

Functional Diagram

Function Table

V _{ID}				_		
(A-B)	DE	RE	ISODE	R	D	MODE
≥ 0.2V	L	L	L	Н	Х	Receive
≤ -0.2V	L	L	L	L	Х	Receive
-7 <v<sub>ID<12</v<sub>	Х	Н	Х	Ζ	Х	Receive/Drive
≥ 1.5	Н	L	Н	Н	Н	Drive
≤-1.5	Н	L	Н	L	L	Drive
Open	L	L	L	Н	Х	Receive

H= High Level, L= Low Level, X= Irrelevant, Z= High Impedance

Ordering Information

Order as IL485-3V. If requesting tape and reel, please specify as IL485-3VTR.

Features

- 3.3 V Input Supply Compatible
- · 2500 V_{RMS} Isolation (1 min)
- 25 ns Maximum Propagation Delay
- 35 MBaud Data Rate
- 1 ns Pulse Skew (typ.)
- Designed for Multi-point Transmission on Long Bus Lines in Noisy Environments
- on Long Bus Lines in Noisy Environment
- ±60 mA Driver Output Capability
- Thermal Shutdown Protection
- Meets or Exceeds ANSI RS-485 and ISO 8482:1987 (E)
- -40°C to +85°C Temperature Range
- · PROFIBUS International Component Recognition
- · 16 Pin SOIC Package
- · UL1577 Approval Pending
- · IEC 61010-1 Approval Pending

Applications

- · PROFIBUS/RS485
- · RS-485 Systems
- · Multiple Data Point Transmission

Description

The IL485-3V is a galvanically isolated, high speed differential bus transceiver, designed for bidirectional data communication on balanced transmission lines. Isolation is achieved through patented* Isoloop[®] technology. The IL485-3V is the first isolated RS-485 interface available in a standard 16 pin SOIC package, which meets the ANSI Standards EIA/TIA-422-B and RS485 and is compatible with 3.3V input supplies.

The IL485-3V has current limiting and thermal shutdown features to protect against output short circuits and bus contention situations where these may cause excessive power dissipation.

With 1 nsec pulse skew and 16 nsec propagation delay, the IL485 is ideal for PROFIBUS applications.

 $\mathit{Isoloop}^{\circledast}$ is a registered trademark of NVE Corporation

* US Patent number 5,831,426; 6,300,617 and others

IL485-3V

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Storage Temperature	T _S	-65	150	°C
Ambient Operating Temperature	T _A	-40	85	°C
Voltage Range at A or B Bus Pins		-7	12	V
Supply Voltage ⁽¹⁾	V_{DD1}, V_{DD2}	-0.5	7	V
Digital Input Voltage		-0.5	V _{DD} + 0.5	V
Digital Output Voltage		-0.5	V _{DD} + 0.1	V
Continuous Total Power Dissipation			725	mW (25°C)
			377	mW (85°C)
Maximum Output Current	I _O		95	mA
Lead Solder Temperature (10s)			260	°C
ESD	2kV H	uman Body	Model	

Insulation Specifications

1					
Parameter	Condition	Min.	Тур.	Max.	Units
Creepage Distance (External)		8.077			mm
Barrier Impedance			$>10^{14}$ 7		$\Omega \parallel pF$
Leakage Current	240 V _{RMS}		0.2		μΑ
	60Hz				

Recommended Operating Conditions

Parameters	Symbol	Min.	Max.	Units	
Supply Voltage	V _{DD1}	3.0	5.5	V	
Supply totage	V_{DD2}	4.5	5.5	·	
Input Voltage at any bus terminal	V _I		12	V	
(separately or common mode)	VIC		-7		
High-Level Digital Input Voltage (VDD1=3.3 V)	V	2.4		V	
(VDD1=5.0 V)	V_{IH}	3.0		v	
Low-Level Digital Input Voltage	V _{IL}		0.8	V	
Differential Input Voltage ⁽²⁾	V _{ID}		+12/-7	V	
High-Level Output Current (Driver)	I _{OH}		-60	mA	
High-Level Digital Output Current (Receiver)	I _{OH}		8	mA	
Low-Level Output Current (Driver)	I _{OL}		60	mA	
Low-Level Digital Output Current (Receiver)	I _{OL}		8	mA	
Operating Free Air Temperature	T _A	-40	85	°C	
Digital Input Signal Rise and Fall Times	t _{IR} ,t _{IF}		DC Stable		

IEC61010-1

TUV Certificate Numbers: Approval Pending Classification as Table 1.

