

16/32 BIT RISC/DSP

GMS30C2116
GMS30C2132

USER’S MANUAL

Jun 13, 2001 Ver. 3.1

Revision 3.1

Published by
IDA Team in Hynix Semiconductor Inc.

¨ Ï Hynix Semiconductor 2001. All Right Reserved.

Hynix Offices in Korea or Distributors and Representatives listed at address directory may serve
additional information of this manual.

Hynix reserves the right to make changes to any Information here in at any time without notice.

The information, diagrams, and other data in this manual are correct and reliable; however, Hynix is
in no way responsible for any violations of patents or other rights of the third party generated by the
use of this manual.

Specifications and information in this document are subject to change without notice and do not
represent a commitment on the part of Hynix. Hynix reserves the right to make changes to improve
functioning. Although the information in this document has been carefully reviewed, Hynix does not
assume any liability arising out of the use of the product or circuit described herein.

Hynix does not authorize the use of the Hynix microprocessor in life support applications wherein a
failure or malfunction of the microprocessor may directly threaten life or cause injury. The user of
the Hynix microprocessor in life support applications assumes all risks of such use and indemnifies
Hynix against all damages.

For further information please contact:

SEOUL OFFICE : Hynix Semiconductor YOUNG DONG Bldg.

 891, Daechi-dong, Kangnam-gu,

 Seoul, Korea.

 PHONE : (02) 3459-3662~3

 FAX : (02) 3459-3942

SYSTEM IC : 1, Hyangjeong-dong, Hungduk-gu,

 Cheongju, 361-725, Korea.

 PHONE : (0431) 270-4030~47

 FAX : (0431) 270-4075

 Copyright 2001 Hynix Semiconductor Inc.

Revision Jun. 29, 2001

TABLE OF CONTENTS i

Table of Contents

0. Overview

0.1 GMS30C2116/32 RISC/DSP.. 0-1

0.2 Block Diagram.. 0-6

0.3 Pin Configuration.. 0-7

0.3.1 GMS30C2132, 160-Pin MQFP-Package - View from Top Side 0-7

0.3.2 Pin Cross Reference by Pin Name .. 0-8

0.3.3 Pin Fuction .. 0-9

1. Architecture

1.1 Introduction.. 1-1

1.1.1 RISC Architecture ... 1-1
1.1.2 Techniques to reduce CPI (Cycles per Instruction)............................. 1-2

1.1.3 The pipeline structure of GMS30C2132 ... 1-6

1.2 Global Register Set .. 1-7

1.2.1 Program Counter PC, G0 .. 1-8

1.2.2 Status Register SR, G1 .. 1-9

1.2.3 Floating-Point Exception Register FER, G2 1-12

1.2.4 Stack Pointer SP, G18 ... 1-13

1.2.5 Upper Stack Bound UB, G19.. 1-13

1.2.6 Bus Control Register BCR, G20 ... 1-13

1.2.7 Timer Prescaler Register TPR, G21.. 1-14
1.2.8 Timer Compare Register TCR, G22.. 1-14

1.2.9 Timer Register TR, G23.. 1-14

1.2.10 Watchdog Compare Register WCR, G24.. 1-14

1.2.11 Input Status Register ISR, G25 ... 1-14

1.2.12 Function Control Register FCR, G26.. 1-14

1.2.13 Memory Control Register MCR, G27... 1-15

1.3 Local Register Set.. 1-15

1.4 Privilege States .. 1-16

1.5 Register Data Types... 1-17

1.6 Memory Organization.. 1-18
1.7 Stack... 1-20

1.8 Instruction Cache ... 1-25

1.9 On-Chip Memory (IRAM)... 1-28

ii TABLE OF CONTENTS

2. Instructions General

2.1 Instruction Notation..2-1

2.2 Instruction Execution..2-2

2.3 Instruction Formats...2-3

2.3.1 Table of Immediate Values ..2-5
2.3.2 Table of Instruction Codes...2-6

2.3.3 Table of Extended DSP Instruction Codes ..2-7

2.4 Entry Tables..2-8

2.5 Instruction Timing ..2-12

3. Instruction Set

3.1 Memory Instructions ..3-1

3.1.1 Address Modes...3-2

3.1.2 Load Instructions..3-7

3.1.3 Store Instructions ...3-9

3.2 Move Word Instructions...3-11
3.3 Move Double-Word Instruction ...3-11

3.4 Logical Instructions ..3-12

3.5 Invert Instruction ..3-13

3.6 Mask Instruction...3-13

3.7 Add Instructions ...3-14

3.8 Sum Instructions...3-16

3.9 Subtract Instructions...3-17

3.10 Negate Instructions...3-18

3.11 Multiply Word Instruction..3-19

3.12 Multiply Double-Word Instructions ...3-19
3.13 Divide Instructions ...3-20

3.14 Shift Left Instructions...3-22

3.15 Shift Right Instructions...3-23

3.16 Rotate Left Instruction..3-24

3.17 Index Move Instructions...3-25

3.18 Check Instructions ..3-26

3.19 No Operation Instruction ..3-26

3.20 Compare Instructions..3-27

3.21 Compare Bit Instructions..3-27

3.22 Test Leading Zeros Instruction...3-28
3.23 Set Stack Address Instruction...3-28

3.24 Set Conditional Instructions ...3-28

3.25 Branch Instructions...3-30

3.26 Delayed Branch Instructions ..3-31

TABLE OF CONTENTS iii

3.27 Call Instruction .. 3-33

3.28 Trap Instructions .. 3-34

3.29 Frame Instruction... 3-35

3.30 Return Instruction .. 3-37
3.31 Fetch Instruction .. 3-38

3.32 Extended DSP Instructions .. 3-39

3.33 Software Instructions ... 3-41

3.33.1 Do Instruction.. 3-42

3.33.2 Floating-Point Instructions .. 3-43

4. Exceptions

4.1 Exception Processing... 4-1

4.2 Exception Types .. 4-2

4.2.1 Reset .. 4-2

4.2.2 Range, Pointer, Frame and Privilege Error ... 4-2

4.2.3 Extended Overflow.. 4-2
4.2.4 Parity Error .. 4-3

4.2.5 Interrupt ... 4-3

4.2.6 Trace Exception... 4-3

4.3 Exception Backtracking... 4-4

5. Timer

5.1 Overview.. 5-1

5.1.1 Timer Prescaler Register TPR... 5-1

5.1.2 Timer Register TR... 5-2

5.1.3 Timer Compare Register TCR .. 5-2

6. Bus Interface

6.1 Bus Control General .. 6-1
6.1.1 SRAM and ROM Bus Access ... 6-1

6.1.1.1 SRAM and ROM Single-Cycle Read Access 6-2

6.1.1.2 SRAM and ROM Multi-Cycle Read Access 6-2

6.1.1.3 SRAM Single-Cycle Write Access 6-3

6.1.1.4 SRAM Multi-Cycle write Access 6-3

6.1.2 DRAM Bus Access ... 6-4

6.1.2.1 DRAM Access ... 6-5

6.1.2.2 DRAM Refresh (CAS before RAS Refresh) 6-6

6.1.3 I/O Bus Access .. 6-7

6.1.3.1 I/O Read Access ... 6-7
6.1.3.2 I/O Write Access .. 6-8

iv TABLE OF CONTENTS

6.2 I/O Bus Control ..6-9

6.3 Bus Control Register BCR ...6-10

6.4 Memory Control Register MCR...6-13

6.4.1 Output Voltage...6-14
6.4.2 Input Threshold ..6-14

6.4.3 Power Down...6-14

6.4.4 IRAM Refresh Test ..6-15

6.4.5 IRAM Refresh Rate ...6-15

6.4.6 Entry Table Map ..6-15

6.4.7 MEMx Bus Hold Break ...6-15

6.5 Input Status Register ISR ...6-16

6.6 Function Control Register FCR..6-17

6.7 Watchdog Compare Register WCR..6-19

6.8 IO3 Control Modes...6-19
6.8.1 IO3Standard Mode...6-19

6.8.2 Watchdog Mode...6-19

6.8.3 IO3Timing Mode ...6-20

6.8.4 IO3TimerInterrupt Mode ...6-20

6.9 Bus Signals ...6-21

6.9.1 Bus Signals for the GMS30C2132 Processor6-21

6.9.2 Bus Signals for the GMS30C2116 Processor6-22

6.9.3 Bus Signal Description...6-23

6.10 DC Characteristics..6-27

6.11 AC Characteristics..6-29
6.11.1 Processor Clock..6-29

6.11.2 DRAM RAS Access...6-30

6.11.3 DRAM Fast Page Mode Access...6-31

6.11.3.1 Multi-Cycle Access...6-31

6.11.3.2 Single-Cycle Access ...6-32

6.11.4 DRAM CAS-Before-RAS Refresh ..6-34

6.11.5 SRAM Access ..6-35

6.11.5.1 Multi-Cycle Access...6-35

6.11.5.2 Single-Cycle Access ...6-37

6.11.6 I/0 Access ...6-38

TABLE OF CONTENTS v

7. Mechanical Data

7.1 GMS30C2132, 160-Pin MQFP-Package... 7-1

7.1.1 Pin Configuration - View from Top Side.. 7-1

7.1.2 Pin Cross Reference by Pin Name .. 7-2

7.1.3 Pin Cross Reference by Location .. 7-3
7.2 GMS30C2132, 144-Pin TQFP-Package .. 7-4

7.2.1 Pin Configuration - View from Top Side.. 7-4

7.2.2 Pin Cross Reference by Pin Name .. 7-5

7.2.3 Pin Cross Reference by Location .. 7-6

7.3 GMS30C2116, 100-Pin TQFP-Package .. 7-7

7.3.1 Pin Configuration - View from Top Side.. 7-7

7.3.2 Pin Cross Reference by Pin Name .. 7-8

7.3.3 Pin Cross Reference by Location .. 7-9

7.4 Package-Dimensions.. 7-10

Appendix. Instruction Set Details

Overview 0-1

0. Overview

0.1 GMS30C2116/32 RISC/DSP
The GMS30C2116 and GMS30C2132 RISC/DSP present a new class of microprocessors:
The combination of a high-performance RISC microprocessor with an additional powerful
DSP instruction set and on-chip micro-controller functions. The high throughput is not
achieved by raw clock speed, it is due to a sophisticated novel architecture, combining the
advantages of RISC and DSP technology.

The speed is obtained by an optimized combination of the following features:

¡ Ü The most recent stack frames are kept in a register stack, thereby reducing data memory
accesses to a minimum by keeping almost all local data in registers.

¡ Ü Pipelined memory access allows overlapping of memory accesses with execution.

¡ Ü 4KByte on-chip memory.

¡ Ü On-chip instruction cache omits instruction fetch in inner loops and provides pre-fetch.

¡ Ü Variable-length instructions of 16, 32 or 48 bits provide a large, powerful instruction set,
thereby reducing the number of instructions to be executed.

¡ Ü Primarily used 16-bit instructions halve the memory bandwidth required for instruction
fetch in comparison to conventional RISC architectures with fixed-length 32-bit
instructions, yielding also even better code economy than conventional CISC
architectures.

¡ Ü Regular instruction set allows hardwiring of control logic at low component count.

¡ Ü Most instructions execute in one cycle.

¡ Ü Pipelined DSP instructions.

¡ Ü Parallel execution of ALU and DSP instructions.

¡ Ü Single-cycle half word multiply-accumulate operation.

¡ Ü Fast Call and Return by parameter passing via registers.

¡ Ü An instruction pipeline depth of only two stages - decode/execute - provides branching
without insertion of wait cycles in combination with Delayed Branch instructions.

¡ Ü Range and pointer checks are performed without speed penalty, thus, these checks need
no longer be turned off, thereby providing higher runtime reliability.

¡ Ü Separate address and data buses provide a throughput of one 32-bit word each cycle.

The features noted above contribute to reduce the number of idle wait cycles to a bare
minimum. The processor is designed to sustain its execution rate with a standard DRAM
memory.

The low power consumption is of advantage for mobile (portable) applications or in
temperature-sensitive environments.

In the current version, the GMS30C2116 and GMS30C2132 RISC/DSP are implemented in a
0.6 µm-CMOS-process.

The GMS30C2116 and GMS30C2132 RISC/DSP are based on hyperstone architecture.

0-2 CHAPTER 0

0.1. GMS30C2116/32 RISC/DSP (continued)
Most of the transistors are used for the on-chip memory, the instruction cache, the register
stack and the multiplier, whereas only a small-number is required for the control logic.

Due to the Hynix’s low system cost, the GMS30C2116 and GMS3OC2132 RISC/DSP are
very well suited for embedded-systems applications requiring high performance and lowest
cost. To simplify board design as well as to reduce system costs, the GMS30C2116 and
GMS30C2132 already come with integrated periphery, such as a timer and memory and bus
control logic. Therefore, complete systems with the Hynix’s microprocessor can be
implemented with a minimum of external components. To connect any kind of memory or
I/O, no glue logic is necessary. It is even suitable for systems where up to now
microprocessors with 16-bit architecture have been used for cost reasons. Its improved
performance compared to conventional micro-controllers can be used to software-
substitute many external peripherals like graphics controllers or DSPs.

The software development tools include an optimizing C compiler, assembler, source-level
debugger with profiler as well as a real-time kernel with an extremely fast response time.
Using this real-time kernel, up to 31 tasks, each with its own virtual timer, can be
developed independently of each other. The synchronization of these tasks is effected
almost automatically by the real-time kernel. To the developer, it seems as if he has up to
31 Hynix’s microprocessors to which he can allocate his programs accordingly. Real-time
debugging of multiple tasks is assisted in an optimized way.

The following description gives a brief architectural overview:

Registers:

¡ Ü 32 global and 64 local registers of 32 bits each

¡ Ü 16 global and up to 16 local registers are addressable directly

Flags:

¡ Ü Zero(Z), negative(N), carry(C) and overflow(V) flag

¡ Ü Interrupt-mode, interrupt-lock, trace-mode, trace-pending, supervisor state, cache-mode
and high global flag

Register Data Types:

¡ Ü Unsigned integer, signed integer, signed short, signed complex short, 16-bit fixed-point,
bit-string, IEEE-754 floating-point, each either 32 or 64 bits

External Memory:

¡ Ü Address space of 4Gbytes, divided into five areas

¡ Ü Separate I/O address space

¡ Ü Load/Store architecture

¡ Ü Pipelined memory and I/O accesses

¡ Ü High-order data located and addressed at lower address (big endian)

¡ Ü Instructions and double-word data may cross DRAM page boundaries

Overview 0-3

0.1. GMS30C2116/32 RISC/DSP (continued)

On-chip Memory:

¡ Ü 4KByte internal (on-chip) memory

Memory Data Types:

¡ Ü Unsigned and signed byte (8 bit)

¡ Ü Unsigned and signed half word (16 bit), located on half word boundary

¡ Ü Undedicated word (32 bit), located on word boundary

¡ Ü Undedicated double-word (64 bit), located on word boundary

Runtime Stack:

¡ Ü Runtime stack is divided into memory part and register part

¡ Ü Register part is implemented by the 64 local registers holding the most recent stack
frame(s)

¡ Ü Current stack frame (maximum 16 registers) is always kept in register part of the stack

¡ Ü Data transfer between memory and register part of the stack is automatic

¡ Ü Upper stack bound is guarded

Instruction Cache:

¡ Ü An on-chip instruction cache reduces instruction memory access substantially

Instructions General:

¡ Ü Variable-length instructions of one, two or three half words halve required memory
bandwidth

¡ Ü Pipeline depth of only two stages, assures immediate refill after branches

¡ Ü Register instructions of type "source operator destination ⇒ destination" or
"source operator immediate ⇒ destination"

¡ Ü All register bits participate in an operation

¡ Ü Immediate operands of 5, 16 and 32 bits, zero- or sign-expanded

¡ Ü Large address displacement of up to 28 bits

¡ Ü Two sets of signed arithmetical instructions: instructions set or clear either only the
overflow flag or trap additionally to a Range Error routine on overflow

¡ Ü DSP instructions operate on 16-bit integer, real and complex fixed-point data and 32-bit
integer data into 32-bit and 64-bit hardware accumulators

Instruction Summary:

¡ Ü Memory instructions pipelined to a depth of two stages, trap on address register equal to
zero (check for invalid pointers)

0-4 CHAPTER 0

0.1. GMS30C2116/32 RISC/DSP (continued)
¡ Ü Memory address modes: register address, register post-increment, register + dis-

placement (including PC relative), register post-increment by displacement (next
address), absolute, stack address, I/O absolute and I/O displacement

¡ Ü Load, all data types, bytes and half words right adjusted and zero- or sign-expanded,
execution proceeds after Load until data is needed

¡ Ü Store, all data types, trap when range of signed byte or half word is exceeded

¡ Ü Move, Move immediate, Move double-word

¡ Ü Logical instructions AND, AND not, OR, XOR, NOT, AND not immediate, OR
immediate, XOR immediate

¡ Ü Mask source and immediate ⇒ destination

¡ Ü Add unsigned/signed, Add signed with trap on overflow, Add with carry

¡ Ü Add unsigned/signed immediate, Add signed immediate with trap on overflow

¡ Ü Sum source + immediate ⇒ destination, unsigned/signed and signed with trap on
overflow

¡ Ü Subtract unsigned/signed, Subtract signed with trap on overflow, Subtract with carry

¡ Ü Negate unsigned/signed, Negate signed with trap on overflow

¡ Ü Multiply word ∗ word ⇒ low-order word unsigned or signed, Multiply
word ∗ word ⇒ double-word unsigned and signed

¡ Ü Divide double-word by word ⇒ quotient and remainder, unsigned and signed

¡ Ü Shift left unsigned/signed, single and double-word, by constant and by content of
register, Shift left signed by constant with trap on loss of high-order bits

¡ Ü Shift right unsigned and signed, single and double-word, by constant and by content of
register

¡ Ü Rotate left single word by content of register

¡ Ü Index Move, move an index value scaled by 1, 2, 4 or 8, optionally with bounds check

¡ Ü Check a value for an upper bound specified in a register or check for zero

¡ Ü Compare unsigned/signed, Compare unsigned/signed immediate

¡ Ü Compare bits, Compare bits immediate, Compare any byte zero

¡ Ü Test number of leading zeros

¡ Ü Set Conditional, save conditions in a register

¡ Ü Branch unconditional and conditional (12 conditions)

¡ Ü Delayed Branch unconditional and conditional (12 conditions)

¡ Ü Call subprogram, unconditional and on overflow

¡ Ü Trap to supervisor subprogram, unconditional and conditional (11 conditions)

¡ Ü Frame, structure a new stack frame, include parameters in frame addressing, set frame
length, restore reserve frame length and check for upper stack bound

¡ Ü Return from subprogram, restore program counter, status register and return-frame

Overview 0-5

0.1. GMS30C2116/32 RISC/DSP (continued)
¡ Ü Software instructions, call an associated subprogram and pass a source operand and the

address of a destination operand to it

¡ Ü DSP Multiply instructions:
signed and/or unsigned multiplication ⇒ single and double word product

¡ Ü DSP Multiply-Accumulate instructions:
signed multiply-add and multiply-subtract ⇒ single and double word product sum and
difference

¡ Ü DSP Half word Multiply-Accumulate instructions:
signed multiply-add operating on four half word operands ⇒ single and double word
product sum

¡ Ü DSP Complex Half word Multiply instruction:
signed complex half word multiplication ⇒ real and imaginary single word product

¡ Ü DSP Complex Half word Multiply-Accumulate instruction:
signed complex half word multiply-add ⇒ real and imaginary single word product sum

¡ Ü DSP Add and Subtract instructions:
signed half word add and subtract with and without fixed-point adjustment ⇒ single
word sum and difference

¡ Ü Floating-point instructions are architecturally fully integrated, they are executed as
Software instructions by the present version. Floating-point Add, Subtract, Multiply,
Divide, Compare and Compare unordered for single and double-precision, and Convert
single ⇔ double are provided.

Exceptions:

¡ Ü Pointer, Privilege, Frame and Range Error, Extended Overflow, Parity Error, Interrupt
and Trace mode exception

¡ Ü Watchdog function

¡ Ü Error-causing instructions can be identified by backtracking, thus allowing a very
detailed error analysis

Timer:

¡ Ü Two multifunctional timers

Bus Interface:

¡ Ü Separate address bus of 26 (GMS30C2132) or 22 (GMS30C2116) bits and data bus of up
to 32 (GMS30C2132) or 16 bits (GMS30C2116) provide a throughput of four or two bytes
at each clock cycle

¡ Ü Data bus width of 32, 16 or 8 bits, individually selectable for each external memory area.

¡ Ü Up to seven vectored interrupts

¡ Ü Configurable I/O pins

¡ Ü Internal generation of all memory and I/O control signals

0-6 CHAPTER 0

0.2 Block Diagram

DSP
Execution

Unit
Hardware-
Multiplier

Store Data
Pipeline

Instruction Prefetch
Control Unit

Data Bus Parity

ALU

Barrel shifter

Z W A

X Y I

Memory Address
Pipeline

Address
Bus

Control
Bus

Bus Interface
Control Unit

Bus Pipeline
Control

Instruction
Cache
Control

Instruction

Cache Load
Decode

Instruction
Decode

32
26

4 kByte
RAM

12

X Y PC

Instruction
Execution

Control Unit

Interrupt
control

Internal
Timer

32

Watchdog

Power
Down+
Reset

Control

4

(16)

(22)4

(2)

Register Set

64 Local

26 Global

X-Decode

Y-Decode

X Y

Figure 0.1: Block Diagram

Overview 0-7

0.3 Pin Configuration

0.3.1 GMS30C2132, 160-Pin MQFP-Package - View from Top Side

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

99 98 96 95 94 93 92 91 90 89 88 87 86 85 84

121
122
123
124
125
126
127
128
129
130
131
132
133

97

48
47
46
45
44
43
42
41

71
70
69
68
67
66
65
64
63
62

49
50

A24
A23

GND
VCC
A22
A8
A7

VCC
A6
A5
A4

GND
WE0#
WE1#
VCC

CAS0#
A14

GND
VCC
ACT
A13

GND
WE#

GND
VCC

VCC
D23
D22
GND
D5
D4
D3
VCC
D2
D1
D0
VCC
GND
D21
D20

D19
DP2
DP3
VCC
GND
RESET#
GRANT#
VCC

GND
VCC

V
C

C
G

N
D

IO
3

IO
W

R
#

C
S

3#
C

S
2#

C
S

1#
G

N
D

R
A

S
#

A
19

V
C

C
A

20
A

21
G

N
D

D
31

D
30

D
29 A
9

A
10

A
11

A
12

V
C

C
D

28
D

27
D

26

G
N

D

W
E

2#
IO

R
D

#
O

E
#

V
C

C
C

A
S

3#
C

A
S

2#
C

A
S

1#
G

N
D

X
T

A
L1

/C
LK

IN
X

T
A

L2
IO

2
V

C
C

D
16

D
17

D
18

A
3

A
2

A
1

A
0

G
N

D
D

P
1

D
P

0

83 82 81

V
C

C
C

LK
O

U
T

IO
1

G
N

D
R

Q
S

T
IN

T
4

IN
T

3
IN

T
2

IN
T

1

G
N

D
V

C
C

61
60
59
58
57
56
55
54
53
52
51

VCC
GND

D9
GND
D8
D7
VCC
GND
D6
D24

26 27 28 29 30 31 32 33 34 35 36

G
N

D
D

25
D

15
D

14
V

C
C

D
13

D
12

D
11

D
10

G
N

D
V

C
C

134
135
136
137
138
139
140
141
142
143
144

VCC
GND

VCC
A18
A17

GND
VCC
A16
A15
A25

GND

72

GND

V
C

C

W
E

3#

N
C

N
C

N
C

N
C

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

73
74
75
76
77
78
79
80

NC
NC

NC
NC

37 38 39 40

N
C

N
C

N
C

N
C

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

NC
NC

NC
NC

GMS30C2132

Figure 0.2: GMS30C2132, 160-Pin MQFP-Package

0-8 CHAPTER 0

0.3. Pin Configuration (continued)

0.3.2 Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A0...................97 D5......................57 GND.................. 65 NC...................124
A1...................98 D6......................51 GND.................. 68 NC...................157
A2...................99 D7......................48 GND.................. 73 NC...................158
A3.................100 D8......................47 GND.................. 79 OE#.................113
A4.................137 D9......................45 GND.................. 82 RAS#11
A5.................138 D10....................36 GND.................. 90 RESET#............74
A6.................139 D11....................35 GND.................. 96 RQST................89
A7.................141 D12....................34 GND................ 108 VCC1
A8.................142 D13....................33 GND................ 119 VCC13
A9...................20 D14....................31 GND................ 122 VCC24
A10.................21 D15....................30 GND................ 126 VCC32
A11.................22 D16..................103 GND................ 130 VCC40
A12.................23 D17..................102 GND................ 136 VCC41
A13...............127 D18..................101 GND................ 145 VCC49
A14...............131 D19....................69 GND................ 148 VCC53
A15...............150 D20....................67 GND................ 153 VCC60
A16...............151 D21....................66 GND................ 159 VCC64
A17...............154 D22....................55 GRANT#........... 75 VCC72
A18...............155 D23....................54 INT1.................. 85 VCC76
A19.................12 D24....................52 INT2.................. 86 VCC80
A20.................14 D25....................29 INT3.................. 87 VCC81
A21.................15 D26....................27 INT4.................. 88 VCC93
A22...............143 D27....................26 IO1.................... 91 VCC104
A23...............146 D28....................25 IO2.................. 105 VCC112
A24...............147 D29....................19 IO3...................... 5 VCC120
A25...............149 D30....................18 IORD#............. 114 VCC121
ACT128 D31....................17 IOWR#................ 6 VCC133
CAS0#..........132 DP094 NC 3 VCC140
CAS1#..........109 DP195 NC 4 VCC156
CAS2#..........110 DP270 NC 37 VCC160
CAS3#..........111 DP371 NC 38 VCC129
CLKOUT.........92 GND2 NC 43 VCC144
CS1#9 GND10 NC 44 VCC152
CS2#8 GND16 NC 77 WE#125
CS3#7 GND28 NC 78 WE0#135
D0...................63 GND39 NC 83 WE1#134
D1...................62 GND42 NC 84 WE2#115
D2...................61 GND46 NC 117 WE3#116
D3...................59 GND50 NC 118 XTAL1/CLKIN .107
D4...................58 GND56 NC 123 XTAL2.............106

Overview 0-9

0.3. Pin Configuration (continued)

0.3.3 Pin Function

Type Name State Use

Power VCC I Power. Connected to the power supply. It can be
selected 5.0V or 3.3V power supply.

 GND I Ground. Connected to the system ground. All GND
pins must be connected to the system ground.

Clock XTAL1 I Input for Quartz Clock. When external clock
generator generates the clock, XTAL1 is used as
clock input.

 XTAL2 O Output for Quartz Clock.

 CLKOUT O Clock Signal Output. It can be used to supply a
clock signal to peripheral devices.

Address Bus A25..A0 O/Z Address Bus. With the GMS30C2132, only A22..A0
are connected to the address bus pins

Data Bus D31..D0 I/O Data Bus. 32-bit bi-directional data bus

 DP0..DP3 I/O Data Parity Signal. Bi-directional parity signals

Bus Control RAS# O/Z Row Address Strobe. RAS# is activated when the
processor accesses a DRAM or refresh cycle. When
a SRAM is placed in MEM0, RAS# is used as the
chip select signal

 CAS0#..CAS
3#

O/Z Column Address Strobe. They are only used by a
DRAM for column access cycles and for “CAS
before RAS” refresh.

 WE# O/Z Write Enable. Active low indicates a write access,
active high indicates a read access.

 CS1#..CS3# O/Z Chip Select. Active low of CS1#..CS3# indicates
chip select for the memory areas MEM1..MEM3.

 WE0#..WE3# O/Z SRAM Write Enable. Active low indicates write
enable for the corresponding byte.

 OE# O/Z Output Enable for SRAM’s and EPROM’s.

 IORD# O/Z I/O Read Strobe, optionally I/O Data Strobe. The
use of IORD# is specified in the I/O address bit 10.

 IOWR# O/Z I/O Write Strobe.

0-10 CHAPTER 0

0.3. Pin Configuration (continued)

Type Name State Use

Bus Control RQST O RQST signals the request for a memory or I/O
access

 GRANT# I Bus Grant. GRANT# is signaled low by an bus
arbiter to grant access to the bus for memory and
I/O cycles

 ACT O Active as bus master. ACT is signaled high when
GRANT# is low and it is kept high during a current
bus access

Interrupt INT1..INT4 I Interrupt Request A signal of INT1..INT4 interrupt
request pins causes an interrupt exception when
interrupt lock flag L is clear and the corresponding
INTxMask bit in FCR is not set.

I/O Port IO1..IO3 I/O General Input-Output Port. IO1..IO3 can be
individually configured via IOxDirection bits in the
FCR as either input or output pins (port).

System
Control

RESET# I Reset Processor. RESET# low resets the processor
to the initial state and halts all activity. RESET#
must be low for at least two cycles

ARCHITECTURE 1-1

1. Architecture

1.1 Introduction

1.1.1 RISC Architecture

In the early days of computer history, most computer families started with an instruction
set which was rather simple. The main reason for being simple then was the high cost for
hardware. The hardware cost has dropped and the software cost has gone up steadily in the
past three decades.

The net result is that more and more functions have been built into the hardware, making
the instruction set very large and very complex. The growth of instruction sets was also
encouraged by the popularity of microprogrammed control in the 1960s and 1970s. Even
user-defined instruction sets were implemented using microcodes in some processors for
special-purpose applications.

The evolution of computer architectures has been dominated by families of increasingly
complex processors. Under market pressures to preserve existing software, Complex
Instruction Set Computer (CISC) architectures evolved by the gradual addition of
microcode and increasingly elaborate operations. The intent was to supply more support
for high-level languages and operating systems, as semiconductor advances made it
possible to fabricate more complex integrated circuits. It seemed self-evident that
architectures should become more complex as these technological advances made it
possible to hold more complexity on VLSI devices.

In recent years, however, Reduced Instruction Set Computer (RISC) architectures have
implemented a much more sophisticated handling of the complex interaction between
hardware, firmware and software. RISC concepts emerged from statistical analysis of how
software actually uses the resources of a processor. Dynamic measurement of system
kernels and object modules generated by optimizing compilers show an overwhelming
predominance of the simplest instruction, even in the code for CISC machine. Complex
instructions are often ignored because a single way of performing a complex operation
needs of high-level language and system environments. RISC designs eliminate the
microcoded routines and turn the low-level control of the machine over to software.

This approach is not new. But its application is more universal in recent years thanks to the
prevalence of high-level languages, the development of compilers that can optimize at the
microcode level, and dramatic advances in semiconductor memory and packaging. It is
now feasible to replace machine microcode ROM with faster RAM, organized as an
instruction cache. Machine control then resides in the instruction cache and is, in fact,
customized on the fly. The instruction stream generated by system- and compiler-generated
code provides a precise fit between the requirements of high-level software and the
capabilities of the hardware. So compilers are playing a vital role in RISC performance.

