MCP (MULTI-CHIP PACKAGE) FLASH MEMORY AND MOBILE SPECIFIED RAM 32M-BIT FLASH MEMORY AND 16M-BIT CMOS MOBILE SPECIFIED RAM

Description

The MC-242453 is a stacked type MCP (Multi-Chip Package) of $33,554,432$ bits (BYTE mode : 4, 194,304 words by 8 bits, WORD mode : 2,097,152 words by 16 bits) flash memory and 16,777,216 bits ($1,048,576$ words by 16 bits) Mobile specified RAM.
$\star \quad$ The MC-242453 is packaged in a 77 -pin TAPE FBGA and 71 -pin TAPE FBGA.

Features

General Features

- Fast access time : tacc = $90 \mathrm{~ns}(\mathrm{MAX}),. 85 \mathrm{~ns}$ (MAX.) (Vccf $\geq 2.7 \mathrm{~V}$) (Flash Memory) taA $=80,90,100 \mathrm{~ns}$ (MAX.) (Mobile specified RAM)
- Supply voltage : Vccf / Vccm =2.6 to 3.0 V
- Wide operating temperature : $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$

Flash Memory Features

- Two bank organization enabling simultaneous execution of erase / program and read
- Bank organization : 2 banks (8 M bits +24 M bits)
- Memory organization : 4,194,304 words $\times 8$ bits (BYTE mode)

$$
2,097,152 \text { words } \times 16 \text { bits (WORD mode) }
$$

- Sector organization : 71 sectors (8 K bytes / 4K words $\times 8$ sectors, 64 K bytes / 32 K words $\times 63$ sectors)
- Boot sector allocated to the lowest address (sector)
- 3-state output
- Automatic program
- Program suspend / resume
- Unlock bypass program
- Automatic erase
- Chip erase
- Sector erase (sectors can be combined freely)
- Erase suspend / resume
- Program / Erase completion detection
- Detection through data polling and toggle bits
- Detection through RY (/BY) pin

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

- Sector group protection
- Any sector can be protected
- Any protected sector can be temporary unprotected
- Sectors can be used for boot application
- Hardware reset and standby using /RESET pin
- Automatic sleep mode
- Boot block sector protect by /WP (ACC) pin
- Conforms to common flash memory interface (CFI)
- Extra One Time Protect Sector provided

Mobile specified RAM Features

- Memory organization : 1,048,576 words by 16 bits
- Supply current :At operating : 35 mA (MAX.)

At Standby Mode 1: $100 \mu \mathrm{~A}(\mathrm{MAX}$.)
At Standby Mode 2 : $10 \mu \mathrm{~A}$ (MAX.)

- Chip Enable inputs : /CEm
- Byte data control : /LB, /UB
- Standby Mode input : MODE
- Standby Mode 1 : Normal standby (Memory cell data hold valid)
- Standby Mode 2 : Memory cell data hold invalid

^ Ordering Information

Part number	Flash Memory Boot sector	Flash Memory Access time ns (MAX.)	Mobile specified RAM Access time ns (MAX.)	Package
MC-242453F9-B90-BT3	Lowest address (sector) (B type)	$\begin{gathered} 90 \\ 85(\mathrm{Vccf} \geq 2.7 \mathrm{~V}) \end{gathered}$	80	77-pin TAPE FBGA(12×7)
MC-242453F9-B95-BT3 ${ }^{\text {Note }}$			90	
MC-242453F9-B10-BT3			100	
MC-242453F9-B90-BS1 ${ }^{\text {Note }}$			80	71-pin TAPE FBGA(11×7)
MC-242453F9-B95-BS1 ${ }^{\text {Note }}$			90	
MC-242453F9-B10-BS1 ${ }^{\text {Note }}$			100	

Note Under development

* Pin Configurations

/xxx indicates active low signal.

77-pin TAPE FBGA (12×7)

Top View

	A	B	C	D	E	F	G	H	J	K	L	M	N	P
8	NC	NC	NC		A15	IC	IC	A16	CIOf	Vss		NC	NC	NC
7		NC	NC	A11	A12	A13	A14	NC	I/O15, A-1	I/O7	1/014	NC	NC	
6				A8	A19	A9	A10	I/O6	1/013	I/O12	I/O5			
5				/WE	MODE	A20			I/O4	Vccm	NC			
4				WP(ACC)	/RESET	RY(IBY)			1/03	Vccf	1/011			
3				/LB	/UB	A18	A17	I/O1	1/09	1/O10	I/O2			
2		NC	NC	A7	A6	A5	A4	Vss	/OE	1/O0	1/08	NC	NC	
1	NC	NC	NC		A3	A2	A1	A0	/CEf	/CEm	NC	NC	NC	NC

71-pin TAPE FBGA (11×7)

Top View

A	B	C	D	E	F	G	H	J	K	L	M
NC	NC		A15	NC	IC	A16	CIOf	Vss		NC	NC
NC	NC	A11	A12	A13	A14	NC	I/O15, A-1	I/O7	1/O14	NC	NC
		A8	A19	A9	A10	1/06	1/013	1/O12	I/O5		
		/WE	MODE	A20			I/O4	Vccm	NC		
		WP(ACC	/RESET	RY(/BY)			1/O3	Vccf	1/011		
		/LB	/UB	A18	A17	I/O1	1/09	1/O10	I/O2		
NC		A7	A6	A5	A4	Vss	/OE	1/O0	1/08	NC	NC
NC	NC		A3	A2	A1	A0	/CEf	/CEm		NC	NC

Common Pins

A0-A19 : Address inputs
I/O0-I/O15 : Data inputs / outputs
/OE : Output Enable
/WE : Write Enable
Vss : Ground
NC Note 1 : No Connection
IC ${ }^{\text {Note } 2}$: Internal Connection

Flash Memory Pins

A20	: Address inputs	
I/O15, A-1	:	Data inputs / outputs 15 (WORD mode)
	LSB address input (BYTE mode)	
/CEf	:	Chip Enable
RY (/BY)	: Ready (Busy) output	
/RESET	:	Hardware reset input
Vccf	: Supply Voltage	
WP(ACC)	: Hardware Write Protect (Acceleration)	
CIOf	:	Selects 8-bit or 16-bit mode

Mobile specified RAM Pins

/CEm : Chip Enable
MODE : Standby mode select
Vccm : Supply Voltage
/LB, /UB : Byte data select

Note1. Some signals can be applied because this pin is not internally connected.
2. Leave this pin connected to Vss or unconnected (Recommended to connected to Vss).

Remark Refer to Package Drawings for the index mark.

Block Diagram

Bus Operations Table

Caution Other operations except for indicated in this table are inhibited.

Notes 1. When /OE = VIL, VIL can be applied to /WE. When /OE = V_{IH}, a write operation is started.
2. Mobile specified RAM should be Standby.
3. Flash Memory should be Standby or Hardware reset.

Remarks

1. $\mathrm{H}:$ Viн, $^{\mathrm{L}}:$: VIL, \times : Vін or VIL
2. Sector group protection and read the product ID are using a command.
3. MODE pin must be fixed to H during active operation.
4. Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E) for the flash memory bus operations.

Sector Organization / Sector Address Table (Flash Memory)

