### INTEGRATED CIRCUITS

## DATA SHEET

# **74F298**Quad 2-input multiplexer with storage

**Product specification** 

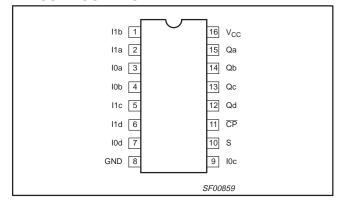
1989 Aug 14

IC15 Data Handbook





74F298


### **FEATURES**

- Fully synchronous operation
- Select from two data sources
- Buffered, negative edge triggered clock
- Provides the equivalent of function capabilities of two separate MSI functions (74F157 and 74F175)

### **DESCRIPTION**

The 74F298 is a high speed Quad 2-Input Multiplexer with storage. It selects 4 bits of data from two sources (ports) under the control of a common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the High-to-Low transition of the clock (CP). The 4-bit register is fully edge triggered. The data inputs (I0 and I1) and Select input (S) must be stable only one setup time prior to the High-to-Low transition of the clock for predictable operation.

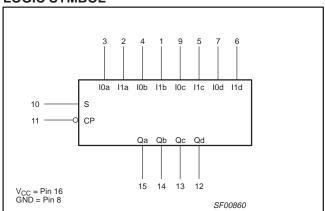
### **PIN CONFIGURATION**



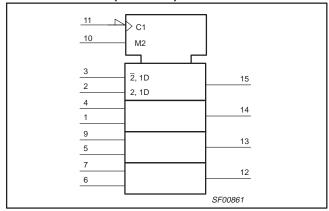
| TYPE   | TYPICAL f <sub>MAX</sub> | TYPICAL<br>SUPPLY CURRENT<br>(TOTAL) |
|--------|--------------------------|--------------------------------------|
| 74F298 | 115MHz                   | 30mA                                 |

### ORDERING INFORMATION

|                    | ORDER CODE                                                           |           |  |
|--------------------|----------------------------------------------------------------------|-----------|--|
| DESCRIPTION        | COMMERCIAL RANGE $V_{CC}$ = 5V $\pm 10\%$ , $T_{amb}$ = 0°C to +70°C | PKG DWG # |  |
| 16-pin plastic DIP | N74F298N                                                             | SOT38-4   |  |
| 16-pin plastic SO  | N74F298D                                                             | SOT109-1  |  |


### INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

| PINS               | DESCRIPTION                       | 74F (U.L.) HIGH/LOW | LOAD VALUE HIGH/LOW |  |  |
|--------------------|-----------------------------------|---------------------|---------------------|--|--|
| 10a, 10b, 10c, 10d | Data inputs                       | 1.0/1.0             | 20μA/0.6mA          |  |  |
| l1a, l1b, l1c, l1d | Data inputs                       | 1.0/1.0             | 20μA/0.6mA          |  |  |
| S                  | Select input                      | 1.0/1.0             | 20μA/0.6mA          |  |  |
| CP                 | Clock input (active falling edge) | 1.0/1.0             | 20μA/0.6mA          |  |  |
| Qa, Qb, Qc, Qd     | Data outputs                      | 50/33               | 1.0mA/20mA          |  |  |

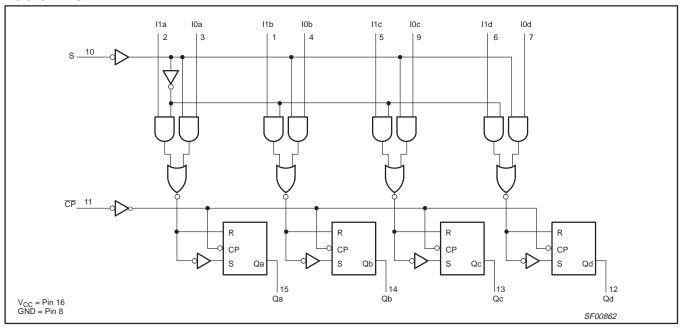

### NOTE:

One (1.0) FAST unit load is defined as:  $20\mu A$  in the High state and 0.6mA in the Low state.

