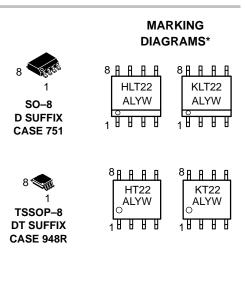

5V Dual TTL to Differential PECL Translator

The MC10ELT/100ELT22 is a dual TTL to differential PECL translator. Because PECL (Positive ECL) levels are used only +5 V and ground are required. The small outline 8-lead package and the low skew, dual gate design of the ELT22 makes it ideal for applications which require the translation of a clock and a data signal.

- 1.2 ns Typical Propagation Delay
- <300 ps Typical Output to Output Skew
- PNP TTL Inputs for Minimal Loading
- Flow Through Pinouts
- ESD Protection: >2 KV HBM, >200 V MM
- Operating Range: V_{CC} = 4.75 V to 5.25 V with GND= 0 V
- No Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 51 devices

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

PIN DESCRIPTION


PIN	FUNCTION
Qn, <u>Qn</u>	PECL Differential Outputs*
Dn	TTL Inputs
V _{CC}	Positive Supply
GND	Ground

* Output state undetermined when inputs are open.

ON Semiconductor**

http://onsemi.com

H = MC10	L = Wafer Lot
K = MC100	Y = Year
A = Assembly Location	W = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

ORDERING INFORMATION									
Device	Package	Shipping							
MC10ELT22D	SO–8	98 Units/Rail							
MC10ELT22DR2	SO–8	2500 Tape & Reel							
MC100ELT22D	SO–8	98 Units/Rail							
MC100ELT22DR2	SO–8	2500 Tape & Reel							
MC10ELT22DT	TSSOP-8	98 Units/Rail							
MC10ELT22DTR2	TSSOP-8	2500 Tape & Reel							
MC100ELT22DT	TSSOP-8	98 Units/Rail							
MC100ELT22DTR2	TSSOP-8	2500 Tape & Reel							

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	GND = 0 V		7	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	7	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44 \pm 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

10ELT SERIES PECL DC CHARACTERISTICS $V_{CC} = 5.0$ V; GND = 0.0 V (Note 1.)

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Power Supply Current			22			22			22	mA
V _{OH}	Output HIGH Voltage (Note 2.)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2.)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Output parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.25 V.

2. Outputs are terminated through a 50 ohm resistor to $V_{\mbox{\scriptsize CC}}\mbox{--}2$ volts.

100ELT SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; GND = 0.0 V (Note 1.)

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Power Supply Current			22			22			22	mA
V _{OH}	Output HIGH Voltage (Note 2.)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2.)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Output parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.25 V.

2. Outputs are terminated through a 50 ohm resistor to $V_{\mbox{CC}}\mbox{--}2$ volts.

Symbol	Characteristic	Condition	Min	Тур	Мах	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V			20	μA
I _{IHH}	Input HIGH Current	V _{IN} = 7.0 V			100	μA
I _{IL}	Input LOW Current	V _{IN} = 0.5 V			-0.6	mA
V _{IK}	Input Clamp Diode Voltage	I _{IN} = -18 mA			-1.2	V
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V

TTL INPUT DC CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; T_A = -40° C to 85° C

AC CHARACTERISTICS $\mathsf{V}_{CC}\text{=}~4.75$ V to 5.25 V; GND= 0.0 V

			–40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Input Frequency	100			100			100			MHz
t _{PLH}	Propagation Delay (Note 1.) 1.5 V to 50%	0.6		1.2	0.9	1.2	1.5	0.6		1.35	ns
t _{PHL}	Propagation Delay (Note 1.) 1.5 V to 50%	0.4		1.0	0.5	0.8	1.1	0.7		1.30	ns
t _{JITTER}	Cycle-to-Cycle Jitter			TBD	TBD			TBD			ps
t _r /t _f	Output Rise/Fall Time (20–80%)	0.4		1.6	0.4		1.6	0.4		1.6	ns

1. Specifications for standard TTL input signal.

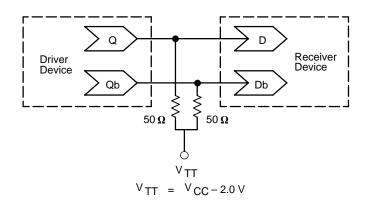
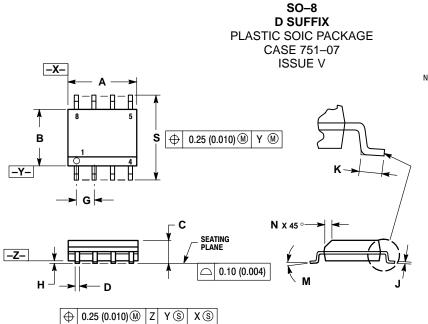



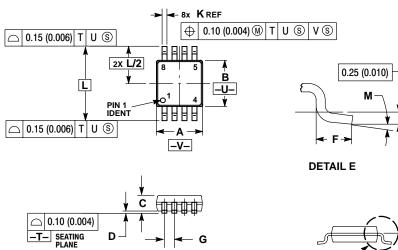
Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1400	_	MC10/100H640 Clock Driver Family I/O SPICE Modeling Kit
AN1404	_	ECLinPS Circuit Performance at Non–Standard V_{IH} Levels
AN1405	_	ECL Clock Distribution Techniques
AN1406	_	Designing with PECL (ECL at +5.0 V)
AN1503	_	ECLinPS I/O SPICE Modeling Kit
AN1504	_	Metastability and the ECLinPS Family
AN1560	_	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	_	Interfacing Between LVDS and ECL
AN1596	_	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	_	Using Wire–OR Ties in ECLinPS Designs
AN1672	_	The ECL Translator Guide
AND8001	_	Odd Number Counters Design
AND8002	_	Marking and Date Codes
AND8020	_	Termination of ECL Logic Devices

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE


MAAMUM WOLD PROTHUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

DETAIL E

G

NOTES:

-W-

- DTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026 BSC		
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193 BSC		
М	0 °	6 °	0°	6°	

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.