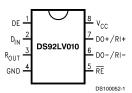


May 1998

DS92LV010A Bus LVDS 3.3/5.0V Single Transceiver

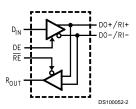
General Description

The DS92LV010A is one in a series of transceivers designed specifically for the high speed, low power proprietary bus backplane interfaces. The device operates from a single 3.3V or 5.0V power supply and includes one differential line driver and one receiver. To minimize bus loading the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility as 4 separate lines are provided (DIN, DE, \overline{RE} , and ROUT). The device also features flow through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10 mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27 Ohms.


The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of ± 1 V.

The receiver threshold is ±100mV over a ±1V common mode range and translates the low voltage differential levels to standard (CMOS/TTL) levels.

Features


- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Balanced Output Impedance
- Lite Bus Loading 5pF typical
- Glitch free power up/down (Driver disabled)
- 3.3V or 5.0V Operation
- ±1V Common Mode Range
- ±100mV Receiver Sensitivity
- High Signaling Rate Capability (above 100 Mbps)
- Low Power CMOS design
- Product offered in 8 lead SOIC package
- Industrial Temperature Range Operation

Connection Diagram

Order Number DS92LV010ATM See NS Package Number M08A

Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Current

ESD (HBM 1.5 kΩ, 100 pF)

Maximum Package Power Dissipation at 25°C

SOIC 1025 mW

Derate SOIC Package 8.2 mW/°C

Storage Temperature Range -65°C to +150°C

260°C

Lead Temperature

(Soldering, 4 sec.)

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC}), or	3.0	3.6	V
Supply Voltage (V _{CC})	4.5	5.5	V
Receiver Input Voltage	0.0	2.9	V
Operating Free Air	-40	+85	°C
Temperature			

Maximum r ackage r ower bissipation at 25 C

DC Electrical Characteristics (Notes 2, 3) $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 3.3V \pm 0.3V$

>2.0 kV

Symbol	Parameter	Conditions	;	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+, DO-/RI-	140	250	360	mV
ΔV_{OD}	V _{OD} Magnitude Change	1				3	30	mV
Vos	Offset Voltage	1			1	1.25	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	$V_{\rm O}$ = 0V, DE = $V_{\rm CC}$				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	I _{OH} = -400 μA	R _{OUT}	2.8	3		V
		Inputs Open			2.8	3		V
		Inputs Shorted			2.8	3		V
		Inputs Terminated, $R_L = 27\Omega$			2.8	3		V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -100 \text{ r}$	nV			0.1	0.4	V
los	Output Short Circuit Current	V _{OUT} = 0V, V _{ID} = +100 mV			-5	-35	-85	mA
V_{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low	1		DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, or 0$	V		-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V, or$	0V		-20	±1	+20	μA
V _{IH}	Minimum Input High Voltage			DIN, DE,	2.0		V _{cc}	V
V _{IL}	Maximum Input Low Voltage				GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V				±1	±10	μA
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V				±1	±10	μA
V_{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA			-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}$, $R_L = 27\Omega$	2	V _{cc}		13	20	mA
I _{CCR}		DE = RE = 0V				5	8	mA
I _{CCZ}		DE = 0V, RE = V _{CC}				3	7.5	mA
I _{CC}		$DE = V_{CC}$, $\overline{RE} = 0V$, $R_{L} =$	27Ω			16	22	mA

DC Electrical Characteristics (Notes 2, 3) (Continued)

 $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
C _{output}	Capacitance @ BUS		DO+/RI+,		5		pF
	Pins		DO-/RI-				

DC Electrical Characteristics (Notes 2, 3)