The advantage of RISC architecture is described as follows:

l Simplicity made VLSI implementation possible and thus higher clock rates.

l Hardwired control and separated data and program caches lower the average CPI
(Cycles per Instruction) significantly.

l Dynamic instruction count in a RISC program only increased slightly (less than 2) in
ordinary program.

1-2 CHAPTER 1

l Recently, the MIPS (Million Instructions per Second) rate of a typical RISC
microprocessor increased with a factor of 5/(2*0.1) = 25 times from that of a typical
CISC microprocessor.

l The clock rate increased from 10 MHz on a CISC processor to 50 MHz on a CMOS/
RISC microprocessor.

l The instruction count in a typical RISC program increased less than 2 times form that
of a typical CISC program.

l The average CPI for a RISC microprocessor decreased to 1.2 (instead of 12 as in a
typical CISC processor).

1.1.2 Techniques to reduce CPI (Cycles per Instruction)

If the work each instruction performs is simple and straightforward, the time required to
execute each instruction can be shortened and the number of cycles reduced. The goal of
RISC designs has been to achieve an execution rate of one instruction per machine cycle
(multiple-instruction-issue designs now seek to increase this rate to more than one
instruction per cycle). Techniques that help achieve this goal include:

l Instruction pipelines

l Load and store (load/store) architecture

l Delayed load instructions

l Delayed branch instructions

(1) Instruction Pipelines

One way to reduce the number of cycles required to execute an instruction is to overlap the
execution of multiple instructions. Instruction pipelines divide the execution of each
instruction into several discrete portions and then execute multiple instructions
simultaneously. The instruction pipeline technique can be likened to an assembled line -
the instruction progresses from one specialized stage to the next until it is complete (or
issued) - just as an automobile moves along an assembly line. (This is contrast to the
nonpipeline, microcode approach, where all the work is done by one general unit and is
less capable at each individual task.) For example, the execution of an instruction might be
subdivided into four portions, or clock cycles, as shown in Figure 1.1:

Fetch
Instruction

(F)

ALU
Operation

(A)

Access
Memory

(M)

Write
Results

(W)

Cycle
#1

Cycle
#2

Cycle
#3

Cycle
#1

Figure 1.1: Functional Division of a Hypothetical Pipeline

An Instruction pipeline can potentially reduce the number of cycles/instructions by a factor
equal to the depth of the pipeline (the depth of the pipeline = the number of resource). For
example, in Figure 1.2 each instruction still requires a total of four clock cycles to execute.
However, if a four-level instruction pipeline is used, a new instruction can be initiated at

ARCHITECTURE 1-3

each clock cycle and the effective execution rate is one cycle per instruction.

F A M W#1

#2

#3

#4

F A M W

F A M W

F A M W

C lock Cyc les

Instruction

Figure 1.2: Multiple Instructions in a Hypothetical Pipeline

(2) Load/Store Architecture

The discussion of the instruction pipeline illustrates how each instruction can be
subdivided into several discrete parts that permit the processor to execute multiple
instructions in parallel. For this technique to work efficiently, the time required to execute
each instruction subpart should be approximately equal. If one part requires an excessive
length of time, there is an unpleasant choice: either halting the pipeline (inserting wait or
idle cycles), or making all cycles longer to accommodate this lengthier portion of the
instruction.

Instructions that perform operations on operands in memory tend to increase either the
cycle time or the number of cycles/instruction. Such instruction require additional time for
execution to calculate the addresses of the operands, read the required operands from
memory, calculate the result, and store the results of the operation back to memory. To
eliminate the negative impact of such instruction, RISC designs implement a load and store
(load/store) architecture in which the processor has many register, all operations are
performed on operands held in processor registers, and main memory is accessed only by
load and store instructions.

This approach produces several benefits

l Reducing the number of memory accesses eases memory bandwidth requirements

l Limiting all operations to registers helps simplicity the instruction set

l Eliminating memory operations makes it easier for compilers to optimize register
allocation - this further reduces memory accesses and also reduces the
instructions/task factor

All of these factors help RISC design approach their goal of executing one
cycle/instruction. However, two classes of instructions hinder achievement of this goal -
load instructions and branch instructions. The following sections discuss how RISC
designs overcome obstacles raised by these classes of instructions.

1-4 CHAPTER 1

(3) Delayed Load Instructions

Load instruction read operands from memory into processor register for subsequent
operation by other instructions. Because memory typically operates at much slower speeds
than processor clock rates, the loaded operand is not immediately available to subsequent
instructions in an instruction pipeline. The data dependency is illustrated in Figure 1.3.

F A M W1

2

3

4

F A M W

F A M W

F A M W

D a t a f r o m L o a d
a v a i l a b l e a s o p e r a t i o n

L o a d
I n s t r u c t i o n

Figure 1.3: Data Dependency Resulting From a Load Instruction

In this illustration, the operand loaded by instruction 1 is not available for use in a cycle
(ALU, or Arithmetic/Logic Unit operation) of instruction 2. One way to handle this
dependency is to delay the pipeline by inserting additional clock cycles into the execution
of instruction 2 until the loaded data becomes available. This approach obviously
introduces delays that would increase the cycles/instructions factor.

In many RISC designs the technique used to handle this data dependency is to recognize
and make visible to compilers the fact that all load instructions have an inherent latency or
load delay. Figure 1.3 illustrates a load delay or latency of one instruction. The instruction
that immediately follows the load is in the load delay slot. If the instruction in this slot does
not require the data from the load, then no pipeline delay is required.

If this load delay is made visible to software, a compiler can arrange instructions to ensure
that there is no data dependency a load instruction and the instruction in the load delay slot.
The simplest way of ensuring that there is no data dependency is to insert a No Operation
(NOP) instruction to fill the slot, as follow:

 Load R1, A
 Load R2, B
 NOP <= This instruction fills the delay slot
 ADD R3, R1, R2

Although filling the delay slot with NOP instructions eliminates the need for hardware-
controlled pipeline stalls in this case, it still is not a very efficient use of the pipeline stream
since these additional NOP instructions increase code size and perform no useful work. (In
practice, however, this technique need not have much negative impact on performance.)

A more effective solution to handling the data dependency is to fill the load delay slot with
a useful instruction. Good optimizing compilers can usually accomplish this, especially if

ARCHITECTURE 1-5

the load delay is only one instruction. Below example program illustrates how a compiler
might rearrange instruction to handle a potential data dependency.

 # Consider the code for C := A+B; F := D
 Load R1, A
 Load R2, B
 Add R2, R1, R2 <= This instruction stalls because R2 data is not available
 Load R4, D

 # An alternative code sequence (where delay length = 1)
 Load R1, A
 Load R2, B
 Load R4, D
 Add R3, R1, R2 <= No stall since R2 data is available

(4) Delayed Branch Instructions

Branch instructions usually delay the instruction pipeline because the processor must
calculate the effective destination of the branch and fetch that instruction. When a cache
access requires an entire cycle, and the fetched branch instruction specifies the target
address, it is impossible to perform this fetch (of the destination instruction) without
delaying the pipeline for at least one pipe stage (one cycle). Conditional branches can
cause further delays because they require the calculation of a condition, as well as the
target address.

Instead of stalling the instruction pipeline to wait for the instruction at the target address,
RISC designs typically use an approach similar to that used with Load instruction: Branch
instructions are delayed and do not take effect until after one or more instructions
immediately following the Branch instruction have been executed. The instruction or
instructions immediately following the Branch instruction (delay instruction) have been
executed. Branch and delayed branch instruction are illustrated in Figure 1.4

Next Instruction

Branch TargetCondition ? YES

NO

Next Instruction

Branch Target

Condition ?

NO

Delay Instruction

YES

Delayed Branch

Branch Instruction Delayed Branch Instruction

Figure 1.4: Block Diagram of Branch/Delayed Branch Instruction

1-6 CHAPTER 1

1.1.3 The pipeline structure of GMS30C2132

GMS30C2132 has a two-stage pipeline structure and each stage is composed of two phases
(TM and TV). The basic structure of GMS30C2132 pipeline is two-stage pipeline, but
actually it is lengthened by the need of some instruction. As an example, standard ALU
instruction uses 5 phases (2 stage pipeline (4 phases) + additional 1 phase). This additional
phase doesn’t use the datapath that is used next instruction, so next instruction executi on
need not wait until previous ALU instruction is ended. DSP instruction takes over 2 stage
pipeline for execution, and requires same resource in the datapath that is required to next
DSP instruction. So next DSP instruction is delayed.

The pipeline structure of GMS30C2132 and the action of datapath are described in Table
1.1.

Stage Phase Datapath Action

Fetch/Decode TM (Low) 1. The instruction is read from the instruction cache
according to the address of instruction.

 TV (High) 2. The control signal of Rd (destination operand) and Rs
(source operand) is activated according to the instruction
that was loaded in TM phase

2.1 The control signal of IR (immediate register
(operand)) and IL (instruction length) is activated.

2.2 The address of next instruction is calculated and saved
in PC

Execute/Write TM (Low) 1. The next instruction is read from the instruction cache.

1.1 The address of Rs and Rs are determined.

1.2 The immediate operand is determined.

1.3 The operand is read from register stack using the
address of Rs and Rd.

1.4 The operand XR, YR and QR are controlled.

 TV (High) 2. The input data of ALU is attained.

2.1 The control of ALU datapath is made and instruction
is executed in ALU.

2.2 The result of ALU operation is saved in the register
file.

Additional
Insertion

Next TM Additional ALU operation is continued and its result is
saved in the register file.

Table 1.1: The pipeline structure of GMS30C2132 and the action of datapath.

ARCHITECTURE 1-7

1.2 Global Register Set
The architecture provides 32 global registers of 32 bit each. These are:

G0 Program Counter PC

G1 Status Register SR

G2 Floating-point Exception Register FER

G3..G15 General purpose registers

G16..G17 Reserved

G18 Stack Pointer SP

G19 Upper stack Bound UB

G20 Bus Control Register BCR (see section 6. Bus Interface)

G21 Timer Prescaler Register TPR (see section 5. Timer)

G22 Timer Compare Register TCR (see section 5. Timer)

G23 Timer Register TR (see section 5. Timer)

G24 Watchdog Compare Register WCR (see section 6. Bus Interface)

G25 Input Status Register ISR (see section 6. Bus Interface)

G26 Function Control Register FCR (see section 6. Bus Interface)

G27 Memory Control Register MCR (see section 6. Bus Interface)

G28..G31 Reserved

Registers G0..G15 can be addressed directly by the register code (0..15) of an instruction.
Registers G18..G27 can be addressed only by a MOV or MOVI instruction with the high
global flag H set to 1.

 (Example)

 MOVI G2, 0x20 ; G2 := 0x20 (set H flag)

 MOV G3, G19 ; G3 := G19 (G19 (UB) is copied to G3)

1-8 CHAPTER 1

G0

031

0

G1

G2

G3

G15

G16

G17

G18

G19

G20

G21

G22

G23

G24

G25

G26

G27

Program Counter PC

Status Register SR

Floating-Point Exception Register FER

Reserved

Reserved

General Purpose Registers G3..G15

Stack Pointer SP

Upper Stack Bound UB

Bus Control Register BCR

Timer Prescaler Register TPR

Timer Compare Register TCR

Timer Register TR

Watchdog Compare Register WCR

Input Status Register ISR

Function Control Register FCR

Memory Control Register MCR

G28..G31 Reserved

0

00

0

G28

G31

Figure 1.5: Global Register Set

1.2.1 Program Counter PC, G0

G0 is the program counter PC. It is updated to the address of the next instruction through
instruction execution. Besides this implicit updating, the PC can also be addressed like a
regular source or destination register. When the PC is referenced as an operand, the
supplied value is the address of the first byte after the instruction which references it (the
address of next instruction), except when referenced by a delay instruction with a
preceding delayed branch taken. At delay branch instruction, when the branch condition is
met, place the branch address PC + rel (relative to the address of the first byte after the
Delayed Branch Instruction) in the PC (see section 3.26. Delayed Branch Instructions).

Placing a result in the PC has the effect of a branch taken. When branch is taken, the target
address of branch is placed in PC.

Bit zero of the PC is always zero, regardless of any value placed in the PC.

ARCHITECTURE 1-9

1.2.2 Status Register SR, G1

G1 is the status register SR. Its content is updated by instruction execution. Besides this
implicit updating, the SR can also be addressed like a regular register (when H flag is set).
When addressed as source or destination operand, all 32 bits are used as an operand.
However, only bits 15..0 of a result can be placed in bits 15..0 of the SR, bits 31..16 of the
result are discarded and bits 31..16 of the SR remain unchanged. When SR addressed as
source operand, it represents 0x0 value. The full content of the SR is replaced only by the
Return Instruction. A result placed in the SR overrules any setting or clearing of the
condition flags as a result of an instruction.

Frame Pointer Frame Length

2829

FL S P T

Trace-Mode Flag

Trace Pending Flag

Supervisor State Flag

Instruction-Length Code

31 30 27 26 25 24 23 22 21 20 19 18 17 16

ILCFP

Figure 1.6: Status Register SR (bits 31..16)

Floating-Point Rounding Mode

Floating-Point Trap Enable

Interrupt-Mode Flag

High Global Flag

Cache-Mode Flag

1213

FTE V N Z C

Carry Flag

Zero Flag

Negative Flag

Overflow Flag

15 14 11 10 9 8 7 6 5 4 3 2 1 0

MHFRML I

Reserved

Interrupt-Lock Flag

Figure 1.7: Status Register SR (bits 15..0)

1-10 CHAPTER 1

1.2.2 Status Register SR, G1 (continued)

The status register SR contains the following status information:

C Carry Flag. Bit zero is the carry condition flag C. In general, when set it
indicates that the unsigned integer range is exceeded (overflow). At add
operations, it indicates a carry out of bit 31 of the result. At subtract operations,
it indicates a borrow (inverse carry) into bit 31 of the result.

Z Zero Flag. Bit one is the zero condition flag Z. When set, it indicates that all 32
or 64 result bits are equal to zero regardless of any carry, borrow or overflow.

N Negative Flag. Bit two is the negative condition flag N. On compare
instructions, it indicates the arithmetic correct (true) sign of the result
regardless of an overflow. On all other instructions, it is derived from result bit
31, which is the true sign bit when no overflow occurs. In the case of overflow,
result bit 31 and N reflect the inverted sign bit.

V Overflow Flag. Bit three is the overflow condition flag V. In general, when set
it indicates a signed overflow. At the Move instructions, it indicates a floating-
point NaN (Not a Number).

M Cache-Mode Flag. Bit four is the cache-mode flag M. Besides being set or
cleared under program control, it is also automatically cleared by a Frame
instruction and by any branch taken except a delayed branch. See section
1.8. Instruction Cache for details.

H High Global Flag. Bit five is the high global flag H. When H is set, denoting
G0..G15 addresses G16..G31 instead. Thus, the registers G18..G27 may be
addressed by denoting G2..G11 respectively.
The H flag is effective only in the first cycle of the next instruction after it was
set; then it is cleared automatically.
Only the MOV or MOVI instruction issued as the next instructions must be
used to copy the content of a local register or an immediate value to one of the
high global registers. The MOV instruction may be used to copy the content of
a high global register (except the BCR, TPR, FCR and MCR register, which
are write-only) to a local register. With all other instructions, the result may be
invalid.
If one of the high global registers is addressed as the destination register in user
state (S = 0), the condition flags are undefined, the destination register remains
unchanged and a trap to Privilege Error occurs.

Reserved Bit six is reserved for future use. It must always be zero.

I Interrupt-Mode Flag. Bit seven is the interrupt-mode flag I. It is set
automatically on interrupt entry and reset to its old value by a Return
instruction. The I flag is used by the operating system; it must be never
changed by any user program.

FTE Floating-Point Trap Enable Flag. Bits 12..8 are the floating-point trap enable
flags They determine the Exception type and Trap execution flow(see section
3.33.2. Floating-Point Instructions).

ARCHITECTURE 1-11

1.2.2 Status Register SR, G1 (continued)

FRM Floating-Point Rounding Mode. Bits 14..13 are the floating-point rounding
modes (see section 3.33.2. Floating-Point Instructions).

L Interrupt-Lock Flag. Bit 15 is the interrupt-lock flag L. When the L flag is one,
all Interrupt, Parity Error and Extended Overflow exceptions are inhibited
regardless of individual mode bits. The state of the L flag is effective
immediately after any instruction that changed it. The L flag is set to one by
any exception.
The L flag can be cleared or kept set in any or on return to any privilege state
(user or supervisor). Changing the L flag from zero to one is privileged to
supervisor or return from supervisor to supervisor state. A trap to Privilege
Error occurs if the L flag is set under program control from zero to one in user
or on return to user state.

The following status information can be changed only internally or replaced by the saved
return value of the SR via a Return instruction:

T Trace-Mode Flag. Bit 16 is the trace-mode flag T. When both the T flag and
the trace pending flag P are one, a trace exception occurs after every instruction
except after a Delayed Branch instruction. The T flag is cleared by any
exception.
Note: The T flag can only be changed in the saved return SR and is then
effective after execution of a Return instruction.

P Trace Pending Flag. Bit 17 is the trace pending flag P. It is automatically set to
one by all instructions except by the Return instruction, which restores the P
flag from bit 17 of the saved return SR.
Since for a Trace exception both the P and the T flag must be one, the P flag
determines whether a trace exception occurs (P = 1) or does not occur (P = 0)
immediately after a Return instruction that restored the T flag to one.
When an instruction is ended, the T and P flag set to one. Therefore trace
exception is occurred. After trace exception trap is ended the process returns to
main program, and if T and P flag is set to one, trace exception occurs again.
To avoid tracing the same instruction in an endless loop, the P flag is cleared at
return instruction in trace exception trap routine.
Note: The P flag can only be changed in the saved SR. No program except the
trace exception handler should affect the saved P flag. The trace exception
handler must clear the saved P flag to prevent a trace exception on return, in
order to avoid tracing the same instruction in an endless loop.

S Supervisor State Flag. Bit 18 is the supervisor state flag S (see section
1.4. Privilege States). The S flag determine whether user state (S=0) or
supervisor state (S=1). It is set to one by any exception.

ILC Instruction-Length Code. Bits 20 and 19 represent the instruction-length code
ILC. It is updated by instruction execution. The ILC holds (in general) the
length of the last instruction: ILC values of one, two or three represent an
instruction length of one, two or three half words respectively. After a branch
taken, the ILC is invalid. The Return instruction clears the ILC.

1-12 CHAPTER 1

1.2.2 Status Register SR, G1 (continued)

Note: Since a Return instruction following an exception clears the ILC, a
program must not rely on the current value of the ILC.

FL Frame Length. Bits 24..21 represent the frame length FL. The FL holds the
number of usable local registers (maximum 16) assigned to the current stack
frame. FL = 0 is always interpreted as FL = 16.

FP Frame Pointer. Bits 31..25 represent the frame pointer FP. The least significant
six bits of the FP point to the beginning of the current stack frame in the local
register set, that is, they point to L0.
The FP contains bit 8..2 of the address at which the content of L0 would be
stored if pushed onto the memory part of the stack.

1.2.3 Floating-Point Exception Register FER, G2

G2 is the floating-point exception register. All bits must be cleared to zero after Reset.
Only bits 12..8 and 4..0 may be changed by a user program, all other bits must remain
unchanged.

Reserved

Floating-Point Actual Exceptions

Reserved for Operating System

Floating-Point Accrued Exceptions

1213 11 10 9 8 7 6 5 4 3 2 1 031

Figure 1.8: Floating-Point Exception Register

The floating-point trap enable flags FTE and the exception flags are assigned as:

floating-point
trap enable FTE

accrued
exceptions

actual
exceptions

exception type

SR(12) G2(4) G2(12) Invalid Operation

SR(11) G2(3) G2(11) Division by Zero

SR(10) G2(2) G2(10) Overflow

SR(9) G2(1) G2(9) Underflow

SR(8) G2(0) G2(8) Inexact

The reserved bits G2(31..13) and G2(7..5) must be zero.

A floating-point instruction, except a Floating-point Compare, can raise any of the
exceptions Invalid Operation, Division by Zero, Overflow, Underflow or Inexact. FCMP
and FCMPD can raise only the Invalid Operation exception (at unordered). FCMPU and
FCMPUD cannot raise any exception.

ARCHITECTURE 1-13

At an exception, the following additional action is performed:

¡ Ü Any corresponding accrued-exception flag whose corresponding trap-enable flag is zero
(not enabled) is set to one; all other accrued-exception flags remain unchanged.

¡ Ü If a corresponding trap-enable flag is one (enabled), any corresponding actual-exception
flag is set to one; all other actual-exception flags are cleared. The destination remains
unchanged.
In the present software version, the software emulation routine must branch to the
corresponding user-supplied exception trap handler. The (modified) result, the source
operand, the stack address of the destination operand and the address of the floating-
point instruction are passed to the trap handler. In the future hardware version, a trap to
Range Error will occur; the Range Error handler will then initiate re-execution of the
floating-point instruction by branching to the entry of the corresponding software
emulation routine, which will then act as described before.

The only exceptions that can coincide are Inexact with Overflow and Inexact with
Underflow. An Overflow or Underflow trap, if enabled, takes precedence over an Inexact
trap; the Inexact accrued-exception flag G2(0) must then be set as well.

1.2.4 Stack Pointer SP, G18

G18 is the stack pointer SP. The SP contains the top address + 4 of the memory part of the
stack, that is the address of the first free memory location in which the first local register
would be saved by a push operation (see section 3.29. Frame Instruction for details). Stack
growth is from low to high address.

Bits one and zero of the SP must always be cleared to zero. The SP can be addressed only
via the high global flag H being set. Copying an operand to the SP is a privileged operation.

Note: Stack Pointer SP contains the top address + 4 of the memory part of the stack
(memory part stack), and Frame Pointer FP points to the beginning of the current stack
frame in the local register set (register part stack).

1.2.5 Upper Stack Bound UB, G19

G19 is the upper stack bound UB. The UB contains the address beyond the highest legal
memory stack location. It is used by the Frame instruction to inhibit stack overflow.

Bits one and zero of the UB must always be cleared to zero. The UB can be addressed only
via the high global flag H being set. Copying an operand to the UB is a privileged
operation.

1.2.6 Bus Control Register BCR, G20

G20 is the write-only bus control register BCR. Its content defines the options possible for
bus cycle, parity and refresh control. The BCR defines the parameters (bus timing, refresh
control, page fault and parity error disable) for accessing external memory located in
address spaces MEM0..MEM3. The BCR can be addressed only via the high global flag H
being set. Copying an operand to the BCR is a privileged operation. The BCR register is
described in detail in the bus interface description in section 6.

1-14 CHAPTER 1

1.2.7 Timer Prescaler Register TPR, G21

G21 is the write-only timer prescaler register TPR. It adapts the timer clock to different
processor clock frequencies. The TCR can be addressed only via the high global flag H
being set. Copying an operand to the TPR is a privileged operation. The TPR is described
in the timer description in section 5.

1.2.8 Timer Compare Register TCR, G22

G22 is the timer compare register TCR. Its content is compared continuously with the
content of the timer register TR. The TCR can be addressed only via the high global flag H
being set. Copying an operand to the TCR is a privileged operation. The TCR is described
in the timer description in section 5.

1.2.9 Timer Register TR, G23

G23 is the timer register TR. Its content is incremented by one on each time unit. The TR
can be addressed only via the high global flag H being set. Copying an operand to the TR
is a privileged operation. The TR is described in the timer description in section 5.

1.2.10 Watchdog Compare Register WCR, G24

G24 is the watchdog compare register WCR. The WCR can be addressed only via the high
global flag H being set. The WCR is used by the IO3 control mode (Watchdog Mode
FCR(13) = 1, FCR(12) = 0). Copying an operand to the WCR is a privileged operation.
The WCR is described in the bus interface description in section 6.

1.2.11 Input Status Register ISR, G25

G25 is the read-only input status register ISR. The ISR reflects the input levels at the pins
IO1..IO3 as well as the input levels at the four interrupt pins INT1..INT4 and contains the
EvenFlag and the EqualFlag. The ISR can be addressed only via the high global flag H
being set. The ISR is described in the bus interface description in section 6.

1.2.12 Function Control Register FCR, G26

G26 is the write-only function control register FCR. The FCR controls the polarity and
function of the I/O pins IO1..IO3 and the interrupt pins INT1..INT4, the timer interrupt
mask and priority, the bus lock and the Extended Overflow exception. The FCR can be
addressed only via the high global flag H being set. Copying an operand to the FCR is a
privileged operation. The FCR is described in the bus interface description in section 6.

ARCHITECTURE 1-15

1.2.13 Memory Control Register MCR, G27

G27 is the write-only memory control register MCR. The MCR controls additional
parameters for the external memory, the internal memory refresh rate, the mapping of the
entry table and the processor power management. The MCR can be addressed only via the
high global flag H being set. Copying an operand to the MCR is a privileged operation.
The MCR is described in the bus interface description in section 6.

1.3 Local Register Set
The architecture provides a set of 64 local registers of 32 bits each. The local registers
0..63 represent the register part of the stack, containing the most recent stack frame(s).

0

Local Register L0

Local Register L15

31

0

L0

L15

63

Figure 1.9: Local Register Set 0..63

The local registers can be addressed by the register code (0..15) of an instruction as
L0..L15 only relative to the frame pointer FP; they can also be addressed absolutely as part
of the stack in the stack address mode (see section 3.1.1. Address Modes).

The absolute local register address is calculated from the register code as:

absolute local register address := (FP + register code) modulo 64.

That is, only the least significant six bits of the sum FP + register code are used and thus,
the absolute local register addresses for L0..L15 wrap around modulo 64. The local register
set organized as a circular buffer.

The absolute local register addresses for FP + register code + 1 or FP + FL + offset are
calculated accordingly.

The least significant six bits of Frame Pointer FP point to the beginning of the current stack
(L0).

1-16 CHAPTER 1

1.4 Privilege States
The architecture provides two privilege states, determined by the supervisor state flag S:
User state (S = 0) and supervisor state (S = 1).

The privilege state may be used by an external memory management unit to control
memory and I/O accesses. The operating system kernel is executed in the higher privileged
supervisor state, thereby restricting access to all sensitive data to a highly reliable system
program. The following operations are also privileged to be executed only in the supervisor
or on return from supervisor to supervisor state:

¡ Ü Copying an operand to any of the high global registers

¡ Ü Changing the interrupt-lock flag L from zero to one

¡ Ü Returning through a Return instruction to supervisor state

Any illegal attempt causes a trap to Privilege Error.

The S flag is also saved in bit zero of the saved return PC by the Call, Trap and Software
instructions and by an exception. At Call instruction (CALL Ld, Rs, const) the old PC and
the S flag is saved in Ld and the old SR is saved in Ldf. A Return instruction restores it
from this bit position to the S flag in bit position 18 of the SR (thereby overwriting the bit
18 returned from the saved return SR).

If a Return instruction attempts a return from user to supervisor state, a trap to Privilege
Error occurs (S = 1 is saved).

Returning from supervisor to user state is achieved by clearing the S flag in bit zero of the
saved return PC before return. Switching from user to supervisor state is only possible by
executing a Trap instruction or by exception processing through one of the 64 supervisor
subprogram entries (see section 2.4. Entry Tables).

Note: Since the Return instruction restores the PC first to enable the instruction fetch to
start immediately, the restored S flag must also be available immediately to prevent any
memory access with a false privilege state. The S flag is therefore packed in bit zero of the
saved return PC.

The state of the S flag can be signaled at the IO1 pin in each memory or I/O cycle.

ARCHITECTURE 1-17

1.5 Register Data Types

32 Bits

Bitstring

31

MSB LSB

0

S = sign bit, MSB = most significant bit, LSB = least significant
bit

Double-Word Bitstring

32-Bit Magnitude

Unsigned Integer

31

MSB LSB

Unsigned Double-Word Integer

31-Bit Magnitude

Signed Integer, Two's Complement

31

MSB LSBS

High-Order 31-Bit Magnitude

Signed Double-Word Integer, Two's Complement

31

LSBLow-Order 32-Bit Magnitude

MSBS

23-Bit Fraction

Single Precision Floating-Point Number

31

MSB LSB

0

S 8-Bit Exponent

High-Order 20-Bit Fraction

Double Precision Floating-Point Number

31

LSB

0

Low-Order 32-Bit Fraction

11-Bit ExponentS MSB

Register:

Complex Signed Short

31

MSB LSB

0

S MSB LSB S

Two Signed Shorts

31

MSB LSB

0

S MSB LSB S

15

15

Real Part Imaginary Part

High-Order 32-Bit Magnitude

31

LSBLow-Order 32-Bit Magnitude

MSB

High-Order 32-Bits

LSBLow-Order 32-Bits

MSB

n+1

n

n

n

0

n

n

n+1

0

n

n

n+1

n

n+1

n

n

0

0

31 0

Figure 1.10: Register Data Types.

1-18 CHAPTER 1

1.6 Memory Organization
The architecture provides a memory address space in the range of 0..232 - 1
(0..4,294,967,295) 8-bit bytes (4GByte). Memory is implied to be organized as 32-bit
words. The following memory data types are available (see figure 1.10)

¡ Ü Byte unsigned (unsigned 8-bit integer, bit-string or character)

¡ Ü Byte signed (signed 8-bit integer, two's complement)

¡ Ü Half word unsigned (unsigned 16-bit integer or bit-string)

¡ Ü Half word signed (signed 16-bit integer, two's complement)

¡ Ü Word (32-bit undedicated word)

¡ Ü Double-Word (64-bit undedicated double-word)

Besides the memory address space, a separate I/O address space is provided. In the I/O
address space, only word and double-word data types are available.

Words and double-words must be located at word boundaries, that is, their most significant
byte must be located at an address whose two least significant bits are zero (...xx00). Half
words must be located at half word boundaries, their most significant byte being located at
an address whose least significant bit is zero (...xx0). Bytes may be located at any address.

The variable-length instructions are located as contiguous sequences of one, two or three
half words at half word boundaries.

Memory- and I/O-accesses are pipelined to an implied depth of two addresses.

Note: All data is located high to low order at addresses ascending from low to high, that is,
the high order part of all data is located at the lower address (Big endian). This scheme
should also be used for the addressing of bit arrays. Though the most significant bit of a
word is numbered as bit position 31 for convenience of use, it should be assigned the bit
address zero to maintain consistent bit addressing in ascending order through word
boundaries.

Word
Address

8

4

00 1 2 3
4 5 6 7
8 9 10 11

0123
4567
891011

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

Big Endian Little Endian

Word
Address

8

4

0

Figure 1. 11: Address of bytes within words: Big-endian and little endian alignment.

ARCHITECTURE 1-19

1.6 Memory Organization (continued)
Figure 1.12 shows the location of data and instructions in memory relative to a binary
address n = ...xxx00 (x = 0 or 1). The memory organization is big-endian.

31

Byte n Byte n + 1 Byte n + 2 Byte n + 3

0

Halfword n Halfword n + 2

Byte n Byte n + 1 Halfword n + 2

Halfword n Byte n + 2 Byte n + 3

Word n

High-Order Word n of Double-Word

Low-Order Word n + 4 of Double-Word

1st Instruction Halfword 2nd Instruction Halfword (opt.)

