RP1238407.3 MHzSAW Resonator

- Ideal for 418 MHz Superhet Receiver LOs
- Nominal Insertion Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case

The RP1238 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 407.30 MHz. The RP1238 is designed for 418.0 MHz superhet receivers in remote-control and wireless security applications operating in the United Kingdom under DTI MPT 1340 and in the USA under FCC Part 15.

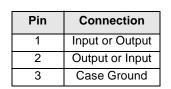
Electrical Characteristics

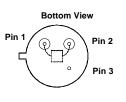
Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	2, 3, 4, 5,	407.200		407.400	MHz
	Tolerance from 407.300 MHz	Δf_C	2, 3, 4, 3,			±100	kHz
Insertion Loss		IL	2, 5, 6		5.4	8.0	dB
Quality Factor	Unloaded Q	QU	F 6 7		13,700		
	50 Ω Loaded Q	QL	5, 6, 7		6,300		
Temperature Stability	Turnover Temperature	Т _О		43	58	73	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +16		kHz
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			86	152	Ω
	Motional Inductance	L _M	5, 7, 9		462.150		μH
	Motional Capacitance	C _M			0.330391		fF
	Shunt Static Capacitance	CO	5, 6, 9	2.1	2.4	2.7	pF
Lid Symbolization (in addition to Lot and/or Date Codes)		RFM P1238					

${\cal T}$ CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
- 4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, oscillator T_O is 20° less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

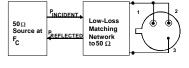

407.3 MHz SAW Resonator

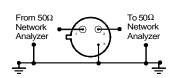

Absolute Maximum Ratings

Rating	Value	Units	
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm	
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC	
Case Temperature	-40 to +85	°C	

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

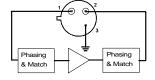


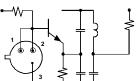


Typical Test Circuit

Power Test

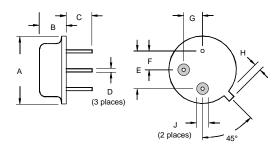
Electrical Test




CW RF Power Dissipation = P - P INCIDENT REFLECTED

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

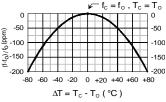

Conventional Two-Port Design:

Simulated One-Port Design:

Case Design

RF Monolithics, Inc. Phone: (972) 233-2903

Fax: (972) 387-9148


Equivalent LC Model

The following equivalent LC model is valid near resonance:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millim	neters	Inches		
Dimensions	Min	Max	Min	Мах	
A		9.30		0.366	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		

©1998 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.

E-mail: info@rfm.com http://www.rfm.com RP1238-120298