Flash Memory bottom boot

Bank	Sector Organization K bytes / K words	Address		Sectors Address	Sector Address Table									
				Bank Address Table										
		BYTE mode	WORD mode		A20	A19	A18	A17	A16	A15	A14	A13	A12	
Bank 2	64/32	$\begin{aligned} & \text { 3FFFFFH } \\ & 3 \text { FOOOOH } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1FFFFFH } \\ & \text { 1F8000H } \end{aligned}$		FSA70	1	1	1	1	1	1	X	x	x
	64/32	$\begin{aligned} & \text { 3EFFFFH } \\ & 3 \mathrm{E} 0000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1F7FFFH } \\ & \text { 1F0000H } \end{aligned}$	FSA69	1	1	1	1	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 3DFFFFH } \\ & \text { 3D0000H } \end{aligned}$	$\begin{aligned} & \text { 1EFFFFH } \\ & \text { 1E8000H } \end{aligned}$	FSA68	1	1	1	1	0	1	X	x	x	
	64/32	3CFFFFH 3 C 0000 H	$\begin{aligned} & \text { 1E7FFFH } \\ & \text { 1E0000H } \end{aligned}$	FSA67	1	1	1	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 3BFFFFH } \\ & \text { 3B0000H } \end{aligned}$	1DFFFFH 1D8000H	FSA66	1	1	1	0	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 3AFFFFH } \\ & 3 A 0000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1D7FFFH } \\ & \text { 1D0000H } \end{aligned}$	FSA65	1	1	1	0	1	0	x	x	X	
	64/32	$\begin{aligned} & \text { 39FFFFH } \\ & 390000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1CFFFFH } \\ & \text { 1C8000H } \end{aligned}$	FSA64	1	1	1	0	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 38FFFFH } \\ & 380000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1C7FFFH } \\ & 1 \mathrm{C} 0000 \mathrm{H} \end{aligned}$	FSA63	1	1	1	0	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 37FFFFH } \\ & 370000 \mathrm{H} \end{aligned}$	1BFFFFH 1B8000H	FSA62	1	1	0	1	1	1	x	x	x	
	64/32	$\begin{aligned} & 36 F F F F H \\ & 360000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1B7FFFH } \\ & \text { 1B0000H } \end{aligned}$	FSA61	1	1	0	1	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 35FFFFH } \\ & 350000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1AFFFFH } \\ & \text { 1A8000H } \end{aligned}$	FSA60	1	1	0	1	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 34FFFFH } \\ & 340000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 1A7FFFH } \\ & \text { 1A0000H } \end{aligned}$	FSA59	1	1	0	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 33FFFFH } \\ & 330000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 19FFFFH } \\ & 198000 \mathrm{H} \end{aligned}$	FSA58	1	1	0	0	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 32FFFFH } \\ & 320000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 197FFFH } \\ & 190000 \mathrm{H} \end{aligned}$	FSA57	1	1	0	0	1	0	x	x	x	
	64/32	$\begin{aligned} & 31 \text { FFFFH } \\ & 310000 \mathrm{H} \end{aligned}$	$\begin{aligned} & 18 \mathrm{FFFFH} \\ & 188000 \mathrm{H} \end{aligned}$	FSA56	1	1	0	0	0	1	X	x	X	
	64/32	$\begin{aligned} & 30 F F F F H \\ & 300000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 187FFFH } \\ & 180000 \mathrm{H} \end{aligned}$	FSA55	1	1	0	0	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 2FFFFFH } \\ & \text { 2F0000H } \end{aligned}$	$\begin{aligned} & \text { 17FFFFH } \\ & 178000 \mathrm{H} \end{aligned}$	FSA54	1	0	1	1	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 2EFFFFH } \\ & 2 \mathrm{E} 0000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 177FFFH } \\ & 170000 \mathrm{H} \end{aligned}$	FSA53	1	0	1	1	1	0	x	x	x	
	64/32	2DFFFFH 2D0000H	$\begin{aligned} & 16 \mathrm{FFFFH} \\ & 168000 \mathrm{H} \end{aligned}$	FSA52	1	0	1	1	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 2CFFFFH } \\ & 2 \mathrm{C} 0000 \mathrm{H} \end{aligned}$	$\begin{aligned} & 167 \text { FFFH } \\ & 160000 \mathrm{H} \end{aligned}$	FSA51	1	0	1	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 2BFFFFH } \\ & \text { 2B0000H } \end{aligned}$	$\begin{aligned} & 15 F F F F H \\ & 158000 \mathrm{H} \end{aligned}$	FSA50	1	0	1	0	1	1	x	x	x	
	64/32	2AFFFFH 2A0000H	$\begin{aligned} & 157 \mathrm{FFFH} \\ & 150000 \mathrm{H} \end{aligned}$	FSA49	1	0	1	0	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 29FFFFH } \\ & 290000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 14FFFFH } \\ & 148000 \mathrm{H} \end{aligned}$	FSA48	1	0	1	0	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 28FFFFH } \\ & 280000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 147FFFH } \\ & 140000 \mathrm{H} \end{aligned}$	FSA47	1	0	1	0	0	0	x	x	x	
	64/32	$\begin{aligned} & 27 \mathrm{FFFFH} \\ & 270000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 13FFFFH } \\ & 138000 \mathrm{H} \end{aligned}$	FSA46	1	0	0	1	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 26FFFFH } \\ & 260000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 137FFFH } \\ & 130000 \mathrm{H} \end{aligned}$	FSA45	1	0	0	1	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 25FFFFH } \\ & 250000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 12FFFFH } \\ & 128000 \mathrm{H} \end{aligned}$	FSA44	1	0	0	1	0	1	x	x	X	
	64/32	$\begin{aligned} & \text { 24FFFFH } \\ & 240000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 127FFFH } \\ & 120000 \mathrm{H} \end{aligned}$	FSA43	1	0	0	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 23FFFFH } \\ & 230000 \mathrm{H} \end{aligned}$	$\begin{aligned} & 11 \text { FFFFH } \\ & 118000 \mathrm{H} \end{aligned}$	FSA42	1	0	0	0	1	1	x	x	X	
	64/32	$\begin{aligned} & \text { 22FFFFH } \\ & 220000 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 117FFFH } \\ & 110000 \mathrm{H} \end{aligned}$	FSA41	1	0	0	0	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 21FFFFH } \\ & 210000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 10FFFFH } \\ & 108000 \mathrm{H} \end{aligned}$	FSA40	1	0	0	0	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 20FFFFH } \\ & 200000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 107FFFH } \\ & 100000 \mathrm{H} \end{aligned}$	FSA39	1	0	0	0	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 1FFFFFH } \\ & \text { 1F0000H } \end{aligned}$	$\begin{aligned} & \text { OFFFFFH } \\ & \text { OF8000H } \end{aligned}$	FSA38	0	1	1	1	1	1	x	x	x	
	64/32	1EFFFFH 1E0000H	$\begin{aligned} & \text { 0F7FFFH } \\ & \text { OF0000H } \end{aligned}$	FSA37	0	1	1	1	1	0	x	x	X	
	64/32	$\begin{aligned} & \text { 1DFFFFH } \\ & \text { 1D0000H } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OEFFFFH } \\ & \text { OE8000H } \end{aligned}$	FSA36	0	1	1	1	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 1CFFFFH } \\ & \text { 1C0000H } \end{aligned}$	$\begin{aligned} & \text { 0E7FFFH } \\ & 0 \mathrm{E} 0000 \mathrm{H} \end{aligned}$	FSA35	0	1	1	1	0	0	x	x	x	

