Micropower Adjustable Overvoltage Protection Controllers

General Description

The MAX1807/MAX1808 monitor up to five supply rails for an overvoltage condition and provide a latched output when any one of the five supplies exceeds the trip thresholds. The latched output drives an external Pchannel load switch to remove power when an overvoltage condition is detected. The latch is reset when a logic low is input to ON or the power supply is cycled.
The MAX1807 provides a 28 V open-drain fault output that can be used to trigger an alert, trip a resetable fuse, or for other purposes. The MAX1808 includes a low-battery comparator with hysteresis to drive the DP output high, turning off the external P-channel switch when the input voltage is too low.
The MAX1807/MAX1808 are available in a miniature 10pin $\mu \mathrm{MAX}$ package.

Applications
Notebook Computers
Power-Supply Modules
Multi-Output Power Supplies

Features

- Five 3\% Accurate Overvoltage Comparators
- Series PFET Gate Driver with VGS Limiter
- 21رA Quiescent Supply Current
- $4 \mu \mathrm{~A}$ Shutdown Current
- 4.4V to 28 V Operating Voltage Range
- 3\% Accurate Comparator with 10\% Hysteresis for Low-Battery Detection (MAX1808)
- 28V Open-Drain N-Channel Output (MAX1807)
- Small 10-Pin μ MAX Package

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1807EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX1808EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

Pin Configuration and Typical Operating Circuit appear at end of data sheet.

Functional Diagram

Micropower Adjustable Overvoltage Protection Controllers

ABSOLUTE MAXIMUM RATINGS

IN1_, TH to GND	V to +6 V
ON, VDD, $\overline{\text { FAULT }}$ to GND	-0.3V to +30V
DP to GND.	-0.3V to (VDD $+0.3 V)$
Continuous Power Dissip	

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{ON}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}-\mathrm{V}\right.$ IN5 $=0.5 \mathrm{~V}, \mathrm{~V}_{T H}=2.0 \mathrm{~V}, \mathrm{C} D=5 \mathrm{nF}, \overline{\mathrm{FAULT}}=$ open, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL						
VDD Input Voltage Range		DP and $\overline{\mathrm{FAULT}}$ in correct state (Table 1)	2		28	V
VDD Operating Voltage Range			4.4		28	V
VDD Undervoltage Lockout Threshold		Rising trip level, typical 2% hysteresis; when $V_{D D}$ is below this level, $\mathrm{DP}=\mathrm{Hi}$ and $\overline{\mathrm{FAULT}}=\mathrm{Hi}-\mathrm{Z}$	2	2.7	4.0	V
Supply Current		$\mathrm{V}_{\text {TH }}=2 \mathrm{~V}$ or 0.5 V		21	45	$\mu \mathrm{A}$
Shutdown Current		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{GND}, \mathrm{V}_{\text {IN } 1}-\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {TH }}=\mathrm{GND}$		4	8.5	$\mu \mathrm{A}$
COMPARATORS (IN1-IN5, TH)						
IN1-IN5 Input Trip Level		Rising edge, typical 1% hysteresis, $V_{D D}=4.4 \mathrm{~V}$ to 28 V	0.97	1	1.03	V
TH Input Trip Level, Falling		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28V (MAX1808 only)	0.97	1	1.03	V
TH Input Trip Level, Rising		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28V (MAX1808 only)	1.045	1.1	1.155	V
IN1-IN5 Propagation Delay		IN1-IN5 rising, 10 mV overdrive, $\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$		40		$\mu \mathrm{s}$
TH Propagation Delay		TH rising, 10 mV overdrive, $\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ (MAX1808 only)		11		$\mu \mathrm{s}$
		TH falling, 10 mV overdrive, $\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ (MAX1808 only)		40		
IN1-IN5 Input Leakage Current		V IN $=1.5 \mathrm{~V}$		0.5	50	nA
TH Input Leakage Current		$\mathrm{V}_{\text {TH }}=1.5 \mathrm{~V}$ (MAX1808 only)		0.5	50	nA
ON Input High Logic Level		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28 V	1.6			V
ON Input Low Logic Level		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28 V			0.5	V
ON Input Leakage Current		$\mathrm{V}_{\mathrm{ON}}=5 \mathrm{~V}$		0.03	1.2	$\mu \mathrm{A}$
		V ON $=28 \mathrm{~V}$			10	
FAULT Output High Leakage Current		$V^{\text {FAULT }}=28 \mathrm{~V}$ (MAX1807 only $)$		0.01	2	$\mu \mathrm{A}$
FAULT Output Low Voltage		ISINK $=4 \mathrm{~mA}($ (MAX1807 only $)$			0.4	V