### **LOGIC SYMBOL**



### LOGIC SYMBOL (IEEE/IEC)




Philips Semiconductors Product specification

### Quad 2-input multiplexer with storage

74F298

### **LOGIC DIAGRAM**



### **FUNCTION TABLE**

| OPERATING  | OUTPUT |     | UTS | INP |              |
|------------|--------|-----|-----|-----|--------------|
| OPERATING  | Qn     | l1n | I0n | S   | CP           |
| Load sourc | L      | Х   | I   | I   | $\downarrow$ |
| Load sourc | Н      | Х   | h   | I   | $\downarrow$ |
| Load sourc | L      | I   | Х   | h   | $\downarrow$ |
| Load sourc | Н      | h   | Х   | h   | $\downarrow$ |

Н

High voltage level High voltage level one setup time prior to the High-to-Low h

clock transition

Low voltage level

Low voltage level one setup time prior to the High-to-Low

clock transition

Don't care X

High-to-Low clock transition

### **ABSOLUTE MAXIMUM RATINGS**

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

| SYMBOL           | PARAMETER                                      | RATING                  | UNIT |
|------------------|------------------------------------------------|-------------------------|------|
| V <sub>CC</sub>  | Supply voltage                                 | -0.5 to +7.0            | V    |
| V <sub>IN</sub>  | Input voltage                                  | -0.5 to +7.0            | V    |
| I <sub>IN</sub>  | Input current                                  | −30 to +5               | mA   |
| V <sub>OUT</sub> | Voltage applied to output in High output state | –0.5 to V <sub>CC</sub> | V    |
| I <sub>OUT</sub> | Current applied to output in Low output state  | 40                      | mA   |
| T <sub>amb</sub> | Operating free-air temperature range           | 0 to +70                | °C   |
| T <sub>stg</sub> | Storage temperature range                      | -65 to +150             | °C   |

1989 Aug 14

74F298

### RECOMMENDED OPERATING CONDITIONS

| SYMBOL           | PARAMETER                            |     | UNIT |     |      |
|------------------|--------------------------------------|-----|------|-----|------|
| STWIBUL          | PARAMETER                            | MIN | NOM  | MAX | UNII |
| V <sub>CC</sub>  | Supply voltage                       | 4.5 | 5.0  | 5.5 | V    |
| V <sub>IH</sub>  | High-level input voltage             | 2.0 |      |     | V    |
| V <sub>IL</sub>  | Low-level input voltage              |     |      | 0.8 | V    |
| I <sub>IK</sub>  | Input clamp current                  |     |      | -18 | mA   |
| I <sub>OH</sub>  | High-level output current            |     |      | -1  | mA   |
| I <sub>OL</sub>  | Low-level output current             |     |      | 20  | mA   |
| T <sub>amb</sub> | Operating free-air temperature range | 0   |      | 70  | °C   |

### DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

| SYMBOL          | PARAMETER                                 |                  | TEST CONDITIONS <sup>NO</sup>                                  | MIN                 | TYP<br>NO TAG | MAX  | UNIT |   |
|-----------------|-------------------------------------------|------------------|----------------------------------------------------------------|---------------------|---------------|------|------|---|
| V               | Ligh lovel output voltage                 |                  | V <sub>CC</sub> = MIN, V <sub>IL</sub> = MAX,                  | ±10%V <sub>CC</sub> | 2.5           |      |      | V |
| V <sub>OH</sub> | High-level output voltage                 |                  | $V_{CC} = MIN, V_{IL} = MAX,$<br>$V_{IH} = MIN, I_{OH} = -MAX$ | ±5%V <sub>CC</sub>  | 2.7           | 3.4  |      | V |
|                 | Lave lavel and selection                  |                  | $V_{CC} = MIN, V_{IL} = MAX,$ $\pm 10\% V_{CC}$                |                     |               | 0.30 | 0.50 | V |
| V <sub>OL</sub> | Low-level output voltage                  |                  | V <sub>IH</sub> = MIN, I <sub>OL</sub> =– MAX                  | ±5%V <sub>CC</sub>  |               | 0.30 | 0.50 | V |
| V <sub>IK</sub> | Input clamp voltage                       |                  | $V_{CC} = MIN, I_I = I_{IK}$                                   |                     | -0.73         | -1.2 | V    |   |
| l <sub>l</sub>  | Input current at maximum in               | put voltage      | $V_{CC} = MAX, V_I = 7.0V$                                     |                     |               | 100  | μΑ   |   |
| I <sub>IH</sub> | High-level input current                  |                  | $V_{CC} = MAX, V_I = 2.7V$                                     |                     |               | 20   | μΑ   |   |
| I <sub>IL</sub> | Low-level input current                   |                  | $V_{CC} = MAX, V_I = 0.5V$                                     |                     |               | -0.6 | mA   |   |
| Ios             | Short-circuit output current <sup>N</sup> | O TAG            | V <sub>CC</sub> = MAX                                          | -60                 |               | -150 | mA   |   |
|                 | I <sub>CCH</sub>                          |                  | V MAY                                                          |                     | 30            | 40   | mA   |   |
| Icc             | Supply current (total)                    | I <sub>CCL</sub> | $V_{CC} = MAX$                                                 |                     | 32            | 40   | mA   |   |

### NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

2. All typical values are at  $V_{CC}$  = 5V,  $T_{amb}$  = 25°C.

### **AC ELECTRICAL CHARACTERISTICS**

|                                      |                               | TEST<br>CONDITION  |                                                                              |            |            |                                                                                         |            |    |
|--------------------------------------|-------------------------------|--------------------|------------------------------------------------------------------------------|------------|------------|-----------------------------------------------------------------------------------------|------------|----|
| SYMBOL                               | PARAMETER                     |                    | $T_{amb} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50pF$ $R_{L} = 500\Omega$ |            |            | T <sub>amb</sub> = 0°C<br>V <sub>CC</sub> = +5.<br>C <sub>L</sub> =<br>R <sub>L</sub> = | UNIT       |    |
|                                      |                               |                    | MIN                                                                          | TYP        | MAX        | MIN                                                                                     | MAX        |    |
| f <sub>MAX</sub>                     | Maximum clock frequency       | Waveform<br>NO TAG | 110                                                                          | 115        |            | 105                                                                                     |            | ns |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>CP tp Qn | Waveform<br>NO TAG | 4.0<br>4.5                                                                   | 5.5<br>6.5 | 7.5<br>8.5 | 4.0<br>4.5                                                                              | 9.0<br>9.5 | ns |

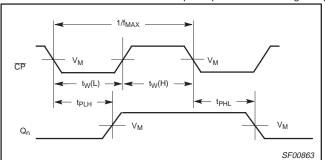
1989 Aug 14 4

<sup>3.</sup> Not more than one output should be shorted at a time. For testing I<sub>OS</sub>, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I<sub>OS</sub> tests should be performed last.

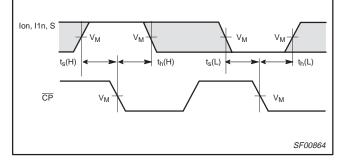
Product specification Philips Semiconductors