Bank	Sector Organization K bytes / K words	Address		Sectors Address	Sector Address Table									
				Bank Address Table										
		BYTE mode	WORD mode		A20	A19	A18	A17	A16	A15	A14	A13	A12	
Bank 2	64/32	$\begin{aligned} & \hline \text { 1BFFFFH } \\ & \text { 1B0000H } \end{aligned}$	ODFFFFH 0D8000H		FSA34	0	1	1	0	1	1	X	X	x
	64/32	1AFFFFFH 1A0000H	$\begin{aligned} & \text { OD7FFFH } \\ & \text { OD0000H } \end{aligned}$	FSA33	0	1	1	0	1	0	X	x	x	
	64/32	$\begin{aligned} & \text { 19FFFFH } \\ & \text { 190000H } \end{aligned}$	$\begin{aligned} & \text { 0CFFFFH } \\ & \text { OC8000H } \end{aligned}$	FSA32	0	1	1	0	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 18FFFFH } \\ & 180000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 0 \mathrm{C} 7 \mathrm{FFFH} \\ & 0 \mathrm{C} 0000 \mathrm{H} \end{aligned}$	FSA31	0	1	1	0	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 17FFFFH } \\ & 170000 \mathrm{H} \end{aligned}$	OBFFFFH 0B8000H	FSA30	0	1	0	1	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 16FFFFH } \\ & 160000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { OB7FFFH } \\ & \text { OB0000H } \end{aligned}$	FSA29	0	1	0	1	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 15FFFFH } \\ & 150000 \mathrm{H} \end{aligned}$	0AFFFFH 0A8000H	FSA28	0	1	0	1	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 14FFFFH } \\ & 140000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 0A7FFFH } \\ & \text { 0A0000H } \end{aligned}$	FSA27	0	1	0	1	0	0	x	x	X	
	64/32	$\begin{aligned} & \text { 13FFFFH } \\ & 130000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 09FFFFH } \\ & 098000 \mathrm{H} \end{aligned}$	FSA26	0	1	0	0	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 12FFFFH } \\ & 120000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 097FFFH } \\ & 090000 \mathrm{H} \end{aligned}$	FSA25	0	1	0	0	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 11FFFFH } \\ & 110000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 08FFFFH } \\ & 088000 \mathrm{H} \end{aligned}$	FSA24	0	1	0	0	0	1	x	x	X	
	64/32	$\begin{aligned} & \text { 10FFFFH } \\ & 100000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 087FFFH } \\ & 080000 \mathrm{H} \end{aligned}$	FSA23	0	1	0	0	0	0	x	x	x	
Bank 1	64/32	$\begin{aligned} & \hline \text { OFFFFFH } \\ & \text { OFOOOOH } \end{aligned}$	$\begin{aligned} & \hline \text { 07FFFFH } \\ & 078000 \mathrm{H} \end{aligned}$	FSA22	0	0	1	1	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { OEFFFFH } \\ & 0 \mathrm{E} 0000 \mathrm{H} \end{aligned}$	077FFFH 070000 H	FSA21	0	0	1	1	1	0	x	x	x	
	64/32	ODFFFFH 0D0000H	$\begin{aligned} & \text { 06FFFFH } \\ & 068000 \mathrm{H} \end{aligned}$	FSA20	0	0	1	1	0	1	x	x	X	
	64/32	$\begin{aligned} & \text { OCFFFFH } \\ & \text { OCOOOOOH } \end{aligned}$	$\begin{aligned} & \text { 067FFFH } \\ & 060000 \mathrm{H} \end{aligned}$	FSA19	0	0	1	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { OBFFFFH } \\ & \text { OB0000H } \end{aligned}$	$\begin{aligned} & \text { 05FFFFH } \\ & 058000 \mathrm{H} \end{aligned}$	FSA18	0	0	1	0	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { OAFFFFH } \\ & \text { OA0000H } \end{aligned}$	$\begin{aligned} & \text { 057FFFH } \\ & 050000 \mathrm{H} \end{aligned}$	FSA17	0	0	1	0	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 09FFFFH } \\ & \text { 090000H } \end{aligned}$	$\begin{aligned} & \text { 04FFFFH } \\ & 048000 \mathrm{H} \end{aligned}$	FSA16	0	0	1	0	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 08FFFFH } \\ & 080000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 047FFFH } \\ & 040000 \mathrm{H} \end{aligned}$	FSA15	0	0	1	0	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 07FFFFH } \\ & 070000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 03FFFFH } \\ & 038000 \mathrm{H} \end{aligned}$	FSA14	0	0	0	1	1	1	x	x	x	
	64/32	$\begin{aligned} & \text { 06FFFFH } \\ & 060000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 037FFFH } \\ & 030000 \mathrm{H} \end{aligned}$	FSA13	0	0	0	1	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 05FFFFH } \\ & 050000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 02FFFFH } \\ & 028000 \mathrm{H} \end{aligned}$	FSA12	0	0	0	1	0	1	x	x	x	
	64/32	$\begin{aligned} & \text { 04FFFFH } \\ & 040000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 027FFFH } \\ & 020000 \mathrm{H} \end{aligned}$	FSA11	0	0	0	1	0	0	x	x	x	
	64/32	$\begin{aligned} & \text { 03FFFFH } \\ & 030000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 01FFFFH } \\ & 018000 \mathrm{H} \end{aligned}$	FSA10	0	0	0	0	1	1	x	x	X	
	64/32	$\begin{aligned} & \text { 02FFFFH } \\ & 020000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 017FFFH } \\ & 010000 \mathrm{H} \end{aligned}$	FSA9	0	0	0	0	1	0	x	x	x	
	64/32	$\begin{aligned} & \text { 01FFFFH } \\ & 010000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 00FFFFH } \\ & 008000 \mathrm{H} \end{aligned}$	FSA8	0	0	0	0	0	1	x	x	x	
	8/4	00FFFFH 00 E 000 H	$\begin{aligned} & \text { 007FFFH } \\ & 007000 \mathrm{H} \end{aligned}$	FSA7	0	0	0	0	0	0	1	1	1	
	8/4	$\begin{aligned} & \hline 00 \mathrm{DFFH} \\ & 00 \mathrm{C} 000 \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 006FFFH } \\ & 006000 \mathrm{H} \end{aligned}$	FSA6	0	0	0	0	0	0	1	1	0	
	8/4	00BFFFH 00A000H	$\begin{aligned} & \text { 005FFFH } \\ & 005000 \mathrm{H} \end{aligned}$	FSA5	0	0	0	0	0	0	1	0	1	
	8/4	$\begin{aligned} & \text { 009FFFH } \\ & 008000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 004FFFH } \\ & 004000 \mathrm{H} \end{aligned}$	FSA4	0	0	0	0	0	0	1	0	0	
	8/4	$\begin{aligned} & \text { 007FFFH } \\ & 006000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 003FFFH } \\ & 003000 \mathrm{H} \end{aligned}$	FSA3	0	0	0	0	0	0	0	1	1	
	8/4	$\begin{aligned} & \text { 005FFFH } \\ & 004000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 002FFFH } \\ & 002000 \mathrm{H} \end{aligned}$	FSA2	0	0	0	0	0	0	0	1	0	
	8/4	$\begin{aligned} & 003 F F F H \\ & 002000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 001 \text { FFFH } \\ & 001000 \mathrm{H} \end{aligned}$	FSA1	0	0	0	0	0	0	0	0	1	
	8/4	$\begin{aligned} & \hline 001 \text { FFFH } \\ & 000000 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 000FFFH } \\ & 000000 \mathrm{H} \end{aligned}$	FSA0	0	0	0	0	0	0	0	0	0	

\star Sector Group Address Table (Flash Memory)

Sector group	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	0	0	0	8 KB (1 Sector)	FSA0
SGA1	0	0	0	0	0	0	0	0	1	8 KB (1 Sector)	FSA1
SGA2	0	0	0	0	0	0	0	1	0	8 KB (1 Sector)	FSA2
SGA3	0	0	0	0	0	0	0	1	1	8 KB (1 Sector)	FSA3
SGA4	0	0	0	0	0	0	1	0	0	8 KB (1 Sector)	FSA4
SGA5	0	0	0	0	0	0	1	0	1	8 KB (1 Sector)	FSA5
SGA6	0	0	0	0	0	0	1	1	0	8 KB (1 Sector)	FSA6
SGA7	0	0	0	0	0	0	1	1	1	8 KB (1 Sector)	FSA7
SGA8	0	0	0	0	0	1	\times	\times	\times	192 KB (3 Sectors)	FSA8-FSA10
					1	0					
					1	1					
SGA9	0	0	0	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA11-FSA14
SGA10	0	0	1	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA15-FSA18
SGA11	0	0	1	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA19-FSA22
SGA12	0	1	0	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA23-FSA26
SGA13	0	1	0	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA27-FSA30
SGA14	0	1	1	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA31-FSA34
SGA15	0	1	1	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA35-FSA38
SGA16	1	0	0	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA39-FSA42
SGA17	1	0	0	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA43-FSA46
SGA18	1	0	1	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA47-FSA50
SGA19	1	0	1	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA51-FSA54
SGA20	1	1	0	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA55-FSA58
SGA21	1	1	0	1	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA59-FSA62
SGA22	1	1	1	0	\times	\times	\times	\times	\times	256 KB (4 Sectors)	FSA63-FSA66
SGA23	1	1	1	1	0	0	\times	\times	\times	192 KB (3 Sectors)	FSA67-FSA69
					0	1					
					1	0					
SGA24	1	1	1	1	1	1	\times	\times	\times	64 KB (1 Sector)	FSA70

Remark \times : V_{IH} or VIL^{2}

Command Sequence (Flash Memory)