Micropower Adjustable Overvoltage Protection Controllers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{O N}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}-\mathrm{V}\right.$ IN5 $=0.5 \mathrm{~V}, \mathrm{~V}_{T H}=2.0 \mathrm{~V}, \mathrm{C} D=5 \mathrm{nF}, \overline{\mathrm{FAULT}}=$ open, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DP Source Current (PMOS Turn-Off)		$\begin{aligned} & V_{O N}=V_{D D}, \\ & V_{\text {IN1 }}=1.5 \mathrm{~V} \end{aligned}$	$V_{D P}=V_{D D}-0.4 \mathrm{~V}$	1	50		$\mu \mathrm{A}$
			$V_{D P}=V_{D D}-2 \mathrm{~V}$	5	20		mA
DP Sink Current (PMOS Turn-On)		$V_{D P}=V_{D D}-5 V$		4	50		mA
DP Pullup Current (PMOS Off)		$V_{D P}=V_{D D}-2 V, V_{O N}=G N D$ in shutdown state			25		$\mu \mathrm{A}$
DP Turn-On Clamp Voltage (VDD - VDP)		$\begin{aligned} & V_{O N}=V_{D D}, \\ & \text { IDPSINK }=10 \mu A \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V}$ to 28 V	7.5	9.5	11.5	
			$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$	3.4	4.1	4.4	

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{O N}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}-\mathrm{V}\right.$ IN5 $=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TH}}=2.0 \mathrm{~V}, \mathrm{C} D=5 \mathrm{nF}, \overline{\mathrm{FAULT}}=$ open, $\mathbf{T}_{\mathbf{A}}=-40^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
GENERAL						
VDD Input Voltage Range		DP and FAULT in correct state (Table 1)		2	28	V
VDD Operating Voltage Range				4.4	28	V
VDD Undervoltage Lockout Threshold		Rising trip level, typical 2\% hysteresis; when $V_{D D}$ is below this level, $\mathrm{DP}=\mathrm{Hi}$ and $\overline{\mathrm{FAULT}}=$ Hi-Z		2	4.0	V
Supply Current		$\mathrm{V}_{\mathrm{TH}}=2 \mathrm{~V}$ or 0.5V			45	$\mu \mathrm{A}$
Shutdown Current		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{GND}, \mathrm{V}_{\text {IN1 }}-\mathrm{V}_{\text {IN5 }}=\mathrm{V}_{\text {TH }}=\mathrm{GND}$			8.5	$\mu \mathrm{A}$
COMPARATORS (IN1-IN5, TH)						
IN1-IN5 Input Trip Level		Rising edge, typical 1\% hysteresis		0.95	1.05	V
TH Input Trip Level, Falling		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28V (MAX1808 only)		0.95	1.05	V
TH Input Trip Level, Rising		VDD $=4.4 \mathrm{~V}$ to 28 V (MAX1808 only)		1.045	1.155	V
IN1-IN5 Input Leakage Current		$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$			50	nA
TH Input Leakage Current		$\mathrm{V}_{\text {TH }}=1.5 \mathrm{~V}$ (MAX1808 only)			50	nA
ON Input High Logic Level		$V_{D D}=4.4 \mathrm{~V}$ to 28 V		1.8		V
ON Input Low Logic Level		$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$ to 28 V			0.4	V
ON Input Leakage Current		V ON $=5 \mathrm{~V}$			1.2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{ON}}=28 \mathrm{~V}$			10	
FAULT Output High Leakage Current		V $\overline{\text { FAULT }}=28 \mathrm{~V}$ (MAX1807 only)			2	$\mu \mathrm{A}$
FAULT Output Low Voltage		ISINK $=4 \mathrm{~mA}$ (MAX1807 only)			0.4	V
DP Source Current (PMOS Turn-Off)		$\begin{aligned} & V_{O N}=V_{D D}, \\ & V_{I N 1}=1.5 \mathrm{~V} \end{aligned}$	$V_{D P}=V_{D D}-0.4 V$	1		$\mu \mathrm{A}$
			$V_{D P}=V_{D D}-2 \mathrm{~V}$	4		mA
DP Sink Current (PMOS Turn-On)		$V_{D P}=V_{D D}-5 V$		2		mA
DP Turn-On Clamp Voltage (VDD - VDP)		$\begin{aligned} & V_{O N}=V_{D D}, \\ & I_{D P S I N K}=10 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V}$ to 28 V	7.5	11.5	V
			$\mathrm{V}_{\mathrm{DD}}=4.4 \mathrm{~V}$	3.4	4.4	

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

Micropower Adjustable Overvoltage Protection Controllers

(Typical Operating Circuit, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Micropower Adjustable Overvoltage Protection Controllers

Typical Operating Characteristics (continued)