Model	Pollution	Material	Max Working	Package Type
	Degree	Group	Voltage	16–SOIC (0.3")
IL485-3V	Π	III	300 Vrms	\checkmark

Driver Section

All Specifications are $T_{\mbox{min}}$ to $T_{\mbox{max}}$ unless otherwise stated.

Parameter	Symbol	Min.	Typ. ⁽⁵⁾	Max.	Units	Test Conditions
Input Clamp Voltage	V _{IK}			-1.5	V	I _I =-18mA
Output Voltage	V ₀	0		6	V	I _O =0
Differential Output Voltage	V _{OD1}	1.5		6	V	I _O =0
Differential Output Voltage ⁽⁶⁾	V _{OD2}	1.5	2.5	5	V	$R_L = 54\Omega$
Differential Output Voltage	V _{OD3}	1.5		5	V	V _{test} =-7 to 12V
Change in Magnitude of (7)	$\Delta V_{OD} $			±0.2	V	$R_L = 54 \text{ or } 100\Omega$
Differential Output Voltage						_
Common Mode Output Voltage	V _{OC}			3	V	$R_L=54 \text{ or } 100\Omega$
	A 18 7 I			-1	* 7	D 54 1000
Change in Magnitude of ⁽⁷⁾	$\Delta V_{OC} $			±0.2	V	$R_L=54 \text{ or } 100\Omega$
Common Mode Output Voltage	x					
Output Current ⁽⁴⁾	I _O			1	mA	Output Disabled V ₀ =12
~ ~ ~ ~				-0.8	mA	V ₀ =-7
High Level Input Current	I_{IH}			10	μΑ	V ₁ =3.5 V
Low Level Input Current	I_{IL}			-10	μΑ	V ₁ =0.4 V
Short-Circuit Output Current	I _{OS}			-250	mA	$V_0 = -6$
				-150		$V_0 = 0$
				250		$V_0 = 8$
Supply Current $(V_{DD2} = +5V)$	I _{DD2}		27	34		
$(V_{DD1} = +5V)$	I _{DD1}		5	10	mA	No Load (Outputs Enabled)
$(V_{DD1} = +3.3V)$	I _{DD1}		3.2	7		
Switching Characteristics						
Parameter	Symbol	Min.	Typ. ⁽⁵⁾	Max.	Units	Test Conditions
Maximum Data Rate		35			Mbd	$R_L = 54\Omega, C_L = 50 pF$
Differential Output Delay Time	t _D (OD)		16	25	ns	$R_L = 54\Omega, C_L = 50 pF$
Pulse Skew ⁽¹⁰⁾	t _{SK(P)}		1	6	ns	$R_L = 54\Omega, C_L = 50 pF$
Differential Output Transition Time	t _T (OD)		8	10	ns	$R_L = 54\Omega, C_L = 50 pF$
Output Enable Time To High Level	t _{PZH}		31	65	ns	$R_L=54\Omega, C_L=50pF$
Output Enable Time To Low Level	t _{PZL}		22	35	ns	$R_L = 54\Omega, C_L = 50 pF$
Output Disable Time From High Level	t _{PHZ}		28	50	ns	$R_L = 54\Omega, C_L = 50pF$
Output Disable Time From Low Level	t _{PLZ}		16	32	ns	$R_L = 54\Omega, C_L = 50 pF$
Skew Limit ⁽³⁾	t _{SK} (LIM)		2	8	ns	$R_L = 54\Omega, C_L = 50 pF$

Receiver Section

All Specifications are T_{\min} to T_{\max} unless otherwise stated.