### Quad 2-input multiplexer with storage

74F298

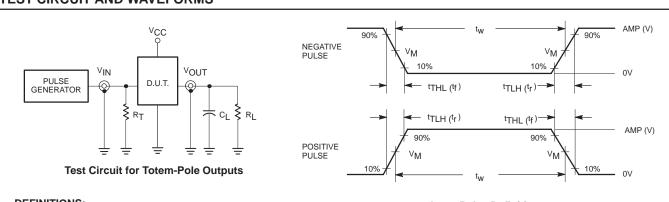

### **AC SETUP REQUIREMENTS**

|                                          |                                                |                    | LIMITS     |                                                                                     |        |                                                                                         |      |    |  |
|------------------------------------------|------------------------------------------------|--------------------|------------|-------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|------|----|--|
| SYMBOL                                   | PARAMETER                                      | TEST<br>CONDITION  | V          | <sub>mb</sub> = +25°<br>cc = +5.0<br>C <sub>L</sub> = 50pF<br>R <sub>L</sub> = 500Ω | V<br>= | T <sub>amb</sub> = 0°0<br>V <sub>CC</sub> = +5.<br>C <sub>L</sub> =<br>R <sub>L</sub> = | UNIT |    |  |
|                                          |                                                |                    | MIN        | TYP                                                                                 | MAX    | MIN                                                                                     | MAX  | ]  |  |
| t <sub>S</sub> (H)<br>t <sub>S</sub> (L) | Setup time, High or Low I0n, I1n to CP         | Waveform<br>NO TAG | 2.0<br>2.0 |                                                                                     |        | 2.0<br>2.0                                                                              |      | ns |  |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low<br>I0n, I1n to CP       | Waveform<br>NO TAG | 1.0<br>1.0 |                                                                                     |        | 1.0<br>1.0                                                                              |      | ns |  |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup time, High or Low<br>S to CP             | Waveform<br>NO TAG | 6.0<br>5.0 |                                                                                     |        | 7.0<br>6.0                                                                              |      | ns |  |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low<br>S to $\overline{CP}$ | Waveform<br>NO TAG | 0          |                                                                                     |        | 0<br>0                                                                                  |      | ns |  |
| t <sub>w</sub> (H)<br>t <sub>w</sub> (L) | CP Pulse width,<br>High or Low                 | Waveform<br>NO TAG | 5.0<br>5.0 |                                                                                     |        | 5.0<br>7.0                                                                              |      | ns |  |


### **AC WAVEFORMS**

For all waveforms,  $V_M = 1.5V$ .

The shaded areas indicate when the input is permitted to change for predictable output performance.




Waveform 1. Clock Input to Output, Clock Pulse Width, and **Maximum Clock Frequency** 



Waveform 2. Data Setup and Hold Times

### **TEST CIRCUIT AND WAVEFORMS**



### **DEFINITIONS:**

R<sub>L</sub> = Load resistor;

see AC ELECTRICAL CHARACTERISTICS for value.

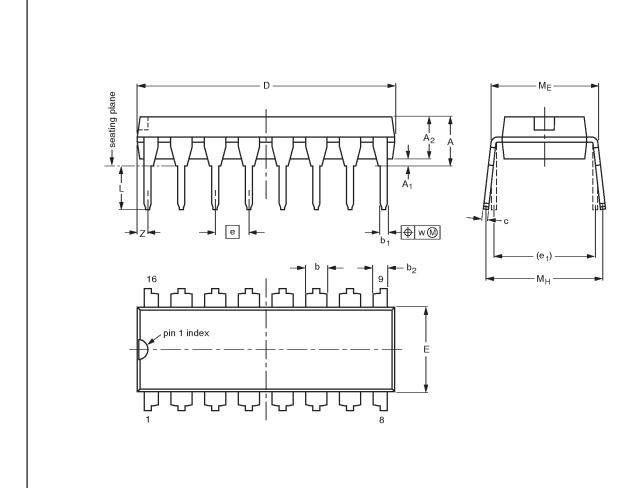
Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.

Termination resistance should be equal to  $Z_{\mbox{\scriptsize OUT}}$  of pulse generators.

### **Input Pulse Definition**

|   | family | INP       | INPUT PULSE REQUIREMENTS |           |                |                  |                  |  |  |  |  |  |  |
|---|--------|-----------|--------------------------|-----------|----------------|------------------|------------------|--|--|--|--|--|--|
|   | family | amplitude | $V_{\text{M}}$           | rep. rate | t <sub>w</sub> | t <sub>TLH</sub> | t <sub>THL</sub> |  |  |  |  |  |  |
| ĺ | 74F    | 3.0V      | 1.5V                     | 1MHz      | 500ns          | 2.5ns            | 2.5ns            |  |  |  |  |  |  |