Command sequence		Bus Cycle	1st bus Cycle		2nd bus Cycle		3rd bus Cycle		4th bus Cycle		5th bus Cycle		6th bus Cycle		
		Address	Data												
Read / Reset ${ }^{\text {Note1 }}$			1	xxxH	FOH	RA	RD	-	-	-	-	-	-	-	-
Read / Reset ${ }^{\text {Note1 }}$	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	FOH	RA	RD	-	-	-	-	
	WORD mode		555H		2AAH		555H								
Program	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	AOH	PA	PD	-	-	-	-	
	WORD mode		555H		2AAH		555H								
Program Suspend ${ }^{\text {Note } 2}$		1	BA	B0H	-	-	-	-	-	-	-	-	-	-	
Program Resume ${ }^{\text {Note } 3}$		1	BA	30 H	-	-	-	-	-	-	-	-	-	-	
Chip Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80 H	AAAH	AAH	555H	55H	AAAH	10 H	
	WORD mode		555H		2AAH		555H		555H		2AAH		555H		
Sector Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80 H	AAAH	AAH	555H	55H	FSA	30 H	
	WORD mode		555H		2AAH		555H		555H		2AAH				
Sector Erase Suspend ${ }^{\text {Note } 4}$		1	BA	B0H	-	-	-	-	-	-	-	-	-	-	
Sector Erase Resume ${ }^{\text {Note } 5}$		1	BA	30H	-	-	-	-	-	-	-	-	-	-	
Unlock Bypass Set	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	20 H	-	-	-	-	-	-	
	WORD mode		555 H		2AAH		555H								
Unlock Bypass Program ${ }^{\text {Note } 6}$		2	$\times \times \times \mathrm{H}$	AOH	PA	PD	-	-	-	-	-	-	-	-	
Unlock Bypass Reset ${ }^{\text {Note } 6}$		2	BA	AAH	$x \times x \mathrm{H}$	$00 \mathrm{H}^{\text {Note11 }}$	-	-	-	-	-	-	-	-	
Product ID	BYTE mode	3	AAAH		555H	55H	(BA)	90 H	IA	ID	-	-	-	-	
							AAAH								
	WORD mode				2AAH		$\begin{gathered} (\mathrm{BA}) \\ 555 \mathrm{H} \end{gathered}$								
Sector Group Protection ${ }^{\text {Note } 7}$		4	$x \times x \mathrm{H}$	60 H	SPA	60H	SPA	40 H	SPA	SD	-	-	-	-	
Sector Group Unprotect ${ }^{\text {Note } 8}$		4	x \times x ${ }^{\text {H }}$	60H	SUA	60 H	SUA	40 H	SUA	SD	-	-	-	-	
Query ${ }^{\text {Note } 9}$	BYTE mode	1	AAH	98H	-	-	-	-	-	-	-	-	-	-	
	WORD mode		55H												
Extra One Time Protect Sector Entry	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	88H	-	-	-	-	-	-	
	WORD mode		555H		2AAH		555H								
Extra One Time Protect Sector Program ${ }^{\text {Note } 10}$	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	AOH	PA	PD	-	-	-	-	
	WORD mode		555H		2AAH		555H								
Extra One Time Protect Sector Erase Note 10	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	EOTPSA	30 H	
	WORD mode		555H		2AAH		555H		555H		2AAH				
Extra One Time Protect Sector Reset Note 10	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	90H	xxxH	00H	-	-	-	-	
	WORD mode		555H		2AAH		555H								
Extra One Time Protect Sector Protection Note 10		4	$x \times x H$	60 H	EOTPSA	60H	EOTPSA	40 H	EOTPSA	SD	-	-	-	-	

Notes 1. Both these read / reset commands reset the device to the read mode.
2. Programming is suspended if BOH is input to the bank address being programmed to in a program operation.
3. Programming is resumed if 30 H is input to the bank address being suspended to in a program-suspend operation.
4. Erasure is suspended if BOH is input to the bank address being erased in a sector erase operation.
5. Erasure is resumed if 30 H is input to the bank address being suspended in a sector-erase-suspend operation.
6. Valid only in the unlock bypass mode.
7. Valid only when /RESET = VID (except in the Extra One Time Protect Sector mode).
8. The command sequence that protects a sector group is excluded.
9. Only A0 to A6 are valid as an address.
10. Valid only in the Extra One Time Protect Sector mode.
11. This command can be used even if this data is FOH.

Remarks 1. Specify address 555 H (A 10 to A 0) in the WORD mode, and AAAH (A 10 to $\mathrm{A} 0, \mathrm{~A}-1$) in the BYTE mode.
2. RA : Read address

RD : Read data
IA : Address input
$\mathrm{xx00H}$ (to read the manufacturer code)
$\mathrm{xx02H}$ (to read the device code in the BYTE mode) $\mathrm{xx01H}$ (to read the device code in the WORD mode)
ID : Code output. Refer to the Product ID code (Manufacturer code / Device code) (Flash Memory).
PA : Program address
PD : Program data
FSA: Erase sector address. The sector to be erased is selected by the combination of this address. Refer to the Sector Organization / Sector Address Table (Flash Memory).
BA : Bank address. Refer to the Sector Organization / Sector Address Table (Flash Memory).
SPA : Sector group address to be protected. Set sector group address (SGA) and (A6, A1, A0) = (VIL, $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$). For the sector group address, refer to the Sector Group Address Table (Flash Memory).
SUA : Unprotect sector group address. Set sector group address (SGA) and (A6, A1, A0) $=\left(\mathrm{VIH}, \mathrm{V}_{\mathrm{IH}}\right.$, VIL). For the sector group address, refer to the Sector Group Address Table (Flash Memory).
SD : Data for verifying whether sector groups read from the address specified by SPA, SUA, and EOTPSA are protected.
EOTPSA : Extra One Time Protect Sector area addresses.
BYTE mode : 000000H to 00FFFFH, WORD mode : 000000H to 007FFFH
3. The sector group address is don't care except when a program / erase address or read address are selected.
4. For the operation of the bus, refer to Bus Operations Table.
5. \times of address bit indicates V_{IH} or VIL.
6. Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E) for the flash memory commands.

Product ID Code (Manufacturer Code / Device Code) (Flash Memory)

Product ID Code	Address inputs			Output
	A6	A1	A0	Hex
Manufacturer Code	L	L	L	10 H
Device code	L	L	H	53 H (BYTE mode),
			2253 H (WORD mode)	

Product ID Code		Code outputs																
		$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & 14 \end{aligned}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ 13 \end{gathered}$	$\begin{array}{r} \hline \text { I/O } \\ 12 \end{array}$	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \mathrm{I} \mathrm{O} \\ & 10 \end{aligned}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { I/O } \\ 8 \end{gathered}$	$\begin{gathered} \hline 1 / O \\ 7 \end{gathered}$	$\begin{array}{\|c} \hline 1 / O \\ 6 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ 5 \end{gathered}$	$\begin{gathered} 1 / \mathrm{O} \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { I/O } \\ 3 \end{gathered}$	$\begin{gathered} \hline 1 / O \\ 2 \end{gathered}$	$\begin{gathered} 1 / \mathrm{O} \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ 0 \end{gathered}$	Hex
Manufacturer Code		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	10H
Device code	BYTE mode	A-1	x	x	x	x	x	x	x	0	1	0	1	0	0	1	1	53H
	WORD mode	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1	2253H

Remark $\mathrm{H}: \mathrm{V}_{\mathrm{IH}}, \mathrm{L}: \mathrm{V}_{\mathrm{IL}}, \mathrm{x}: \mathrm{Hi}-\mathrm{Z}$
^ Hardware Sequence Flags, Hardware Data Protection (Flash Memory)
Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Initialization (Mobile specified RAM)

The MC-242453 is initialized in the power-on sequence according to the following.
(1) To stabilize internal circuits, before turning on the power, a 200μ or longer wait time must precede any signal toggling.
(2) After the wait time, read operation must be performed at least 8 times. After that, it can be normal operation.

Figure 1. Initialization Timing Chart

Cautions 1. Following power application, make MODE and /CEm high level during the wait time interval.
2. Following power application, make MODE high level during the wait time and eight read operations.
3. The read operation must satisfy the specs described on page 21 (Read Cycle (Mobile specified RAM).
4. The address is don't care (V_{IH} or V_{IL}) during read operation.
5. Read operation must be executed with toggled the /CEm pin.
6. To prevent bus contention, it is recommended to set/OE to high level. However, do not input data to the I / O pins if /OE is low level during a read operation.

Standby Mode (Flash Memory)

Standby Mode 1 and Standby Mode 2 differ as shown below.

