[4] DRV[3] DRV[2] DRV[1] DRV[0] LCK[2] LCK[1] LCK[0] 000 - - - - -\$023 PRS R/W SRES SENA SENT CTR[3] CTR[2] CTR[1] CTR[0] 1000 0000 W LPWR BLANK DUTY SCAN \$03A LCTL

TABLE 15-32: LCD CONTROL REGISTERS

TABLE 15-33: LCD FREQUENCY REGISTER (LCK)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$020	LCK	R/W	DRV[4]	DRV[3]	DRV[2]	DRV[1]	DRV[0]	LCK[2]	LCK[1]	LCK[0]	0000 0000

Bit 7~3: DRV[4~0] : LCD driving strength control.

LCK[7:3]	Driving strength	1/4 Duty consumption (uA)	1/8 Duty consumption (uA)	LCK[7:3]	Driving strength	1/4 Duty consumption (uA)	1/8 Duty consumption (uA)
00000	Level 31(max.)	65.38	49.22	10000	Level 15	36.99	27.81
00001	Level 30	63.63	47.88	10001	Level 14	35.2	26.45
00010	Level 29	61.81	46.54	10010	Level 13	33.42	25.13
00011	Level 28	60.05	45.2	10011	Level 12	31.65	23.8
00100	Level 27	57.93	43.88	10100	Level 11	29.88	22.46
00101	Level 26	58.26	42.53	10101	Level 10	28.12	21.13
00110	Level 25	54.73	41.2	10110	Level 9	26.31	19.78
00111	Level 24	52.94	39.85	10111	Level 8	24.54	18.44
01000	Level 23	51.16	38.5	11000	Level 7	22.75	17.1
01001	Level 22	49.39	37.18	11001	Level 6	20.98	15.79
01010	Level 21	47.63	35.82	11010	Level 5	19.2	14.42
01011	Level 20	45.85	34.5	11011	Level 4	17.43	13.11
01100	Level 19	44.07	33.16	11100	Level 3	15.63	11.75
01101	Level 18	42.28	31.81	11101	Level 2	13.84	10.4
01110	Level 17	40.53	30.5	11110	Level 1	12.02	9.07
01111	Level 16	38.75	29.15	11111	Level 0(mini.)	10.23	7.71

*** Measure Condition: Vdd=3V, LCD frame rate=64Hz, OSCX: normal load , in WAI1.

Bit 2~0: LCK[2~0] : LCD clock source

LCK[2:0]		Frame Rate
000	OSC / 131072	(4MHz / 131072 = 30.5Hz)
001	OSC / 65536	(4MHz / 65536 = 61.0Hz)
010	OSC / 32768	(4MHz / 32768 = 122.1Hz)
011	OSC / 16384	(4MHz / 16384 = 244.1Hz)
1XX	OSCX / 512	(32768 / 512 = 64Hz)

* SENA must switch "1". (refer to FIGURE 14-21)

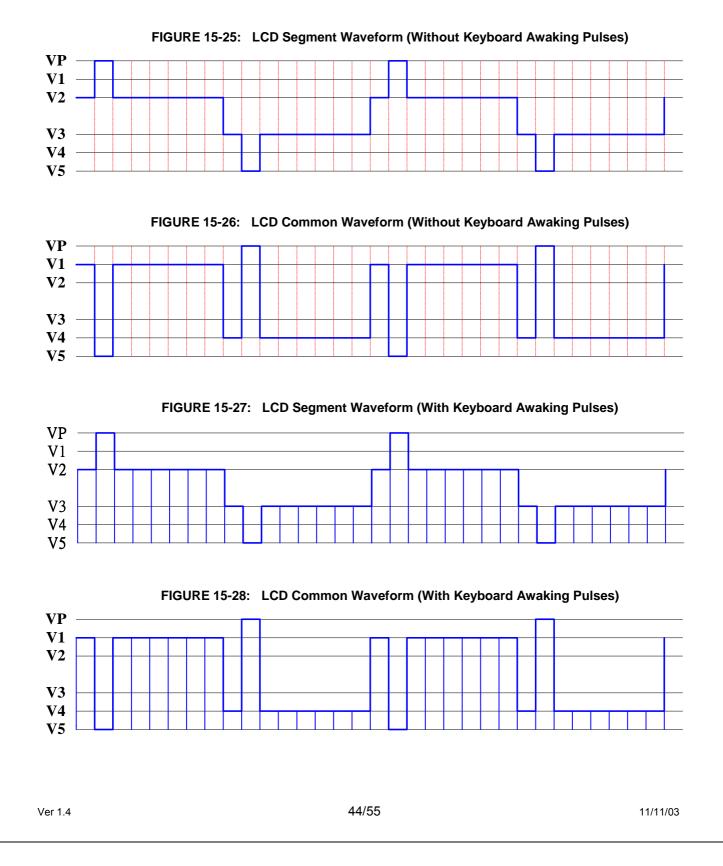
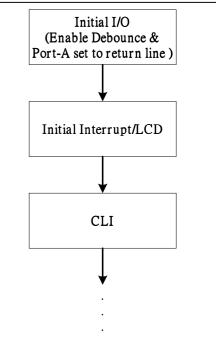