3rd Instruction Halfword (opt.)

Preceding Instruction 1st Instruction Halfword

2nd Instruction Halfword (opt.) 3rd Instruction Halfword (opt.)

Figure 1. 12: Memory Organization

At all data types, the most significant bit is located at the higher and the least significant bit
at the lower bit position.

1-20 CHAPTER 1

1.7 Stack
A runtime stack, called stack here, holds generations of local variables in last-in-first-out
(LIFO) order. A generation of local variables, called stack frame or activation record, is
created upon subprogram entry and released upon subprogram return.

The runtime stack provided by the architecture is divided into a memory part and a register
part. The register part of the stack, implemented by a set of 64 local registers organized as
a circular buffer, holds the most recent stack frame(s). The current stack frame is always
kept in the register part of the stack. The frame pointer FP points to the beginning of the
current stack frame (addressed as register L0). The frame length FL indicates the number
of registers (maximum 16) assigned to the current stack frame. The stack grows from low
to high address. It is guarded by the upper stack bound UB.

The stack is maintained as follows:

¡ Ü A Call, Trap or Software instruction increments the FP and sets FL to six, thus creating
a new stack frame with a length of six registers (including the return PC and the return
SR).

¡ Ü An exception increments the FP by the value of FL and then sets FL to two.

¡ Ü A Frame instruction restructures a stack frame to include (optionally) passed parameters
by decrement the FP and by resetting the FL to the desired length, and restores a reserve
of 10 local registers for the next subprogram call. If the required number of
registers + 10 do not fit in the register part of the stack, the contents of the differential
(required + 10 - available) number of local registers are pushed onto the memory part of
the stack. A trap to Frame Error occurs after the push operation when the old value of
the stack pointer SP exceeded the upper stack bound UB. The passed parameters are
located from L0 to the required number of register to be saved passed parameters.

 Note: A Frame instruction must be executed before executing any other Call, Trap or
Software instruction or before the interrupt-lock flag L is being cleared, otherwise the
beginning of the register part of the stack at the FP could be overwritten without any
warning.

¡ Ü A Return instruction releases the current stack frame and restores the preceding stack
frame. If the restored stack frame is not fully contained in the register part of the stack,
the content of the missing part of the stack frame is pulled from the memory part of the
stack.

For more details see the descriptions of the specific instructions.

When the number of local registers required for a stack frame exceeds its maximum length
of 16 (in rare cases), a second runtime stack in memory may be used. This second stack is
also required to hold local record or array data.

The stack is used by routines in user or supervisor state, that is, supervisor stack frames are
appended to user stack frames, and thus, parameters can be passed between user and
supervisor state. A small stack space must be reserved above UB. UB can then be set to a
higher value by the Frame Error handler to free stack space for error handling.

ARCHITECTURE 1-21

1.7 Stack (continued)
Because the complete stack management is accomplished automatically by the hardware,
programming the stack handling instructions is easy and does not require any knowledge
of the internal working of the stack.

The following example demonstrates how the Call, Frame and Return instructions are
applied to achieve the stack behavior of the register part of the stack shown in the figures
1.13 and 1.14. Figure 1.13 shows the creation and release of stack frames in the register
part of the stack.

Program Example:

A: FRAME L13, L3 ; set frame length FL = 13, decrement FP by 3

 : ; parameters passed to A can be addressed

 : ; in L0, L1, L2

 :

 :

 code of function A

 :

 :

 MOV L7, L5 ; copy L5 to L7 for use as parameter1

 MOVI L8, 4 ; set L8 = 4 for use as parameter2

 CALL L9, 0, B ; call function B,

 : ; save return PC, return SR in L9, L10

 :

 :

 MOVI L0, 20 ; set L0 = 20 as return parameter for caller

 RET PC, L3 ; return to function calling A,

 ; restore frame of caller

B: FRAME L11, L2 ; set frame length FL = 11, decrement FP by 2

 : ; passed parameter1 can now be addressed in L0

 : ; passed parameter2 can now be addressed in L1

 :

 :

 code of function B

 :

 :

 RET PC, L2 ; return to function A, frame A is restored by

 ; copying return PC and return SR in L2 and L3

 ; of frame B to PC and SR

1-22 CHAPTER 1

1.7 Stack (continued)

 Return from B Call B Frame in B

PC := ret. PC for B; PC := branch address; FP := FP - code of source reg.;
SR := ret. SR for B; ret. PC for B := old PC; FL := code of dest.reg.;
-- returns preceding stack frame ret. SR for B := old SR; if available registers ≥
if stack frame contained FP := FP + reg.code (required + 10) registers then
in local registers then of ret. PC; next instruction
 next instruction; FL := 6; else
else -- reg.code of ret. PC = 9 push contents of
 pull contents of differential words differential number of
 from memory part of the stack; registers to memory
 part of stack;
 -- code of source reg. = 2
 -- code of dest.reg. = 11

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

Frame
Pointer
(FP)

current
length
of
frame A
FL = 13

parameters

for

must not
be usedFP+FL

L0

L1

L2

L3

L4

L5

New
FP

current
length
of
frame B
FL = 6

parameters

for frame B

ret. PC for A

ret. SR for A

reserved

for

maximum

number of

variables

in frame A

ret. PC for B

ret. SR for B

FP+FL

reserved for

max. number

of variables

in frame B

parameters

for

ret. PC for A

ret. SR for A

New
FP

current
length
of
frame B
FL = 11

parameters

for frame B

ret. PC for B

ret. SR for B

FP+FL

parameters

for

ret. PC for A

ret. SR for A

reserved

for

maximum

number of

variables

in frame B

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

frame A frame A frame A

 before Call B and after CALL L9, 0, dest; after FRAME L11, L2
 after Return

Figure 1.13: Stack frame handling (register part)

ARCHITECTURE 1-23

1.7 Stack (continued)
A currently activated function A has a frame length of FL = 13, FL = 3(required to save
passed parameters) + 10(received). Registers L0..L6 are to be retained through a
subsequent call, registers L7..L12 are temporaries. A call to function B needs 2 parameters
to be passed. The parameters are placed by function A in registers L7 and L8 before calling
B. The Call instruction addresses L9 as destination for the return PC and return SR register
pair to be used by function B on return to function A.

On entry of function B, the new frame of B has an implicit length of FL = 6. It starts
physically at the former register L9 of frame A. However, since the frame pointer FP has
been incremented by 9 by the Call instruction, this register location is now being addressed
as L0 of frame B. The passed parameters cannot be addressed because they are located
below the new register L0 of frame B. To make them addressable, a Frame instruction
decrements the frame pointer FP by 2. Then, parameter 1 and 2 passed to B can be
addressed as registers L0 and L1 respectively. Note that the return PC is now to be
addressed as L2!

The Frame instruction in B specifies also the new, complete frame length FL = 11
(including the passed parameters as well as the return PC and return SR pair). Besides, a
new reserve of 10 registers for subsequent function calls and traps is provided in the
register stack. A possible overflow of the register stack is checked and handled
automatically by the Frame instruction. A program needs not and must not pay attention to
register stack overflow.

At the end of function B, a Return instruction returns control to function A and restores the
frame A. A possible underflow of the register stack is handled also automatically; thus, the
frame A is always completely restored, regardless whether it was wholly or partly pushed
into the memory part of the stack before (in the case when B called other functions).

In the present example with the frame length of FL = 13, any suitable destination register
up to L13 could be specified in the Call instruction. The parameters to be passed to the
function B would then be placed in L11 and L12. It is even possible to append a new frame
to a frame with a length of FL = 16 (coded as FL = 0 in the status register SR): the
destination register in the Call instruction is then coded as L0, but interpreted as the
register past L15.

See also sections 3.27. Call instruction, 3.29. Frame instruction and 3.30. Return
instruction for further details.

Note: With an average frame length of 8 registers, ca. 7..8 Frame instructions succeed a
pulling Return instruction until a push occurs and 7..8 Return instructions succeed a
pushing Frame instruction until a pull occurs. Thus, the built-in hysteresis makes pushing
and pulling a rare event in regular programs!

Figure 1.14 represents the stack frame pushing and popping. When the register part of the
stack A and X overlapped modulo 64 (the register part of stack was full), the frame
instruction for frame X pushed the number of words in frame A to the memory part of the
stack according to the space required for frame X. When the process returned to frame A,
the return instruction pulled the number of words form the memory part of the stack to the
register part of the stack.

1-24 CHAPTER 1

1.7 Stack (continued)

register part
of the stack

A and X
overlap modulo 64

memory part
of the stack

register part
of the stack

memory part
of the stack

before Frame Instruction for frame
X

after Frame Instruction for frame
X

A
words
to be

pushed

X
additional

space for X
required

pushed number
of words

according to
space required

for frame X

stack
space

appended

before Return Instruction to frame A after Return Instruction to frame A

frame
words for A

required

words
to be

overwritten

words
to be
pulled

pulled number
of words

completes
stack frame A!

frame
words
pulled

stack
space
freed

FP

SP

FP

additional
space for X
available

SP

A

X

FP

SP

SPFP

stack
space

required

rest of frame A

various
frames

various
frames

rest of frame A

space
available for X

rest of frame A

various
frames

A

rest of frame A

various
frames

= available part of a frame

Figure 1.14: Stack frame pushing and popping

ARCHITECTURE 1-25

1.8 Instruction Cache
The instruction cache is transparent to programs. A program executes correctly even if it
ignores the cache, whereby it is assumed that the instruction code is not modified in the
local range contained in the cache.

The instruction cache holds a total of up to 128 bytes (32 unstructured 32-bit words of
instructions). It is implemented as a circular buffer that is guarded by a look-ahead counter
and a look-back counter. The look-ahead counter holds the highest and the look-back
counter the lowest address of the instruction words available in the cache. The cache-mode
flag M is used to optimize special cases in loops (see details below). The cache can be
regarded as a temporary local window into the instruction sequence, moving along with
instruction execution and being halted by the execution of a program loop.

l Look-Ahead Counter: It holds the highest address of instruction word in the
instruction cache (the start address of the instruction cache). Bits 6..2 of the look-
ahead counter represent the location of the prefetched instruction to be saved in the
instruction cache.

l Look-Back Counter: It holds the lowest address of instruction word in the
instruction cache (the end address of the instruction cache).

l Cache Mode Flag M: It represents whether the instruction cache is available (M=1)
or flushed (M=0). It is automatically cleared by a Frame instruction and by any
branch taken except a delayed branch.

Its function is as follows:

The prefetch control loads unstructured 32-bit instruction words (without regard to instruc-
tion boundaries) from memory into the cache. The load operation is pipelined to a depth of
two stages (see section 1.1.1 The pipeline structure of GMS30C2132 for details of the
instruction pipeline). The look-ahead counter is incremented by four at each prefetch cycle.
It always contains the address of the last instruction word for which an address bus cycle is
initiated, regardless of whether the addressed instruction word is in the load pipeline or
already loaded into the instruction cache.

The prefetched instruction word is placed in the cache word location addressed by bits 6..2
of the look-ahead counter. The look-back counter remains unchanged during prefetch
unless the cache word location, it addresses with its bits 6..2, is overwritten by a prefetched
instruction word. In this case, it is incremented by four to point to the then lowest-
addressed usable instruction word in the cache. Since the cache is implemented as a
circular buffer, the cache word addresses derived from bits 6..2 of the look-ahead and look-
back counter wrap around modulo 32.

The prefetch is halted:

¡ Ü When eight words are prefetched, that is, eight words are available (including those
pending in the load pipeline) in the prefetch sequence succeeding the instruction word
addressed by the program counter PC through the instruction word addressed by the
look-ahead counter. Prefetch is resumed when the PC is advanced by instruction
execution.

1-26 CHAPTER 1

1.8 Instruction Cache (continued)
¡ Ü In the cycle preceding the execution cycle of a memory instruction or any potentially

branch-causing instruction (regardless of whether the branch is taken) except a forward
Branch or Delayed Branch instruction with an instruction length of one half word and a
branch target contained in the cache. Halting the prefetch in these cases avoids filling
the load pipeline with demands for lower priority (compared to data) or potentially
unnecessary instruction words.

l During the execution cycle of any instruction accessing memory or I/O.

Instruction decoding is as follows:

The cache is read in the decode cycle by using bits 6..1 of the PC as an address to the first
half word of the instruction presently being decoded. The instruction decode needs and
uses only the number (1, 2 or 3) of instruction half words defined by the instruction format.
Since only the bits 6..1 of the PC are used for addressing, the half word addresses wrap
around modulo 64. Idle wait cycles are inserted when the instruction is not or not fully
available in the cache.

At an explicit Branch or Delayed Brach instruction:

At an explicit Branch or Delayed Branch instruction (except when placed as delay
instruction) with an instruction length of one half word, the location of the branch target is
checked. The branch target is treated as being in the cache when the target address of a
backward branch is not lower than the address in the look-back counter and the target
address of a forward branch is not higher than two words above the address in the look-
ahead counter. That is, the two instruction words succeeding the instruction word
addressed by the content of the look-ahead counter are treated by a forward branch as
being in the cache. Their actual fetch overlaps in most cases with the execution of the
branch instruction and thus, no cycles are wasted. When the branch target is in the cache,
the look-back counter and the look-ahead counter remain unchanged.

When a branch is taken by a Delayed Branch instruction with an instruction length of one
half word to a forward branch target not in the cache and the cache mode flag M is enabled
(1), the look-back counter and the look-ahead counter remain unchanged. Wait cycles are
then inserted until the ongoing prefetch has loaded the branch target instruction into the
cache.

Any other branch taken flushes the cache by also placing the branch address in the look-
back and the look-ahead counter. Prefetch then starts immediately at the branch address.
Instruction decoding waits until the branch target instruction is fully available in the cache.

The cache mode flag M (bit four of the SR) can be set or cleared by logical instructions. It
is automatically cleared by a Frame instruction and by any branch taken except a branch
caused by a Delayed Branch or Return instruction; a Delayed Branch instruction leaves the
M flag unchanged and a Return instruction restores the M flag from the saved status
register SR.

Note: Since up to eight instruction words can be loaded into the cache by the prefetch, only
24 instruction words are left to be contained in a program loop. Thus, a program loop can
have a maximum length of 96 or 94 bytes including the branch instruction closing the loop,
depending on the even or odd half word address location of the first instruction of the loop
respectively.

ARCHITECTURE 1-27

1.8 Instruction Cache (continued)
A forward Branch or Delayed Branch instruction with an instruction length of one half
word into up to two instruction words succeeding the word addressed by the look-ahead
counter treats the branch target as being in the cache and does not flush the cache. Thus,
three or four instruction half words, depending on the odd or even half word address
location of the branch instruction respectively, can always be skipped without flushing the
cache.

Enabling the cache-mode flag M is only required when a program loop to be contained in
the cache contains a forward branch to a branch target in the program loop and more than
three (or four, see above) instruction half words are to be skipped. In this case, the enabled
M flag in combination with a Delayed Branch instruction with an instruction length of one
half word inhibits flushing the cache when the branch target is not yet prefetched.

Fetch instruction is as follows:

Since a single-word memory instruction halts the prefetch for two cycles, any sequence of
memory instructions, even with interspersed one-cycle non-memory instructions, halts the
prefetch during its execution. Thus, alternating between instruction and data memory pages
is avoided. If the number of instruction half words required by such a sequence is not
guaranteed to be in the cache at the beginning of the sequence, a Fetch instruction
enforcing the prefetch of the sequence may be used. A Fetch instruction may also be used
preceding a branch into a program loop; thus, flushing the cache by the first branch
repeating the loop can be avoided.

At a Branch of Delayed Branch instruction with an instruction length of two half words:

A branch taken caused by a Branch or Delayed Branch instruction with an instruction
length of two half words always flushes the instruction cache, even if the branch target is
in the cache. Thus, branches can be forced to bypass the cache, thereby reducing the cache
to a prefetch buffer. This reduced function can be used for testing.

The last nine words of a memory block (except at the highest ROM memory block)
must not contain any instruction to be executed, otherwise the prefetch could overrun
the memory limit.

1-28 CHAPTER 1

1.9 On-Chip Memory (IRAM)
4KBytes of memory are provided on-chip. The on-chip-memory (IRAM) is mapped to the
hex address C000 0000 of the memory address space and wraps around modulo 4K up to
DFFF FFFF. The IRAM is implemented as dynamic memory, needing refresh (DRAM).
The refresh rate must be specified in the MCR bits 18..16 (see section 6.4. Memory
Control Register MCR) before any use (default is refresh disabled). The number given in
MCR(18..16) specifies the refresh rate in CPU clock cycles; e.g. 128 specifies a refresh
cycle automatically inserted every 128 clock cycles. Each refresh cycle refreshes 16 bytes,
thus, 256 refresh cycles are required to refresh the whole IRAM. A high refresh rate does
not degrade performance since the refresh cycles are inserted on idle IRAM cycles
whenever possible.

An access to the IRAM bypasses the access pipeline of the external memory. Thus,
pending external memory accesses do not delay accesses to the IRAM. The IRAM can
hold data as well as instructions. Instruction words from the IRAM are automatically
transferred to the instruction cache on demand; these transfers do not interfere with
external memory accesses. Besides bypassing of the external memory pipeline, memory
instructions accessing the IRAM behave exactly alike those accessing external memory.
The minimum delay for a load access is one cycle; that is, the data is not available in the
cycle after the load instruction. One or more wait cycles are automatically inserted if the
target register of the load is addressed before the data is loaded into the target register.

Attention: For selection between an internal and external memory access, bits 31..29 of the
specified address register are used before calculation of the effective address. Therefore,
the content of the specified address register must point into the IRAM address range. The
IRAM address range boundary must not be crossed when a displacement is being added.

INSTRUCTIONS GENERAL 2-1

2. Instructions General

2.1 Instruction Notation
In the following instruction-set presentation, an informal description of an instruction is
followed by a formal description in the form:

Format Notation Operation

Format denotes the instruction format.

Notation gives the assembler notation of the instruction.

Operation describes the operation in a Pascal-like notation with the following symbols:

Ls denotes any of the local registers L0..L15 used as source register or as source
operand. At memory Load instructions, Ls denotes the load destination register.

Ld denotes any of the local registers L0..L15 used as destination register or as
destination operand.

Rs denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as source register or as source operand. At memory Load, see Ls.

Rd denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as destination register or as destination operand.

Lsf, Ldf, Rsf and Rdf denote the register or operand following after (with a register address
one higher than) Ls, Ld, Rs and Rd respectively.

imm, const, dis, lim, rel, adr and n denote immediate operands (constants) of various
formats and ranges.

Operand(x) denotes a single bit at the bit position x of an operand.
Example: Ld(31) denotes bit 31 of Ld.

Operand(x..y) denotes bits x through y of an operand.
Example: Ls(4..0) denotes bits 4 through 0 of Ls.

Expression^ denotes an operand at a location addressed by the value of the expression.
Depending on the context, the expression addresses a memory location or a local
register.
Example: Ld^ denotes a memory operand whose memory address is the operand Ld.
(FP + FL)^ denotes a local register operand whose register address is FP + FL.

: = signifies the assignment symbol, read as "is replaced by".

// signifies the concatenation symbol. It denotes concatenation of two operand words
to a double-word operand or concatenation of bits and bit-string.
Examples: Ld//Ldf denotes a double-word operand, 16 zeros//imm1 denotes
expanding of an immediate half word by 16 leading zeros.

=, ≠, > and < denote the equal, unequal, greater than and less than relations.
Example: The relation Ld = 0 evaluates to one if Ld is equal to zero, otherwise it
evaluates to zero.

2-2 CHAPTER 2

2.2 Instruction Execution
On instruction execution, all bits of the operands participate in the operations, except on
the Shift and Rotate instructions (whereat only the 5 least significant bits of the source
operand are used) and except on the byte and half word Store instructions.

Instruction pipeline is as follows:

Instructions are executed by a two-stage pipeline. In the first stage, the instruction is
fetched from the instruction cache and decoded. In the second stage, the instruction is
executed while the next instruction in the first stage is already decoded.

Register instructions are as follows:

On register instructions executing in one or two cycles, the corresponding source and
destination operand words are read from their registers and evaluated in each cycle in
which they are used. Then the result word is placed in the corresponding destination
register in the same cycle. Thus, on all single-word register instructions executing in one
cycle, the source operand register and the destination operand register may coincide
without changing the effect of the instruction. On all other instructions, the effect of a
register coincidence depends on execution order and must be examined specifically for
each such instruction.

The content of a source register remains unchanged unless it is used coincidentally as a
destination register (except on memory Load instructions).

Conditional flags are changed:

Some instructions set or clear condition flags according to the result and special conditions
occurring during their execution. The conditions may be expressed by single bits, relations
or logical combinations of these. If a condition evaluates to one (true), the corresponding
condition flag is set to one, if it evaluates to zero (false), the corresponding condition flag
is cleared to zero. A trap to Range Error may occur if the specific flags and the destination
are updated.

All instructions may use the result and any flags updated by the preceding instruction. A
time penalty occurs only if the result of a memory Load instruction is not yet available
when needed as destination or source operand. In this case one or more (depending on the
memory access time) idle wait cycles are enforced by a hardware interlock.

Using local registers are as follows:

An instruction must not use any local register of the register sequence beginning with L0
beyond the number of usable registers specified by the current value of the frame length
FL (FL = 0 is interpreted as FL = 16). That is, the value of the corresponding register code
(0..15) addressing a local register must be lower than the interpreted value of the FL
(except with a Call or Frame instruction or some restricted cases). Otherwise, an exception
could overwrite the contents of such a register or the beginning of the register part of the
stack at the SP could be overwritten without any warning when a result is placed in such a
register.

Double-word instructions denote the high-order word (at the lower address). The low-order
word adjacently following it (at the higher address) is implied.

"Old" denotes the state before the execution of an instruction.

INSTRUCTIONS GENERAL 2-3

2.3 Instruction Formats
Instructions have a length of one, two or three half words and must be located on half word
boundaries. The following formats are provided:

Format

LL

LR

RR

Ln

Rn

PCadr

PCrel

PCrel

OP-code Ld-code Ls-code

OP-code n Ld-code n

 OP-Code d n Rd-code n

OP-code adr-byte

OP-code 0 low-rel S

OP-code 1 high-rel

low-rel S

915 8 7 4 3 0

10 915 8 7 4 3 0

915 8 7 4 3 0

15 8 7 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Ld-code encosed L0..L15 for Ld

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd

Ld-code encodes L0..L15 for Ld
Bit 8//bits 3..0 encode n = 0..31

Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Bit 8//bits 3..0 encode n = 0..31

adr = 24 ones's//adr-byte(7..2)//00

sign bit of rel
rel = 9 S//high-rel//low-rel//0
range -8 388 608..8 388 606

sign bit of rel
rel = 25 S//low-rel//0
range -128..126

 10 915 8 7 4 3 0

15 8 7 06 1

15 8 7 06 1

OP-Code d s Rd-code Rs-code

15 8 7 4 3 0

OP-code s Ld-code Rs-code

Configuration

S:

S:

d = 0:
d = 1:
n:

n:

s = 0:
s = 1:
d = 0:
d = 1:

s = 0:
s = 1:

LLext OP-code

OP-code extension

15 8

Ld-code Ls-code

7 4 3 0 Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld
OP-code extension encodes the
EXTEND instructions

Table 2.1: Instruction Formats, Part 1

2-4 CHAPTER 2

2.3 Instruction Formats (continued)

Configuration

LRconst

RRconst

915 8 7 4 3 0 Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Ld-code encodes L0..L15 for Ld
Sign bit of const
const = 18 S//const1
range -16 384..16 383
const = 2 S//const1//const2
range -1 073 741 824..1 073 741 823

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Sign bit of const
const = 18 S//const 1
range -16 384..16 383
const = 2 S//const1//const2
range -1 073 741 824..1 073 741 823

Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Bit 8//bits 3..0 encode n = 0..31
see Table 2.3. Encoding of
Immediate Values for encoding of
imm

10 915 8 7 4 3 0

d

OP-code s Ld-code Rs-code

OP-code s Rd-code Rs-code

RRdis

 10 915 8 7 4 3 0

dOP-code s Rd-code Rs-code

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Sign bit of dis
dis = 20 S//dis1
range -4 096..4 095
dis = 4 S//dis1//dis2
range -268 435 456..268 435 455
D-code, D13..D12 encode data
types at memory instructions

 10 915 8 7 4 3 0

dOP-code n Rd-code n

 10 915 8 7 4 3 0

dOP-code s Rd-code Rs-code

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
X-code, X14..X12 encode Index
instructions
lim = 20 zeros//lim1
range 0..4 095
lim = 4 zeros//lim1//lim2
range 0..268 435 455

14

14

14

Rimm

RRlim

e S const1

const2

e const1

const2

e S

S

D D dis1

dis2

imm1

imm2

e X X X lim1

lim2

Format

s = 0:
s = 1:

S:
e = 0:

e = 1:

s = 0:
s = 1:
d = 0:
d = 1:
S:
e = 0:

e = 1:

s = 0:
s = 1:
d = 0:
d = 1:
S:
e = 0:

e = 1:

DD:

d = 0:
d = 1:
n:

s = 0:
s = 1:
d = 0:
d = 1:
XXX:

e = 0:

e = 1:

14

Table 2.2: Instruction Formats, Part 2

INSTRUCTIONS GENERAL 2-5

2.3.1 Table of Immediate Values

n immediate value imm Comment

0..16 0..16 at CMPBI, n = 0 encodes ANYBZ
at ADDI and ADDSI n = 0 encodes CZ

17 imm1//imm2 range = 0..232-1 or -231..231-1

18 16 zeros//imm1 range = 0..65 535

19 16 ones//imm1 range = -65 536..-1

20 32 bit 5 = 1, all other bits = 0

21 64 bit 6 = 1, all other bits = 0

22 128 bit 7 = 1, all other bits = 0

23 231 bit 31 = 1, all other bits = 0

24 -8

25 -7

26 -6

27 -5

28 -4

29 -3

30 -2

31 231-1 at CMPBI and ANDNI
bit 31 = 0, all other bits = 1

31 -1 at all other instructions using imm

Table 2.3: Encoding of Immediate Values

Note: 231 provides clear, set and invert of the floating-point sign bit at ANDNI, ORI and
XORI respectively.

231-1 provides a test for floating-point zero at CMPBI and extraction of the sign bit at
ANDNI.

See CMPBI for ANYBZ and ADDI, ADDSI for CZ.

2-6 CHAPTER 2

2.3.2 Table of Instruction Codes

C
H

K
, C

H
K

Z
, N

O
P

X
M

x,
 X

M
xZ

C
M

P

M
O

V
D

, R
E

T

M
A

S
K

M
O

V

A
N

D
N

D
IV

U

S
U

M

A
D

D

O
R

D
IV

S

X
O

R

S
U

B
S

A
D

D
S

I

S
U

B

N
E

G

A
D

D
I

O
R

I

A
N

D

M
O

V
I

A
N

D
N

I

C
M

P
I

C
M

P
B

I

S
H

R
D

I
S

H
R

LD
xx

.D
/A

/IO
D

/IO
A

S
H

R
I

F
S

U
B

D

D
B

E

B
E

B
N

E

F
A

D
D

D
F

A
D

D

D
B

N
V

D
B

V

B
N

V

LD
W

.R
LD

D
.R

S
A

R
D

I
S

A
R

LD
xx

.N
/S F
D

IV
F

D
IV

D

B
S

E
B

H
T

F
M

U
L

D
B

N
C

D
B

C

B
C

S
T

xx
.D

/A
/IO

D
/IO

A

S
H

LI

F
C

M
P

U
D

D
B

LE

B
LE

B
G

T

F
C

M
P

D

D
B

N
N

D
B

N

B
N

N

S
T

W
.R

S
T

D
.R

R
O

L

S
T

xx
.N

/S

M
U

L E
X

T
E

N
D

D
O

C
A

LL

F
C

V
T

D
F

C
V

T

F
R

A
M

E
D

B
RS

T
W

.P
S

T
D

.P

T
R

A
P

xx
, T

R
A

P

2
3

0
6

5
4

B
9

8
D

C
F

E

O
P

-c
od

e
B

its
 1

1.
.8

A B C D E F

O
P

-c
od

e
B

its
 1

5.
.1

2

Table 2.4: Table of Instruction Codes

INSTRUCTIONS GENERAL 2-7

2.3.3 Table of Extended DSP Instruction Codes

The Extended DSP instructions are specified by a 16-bit OP-code extension succeeding the
instruction op-code for the EXTEND instruction. See section 3.32. Extended DSP
Instructions.

Instruction OP-code
extension (hex)

EMUL 0100

EMULU 0104

EMULS 0106

EMAC 010A

EMACD 010E

EMSUB 011A

EMSUBD 011E

EHMAC 002A

EHMACD 002E

EHCMULD 0046

EHCMACD 004E

EHCSUMD 0086

EHCFFTD 0096

Table 2.5: Extended DSP Instruction Codes

2-8 CHAPTER 2

2.4 Entry Tables
Spacing of the entries for the Trap instructions and exceptions is four bytes. These entries
are intended to each contain an instruction branching to the associated function. The entries
for the TRAPxx instructions are the same as for TRAP. Table 2.6 shows the trap entries
when the entry table is mapped to the end of memory area MEM3 (default after Reset):

Address (Hex) Entry Description

FFFF FF00 TRAP 0

FFFF FF04 TRAP 1

: :

FFFF FFC0 TRAP 48 IO2 Interrupt -- priority 15

FFFF FFC4 TRAP 49 IO1 Interrupt -- priority 14

FFFF FFC8 TRAP 50 INT4 Interrupt -- priority 13

FFFF FFCC TRAP 51 INT3 Interrupt -- priority 11

FFFF FFD0 TRAP 52 INT2 Interrupt -- priority 9

FFFF FFD4 TRAP 53 INT1 Interrupt -- priority 7

FFFF FFD8 TRAP 54 IO3 Interrupt -- priority 5

FFFF FFDC TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12

FFFF FFE0 TRAP 56 Reserved -- priority 17 (lowest)

FFFF FFE4 TRAP 57 Trace Exception -- priority 16

FFFF FFE8 TRAP 58 Parity Error -- priority 4

FFFF FFEC TRAP 59 Extended Overflow -- priority 3

FFFF FFF0 TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

FFFF FFF4 TRAP 61 Reserved -- priority 1

FFFF FFF8 TRAP 62 Reset -- priority 0 (highest)

FFFF FFFC TRAP 63 Error entry for instruction code of all ones

Table 2.6: Trap entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-9

2.4 Entry Tables (continued)
Table 2.7 shows the trap entries when the entry table is mapped to the beginning of
memory areas MEM0, MEM1, MEM2 or IRAM. x is 0, 4, 8 or C corresponding to the
mapping to MEM0, MEM1, MEM2 or IRAM respectively.