Table 1. Standby Mode Characteristics

Standby Mode	Memory Cell Data Hold	Standby Supply Current $(\mu \mathrm{A})$
Mode 1	Valid	100 (IsB1)
Mode 2	Invalid	10 (IsB2)

Standby Mode State Machine (Flash Memory)

(1) From Active

To shift from this state to Standby Mode 1, change /CEm from Vil to $\mathrm{V}_{\mathbf{I}}$.
To shift from this state to Standby Mode 2, change /CEm from V_{IL} to $\mathrm{V}_{\boldsymbol{I}}$ and change MODE from V_{IH} to V_{IL}.
(2) From Standby Mode 1

To shift from this state to Active, change /CEm from VIH to VIL.
To shift from this state to Standby Mode 2, change MODE from ViH to VIL.
(3) From Standby Mode 2

When shifting from this state to the Active state or to Standby Mode 1, it is necessary to set MODE to Vін and perform a Dummy Read operation 8 times after waiting for $200 \mu \mathrm{~s}$, in the same way as at power application. Refer to Figure 35. Standby Mode 2 entry and recovery Timing Chart (Mobile specified RAM).
After shifting to Active state, change /CEm to VIL.
After shifting to Standby Mode 1, do not change either MODE or /CEm.

Figure 2. Standby Mode State Machine

Electrical Specifications

Before turning on power, input $\mathrm{Vss} \pm 0.2 \mathrm{~V}$ to the /RESET pin until $\mathrm{Vccf} \geq \mathrm{Vccf}$ (MIN.).

Absolute Maximum Ratings

Parameter	Symbol	Condition		Rating	Unit
Supply voltage	Vccf	with respect to Vss		-0.5 to +4.0	V
	Vccm	with respect to Vss		-0.5 to +4.0	
Input / Output voltage	V_{T}	with respect to Vss	/WP(ACC), /RESET	$-0.5^{\text {Note } 1}$ to +13.0	V
			except /WP(ACC), /RESET	$-0.5^{\text {Note } 1}$ to Vccf, Vccm +0.4 (4.0 V MAX.) ${ }^{\text {Note } 2}$	
Ambient operation temperature	$\mathrm{T}_{\text {A }}$			-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-55 to +125	${ }^{\circ} \mathrm{C}$

Notes 1. -1.0 V (MIN.) (pulse width $\leq 20 \mathrm{~ns}$)
2. $\mathrm{Vccf}, \mathrm{Vccm}+0.5 \mathrm{~V}$ (MAX.) (pulse width $\leq 20 \mathrm{~ns}$)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Common

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vccf, Vccm		2.6		3.0	V
Ambient operation temperature	T_{A}		-20		+70	${ }^{\circ} \mathrm{C}$

Flash Memory

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High level input voltage	V_{IH}		2.4		$\mathrm{~V}_{\mathrm{ccf}}+0.3$	V
Low level input voltage	V_{IL}		-0.3		+0.5	V

Mobile specified RAM

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High level input voltage	VIH		Vccm $\times 0.8$		$\mathrm{Vccm}+0.3$	V
Low level input voltage	VIL		$-0.3{ }^{\text {Note }}$		Vccm $\times 0.2$	V

Note -0.5 V (MIN.) (Pulse width: 30 ns)

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Common

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input leakage current	Іь।		-1.0		+1.0	$\mu \mathrm{~A}$
Output leakage current	IьO		-1.0		+1.0	$\mu \mathrm{~A}$

Flash Memory

Parameter			Symbol	Test con	ition	MIN.	TYP.	MAX.	Unit
High level output voltage			Vон	$\mathrm{loh}=-500 \mu \mathrm{~A}, \mathrm{Vccf}=\mathrm{Vccf}(\mathrm{MIN}$.		Vccf-0.3			V
Low level output voltage			Vol	$\mathrm{loL}=+1.0 \mathrm{~mA}, \mathrm{Vccf}=\mathrm{Vccf}(\mathrm{MIN}$.				0.3	V
Power supply current	Read	BYTE mode	Iccif	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V} \operatorname{ccf}(\mathrm{MAX} .) \\ & / \mathrm{CEf}=\mathrm{V}_{\mathrm{IL}}, / \mathrm{OE}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	tcycle $=5 \mathrm{MHz}$		10	16	mA
					tcycle $=1 \mathrm{MHz}$		2	4	
		WORD mode			tcycle $=5 \mathrm{MHz}$		10	16	
					tcycle $=1 \mathrm{MHz}$		2	4	
	Program, Erase		Icczf	$\mathrm{Vccf}=\mathrm{Vccf}\left(\mathrm{MAX}\right.$.), $/ \mathrm{CEf}=\mathrm{V}_{\mathrm{IL}}, / \mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$			15	30	mA
	Standby		Icc3f	$\begin{aligned} & \mathrm{Vccf}=\mathrm{Vccf}(\mathrm{MAX} .), / \mathrm{CEf}=/ \mathrm{RESET}= \\ & \mathrm{WP}(\mathrm{ACC})=\mathrm{Vccf} \pm 0.3 \mathrm{~V}, / \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.2	5	$\mu \mathrm{A}$
	Standby / Reset		Icc4f	$\mathrm{Vccf}=\mathrm{Vccf}(\mathrm{MAX}),. / \mathrm{RESET}=\mathrm{Vss} \pm 0.2 \mathrm{~V}$			0.2	5	$\mu \mathrm{A}$
	Automatic sleep mode		Icc5f	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {ccf }} \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\text {ss }} \pm 0.2 \mathrm{~V}$			0.2	5	$\mu \mathrm{A}$
	Read during programming		Iccef	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Vccf} \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{ss}} \pm 0.2 \mathrm{~V}$			21	45	mA
	Read during erasing		Iccif	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Vccf} \pm 0.2 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=\mathrm{V}$ ss $\pm 0.2 \mathrm{~V}$			21	45	mA
	Programming during suspend		Iccsf	$/ \mathrm{CEf}=\mathrm{V}_{\mathrm{IL}}, / \mathrm{OE}=\mathrm{V}_{\mathrm{IH}},$ Automatic programming during suspend			17	35	mA
	Accelerated programming		$l_{\text {acc }}$	/WP (ACC) pin			5	10	mA
				Vocf			15	30	
/RESET high level input voltage			VID	High Voltage is applied		11.5		12.5	V
Accelerated programming voltage			$V_{\text {Acc }}$	High Voltage is applied		8.5		9.5	V
Low Vccf lock-out voltage ${ }^{\text {Note }}$			Vıko					1.7	V

\star Note When Vccf is equal to or lower than Vlko, the device ignores all write cycles. Refer to DUAL OPERATION
FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Mobile specified RAM

Parameter		Symbol	Test condition	MIN.	TYP.	MAX.	Unit
High level output voltage		Vor	$\mathrm{loh}=-0.5 \mathrm{~mA}$	$\mathrm{Vccm} \times 0.8$			V
Low level output voltage		Vol	$\mathrm{loL}=1 \mathrm{~mA}$			Vccm $\times 0.2$	V
Operating supply current		Icca	$/ \mathrm{CEm}=\mathrm{VIL}$, Minimum cycle time, $\mathrm{I}_{1} / \mathrm{o}=0 \mathrm{~mA}$			35	mA
Standby supply current	Standby Mode 1	IsB1	$/ \mathrm{CEm} \geq \mathrm{Vccm}-0.2 \mathrm{~V}$, MODE $\geq \mathrm{Vccm}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$
	Standby Mode 2	IsB2	$/ \mathrm{CEm} \geq \mathrm{V} \mathrm{ccm}-0.2 \mathrm{~V}, \mathrm{MODE} \leq 0.2 \mathrm{~V}$			10	

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

Flash Memory

Input Waveform (Rise and Fall Time $\leq 5 \mathrm{~ns}$)

Output Waveform

Output Load
$1 \mathrm{TTL}+30 \mathrm{pF}$

Mobile specified RAM

Input Waveform (Rise and Fall Time $\leq 5 \mathrm{~ns}$)

Output Waveform

Output Load

AC characteristics directed with the note should be measured with the output load shown in Figure.

CL: 50 pF
5 pF (tclz, tolz, tblz, tchz, tohz, tBhz, twhz, tow)

/CEf, /CEm Timing

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Note
/CEf, /CEm recover time	tccr		0			ns	

Read Cycle (Flash Memory)

Parameter		Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Note
Read cycle time		tre		90			ns	
	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$			85				
Address access time		tacc	$/ \mathrm{CEf}=/ \mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$			90	ns	
	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$					85		
/CEf access time		tcef	$/ \mathrm{OE}=\mathrm{V} \mathrm{IL}$			90	ns	
	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$					85		
/OE access time		toe	$/ \mathrm{CEf}=\mathrm{V}$ IL			40	ns	
Output disable time		tDF	$/ \mathrm{OE}=\mathrm{V}$ IL or $/ \mathrm{CEf}=\mathrm{V}_{\text {IL }}$			30	ns	
Output hold time		toн		0			ns	
/RESET pulse width		trp		500			ns	
/RESET hold time before read		tri		50			ns	
/RESET low to read mode		tready				20	$\mu \mathrm{s}$	
/CEf low to CIOf low, high		telfl/telfh				5	ns	
CIOf low output disable time		tFloz				30	ns	
CIOf high access time		tFhQv		90			ns	
	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$			85				

Remark $t_{D F}$ is the time from inactivation of /CEf or /OE to Hi-Z state output.

