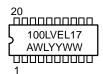
3.3V ECL Quad Differential Receiver

The MC100LVEL17 is a 3.3 V ECL, quad differential receiver. The device is functionally equivalent to the E116 device with the capability of operation from either a -3.3 V or +3.3 V supply voltage.

Under open input conditions, the \overline{D} input will be biased at $V_{CC}/2$ and the D input will be pulled down to V_{EE} . This operation will force the Q output LOW and ensure stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- 325 ps Propagation Delay
- High Bandwidth Output Transitions
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC} = 3.0 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -3.8 V
- Internal Input Pulldown Resistors D Inputs;
 Pullup and Pulldown on D Inputs
- Q Output will Default LOW with Inputs Open or at V_{EE}



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

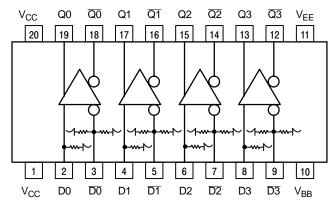
SO-20L DW SUFFIX CASE 751D

A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week


ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL17DW	SO-20L	38 Units/Rail
MC100LVEL17DWR2	SO-20L	1000 Tape & Reel

[†]For additional tape and reel information, refer to Brochure BRD8011/D.

1

^{*}For additional marking information, refer to Application Note AND8002/D.

 * All V_{CC} pins are tied together on the die.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout: (Top View)

PIN DESCRIPTION

PIN	FUNCTION
Dn, D n	ECL Differential Data Inputs
Qn, Qn	ECL Differential Data Outputs
V_{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

ATTRIBUTES

Characterist	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection	> 2 kV > 200 V > 4 kV	
Moisture Sensitivity, Indefinite Time O	Level 1	
Flammability Rating	UL 94 V-0 @ 0.125 in	
Transistor Count	141	
Meets or exceeds JEDEC Spec EIA/J	ESD78 IC Latchup Test	

^{1.} For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8 to 0	V
Vi	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 to 0 -6 to 0	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	SO-20L SO-20L	90 60	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SO-20L	30 to 35	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 3)

			-40 °C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		27	33	mA
V _{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 5)										
	Vpp < 500 mV	1.3		2.9	1.2		2.9	1.2		2.9	V
	Vpp ≧ 500 mV	1.5		2.9	1.4		2.9	1.4		2.9	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Dn	0.5			0.5			0.5			μΑ
	Dn	- 300			- 300			- 300			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The

circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V.

4. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

5. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

LVNECL DC CHARACTERISTICS V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 6)

		-40 °C		25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		27	33	mA
V _{OH}	Output HIGH Voltage (Note 7)	- 1085	- 1005	- 880	- 1025	- 955	- 880	- 1025	- 955	- 880	mV
V _{OL}	Output LOW Voltage (Note 7)	- 1830	- 1695	- 1555	- 1810	- 1705	- 1620	- 1810	- 1705	- 1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	- 1165		- 880	- 1165		- 880	- 1165		- 880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	- 1810		- 1475	- 1810		- 1475	- 1810		- 1475	mV
V _{BB}	Output Voltage Reference	- 1.38		- 1.26	- 1.38		- 1.26	- 1.38		- 1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 8)										
	Vpp < 500 mV	- 2.0		- 0.4	- 2.1		- 0.4	- 2.1		- 0.4	V
	Vpp ≧ 500 mV	- 1.8		- 0.4	- 1.9		- 0.4	- 1.9		- 0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Dn	0.5			0.5			0.5			μΑ
	Dn	- 300			- 300			- 300			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V.
 Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

AC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 9)

			-40 °C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
f _{max}	Maximum Toggle Frequency					1.75					GHz	
t _{PLH} t _{PHL}	Propagation Delay Diff D to Q S.E.	330 280		530 580	350 300		550 600	360 310		560 610	ps	
t _{SKEW}	Skew Output-to-Output (Note 10) Part-to-Part (Diff) (Note 10) Duty Cycle (Diff) (Note 11)			75 200 25			75 200 25			75 200 25	ps	
t _{JITTER}	Random Clock Jitter (RMS)					0.7					ps	
V _{PP}	Input Swing (Note 12)	150		1000	150		1000	150		1000	mV	
t _r t _f	Output Rise/Fall Times Q (20% - 80%)	280		550	280		550	280		550	ps	

^{9.} VEE can vary ±0.3 V.

- 10. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
- 11. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
- 12. V_{PP}(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

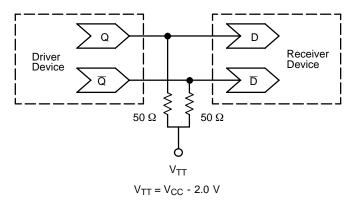


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 - ECLinPS Circuit Performance at Non-Standard V_{IH} Levels

AN1405 - ECL Clock Distribution Techniques

AN1406 - Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 - Metastability and the ECLinPS Family

AN1560 - Low Voltage ECLinPS SPICE Modeling Kit

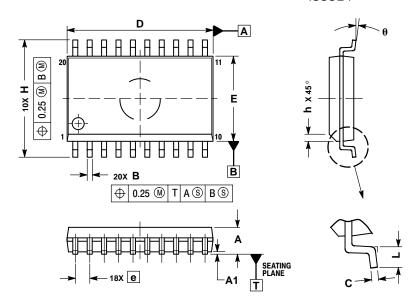
AN1568 - Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 - The ECL Translator Guide

AND8001 - Odd Number Counters Design


AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

AND8090 - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SO-20L DW SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M. 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
 - MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
В	0.35	0.49							
С	0.23	0.32							
D	12.65	12.95							
Е	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
θ	0 °	7 °							

ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.