Audiess	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$03A	LCTL	W	LPWR	BLANK	DUTY	SCAN	CTR[3]	CTR[2]	CTR[1]	CTR[0]	1000 000	
Bit 7:	LPWR : LCD power ON/OFF bit 1 = LCD power OFF 0 = LCD power ON											
Bit 6:	BLANK : LCD display ON/OFF bit 1 = Disable LCD display (Common line is still scanning) 0 = Enable LCD display											
Bit 5:	DUTY : LCD duty control bit 1 = 1/8 duty (1/4 bias) 0 = 1/4 duty (1/3 bias)											
Bit 4:	SCAN : LCD segment keyboard scan function 1 = Enable LCD keyboard awaking pulse in LCD waveforms 0 = Disable LCD keyboard awaking pulse											
Bit 2∼1	CTRI3.		: CTR[3~0] : LCD Contrast Control Frame Rate = 64Hz (DUTY=1/8, DUTY=1/4)									
Bit 2~1	: CTR[3/	-0]:LCD			te = 64Hz	2 (DUTY=1	1/8 . DUTY	(=1/4)				
Bit 2~1		-0] : LCD		Frame Ra		•	1 /8 , DUTY 0 = contr	,	8		7	
Bit 2~1		= contra	ast level			•	0 = contr	,	8 7			
Bit 2~1	0000	= contra	ast level ast level	Frame Ra 16 (maxim		100	0 = contr	ast level ast level	-			
Bit 2~1	0000 0001 0010	= contra = contra	ast level ast level ast level	Frame Ra 16 (maxim 15		100 100 101	0 = contr 1 = contr	ast level ast level ast level	7			
Bit 2~1	0000 0001 0010 0011	= contra = contra = contra	ast level ast level ast level ast level	Frame Ra 16 (maxim 15 14		100 100 101 101	0 = contr 1 = contr 0 = contr	ast level ast level ast level ast level	7 6		-	
Bit 2~1	0000 0001 0010 0011 0100 0101	= contra = contra = contra = contra = contra = contra	ast level ast level ast level ast level ast level ast level ast level	Frame Ra 16 (maxim 15 14 13 12 11		100 100 101 101 101 110 110	$\begin{array}{rcl} 0 &= \operatorname{contr}\\ 1 &= \operatorname{contr}\\ 0 &= \operatorname{contr}\\ 1 &= \operatorname{contr}\\ 0 &= \operatorname{contr}\\ 1 &= \operatorname{contr}\\ 1 &= \operatorname{contr} \end{array}$	ast level ast level ast level ast level ast level ast level	7 6 5 4 3			
Bit 2~1	0000 0001 0010 0011 0100 0101 0110	= contra = contra = contra = contra = contra	ast level ast level ast level ast level ast level ast level ast level	Frame Ra 16 (maxim 15 14 13 12		100 100 101 101 101 110 110 111	0 = contr 1 = contr 0 = contr 1 = contr 0 = contr 0 = contr	ast level ast level ast level ast level ast level ast level ast level	7 6 5 4			

TABLE 15-34: LCD CONTROL REGISTER (LCTL)

15.6 Keyboard-scan Function on LCD drives

When the LCTL[4] is set to "1", the SCAN function will be enabled. The LCD waveform will appear Keyboard Awaking

Pulses. These pulses are used as keyboard scan line to trigger Port-A interrupt if the keys have being pressed.



.