Address (Hex) Entry Description

x000 0000 TRAP 63 Error entry for instruction code of all ones

x000 0004 TRAP 62 Reserved -- priority 0 (highest)

x000 0008 TRAP 61 Reserved -- priority 1

x000 000C TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

x000 0010 TRAP 59 Extended Overflow -- priority 3

x000 0014 TRAP 58 Parity Error -- priority 4

x000 0018 TRAP 57 Trace Exception -- priority 16

x000 001C TRAP 56 Reserved -- priority 17 (lowest)

x000 0020 TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12

x000 0024 TRAP 54 IO3 Interrupt -- priority 5

x000 0028 TRAP 53 INT1 Interrupt -- priority 7

x000 002C TRAP 52 INT2 Interrupt -- priority 9

x000 0030 TRAP 51 INT3 Interrupt -- priority 11

x000 0034 TRAP 50 INT4 Interrupt -- priority 13

x000 0038 TRAP 49 IO1 Interrupt -- priority 14

x000 003C TRAP 48 IO2 Interrupt -- priority 15

: :

x000 00F8 TRAP 1

x000 00FC TRAP 0

Table 2.7: Trap entry table mapped to the beginning of MEM0, MEM1, MEM2 or IRAM

2-10 CHAPTER 2

2.4 Entry Tables (continued)
Table 2.8 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the end of
memory area MEM3. Spacing of the entries for the Software instructions FADD..DO is 16
bytes.

Address (Hex) Entry Description

FFFF FE00 FADD Floating-point Add, single word

FFFF FE10 FADDD Floating-point Add, double-word

FFFF FE20 FSUB Floating-point Subtract, single word

FFFF FE30 FSUBD Floating-point Subtract, double-word

FFFF FE40 FMUL Floating-point Multiply, single word

FFFF FE50 FMULD Floating-point Multiply, double-word

FFFF FE60 FDIV Floating-point Divide, single word

FFFF FE70 FDIVD Floating-point Divide, double-word

FFFF FE80 FCMP Floating-point Compare, single word

FFFF FE90 FCMPD Floating-point Compare, double-word

FFFF FEA0 FCMPU Floating-point Compare Unordered, single word

FFFF FEB0 FCMPUD Floating-point Compare Unordered, double-word

FFFF FEC0 FCVT Floating-point Convert single word ⇒ double-word

FFFF FED0 FCVTD Floating-point Convert double-word ⇒ single word

FFFF FEE0 Reserved

FFFF FEF0 DO Do instruction

Table 2.8: Floating-Point entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-11

2.4 Entry Tables (continued)
Table 2.9 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the beginning
of memory areas MEM0, MEM1, MEM2 or IRAM. x is 0, 4, 8 or C corresponding to the
mapping to MEM0, MEM1, MEM2 or IRAM respectively.

Address (Hex) Entry Description

x000 010C DO Do instruction

x000 011C Reserved

x000 012C FCVTD Floating-point Convert double-word ⇒ single word

x000 013C FCVT Floating-point Convert single word ⇒ double-word

x000 014C FCMPUD Floating-point Compare Unordered, double-word

x000 015C FCMPU Floating-point Compare Unordered, single word

x000 016C FCMPD Floating-point Compare, double-word

x000 017C FCMP Floating-point Compare, single word

x000 018C FDIVD Floating-point Divide, double-word

x000 019C FDIV Floating-point Divide, single word

x000 01AC FMULD Floating-point Multiply, double-word

x000 01BC FMUL Floating-point Multiply, single word

x000 01CC FSUBD Floating-point Subtract, double-word

x000 01DC FSUB Floating-point Subtract, single word

x000 01EC FADDD Floating-point Add, double-word

x000 01FC FADD Floating-point Add, single word

Table 2.9: Floating-Point entry table mapped to the beginning of MEM0, MEM1, MEM2 or IRAM

2-12 CHAPTER 2

2.5 Instruction Timing
The following execution times are given in number of processor clock cycles.

All instructions not shown below: 1 cycle

Move Double-Word: 2 cycles

Shift Double-Word: 2 cycles

Test Leading Zeros: 2 cycles

Multiply word:
when both operands are in the range of -215..215-1: 4 cycles
all other cases: 5 cycles

Multiply double-word signed:
when both operands are in the range of -215..215-1: 5 cycles
all other cases: 6 cycles

Multiply double-word unsigned:
when both operands are in the range of 0..216-1: 4 cycles
all other cases: 6 cycles

Divide unsigned and signed: 36 cycles

Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 2 cycles
when branch taken and target in memory : 2 + memory read latency cycles
(see next page)

Delayed Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 1 cycle
when branch taken and target in memory: 1 + memory read latency cycles exceeding
(delay instruction cycles - 1)

Call and Trap instructions when branch not taken: 1 cycle
when branch taken: 2 + memory read latency cycles

Software instructions: 6 + memory read latency cycles exceeding 4 cycles

Frame when not pushing words on the stack: 3 cycles
additionally when pushing n words on the stack: memory write latency cycles
+ n * bus cycles per access
-- write latency = cycles elapsed until write access cycle of first word stored

(minimum = 1 at a non-RAS access and no pipeline congestion)

Return:
4 + memory read latency cycles exceeding 2 cycles
additionally when pulling n words from the stack: memory RAS latency
+ n * bus cycles per access
(RAS latency applies only at n > 2, otherwise RAS latency is always 0)
-- RAS latency = RAS precharge cycles + RAS to CAS delay cycles

INSTRUCTIONS GENERAL 2-13

2.5 Instruction Timing (continued)
Fetch instruction:

when the required number of instruction half words are already prefetched in the
instruction cache: 1 cycle
otherwise
1 + (required number of half words - number of half words already prefetched)/2
* bus cycles per access

Memory word instructions, non-stack address mode:
1 cycle

Memory word instructions, stack address mode:
3 cycles

Memory double-word instructions:
2 cycles

For timing calculations, double-word memory instructions are treated like a sequence of
two single-word memory instructions.

Idle wait cycles are transparently inserted when a memory instruction has to wait for
execution because the two-stage address pipeline is full.

Instruction execution proceeds after the execution of a Load instruction until the data
requested is needed (that is, the register into which the data is to be loaded is addressed) by
a further instruction.

The cycles executed between the memory instruction cycle requesting the data and the first
cycle at which the data are available are called read latency cycles. These read latency
cycles can be filled with instructions that do not need the requested data. When, after the
execution of these optional fill instruction cycles, the data is still not available in the cycle
needing it, idle wait cycles are inserted until the data is available. The idle wait cycles are
inserted transparently to the program by an on-chip hardware interlock. The read latency
is:

On an IRAM access:
read latency = 1 cycle

On a non-RAS external memory or I/O access:
read latency = address setup cycles + access cycles + 1

On a RAS memory access:
read latency = RAS precharge cycles + RAS to CAS delay cycles +
 access cycles + 1

Additional cycles are also inserted and add to the latency when the address pipeline is
congested, these cycles must then also be taken into calculation.

A switch from an external memory or I/O read access to an immediately succeeding write
access inserts one additional bus cycle.

2-14 CHAPTER 2

2.5 Instruction Timing (continued)

Extended DSP instructions:

The instruction issue time is always 1 cycle. After the issue of an Extended DSP
instruction, execution of non-Extended-DSP instructions proceeds while the Extended DSP
instruction is executed in the multiply/accumulate unit (using separate resources). Latency
cycles are defined as the interval between instruction issue and the result being available in
the register G15 or register pair G14//G15. The latency cycles indicate as well the number
of cycles available for instructions not using the result which can be inserted between the
Extended DSP instruction and the first instruction using the result. When less than the
number of latency cycles are used by these instructions, the execution of the instruction
using the result is delayed until the result is available in G15 or G14//G15.

When an Extended DSP instruction which uses the internal hardware multiplier (EMUL, ...,
EHCMACD) succeeds an Extended DSP instruction which also uses the internal hardware
multiplier after less than latency - 1 cycles, the issue of the succeeding Extended DSP
instruction is delayed until latency - 1 cycles are finished. An Extended DSP instruction
succeeding the EHCSUMD or EHCFFTD instruction after less than the latency cycles for
these two instructions is always delayed until the EHCSUMD or EHCFFTD instruction is
finished.

The latency cycles are as follows:

EMUL instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 3 cycles

EMULU instruction:
when both operands are in the range of 0..216-1: 2 cycles
all other cases: 4 cycles

EMULS instruction:
when both operands are in the range of -215..215-1: 3 cycles
all other cases: 4 cycles

EMAC instruction:
when both operands are in the range of -215..215-1: 2 cycles
all other cases: 3 cycles

EMACD instruction:
when both operands are in the range of -215..215-1: 3 cycles
all other cases: 4 cycles

EMSUB instruction:
when both operands are in the range of -215..215-1: 2 cycles
all other cases: 3 cycles

EMSUBD instruction:
when both operands are in the range of -215..215-1: 3 cycles
all other cases: 4 cycles

EHMAC instruction: 2 cycles

EHMACD instruction: 4 cycles

INSTRUCTIONS GENERAL 2-15

2.5 Instruction Timing (continued)
EHCMULD instruction: 4 cycles

EHCMACD instruction: 4 cycles

EHCSUMD instruction: 2 cycles

EHCFFTD instruction: 2 cycles

INSTRUCTION SET 3-1

3. Instruction Set

3.1 Memory Instructions
The memory instructions load data from memory in a register Rs (or a register pair
Rs//Rsf) or store data from Rs (or Rs//Rsf) to memory using the data types byte
unsigned/signed, half word unsigned/signed, word or double-word. Since I/O devices are
also addressed by memory instructions, "memory" stands here interchangeably also for I/O
unless memory or I/O address space is specifically denoted.

The memory address is either specified by the operand Rd or Ld, by the sum Rd plus a
signed displacement or by the displacement alone, depending on the address mode.
Memory accesses to words and double-words ignore bits one and zero of the address,
memory accesses to half words ignore bit zero of the address, (since these operands are
located at word or half word boundaries respectively, these address bits are redundant).

If the content of any register Rd except SR is zero, the memory is not accessed and a trap
to Pointer Error occurs (see section 4. Exceptions). Thus, uninitialized pointers are
automatically checked.

Load and Store instructions are pipelined to a total depth of two word entries for Load and
Store, thus, a double-word Load or a double-word Store instruction can be executed
without halting the processor in a wait state. (The address pipeline provides a depth of two
addresses common to load and store).

Double-word memory instructions enter two separate word entries into the pipeline and
start two independent memory cycles. The first memory cycle, loading or storing the high-
order word, uses the address specified by the address mode, the second cycle uses this
address incremented by four and also places it on the address bus.

Accessing data in the same DRAM memory page by any number of succeeding memory
cycles is performed in page mode.

Memory instructions leave all condition flags unchanged.

3-2 CHAPTER 3

3.1.1 Address Modes

Register Address Mode:

Notation: LDxx.R, STxx.R -- xx: word or double word data type

The content of the destination register Ld is used as an address into memory address space.

Memory

ADDR

ADDR

DATA DATA

Ld

Rs

LDxx.R Ld, Rs

Memory

ADDR

ADDR

DATA DATA

Ld

Rs

STxx.R Ld, Rs

Post-increment Address Mode:

Notation: LDxx.P, STxx.P -- xx: word or double-word data type

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of a word or double-word
memory instruction by 4 or 8 respectively, regardless of any exception occurring. In the
case of a double-word data type, Ld is incremented by 8 at the first memory cycle.

Memory

ADDR

ADDR

DATA DATA

Ld

Rs

LDxx.P Ld, Rs

ADDR + size

size= 4(word) or 8(double word)

Memory

ADDR

ADDR

DATA DATA

Ld

Rs

STxx.P Ld, Rs

ADDR + size

size= 4(word) or 8(double word)

Displacement Address Mode:

Notation: LDxx.D, STxx.D -- xx: any data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into memory address space.

Memory

ADDRADDR

DATA DATA

Rd

Rs

LDxx.D Rd, Rs, dis

ADDR + dis

Memory

ADDRADDR

DATA DATA

Rd

Rs

STxx.D Rd, Rs, dis

ADDR + dis

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode

INSTRUCTION SET 3-3

from the absolute address mode.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Note: Specification of the PC for Rd provides addressing relative to the address of the first
byte after the memory instruction.

Absolute Address Mode:

Notation: LDxx.A, STxx.A -- xx: any data type

The displacement dis is used as an address into memory address space. Rd must denote the
SR to differentiate this mode from the displacement address mode; the content of the SR is
not used.

Memory

dis DATA DATA

Rs

LDxx.A 0, Rs, dis

STxx.A 0, Rs, dis

Memory

dis DATA DATA

Rs

In the case of all data types except byte, address bit zero is supplied as zero.

Note: The displacement provides absolute addressing at the beginning and the end (MEM3
area) of the memory.

I/O Displacement Address Mode:

Notation: LDxx.IOD, STxx.IOD -- xx: word or double-word data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into I/O address space.

IO

ADDRADDR

DATA DATA

Rd

Rs

LDxx.IOD Rd, Rs, dis

ADDR + dis

IO

ADDRADDR

DATA DATA

Rd

Rs

STxx.IOD Rd, Rs, dis

ADDR + dis

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the I/O absolute address mode.

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Execution of a memory instruction with I/O displacement address mode does not disrupt
any page mode sequence.

3-4 CHAPTER 3

Note: The I/O displacement address mode provides dynamic addressing of peripheral
devices.

When on a load instruction only a byte or half word is placed on the (lower part) of the
data bus, the higher-order bits are undefined and must be masked out before the loaded
operand is used further.

I/O Absolute Address Mode:

Notation: LDxx.IOA, STxx.IOA -- xx: word or double-word data type

The displacement dis is used as an address into I/O address space.

IO

dis DATA DATA

Rs

LDxx.IOA 0, Rs, dis

STxx.IOA 0, Rs, dis

IO

dis DATA DATA

Rs

Rd must denote the SR to differentiate this mode from the I/O displacement address mode;
the content of the SR is not used.

Address bits one and zero are supplied as zero.

Execution of a memory instruction with I/O address mode does not disrupt any page mode
sequence.

Note: The I/O absolute address mode provides code efficient absolute addressing of
peripheral devices and allows simple decoding of I/O addresses.

When on a load instruction only a byte or a half word is placed on the (lower part) of the
data bus, the higher-order bits are undefined and must be masked out before the loaded
operand is used further.

Next Address Mode:

Notation: LDxx.N, STxx.N -- xx: any data type

The content of the destination register Rd is used as an address into memory address space,
then Rd is incremented by the signed displacement dis regardless of any exception
occurring. At a double-word data type, Rd is incremented at the first memory cycle.

INSTRUCTION SET 3-5

Memory

ADDR

ADDR

DATA DATA

Rd

Rs

LDxx.N Rd, Rs, dis

ADDR + dis

Memory

ADDR

ADDR

DATA DATA

Rd

Rs

STxx.N Rd, Rs, dis

ADDR + dis

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Stack Address Mode:

Notation: LDW.S, STW.S -- only word data type

The content of the destination register Rd is used as stack address, then Rd is incremented
by dis regardless of any exception occurred.

Stack

ADDR

ADDR

DATA DATA

Rd

Rs

LDxx.S Rd, Rs, dis

ADDR + dis

Stack

ADDR

ADDR

DATA DATA

Rd

Rs

STxx.S Rd, Rs, dis

ADDR + dis

A stack address addresses memory address space if it is lower than the stack pointer SP;
otherwise bits 7..2 of it (higher bits are ignored) address a register in the register part of the
stack absolutely (not relative to the frame pointer FP).

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Rd must not denote the PC or the SR.

Note: The stack address mode must be used to address an operand in the stack regardless
of its present location either in the memory part or in the register part of the stack. Rd may
be set by the Set Stack Address instruction.

3-6 CHAPTER 3

Address Mode Encoding:

The encoding of the displacement and absolute address mode types of memory instructions
is shown in table 3.1:

 LDxx.D/A/IOD/IOA STxx.D/A/IOD/IOA

D-code dis(1) dis(0) Rd does not
denote SR

Rd denotes SR Rd does not
denote SR

Rd denotes SR

0 X X LDBS.D LDBS.A STBS.D STBS.A

1 X X LDBU.D LDBU.A STBU.D STBU.A

2 X 0 LDHU.D LDHU.A STHU.D STHU.A

2 X 1 LDHS.D LDHS.A STHS.D STHS.A

3 0 0 LDW.D LDW.A STW.D STW.A

3 0 1 LDD.D LDD.A STD.D STD.A

3 1 0 LDW.IOD LDW.IOA STW.IOD STW.IOA

3 1 1 LDD.IOD LDD.IOA STD.IOD STD.IOA

Table 3.1: Encoding of Displacement and Absolute Address Mode

The encoding of the next and stack address mode types of memory instructions is shown in
table 3.2:

 With the instructions below, Rd must not denote the PC or the SR

D-code dis(1) dis(0) LDxx.N/S STxx.N/S

0 X X LDBS.N STBS.N

1 X X LDBU.N STBU.N

2 X 0 LDHU.N STHU.N

2 X 1 LDHS.N STHS.N

3 0 0 LDW.N STW.N

3 0 1 LDD.N STD.N

3 1 0 Reserved Reserved

3 1 1 LDW.S STW.S

Table 3.2: Encoding of Next and Stack Address Mode

INSTRUCTION SET 3-7

3.1.2 Load Instructions

The Load instructions transfer data from the addressed memory location into a register Rs
or a register pair Rs//Rsf.

In the case of data types word and double-word, one or two words are read from memory
and transferred unchanged into Rs or Rs//Rsf respectively.

In the case of byte and half word data types, up to one word (depending on bus size) is read
from memory, the byte or half word addressed by bits one and zero or bit one of the
memory address respectively is extracted, right adjusted, expanded to 32 bits and placed in
Rs. Unsigned bytes and half words are expanded by leading zeros; signed bytes and half
words are expanded by leading sign bits.

Execution of a Load instruction enters the register address of Rs, memory address bits one
and zero and a code for the data type into the load pipeline, places the memory address
onto the address bus and starts a memory cycle. A double-word Load instruction enters the
register address of Rsf and the same control information into the load pipeline as a second
entry, places the memory address incremented by four onto the address bus and starts a
second memory cycle.

After execution of a Load instruction, the next instructions are executed without waiting
for the data to be loaded. A wait is enforced only if an instruction uses a register whose
register address is still in the load pipeline. The data read from memory is placed in the
register whose register address is at the head of the load pipeline, its pipeline entry is then
deleted.

At memory load instruction Rs denotes the load destination register to load data from
memory, IO or stack and Rd denotes the load source register.

Rs must not denote the PC, the SR, G14 or G15; these registers cannot be loaded
from memory.

Format Notation Operation Data Type xx

LR LDxx.R Ld, Rs Rs := Ld^; W,D
 [Rsf := (Ld + 4)^;]
 -- register address mode

LR LDxx.P Ld, Rs Rs := Ld^; Ld := Ld + size; -- size = 4 or 8 W,D
 [Rsf := (old Ld + 4)^;]
 -- post-increment address mode

RRdis LDxx.D Rd, Rs, dis Rs := (Rd + dis)^; BU,BS,HU,HS,W,D
 [Rsf := (Rd + dis + 4)^;]
 -- displacement address mode

RRdis LDxx.A 0, Rs, dis Rs := dis^; BU,BS,HU,HS,W,D
 [Rsf := (dis + 4)^;]
 -- absolute address mode

RRdis LDxx.IOD Rd, Rs, dis Rs := (Rd + dis)^; W,D
 [Rsf := (Rd + dis + 4)^;]
 -- I/O displacement address mode

RRdis LDxx.IOA 0, Rs, dis Rs := dis^; W,D
 [Rsf := (dis + 4)^;]
 -- I/O absolute address mode

3-8 CHAPTER 3

RRdis LDxx.N Rd, Rs, dis Rs := Rd^; Rd := Rd + dis; BU,BS,HU,HS,W,D
 [Rsf := (old Rd + 4)^;]
 -- next address mode

RRdis LDxx.S Rd, Rs, dis Rs := Rd^; Rd := Rd + dis; W
 -- stack address mode

The expressions in brackets are only executed at double-word data types.

Data Type xx is with:

 BU: byte unsigned; HU: half word unsigned; W: word;

 BS: byte signed; HS: half word signed; D: double-word;

 Register

 L0 : $00001E30

 L6 : $0000FFFF

 L7 : $FFFF0000

 Memory

 00001E30 : 00000F00
 00001E34 : 00003F01

 00001E38 : 00004C10

 00001E3C : 000000FF

 Instruction : Register address mode

 LDW.R L0, L6 ; L6 <= L0^ = Address 00001E30 : $00000F00
 LDD.R L0, L6 ; L6 <= L0^ = Address 00001E30 : $00000F00
 ; L7 <= (L0 + 4)^ = Address 00001E34 : $00003F01

 Instruction : Displacement address mode

 LDW.D L0, L6, $8 ; L6 = (L0 + 8)^ = Address 00001E38 : $00004C10

 LDD.D L0, L6, $8 ; L6 = (L0 + 8)^ = Address 00001E38 : $00004C10

 ; L7 = (L0 + 8 + 4)^ = Address 00001E3C : $000000FF

INSTRUCTION SET 3-9

3.1.3 Store Instructions

The Store instructions transfer data from the register Rs or the register pair Rs//Rsf to the
addressed memory location.

In the case of data types word or double-word, one or two words are placed unchanged
from Rs or Rs//Rsf respectively onto the data bus to be stored in the memory.

In the case of byte and half word data types, the low-order byte or half word is placed onto
the data bus at the byte or half word position addressed by bits one and zero or bit one of
the memory address respectively; it is implied to be merged (via byte write enable) with
the other data in the same memory word.

In the case of signed byte and signed half word data types, any content of Rs exceeding the
value range of the specified data type causes a trap to Range Error. The byte or half word
is stored regardless of a Range Error.

If Rs denotes the SR, zero is stored regardless of the content of SR (or of SR//G2 at
double-word).

Execution of a Store instruction enters the contents of Rs, memory address bits one and
zero and a code for the data type into the store pipeline, places the memory address onto
the address bus and starts a memory cycle. A double-word Store instruction enters the
contents of Rsf and the same control information into the store pipeline as a second entry,
places the memory address incremented by four onto the address bus and starts a second
memory cycle.

After execution of a Store instruction, the next instructions are executed without waiting
for the store memory cycle to finish. The data at the head of the store pipeline is put on the
data bus on demand from the on-chip memory control logic and its pipeline entry is deleted.

When Rsf denotes the same register as Rd (or Ld) at double-word instructions with next
address or post-increment address mode, the incremented content of Rsf is stored in the
second memory cycle; in all other cases, the unchanged content of Rs or Rsf is stored.

Format Notation Operation Data Type xx

LR STxx.R Ld, Rs Ld^ := Rs; W,D
 [(Ld + 4)^ := Rsf;]
 -- register address mode

LR STxx.P Ld, Rs Ld^ := Rs; Ld := Ld + size; -- size = 4 or 8 W,D
 [(old Ld + 4)^ := Rsf;]
 -- post-increment address mode

RRdis STxx.D Rd, Rs, dis (Rd + dis)^ := Rs; BU,BS,HU,HS,W,D
 [(Rd + dis + 4)^ := Rsf;]
 -- displacement address mode

RRdis STxx.A 0, Rs, dis dis^ := Rs; BU,BS,HU,HS,W,D
 [(dis + 4)^ := Rsf;]
 -- absolute address mode

RRdis STxx.IOD Rd, Rs, dis (Rd + dis)^ := Rs; W,D
 [(Rd + dis + 4)^ := Rsf;]
 -- I/O displacement address mode

3-10 CHAPTER 3

RRdis STxx.IOA 0, Rs, dis dis^ := Rs; W,D
 [(dis + 4)^ := Rsf;]
 -- I/O absolute address mode

RRdis STxx.N Rd, Rs, dis Rd^ := Rs; Rd := Rd + dis; BU,BS,HU,HS,W,D
 [(old Rd + 4)^ := Rsf;]
 -- next address mode

RRdis STxx.S Rd, Rs, dis Rd^ := Rs; Rd := Rd + dis; W
 -- stack address mode

The expressions in brackets are only executed at double-word data types.

In the case of signed byte and half word data types, a trap to Range Error occurs when the
value of the operand to be stored exceeds the value range of the specified data type; the
byte or half word is stored regardless of a Range Error.

Data Type xx is with:

 BU: byte unsigned; HU: half word unsigned; W: word;

 BS: byte signed; HS: half word signed; D: double-word;

 Register
 L0 : $00001E30

 L6 : $0000FFFF

 L7 : $FFFF0000

 Memory

 00001E30 : 00000F00

 00001E34 : 00003F01

 00001E38 : 00004C10

 00001E3C : 000000FF

 Instruction : Register address mode

 STW.R L0, L6 ; L0^ = L6 = Address 00001E30 : $0000FFFF

 STD.R L0, L6 ; L0^ = L6 = Address 00001E30 : $0000FFFF

 ; (L0 + 4)^ = L7 = Address 00001E34 : $FFFF0000

 Instruction : Displacement address mode

 STW.D L0, L6, $8 ; (L0 + 8)^ = L6 = Address 00001E38 : $0000FFFF

 STD.D L0, L6, $8 ; (L0 + 8)^ = L6 = Address 00001E38 : $0000FFFF

 ; (L0 + 8 + 4)^ = L7 = Address 00001E3C : $FFFF0000

INSTRUCTION SET 3-11

3-12 CHAPTER 3

3.2 Move Word Instructions
The source operand or the immediate operand is copied to the destination register and the
condition flags are set or cleared accordingly.

Format Notation Operation

RR MOV Rd, Rs Rd := Rs;
 Z := Rd = 0;
 N := Rd(31);
 V := undefined;

Rimm MOVI Rd, imm Rd := imm;
 Z := Rd = 0;
 N := Rd(31);
 V := 0;

3.3 Move Double-Word Instruction
The double-word source operand is copied to the double-word destination register pair and
the condition flags are set or cleared accordingly. The high-order word in Rs is copied first.

When the SR is denoted as a source operand, the source operand is supplied as zero
regardless of the content of SR//G2. When the PC is denoted as destination, the Return
instruction RET is executed instead of the Move Double-Word instruction.

Format Notation Operation

RR MOVD Rd, Rs if Rd does not denote PC and Rs does not denote SR then
 Rd := Rs;
 Rdf := Rsf;
 Z := Rd//Rdf = 0;
 N := Rd(31);
 V := undefined;

RR MOVD Rd, 0 if Rd does not denote PC and Rs denotes SR then
 Rd := 0;
 Rdf := 0;
 Z := 1;
 N := 0;
 V := undefined;

RR RET PC, Rs if Rd denotes PC then
 execute the RET instruction;

 Register
 L0 : $XXXXXXXX
 L1 : $XXXXXXXX
 L6 : $0000FFFF
 L7 : $FFFF0000

 Instruction
 MOV L0, L6 ; L0 = L6 = $0000FFFF

 MOVI L0, $4 ; L0 = imm = $4
 MOVD L0, L6 ; L0 = L6 = $0000FFFF

 ; L1 = L7 = $FFFF0000

INSTRUCTION SET 3-13

3.4 Logical Instructions
The result of a bitwise logical AND, AND not (ANDN), OR or exclusive OR (XOR) of the
source or immediate operand and the destination operand is placed in the destination
register and the Z flag is set or cleared accordingly. At ANDN, the source operand is used
inverted (itself remaining unchanged).

All operands and the result are interpreted as bit-strings of 32 bits each.

Format Notation Operation

RR AND Rd, Rs Rd := Rd and Rs; -- logical AND
 Z := Rd = 0;

RR ANDN Rd, Rs Rd := Rd and not Rs; -- logical AND with source
 Z := Rd = 0; used inverted

RR OR Rd, Rs Rd := Rd or Rs; -- logical OR
 Z := Rd = 0;

RR XOR Rd, Rs Rd := Rd xor Rs; -- logical exclusive OR
 Z := Rd = 0;

Rimm ANDNI Rd, imm Rd := Rd and not imm; -- logical AND with imm
 Z := Rd = 0; used inverted

Rimm ORI Rd, imm Rd := Rd or imm; -- logical OR
 Z := Rd = 0;

Rimm XORI Rd, imm Rd := Rd xor imm; -- logical exclusive OR
 Z := Rd = 0;

Note: ANDN and ANDNI are the instructions complementary to OR and ORI: Where OR
and ORI set bits, ANDN and ANDNI clear bits at bit positions with a "one" bit in the
source or immediate operand, thus obviating the need for an inverted mask in most cases.

 Register
 L0 : $0F0CFFFF

 L1 : $FFFF0000

 Instruction
 AND L0, L1 ; L0 = L0 and L1 = $0F0C0000
 ANDN L0, L1 ; L0 = L0 and not L1 = $0000FFFF
 OR L0, L1 ; L0 = L0 or L1 = $FFFFFFFF
 XOR L0, L1 ; L0 = L0 xor L1 = $F0F3FFFF
 ANDNI L0, $1234 ; L0 = L0 and not imm = $0F0CEDCB

 ORI L0, $1234 ; L0 = L0 or imm = $0F0CFFFF

 XORI L0, $1234 ; L0 = L0 xor imm = $0F0CEDCB

3-14 CHAPTER 3

3.5 Invert Instruction
The source operand is placed bitwise inverted in the destination register and the Z flag is
set or cleared accordingly.

The source operand and the result are interpreted as bit-strings of 32 bits each.

Format Notation Operation

RR NOT Rd, Rs Rd := not Rs;
 Z := Rd = 0;

3.6 Mask Instruction
The result of a bitwise logical AND of the source operand and the immediate operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bit-strings of 32 bits each.

Format Notation Operation

RRconst MASK Rd, Rs, const Rd := Rs and const;
 Z := Rd = 0;

Note: The Mask instruction may be used to move a source operand with bits partly masked
out by an immediate operand used as mask. The immediate operand const is constrained in
its range by bits 31 and 30 being either both zero or both one (see format RRconst). If
these bits are required to be different, the instruction pair MOVI, AND may be used
instead of MASK.

INSTRUCTION SET 3-15

3.7 Add Instructions
The source operand, the source operand + C or the immediate operand is added to the
destination operand, the result is placed in the destination register and the condition flags
are set or cleared accordingly.

At ADD, ADDC and ADDI, both operands and the result are interpreted as either all
signed or all unsigned integers. At ADDS and ADDSI, both operands and the result are
signed integers and a trap to Range Error occurs at overflow.

Format Notation Operation

RR ADD Rd, Rs Rd := Rd + Rs; -- signed or unsigned Add
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

RR ADDS Rd, Rs Rd := Rd + Rs; -- signed Add with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

RR ADDC Rd, Rs Rd := Rd + Rs + C; -- signed or unsigned Add
 Z := Z and (Rd = 0); with carry
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

When the SR is denoted as a source operand at ADD, ADDS and ADDC, C is added
instead of the SR. The notation is then:

Format Notation Operation

RR ADD Rd, C Rd := Rd + C; -- signed or unsigned Add C

RR ADDS Rd, C Rd := Rd + C; -- signed Add C with trap

RR ADDC Rd, C Rd := Rd + C;

The flags and the trap condition are treated as defined by ADD, ADDS or ADDC.