 $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	3	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+, DO-/RI-	145	270	390	mV
ΔV_{OD}	V _{OD} Magnitude Change					3	30	mV
Vos	Offset Voltage	1			1	1.35	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	V _O = 0V, DE = V _{CC}				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	I _{OH} = -400 μA	R _{OUT}	4.3	5.0		V
		Inputs Open			4.3	5.0		V
		Inputs Shorted			4.3	5.0		V
		Inputs Terminated, $R_L = 27\Omega$			4.3	5.0		V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -100 \text{ r}$	mV			0.1	0.4	V
los	Output Short Circuit Current	V _{OUT} = 0V, V _{ID} = +100 m\	V _{OUT} = 0V, V _{ID} = +100 mV		-35	-90	-130	mA
V _{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low	1		DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, or 0$)V		-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V, or$	0V		-20	±1	+20	μA
V _{IH}	Minimum Input High Voltage			DIN, DE,	2.0		V _{cc}	V
V _{IL}	Maximum Input Low Voltage			RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V				±1	±10	μA
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V				±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA			-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}, R_L = 27\Omega$		V _{cc}		17	25	mA
I _{CCR}		DE = RE = 0V				6	10	mA
I _{CCZ}		$DE = 0V, \overline{RE} = V_{CC}$				3	8	mA
I _{cc}		$DE = V_{CC}$, $\overline{RE} = 0V$, $R_L =$	27Ω			20	25	mA
C _{output}	Capacitance @ BUS Pins			DO+/RI+, DO-/RI-		5		pF

Note 1: "Absolute Maximum Ratings" are these beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except V_{OD} , V_{ID} , V_{TH} and V_{TL} unless otherwise specified.

Note 3: All typicals are given for V_{CC} = +3.3V or 5.0 V and T_A = +25°C, unless otherwise stated.

Note 4: ESD Rating: HBM (1.5 k Ω , 100 pF) > 2.0 kV EAT (0 Ω , 200 pF) > 300V.

Note 5: C_I includes probe and fixture capacitance.

Note 6: Generator waveforms for all tests unless otherwise specified: f = 1 MHz, $ZO = 50 \Omega$, tr, $tf \le 6.0 ns$ (0%-100%) on control pins and $\le 1.0 ns$ for RI inputs.

Note 7: The DS92LV010A is a current mode device and only function with datasheet specification when a resistive load is applied between the driver outputs.

Note 8: For receiver TRI-STATE® delays, the switch is set to V_{CC} for t_{PZL}, and t_{PLZ} and to GND for t_{PZH}, and t_{PHZ}.

AC Electrical Characteristics (Note 6)

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERE	NTIAL DRIVER TIMING REQUIREMEN	ITS	•	•		•
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figures 2, 3 $C_L = 10 \text{ pF}$	1.0	3.0	5.0	ns
t _{PLHD}	Differential Prop. Delay Low to High		1.0	2.8	5.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD	1		0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	4.5	9.0	ns
t _{PLZ}	Disable Time Low to Z	$C_L = 10 \text{ pF}$	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High	1	2.0	5.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.5	9.0	ns
DIFFERE	NTIAL RECEIVER TIMING REQUIREN	IENTS				
t _{PHLD}	Differential Prop. Delay High to Low	Figures 6, 7 C _L = 10 pF	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High		2.5	5.5	10.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD	1		0.5	2.0	ns
t _r	Rise Time			1.5	4.0	ns
t _f	Fall Time			1.5	4.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF (Note 8)	2.0	5.0	7.0	ns
t _{PZH}	Enable Time Z to High	1	2.0	7.0	13.0	ns
t _{PZL}	Enable Time Z to Low	1	2.0	6.0	10.0	ns

AC Electrical Characteristics (Note 6) $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERE	NTIAL DRIVER TIMING REQUIREMEN	ITS	•	'	•	
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figures 2, 3 $C_L = 10 \text{ pF}$	0.5	2.7	4.5	ns
t _{PLHD}	Differential Prop. Delay Low to High		0.5	2.5	4.5	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD			0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low]		0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	3.0	7.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	4.0	7.0	ns
t _{PZL}	Enable Time Z to Low]	1.0	4.0	9.0	ns
DIFFERE	NTIAL RECEIVER TIMING REQUIREN	IENTS				
t _{PHLD}	Differential Prop. Delay High to Low	Figures 6, 7 C _L = 10 pF	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High		2.5	4.6	10.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD	1		0.4	2.0	ns
t _r	Rise Time	1		1.2	2.5	ns
t _f	Fall Time	1		1.2	2.5	ns