15.6.2 Keyboard-scan Function Example:

- a. Keyboard : 64Keys (8x8)
- b. Return Lines : Port-A
- c. Scan Lines : Port-B

		_	
INITIAL_Port SMB4 LDA STA		;;Enable Keyboard Awaking Pulses Waveform ;;Set all shared pins to be segments	
STZ LDA	<pca #FFH</pca 	;;Set Port-A as Inputs for Return Line	
STA	<pa< td=""><td>::Port-A Pull-High</td><td></td></pa<>	::Port-A Pull-High	
STA	<pcb< td=""><td>;;Set Port-B as Outputs for Scan Line</td><td></td></pcb<>	;;Set Port-B as Outputs for Scan Line	
LDA	#11000000B	•	
STA	<pmcr< td=""><td>;;Enable Pull up & Debounce</td><td></td></pmcr<>	;;Enable Pull up & Debounce	
LDA	#00010000B		
STA	<iena< td=""><td>;;Enable Port-A Interrupt</td><td></td></iena<>	;;Enable Port-A Interrupt	
LDA	<pa< td=""><td>;;Keep Port-A last state</td><td></td></pa<>	;;Keep Port-A last state	
LDA	#\$FF		
STA	<pak< td=""><td>;;Port-A used as keyboard return line</td><td></td></pak<>	;;Port-A used as keyboard return line	
STZ	<ireq< td=""><td>;;Reset Interrupt Request Register</td><td></td></ireq<>	;;Reset Interrupt Request Register	
CLI			

Port_ISR			
PHA PHX			
LDA STA	#1111110B <scanvalue< td=""><td>;;Initial scanning value for Port-B</td><td>Output Scan Value on Scan Lines</td></scanvalue<>	;;Initial scanning value for Port-B	Output Scan Value on Scan Lines
?Scan_PB STA STZ RMB3 LDX	<pb <pak <lsel #\$FF</lsel </pak </pb 	;; Port-A used as normal I/O ;;Change segments to be Port-B	Turn ON Port-B
w	ait 12us	;Wait for return line to be stable	
	:		
LDA SMB3 STX JSR ROL LDA BCS	<pa <lsel <pak Store-Key-Data <scanvalue <scanvalue ?Scan_PB</scanvalue </scanvalue </pak </lsel </pa 	;;Change Port-B to be segments ;;Port-A used as keyboard return line ;;This subroutine should be defined by user ;;Shift scanning value left	Set Port-A to Normal I/C &Wait to Stable
PLX PLA			Read Port-A
RTI			
			Turn OFF Port-B & Port-A set to return line
			Store Key Data
			End of Scanning?
			Yes
			RTI
			TABLE 1-2 :

15.7 LCD RAM map

The LCD RAM map is shown as following:

A - - -									
SEG	ADDRESS	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7
0	200H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
1	201H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
2	202H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
3	203H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
4	204H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
5	205H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
6	206H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
7	207H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
8	208H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
9	209H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
10	20AH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
11	20BH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
12	20CH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
13	20DH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
14	20EH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
15	20FH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
16	210H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
17	211H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
18	212H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
19	213H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
20	214H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
21	215H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
22	216H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
23	217H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
24	218H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
25	219H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
26	21AH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
27	21BH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
28	21CH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
29	21DH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
30	21EH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
31	21FH	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
32	220H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
33	221H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
34	222H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
35	223H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
36	224H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
37	225H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
38	226H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
39	227H	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7

TABLE 15-35: LCD RAM MAPPING

Note:

1. The LCD RAM address is allocated at page 2 of memory map. Only bit0 ~ bit3 is useful when it is 1/4 duty mode.

2. The LCD RAM can be **write & read** as like general purpose RAM.

16. Power Down Mode

The ST2016A has three power down modes: WAI-0, WAI-1 and STP. The instruction WAI will enable mode WAI-0 or WAI-1, which are controlled by WAIT(SYS[2]). The

16.1 WAI-0 Mode:

When **WAIT** is cleared, WAI instruction lets MCU enter WAI-0 mode. In the mean time, oscillator circuit is be active and interrupts, timer/counter, and PSG will all be working. Under such circumstance, CPU stops and the related instruction execution will stop. All registers, RAM, and I/O pins will retain their states before the MCU enter standby mode. WAI-0 mode can be wake-up by reset or interrupt

LDA #\$00 STA SYS WAI ; WAI 0 mode

16.2 WAI-1 Mode:

When **WAIT** is set, WAI instruction let MCU to enter WAI-1 mode. In this mode, the CPU will stop, but PSG, timer/counter won't stop if the clock source is from OSCX.