SF00006


1989 Aug 14 5 Philips Semiconductors Product specification

### Quad 2-input multiplexer with storage

74F298

### DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4



### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

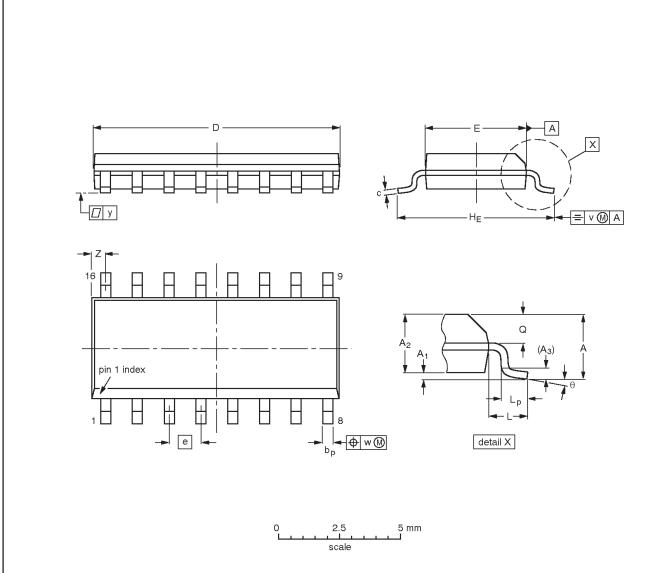
| UI  | NIT | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | b <sub>2</sub> | C              | D <sup>(1)</sup> | E <sup>(1)</sup> | e    | e <sub>1</sub> | L            | ME           | M <sub>H</sub> | w     | Z <sup>(1)</sup><br>max. |
|-----|-----|-----------|------------------------|------------------------|----------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|----------------|-------|--------------------------|
| m   | nm  | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.30   | 0.53<br>0.38   | 1.25<br>0.85   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3    | 0.254 | 0.76                     |
| inc | hes | 0.17      | 0.020                  | 0.13                   | 0.068<br>0.051 | 0.021<br>0.015 | 0.049<br>0.033 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.10 | 0.30           | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33   | 0.01  | 0.030                    |

scale

10 mm

#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


| OUTLINE |     | REFER | RENCES | EUROPEAN   | ISSUE DATE                      |
|---------|-----|-------|--------|------------|---------------------------------|
| VERSION | IEC | JEDEC | EIAJ   | PROJECTION | ISSUE DATE                      |
| SOT38-4 |     |       |        | □ •        | <del>92-11-17</del><br>95-01-14 |

1989 Aug 14 6

74F298

### SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1



### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С                | D <sup>(1)</sup> | E <sup>(1)</sup> | е     | HE             | L     | Lp             | Q              | v    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25           | 0.49<br>0.36 | 0.25<br>0.19     | 10.0<br>9.8      | 4.0<br>3.8       | 1.27  | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6     | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01           |              | 0.0100<br>0.0075 |                  | 0.16<br>0.15     | 0.050 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 | 0.028<br>0.020 | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

### Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE  |         | REFER    | EUROPEAN | ISSUE DATE |            |                                   |  |
|----------|---------|----------|----------|------------|------------|-----------------------------------|--|
| VERSION  | IEC     | JEDEC    | EIAJ     |            | PROJECTION | ISSUE DATE                        |  |
| SOT109-1 | 076E07S | MS-012AC |          |            |            | <del>-95-01-23-</del><br>97-05-22 |  |

1989 Aug 14 7

74F298

#### Data sheet status

| Data sheet status         | Product<br>status | Definition [1]                                                                                                                                                                                                                                            |
|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification   | Development       | This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.                                                                                                         |
| Preliminary specification | Qualification     | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product. |
| Product specification     | Production        | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                      |

<sup>[1]</sup> Please consult the most recently issued datasheet before initiating or completing a design.

#### **Definitions**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### **Disclaimers**

**Life support** — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05116

Let's make things better.

Philips Semiconductors