3-16 CHAPTER 3

3.7 Add Instructions (continued)

Format Notation Operation

Rimm ADDI Rd, imm Rd := Rd + imm; -- signed or unsigned Add
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

Rimm ADDSI Rd, imm Rd := Rd + imm; -- signed Add with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

The following instructions are special cases of ADDI and ADDSI differentiated by n = 0
(see section 2.3.1. Table of Immediate Values):

Format Notation Operation

Rimm ADDI Rd, CZ Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to even

Rimm ADDSI Rd, CZ Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to even

The flags and the trap condition are treated as defined by ADDI or ADDSI.

Note: At ADDC, Z is cleared if Rd ≠ 0, otherwise left unchanged; thus, Z is evaluated
correctly for multi-precision operands.

The effect of a Subtract immediate instruction can be obtained by using the negated 32-bit
value of the immediate operand to be subtracted (except zero). At unsigned, C = 0
indicates then a borrow (the unsigned number range is exceeded below zero).

At "round to even", C is only added to the destination operand if Z = 0 or Rd(0) is one. The
Z flag is assumed to be set or cleared by a preceding Shift Left instruction. "Round to
even" provides a better averaging of rounding errors than "add carry".

"Round to even" is equivalent to the "round to nearest" Floating-Point rounding mode and
may be used to implement it efficiently.

 Register
 L0 : $00000004
 L1 : $FFFFFFFC

 Instruction
 ADD L0, L1 ; L0 = L0 + L1 = $0

 ADDI L0, $120 ; L0 = L0 + imm = $124

INSTRUCTION SET 3-17

3.8 Sum Instructions
The sum of the source operand and the immediate operand is placed in the destination
register and the condition flags are set or cleared accordingly. At SUM, both operands and
the result are interpreted as either all signed or all unsigned integers. At SUMS, both
operands and the result are signed integers and a trap to Range Error occurs at overflow.

Format Notation Operation

RRconst SUM Rd, Rs, const Rd := Rs + const; -- signed or unsigned Sum
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

RRconst SUMS Rd, Rs, const Rd := Rs + const; -- signed Sum with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

When the SR is denoted as a source operand at SUM and SUMS, C is added instead of the
SR. The notation is then:

Format Notation Operation

RRconst SUM Rd, C, const Rd := C + const; -- signed or unsigned Sum C

RRconst SUMS Rd, C, const Rd := C + const; -- signed Sum C

The flags are treated as defined by SUM or SUMS. A trap cannot occur.

Note: The effect of a Subtract immediate instruction can be obtained by using the negated
32-bit value of the immediate operand to be subtracted (except zero). At unsigned, C = 0
indicates then a borrow (the unsigned number range is exceeded below zero).

The immediate operand is constrained to the range of const. The instruction pair MOV,
ADDI or MOV, ADDSI may be used where the full integer range is required.

 Register
 L0 : $FFFFFFFC

 L1 : $00000004

 Instruction
 SUM L0, L1, $120 ; L0 = L1 + const = $124

3-18 CHAPTER 3

3.9 Subtract Instructions
The source operand or the source operand + C is subtracted from the destination operand,
the result is placed in the destination register and the condition flags are set or cleared
accordingly.

At SUB and SUBC, both operands and the result are interpreted as either all signed or all
unsigned integers. At SUBS, both operands and the result are signed integers and a trap to
Range Error occurs at overflow.

Format Notation Operation

RR SUB Rd, Rs Rd := Rd - Rs; -- signed or unsigned Subtract
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

RR SUBS Rd, Rs Rd := Rd - Rs; -- signed Subtract with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

RR SUBC Rd, Rs Rd := Rd - (Rs + C); -- signed or unsigned Subtract
 Z := Z and (Rd = 0); with borrow
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

When the SR is denoted as a source operand at SUB, SUBS and SUBC, C is subtracted
instead of the SR. The notation is then:

Format Notation Operation

RR SUB Rd, C Rd := Rd - C; -- signed or unsigned Subtract C

RR SUBS Rd, C Rd := Rd - C; -- signed Subtract C with trap

RR SUBC Rd, C Rd := Rd - C;

The flags and the trap condition are treated as defined by SUB, SUBS or SUBC.

Note: At SUBC, Z is cleared if Rd ≠ 0, otherwise left unchanged; thus, Z is evaluated
correctly for multi-precision operands.

 Register
 L0 : $124

 L1 : $4

 Instruction
 SUB L0, L1 ; L0 = L0 - L1 = $120

INSTRUCTION SET 3-19

3.10 Negate Instructions
The source operand is subtracted from zero, the result is placed in the destination register
and the condition flags are set or cleared accordingly.

At NEG and NEGS, the source operand and the result are interpreted as either both signed
or both unsigned integers. At NEGS, the source operand and the result are signed integers
and a trap to Range Error occurs at overflow.

Format Notation Operation

RR NEG Rd, Rs Rd := - Rs; -- signed or unsigned Negate
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

RR NEGS Rd, Rs Rd := - Rs; -- signed Negate with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

When the SR is denoted as a source operand at NEG and NEGS, C is negated instead of
the SR. The notation is then:

Format Notation Operation

RR NEG Rd, C Rd := - C; -- signed or unsigned Negate C
 if C is set then
 Rd := -1;
 else
 Rd := 0;

RR NEGS Rd, C Rd := - C; -- signed Negate C
 if C is set then
 Rd := -1;
 else
 Rd := 0;

The flags are treated as defined by NEG or NEGS. A trap cannot occur.

 Register
 L0 : $124
 L1 : $4

 Instruction
 NEG L0, L1 ; L0 = - L1 = $FFFFFFFC

3-20 CHAPTER 3

3.11 Multiply Word Instruction
The source operand and the destination operand are multiplied, the low-order word of the
product is placed in the destination register (the high-order product word is not evaluated)
and the condition flags are set or cleared according to the single-word product.

Both operands are either signed or unsigned integers, the product is a single-word integer.

Note that the low-order word of the product is identical regardless of whether the operands
are signed or unsigned.

The result is undefined if the PC or the SR is denoted.

Format Notation Operation

RR MUL Rd, Rs Rd := low order word of product Rd ∗ Rs;
 Z := singleword product = 0;
 N := Rd(31);
 -- sign of singleword product;
 -- valid for signed operands;
 V := undefined;
 C := undefined;

3.12 Multiply Double-Word Instructions
The source operand and the destination operand are multiplied, the double-word product is
placed in the destination register pair (the destination register expanded by the register
following it) and the condition flags are set or cleared according to the double-word
product.

At MULS, both operands are signed integers and the product is a signed double-word
integer. At MULU, both operands are unsigned integers and the product is an unsigned
double-word integer.

The result is undefined if the PC or the SR is denoted.

Format Notation Operation

RR MULS Rd, Rs Rd//Rdf := signed doubleword product of Rd ∗ Rs;
 Z := Rd//Rdf = 0;
 -- doubleword product is zero
 N := Rd(31);
 -- doubleword product is negative
 V := undefined;
 C := undefined;

RR MULU Rd, Rs Rd//Rdf := unsigned doubleword product of Rd ∗ Rs;
 Z := Rd//Rdf = 0;
 -- doubleword product is zero
 N := Rd(31);
 V := undefined;
 C := undefined;

INSTRUCTION SET 3-21

 Register
 L0 : $5678
 L1 : $1234
 L2 : $9ABC

 Instruction
 MUL L0, L2 ; L0 = $3443B020

 MULU L0, L2 ; L0 = $0
 ; L1 = $3443B020

3.13 Divide Instructions
The double-word destination operand (dividend) is divided by the single-word source
operand (divisor), the quotient is placed in the low-order destination register (Rdf), the
remainder is placed in the high-order destination register (Rd) and the condition flags are
set or cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient exceeds the
integer value range (quotient overflow). The result (in Rd//Rdf) is then undefined. At
DIVS, a trap to Range Error also occurs and the result is undefined if the dividend is
negative.

At DIVS, the dividend is a non-negative signed double-word integer, the divisor, the
quotient and the remainder are signed integers; a non-zero remainder has the sign of the
dividend.

At DIVU, the dividend is an unsigned double-word integer, the divisor, the quotient and
the remainder are unsigned integers.

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or the SR
is denoted.

3-22 CHAPTER 3

Format Notation Operation

RR DIVS Rd, Rs if Rs = 0 or quotient overflow or Rd(31) = 1 then
 -- dividend is negative
 Rd//Rdf := undefined;
 Z := undefined;
 N := undefined;
 V := 1;
 trap ⇒ Range Error;
 else
 remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
 Z := Rdf = 0; -- quotient is zero
 N := Rdf(31); -- quotient is negative
 V := 0;

RR DIVU Rd, Rs if Rs = 0 or quotient overflow then
 Rd//Rdf := undefined;
 Z := undefined;
 N := undefined;
 V := 1;
 trap ⇒ Range Error;
 else
 remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
 Z := Rdf = 0; -- quotient is zero
 N := Rdf(31);
 V := 0;

 Register
 L0 : $1

 L1 : $23456789
 L2 : 123456

 Instruction
 DIVU L0, L2 ; L0 = $789
 ; L1 = $1000

INSTRUCTION SET 3-23

3.14 Shift Left Instructions
The destination operand is shifted left by a number of bit positions specified

at SHLI, SHLDI by n = 0..31 as a shift by 0..31;

at SHL, SHLD by bits 4..0 of the source operand as a shift by 0..31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

at SHL and SHLI as a bit-string of 32 bits or as a signed or unsigned integer;

at SHLD and SHLDI as a double-word bit-string of 64 bits or as a signed or
unsigned double-word integer.

All Shift Left instructions insert zeros in the vacated bit positions at the right.

The double-word Shift Left instructions execute in two cycles. The low-order operand in
Ldf is shifted first. At SHLD, the result is undefined if Ls denotes the same register as Ld
or Ldf.

Format Notation Operation insert

Rn SHLI Rd, n Rd := Rd << by n; -- 0..31 zeros

Ln SHLDI Ld, n Ld//Ldf := Ld//Ldf << by n; -- 0..31 zeros

LL SHL Ld, Ls Ld := Ld << by Ls(4..0); -- 0..31 zeros

LL SHLD Ld, Ls Ld//Ldf := Ld//Ldf << by Ls(4..0); -- 0..31 zeros

The condition flags are set or cleared by all Shift Left instructions as follows:

 Z := Ld = 0 or Rd = 0 on single-word;
 Z := Ld//Ldf = 0 on double-word;
 N := Ld(31) or Rd(31);
 V := undefined
 C := undefined;

Note: The symbol << signifies "shifted left".

 Register
 L0 : $FFFF
 L1 : $2

 Instruction
 SHLI L0, $4 ; L0 = $000FFFF0

 SHL L0, L1 ; L0 = $0003FFFC

3-24 CHAPTER 3

3.15 Shift Right Instructions
The destination operand is shifted right by a number of bit positions specified

at SARI, SARDI, SHRI, SHRDI by n = 0..31 as a shift by 0..31.

at SAR, SARD, SHR, SHRD by bits 4..0 of the source operand as a shift by 0..31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

at SAR and SARI as a signed integer;

at SARD and SARDI as a signed double-word integer;

at SHR and SHRI as a bit-string of 32 bits or as an unsigned integer;

at SHRD and SHRDI as a double-word bit-string of 64 bits or as an unsigned
double-word integer.

All Shift Right instructions which interpret the destination operand as signed insert sign
bits, all others insert zeros in the vacated bit positions at the left.

The double-word Shift Right instructions execute in two cycles. The high-order operand in
Ld is shifted first. At SARD and SHRD, the result is undefined if Ls denotes the same
register as Ld or Ldf.

Format Notation Operation insert

Rn SARI Rd, n Rd := Rd >> by n; -- 0..31 sign bits

Ln SARDI Ld, n Ld//Ldf := Ld//Ldf >> by n; -- 0..31 sign bits

LL SAR Ld, Ls Ld := Ld >> by Ls(4..0); -- 0..31 sign bits

LL SARD Ld, Ls Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 sign bits

Rn SHRI Rd, n Rd := Rd >> by n; -- 0..31 zeros

Ln SHRDI Ld, n Ld//Ldf := Ld//Ldf >> by n; -- 0..31 zeros

LL SHR Ld, Ls Ld := Ld >> by Ls(4..0); -- 0..31 zeros

LL SHRD Ld, Ls Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 zeros

The condition flags are set or cleared by all Shift Right instructions as follows:

 Z := Ld = 0 or Rd = 0 on single-word;
 Z := Ld//Ldf = 0 on double-word;
 N := Ld(31) or Rd(31);
 C := last bit shifted out is "one";

Note: The symbol >> signifies "shifted right".

INSTRUCTION SET 3-25

 Register
 L0 : $C000FFFF
 L1 : $2

 Instruction
 SARI L0, $4 ; L0 = $FC000FFF
 SAL L0, L1 ; L0 = $F0003FFF
 SHRI L0, $4 ; L0 = $0C000FFF
 SHL L0, L1 ; L0 = $30003FFF

3.16 Rotate Left Instruction
The destination operand is shifted left by a number of bit positions and the bits shifted out
are inserted in the vacated bit positions; thus, the destination operand is rotated. The
condition flags are set or cleared accordingly. Bits 4..0 of the source operand specify a
rotation by 0..31 bit positions; bits 31..5 of the source operand are ignored.

The destination operand is interpreted as a bit-string of 32 bits.

Format Notation Operation

LL ROL Ld, Ls Ld := Ld rotated left by Ls(4..0);
 Z := Ld = 0;
 N := Ld(31);
 V := undefined;
 C := undefined;

Note: The condition flags are set or cleared by the same rules applying to the Shift Left
instructions.

 Register
 L0 : $C000FFFF

 L1 : $4

 Instruction
 ROL L0, L1 ; L0 = $000FFFFC

3-26 CHAPTER 3

3.17 Index Move Instructions
The source operand is placed shifted left by 0, 1, 2 or 3 bit positions in the destination
register, corresponding to a multiplication by 1, 2, 4 or 8. At XM1..XM4, a trap to Range
Error occurs if the source operand is higher than the immediate operand lim (upper bound).

All condition flags remain unchanged. All operands and the result are interpreted as
unsigned integers.

The SR must not be denoted as a source or as a destination, nor the PC as a destination
operand; these notations are reserved for future expansion. When the PC is denoted as a
source operand, a trap to Range Error occurs if PC ≥ lim.

X-code Format Notation Operation

 0 RRlim XM1 Rd, Rs, lim Rd := Rs ∗ 1;
 if Rs > lim then
 trap ⇒ Range Error;

 1 RRlim XM2 Rd, Rs, lim Rd := Rs ∗ 2;
 if Rs > lim then
 trap ⇒ Range Error;

 2 RRlim XM4 Rd, Rs, lim Rd := Rs ∗ 4;
 if Rs > lim then
 trap ⇒ Range Error;

 3 RRlim XM8 Rd, Rs, lim Rd := Rs ∗ 8;
 if Rs > lim then
 trap ⇒ Range Error;

 4 RRlim XX1 Rd, Rs, 0 Rd := Rs ∗ 1; -- Move without flag change

 5 RRlim XX2 Rd, Rs, 0 Rd := Rs ∗ 2;

 6 RRlim XX4 Rd, Rs, 0 Rd := Rs ∗ 4;

 7 RRlim XX8 Rd, Rs, 0 Rd := Rs ∗ 8;

Note: The Index Move instructions move an index value scaled (multiplied by 1, 2, 4 or 8).
XM1..XM4 check also the unscaled value for an upper bound, optionally also excluding
zero. If the lower bound is not zero or one, it may be mapped to zero by subtracting it from
the index value before applying an Index Move instruction.

 Register
 L0 : $456

 L1 : $123

 Instruction
 XM2 L0, L1, 124 ; L0 = $246

 XM2 L0, L1, 122 ; Integer Range Error in Task at Address XXXXXXXX
 XX2 L0, L1, 0 ; L0 = $246

INSTRUCTION SET 3-27

3.18 Check Instructions
The destination operand is checked and a trap to Range Error occurs

at CHK if the destination operand is higher than the source operand,

at CHKZ if the destination operand is zero.

All registers and all condition flags remain unchanged. All operands are interpreted as
unsigned integers.

CHKZ shares its basic OP-code with CHK, it is differentiated by denoting the SR as source
operand.

Format Notation Operation

RR CHK Rd, Rs if Rs does not denote SR and Rd > Rs then
 trap ⇒ Range Error;

RR CHKZ Rd, 0 if Rs denotes SR and Rd = 0 then
 trap ⇒ Range Error;

When Rs denotes the PC, CHK traps if Rd ≥ PC. Thus, CHK, PC, PC always traps. Since
CHK, PC, PC is encoded as 16 zeros, an erroneous jump into a string of zeros causes a trap
to Range Error, thus trapping some address errors.

Note: CHK checks the upper bound of an unsigned value range, implying a lower bound of
zero. If the lower bound is not zero, it can be mapped to zero by subtracting it from the
value to be checked and then checking against a corrected upper bound (lower bound also
subtracted). When the upper bound is a constant not exceeding the range of lim, the Index
instructions may be used for bound checks.

CHKZ may be used to trap on uninitialized pointers with the value zero.

3.19 No Operation Instruction
The instruction CHK, L0, L0 cannot cause any trap. Since CHK leaves all registers and
condition flags unchanged, it can be used as a No Operation instruction with the notation:

Format Notation Operation

RR NOP no operation;

Note: The NOP instruction may be used as a fill instruction.

3-28 CHAPTER 3

3.20 Compare Instructions
Two operands are compared by subtracting the source operand or the immediate operand
from the destination operand. The condition flags are set or cleared according to the result;
the result itself is not retained. Note that the N flag indicates the correct compare result
even in the case of an overflow.

All operands and the result are interpreted as either all signed or all unsigned integers.

Format Notation Operation

RR CMP Rd, Rs result := Rd - Rs;
 Z := Rd = Rs; -- result is zero
 N := Rd < Rs signed; -- result is true negative
 V := overflow;
 C := Rd < Rs unsigned; -- borrow

Rimm CMPI Rd, imm result := Rd - imm;
 Z := Rd = imm; -- result is zero
 N := Rd < imm signed; -- result is true negative
 V := overflow;
 C := Rd < imm unsigned; -- borrow

When the SR is denoted as a source operand at CMP, C is subtracted instead of SR. The
notation is then:

Format Notation Operation

RR CMP, Rd, C result := Rd - C;
 Z := Rd = C; -- result is zero
 N := Rd < C signed; -- result is true negative
 V := overflow;
 C := Rd < C unsigned; -- borrow

3.21 Compare Bit Instructions
The result of a bitwise logical AND of the source or immediate operand and the destination
operand is used to set or clear the Z flag accordingly; the result itself is not retained.

All operands and the result are interpreted as bit-strings of 32 bits each.

Format Notation Operation

RR CMPB Rd, Rs Z := (Rd and Rs) = 0;

Rimm CMPBI Rd, imm Z := (Rd and imm) = 0;

The following instruction is a special case of CMPBI differentiated by n = 0 (see section
2.3.1. Table of Immediate Values):

Format Notation Operation

Rimm CMPBI Rd, ANYBZ Z := Rd(31..24) = 0 or Rd(23..16) = 0 or
 Rd(15..8) = 0 or Rd(7..0) = 0;
 -- any Byte of Rd = 0

INSTRUCTION SET 3-29

3.22 Test Leading Zeros Instruction
The number of leading zeros in the source operand is tested and placed in the destination
register. A source operand equal to zero yields 32 as a result. All condition flags remain
unchanged.

Format Notation Operation

LL TESTLZ Ld, Ls Ld := number of leading zeros in Ls;

3.23 Set Stack Address Instruction
The frame pointer FP is placed, expanded to the stack address, in the destination register.
The FP itself and all condition flags remain unchanged. The expanded FP address is the
address at which the content of L0 would be stored if pushed onto the memory part of the
stack.

The Set Stack Address instruction shares the basic OP-code SETxx, it is differentiated by
n = 0 and not denoting the SR or the PC.

n Format Notation Operation

0 Rn SETADR Rd Rd := SP(31..9)//SR(31..25)//00 + carry into bit 9
 -- SR(31..25) is FP
 -- carry into bit 9 := (SP(8) = 1 and SR(31) = 0)

Note: The Set Stack Address instruction calculates the stack address of the beginning of
the current stack frame. L0..L15 of this frame can then be addressed relative to this stack
address in the stack address mode with displacement values of 0..60 respectively.

Provided the stack address of a stack frame has been saved, for example in a global register,
any data in this stack frame can then be addressed also from within all younger generations
of stack frames by using the saved stack address. (Addressing of local variables in older
generations of stack frames is required by all block oriented programming languages like
Pascal, Modula-2 and Ada.)

The basic OP-code SETxx is shared as indicated:

¡ Ü n = 0 while not denoting the SR or the PC differentiates the Set Stack Address
instruction.

¡ Ü n = 1..31 while not denoting the SR or the PC differentiates the Set Conditional
instructions.

¡ Ü Denoting the SR differentiates the Fetch instruction.

¡ Ü Denoting the PC is reserved for future use.

3.24 Set Conditional Instructions
The destination register is set or cleared according to the states of the condition flags
specified by n. The condition flags themselves remain unchanged.

The Set Conditional instructions share the basic OP-code SETxx, they are differentiated by
n = 1..31 and not denoting the SR or the PC.

3-30 CHAPTER 3

3.24 Set Conditional Instructions (continued)

Format is Rn

 n Notation or Alternative Operation

 1 Reserved

 2 SET1 Rd Rd := 1;

 3 SET0 Rd Rd := 0;

 4 SETLE Rd if N = 1 or Z = 1 then Rd := 1 else Rd := 0;

 5 SETGT Rd if N = 0 and Z = 0 then Rd := 1 else Rd := 0;

 6 SETLT Rd SETN Rd if N = 1 then Rd := 1 else Rd := 0;

 7 SETGE Rd SETNN Rd if N = 0 then Rd := 1 else Rd := 0;

 8 SETSE Rd if C = 1 or Z = 1 then Rd := 1 else Rd := 0;

 9 SETHT Rd if C = 0 and Z = 0 then Rd := 1 else Rd := 0;

 10 SETST Rd SETC Rd if C = 1 then Rd := 1 else Rd := 0;

 11 SETHE Rd SETNC Rd if C = 0 then Rd := 1 else Rd := 0;

 12 SETE SETZ if Z = 1 then Rd := 1 else Rd := 0;

 13 SETNE SETNZ if Z = 0 then Rd := 1 else Rd := 0;

 14 SETV Rd if V = 1 then Rd := 1 else Rd := 0;

 15 SETNV Rd if V = 0 then Rd := 1 else Rd := 0;

 16 Reserved

 17 Reserved

 18 SET1M Rd Rd := -1;

 19 Reserved

 20 SETLEM Rd if N = 1 or Z = 1 then Rd := -1 else Rd := 0;

 21 SETGTM Rd if N = 0 and Z = 0 then Rd := -1 else Rd := 0;

 22 SETLTM Rd SETNM Rd if N = 1 then Rd := -1 else Rd := 0;

 23 SETGEM Rd SETNNM Rd if N = 0 then Rd := -1 else Rd := 0;

 24 SETSEM Rd if C = 1 or Z = 1 then Rd := -1 else Rd := 0;

 25 SETHTM Rd if C = 0 and Z = 0 then Rd := -1 else Rd := 0;

 26 SETSTM Rd SETCM Rd if C = 1 then Rd := -1 else Rd := 0;

 27 SETHEM Rd SETNCM Rd if C = 0 then Rd := -1 else Rd := 0;

 28 SETEM SETZM if Z = 1 then Rd := -1 else Rd := 0;

 29 SETNEM SETNZM if Z = 0 then Rd := -1 else Rd := 0;

 30 SETVM Rd if V = 1 then Rd := -1 else Rd := 0;

 31 SETNVM Rd if V = 0 then Rd := -1 else Rd := 0;

INSTRUCTION SET 3-31

3.25 Branch Instructions
The Branch instruction BR, and any of the conditional Branch instructions when the
branch condition is met, place the branch address PC + rel (relative to the address of the
first byte after the Branch instruction) in the program counter PC and clear the cache-mode
flag M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC.

When the branch condition is not met, the M flag and the condition flags remain un-
changed and instruction execution proceeds sequentially.

Besides these explicit Branch instructions, the instructions MOV, MOVI, ADD, ADDI,
SUM, SUB may denote the PC as a destination register and thus be executed as an implicit
branch; the M flag is cleared and the condition flags are set or cleared according to the
specified instruction. All other instructions, except Compare instructions, must not be used
with the PC as destination, otherwise possible Range Errors caused by these instructions
would lead to ambiguous results on backtracking.

Format is PCrel

Notation or alternative Operation Comment

BLE rel if N = 1 or Z = 1 then BR; -- Less or Equal signed

BGT rel if N = 0 and Z = 0 then BR; -- Greater Than signed

BLT rel BN rel if N = 1 then BR; -- Less Than signed

BGE rel BNN rel if N = 0 then BR; -- Greater or Equal signed

BSE rel if C = 1 or Z = 1 then BR; -- Smaller or Equal unsigned

BHT rel if C = 0 and Z = 0 then BR; -- Higher Than unsigned

BST rel BC rel if C = 1 then BR; -- Smaller Than unsigned

BHE rel BNC rel if C = 0 then BR; -- Higher or Equal unsigned

BE rel BZ rel if Z = 1 then BR; -- Equal

BNE rel BNZ rel if Z = 0 then BR; -- Not Equal

BV rel if V = 1 then BR; -- oVerflow

BNV rel if V = 0 then BR; -- Not oVerflow

BR rel PC := PC + rel; M := 0;

Note: rel is signed to allow forward or backward branches.

 Instruction
 Loop1: MOVI L0, $1234
 BLE Loop1 ; if N=1 or Z=1 then branch

 BNE Loop1 ; if Z=0 then branch

3-32 CHAPTER 3

3.26 Delayed Branch Instructions
The Delayed Branch instruction DBR, and any of the conditional Delayed Branch in-
structions when the branch condition is met, place the branch address PC + rel (relative to
the address of the first byte after the Delayed Branch instruction) in the program counter
PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

In the case of an Error exception caused by a delay instruction succeeding a delayed
branch taken, the location of the saved return PC contains the address of the first byte of
the delay instruction. The saved ILC contains the length (1 or 2 halfwords) of the Delayed
Branch instruction. In the case of all other exceptions following a delay instruction
succeeding a delayed branch taken, the location of the saved return PC contains the branch
target address of the delayed branch and the saved ILC is invalid.

The following restrictions apply to delay instructions:

The sum of the length of the Delayed Branch instruction and the delay instruction must not
exceed three halfwords, otherwise an arbitrary bit pattern may be supplied and erroneously
used for the second or third halfword of the delay instruction without any warning.

The Delayed Branch instruction and the delay instruction are locked against any exception
except Reset.

A Fetch or any branching instruction must not be placed as a delay instruction. A
misplaced Delayed Branch instruction would be executed like the corresponding non-
delayed Branch instruction to inhibit a permanent exception lock-out.

INSTRUCTION SET 3-33

3.26 Delayed Branch Instructions (continued)

Format is PCrel

Notation or alternative Operation Comment

DBLE rel if N = 1 or Z = 1 then DBR; -- Less or Equal signed

DBGT rel if N = 0 and Z = 0 then DBR; -- Greater Than signed

DBLT rel DBN rel if N = 1 then DBR; -- Less Than signed

DBGE rel DBNN rel if N = 0 then DBR; -- Greater or Equal signed

DBSE rel if C = 1 or Z = 1 then DBR; -- Smaller or Equal unsigned

DBHT rel if C = 0 and Z = 0 then DBR; -- Higher Than unsigned

DBST rel DBC rel if C = 1 then DBR; -- Smaller Than unsigned

DBHE rel DBNC rel if C = 0 then DBR; -- Higher or Equal unsigned

DBE rel DBZ rel if Z = 1 then DBR; -- Equal

DBNE rel DBNZ rel if Z = 0 then DBR; -- Not Equal

DBV rel if V = 1 then DBR; -- oVerflow

DBNV rel if V = 0 then DBR; -- Not oVerflow

DBR rel PC := PC + rel;

Note: rel is signed to allow forward or backward branches.

Attention: Since the PC seen by the delay instruction depends on the delayed branch
taken or not taken, a delay instruction after a conditional Delayed Branch instruction
must not reference the PC.

 Instruction
 Loop1: MOVI L0, $1234
 DBLE Loop1 ; if N=1 or Z=1 then delay branch
 ADDI L0, $10 ; => if N=1 or Z=1
 ; then L0 = L0 + $10, branch to Loop1
 DBNE Loop1 ; if Z=0 then delay branch

 ADDI L0, $10 ; => if N=1 or Z=1
 ; then L0 = L0 + $10, branch to Loop1

3-34 CHAPTER 3

3.27 Call Instruction
The Call instruction causes a branch to a subprogram.

The branch address Rs + const, or const alone if Rs denotes the SR, is placed in the
program counter PC. The old PC containing the return address is saved in Ld; the old
supervisor-state flag S is also saved in bit zero of Ld. The old status register SR is saved in
Ldf; the saved instruction-length code ILC contains the length (2 or 3) of the Call
instruction.

Then the frame pointer FP is incremented by the value of the Ld-code (Ld-code = 0 is
interpreted as Ld-code = 16) and the frame length FL is set to six, thus creating a new stack
frame. The cache-mode flag M is cleared. All condition flags remain unchanged. Then
instruction execution proceeds at the branch address placed in the PC.

The value of the Ld-code must not exceed the value of the old FL (FL = 0 is interpreted as
FL = 16), otherwise the beginning of the register part of the stack at the SP could be
overwritten without any warning. Bit zero of const must be 0.

Rs and Ld may denote the same register.

Format Notation Operation

LRconst CALL Ld, Rs, const if Rs denotes not SR then
 or CALL Ld, 0, const PC := Rs + const;
 else
 PC := const;
 Ld := old PC(31..1)//old S;
 -- Ld-code 0 selects L16
 Ldf := old SR;
 FP := FP + Ld code;
 -- Ld-code 0 is treated as 16
 FL := 6;
 M := 0;

Note: At the new stack frame, the saved PC is located in L0 and the saved SR is located in
L1.

A Frame instruction must be executed immediately after a Call instruction, otherwise an
Interrupt, Parity Error, Extended Overflow or Trace exception could separate the Call from
the corresponding Frame instruction before the frame pointer FP is decreased to include
(optionally) passed parameters. After a Call instruction, an Interrupt, Parity Error,
Extended Overflow or Trace exception is locked out for one instruction regardless of the
interrupt lock flag L.

 _Main: FRAME L4, L0
 MOVD L2, G10
 CALL L6, 0, Sub_Start ; PC = Sub_Start
 MOVD G10, L2
 RET PC, L0

 Sub_Start: FRAME L3, L0
 MOVI L2, $124

 RET PC, L0

INSTRUCTION SET 3-35

3-36 CHAPTER 3

3.28 Trap Instructions
The Trap instructions TRAP and any of the conditional Trap instructions when the trap
condition is met, cause a branch to one out of 64 supervisor subprogram entries (see
section 2.4. Entry Tables).

When the trap condition is not met, instruction execution proceeds sequentially.