Parameter	Symbol	Min.	Typ. ⁽⁵⁾	Max.	Units	Test Conditions
Positive-going Input Threshold Voltage	V_{IT+}			0.2	V	$V_0 = 2.7V, I_0 = -0.4mA$
Negative-going Input Threshold Voltage	V _{IT} -	-0.2			V	$V_0 = 0.5V, I_0 = 8mA$
Hysteresis Voltage (V _{IT+} - V _{IT-})	V _{hys}		60		mV	
High Level Digital Output Voltage	V _{OH}	V _{DD} - 0.2			V	$V_{ID} = 200 \text{mV}, I_{OH} = -20 \mu \text{A}$
Low Level Digital Output Voltage	V _{OL}			0.2	V	$V_{ID} = -200 \text{mV}, \ I_{OL} = 20 \mu \text{A}$
High-impedance-state output current	I _{OZ}			±20	μΑ	$V_0 = 0.4$ to $(V_{DD2} - 0.5)$ V
Line Input Current ⁽⁸⁾	II			1	mA	Other Input ⁽¹¹⁾ = $0V V_I = 12V$
				-0.8		V _I =-7V
Input Resistance	r _I		50		kΩ	
SuSupply Current $(V_{DD2} = +5V)$	I _{DD2}		27	34		
$(V_{DD1} = +5V)$	I _{DD1}		5	10	mA	No Load (Outputs Enabled)
$(V_{DD1} = +3.3V)$	I _{DD1}		3.2	7		
Switching Characteristics @ 5V						
Parameter	Symbol	Min.	Typ. ⁽⁵⁾	Max.	Units	Test Conditions
Maximum Data Rate		35			Mbd	$R_L=54\Omega, C_L=50pF$
Propagation Time ⁽⁹⁾	t _{PD}		24	32	ns	V_0 =-1.5 to 1.5V, C_L =15pF
Pulse Skew ⁽¹⁰⁾	t _{SK(P)}		1	6	ns	V_0 =-1.5 to 1.5V, C _L =15pF
Skew Limit ⁽³⁾	t _{SK(lim)}		2	8	ns	$R_L=54\Omega, C_L=50pF$
Output Enable Time To High Level	t _{PZH}		17	24	ns	C _L =15pF
Output Enable Time To Low Level	t _{PZL}		30	45	ns	C _L =15pF
Output Disable Time From High Level	t _{PHZ}		30	45	ns	C _L =15pF
Output Disable Time From Low Level	t _{PLZ}		18	27	ns	C _L =15pF
Switching Characteristics @ 3.3V						
Parameter	Symbol	Min.	Typ. ⁽⁵⁾	Max.	Units	Test Conditions
Maximum Data Rate		35			Mbd	$R_L = 54\Omega, C_L = 50 pF$
Propagation Time ⁽⁹⁾	t _{PD}		27	32	ns	V_0 =-1.5 to 1.5V, C _L =15pF
Pulse Skew ⁽¹⁰⁾	t _{SK(P)}		2	6	ns	V_0 =-1.5 to 1.5V, C_L =15pF
Skew Limit ⁽³⁾	t _{SK(lim)}		4	8	ns	$R_L=54\Omega, C_L=50pF$
Output Enable Time To High Level	t _{PZH}		20	24	ns	C _L =15pF
Output Enable Time To Low Level	t _{PZL}		33	45	ns	C _L =15pF
Output Disable Time From High Level	t _{PHZ}		33	45	ns	C _L =15pF
Output Disable Time From Low Level	t _{PLZ}		20	27	ns	C _L =15pF

Electrostatic Discharge Sensitivity

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Notes:

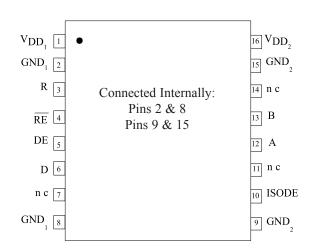
- 1. All Voltage values are with respect to network ground except differential I/O bus voltages.
- 2. Differential input/output voltage is measured at the noninverting terminal A with respect to the inverting terminal B.
- 3. Skew limit is the maximum difference in any two channels in one device.
- The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.
- 5. All typical values are at V_{DD1} , $V_{DD2} = 5V$ or $V_{DD1} = 3.3$ V and $T_A = 25^{\circ}$ C.
- 6. The minimum V_{OD2} with a 100 Ω load is either $\frac{1}{2} V_{OD1}$ or 2V, whichever is greater.
- 7. $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed form one logic state to the other.
- This applies for both power on and power off, refer to ANSI standard RS-485 for exact condition. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.
- 9. Includes 8 ns read enable time. Maximum propagation delay is 25 ns after read assertion.
- 10. Pulse skew is defined as the $|t_{PLH} t_{PHL}|$ of each channel.

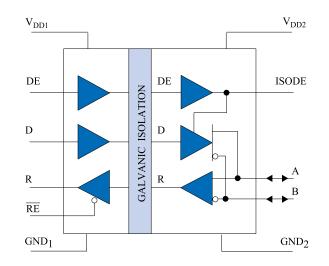
Application Notes:

Power Consumption

Isoloop[®] devices achieve their low power consumption from the manner by which they transmit data across the isolation barrier. By detecting the edge transitions of the input logic signal and converting these to narrow current pulses a magnetic field is created around the GMR Wheatstone bridge. Depending on the direction of the magnetic field, the bridge causes the output comparator to switch following the input logic signal. Since the current pulses are narrow, about 2.5ns wide, the power consumption is independent of mark-to-space ratio and solely dependent on frequency. This has obvious advantages over optocouplers whose power consumption is heavily dependent on its on-state and frequency.