(Typical Operating Circuit, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Micropower Adjustable Overvoltage Protection Controllers

Pin Description

PIN	NAME	FUNCTION
$1-5$	IN1-IN5	Overvoltage Detect Comparator Input. When any input exceeds 1V, the fault latch is set. Connect unused inputs to GND.
6	GND	Ground
7	ON	Logic Input. ON turns on internal reference when high. Logic trip level is approximately 1.2V with 15% hysteresis. When ON is low, the fault latch is reset. ON can be connected directly to VDD at the expense of supply current.
8	DP	External P-Channel MOSFET Gate Driver Output. The output high level is VDD. The output low level is VDD - 9.5V or GND, whichever is higher. This output is latched high when an overvoltage condition is detected.
9	VDD	Analog Supply Input. Use an external RC filter to eliminate excessive switching noise on VDD. When VDD is less than 2.7V, the fault latch is reset.
10	THUT	Signal Overvoltage Condition Output. This open-drain N-channel output is latched low when an over- voltage condition is detected. (MAX1807 only)
	Input Monitor Comparator. When TH is below 1V, DP goes high to turn off the external P-channel switch. When TH exceeds 1.1V, DP goes low if there is no fault. Between 1V and 1.1V is the hysteresis band where the output state of the TH comparator remains unchanged. (MAX1808 only)	

Detailed Description

The MAX1807/MAX1808 provide overvoltage protection for systems with multiple supply rails. Very low output voltage supplies can have an overvoltage before the power-supply controller has sufficient supply voltage to activate protection circuitry. The MAX1807/MAX1808 offer a system-wide approach to effectively protect the loads and prevent catastrophic events.
The MAX1807/MAX1808 are powered directly by the main system input supply. A low output voltage from DP activates a P-channel switch to supply power to the rest of the system. As the rest of the system supplies come up, the MAX1807/MAX1808 monitor each of them for overvoltage conditions and safely disconnect the input from the rest of the system if any supply malfunctions occur due to a shorted MOSFET, shorted copper trace, or malfunctioning supply. Built-in overvoltage detectors in individual power supplies provide redundancy.
The MAX1807/MAX1808 drive the main P-channel load switch that powers the system. The driver includes active clamping to safely drive a 12 V P-channel MOSFET gate. If overvoltage is detected, the P-channel load switch is turned off and the state is latched. The internal fault latch resets when V_{DD} is less than 2.7 V (power cycled) or ON is pulled low (manual reset). When ON is logic low, the P-channel switch is turned off (Table 1).

The MAX1808 has a TH input that turns off the P-channel switch if TH goes below 1 V without affecting the fault latch. TH output is designed for low-battery detection. The comparator has 10\% hysteresis, allowing the battery voltage to rise when the load is removed without reenabling the external P-channel switch.
The MAX1807 has a fault alert output ($\overline{\mathrm{FAULT}}$) instead of the TH input. FAULT is an open-drain output, rated for up to 28 V , that directly reflects the state of the internal fault latch.

IN1-IN5 Overvoltage Comparators

 The overvoltage comparators have a 1V trip level. The fault latch is set if any one of the five overvoltage comparators goes above the trip level. A limited input bandwidth ensures that small glitches will not trigger an overvoltage event (see IN_ Maximum Transient Pulse Duration vs. Pulse Overdrive Voltage in the Typical Operating Characteristics).
DP PFET Driver Output

 The MAX1807/MAX1808 have a totem driver (DP) with an active clamp that simplifies driving the external Pchannel load switch. The -9.5 V V gs clamp eliminates complexity in circuits where VDD exceeds the P-channel FET's maximum gate voltage. DP goes high and turns off the P-channel switch during undervoltage lockout, when ON is low, when TH is less than 1 V , or if an overvoltage fault occurs.
Micropower Adjustable Overvoltage Protection Controllers

The DP driver can sink and source significant current and achieves fast turn-on and turn-off times even with large P-channel switches. Adding a resistor in series with DP can increase turn-on and turn-off times. To slow the turn-on time without affecting the turn-off time, add a diode in parallel with the resistor (Figure 1). The turnon time will be the product of the series resistor and the gate-to-source capacitance of the P-channel FET:

$$
\text { ton }=\text { Cgs } \times R
$$

The turn-off time will be the product of the gate-tosource capacitance of the P-channel FET and the DP source current of the MAX1807/MAX1808 (see DP Source Current vs. (VDD - VDP) Voltage in the Typical Operating Characteristics).
For very slow turn-off times, adding an external capacitor between the gate and the source of the P-channel FET eliminates the need for resistors with extremely high values.