AC Electrical Characteristics (Note 6) (Continued)

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERENTIAL RECEIVER TIMING REQUIREMENTS						
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	$C_L = 10 \text{ pF (Note 8)}$	2.0	4.0	6.0	ns
t _{PZH}	Enable Time Z to High		2.0	5.0	9.0	ns
t _{PZL}	Enable Time Z to Low		2.0	5.0	7.0	ns

Test Circuits and Timing Waveforms

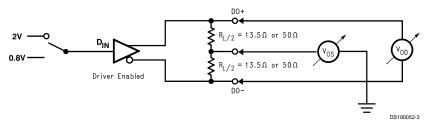


FIGURE 1. Differential Driver DC Test Circuit

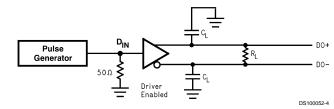


FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

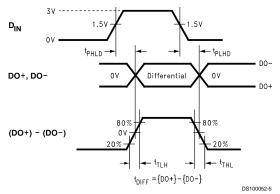


FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

Test Circuits and Timing Waveforms (Continued)

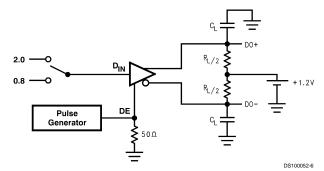


FIGURE 4. Driver TRI-STATE Delay Test Circuit

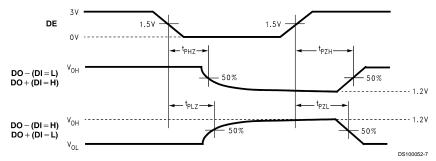


FIGURE 5. Driver TRI-STATE Delay Waveforms

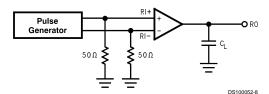


FIGURE 6. Receiver Propagation Delay and Transition Time Test Circuit

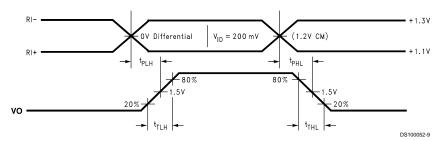


FIGURE 7. Receiver Propagation Delay and Transition Time Waveforms

www.national.com

Test Circuits and Timing Waveforms (Continued)

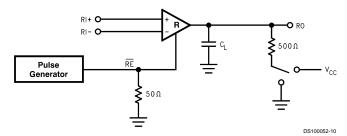


FIGURE 8. Receiver TRI-STATE Delay Test Circuit

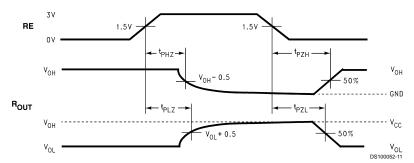
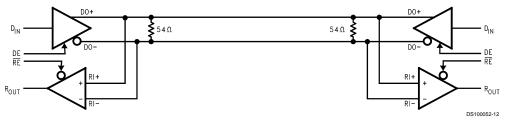
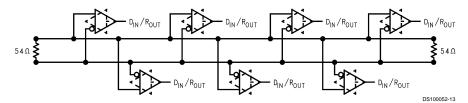




FIGURE 9. Receiver TRI-STATE Delay Waveforms TRI-STATE Delay Waveforms

Typical Bus Application Configurations

Bi-Directional Half-Duplex Point-to-Point Applications

Multi-Point Bus Applications

Application Information

There are a few common practices which should be implied when designing PCB for BLVDS signaling. Recommended practices are:

- Use at least 4 layer PCB board (BLVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (BLVDS port side) connector as possible.

www.national.com

Application Information (Continued)

- Bypass each BLVDS device and also use distributed bulk capacitance. Surface mount capacitors placed close to power and ground pins work best. Two or three multilayer ceramic (MLC) surface mount capacitors (0.1 μF, and 0.01 μF in parallel should be used between each V_{CC} and ground. The capacitors should be as close as possible to the V_{CC} pin.
- Use the termination resistor which best matches the differential impedance of your transmission line.
- Leave unused LVDS receiver inputs open (floating)

TABLE 1. Functional Table

MODE SELECTED	DE	RE
DRIVER MODE	Н	Н
RECEIVER MODE	L	L
TRI-STATE MODE	L	Н
LOOP BACK MODE	Н	L

TABLE 2. Transmitter Mode

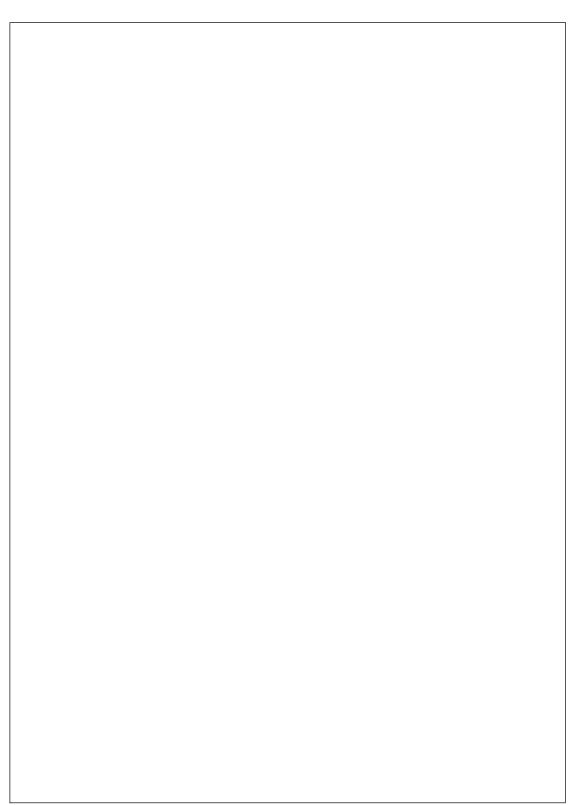
	INPUTS	OUTPUTS	
DE	DI	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	2 > & > 0.8	Х	Х
L	X	Z	Z

L = Low state H = High state

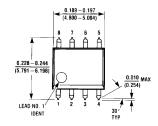
TABLE 3. Receiver Mode

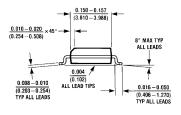
	INPUTS		
RE	RE (RI+)-(RI-)		
L	L (< -100 mV)	L	
L	H (> +100 mV)	Н	
L	100 mV > & > -100 mV	Х	
Н	X	Z	

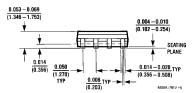
X = High or Low logic state


Z = High impedance state

L = Low state


H = High state


TABLE 4. Device Pin Description


Pin Name	Pin #	Input/Output	Description
DIN	2	I	TTL Driver Input
DO±/RI±	6, 7	I/O	LVDS Driver Outputs/LVDS Receiver Inputs
R _{OUT}	3	0	TTL Receiver Output
RE	5	I	Receiver Enable TTL Input (Active Low)
DE	1	I	Driver Enable TTL Input (Active High)
GND	4	NA	Ground
V _{CC}	8	NA	Power Supply

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number DS92LV010ATM See NS Package Number M08A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-532 85 85

English Tel: +49 (0) 1 80-532 78 32

Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466

Tel: 81-3-5620-6175 Fax: 81-3-5620-6179 Email: sea.support@nsc.com

National Semiconductor

Japan Ltd.