The approximate power supply current per channel for

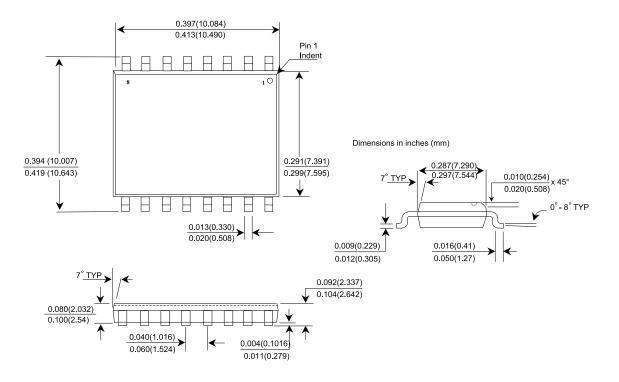

Isoloop[®] is: I(input) = 40 $\left(\frac{f}{fmax}\right)\left(\frac{1}{4}\right)$ mA

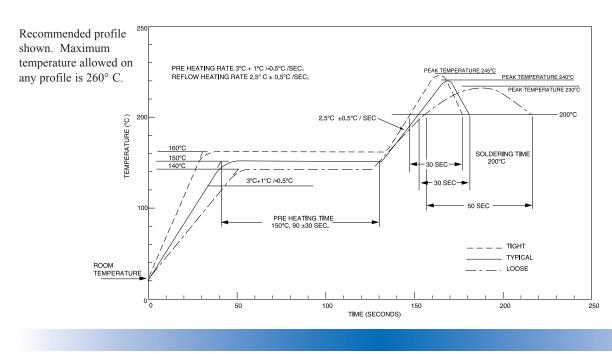

where f = operating frequency fmax = 50 MHz

Power Supplies

It is recommended that low ESR ceramic capacitors be used to decouple the supplies. Both V_{DD1} and V_{DD2} should be bypassed with 47 nF capacitors. These should be placed no further than 1 cm from the device pins for proper operation. In addition, V_{DD2} should have a 10 μ F tantalum capacitor connected in parallel with the 47 nF capacitor.

Pin Configuration




Pin Description

Pin	Mnemonic	Description
1	V _{DD1}	Input Power Supply
2	GND ₁	Input Power Supply Ground Return
3	R	Output Data from Bus
4	RE	Read Data Enable (if \overline{RE} is high, R=high impedance)
5	DE	Drive Enable
6	D	Data Input to Bus
7	nc	No Internal Connection
8	GND ₁	Input Power Supply Ground Return
9	GND ₂	Output Power Supply Ground Return
10	ISODE	Isolated DE Output for use in Profibus applications where the
		state of the drive enable node needs to be monitored
11	nc	No Internal Connection
12	Α	'A' Bus Connection to RS485 (True)
13	В	'B' Bus Connection to RS485 (Inverse)
14	nc	No Internal Connection
15	GND ₂	Output Power Supply Return
16	V _{DD2}	Output Power Supply

IL485-3V (0.3" SOIC-16 Package)

IR Soldering Profile

About NVE

An ISO 9001 Certified Company

NVE Corporation is a high technology components manufacturer having the unique capability to combine leading edge Giant Magnetoresistive (GMR) materials with integrated circuits to make high performance electronic components. Products include Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometer), Digital Magnetic Field Sensors, Digital Signal Isolators and Isolated Bus Transceivers.

NVE is a leader in GMR research and in 1994 introduced the world's first products using GMR material, a line of GMR magnetic field sensors that can be used for position, magnetic media, wheel speed and current sensing.

NVE is located in Eden Prairie, Minnesota, a suburb of Minneapolis. Please visit our Web site at www.nve.com or call 952-829-9217 for information on products, sales or distribution.

NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax: (952) 829-9189 Internet: www.nve.com e-mail: isoinfo@nve.com

The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE Corporation for its use, nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from its use. No license is granted by implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE Corporation does not authorize, nor warrant, any NVE Corporation product for use in life support devices or systems or other critical applications. The use of NVE Corporation's products in such applications is understood to be entirely at the customer's own risk.

Specifications shown are subject to change without notice.

ISB-DS-001-IL485-3V-A December 2002