TH Input Comparator (MAX1808 Only)
TH input comparator can disconnect the load from the battery when the battery voltage is too low. The falling trip level is 1 V , and the rising trip level is 1.1 V . The 100 mV hysteresis can prevent the load switch from turning on when the battery voltage rises as the load is
disconnected from the battery. The comparator has a limited bandwidth to ensure that small transients will not shut down the system supplies.
Increase TH hysteresis by adding a resistor from TH to one of the voltage rails disconnected by the P-channel load switch, such as the 1.8 V supply (Figure 2). Use one of the lower voltage supplies to eliminate the necessity of extremely large resistors to obtain reasonable hysteresis. When the MAX1714 is on, the trip threshold is lower than when the MAX1714 is off, pro-

Figure 1. External FET Gate Control

DEFAULT 10\% HYSTERESIS
$\mathrm{V}_{\text {TRIP }}=1 \mathrm{~V}+(1 \mu \mathrm{~A} \times 6.5 \mathrm{M} \Omega)=7.5 \mathrm{~V}$
$V_{\text {UNTRIP }}=1.1 \mathrm{~V}+(1.1 \mu \mathrm{~A} \times 6.5 \mathrm{M} \Omega)=8.25 \mathrm{~V}$

ADDING HYSTERESIS

$V_{T R I P}=1 \mathrm{~V}+[1 \mu \mathrm{~A} \times(1.8 \mathrm{~V}-1.0 \mathrm{~V}) / 10 \mathrm{M} \Omega] \times 6.5 \mathrm{M} \Omega$
$=1 \mathrm{~V}+(1 \mu \mathrm{~A}-0.08 \mu \mathrm{~A}) \times 6.5 \mathrm{M} \Omega$
$=1 \mathrm{~V}+(920 \mathrm{nA} \times 6.5 \mathrm{M} \Omega)=6.98 \mathrm{~V}$
VUNTRIP $=1.1 \mathrm{~V}+[1.1 \mu \mathrm{~A}-(0-1.1 \mathrm{~V}) / 10 \mathrm{M} \Omega] \times 6.5 \mathrm{M} \Omega$
$=1.1 \mathrm{~V}+(1.1 \mu \mathrm{~A}+0.11 \mu \mathrm{~A}) \times 6.5 \mathrm{M} \Omega$
$=1.1 \mathrm{~V}+(1.21 \mu \mathrm{~A} \times 6.5 \mathrm{M} \Omega)=8.97 \mathrm{~V}$

Figure 2. Adding Hysteresis

Micropower Adjustable Overvoltage Protection Controllers

Table 1. MAX1807/MAX1808 State Table

$\mathbf{V}_{\text {DD }}$	ON	TH	IN1-IN5	DP	$\overline{\text { FAULT }}$	COMMENT
$<2 \mathrm{~V}$	X	X	X	Undefined	Undefined	
$2<\mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	X	X	X	HI	$\mathrm{Hi}-\mathrm{Z}$	
$>4.0 \mathrm{~V}$	0	X	X	HI	$\mathrm{Hi}-\mathrm{Z}$	
$>4.0 \mathrm{~V}$	1	$<1 \mathrm{~V}$	X	HI		Note that TH has 0.1V hysteresis (MAX1808 only)
$>4.0 \mathrm{~V}$	1	$>1.1 \mathrm{~V}$	All $<1 \mathrm{~V}$	LO	$\mathrm{Hi}-\mathrm{Z}$	Only condition for PFET to be turned on
$>4.0 \mathrm{~V}$	1	$>1.1 \mathrm{~V}$	Any $>1 \mathrm{~V}$	HI	LO	

viding additional hysteresis. Turning off the chosen supply will change the undervoltage trip levels.

FAULT Open-Drain N-ChanneI Flag Output (MAX1807 Only)

The MAX1807 has an open-drain N-channel FAULT output. The FAULT output directly reflects the state of the internal fault latch, going low when an overvoltage event occurs. The FAULT output can be used to signal the system power-management microcontroller, trip a resetable fuse, drive an external high-side driver, or for other purposes.

Undervoltage Lockout and Power-On Reset (POR) Period

Undervoltage lockout holds DP high and FAULT in high impedance until VDD exceeds the VDD undervoltage lockout threshold. When VDD exceeds the undervoltage threshold, the DP and FAULT outputs remain unchanged during the power-on reset period $(60 \mu s)$, allowing the reference and comparators to settle. Normal operation resumes after the POR period.

Chip Information

TRANSISTOR COUNT: 955
PROCESS: BiCMOS

Pin Configuration

TOP VIEW

() MAX1808 ONLY

Micropower Adjustable Overvoltage Protection Controllers

Typical Operating Circuit

Micropower Adjustable Overvoltage Protection Controllers

\qquad