Write Cycle (Erase / Program) (Flash Memory)

Parameter		Symbol	MIN.	TYP.	MAX.	Unit	Note
Write cycle time		twc	90			ns	
	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$		85				
Address setup time (/WE to address)		tAS	0			ns	
Address setup time (/CEf to address)		tas	0			ns	
Address hold time (/WE to address)		taH	45			ns	
Address hold time (/CEf to address)		tАН	45			ns	
Input data setup time		tos	35			ns	
Input data hold time		toh	0			ns	
/OE hold time	Read	toen	0			ns	
	Toggle bit, Data polling		10				
Read recovery time before write (/OE to /CEf)		tghel	0			ns	
Read recovery time before write (/OE to /WE)		tghw	0			ns	
/WE setup time (/CEf to /WE)		tws	0			ns	
/CEf setup time (/WE to /CEf)		tcs	0			ns	
/WE hold time (/CEf to /WE)		twh	0			ns	
/CEf hold time (/WE to /CEf)		tch	0			ns	
Write pulse width		twp	35			ns	
/CEf pulse width		tcp	35			ns	
Write pulse width high		twPH	30			ns	
/CEf pulse width high		tcPH	30			ns	
Byte programming operation time		tBPG		9	200	$\mu \mathrm{s}$	
Word programming operation time		twPG		11	200	$\mu \mathrm{s}$	
Sector erase operation time		tser		0.7	5	S	1
Vccf setup time		tvcs	50			$\mu \mathrm{s}$	
RY (/BY) recovery time		trB	0			ns	
/RESET pulse width		trp	500			ns	
/RESET high-voltage ($\mathrm{VID}_{\mathrm{ID}}$) hold time from high of RY(/BY) when sector group is temporarily unprotect		trRB	20			$\mu \mathrm{S}$	
/RESET hold time		trH	50			ns	
From completion of automatic		teoe			90	ns	
program / erase to data output time	$\mathrm{Vccf} \geq 2.7 \mathrm{~V}$				85		
RY (/BY) delay time from valid program or erase operation		tbusy			90	ns	
Address setup time to /OE low in toggle bit		taso	15			ns	
Address hold time to /CEf or /OE high in toggle bit		$\mathrm{t}_{\text {AHT }}$	0			ns	
/CEf pulse width high for toggle bit		tceph	20			ns	
/OE pulse width high for toggle bit		toeph	20			ns	
Voltage transition time		tvLht	4			$\mu \mathrm{s}$	2
Rise time to VId (/RESET)		tvidr	500			ns	3
Rise time to $\mathrm{V}_{\text {Acc }}(/ \mathrm{WP}(\mathrm{ACC})$)		tvaccr	500			ns	2
Erase timeout time		trow	50			$\mu \mathrm{s}$	4
Erase suspend transition time		tspD			20	$\mu \mathrm{s}$	4

Notes 1. The preprogramming time prior to the erase operation is not included.
2. Sector group protection and accelerated mode only
3. Sector group protection only.
4. Table only.

Write operation (Erase / Program) Performance (Flash Memory)

Parameter	Description		MIN.	TYP.	MAX.	Unit
Sector erase time	Excludes programming time prior to erasure			0.7	5	s
Chip erase time	Excludes programming time prior to erasure			50		s
Byte programming time	Excludes system-level overhead			9	200	$\mu \mathrm{s}$
Word programming time	Excludes system-level overhead			11	200	$\mu \mathrm{s}$
Chip programming time	Excludes system-level overhead	BYTE mode		40		s
		WORD mode		25		
Accelerated programming time	Excludes system-level overhead			7	150	$\mu \mathrm{s}$
Erase / Program cycle			100,000			cycles

Read Cycle (Mobile specified RAM)

Parameter	Symbol	MC-242453-B90		MC-242453-B95		MC-242453-B10		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	80	10,000	90	10,000	110	10,000	ns	1
Identical address read cycle time	tral	80	10,000	90	10,000	110	10,000	ns	2
Address skew time	tskew		10		15		20	ns	3
/CEm pulse width	tcp	10		10		10		ns	
Address access time	t_{AA}		80		90		100	ns	4
/CEm access time	tacs		80		90		100	ns	
/OE to output valid	toe		35		40		50	ns	5
/LB, /UB to output valid	tBA		35		40		50	ns	
Output hold from address change	toh	10		10		10		ns	
/CEm to output in low impedance	tclz	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/LB, /UB to output in low impedance	tblz	5		5		5		ns	
/CEm to output in high impedance	tchz		25		25		25	ns	
/OE to output in high impedance	tohz		25		25		25	ns	
/LB, /UB to output in high impedance	tbhz		25		25		25	ns	

Notes 1. One read cycle (tRC) must satisfy the minimum value ($\operatorname{tRC}(\min$.$)) and maximum value (\operatorname{tRC}(\max)=.10 \mu \mathrm{~s}) . \operatorname{tRC}$ indicates the time from the /CEm low level input point or address determination point, whichever is later, to the /CEm high level input point or the next address change start point, whichever is earlier. As a result, there are the following four conditions for trc.

1) Time from address determination point to /CEm high level input point
(address access)
2) Time from address determination point to next address change start point
3) Time from /CEm low level input point to next address change start point
(address access)
4) Time from /CEm low level input point to /CEm high level input point
(/CEm access)
(/CEm access)
2. The identical address read cycle time ($\operatorname{tRC1}^{(1)}$ is the cycle time of one read operation when performing continuous read operations toggling /OE , /LB, and /UB with the address fixed and /CEm low level. Perform settings so that the sum (trc) of the identical address read cycle times (trc1) is $10 \mu \mathrm{~s}$ or less.
3. tskew indicates the following three types of time depending on the condition.
1) When switching /CEm from high level to low level, tskew is the time from the /CEm low level input point until the next address is determined.
2) When switching /CEm from low level to high level, tskew is the time from the address change start point to the /CEm high level input point.
3) When /CEm is fixed to low level, tskew is the time from the address change start point until the next address is determined.

Since specs are defined for tskew only when /CEm is active, tskew is not subject to limitations when /CEm is switched from high level to low level following address determination, or when the address is changed after /CEm is switched from low level to high level.
4. Regarding $t_{A A}$ and tacs, only $t_{A A}$ is satisfied during address access (refer to 1) and 2) of Note 1), and only tacs is satisfied during /CEm access (refer to 3) of Note 1).
5. Regarding tBA and toe, only tba is satisfied if /OE becomes active later than /UB and/LB, and only toe is satisfied if /UB and /LB become active before /OE.

Write Cycle (Mobile specified RAM)

Parameter	Symbol	MC-242453-B90		MC-242453-B95		MC-242453-B10		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	80	10,000	90	10,000	110	10,000	ns	1
Identical address write cycle time	twc1	80	10,000	90	10,000	110	10,000	ns	2
Address skew time	tskew		10		15		20	ns	3
/CEm to end of write	tcw	40		50		60		ns	4
/LB, /UB to end of write	tBw	30		35		40		ns	
Address valid to end of write	taw	35		45		55		ns	
Write pulse width	twp	30		35		40		ns	
Write recovery time	twr	20		20		20		ns	5
/CEm pulse width	tcp	10		10		10		ns	
Address setup time	$\mathrm{t}_{\text {As }}$	0		0		0		ns	
Byte write hold time	tswh	20		20		20		ns	
Data valid to end of write	tow	20		25		30		ns	
Data hold time	toh	0		0		0		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/WE to output in high impedance	twhz		25		25		25	ns	
/OE to output in high impedance	tohz		25		25		25	ns	
Output active from end of write	tow	5		5		5		ns	

Notes 1. One write cycle (twc) must satisfy the minimum value ($\mathrm{twc}(\mathrm{min}$.$)) and the maximum value (\mathrm{twc}(\mathrm{mAX})=.10 \mu \mathrm{~s}$). twc indicates the time from the /CEm low level input point or address determination point, whichever is after, to the /CEm high level input point or the next address change start point, whichever is earlier. As a result, there are the following four conditions for twc.

