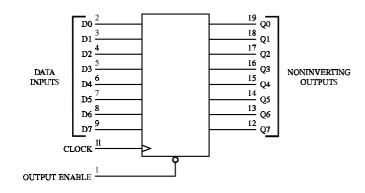

IN74ALS574

Octal 3-State Noninverting D Flip-Flop


The device is comprised of eight edge-triggered D-Type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

- Switching specifications at 50 pF
- \bullet Switching specifications guaranteed over full temperature and V_{CC} range
- TRI-STATE buffer-type outputs drive bus lines directly

LOGIC DIAGRAM

 $PIN 20=V_{CC}$ PIN 10 = GND

PIN ASSIGNMENT

OUTPUT ENABLE	1•	20 V _{CC}
D 0 [2	19 Q0
D 1 [3	18 QI
D2 [4	17 Q2
D3 [5	16 Q3
D 4 [6	15 Q4
D5 [7	14 Q5
D6 [8	13 Q6
D7 [9	12 Q7
GND [10	пр сгоск

FUNCTION TABLE

Inputs			Output
Output Enable	Clock	D	Q
L		Н	Н
L		L	L
L	L,H,	X	no change
Н	X	X	Z

X = don't care Z = high impedance

MAXIMUM RATINGS*

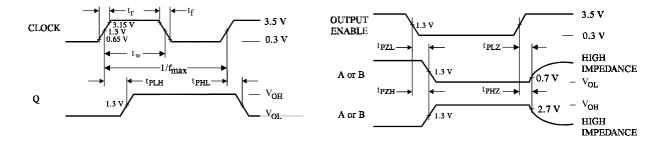
Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
V_{IN}	Input Voltage	7.0	V
V _{OUT}	Output Voltage (Referenced to GND)	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	4.5	5.5	V
V_{IH}	High Level Input Voltage	2.0		V
$V_{ m IL}$	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-2.6	mA
I_{OL}	Low Level Output Current		24	mA
T_A	Ambient Temperature Range	-10	+70	°C

DC ELECTRICAL CHARACTERISTICS over full operating conditions


				Guaranteed Limit		
Symbol	Parameter	Test C	onditions	Min	Max	Unit
V _{IK}	Input Clamp Voltage	$V_{CC} = min, I_{IN}$	= -18 mA		-1.5	V
V_{OH}	High Level Output Voltage	$V_{CC} = min, I_{OI}$	$_{\rm H} = -0.4 \; {\rm mA}$	2.5		V
		$V_{CC} = min, I_{OI}$	$_{\rm H}$ = -2.6 mA	2.4		
V _{OL}	Low Level Output Voltage	$V_{CC} = min, I_{OI}$	_ = 12 mA		0.4	V
		$V_{CC} = min, I_{OI}$	z = 24 mA		0.5	
I _{OZH}	Output Off Current HIGH	$V_{CC} = max, V_{CC}$	DUT = 2.7 V		20	μΑ
I_{OZL}	Output Off Current LOW	$V_{CC} = max, V_{CC}$	$D_{OUT} = 0.4 \text{ V}$		-20	μΑ
I _{IH}	High Level Input Current	$V_{CC} = max$, $V_{IN} = 2.7 \text{ V}$			20	μΑ
		$V_{CC} = max, V_1$	$_{\rm IN} = 7.0 \ { m V}$		0.1	mA
$I_{\rm IL}$	Low Level Input Current	$V_{CC} = max$, $V_{IN} = 0.4 \text{ V}$			-0.1	mA
I _O	Output Short Circuit Current	$V_{CC} = max, V_{O} = 2.25 \text{ V}$		-30	-112	mA
I_{CC}	Supply Current	$V_{CC} = max$	Outputs Low		17	mA
			Outputs High		24	
			3-State (High Z)		27	

AC ELECTRICAL CHARACTERISTICS over full operating conditions

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, C_L = 50 \text{ pF}, R_{L1} = R_{L2} = 500 \Omega, \text{ Input } t_r = t_f = 2.0 \text{ ns})$

		Guaranteed Limit		
Symbol	Parameter	Min	Max	Unit
f_{max}	Maximum Clock Frequency	35		MHz
t_{PLH}, t_{PHL}	Propagation Delay Time, from Clock to Output		14	ns
t_{PZH}, t_{PZL}	Propagation Delay Time, from Enable to Any Q		18	ns
t_{PHZ}	Propagation Delay Time, from Enable to Any Q		32	ns
t_{PLZ}	Propagation Delay Time, from Enable to Any Q		18	ns
$t_{\rm w}$	Pulse Duratio, Enable, 25°C at 5.0 V	16.5		ns
t_{su}	Data Setup Time before Clock	15		ns
$t_{\rm h}$	Data Hold Time after Clock	4		ns

 $\begin{array}{l} t_{PZL},\,t_{PLZ}\text{ - }S1\text{ closed} \\ t_{PZH},\,t_{PHZ}\text{ - }S1\text{ opened} \end{array}$

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

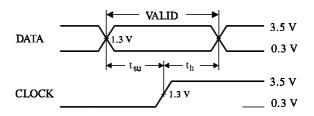
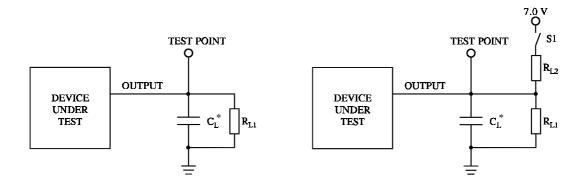
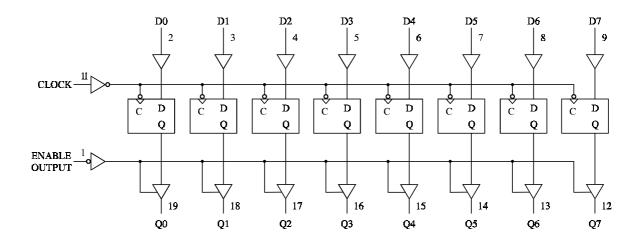



Figure 3. Switching Waveforms



^{*} Includes all probe and jig capacitance.

Figure 3. Test Circuit

Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM

^{*} Includes all probe and jig capacitance.