When the subprogram branch is taken, the subprogram entry address adr is placed in the
program counter PC and the supervisor-state flag S is set to one. The old PC containing the
return address is saved in the register addressed by FP + FL; the old S flag is also saved in
bit zero of this register. The old status register SR is saved in the register addressed by
FP + FL + 1 (FL = 0 is interpreted as FL = 16); the saved instruction-length code ILC
contains the length (1) of the Trap instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged. Then
instruction execution proceeds at the entry address placed in the PC.

The trap instructions are differentiated by the 12 code values given by the bits 9 and 8 of
the OP-code and bits 1 and 0 of the adr-byte (code = OP(9..8)//adr-byte(1..0)). Since
OP(9..8) = 0 does not denote Trap instructions (the code is occupied by the BR instruction),
trap codes 0..3 are not available.

Format is PCadr

Code Notation Operation

 4 TRAPLE trapno if N = 1 or Z = 1 then execute TRAP else execute next instruction;

 5 TRAPGT trapno if N = 0 and Z = 0 then execute TRAP else execute next instruction;

 6 TRAPLT trapno if N = 1 then execute TRAP else execute next instruction;

 7 TRAPGE trapno if N = 0 then execute TRAP else execute next instruction;

 8 TRAPSE trapno if C = 1 or Z = 1 then execute TRAP else execute next instruction;

 9 TRAPHT trapno if C = 0 and Z = 0 then execute TRAP else execute next instruction;

 10 TRAPST trapno if C = 1 then execute TRAP else execute next instruction;

 11 TRAPHE trapno if C = 0 then execute TRAP else execute next instruction;

 12 TRAPE trapno if Z = 1 then execute TRAP else execute next instruction;

 13 TRAPNE trapno if Z = 0 then execute TRAP else execute next instruction;

 14 TRAPV trapno if V = 1 then execute TRAP else execute next instruction;

 15 TRAP trapno PC := adr;
 S := 1;
 (FP + FL)^ := old PC(31..1)//old S;
 (FP + FL + 1)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 6;
 M := 0;
 T := 0;
 L := 1;

INSTRUCTION SET 3-37

trapno indicates one of the traps 0..63.

Note: At the new stack frame, the saved PC is located in L0 and the saved SR is located in
L1; L2..L5 are free for use as required.

A Frame instruction must be executed before executing any other Trap, Call or Software
instruction or before the interrupt-lock flag L is being cleared, otherwise the beginning of
the register part of the stack at the SP could be overwritten without any warning.

3.29 Frame Instruction
A Frame instruction restructures the current stack frame by

¡ Ü decreasing the frame pointer FP to include (optionally) passed parameters in the local
register addressing range; the first parameter passed is then addressable as L0;

¡ Ü resetting the frame length FL to the actual number of registers needed for the current
stack frame.

It also restores the reserve number of 10 registers in the register part of the stack to allow
any further Call, Trap or Software instructions and clears the cache mode flag M.

The frame pointer FP is decreased by the value of the Ls-code and the Ld-code is placed in
the frame length FL (FL = 0 is always interpreted as FL = 16). Then the difference
(available number of registers) - (required number of registers + 10) is evaluated and
interpreted as a signed 7-bit integer.

If the difference is not negative, all the registers required plus the reserve of 10 fit into the
register part of the stack; no further action is needed and the Frame instruction is finished.

If the difference is negative, the content of the old stack pointer SP is compared with the
address in the upper stack bound UB. If the value in the SP is equal or higher than the
value in the UB, a temporary flag is set. Then the contents of the number of local registers
equal to the negative difference evaluated are pushed onto the memory part of the stack,
beginning with the content of the local register addressed absolutely by SP(7..2) being
pushed onto the location addressed by the SP. After each memory cycle, the SP is
incremented by four until the difference is eliminated. A trap to Frame Error occurs after
completion of the push operation when the temporary flag is set.

All condition flags remain unchanged.

3-38 CHAPTER 3

3.29 Frame Instruction (continued)

Format Notation Operation

LL FRAME Ld, Ls FP := FP - Ls code;
 FL := Ld code;
 M := 0;
 difference(6..0) := SP(8..2) + (64 - 10) - (FP + FL);
 -- FL = 0 is treated as FL = 16
 -- difference is signed, difference(6) = sign bit
 -- 64 = number of local registers
 -- 10 = number of reserve registers
 if difference ≥ 0 then
 continue at next instruction;
 -- Frame is finished
 else
 temporary flag := SP ≥ UB;
 repeat
 memory SP^ := register SP(7..2)^;
 -- local register ⇒ memory
 SP := SP + 4;
 difference := difference + 1;
 until difference = 0;
 if temporary flag = 1 then
 trap ⇒ Frame Error;

Note: Ls also identifies the same source operand that must be denoted by the Return
instruction to address the saved return PC.

Ld (L0 is interpreted as L16) also identifies the register in which the return PC is being
saved by a Trap or Software instruction or by an exception; therefore only local registers
with a lower register code than the interpreted Ld-code of the Frame instruction may be
used after execution of a Frame instruction.

The reserve of 10 registers is to be used as follows:

¡ Ü A Call, Trap or Software instruction uses six registers.

¡ Ü A subsequent exception, occurring before a Frame instruction is executed, uses another
two registers.

¡ Ü Two registers remain in reserve.

Note that the Frame instruction can write into the memory stack at address locations up to
37 words higher than indicated by the address in the UB. This is due to the fact that the
upper bound is checked before the execution of the Frame instruction.

Attention: The Frame instruction must always be the first instruction executed in a
function entered by a Call instruction, otherwise the Frame instruction could be separated
from the preceding Call instruction by an Interrupt, Parity Error, Extended Overflow or
Trace exception (see section 3.27. Call instruction).

 _Main: FRAME L3, L0 ; L0 = SP

 ; L1 = SR

 MOVD L2, G10

 RET PC, L0

INSTRUCTION SET 3-39

3-40 CHAPTER 3

3.30 Return Instruction
The Return instruction returns control from a subprogram entered through a Call, Trap or
Software instruction or an exception to the instruction located at the return address and
restores the status from the saved return status.

The source operand pair Rs//Rsf is placed in the register pair PC//SR. The program counter
PC is restored first from Rs. Then all bits of the status register SR are replaced by Rsf,
except the supervisor flag S, which is restored from bit zero of Rs and except the
instruction length code ILC, which is cleared to zero.

If the return occurred from user to supervisor state or if the interrupt-lock flag L was
changed from zero to one on return from any state to user state, a trap to Privilege Error
occurs. Exception processing saves the restored contents of the register pair PC//SR; an
illegally set S or L flag is also saved.

Then the difference between frame pointer FP - stack pointer SP(8..2) is evaluated and
interpreted as a signed 7-bit integer. If the difference is not negative, the register pointed to
by FP(5..0) is in the register part of the stack; no further action is then required and the
Return instruction is completed.

If the difference is negative, the number of words equal to the negative difference are
pulled from the memory part of the stack and transferred to the register part of the stack,
beginning with the contents of the memory location SP - 4 being transferred to the local
register addressed absolutely by bits 7..2 of SP - 4. After each memory cycle, the SP is
decreased by four until the difference is eliminated.

The Return instruction shares its basic OP-code with the Move Double-Word instruction. It
is differentiated from it by denoting the PC as destination register Rd.

The PC or the SR must not be denoted as a source operand; these notations are reserved for
future expansion.

Format Notation Operation

RR RET PC, Rs old S := S;
 old L := L;
 PC := Rs(31..1)//0;
 SR := Rsf(31..21)//00//Rs(0)//Rsf(17..0);
 -- ILC := 0;
 -- S := Rs(0);
 if old S = 0 and S = 1 or
 S = 0 and old L = 0 and L = 1 then
 trap ⇒ Privilege Error;
 difference(6..0) := FP - SP(8..2);
 -- difference is signed, difference(6) = sign bit
 if difference ≥ 0 then
 continue at next instruction;
 -- RET is finished
 else
 repeat
 SP := SP - 4;
 register SP(7..2)^ := memory SP^;
 -- memory ⇒ local register
 difference := difference + 1;
 until difference = 0;

INSTRUCTION SET 3-41

3.31 Fetch Instruction
The instruction execution is halted until a number of at least n/2 + 1 (n = 0, 2, 4..30)
instruction halfwords succeeding the Fetch instruction are prefetched in the instruction
cache. Since instruction words are fetched, one more halfword may be fetched. The
number n/2 is derived by using bits 4..1 of n, bit 0 of n must be zero.

The Fetch instruction must not be placed as a delay instruction; when the preceding branch
is taken, the prefetch is undefined.

The Fetch instruction shares the basic OP-code SETxx, it is differentiated by denoting the
SR for the Rd-code (see section 2.3. Instruction Formats).

 n Format Notation Operation

 0 Rn FETCH 1 Wait until 1 instruction halfword is fetched;
 . . .
 . . .
 . . .

 30 Rn FETCH 16 Wait until 16 instruction halfwords are fetched

Note: The Fetch instruction supplements the standard prefetch of instruction words. It may
be used to speed up the execution of a sequence of memory instructions by avoiding
alternating between instruction and data memory pages. By executing a Fetch instruction
preceding a sequence of memory instructions addressing the same data memory page, the
memory accesses can be constrained to the data memory page by prefetching all required
instructions in advance.

A Fetch instruction may also be used preceding a branch into a program loop; thus,
flushing the cache by the first branch repeating the loop can be avoided.

3-42 CHAPTER 3

3.32 Extended DSP Instructions

The extended DSP functions use the on-chip multiply-accumulate unit. Single word results
always use register G15 as destination register, while double-word results are always
placed in G14 and G15. The condition flags remain unchanged.

Format Notation Operation

LLext EMUL Ld, Ls G15 := Ld * Ls;
 -- signed or unsigned multiplication, single word product

LLext EMULU Ld, Ls G14//G15 := Ld * Ls;
 -- unsigned multiplication, double word product

LLext EMULS Ld, Ls G14//G15 := Ld * Ls;
 -- signed multiplication, double word product

LLext EMAC Ld, Ls G15 := G15 + Ld * Ls;
 -- signed multiply/add, single word product sum

LLext EMACD Ld, Ls G14//G15 := G14//G15 + Ld * Ls;
 -- signed multiply/add, double word product sum

LLext EMSUB Ld, Ls G15 := G15 - Ld * Ls;
 -- signed multiply/subtract, single word product difference

LLext EMSUBD Ld, Ls G14//G15 := G14//G15 - Ld * Ls;
 -- signed multiply/subtract, double word product difference

LLext EHMAC Ld, Ls G15 := G15 + Ld(31..16) * Ls(31..16) + Ld(15..0) * Ls(15..0);
 -- signed halfword multiply/add, single word product sum

LLext EHMACD Ld, Ls G14//G15 := G14//G15 + Ld(31..16) * Ls(31..16) +
 Ld(15..0) * Ls(15..0);
 -- signed halfword multiply/add, double word product sum

LLext EHCMULD Ld, Ls G14 := Ld(31..16) * Ls(31..16) - Ld(15..0) * Ls(15..0);
 G15 := Ld(31..16) * Ls(15..0) + Ld(15..0) * Ls(31..16);
 -- halfword complex multiply

LLext EHCMACD Ld, Ls G14 := G14 + Ld(31..16) * Ls(31..16) - Ld(15..0) * Ls(15..0);
 G15 := G15 + Ld(31..16) * Ls(15..0) + Ld(15..0) * Ls(31..16);
 -- halfword complex multiply/add

LLext EHCSUMD Ld, Ls G14(31..16) := Ld(31..16) + G14;
 G14(15..0) := Ld(15..0) + G15;
 G15(31..16) := Ld(31..16) - G14;
 G15(15..0) := Ld(15..0) - G15;
 -- halfword (complex) add/subtract
 -- Ls is not used and should denote the same register as Ld

LLext EHCFFTD Ld, Ls G14(31..16) := Ld(31..16) + (G14 >> 15);
 G14(15..0) := Ld(15..0) + (G15 >> 15);
 G15(31..16) := Ld(31..16) - (G14 >> 15);
 G15(15..0) := Ld(15..0) - (G15 >> 15);
 -- halfword (complex) add/subtract with fixed-point
 adjustment
 -- Ls is not used and should denote the same register as Ld

INSTRUCTION SET 3-43

3.32 Extended DSP Instructions (continued)
The instructions EMAC through EHCFFTD can cause an Extended Overflow exception
when the Extended Overflow Exception flag is enabled (FCR(16) = 0). Note that this
overflow occurs asynchronously to the execution of the Extended DSP instruction and any
succeeding instructions.

Attention: A new Extended DSP instruction can be started before the Extended Overflow
exception trap is executed!

An Extended DSP instruction is issued in one cycle; the processor starts execution of the
next instructions before the Extended DSP instruction is finished. The execution of
succeeding non-Extended-DSP instructions is only stopped and wait cycles are inserted
when an instruction addresses G15 or G14//G15 respectively before a preceding Extended
DSP instruction placed its result into G15 or G14//G15. Thus, DSP programs can place
Load/Store or loop administration instructions into the slot cycles between issue of an
Extended DSP instruction and availability of its result. See also section 2.5. Instruction
Timing.

 Register
 L0 : $12344321

 L1 : $56788765

 G14 : $11112222

 G15 : $33334444

 Instrction
 EMUL L0, L1 ; G15 = L0 * L1 = $4B7CE305
 EMULU L0, L1 ; G14//G15 = L0 * L1
 ; G14 = $062620AD, G15 = $4B7CE305

 EMAC L0, L1 ; G15 = G15 + L0 * L1 = $7EB02749

 EHCMULD L0, L1 ; G14 = $25C61D5B
 ; = L0(31..16)*L1(31..16) - L0(15..0)*L1(15..0)
 ; G15 = $0E1927FC
 ; = L0(31..16)*L1(15..0) + L0(15..0)*L1(31..16)

 EHCFFTD L0, L1 ; G14(31..16) = $3456 = L0(31..16) + (G14>>15)
 ; = $06260060

 ; G14(15..0) = $A987 = L0(15..0) + (G15>>15)
 ; = $06260060

 ; G15(31..16) = $F012 = L0(31..16) - (G14>>15)
 ; = $06260060

 ; G15(151..0) = $DCBB = L0(15..0) - (G15>>15)
 ; = $06260060

3-44 CHAPTER 3

3.33 Software Instructions
The Software instructions cause a branch to the subprogram associated with each Software
instruction. Its entry address (see section 2.4. Entry Tables), deduced from the OP-code of
the Software instruction, is placed in the program counter PC. Data is saved in the register
sequence beginning at register address FP + FL (FL = 0 is interpreted as FL = 16) in
ascending order as follows:

¡ Ü Stack address of the destination operand

¡ Ü High-order word of the source operand

¡ Ü Low-order word of the source operand

¡ Ü Old program counter PC, containing the return address and the old S flag in bit zero

¡ Ü Old status Register SR, ILC contains the instruction-length code (ILC = 1) of the
software instruction

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged.

Instruction execution then proceeds at the entry address placed in the PC.

Ls or Lsf and Ld may denote the same register.

Format Notation Operation

LL see specific PC := 23 ones//0//OP(11..8)//4 zeros;
 instructions (FP + FL)^ := stack address of Ld;
 (FP + FL + 1)^ := Ls;
 (FP + FL + 2)^ := Lsf;
 (FP + FL + 3)^ := old PC(31..1)//old S;
 (FP + FL + 4)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 6;
 M := 0;
 T := 0;
 L := 1;

Note: At the new stack frame, the stack address of the destination operand can be
addressed as L0, the source operand as L1//L2, the saved PC as L3 and the saved SR as L4;
L5 is free for use as required.

A Frame instruction must be executed before executing any other Software instruction,
Trap or Call instruction or before the interrupt-lock flag L is being cleared, otherwise the
beginning of the register part of the stack at SP could be overwritten without any warning.

INSTRUCTION SET 3-45

3.33.1 Do Instruction

The Do instruction is executed as a Software instruction. The associated subprogram is
entered, the stack address of the destination operand and one double-word source operand
are passed to it (see section 3.33. Software Instructions for details).

The halfword succeeding the Do instruction will be used by the associated subprogram to
differentiate branches to subordinate routines; the associated subprogram must increment
the saved return program counter PC by two.

Format Notation Operation

LL DO xx... Ld, Ls execute Software instruction;

"xx..." stands for the mnemonic of the differentiating halfword after the OP-code of the Do
instruction.

The Do instruction must not be placed as delay instruction since then xx... cannot be
located.

Note: The Do instruction provides very code efficient passing of parameters to routines
executing software implemented extensions of the instruction set.

Branching to unimplemented subordinate routines with the interrupt-lock flag L set to one
must be excluded by bound checks of the differentiating halfword at runtime; out-of-range
values cannot be securely excluded at the assembly level.

The L flag must be cleared when the execution of a subordinate routine exceeds the regular
interrupt latency time.

Application Note: The definition of subprograms entered via the Do instruction is reserved
for system implementations. The values assigned to the differentiating halfword xx... after
the OP-code of the Do instruction must be in ascending and contiguous order, starting with
zero. This order enables fast range checking for an upper bound and also avoids unused
space in the differentiating branch table.

3-46 CHAPTER 3

3.33.2 Floating-Point Instructions

The Floating-Point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions. The following description
provides a general overview of the architectural integration.

The basic instructions use single-precision (single-word) and double-precision (double-
word) operands. Floating-Point instructions must not be placed as delay instructions (see
3.26. Delayed Branch Instructions).

Except at the Floating-Point Compare instructions, all condition flags remain unchanged to
allow future concurrent execution.

The rounding modes FRM are encoded as:

SR(14) SR(13) Description

0 0 Round to nearest

0 1 Round toward zero

1 0 Round toward - infinity

1 1 Round toward + infinity

The floating-point trap enable flags FTE and the exception flags are assigned as:

floating-point
trap enable FTE

accrued
exceptions

actual
exceptions

exception type

SR(12) G2(4) G2(12) Invalid Operation

SR(11) G2(3) G2(11) Division by Zero

SR(10) G2(2) G2(10) Overflow

SR(9) G2(1) G2(9) Underflow

SR(8) G2(0) G2(8) Inexact

The reserved bits G2(31..13) and G2(7..5) must be zero.

A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN from a non-NaN.

In the case of an operand word containing a NaN, bit zero = 0 differentiates a quiet NaN,
bit zero = 1 differentiates a signaling NaN; the bits 18..1 may be used to encode further
information.

INSTRUCTION SET 3-47

3.33.2 Floating-Point Instructions (continued)

The floating-point instruction supports the five IEEE standard 754-1985 exceptions:

l Inexact (I)

l Overflow (O)

l Underflow (U)

l Division by Zero (Z)

l Invalid Operation (V)

The following sections describe the conditions that cause the floating-point instruction to
generate each of its exceptions and the details the floating-point instruction response to
each exception-causing situation.

Inexact Exception (I)

The floating-point instruction generates the Inexact exception if the result of an operation
is not exact or if it overflows.

Floating-point Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserve.

Floating-point Trap Disabled Results: The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, if the exponent range were to be unbounded, is larger than the destination format’s
largest finite number. (This exception also sets the Inexact exception and Flag bits.)

Floating-point Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Floating-point Trap Disabled Reuslts: The result, when no trap occurs, is determined by
the rounding mode and the sign of the intermediate result.

Division by Zero (Z)

The Division by Zero exception is signaled on and implemented divide operation if the
divisor is zero and the dividend is a finite non-zero number. Software can simulate this
exception for other operations that produce a signed infinity, such as ln(0), sec(π/2), csc(0),
or 0-1.

Floating-point Trap Enabled Results: The result register is not modified, and the source
register are preserved.

Floating-point Trap Disabled Resutls: The result, when no trap occurs, is a correctly signed
infinity.

3-48 CHAPTER 3

3.33.2 Floating-Point Instructions (continued)

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operand are invalid for an
implemented operations. The MIPS ISA defines the result, when the exception occurs
without a trap, as a quiet Not a Number (NaN). The invalid operations are:

l Addition or subtraction: magnitude subtraction of infinities, such as: (+inf) + (-
inf) or (- inf) - (-inf)

l Mutiplication: 0 times +inf, with any signs.

l Division: 0/0, or inf/inf, with any signs.

l Conversion of a floating-point number to a fixed-point format when an overflow, or
operand value of infinity or NaN, precludes a faithful representation in that format.

l Comparison of predicates involving < or > without ?, when the operands are
unordered.

l Any arithmetic operation on a signaling NaN. A move (MOV) operation is not
considered to be an arithmetic operation, but absolute value (ABS) and negate
(NEG) are considered to be arithmetic operations and cause this exception if one or
both operands is a signaling NaN.

l Square root: sqrt(x), where x is less than zero.

Floating-point Trap Enabled Results: The original operand values are undistrurbed.

Floating-point Trap Disabled Results: The FPU always signals an Unimplemented
exception because it does not create the NaN that the IEEE standard specifies should be
returned these circumstances.

Underflow Exception (U)

Two related events contribute to the Underflow exception:

l The creation of a tiny non-zero result between +2Emin and -2Emin that can cause some
later exception because it is so tiny.

l The extraordinary loss of accuracy during the approximation of such tiny numbers
by demoralized numbers.

Floating-point Trap Enabled Results: When an underflow trap is enabled, underflow is
signaled when tininess is detected regardless of loss of accuracy. If underflow traps are
enabled, the result register is not modified, and the source registers are preserved.

Floating-point Trap Disabled Results: When an underflow trap is not enabled, underflow is
signaled (using the underflow flag) only when both tininess and loss of accuracy have been
detected. The delivered result might be zero, demoralized, or +2Emin and -2Emin .

INSTRUCTION SET 3-49

3.33.2 Floating-Point Instructions (continued)

Format Notation Operation

LL FADD Ld, Ls Ld := Ld + Ls;

LL FADDD Ld, Ls Ld//Ldf := (Ld//Ldf) + (Ls//Lsf);

LL FSUB Ld, Ls Ld := Ld - Ls;

LL FSUBD Ld, Ls Ld//Ldf := (Ld//Ldf) - (Ls//Lsf);

LL FMUL Ld, Ls Ld := Ld ∗ Ls;

LL FMULD Ld, Ls Ld//Ldf := (Ld//Ldf) ∗ (Ls//Lsf);

LL FDIV Ld, Ls Ld := Ld / Ls;

LL FDIVD Ld, Ls Ld//Ldf := (Ld//Ldf) / (Ls//Lsf);

LL FCVT Ld, Ls Ld := Ls//Lsf; -- Convert double ⇒ single

LL FCVTD Ld, Ls Ld//Ldf := Ls; -- Convert single ⇒ double

LL FCMP Ld, Ls result := Ld - Ls;
 Z := Ld = Ls and not unordered;
 N := Ld < Ls or unordered;
 C := Ld < Ls and not unordered;
 V := unordered;
 if unordered then
 Invalid Operation exception;

LL FCMPD Ld, Ls result := (Ld//Ldf) - (Ls//Lsf);
 Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
 N := (Ld//Ldf) < (Ls//Lsf) or unordered;
 C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
 V := unordered;
 if unordered then
 Invalid Operation exception;

LL FCMPU Ld, Ls result := Ld - Ls;
 Z := Ld = Ls and not unordered;
 N := Ld < Ls or unordered;
 C := Ld < Ls and not unordered;
 V := unordered; -- no exception

LL FCMPUD Ld, Ls result := (Ld//Ldf) - (Ls//Lsf);
 Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
 N := (Ld//Ldf) < (Ls//Lsf) or unordered;
 C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
 V := unordered; -- no exception

3-50 CHAPTER 3

3.33.2 Floating-Point Instructions (continued)

A floating-point instruction, except a Floating-point Compare, can raise any of the
exceptions Invalid Operation, Division by Zero, Overflow, Underflow or Inexact. FCMP
and FCMPD can raise only the Invalid Operation exception (at unordered). FCMPU and
FCMPUD cannot raise any exception.

At an exception, the following additional action is performed:

¡ Ü Any corresponding accrued-exception flag whose corresponding trap-enable flag is zero
(not enabled) is set to one; all other accrued-exception flags remain unchanged.

¡ Ü If a corresponding trap-enable flag is one (enabled), any corresponding actual-exception
flag is set to one; all other actual-exception flags are cleared. The destination remains
unchanged.
In the present software version, the software emulation routine must branch to the
corresponding user-supplied exception trap handler. The (modified) result, the source
operand, the stack address of the destination operand and the address of the floating-
point instruction are passed to the trap handler. In the future hardware version, a trap to
Range Error will occur; the Range Error handler will then initiate re-execution of the
floating-point instruction by branching to the entry of the corresponding software
emulation routine, which will then act as described before.

The only exceptions that can coincide are Inexact with Overflow and Inexact with
Underflow. An Overflow or Underflow trap, if enabled, takes precedence over an Inexact
trap; the Inexact accrued-exception flag G2(0) must then be set as well.

INSTRUCTION SET 3-51

3.33.2 Floating-Point Instructions (continued)

The table below shows the combinations of Floating-Point Compare and Branch in-
structions to test all 14 floating-point relations:

relation Compare Branch
on true

Branch
on false

exception
if unordered

= FCMPU BE BNE --

?≠ FCMPU BNE BE --

> FCMP BGT BLE x

≥ FCMP BGE BLT x

< FCMP BLT BGE x

≤ FCMP BLE BGT x

? FCMPU BV BNV --

≠ FCMP BNE BE x

<=> FCMP -- -- x

?> FCMPU BHT BSE --

?≥ FCMPU BHE BST --

?< FCMPU BLT BGE --

?≤ FCMPU BLE BGT --

?= FCMPU BE, BV BST, BGT --

The symbol ? signifies unordered.

Note: At the test <=> (ordered), no branch after FCMP is required since the result of the
test is an Invalid Operation exception occurred or not occurred.

EXCEPTIONS 4-1

4. Exceptions

4.1 Exception Processing
Exceptions and interrupts are events other than branches or jumps that change the normal
flow of instruction execution. An exception is an unexpected event from within the
processor, arithmetic overflow is an example of an exception. An interrupt is an event that
also cause an unexpected change in control flow but comes from outside of the processor.
Interrupts are used by I/O devices to communicate with the processor.

Exceptions are events that redirect the flow of control to a supervisor subprogram
associated with the type of exception, that is, a trap occurs as a response to the exception.
(See a detailed description of exceptions further below.) If exceptions coincide, the
exception with the highest priority takes precedence over all exceptions with lower priority.

Processing of an exception proceeds as follows:

The entry address (see section 2.4. Entry Tables) of the associated subprogram is placed in
the program counter PC and the supervisor-state flag S is set to one. The old PC is saved in
the register addressed by FP + FL; the old S flag is also saved in bit zero of this register.
The old status register SR is saved in the register addressed by FP + FL + 1 (FL = 0 is
interpreted as FL = 16); the saved instruction-length code ILC contains (in general, see
section 4.3. Exception Backtracking) the instruction-length code of the preceding
instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to two,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged.

 Operation

 PC := entry address of exception subprogram;
 S := 1;
 (FP + FL)^ := old PC(31..1)//old S;
 (FP + FL + 1)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 2;
 M := 0;
 T := 0;
 L := 1;

Note: At the new stack frame, the saved PC can be addressed as L0 and the saved SR as L1.
Since FL = 2, no other local registers are free for use.

A Frame instruction must be executed before the interrupt-lock flag L is cleared, before
any Call, Trap, Software instruction or any instruction with the potential to cause an
exception is executed. Otherwise, the beginning of the register part of the stack at the SP
could be overwritten without any warning.

An entry caused by an exception can be differentiated from an entry caused by a Trap
instruction by the value of FL: FL is set to two by an exception and set to six by a Trap
instruction.

4-2 CHAPTER 4

4.2 Exception Types
The following exception are types ordered by priorities, Reset has the highest priority. In
case of coincidental exceptions, higher-priority exceptions overrule lower-priority
exceptions.

4.2.1 Reset

A Reset exception occurs on a transition of the RESET# signal from low to high or as a
result of a watchdog overrun. It overrules all other exceptions and is used to start execution
at the Reset entry.

The load and store pipelines are cleared and all bits of the BCR, FCR and MCR are set to
one; all other registers and flags, except those set or cleared explicitly by the exception
processing itself, remain undefined and must be initialized by software.

Note: The frame pointer FP can only be set to a defined value by restoring it from the FP in
the return SR through a Return instruction.

4.2.2 Range, Pointer, Frame and Privilege Error

These exceptions share a common entry since they cannot occur coincidentally at the same
instruction. The error-causing instruction can be identified by backtracking.

A Range Error exception occurs when an operand or result exceeds its value range.

A Pointer Error is caused by an attempted memory access using an address register (Rd or
Ld) with the content zero. The memory is not accessed, but the content of the address
register is updated in case of a post-increment or next address mode.

A Frame Error occurs when the restructuring of the stack frame reaches or exceeds the
upper bound UB of the memory part of the stack. No further Frame instruction must be
executed by the error routine for Pointer, Frame and Privilege Error before the UB is set to
a higher value and thus, an expanded stack frame fits into the higher stack bound.

A Privilege Error occurs when a privileged operation is executed in user or on return to
user state (see section 1.5. Privilege States for details).

4.2.3 Extended Overflow

An Extended Overflow condition is raised on an overflow caused by an add or subtract
operation as part of the execution of one of the Extended instructions EMAC through
EHCFFTD when the Extended Overflow exception is enabled. The Extended Overflow
exception is enabled by clearing bit 16 of the function control register FCR to zero.

When the Extended Overflow exception is blocked by a higher-priority exception or by the
L flag being set, the Extended Overflow condition is saved internally; the exception trap
occurs then when the blocking is released.

The Extended Overflow condition is cleared by the exception trap or by setting FCR(16) to
one (disabled).

EXCEPTIONS 4-3

4.2.3 Extended Overflow (continued)

The Extended Overflow exception trap occurs asynchronously to the causing instruction;
thus, the causing instruction cannot be identified by backtracking. Usually, there is only
one instruction in a loop that can cause an Extended Overflow exception; thus, a handler
can identify that instruction. When a second Extended Overflow condition is raised before
the first one caused a trap, it is ored and only one trap is taken.

4.2.4 Parity Error

A Parity Error exception can be enabled individually for each of the memory areas
MEM0..MEM3. When enabled, a parity error on an access to the corresponding memory
area causes a Parity Error exception.

When the Parity Error exception is blocked by a higher-priority exception or by the L flag
being set, the Parity Error condition is saved internally, the exception trap occurs then
when the blocking is released.

The Parity Error condition is cleared only by the exception trap; it is not cleared by setting
any of the disable bits 31..28 in the BCR after a Parity Error condition is saved internally.

The Parity Error exception trap occurs asynchronously to the causing memory instruction.
Since memory accesses are pipelined, a Parity Error exception cannot be related to a
specific memory instruction.

4.2.5 Interrupt

An Interrupt exception is caused by an external interrupt signal, by the timer interrupt or by
an IO3 Control Mode. Since the interrupt-lock flag L is set by the exception processing, no
further interrupts can occur until the L flag is cleared. The interrupt exception processing
sets also the interrupt-mode flag I to one. See also sections 2.4. Entry Tables, 5. Timer and
6.9. Bus Signals.