1) Time from address determination point to /CEm high level input point
2) Time from address determination point to next address change start point
3) Time from /CEm low level input point to next address change start point
4) Time from /CEm low level input point to /CEm high level input point
2. The identical address read cycle time (twc1) is the cycle time of one write cycle when performing continuous write operations with the address fixed and /CEm low level, changing /LB and /UB at the same time, and toggling /WE, as well as when performing a continuous write toggling /LB and /UB. Make settings so that the sum (twc) of the identical address write cycle times (twc1) is $10 \mu \mathrm{~s}$ or less.
3. tskew indicates the following three types of time depending on the condition.
1) When switching /CEm from high level to low level, tskew is the time from the /CEm low level input point until the next address is determined.
2) When switching /CEm from low level to high level, tskew is the time from the address change start point to the /CEm high level input point.
3) When /CEm is fixed to low level, tskew is the time from the address change start point until the next address is determined.
Since specs are defined for tskew only when /CEm is active, tskEw is not subject to limitations when /CEm is switched from high level to low level following address determination, or when the address is changed after /CEm is switched from low level to high level.
4. Definition of write start and write end

	/CEm	/WE	/LB, /UB	Status
Write start pattern 1	H to L	L	L	If $/ \mathrm{WE}, / \mathrm{LB}, / \mathrm{UB}$ are low level, time when /CEm changes from high level to low level
Write start pattern 2	L	H to L	L	If /CEm, /LB, /UB are low level, time when /WE changes from high level to low level
Write start pattern 3	L	L	H to L	If /CEm, /WE are low level, time when /LB or /UB changes from high level to low level
Write end pattern 1	L	L to H	L	If /CEm, /WE, /LB, /UB are low level, time when $/ W E ~ c h a n g e s ~ f r o m ~ l o w ~ l e v e l ~ t o ~ h i g h ~ l e v e l ~$
Write end pattern 2	L	L	L to H	When /CEm, /WE, /LB, /UB are low level, time when $/ L B ~ o r / U B ~ c h a n g e s ~ f r o m ~ l o w ~ l e v e l ~ t o ~ h i g h ~ l e v e l ~$

5. Definition of write end recovery time (twr)
1) Time from write end to address change start point, or from write end to /CEm high level input point
2) When /CEm, /LB, /UB are low level and continuously written to the identical address, time from /WE high level input point to /WE low level input point
3) When /CEm, /WE are low level and continuously written to the identical address, time from /LB or /UB high level input point, whichever is later, to /LB or /UB low level input point, whichever is earlier.
4) When /CEm is low level and continuously written to the identical address, time from write end to point at which /WE , /LB, or /UB starts to change from high level to low level, whichever is earliest.

Read Write Cycle (Mobile specified RAM)

Parameter	Symbol	MC-242453-B90		MC-242453-B95		MC-242453-B10		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read write cycle time	trwc		10,000		10,000		10,000	ns	1, 2
Byte write setup time	tbws	20		20		20		ns	
Byte read setup time	tbrs	20		20		20		ns	

 address write cycle time (twc1) is 10μ s or less when a write is performed at the identical address using /UB following a read using /LB with /CEm low level, or when a write is performed using /LB following a read using /UB.
2. Make settings so that the sum (trwc) of the identical address read cycle time (tRC1) and the identical address write cycle time (twc1) is 10μ s or less when a read is performed at the identical address using /UB following a write using /LB with /CEm low level, or when a read is performed using /LB following a write using /UB.

Figure 3. Alternating Mobile specified RAM to Flash Memory Timing Chart

Figure 4. Read Cycle Timing Chart 1 (Flash Memory)

Figure 5. Read Cycle Timing Chart 2 (Flash Memory)

Figure 6. Sector Group Protection Timing Chart (Flash Memory)

Note The sector group protection verification result is output.
01 H : The sector group is protected.
00 H : The sector group is not protected.

Figure 7. Temporary Sector Group Unprotect Timing Chart (Flash Memory)

Figure 8. Accelerated Mode Timing Chart (Flash Memory)

Figure 9. Dual Operation Timing Chart (Flash Memory)

Figure 10. Write Cycle Timing Chart (/WE Controlled) (Flash Memory)

Remarks 1. This timing chart shows the last two write cycles among the program command sequence's four write cycles, and data polling.
2. This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See Command Sequence (Flash Memory).
3. PA : Program address

PD : Program data
/I/O7 : The output of the complement of the data written to the device.
Dout : The output of the data written to the device.
Figure 11. Write Cycle Timing Chart (/CEf Controlled) (Flash Memory)

Remarks 1. This timing chart shows the last two write cycles among the program command sequence's four write cycles, and data polling.
2. This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See Command Sequence (Flash Memory).
3. PA : Program address

PD : Program data
/I/O7 : The output of the complement of the data written to the device.
Dout : The output of the data written to the device.

Figure 12. Sector / Chip Erase Timing Chart (Flash Memory)

Note FSA is the sector address to be erased. In the case of chip erase, input 555 H (WORD mode), AAAH (BYTE mode).
Remark This timing chart shows the WORD mode's case. In the BYTE mode, address to be input are different from the WORD mode. See Command Sequence (Flash Memory).

Figure 13. Data Polling Timing Chart (Flash Memory)

Note I/O7 = Dout : True value of program data (indicates completion of automatic program / erase)

Figure 14. Toggle Bit Timing Chart (Flash Memory)

Note I/O6 stops the toggle (indicates automatic program / erase completion).

Figure 15. I/O2 vs. I/O6 Timing Chart (Flash Memory)

Figure 16. RY (/BY) (Ready / Busy) Timing Chart (Flash Memory)

Figure 17. /RESET and RY (/BY) Timing Chart (Flash Memory)

Data Sheet M15371EJ5V0DS

Figure 18. Write CIOf Timing Chart (Flash Memory)

Figure 19. BYTE mode Switching Timing Chart (Flash Memory)

Figure 20. WORD mode Switching Timing Chart (Flash Memory)

Figure 21. Read Cycle Timing Chart 1 (Mobile specified RAM)

Caution If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the read cycle time (trc), none of the data can be guaranteed.

Remark In read cycle, /WE should be fixed to High.

Figure 22. Read Cycle Timing Chart 2 (Mobile specified RAM)

Caution If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the read cycle time (trc), none of the data can be guaranteed.

Remark In read cycle, /WE should be fixed to High.

Figure 23. Read Cycle Timing Chart 3 (Mobile specified RAM)

Caution If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the read cycle time (trc), none of the data can be guaranteed.

Remark In read cycle, /WE should be fixed to High.

Figure 24. Read Cycle Timing Chart 4 (Mobile specified RAM)

Caution If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the read cycle time (trc), none of the data can be guaranteed.

Note To perform a continuous read toggling /OE, /UB, and /LB with /CEm low level at an identical address, make settings so that the sum (trc) of the identical address read cycle times (trc 1) is $10 \mu \mathrm{~s}$ or less.

Remark In read cycle, /WE should be fixed to High.

Figure 25. Write Cycle Timing Chart 1 (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Remark Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.

Figure 26. Write Cycle Timing Chart 2 (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.

2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Note If /LB and /UB are changed at the same time with /CEm low level and a continuous write operation toggling /WE is performed, make settings so that the sum (twc) of the identical address write cycle time (twc1) is $10 \mu \mathrm{~s}$ or less.

Remarks 1. Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.
2. When /WE is at Low, the I/O pins are always high impedance. When /WE is at High, read operation is executed. Therefore /OE should be at High to make the I/O pins high impedance.

Figure 27. Write Cycle Timing Chart 3 (/CEm Controlled) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.

2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Remark Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.

Figure 28. Write Cycle Timing Chart 4 (/LB, /UB Controlled 1) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Remark Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.

Figure 29. Write Cycle Timing Chart 5 (/LB, /UB Controlled 2) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Note If /LB and /UB are changed at the same time with /CEm low level and a continuous write operation toggling /WE is performed, make settings so that the sum (twc) of the identical address write cycle time (twc1) is $10 \mu \mathrm{~s}$ or less.

Remark Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.

Figure 30. Write Cycle Timing Chart 6 (/LB, /UB Independent Controlled 1) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.

2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Note If /LB and /UB are changed at the same time with /CEm low level and a continuous write operation toggling /WE is performed, make settings so that the sum (twc) of the identical address write cycle time (twc1) is $10 \mu \mathrm{~s}$ or less.