LDA #\$04 STA SYS WAI ; WAI 1 mode

16.3 STP Mode:

STP instruction will force MCU to enter stop mode. In this mode, MCU stops, but PSG, timer/counter won't stop if the clock source is from OSCX. In power-down mode, MCU only

instruction WAI (WAI-0 and WAI-1 modes) can be wake-up by interrupt. However, the instruction of STP can only be wake-up by hardware reset.

request. If user disable interrupt(CPU register I='1'), MCU will still be wake-up but not go into the interrupt service routine. If interrupt is enabled(CPU register I='0'), the corresponding interrupt vector will be fetched and interrupt service routines will executed.

The sample program is showed as followed:

The wake-up procedure is the same as the one for WAI-0. <u>But the warm-up cycles are occur</u> when WAI-1 wake-up. The sample program is shown as the following:

be wake-up by hardware reset, <u>and the warm-up cycles are</u> <u>occur</u> at the same time.

The sample program is showed as the following:

STP

.

TABLE 16-36: STATUS UNDER POWER DOWN MODE

(SYSCK source from OSC)

Mode	Timer0,1	SYSCK	OSC	oscx	Base Timer	RAM	REG.	LCD	I/O	Wake-up condition
WAI-0			Reset, Any interrupt							
WAI-1	Stop	Stop	Stop			Reset, Any interrupt				
STP	Stop	Stop	Stop			Reset				

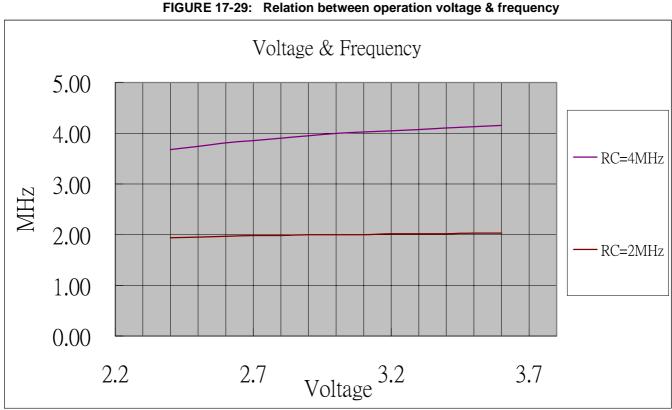
(SYSCK source from OSCX)

Mode	Timer0,1	SYSCK	osc	oscx	Base Timer	RAM	REG.	LCD	I/O	Wake-up condition
WAI-0		Reset, Any interrupt								
WAI-1	Stop	Stop				Reset, Any interrupt				
STP	Stop	Stop				Reset				

17. Electrical Characteristics

DC Supply Voltage ----- -0.3V to +7.0V

Operating Ambient Temperature ------ -10°C to +60°C


Storage Temperature ----- -10°C to +125°C

17.1 DC Electrical Characteristics

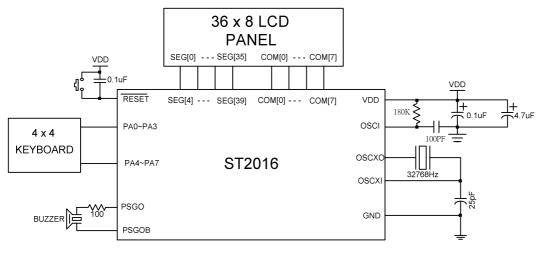
*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. All the ranges are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposed to the absolute maximum rating conditions for extended periods may affect device reliability.

Standard operation conditions: V_{DD} = 3.0V, GND = 0V, T_A = 25°C, OSC = 4M Hz, OSCX = 32768 Hz,unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Voltage	V _{DD}	2.4	3	3.6	V	
Operating Current	I _{OP}		870	1300	μA	All output pins unload, execute NOP instruction, LCD on
Standby Current 1	I _{SB0}		0.5	1	μA	All output pins unload, OSCX off, LCD off (WAIT1/STOP mode)
Standby Current 2	I _{SB1}		1.6	2.5	μA	All output pins unload, OSCX on(normal), LCD off (WAIT1/STOP mode)
Standby Current 3	I _{SB1}		3	4.5	μA	All output pins unload, OSCX on(heavy), LCD off (WAIT1/STOP mode)
Standby Current 6	I _{SB4}		85	128	μA	All output pins unload, OSCX on(normal), LCD off (WAIT0 mode)
Input High Voltage	VIH	$0.7V_{DD}$	-	V _{DD} + 0.3	V	PORT A, PORT B, PORT C, PORT D
		$0.85V_{DD}$	-		V	Reset, INT
Input Low Voltage	VIL	GND -0.3	-	0.3V _{DD}	V	PORT A, PORT B, PORT C PORT D
			-	$0.15V_{\text{DD}}$	V	Reset, INT
Pull-up resistance	R _{OH}		150		KΩ	PORTA, PORTB PORT C (IVOH=0.7Vdd).
Port A,B output high voltage	V _{OH1}	0.7 Vdd	-		V	PORTA, PORTB PORT C (IOH = -3.5mA).
Port A,B output low voltage	V_{OL1}			0.3 Vdd	V	PORTA, PORTB PORT C (IOL= 8.5mA).
COM output low oltage	V _{OL3}			0.3 Vdd	V	COM[4~7], Io∟ = 3.3mA.
Oscillation start time	T _{STT}	-	1	3	S	
Frequency stability	ΔF/F			1	PPM	[F(3.0)-F(2.5)]/F(3.0)(crystal oscillator)
Frequency variation	ΔF/F	-10	3	10	PPM	C1= 15 – 30P.

