FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- Low propagation delay
- TTL-compatible input and output levels
- Undershoot clamp diodes on all switch and control pins
- Available in 56 -pin SSOP Package

APPLICATIONS

- Video, audio, graphics switching, muxing
- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3 V)

DESCRIPTION:

The QS3162214 provides a set of twelve high-speed CMOS TTLcompatible buses switching between three separate ports. The device operates as a 12-bit bus-select switch through the data-select (S0-S2) terminals.

The QS3162214 adds an internal 25Ω series termination resistor to reduce reflection noise in high speed applications. When closed, the switch acts as the source (series) termination for the driver connected to it.

Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices.

The QS3162214 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
Vterm $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
Vterm $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
Vterm $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC 2	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{TA}=85^{\circ} \mathrm{C}\right)$.93	W
TstG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc Terminals.
3. All terminals except Vcc.

CAPACITANCE

(TA $=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}$, VOUT $=0 \mathrm{~V}$)

Pins		Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs		5	5.5	pF
Quickswitch Channels	Demux	10	12	pF
(Switch OFF)	Mux	6	7	pF

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	$1 / 0$	Description
$1 A-12 A$	$1 / 0$	Bus A
$1 B n-12 B n$	$1 / 0$	Bus B
So $-S_{2}$	1	Data Select

FUNCTION TABLE(1)

S2	S1	So	xA	Function
L	L	L	Z	Disconnect
L	L	H	xB1	xA to xB 1
L	H	L	xB2	xA to xB 2
L	H	H	Z	Disconnect
H	L	L	Z	Disconnect
H	L	H	xB3	xA to xB 3
H	H	L	xB1	xA to xB 1
H	H	H	xB2	xA to xB 2

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
$\mathrm{VIH}^{\text {I }}$	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
lin	Input Leakage Current (Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
loz	Off-State Current (Hi-Z)	OV \leq Vout \leq Vcc	-	-	± 1	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(2)}$	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{VIN}=0 \mathrm{~V}, \mathrm{ION}=30 \mathrm{~mA}$	22	30	42	Ω
Ron	Switch On Resistance ${ }^{(2)}$	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{ION}=15 \mathrm{~mA}$	22	37	50	Ω
V	Pass Voltage ${ }^{(3)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, IOUT $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{VcC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. Max value of Row is guaranteed but not production tested.
3. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

Ron
(ohms)

VIn
(Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Max.	Unit
IccQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $f=0$	3	$\mu \mathrm{~A}$
$\Delta \mathrm{Icc}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	Vcc $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc $=$ Max., A and B pins open Control Input Toggling at 50% Duty Cycle	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TLL driven input $(\mathrm{VIN}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$
$C L O A D=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Unit
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Data Propagation Delay ${ }^{(2,4)}$ $x A$ to $x B n, x B n$ to $x A$	-	-	$1.25{ }^{(3)}$	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tpZH } \end{aligned}$	Switch Turn-on Delay Sn to $\mathrm{xA}, \mathrm{xBn}$	1.5	-	7.5	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch Turn-off Delay ${ }^{(2)}$ Sn to $\mathrm{xA}, \mathrm{xBn}$	1.5	-	5.8	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The time constant for the switch alone is of the order of 1.25 ns for $\mathrm{CL}=50 \mathrm{pF}$.
4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