The I flag is used by the operating system, it must not be cleared by the interrupt handler.
A Return instruction restores the old value from the saved SR automatically.

4.2.6 Trace Exception

A Trace exception occurs after each execution of an instruction except a Delayed Branch
instruction when the trace mode is enabled (trace flag T = 1) and the trace pending flag P is
one. After a Call instruction, a Trace exception is suppressed until the next instruction is
executed regardless of the trace mode being enabled; the T flag is not affected.

The P flag in the saved return status register SR must be cleared by the trace handler to
prevent tracing the same instruction again.

The instruction preceding the Trace exception cannot be backtracked since only potentially
error-causing instructions can and need be backtracked.

4-4 CHAPTER 4

4.3 Exception Backtracking
In the case of a Pointer, Frame, Privilege and Range Error exception caused by a delay
instruction succeeding a delayed branch taken, the location of the saved PC contains the
address of the delay instruction and the saved instruction length code ILC contains the
length of the Delayed Branch instruction (in halfwords).

In the case of all other exceptions, the location of the saved PC contains the return address,
that is, the address of the instruction that would have been executed next if the exception
had not occurred. The saved ILC contains the length of the last instruction except when the
last instruction executed was a branch taken; a Return instruction clears the ILC and thus,
the saved ILC after a Return instruction contains zero.

An exception caused by a Pointer, Frame, Privilege or Range Error, except following a
Return instruction, can be backtracked. For backtracking, the content of the adjusted saved
ILC is subtracted from the address contained in the location of the saved PC.

If the backtrack-address calculated in this way points to a Delayed Branch instruction, the
error-causing instruction is a delay instruction with a preceding delayed branch taken and
the address contained in the location of the saved PC points to the address of this delay
instruction.

If the backtrack-address calculated does not point to a Delayed Branch instruction, it points
directly to the error-causing instruction. This instruction is then either not a delay
instruction or a delay instruction with the preceding delayed branch not taken.

The error-causing instruction can then be inspected and the cause of an error analyzed in
detail.

In the case of a Privilege Error, the ILC must be tested for zero to single out an exception
caused by a Return instruction before backtracking. Thus, an exception caused by a Return
instruction can be identified. However, it cannot be backtracked to the instruction address
of the Return instruction because the return address saved does not succeed the address of
the Return instruction. All other branching instructions cannot be backtracked either. Since
these instructions cause no errors, backtracking is not required.

The stack address of a local register denoted by a backtracked instruction can be calculated
according to the following formula:

stack address of preceding stack frame := stack address of
 current stack frame - (((FP - saved FP) modulo 64) * 4);
 -- bits 5..0 of the difference (FP - saved FP) are used zero-expanded
 -- * 4 converts word difference ⇒ byte difference
 -- the stack address of the current stack frame is provided by the
 Set Stack Address instruction
stack address of local register := stack address of preceding
 stack frame + (local register address code * 4);
 -- * 4 converts local register word offset ⇒ byte offset

Note: Backtracking allows a much more detailed analysis of error causes than a more
differentiated trapping could provide. Exception handlers can get more information about
error causes and the precise messages required by most programming languages can be
easily generated.

TIMER 5-1

5. Timer

5.1 Overview
The on-chip timer is controlled via three registers:

Timer prescaler register TPR G21

Timer register TR G23

Timer compare register TCR G22

G21..G23 can be addressed only via the high global flag H by a MOV or MOVI instruction.
The content of G21 (timer prescaler register) cannot be read.

The write-only TPR sets a carry flag C (overflow) when the value of the counter in TPR
equals to the content of TPR, and transfers carry flag C to the TR. When the TPR transfers
carry flag to the TR, TR increments by one on modulo 232. Timer clock frequency is
determined by the content of TPR.

When the TR is higher than or equals to the TCR, the timer interrupt is generated.

TR

TCR

x Timer Interrupt

TPR
Processor Clock

 Frequency
Timer Clock
Frequency

carry

compare

Fig. 5.1 The block diagram of on-chip timer.

5.1.1 Timer Prescaler Register TPR

The write-only TPR adapts the timer clock to different processor clock frequencies. Only
bit positions 23..16 are used, all other bits are reserved and must be zero on a move to the
TPR.

The TPR operates from the processor clock input CLKIN and divides the processor clock
according to:

frequency of timer clock := frequency of processor clock divided by (n+2)

n is the value to be loaded into the TPR at the bit positions 23..16, it is calculated according
to the formula:

n = (time unit ∗ frequency of processor clock) - 2

time unit is the basic time interval for the timer operation (time unit := 1 / frequency of timer
clock). n must be in the range of 2..255.

5-2 CHAPTER 5

5.1.2 Timer Register TR

The TR is a 32-bit register that is incremented by one on each time unit modulo 232. Its
content can be used as the lower word of a double-word integer, representing the time
inclusive date.

The TPR and the TR should be set only once on system initialization, whereby the
following instruction sequence must be observed strictly (interrupts must be locked out):

 :

 :

 FETCH 4

 ORI SR, $20 ; set H-flag

 MOV TPR, Lx ; load prescaler register from local register x

 ORI SR, $20 ; set H-flag

 MOV TR, Ly ; load timer register from local register y

 :

 :

Note: The Fetch instruction is necessary to prevent insertion of idle cycles during the
prescripted instruction sequence.

5.1.3 Timer Compare Register TCR

The content of the TCR is compared continuously with the content of the timer register TR.
An unsigned modulo comparison is performed according to:

result(31..0) := TR(31..0) - TCR(31..0)

On result(31) = 0, the TR is higher than or equal to the TCR.

When the timer interrupt is enabled (FCR(23) = 0) and the value in the TR is higher than
or equal to the value in the TCR, a timer interrupt is generated. This interrupt is cleared by
loading the TCR with a value higher than the current content of the TR.

Timer interrupts can be masked out by FCR(23) = 1; FCR(23) is set to one on Reset. The
timer interrupt disable bit FCR(23) does not affect the timer and compare function.

A delay time in the TCR is calculated according to the formula:

TCR := current content of TR + number of delay time units

The maximum number of delay time units allowed for this calculation is 231-1.

For example:

TR(31..0) = hex FFFF FF00

delay time units (= 1000) = hex 0000 03E8

TCR(31..0) = hex 0000 02E8

Since the modulo comparison is an unsigned operation, only unsigned arithmetic must be
used for calculations with timer and timer compare values. Do not use the N or C flag to
test for the result of the comparison TR - TCR, use only result bit 31!

BUS INTERFACE 6-1

6. Bus Interface

6.1 Bus Control General
The processor provides on-chip all functions for controlling memory and peripheral
devices, including RAS-CAS multiplexing, DRAM refresh and parity generation and
checking. The number of bus cycles used for a memory or I/O access is also defined by the
processor, thus, no external bus controllers are required. All memory and peripheral
devices can be connected directly, pin by pin, without any glue logic.

The memory address space is divided into five partitions as follows:

Address (hex) Address Space Memory Type

0000 0000..3FFF FFFF Address Space MEM0 ROM, SRAM, DRAM

4000 0000..7FFF FFFF Address Space MEM1 ROM, SRAM

8000 0000..BFFF FFFF Address Space MEM2 ROM, SRAM

C000 0000..DFFF FFFF Address Space IRAM Internal RAM (IRAM)

E000 0000..FFFF FFFF Address Space MEM3 ROM, SRAM

Table 6.1: Memory Address Spaces

The bus timing, refresh control and parity error disable for memory access is defined in the
bus control register BCR. The bus timing for I/O access is defined by address bits in the
I/O address.

On a memory or I/O access, the address bus signals are valid through the whole access. On
a memory access, the chip select signal for the selected memory area MEM0..MEM3 is
switched to low (active low) through the whole access. On a write access to memory or I/O,
the data bus and the parity signals are also activated and the write enable signal WE# is
switched to low through the whole access.

A bus wait cycle is inserted automatically to guarantee a minimum of one idle cycle
between the end of an output enable signal (OE#, IORD#, CASx# at read) and the
beginning of a subsequent write access. After a DRAM read access with an access time > 2
cycles, an additional bus wait cycle is inserted.

6.1.1 SRAM and ROM Bus Access
On a one-cycle SRAM or EPROM read access, the output enable signal OE# is switched to
low during the second half of the access cycle; on a multi-cycle read access, OE# is
switched to low after the first access cycle and remains low through the rest of the
specified access cycles. On a SRAM write access, the write enable signals WE0#..WE3#
corresponding to the bytes to be written are switched to low analogous to the OE# signal
for single and multiple access cycles.

For memory area MEM2, an address setup cycle preceding the access cycles can be
specified. For MEM0..MEM3, bus hold cycles can be specified. Bus hold cycles are
additional cycles succeeding the access cycles where neither OE# nor WE0#..WE3# is low
but all other bus signals are asserted. The bus hold cycles can be specified to be skipped or
enforced. (see section 6.4.7. MEMx Bus Hold Break).

6-2 CHAPTER 6

6.1.1.1 SRAM and ROM Single-Cycle Read Access

CLK

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus
(read data)

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 3 data 4 data 5

Figure 6.1: SRAM and ROM Single-Cycle Read Access

6.1.1.2 SRAM and ROM Multi-Cycle Read Access

CLK

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..1 cycles

Bus hold
time

0..7 cycles

Figure 6.2: SRAM and ROM Multi-Cycle Read Access

BUS INTERFACE 6-3

6.1.1.3 SRAM Single-Cycle Write Access

CLK

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 4data 3 data 5

Figure 6.3: SRAM Single-Cycle Write Access

6.1.1.4 SRAM Multi-Cycle Write Access

CLK

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..1 cycles

Bus hold
time

0..7 cycles

Figure 6.4: SRAM Multi-Cycle Write Access

6-4 CHAPTER 6

6.1.2 DRAM Bus Access

A DRAM access to the same DRAM page as addressed by the previous DRAM access is
executed as fast page mode access. See bus control register BCR(17..16) for the access
time and low-cycles of the CASx# signals. CAS0#..CAS3# signals enable the
corresponding memory bytes 0..3.

A RAS access occurs when the DRAM page is different from the previously accessed
DRAM page. The RAS# signal is switched to high for the number of specified precharge
cycles. The high-order row address bits are multiplexed to the bit positions of the low-
order column address bits according to the specified page size after the first bus cycle until
the end of the specified RAS-to-CAS delay cycles. After the RAS-to-CAS delay cycles,
the column address bits are available on the low-order bit positions and the CAS access
cycle begins.

The row address bits are available at the high-order bit positions for the whole DRAM
access. After a DRAM access, the addressed DRAM page is being available for fast page
mode accesses to the same page until either a new DRAM page is addressed, the processor
is released to another bus master for DMA or a DRAM refresh takes place.

Note: The multiplexed row address bits are not in any specific order.

DRAM Read and Write Cycle

(1) Write Cycle

 Active word line → TR: ON → Load stored data to

 bit line → Data write

(2) Read Cycle

 Apply VDD/2 to bit line → Active word line → Read data

 stored in capacitor

(3) Reflesh (CAS before RAS)

 CAS before RAS signal → Enter reflesh mode → Store

 original data to sense amplifier → Active word line → Reflesh (data write)

Word Line (Row Address Line)

B
it L

ine (C
olum

n A
ddress L

ine)

Pass
Transister

Capacitor

BUS INTERFACE 6-5

6.1.2.1 DRAM Access

CLK

Address Bus
low order bits

RAS#

CAS0#..CAS3#

Data Bus RAS to CAS delay time
1..4 cycles

RAS precharge time
1..4 cycles

CAS access
time

1..4 cycles

Page Fault
(IO2)

Address Bus
high order bits

CAS access
time

1..4 cycles

at read access

WE#

Data Bus
(read data)

at w rite access

WE#

Data Bus
(write data)

undefined row address col. addr. col. addr.

valid

Figure 6.5: DRAM Access

Note: The window for PGFLT acceptance is the last cycle of the RAS-to-CAS delay time.

6-6 CHAPTER 6

6.1.2.2 DRAM Refresh (CAS before RAS Refresh)

CLK

Address Bus

CAS#

RAS to CAS delay time
1..4 cycles

RAS precharge time
1..4 cycles

CAS access
time

1..4 cycles

RAS#

undefined

Figure 6.6: DRAM Refresh

BUS INTERFACE 6-7

6.1.3 I/O Bus Access

The bus timing for an I/O access is specified by bits 10..3 of the I/O address.

01234
.......

56789

Peri. Device Control Mode
0 = IORD# / IOWR#
1 = R/W# / DATA strobe control

Address Set-Up Time
00 = 0 cycle, 01 = 2 cycles
10 = 4 cycles, 11 = 8 cycles

Reserved

Bus Hold Time after Read/Write Access
i) Access Time < 8 cycles
 00(x), 01(1), 10(2), 11(3 cycles)
ii) Access Time > 8 cycles
 00(x), 01(1), 10(6), 11(7 cycles)

Access Time
000(2), 001(4), 010(6)
011(8), 100(10), 101(12)
110(14), 111(16 cycles)

10I/O Address

On an I/O access, the I/O read strobe IORD# or the I/O write strobe IOWR# is switched
low for a read or write access respectively after the first access cycle and remains low for
the rest of the specified access cycles. The beginning of the IORD# or IOWR# signal can
be delayed by more than one cycle by specifying additional address setup cycles preceding
the access cycles. The beginning of the next bus access can be delayed by specifying bus
hold cycles succeeding the access cycles. Bus hold cycles are required by many I/O
devices due to the time required to switch from driving the data bus to three-state.

When an I/O device requires R/W# direction and data strobe control, IORD# can be
specified (by address bit 10 = 1) as data strobe. WE# is then used as R/W# signal.

6.1.3.1 I/O Read Access

CLK

Chip Select

Address Bus

WE#

IORD#

Data Bus

Access time
2..16 cycles

Address
setup time
0..6 cycles

Bus hold
time

1..7 cycles

Figure 6.7: I/O Read Access

6-8 CHAPTER 6

6.1.3.2 I/O Write Access

CLK

Chip Select

Address Bus

WE#

IORD#

Data Bus

Access time
2..16 cycles

Address
setup time
0..6 cycles

Bus hold
time

1..7 cycles

IOWR#

Figure 6.8: I/O Write Access

Note: If IORD# is used as I/O data strobe, IORD# instead of IOWR# is activated low.

BUS INTERFACE 6-9

6.2 I/O Bus Control
With I/O addresses, address setup, access and bus hold time can be specified by bits in the
I/O address as follows:

0234578910

Reserved (must be 0)

Address Setup Time before Read or Write Access
00 = 0 cycles
01 = 2 cycles
10 = 4 cycles
11 = 6 cycles

Access Time for Read or Write Access
000 = 2 cycles
001 = 4 cycles
010 = 6 cycles
011 = 8 cycles
100 = 10 cycles
101 = 12 cycles
110 = 14 cycles
111 = 16 cycles

Bus Hold Time after Read or Write Access
when Access Time less or equal 8 cycles:
00 = reserved
01 = 1 cycles
10 = 2 cycles
11 = 3 cycles
when Access Time greater 8 cycles:
00 = reserved
01 = 5 cycles
10 = 6 cycles
11 = 7 cycles

Reserved for System Peripheral

11

Peripheral Device Control Mode
0 = IORD# / IOWR# Strobe Control
1 = R/W# / Data Strobe Control

2125

I/O Address and/or I/O Chip Select
GMS30C2116: 6 Bits
GMS30C2132: 10 Bits

1213

Reserved (must be 0)

Reserved for Internal Use (must be 0)

I/O Register Address

15

Figure 6.9: I/O Bus Control

Reserved bits must always be supplied as zero when specifying an I/O address in a
program.

6-10 CHAPTER 6

6.3 Bus Control Register BCR
Global register G20 is the write-only bus control register BCR. The BCR defines the
parameters (bus timing, refresh control, page fault and parity error disable) for accessing
external memory located in address spaces MEM0..MEM3.

All bits of the BCR are set to one on Reset. They are intended to be initialized according to
the hardware environment.

The parity checks can be enabled or disabled separately for each of the four address spaces
MEM0..MEM3.

Bits Name Description

31 Mem3ParityDisable Parity check disable for address space MEM3
1 = disabled
0 = enabled

30 Mem2ParityDisable Parity check disable for address space MEM2
1 = disabled
0 = enabled

29 Mem1ParityDisable Parity check disable for address space MEM1
1 = disabled
0 = enabled

28 Mem0ParityDisable Parity check disable for address space MEM0
1 = disabled
0 = enabled

27..24 Mem3Access Access time for address space MEM3
1111 = 16 clock cycles
1110 = 15 clock cycles
1101 = 14 clock cycles
1100 = 13 clock cycles
1011 = 12 clock cycles
1010 = 11 clock cycles
1001 = 10 clock cycles
1000 = 9 clock cycles
0111 = 8 clock cycles
0110 = 7 clock cycles
0101 = 6 clock cycles
0100 = 5 clock cycles
0011 = 4 clock cycles
0010 = 3 clock cycles
0001 = 2 clock cycles
0000 = 1 clock cycle

23 Mem3Hold(2) Bus hold time code for address space MEM3 (see table 6.3)

BUS INTERFACE 6-11

6.3 Bus Control Register BCR (continued)

Bits Name Description

22..20 Mem2Access Access time for address space MEM2
111 = 8 clock cycles
110 = 7 clock cycles
101 = 6 clock cycles
100 = 5 clock cycles
011 = 4 clock cycles
010 = 3 clock cycles
001 = 2 clock cycles
000 = 1 clock cycle

19..18 Mem1Access Access time for address space MEM1
11 = 4 clock cycles
10 = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle

17..16 Mem0Access Access time for address space MEM0
11 = 4 clock cycles (CASx# low in cycles 3 and 4)
10 = 3 clock cycles (CASx# low in cycles 2 and 3)
01 = 2 clock cycles (CASx# low in cycle 2)
00 = 1 clock cycle (CASx# low in second half of cycle)

15 Mem1Hold Bus hold time for address space MEM1
1 = 1 clock cycle
0 = 0 clock cycles

14 Mem2Setup Address setup time for address space MEM2
1 = 1 clock cycle
0 = 0 clock cycles

13..12 RefreshSelect Refresh rate select (CAS before RAS refresh)
00 = Refresh every 512 clock cycles
01 = Refresh every 256 clock cycles
10 = Refresh every 128 clock cycles
11 = Refresh disabled

11..10 RasPrecharge RAS precharge time for address space MEM0
(when MEM0 is a DRAM type)
11 = 4 clock cycles
10 = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle
Bus hold time for address space MEM0
(when MEM0 is not a DRAM type)
11 = 3 clock cycles
10 = 2 clock cycles
01 = 1 clock cycle
00 = 0 clock cycles

9..8 RasToCas RAS to CAS delay time
11 = 4 clock cycles
10 = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle

7 reserved, must be 1

6-12 CHAPTER 6

6.3 Bus Control Register BCR (continued)

Bits Name Description

6..4 PageSizeCode Page size code (see table 6.4)

3..2 Mem3Hold(1..0) Bus hold time code for address space MEM3 (see table 6.3)

1..0 Mem2Hold Bus hold time for address space MEM2
11 = 3 clock cycles
10 = 2 clock cycles
01 = 1 clock cycle
00 = 0 clock cycles

Table 6.2: Bus Control Register BCR

The bus hold time for address space MEM3 is specified by bits 23 and 3..2 in the BCR as
follows:

BCR(23) BCR(3..2) Bus Hold Time

1 11 7 clock cycles

1 10 6 clock cycles

1 01 5 clock cycles

1 00 4 clock cycles

0 11 3 clock cycles

0 10 2 clock cycles

0 01 1 clock cycle

0 00 0 clock cycles

Table 6.3: Bus Hold Time for MEM3

The DRAM type used and the physical page size of the DRAM are specified by bits 6..4 in
the BCR. Table 6.4 shows the encoding of BCR(6..4) and the associated column address
ranges for memory areas with bus sizes of 32, 16 and 8 bits.

 Column Address Range

BCR(6..4) 32-bit Bus Size 16-bit Bus Size 8-bit Bus Size

000 A15..A2 A15..A1 A15..A0

001 A14..A2 A14..A1 A14..A0

010 A13..A2 A13..A1 A13..A0

011 A12..A2 A12..A1 A12..A0

100 A11..A2 A11..A1 A11..A0

101 A10..A2 A10..A1 A10..A0

110 A9..A2 A9..A1 A9..A0

111 A8..A2 A8..A1 A8..A0

BUS INTERFACE 6-13

6.4 Memory Control Register MCR
Global register G27 is the write-only memory control register MCR. The MCR controls
additional parameters for the external memory, the internal memory refresh rate, the
mapping of the entry table and the processor power management. All bits of the MCR are
set to one on Reset. They must be initialized according to the hardware environment and
the desired function. The reserved bits must not be changed when the MCR is updated.

Bits Name Description

31..26 reserved

25 OutputVoltage 1 = Rail-to-Rail
0 = Reduced

24 InputThreshold 1 = Input threshold according to VDD=5.0V
0 = Input threshold according to VDD=3.3V

23 reserved

22 PowerDown 1 = Processor is active
0 = Processor is in power-down mode

21 MEM0MemoryType 1 = Non-DRAM
0 = DRAM

20 IRAMRefreshTest 1 = Normal Mode
0 = Test Mode

19 reserved

18..16 IRAMRefreshRate 111 = Disabled
110 = Refresh every 2 clock cycles
101 = Refresh every 4 clock cycles
100 = Refresh every 8 clock cycles
011 = Refresh every 16 clock cycles
010 = Refresh every 32 clock cycles
001 = Refresh every 64 clock cycles (recommended refresh rate)
000 = Refresh every 128 clock cycles

15 reserved

14..12 EntryTableMap 111 = MEM3
110 = reserved
101 = reserved
100 = reserved
011 = Internal RAM (IRAM)
010 = MEM2
001 = MEM1
000 = MEM0

11 MEM3BusHoldBrea
k

1 = Break Disabled
0 = Break Enabled

10 MEM2BusHoldBrea
k

1 = Break Disabled
0 = Break Enabled

9 MEM1BusHoldBrea
k

1 = Break Disabled
0 = Break Enabled

8 MEM0BusHoldBrea
k

1 = Break Disabled
0 = Break Enabled

6-14 CHAPTER 6

6.4 Memory Control Register MCR (continued)

Bits Name Description

7..6 MEM3BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

5..4 MEM2BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

3..2 MEM1BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

1..0 MEM0BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

Table 6.4: Memory Control Register MCR

6.4.1 Output Voltage

Bit 25 of the MCR controls the voltage of the output signals. The default setting is rail-to
rail. At a supply voltage of 5V, MCR(25) must be cleared to reduce the high-output signal
in order to save on switching power consumption.

6.4.2 Input Threshold

Bit 24 of the MCR controls the input threshold voltage. The default setting is for a supply
voltage of 5V. MCR(24) must be cleared for a supply voltage of 3.3V.

6.4.3 Power Down

Bit 22 of the MCR controls the power-down mode. The default setting is processor active.
To switch the processor to power-down mode MCR(22) must be cleared. The switch to
power-down is initiated by a transition from MCR(22) = 1 to MCR(22) = 0; thus,
MCR(22) must be restored to one for at least one cycle before a new switch to power-down
mode can occur.

In power-down mode, only the logic for the timer, IO3Control modes, interrupt and refresh
is being clocked, all other clocks are disabled. The switch to power-down mode is delayed
until the memory pipeline is empty. The processor is activated temporarily for refresh and
bus arbitration cycles and is switched back to processor active by any interrupt or on Reset.
Note that MCR(22) is not switched back to one by an interrupt.

BUS INTERFACE 6-15

6.4.4 IRAM Refresh Test

Bit 20 of the MCR specifies the internal RAM (IRAM) refresh test. The default setting is
normal mode, MCR(20) = 0 specifies refresh test mode.

6.4.5 IRAM Refresh Rate

Bits 18..16 of the MCR specify the IRAM refresh rate in number (2..128) of processor
cycles. The default setting is disabled.

6.4.6 Entry Table Map

Bits 14..12 of the MCR map the entry table (see section 2.4. Entry Table) to one of the
memory areas MEM0..MEM3 or to the IRAM. With a mapping to MEM3 (default setting),
the entry table is mapped to the end of MEM3, with all other settings, the entry table is
mapped to the beginning of the specified memory area.

6.4.7 MEMx Bus Hold Break

Bits 11..8 specify a memory bus hold break for MEM3..MEM0 respectively. The default
setting is disabled. With enabled, bus hold cycles are skipped when the next memory access
addresses the same memory area. Regularly, the bus hold break should be enabled; it must
only be left disabled to accommodate (rare) SRAMs or ROMs which need all specified
cycles before a new access can be started (e.g. for charge restore).

6-16 CHAPTER 6

6.5 Input Status Register ISR
Global register G25 is the read-only input status register ISR. The ISR reflects the input
levels at the pins IO1..IO3 as well as the input levels at the four interrupt pins INT1..INT4
and contains the EventFlag and the EqualFlag. In the present version reserved bits are read
as zeros.

The input levels are not affected by the polarity bits in the FCR register, they reflect
always the true signal level at the corresponding pins with a latency of 2..3 cycles, a 1
signals high level.

Bits Name Description

31..9 reserved

8 EventFlag Set to 1 in IO3Timing Mode when IO3Level is equal to
IO3Polarity
Cleared to 0 by FCR(13) = 1 or write to the WCR

7 EqualFlag Set to 1 in IO3Timing or IO3TimerInterrupt Mode when
WCR(15..0) = TR(15..0)
Cleared to 0 by FCR(13) = 1 or write to the WCR

6 IO3Level Reflects the signal level at the IO3 Pin
1 = High Level
0 = Low Level

5 IO2Level Reflects the signal level at the IO2 Pin
1 = High Level
0 = Low Level

4 IO1Level Reflects the signal level at the IO1 Pin
1 = High Level
0 = Low Level

3 Int4Level Reflects the signal level of interrupt input INT4
1 = High Level
0 = Low Level

2 Int3Level Reflects the signal level of interrupt input INT3
1 = High Level
0 = Low Level

1 Int2Level Reflects the signal level of interrupt input INT2
1 = High Level
0 = Low Level

0 Int1Level Reflects the signal level of interrupt input INT1
1 = High Level
0 = Low Level

Table 6.5: Input Status Register ISR

BUS INTERFACE 6-17

6.6 Function Control Register FCR
Global register G26 is the write-only function control register FCR. The FCR controls the
polarity and function of the I/O pins IO1..IO3 and the interrupt pins INT1..INT4, the timer
interrupt mask and priority, the bus lock and the Extended Overflow exception. All bits of
the FCR are set to one on Reset. They must be initialized according to the hardware
environment and the desired function. The reserved bits must not be changed when the
FCR is updated.

Each of the four interrupt pins INT1..INT4 can cause a processor interrupt when the
corresponding interrupt mask bit is cleared. The corresponding polarity bit determines
whether the signal at the interrupt pin must be low (polarity bit = 0) or high (polarity
bit = 1) to cause an interrupt. Additionally, the internal timer interrupt can be enabled or
disabled separately.

Each of the I/O pins IO1..IO3 can be either used as input or interrupt signal (IOxDirection
= 1) or as output (IOxDirection = 0). See section 6.9.3 Bus Signal Description for details.

Bits Name Description

31 INT4Mask 1 = Interrupt INT4 Disabled
0 = Interrupt INT4 Enabled

30 INT3Mask 1 = Interrupt INT3 Disabled
0 = Interrupt INT3 Enabled

29 INT2Mask 1 = Interrupt INT2 Disabled
0 = Interrupt INT2 Enabled

28 INT1Mask 1 = Interrupt INT1 Disabled
0 = Interrupt INT1 Enabled

27 INT4Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

26 INT3Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

25 INT2Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

24 INT1Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

23 TINTDisable 1 = Timer Interrupt Disabled
0 = Timer Interrupt Enabled

22 reserved

21..20 TimerPriority 11 = Priority 6 (higher than Priority of INT1)
10 = Priority 8 (higher than Priority of INT2)
01 = Priority 10 (higher than Priority of INT3)
00 = Priority 12 (higher than Priority of INT4)

19..18 reserved

17 BusLock DMA Access (see also section 6.9.3. ACT signal):
1 = Non-Locked
0 = Locked out

16 EOVDisable Extended Overflow Exception:
1 = Disabled
0 = Enabled

6-18 CHAPTER 6

6.6 Function Control Register FCR (continued)

Bits Name Description

15..14 reserved

13..12 IO3Control IO3 Control State:
11 = IO3Standard Mode
10 = Watchdog Mode
01 = IO3Timing Mode
00 = IO3TimerInterrupt Mode

11 reserved

10 IO3Direction 1 = Input
0 = Output

9 IO3Polarity 1 = Non-Inverted
0 = Inverted

8 IO3Mask On Input:
1 = IO3 Interrupt Disabled
0 = IO3 Interrupt Enabled
On Output:
1 = IO3 Output reflects IO3Polarity
0 = Reserved

7 reserved

6 IO2Direction 1 = Input
0 = Output

5 IO2Polarity 1 = Non-Inverted
0 = Inverted

4 IO2Mask On Input:
1 = IO2 Interrupt Disabled
0 = IO2 Interrupt Enabled
On Output:
1 = IO2 Output reflects IO2Polarity
0 = Reserved

3 reserved

2 IO1Direction 1 = Input
0 = Output

1 IO1Polarity 1 = Non-Inverted
0 = Inverted

0 IO1Mask On Input:
1 = IO1 Interrupt Disabled
0 = IO1 Interrupt Enabled
On Output:
1 = IO1 Output reflects IO1Polarity
0 = Output reflects Supervisor Flag XOR NOT IO1Polarity

Table 6.6: Function Control Register FCR

BUS INTERFACE 6-19

6.7 Watchdog Compare Register WCR
Global register G24 is the watchdog compare register WCR. Only bits 15..0 are used, bits
31..16 are reserved, they must be zero on a move to the WCR. In the present version, bits
31..16 are read as zero. The WCR is used by the IO3 control modes (see section 6.8. IO3
Control Modes).

6.8 IO3 Control Modes
Additionally to the standard use like IO1 and IO2 (see section 6.9.3. Bus Signal
Description), there are special control modes in combination with the IO3 pin. These
control modes are specified by FCR(13) and FCR(12).

On all IO3 control modes, the watchdog compare register WCR must be set before the
control mode is specified in the FCR, otherwise the EqualFlag could be set erroneously.

The EqualFlag and the EventFlag are being cleared on all IO3 control modes by either
setting FCR(13) to one or a move to the watchdog compare register WCR.

6.8.1 IO3Standard Mode
FCR(13) = 1, FCR(12) = 1 specifies IO3Standard mode.

Standard use of IO3 without any additional IO3 control functions. See section 6.9.3.
signals IO1..IO3.

6.8.2 Watchdog Mode
FCR(13) = 1, FCR(12) = 0 specifies Watchdog mode.

A Reset exception occurs when WCR(15..0) = TR(15..0). The standard use of IO3 is not
affected.

TR

WCR

x Reset Exception

TPR
Processor Clock

 Frequency
Timer Clock
Frequency

carry

compare

Note: The WCR must be set before the IO3 control mode is determined by FCR(13..12) as
Watchdog mode.