FIGURE 17-29: Relation between operation voltage & frequency

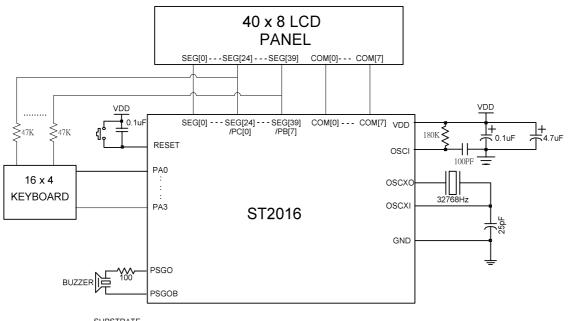
TABLE 17-37: OSCI Resistance to OSC Frequency mapping table


OSCI Resistance	OSC Frequency
185ΚΩ	4MHz
442ΚΩ	2MHz
965ΚΩ	1MHz
2080ΚΩ	0.5MHz

18. Application Circuits

18.1 APPLICATION CIRCUIT UNDER 3V OPERATING VOLTAGE

VDD	: 3V
Clock	: 32768Hz crystal and 4.0MHz RC oscillator
LCD	: 1/8 duty
I/O	


ALARM : PSGO, PSGOB

SUBSTRATE CONNECTS TO GND.

FIGURE 18-30: APPLICATION CIRCUIT WITHOUT LCD KEYBOARD AWAKING PULSE

VDD	: 3V
Clock	: 32768Hz crystal and 4.0MHz RC oscillator
LCD	: 1/8 duty
I/O	: PORT Á
ALARM	: PSG0, PSG1

SUBSTRATE CONNECTS TO GND

FIGURE 18-31: APPLICATION CIRCUIT WITH LCD KEYBOARD AWAKING PULSE

Note:

- 1. COMs and SEGs output GND level, while the LCD is turned off.
- 2. If LCD is turned off, Keyboard Awaking Pulses must be turned off at the same time.
- 3. Connect one capacitor of 100PF to OSCI stabilize oscillation frequency. This capacitor must be placed close to OSCI.

19. REVERSE

Version			
	Page 8 Page 47	Modifying Memory mapping diagram. Modifying example code and flow chart	
Version	n 1.3:		
	Page51/52	Modifying Reset pin connect a switch to VDD in Application Circuit	
Version			
	Page 42	Adding the Measure Condition on TABLE 15-33:	
	Page 49	Modifying the DC Charateristic	
	Page 51/52	Modifying the Application Circuit (1000P→100P)2003/8/4	
Version			
	Page 1	Modifying operation voltage range	
	Page 5	Fill pad description	
Version	1.0:		
	Page 19	Modifying the description of Port-D.	
	Page 43	Fill LCD Power Consumption.	
	Page 50	Fill electrical characteristic table .	
	Page 51	Add FIGURE 17-29: & TABLE 17-37:2003/7/4	
Version	0.4:		
	Page 48/49	Modifying FIGURE 18-30: /FIGURE 18-31: and note.	
Version	04:		
	Page 3	Adding Pad Diagram.	
	Page 19	Modifying TABLE 10-17: (SCAN) to (COM).	
	Page 49/50	Modifying FIGURE 18-30: /FIGURE 18-31: and note	
	Page 51	Adding Pad Location2003/1/29	
Version	03:		
	Page 27	Adding TABLE 13-25: to describe register "PSGC2"	
	Page 43	Modifying example for using keyboard scan function.	
	Page 12	Adding register "PAK" description.	
	Page 19	Adding exposition of port-D.	
	Page 41	Modifying the LCD source clock table	
Version	0.2:		
	Page 40	Modifying the driving strength table	
Version	0.1:		