IN74ALS574 # **Octal 3-State Noninverting D Flip-Flop** The device is comprised of eight edge-triggered D-Type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. - Switching specifications at 50 pF - \bullet Switching specifications guaranteed over full temperature and V_{CC} range - TRI-STATE buffer-type outputs drive bus lines directly #### LOGIC DIAGRAM $PIN 20=V_{CC}$ PIN 10 = GND #### PIN ASSIGNMENT | OUTPUT
ENABLE | 1• | 20 V _{CC} | |------------------|----|--------------------| | D 0 [| 2 | 19 Q0 | | D 1 [| 3 | 18 QI | | D2 [| 4 | 17 Q2 | | D3 [| 5 | 16 Q3 | | D 4 [| 6 | 15 Q4 | | D5 [| 7 | 14 Q5 | | D6 [| 8 | 13 Q6 | | D7 [| 9 | 12 Q7 | | GND [| 10 | пр сгоск | #### **FUNCTION TABLE** | Inputs | | | Output | |------------------|-------|---|--------------| | Output
Enable | Clock | D | Q | | L | | Н | Н | | L | | L | L | | L | L,H, | X | no
change | | Н | X | X | Z | X = don't care Z = high impedance ## **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|------------------------------------|-------------|------| | V_{CC} | Supply Voltage | 7.0 | V | | V_{IN} | Input Voltage | 7.0 | V | | V _{OUT} | Output Voltage (Referenced to GND) | 5.5 | V | | Tstg | Storage Temperature Range | -65 to +150 | °C | ^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. ### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | |-------------------|---------------------------|-----|------|------| | V_{CC} | Supply Voltage | 4.5 | 5.5 | V | | V_{IH} | High Level Input Voltage | 2.0 | | V | | $V_{ m IL}$ | Low Level Input Voltage | | 0.8 | V | | I_{OH} | High Level Output Current | | -2.6 | mA | | I_{OL} | Low Level Output Current | | 24 | mA | | T_A | Ambient Temperature Range | -10 | +70 | °C | # DC ELECTRICAL CHARACTERISTICS over full operating conditions | | | | | Guaranteed Limit | | | |------------------|------------------------------|---|-------------------------------|------------------|------|------| | Symbol | Parameter | Test C | onditions | Min | Max | Unit | | V _{IK} | Input Clamp Voltage | $V_{CC} = min, I_{IN}$ | = -18 mA | | -1.5 | V | | V_{OH} | High Level Output Voltage | $V_{CC} = min, I_{OI}$ | $_{\rm H} = -0.4 \; {\rm mA}$ | 2.5 | | V | | | | $V_{CC} = min, I_{OI}$ | $_{\rm H}$ = -2.6 mA | 2.4 | | | | V _{OL} | Low Level Output Voltage | $V_{CC} = min, I_{OI}$ | _ = 12 mA | | 0.4 | V | | | | $V_{CC} = min, I_{OI}$ | z = 24 mA | | 0.5 | | | I _{OZH} | Output Off Current HIGH | $V_{CC} = max, V_{CC}$ | DUT = 2.7 V | | 20 | μΑ | | I_{OZL} | Output Off Current LOW | $V_{CC} = max, V_{CC}$ | $D_{OUT} = 0.4 \text{ V}$ | | -20 | μΑ | | I _{IH} | High Level Input Current | $V_{CC} = max$, $V_{IN} = 2.7 \text{ V}$ | | | 20 | μΑ | | | | $V_{CC} = max, V_1$ | $_{\rm IN} = 7.0 \ { m V}$ | | 0.1 | mA | | $I_{\rm IL}$ | Low Level Input Current | $V_{CC} = max$, $V_{IN} = 0.4 \text{ V}$ | | | -0.1 | mA | | I _O | Output Short Circuit Current | $V_{CC} = max, V_{O} = 2.25 \text{ V}$ | | -30 | -112 | mA | | I_{CC} | Supply Current | $V_{CC} = max$ | Outputs Low | | 17 | mA | | | | | Outputs High | | 24 | | | | | | 3-State
(High Z) | | 27 | | # AC ELECTRICAL CHARACTERISTICS over full operating conditions $(V_{CC} = 5.0 \text{ V} \pm 10\%, C_L = 50 \text{ pF}, R_{L1} = R_{L2} = 500 \Omega, \text{ Input } t_r = t_f = 2.0 \text{ ns})$ | | | Guaranteed Limit | | | |--------------------|--|------------------|-----|------| | Symbol | Parameter | Min | Max | Unit | | f_{max} | Maximum Clock Frequency | 35 | | MHz | | t_{PLH}, t_{PHL} | Propagation Delay Time, from Clock to Output | | 14 | ns | | t_{PZH}, t_{PZL} | Propagation Delay Time, from Enable to Any Q | | 18 | ns | | t_{PHZ} | Propagation Delay Time, from Enable to Any Q | | 32 | ns | | t_{PLZ} | Propagation Delay Time, from Enable to Any Q | | 18 | ns | | $t_{\rm w}$ | Pulse Duratio, Enable, 25°C at 5.0 V | 16.5 | | ns | | t_{su} | Data Setup Time before Clock | 15 | | ns | | $t_{\rm h}$ | Data Hold Time after Clock | 4 | | ns | $\begin{array}{l} t_{PZL},\,t_{PLZ}\text{ - }S1\text{ closed} \\ t_{PZH},\,t_{PHZ}\text{ - }S1\text{ opened} \end{array}$ Figure 1. Switching Waveforms Figure 2. Switching Waveforms Figure 3. Switching Waveforms ^{*} Includes all probe and jig capacitance. Figure 3. Test Circuit Figure 4. Test Circuit ### **EXPANDED LOGIC DIAGRAM** ^{*} Includes all probe and jig capacitance.