FEATURES:

- Bus switches provide zero delay paths
- Extended commercial range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low switch on-resistance
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in SSOP, TSSOP, and TVSOP Packages
- Hot insertion capability
- Very low power dissipation

DESCRIPTION:

The FST163210 belong to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no VCC applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VTERM ${ }^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	Maximum Continuous Channel Current	128	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc, Control, and Switch terminals.

CAPACITANCE (1)

Symbol	Parameter	Conditions(2)	Typ.	Unit
CIN	Control Input Capacitance		6	pF
C//O	Switch Input/Output Capacitance	Switch Off	12	pF

NOTES:

1. Capacitance is characterized but not tested.
2. $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}, \mathrm{VOUT}=0 \mathrm{~V}$

PIN DESCRIPTION

Pin Names	$1 / 0$	Description
$x \mathrm{Ax}$	$1 / 0$	Bus A
$x \mathrm{Bx}$	$1 / 0$	Bus B
$x \overline{\mathrm{OE}}$	1	Switch Enable

FUNCTION TABLE (1)

10E	$2 \overline{\mathrm{OE}}$	1A, 1 B	2A, 2 B	Description
L	L	$1 \mathrm{~A}=1 \mathrm{~B}$	$2 \mathrm{~A}=2 \mathrm{~B}$	Connect
L	H	$1 \mathrm{~A}=1 \mathrm{~B}$	Z	Bank 1 Connect
H	L	Z	$2 \mathrm{~A}=2 \mathrm{~B}$	Bank 2 Connect
H	H	Z	Z	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage level

L = LOW Voltage Level
Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Control Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs		2	-	-	V
VIL	Control Input LOW Voltage	Guaranteed Logic LOW for Control Inputs		-	-	0.8	V
IH	Control Input HIGH Current	Vcc = Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
IIL	Control Input LOW Current		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
IOZH	Current during Bus Switch DISCONNECT	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=0$ to 5V		-	-	± 1	$\mu \mathrm{A}$
IozL				-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
IOFF	Switch Power Off Leakage	$\mathrm{VcC}=0 \mathrm{~V}$, VIN or Vo $\leq 5.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$
ICC	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc		-	0.1	3	$\mu \mathrm{A}$

BUS SWITCH IMPEDANCE OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Ron	Switch On Resistance ${ }^{(2)}$	$\begin{aligned} & \text { Vcc }=\text { Min., } \mathrm{VIN}=0 \mathrm{~V} \\ & \mathrm{ION}=64 \mathrm{~mA} \end{aligned}$	-	5	7	Ω
		$\begin{aligned} & \mathrm{Vcc}=\mathrm{Min} ., \mathrm{VIN}=0 \mathrm{~V} \\ & \mathrm{ION}=30 \mathrm{~mA} \end{aligned}$	-	5	7	Ω
		$\begin{aligned} & \text { Vcc }=\text { Min., } \mathrm{VIN}=2.4 \mathrm{~V} \\ & \mathrm{ION}=15 \mathrm{~mA} \end{aligned}$	-	8	15	Ω
los	Short Circuit Current, A to B ${ }^{(3)}$	$\mathrm{A}(\mathrm{B})=0 \mathrm{~V}, \mathrm{~B}(\mathrm{~A})=\mathrm{Vcc}$	100	-	-	mA

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The voltage drop between the indicated ports divided by the current through the switch.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcC}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VcC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ${ }^{(4,5)}$	$\mathrm{VCC}=\mathrm{Max} .$ One Enable Pin Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	120	160	$\mu \mathrm{A}$ MHz/ Switch
IC	Total Power Supply Current ${ }^{(6)}$	$V C C=M a x .$ One Enable Pin Toggling $\begin{aligned} & \mathrm{fi}=10 \mathrm{MHz} \\ & 50 \% \text { Duty Cycle } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.2	1.6	mA
			$\begin{aligned} & \mathrm{VIN}=3.4 \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.5	2.4	
		$V C C=M a x .$ 2 Enable Pins Toggling $\begin{aligned} & \text { fi }=10 \mathrm{MHz} \\ & 50 \% \text { Duty Cycle } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.4	3.2	
			$\begin{aligned} & \mathrm{VIN}=3.4 \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.9	4.7	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input (VIN $=3.4 \mathrm{~V}$). All other inputs at Vcc or GND. Switch inputs do not contribute to $\Delta \mathrm{Icc}$.
4. This parameter represents the current required to switch the internal capacitance of the control inputs at the specified frequency.

Switch inputs generate no significant power supply currents as they transition. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. $\mathrm{CPD}=\mathrm{ICCD} / \mathrm{VCC}$

CPD = Power Dissipation Capacitance
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{IcC}+\Delta \mathrm{IcC}$ DHNT $+\mathrm{ICCD}(\mathrm{fiN})$
Icc = Quiescent Current
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
IccD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{fi}_{\mathrm{i}}=$ Control Input Frequency
$\mathrm{N}=$ Number of Control Inputs Toggling at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Description ${ }^{(1)}$	$\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$			$\mathrm{Vcc}=4 \mathrm{~V}$	Unit
		Min.	Typ.	Max.	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Data Propagation Delay A to B, B to $A^{(2)}$	-	-	0.25	0.25	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Switch CONNECT Delay $x \overline{O E}$ to A or B	1.5	-	6.5		ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Switch DISCONNECT Delay $x \overline{\mathrm{O}}$ to A or B	1.5	-	5.5		ns
IQcıl	Charge Injection During Switch DISCONNECT, $\mathrm{x} \overline{\mathrm{OE}}$ to A or $\mathrm{B}^{(3)}$	-	1.5	-	-	pC

NOTES:

1. See test circuits and waveforms.
2. The bus switch contributes no Propagation Delay other than the RC Delay of the load interacting with the RC of the switch.
3. |QCI| is the charge injection for a single switch DISCONNECT and applies to either single switches or multiplexers. |QDCI| is the charge injection for a multiplexer as the multiplexed port switches from one path to another. Charge injection is reduced because the injection from the DISCONNECT of the first path is compensated by the CONNECT of the second path.

TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	Open
All Other Tests	FCT LINK

DEFINITIONS:

$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

CHARGEINJECTION

NOTES:

1. Select is used with multiplexers for measuring IQdcIl during multiplexer select. During all other tests Enable is used.
2. Used with multiplexers to measure IQdcIl only.
3. Charge Injection $=\Delta$ Vоut $C L$, with Enable toggling for IQcIl or Select toggling for IQdcil. Δ Vout is the change in Vout and is measured with a $10 \mathrm{M} \Omega$ probe.

PULSE WIDTH

LOW-HIGH-LOW

PROPAGATION DELAY

SET-UP, HOLD, AND RELEASE TIMES

ENABLE AND DISABLE TIMES

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control DisableHIGH
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$

ORDERING INFORMATION

for SALES
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