Remark Write operation is done during the overlap time of a Low/CEm, /WE, /LB and/or/UB.

Figure 31. Write Cycle Timing Chart 7 (/LB, /UB Independent Controlled 2) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the write cycle time (twc), none of the data can be guaranteed.

Remark Write operation is done during the overlap time of a Low /CEm, /WE, /LB and/or /UB.

Figure 32. Read Write Cycle Timing Chart 1 (/LB, /UB Independent Controlled 1) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.

2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the identical address read cycle time (tRc1) and the identical address write cycle time (twc1), none of the data can be guaranteed.

Note Make settings so that the sum (trwc) of the identical address read cycle time (tra1) and the identical address write cycle time (twc1) is 10μ s or less when a write is performed at the identical address using /UB following a read using /LB with /CEm low level, or when a write is performed using /LB following a read using /UB.

Remark Write operation is done during the overlap time of a Low/CEm, /WE, /LB and/or/UB.

Figure 33. Read Write Cycle Timing Chart 2 (/LB, /UB Independent Controlled 2) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the identical address read cycle time (tRC1) and the identical address write cycle time (twc1), none of the data can be guaranteed.

Note Make settings so that the sum (trwc) of the identical address read cycle time (trc1) and the identical address write cycle time (twc1) is $10 \mu \mathrm{~s}$ or less when a write is performed at the identical address using /UB following a read using /LB with /CEm low level, or when a write is performed using /LB following a read using /UB.

Remark Write operation is done during the overlap time of a Low/CEm, /WE, /LB and/or/UB.

Figure 34. Read Write Cycle Timing Chart 3 (/LB, /UB Independent Controlled 3) (Mobile specified RAM)

Cautions 1. During address transition, at least one of pins /CEm, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.
3. If the address is changed using a value that is either lower than the minimum value or higher than the maximum value for the identical address read cycle time (trc1) and the identical address write cycle time (twc1), none of the data can be guaranteed.

Note Make settings so that the sum (trwc) of the identical address read cycle time (trc1) and the identical address write cycle time (twc1) is $10 \mu \mathrm{~s}$ or less when a write is performed at the identical address using /UB following a read using /LB with /CEm low level, or when a write is performed using /LB following a read using /UB.

Remark Write operation is done during the overlap time of a Low/CEm, /WE, /LB and/or/UB.

Figure 35. Standby Mode 2 entry and recovery Timing Chart (Mobile specified RAM)

Parameter	Symbol	MIN.	MAX.	Unit	Note
/CEm High to MODE Low	tcm	0		ns	

Cautions 1. Make MODE and /CEm high level during the wait time.
2. Make MODE high level during the wait time and eight read operations.
3. The read operation must satisfy the specs described on page 21 (Read Cycle (Mobile specified RAM)).
4. The read operation address can be either Viн or Vit.
5. Perform reading by toggling /CEm.
6. To prevent bus contention, it is recommended to set/OE to high level. However, do not input data to the I/O pins if /OE is low level during a read operation.
\star Flow Charts (Flash Memory)
Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

CFI Code List

(1/2)

Address A6 to A0	Data I/O15 to I/O0	Description
10H	0051H	"QRY" (ASCII code)
11H	0052H	
12 H	0059H	
13H	0002H	Main command set
14H	0000H	2 : AMD/FJ standard type
15H	0040H	Start address of PRIMARY table
16H	0000H	
17H	0000H	Auxiliary command set
18H	0000H	00H : Not supported
19H	0000H	Start address of auxiliary algorithm table
1 AH	0000H	
1BH	0027H	Minimum Vccf voltage (program / erase) I/O7 to I/O4: $1 \mathrm{~V} / \mathrm{bit}$ I/O3 to I/O0 : $100 \mathrm{mV} / \mathrm{bit}$
1 CH	0036H	Maximum Vccf voltage (program / erase) I/O7 to I/O4 : $1 \mathrm{~V} /$ bit I/O3 to $/ / 00: 100 \mathrm{mV} / \mathrm{bit}$
1DH	0000H	Minimum VPP voltage
1EH	0000H	Maximum VPP voltage
1FH	0004H	Typical word program time ($2^{\mathrm{N}} \mu \mathrm{S}$)
20 H	0000H	Typical buffer program time ($2^{\mathrm{N}} \mu \mathrm{s}$)
21H	000AH	Typical sector erase time ($2^{\mathrm{N}} \mathrm{ms}$)
22 H	0000H	Typical chip erase time ($2^{\mathrm{N}} \mathrm{ms}$)
23H	0005H	Maximum word program time (typical time $\times 2^{\mathrm{N}}$)
24H	0000H	Maximum buffer program time (typical time $\times 2^{\text {N }}$)
25H	0004H	Maximum sector erasing time (typical time $\times 2^{\text {N }}$)
26 H	0000H	Maximum chip erasing time (typical time $\times 2^{\mathrm{N}}$)
27H	0016H	Capacity ($2^{\text {N }}$ Bytes)
28 H	0002H	I/O information $2: \times 8 / \times 16$-bit organization
29H	0000H	
2 AH	0000H	Maximum number of bytes when two banks are programmed (2^{N})
2BH	0000H	
2 CH	0002H	Type of erase block
2DH	0007H	Information about erase block 1 Bit0 to 15 : $y=$ number of sectors Bit16 to 31 : $z=$ size ($Z \times 256$ Bytes)
2EH	0000H	
2 FH	0020H	
30 H	0000H	

Address A6 to A0	Data I/O15 to I/O0	Description
31 H	003EH	Information about erase block 2
32 H	0000H	bit0 to 15 : $\mathrm{y}=$ number of sectors
33H	0000H	bit16 to 31: $z=$ size
34 H	0001H	($z \times 256$ Bytes)
40 H	0050H	"PRI" (ASCII code)
41 H	0052H	
42 H	0049H	
43H	0031H	Main version (ASCII code)
44H	0032H	Minor version (ASCII code)
45 H	0000H	Address during command input 00H : Necessary 01H: Unnecessary
46H	0002H	Temporary erase suspend function 00H: Not supported 01H: Read only 02H: Read / Program
47H	0001H	Sector group protection 00H : Not supported 01H : Supported
48H	0001H	Temporary sector group protection 00H : Not supported 01H: Supported
49H	0004H	Sector group protection algorithm
4AH	00xxH	Number of sectors of bank 2 00H : Not supported $30 \mathrm{H}: \mathrm{MC}-242453$
4BH	O000H	Burst mode 00H : Not supported
4 CH	0000H	Page mode 00H : Not supported
4DH	0085H	Minimum VACC voltage I/O7 to I/O4 : 1 V/bit I/O3 to I/O0 : $100 \mathrm{mV} / \mathrm{bit}$
4EH	0095H	Maximum VACC voltage I/O7 to I/O4 : $1 \mathrm{~V} / \mathrm{bit}$ I/O3 to I/O0: $100 \mathrm{mV} / \mathrm{bit}$
4FH	00xxH	Boot organization 02H : Bottom boot
50 H	0001H	Temporary program suspend function 00H: Not supported 01H : Supported

Package Drawings

77-PIN TAPE FBGA (12x7)

ITEM	MILLIMETERS
D	7.0 ± 0.1
E	12.0 ± 0.1
w	0.2
A	1.1 ± 0.1
A 1	0.26 ± 0.05
A 2	0.84
e	0.8
b	0.45 ± 0.05
x	0.08
y	0.1
y 1	0.1
ZD	0.7
ZE	0.8
	P77F9-80-BT3

* 71-PIN TAPE FBGA (11x7) (unit: mm)

These specifications are typical values.
This package drawing is a preliminary version. It may be changed in the future.

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the MC-242453.

^ Types of Surface Mount Device

MC-242453F9-B90-BT3 : 77-pin TAPE FBGA (12×7)
MC-242453F9-B95-BT3 : 77-pin TAPE FBGA (12×7)
MC-242453F9-B10-BT3 : 77-pin TAPE FBGA (12×7)
MC-242453F9-B90-BS1 : 71-pin TAPE FBGA (11×7)
MC-242453F9-B95-BS1 : 71-pin TAPE FBGA (11×7)
MC-242453F9-B10-BS1 : 71-pin TAPE FBGA (11×7)

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Related Documents

Document Name	Document Number
DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information	M14914E

- The information in this document is current as of July, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