6-20 CHAPTER 6

6.8.3 IO3Timing Mode
FCR(13) = 0, FCR(12) = 1 specifies the IO3Timing mode.

On IO3Direction = Input:

When input signal IO3Level = IO3Polarity, the EventFlag ISR(8) is set and the current
contents of the TR(15..0) is copied to the WCR. Thus, the time of the event indicated by
the 16 low-order bits of the TR is captured in the WCR. When WCR(15..0) = TR(15..0)
before the EventFlag is set, the EqualFlag ISR(7) is set. Either flag set causes an interrupt
when the IO3 interrupt is enabled.

Note: The EventFlag and the EqualFlag can be used to distinguish between an input signal
transition and a timeout. The EventFlag can be set even after the EqualFlag (but not vice
versa) during the interrupt latency time; thus, when the EventFlag is set, WCR(15..0)
contains always the time when the input reached the level specified by IO3Polarity. Note
that the EventFlag is immediately set on entering IO3Timing mode when the input signal is
already on the specified level. WCR(15..0) must be set on a value different from the value
of the TR(15..0), otherwise the EqualFlag is set immediately. The maximum span for the
timeout is 216-1 ticks of the TR.

IO3Direction = Output:

When WCR(15..0) = TR(15..0), the EqualFlag is set and an interrupt occurs when the IO3
interrupt is enabled. Additionally, an internal toggle latch is toggled. The IO3 output signal
is high when the value of the toggle latch and IO3Polarity are not equal, otherwise low.
Thus, each toggling causes a transition of the IO3 output signal. The toggle latch is cleared
by setting FCR(13) to 1.

Note: This mode can be used to create an arbitrary output signal sequence by just updating
the WCR. When the program switches to IO3Standard mode after the end of a signal
sequence and the toggle latch remained set to 1, FCR(13) must be set to 1 and IO3Polarity
be inverted coincidentally in the same move to FCR to avoid a transition of the IO3 output
signal. The IO3 interrupt must also be disabled in the same move to FCR to avoid an
interrupt from the output signal.

6.8.4 IO3TimerInterrupt Mode

FCR(13) = 0, FCR(12) = 0 specifies the IO3TimerInterrupt mode.

Additionally to the standard use of IO3, the condition WCR(15..0) = TR(15..0) sets the
EqualFlag ISR(7) and causes an IO3 interrupt regardless of the IO3Mask in FCR(8) (IO3
interrupt disable).

Note: When the IO3 interrupt is disabled, the IO3TimerInterrupt mode can be used
independently of the use of IO3 as input or output. When the IO3 interrupt is enabled, the
IO3TimerInterrupt mode can be used as a timeout for the IO3 interrupt. The EqualFlag can
then be used to distinguish between timeout and an IO3 interrupt.

BUS INTERFACE 6-21

6.9 Bus Signals

6.9.1 Bus Signals for the GMS30C2132 Processor

The following table is an overview of the bus signals of the GMS30C2132 microprocessor.
For a detailed description of the function of the bus signals refer to section 6.9.3. Bus
Signal Description.

The signal states are defined as I = input, O = output and Z = three-state (inactive).

States Pin count Signal Name Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

O 1 XTAL2 External Crystal

O 1 CLKOUT Clock Output

O/Z 26 A25..A0 Address Bus

O/I 32 D31..D0 Data Bus

O/I 4 DP0..DP3 Parity bits

O/Z 1 RAS# DRAM RAS signal / Chip Select for MEM0

O/Z 4 CAS0#..CAS3# DRAM CAS signal for bytes 0..3

O/Z 1 WE# Write Enable for DRAM and R/W# for I/O

O/Z 3 CS1#..CS3# Chip Select for MEM1..MEM3

O/Z 4 WE0#..WE3# Write Enable for SRAM bytes 0..3

O/Z 1 OE# Output Enable for SRAMs and EPROMs

O/Z 1 IORD# I/O Read Strobe, optionally I/O Data Strobe

O/Z 1 IOWR# I/O Write Strobe

O 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

O 1 ACT Active as Bus Master

I 4 INT1..INT4 Interrupt Inputs

O/I 3 IO1..IO3 Programmable Input / Output

I 1 RESET# Reset Input

 16 NC No Connect (not for GMS30C2132-144TQFP)

 26 VDD Power Supply Voltage

 26 GND Ground

Total: 160 (144 for GMS30C2132-144TQFP)

Table 6.7: Bus Signals for the GMS30C2132 Processor

6-22 CHAPTER 6

6.9.2 Bus Signals for the GMS30C2116 Processor

The following table is an overview to the bus signals of the GMS30C2116 microprocessor.
For detailed description of the function of the bus signals refer to section 6.9.3. Bus Signal
Description.

The signal states are defined as I = input, O = output and Z = three-state (inactive).

States Pin count Signal-Names Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

O 1 XTAL2 External Crystal

O 1 CLKOUT Clock Output

O/Z 22 A21..A0 Address Bus

O/I 16 D15..D0 Data Bus

O/I 2 DP0..DP1 Parity bits

O/Z 1 RAS# DRAM RAS signal / Chip Select for MEM0

O/Z 2 CAS0#..CAS1# DRAM CAS signal for bytes 0..1 / 2..3

O/Z 1 WE# Write Enable for DRAM and R/W# for I/O

O/Z 3 CS1#..CS3# Chip Select for MEM1..MEM3

O/Z 2 WE0#..WE1# Write Enable for SRAM bytes 0..1 / 2..3

O/Z 1 OE# Output Enable for SRAMs and EPROMs

O/Z 1 IORD# I/O Read Strobe, optionally I/O Data Strobe

O/Z 1 IOWR# I/O Write Strobe

O 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

O 1 ACT Active as Bus Master

I 4 INT1..INT4 Interrupt Inputs

O/I 3 IO1..IO3 Programmable Input / Output

I 1 RESET# Reset Input

 16 VDD Power Supply Voltage

 18 GND Ground

Total: 100

Table 6.8: Bus Signals for the GMS30C2116 Processor

BUS INTERFACE 6-23

6.9.3 Bus Signal Description

The following section describes the bus signals for both the GMS30C2132 and GMS30C2116
microprocessor in detail.

In the following signal description, the signal states are defined as I = input, O = output
and Z = three-state (inactive).

States Names Use

I XTAL1/CLKIN Input for quartz crystal. When the clock is generated by an
external clock generator, XTAL1 is used as clock input. The
clock signal is used undivided.

O XTAL2 Output for quartz crystal. XTAL2 is not connected when an
external clock generator is used.

O CLKOUT Clock signal output. CLKOUT has the same cycle time as the
internal clock. It can be used to supply a clock signal to
peripheral devices.

I RESET# Reset processor. RESET# low resets the processor to the initial
state and halts all activity. RESET# must be low for at least two
cycles. On a transition from low to high, a Reset exception
occurs and the processor starts execution at the Reset entry (see
section 2.4. Entry Tables, Table 2.6.). The transition may occur
asynchronously to the clock.

O/Z A25..A0 The address bits A25..A0 represent the address bus. An active
high bit signals a "one". A0 is the least significant bit. With the
E1-16, only A22..A0 are connected to the address bus pins.

O/I D31..D0 Data bus. The signals D31..D0 (D15..D0 with the GMS30C2116)
represent the bi-directional data bus; active high signals a "one".
At a read access, data is transferred from the data bus to the
register set or to the instruction cache only at the cycle
corresponding to the last actual read access cycle, thus inhibiting
garbled data from being transferred.
At a write access, the data bus signals are activated during the
address setup, write and bus hold cycle(s).
A halfword or byte to be written is multiplexed from its right-
adjusted position in a register to the addressed halfword or byte
position. Thus, no external multiplexing of data signals is
required.
On a 32-bit wide memory area, byte addresses 0, 1, 2 and 3
correspond to D31..D24, D23..D16, D15..D8 and D7..D0
respectively (big endian).
On a 16-bit wide memory area, byte address 2 and 3 in the first
access and byte addresses 0 and 1 in the second access
correspond to D15..D8 and D7..D0 respectively.
On a 8-bit wide memory area, byte addresses 3..0 correspond to
D7..D0 in succeeding accesses.

6-24 CHAPTER 6

6.9.3 Bus Signal Description (continued)

States Names Use

O/I DP0..DP3 Data Parity signals. DP0..DP3 represent the bi-directional parity
signals; active high indicates a "one". With the GMS30C2132,
DP0, DP1, DP2 and DP3 correspond to D31..D24, D23..D16,
D15..D8 and D7..D0 respectively. With the GMS30C2116, DP0
and DP1 correspond to D15..D8 and D7..D0 respectively.
At a write access, all data parity signals are activated during the
address setup, write and bus hold cycles.
At a read access, the corresponding data parity signals are
evaluated at the last read access cycle when parity checking for
the addressed memory area is enabled.
Parity "odd" is used, that is, the correct parity bit is "one" when
all bits of the corresponding byte are "zero".

O/Z RAS# Row Address Strobe. Active low indicates row address strobe
asserted.
RAS# is activated high and then again low when the processor
accesses a new page in the DRAM address space, that is when
any of the (high order) RAS address bits is different from the
RAS address bits of the last DRAM access. RAS# is left low
after any own DRAM access.
RAS# is activated high, low and then high by a refresh cycle.
When the bus is granted to another bus master, the processor
starts the next DRAM access as a RAS access.
At any non-RAS address cycle, RAS# is left unchanged, thus, a
previously selected DRAM page is not affected.
When a SRAM is placed in memory area MEM0, RAS# is used
as the chip select signal for this SRAM.

O/Z CAS0#..CAS3# Column Address Strobe. Active low indicates column address
strobe asserted. CAS0#..CAS3# are only used by a DRAM for
column access cycles and for "CAS before RAS" refresh.
With the GMS30C2132, CAS0#..CAS3# correspond to the
column address enable signals for D31..D24, D23..D16,
D15..D8 and D7..D0 respectively.
With the GMS30C2116, CAS0# and CAS1# correspond to the
column address enable signals for D15..D8 and D7..D0
respectively.

O/Z WE# Write Enable. WE# is signaled in the same cycle(s) as address
signals. Active low indicates a write access, active high
indicates a read access.
WE# is intended to be used as DRAM Write Enable and as
R/W# for I/O access when IORD# is specified as data strobe
(see IORD#).
Note: WE# can also be used to control bus transceivers when
peripheral devices or slow memories must be separated from the
processor data bus in order to decrease the capacitive load of the
processor data bus.

BUS INTERFACE 6-25

6.9.3 Bus Signal Description (continued)

States Names Use

O/Z CS1#..CS3# Chip Select. Chip select is signaled in the same cycle(s) as the
address signals. Active low of CS1#..CS3# indicates chip select
for the memory areas MEM1..MEM3 respectively.
Note: RAS# is used as chip select for a non-DRAM memory in
MEM0.

O/Z WE0#..WE3# SRAM Write Enable. Active low indicates write enable for the
corresponding byte, active high indicates write disable.
With the GMS30C2132, WE0#..WE3# correspond to the write
enable signals for D31..D24, D23..D16, D15..D8 and D7..D0
respectively.
With the GMS30C2116, WE0# and WE1# correspond to the
write enable signals for D15..D8 and D7..D0 respectively.

O/Z OE# Output Enable for SRAMs and EPROMs. OE# is active low on
a SRAM or EPROM read access.

O/Z IORD# I/O Read Strobe, optionally I/O data strobe. The use of IORD#
is specified in the I/O address. Bit 10 = 0 specifies I/O read
strobe, bit 10 = 1 specifies I/O data strobe. When specified as
I/O read strobe, IORD# is low on I/O read access cycles, high
on all other cycles. When specified as I/O data strobe, IORD# is
low on any I/O access cycles, high on all other cycles.
Note: When IORD# is specified as I/O data strobe, WE# can be
used as R/W# signal.

O/Z IOWR# I/O Write Strobe. When specified as I/O write strobe by I/O
address bit 10 = 0, IOWR# is active low on I/O write access
cycles.

O RQST RQST signals the request for a memory or I/O access. RQST is
high from the beginning of the request until the requested access
is completed.

I GRANT# Bus Grant. GRANT# is signaled low by an (off-chip) bus arbiter
to grant access to the bus for memory and I/O cycles. When
Grant# is switched from low to high during an access, the bus is
only released to another bus master after completion of the
current access. The GRANT# signal supplied by a bus arbiter
may be asynchronous to the clock; it is synchronized on-chip to
avoid metastability. For systems with a single bus master,
GRANT# must be tied low.
Note: GRANT# is recommended to be kept low by the bus
arbiter on the bus master with the last access; thus, any
subsequent access by the same bus master saves the
synchronization time.

6-26 CHAPTER 6

6.9.3 Bus Signal Description (continued)

States Names Use

O ACT Active as bus master. ACT is signaled high when GRANT# is
low and it is kept high during a current bus access. Since
GRANT# is asynchronous, ACT follows GRANT# with a delay
of 2..3 cycles. ACT is also kept high on a bus lock
(FCR(17) = 0) from the beginning of the first access after
FCR(17) is cleared to zero until the bus lock is released by
setting FCR(17) to one.
Note: When ACT transits from high to low, the address and data
bus are switched to threats (inactive). All bus control signals
marked O/Z are driven high and then switched to threats. These
signals are kept high by an on-chip resistor (ca. 1 MΩ) tied on-
chip to Vcc.

I INT1..INT4 Interrupt Request. A signal of a specified level on any of the
INT1..INT4 interrupt request pins causes an interrupt exception
when the interrupt lock flag L is zero and the corresponding
INTxMask bit in FCR is not set. The INTxPolarity bits in FCR
specify the level of the INTx signals: INTxPolarity = 1 causes
an interrupt on a high input signal level, INTxPolarity = 0
causes an interrupt on a low input signal level. INT1..INT4 may
be signaled asynchronously to the clock; they are not stored
internally.
A transition of INT1..INT4 is effective after a minimum of three
cycles. The response time may be much higher depending on the
number of cycles to the end of the current instruction or the
number of cycles until the interrupt lock flag L is cleared.
Note: The signal level of INT1..INT4 can be inspected in
ISR(0)..ISR(4). Thus, with the corresponding INTxMask bit set,
INT1..INT4 can be used just as input signals.

O/I IO1..IO3 General Input-Output. IO1..IO3 can be individually configured
via IOxDirection bits in the FCR as either input or output pins.
When configured as input, IO1..IO3 can be used like
INT1..INT4 for additional interrupt or input signals.
When configured as output, the IOxPolarity bit in FCR specifies
the output signal level. IOxPolarity = 1 specifies a high level,
IOxPolarity = 0 specifies a low level. An output signal at IO1 or
IO2 cannot cause an interrupt regardless of the corresponding
IOxMask bit; however, it can be inspected as IOxLevel in ISR
(e.g. for testing).
The supervisor flag S can be switched to the IO1 pin by
configuring IO1 as an output and clearing the IO1 mask.
IO1Polarity = 1 switches S non-inverted to IO1 (high when
S = 1), IO1Polarity = 0 switches S inverted to IO1.
IO3 can be used for various control functions, see section 6.8.
IO3 Control Modes.

BUS INTERFACE 6-27

6.10 DC Characteristics

Absolute Maximum Ratings

Case temperature TC under Bias: 0°C to +85°C

extended temperature range on request

Storage Temperature: -65°C to +150°C

Voltage on any Pin with respect to ground: -0.5V to VCC + 0.5V

D.C. Parameters

Supply Voltage VCC: 5V ± 0.25V or 3.3V ± 0.30V

Case Temperature TCASE: 0°C to +85°C

Symbol Parameter Min Typ Max Unit Notes

VIL Input LOW Voltage -0.3 +0.8 V except CLKIN

VIH1

Input HIGH Voltage

2.0 VCC+0.3 V except CLKIN,

RESET#

VIH2 0.7Vcc VCC+0.3 V RESET#

VOL Output LOW Voltage 0.45 V at 4mA

VOH Output HIGH Voltage 2.4 V at 1mA

ICC1
Power

VCC = 5V

CLOCK=66§ Ö

182 mA

ICC2

Supply

VCC = 5V

CLOCK=40§ Ö

110 mA

ICC3
 VCC = 3.3V

CLOCK=40§ Ö

60 mA

ICC4

Current VCC = 3.3V

CLOCK=25§ Ö

38 mA

IPD1
Power

VCC = 5V

CLOCK=66§ Ö

29 mA

IPD2

Down

VCC = 5V

CLOCK=40§ Ö

17.5 mA

IPD3
 VCC = 3.3V

CLOCK=40§ Ö

11.5 mA

IPD4

Current VCC = 3.3V

CLOCK=25§ Ö

10.0 mA

6-28 CHAPTER 6

6.10 DC Characteristics (continued)

Symbol Parameter Min Typ Max Unit Notes

ILI Input Leakage Current ±20 µA

ILO Output Leakage Current ±20 µA

CCLK Clock Capacitance 10 pF

CADR Output Capacitance
A12..A0

 15 pF

CI/O Input/output Capacitance
all other signals

 10 pF

 Table 6.9: DC Characteristics

BUS INTERFACE 6-29

6.11 AC Characteristics
The formulas for the AC-characteristics are based on a load capacity of 30 pF on the
concerned signals. To get the real timing values, the actual capacitive load must be taken
into account. This is done by the addition or subtraction of load dependent delay times,
labeled as ∆tN or ∆tP respectively (see table 6.10. Load Dependent Delay Times).

Note that only the difference between 30 pF and the actual capacity load must be used for
the calculation of the ∆t values. All signals except CLKIN are referenced to 1.4V. The AC-
characteristics are based on TCASE = 0 to 85°C, VCC = 5V ± 0.25V (unless otherwise noted).

∆tN 60 ps/pF

∆tP 40 ps/pF

Table 6.10: Load Dependent Delay Times

Note: All signals (except the clock signal itself) are referenced to the corresponding
driving signal, not to the clock input as is usual. This method eliminates the varying delay
times between output signals relative to the clock input signal and allows more precise bus
timing definitions, resulting in faster bus cycles.

6.11.1 Processor Clock

CLKIN

tCLKWH tCLKWL

tCLK

Figure 6.10: Processor Clock

VCC Symbol Description Min Time (ns) Max Time (ns)

5V ± 0.25V tCLK CLK period 15 1000

 tCLKWH CLK high time 6 -

 tCLKWL CLK low time 6 -

3.3V ± 0.30V tCLK CLK period 25 1000

 tCLKWH CLK high time 10 -

 tCLKWL CLK low time 10 -

Table 6.11: Processor Clock Times

Note: CLKIN timing is referenced to VCC/2.

6-30 CHAPTER 6

6.11.2 DRAM RAS Access

Address Bus
(high order bits)
WE#

Address Bus
(low order bits)

CAS0#..CAS3#

t1

RAS#

t2

t3 t4

undefined row address column address

Figure 6.11: DRAM RAS Access

Symbol Description Formula

t1 Row Address A12..A0 setup time
to RAS# (min.)

(number of RAS precharge cycles - 1) x tCLK
+ tCLKWH + 0.5 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signal RAS#
(b) refers to capacitive load on signals A12..A0

t2 Row Address A12..A0 hold time
after RAS# (min.)

(number of RAS to CAS delay cycles -1) x tCLK
+ tCLKWL - 1.1 ns + ∆tP (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals A12..A0
(b) refers to capacitive load on signal RAS#

t3 RAS# pulse width high
(RAS# precharge) (min.)

(number of RAS precharge cycles) x tCLK

t4 RAS# low before end of
CAS0#..CAS3# (min.)

(number of RAS to CAS delay cycles
+ access cycles - 1) x tCLK
+ tCLKWL - 2.5 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signal RAS#

BUS INTERFACE 6-31

6.11.3 DRAM Fast Page Mode Access

A12..A0
WE#

CAS0#..
CAS3#

t1 t2

t3

t4 t5
t6 t7

D31..D0
DP0..DP3

t8 t9

D31..D0
DP0..DP3

read data

write data

column address

Figure 6.12: DRAM Fast Page Mode Access

6.11.3.1 Multi-Cycle Access

Symbol Description Formula

t1a Column address A12..A0
setup time to CAS0#..CAS3#

(number of CAS inactive cycles) x tCLK
- 0.1 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals A12..A0

t1b WE# setup time
to CAS0#..CAS3#

(number of CAS inactive cycles) x tCLK
- 1.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signal WE#

t2a Column address A12..A0
hold time after CAS0#..CAS3#
low (min.)

(number of CAS active cycles) x tCLK
- 0.5 ns + ∆tP (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals A12..A0
(b) refers to capacitive load on signals CAS0#..CAS3#

t2b WE# hold time after
CAS0#..CAS3# low (min.)

(number of CAS active cycles) x tCLK
- 0.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signal WE#
(b) refers to capacitive load on signals CAS0#..CAS3#

6-32 CHAPTER 6

6.11.3.1 Multi-Cycle Access (continued)

Symbol Description Formula

t3 Column address A12..A0 valid
before end of CAS0#..CAS3#
(min)

(number of access cycles) x tCLK
- 0.1 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals A12..A0

t4 CAS0#..CAS3# pulse width high
(CAS precharge) (min.)

(number of CAS inactive cycles) x tCLK - 0.1 ns

t5 CAS0#..CAS3# pulse width low
(min.)

(number of CAS active cycles) x tCLK - 1.4 ns

t6 Write data D31..D0, DP0..DP3
setup time to CAS0#..CAS3#
(min.)

(number of CAS inactive cycles) x tCLK
- 1.2 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals D31..D0,
 DP0..DP3

t7 Write data D31..D0, DP0..DP3
hold time after CAS0#..CAS3#
low (min.)

(number of CAS active cycles) x tCLK
- 0.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals D31..D0,
 DP0..DP3
(b) refers to capacitive load on signals CAS0#..CAS3#

t8 Read data D31..D0, DP0..DP3
setup time to end of
CAS0#..CAS3# (min.)

0 ns

t9 Read data D31..D0, DP0..DP3
hold time (min.)

0 ns

Note:
Read data is sampled by the skew-compensated
CAS0#..CAS3# signals and latched internally

6.11.3.2 Single-Cycle Access

Symbol Description Formula

t1a Column address A12..A0 setup
time to CAS0#..CAS3# (min.)

tCLKWH - 1.0 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals A12..A0

t1b WE# setup time to
CAS0#..CAS3# (min.)

tCLKWH - 1.9 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signal WE#

BUS INTERFACE 6-33

6.11.3.2 Single-Cycle Access (continued)

Symbol Description Formula

t2a Column address A12..A0 hold
time after CAS0#..CAS3# low
(min.)

tCLKWL + 0.1 ns + ∆tP (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals A12..A0
(b) refers to capacitive load on signals CAS0#..CAS3#

t2b WE# hold time after
CAS0#..CAS3# low (min.)

tCLKWL + 0.5 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signal WE#
(b) refers to capacitive load on signals CAS0#..CAS3#

t3 Column address A12..A0 valid
before end of CAS0#..CAS3#
(min.)

tCLK - 0.1 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals A12..A0

t4 CAS0#..CAS3# pulse width high
(CAS precharge) (min.)

tCLKWH - 0.9 ns

t5 CAS0#..CAS3# pulse width low
(min.)

tCLKWL - 0.9 ns

t6 Write data D31..D0, DP0..DP3
setup time to CAS0#..CAS3#
(min.)

tCLKWH - 2.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signals D31..D0,
 DP0..DP3

t7 Write data D31..D0, DP0..DP3
hold time after CAS0#..CAS3#
low (min.)

tCLKWL + 0.5 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals D31..D0,
 DP0..DP3
(b) refers to capacitive load on signals CAS0#..CAS3#

t8 Read data D31..D0, DP0..DP3
setup time to end of
CAS0#..CAS3# (min.)

0 ns

t9 Read data D31..D0, DP0..DP3
hold time (min.)

0 ns

Note:
Read data is sampled by the skew-compensated
CAS0#..CAS3# signals and latched internally

6-34 CHAPTER 6

6.11.4 DRAM CAS-Before-RAS Refresh

RAS#

CAS0#..CAS3#

t1 t2

Figure 6.13: DRAM CAS-Before-RAS Refresh

Symbol Description Formula

t1 CAS0#..CAS3# setup time (min.) at precharge time = 1 cycle:
tCLKWH + 1.4 ns + ∆tN (a) - ∆tN (b)

at precharge time > 1 cycle:
tCLK + tCLKWH + 1.4 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signal RAS#
(b) refers to capacitive load on signals CAS0#..CAS3#

t2 CAS0#..CAS3# hold time (min.) (number of RAS to CAS delay cycles +
access cycles -1) x tCLK
+ tCLKWL - 2.5 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals CAS0#..CAS3#
(b) refers to capacitive load on signal RAS#

BUS INTERFACE 6-35

6.11.5 SRAM Access

CS0#..CS3#
A25..A0

WE0#..WE3#

t1

t2

t3

t4

t5

t6

t7

D31..D0
DP0..DP3

t8

D31..D0
DP0..DP3

read data

write data

OE#

t4

Figure 6.14: SRAM Access

Note: If Mem 0 is not a DRAM type memory, the signal pin RAS# is used as chip select
CS0#.

6.11.5.1 Multi-Cycle Access

Symbol Description Formula

t1a A25..A13, CS0#..CS3# setup
time to WE0#..WE3#, 0E# (min.)

(number of setup cycles + 1) x tCLK
- 3.2 ns + ∆tP (a) - ∆tN (b)

t1b Address A12.. A0 setup time to
WE0#..WE3#, OE# (min.)

(number of setup cycles + 1) x tCLK
-2.3 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals WE0#.. WE3#,
 OE#
(b) refers to capacitive load on signals A25..A0,
 CS0#..CS3#

6-36 CHAPTER 6

6.11.5.1 Multi-Cycle Access (continued)

Symbol Description Formula

t2a A25..A13, CS0#..CS3# valid
before end of WE0#..WE3#, OE#
(min.)

(number of setup cycles + access cycles) x tCLK
- 2.6 ns + ∆tP (a) - ∆tN (b)

t2b A12..A0 valid before end of
WE0#..WE3#, OE# (min.)

(number of setup cycles + access cycles) x tCLK
- 1.7 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals WE0#..WE3#,
 OE#
(b) refers to capacitive load on signals A25..A0,
 CS0#..CS3#

t3 D31..D0, DP0..DP3 valid before
end of WE0#..WE3# (min.)

(number of setup cycles + access cycles) x t CLK
- 2.7 ns + ∆tP (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals WE0#..WE3#
(b) refers to capacitive load on signal D31..D0,
 DP0..DP3

t4 WE0#..WE3#, OE# pulse width
low (min.)

(number of access cycles -1) x tCLK - 0.5 ns

t5a A25..A13, CS0#..CS3# hold time
after WE0#..WE3#, OE# (min.)

(number of bus hold cycles) x tCLK
+ 1.0 ns + ∆tN (a) - ∆tP (b)

t5b A12..A0 hold time after
WE0#..WE3#, OE# (min.)

(number of bus hold cycles) x tCLK
+ 0.7 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals A25..A0,
 CS0#..CS3#
(b) refers to capacitive load on signals WE0#..WE3#,
 OE#

t6 D31..D0, DP0..DP3 hold time
after WE0#..WE3#

(number of bus hold cycles) x tCLK
+ 1.1 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals D31..D0,
 DP0..DP3
(b) refers to capacitive load on signals WE0#..WE3#

t7 Read data D31..D0, DP0..DP3
setup time to end of OE# (min.)

0 ns

t8 Read data D31..D0, DP0..DP3
hold time (min.)

0 ns

Note:
Read data is sampled by the skew-compensated
OE# signal and latched internally

BUS INTERFACE 6-37

6.11.5.2 Single-Cycle Access

Symbol Description Formula

t1a A25..A13, CS0#..CS3# setup
time to WE0#..WE3#, OE# (min.)

(number of setup cycles) x tCLK + tCLKWH
- 4.1 ns + ∆tP (a) - ∆tN (b)

t1b A12..A0 setup time to
WE0#..WE3#, OE# (min.)

(number of setup cycles) x tCLK + tCLKWH
- 3.2 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals WE0#..WE3#,
 OE#
(b) refers to capacitive load on signals A25..A0,
 CS0#..CS3#

t2a A25..A13, CS0#..CS3# valid
before end of WE0#..WE3#, OE#
(min.)

(number of setup cycles + 1) x tCLK
- 2.6 ns + ∆tP (a) - ∆tN (b)

t2b A12..A0 valid before end of
WE0#..WE3#, OE# (min.)

(number of setup cycles + 1) x tCLK
-1.7 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals WE0#..WE3#,
 OE#
(b) refers to capacitive load on signals A25..A0,
 CS0#..CS3#

t3 D31..D0, DP0..DP3 valid before
end of WE0#...WE3# (min.)

(number of setup cycles + 1) x tCLK
- 2.8 ns + ∆tP (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals WE0#..WE3#
(b) refers to capacitive load on signals D31..D0,
 DP0..DP3

t4 WE0#..WE3#, OE# pulse width
low (min.)

tCLKWL + 0.5 ns

t5a A25..A13, CS0#..CS3# hold time
after WE0#..WE3#, OE# (min.)

(number of bus hold cycles) x tCLK
+ 1.1 ns + ∆tN (a) - ∆tP (b)

t5b A12..A0 hold time after
WE0#..WE3#, OE# (min.)

(number of bus hold cycles) x tCLK
+ 0.7 ns + ∆tP (a) - ∆tP (b)

 Note:
(a) refers to capacitive load on signals A25..A0,
 CS0#..CS3#
(b) refers to capacitive load on signals WE0#..WE3#,
 OE#

t6 D31..D0, DP0..DP3 hold time
after WE0#..WE3# (min.)

(number of bus hold cycles) x tCLK
+ 1.2 ns + ∆tN (a) - ∆tP (b)

Note:
(a) refers to capacitive load on signals D31..D0,
 DP0..DP3
(b) refers to capacitive load on signals WE0#...WE3#

6-38 CHAPTER 6

6.11.5.2 Single-Cycle Access (continued)

Symbol Description Formula

t7 Read data D31..D0, DP0..DP3
setup time to end of OE# (min.)

0 ns

t8 Read data D31..D0, DP0..DP3
hold time (min.)

0 ns

Note:
Read data is sampled by the skew-compensated
OE# signal and latched internally

6.11.6 I/0 Access

A25..A13
WE#

IOWR#,
IORD#

t1 t2

t3
t4 t5

t6 t7

D31..D0

D31..D0 read data

write data

Figure 6.15: I/O Access

Symbol Description Formula

t1 A25..A13, WE# setup time
before IOWR#, IORD# (min.)

(number of setup cycles + 1) x tCLK
- 1.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals IOWR#,
 IORD#
(b) refers to capacitive load on signals A25..A13

t2 A25..A13, WE# hold time after
IOWR#, IORD# (min.)

(number of bus hold cycles) x tCLK
- 0.5 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals A25..A13
(b) refers to capacitive load on signals IOWR#,
 IORD#

t3 IOWR#, IORD# pulse width low
(min.)

(number of access cycles - 1) x tCLK
- 2.0 ns

BUS INTERFACE 6-39

6.11.6 I/0 Access (continued)

Symbol Description Formula

t4 Write data D31..D0 setup time
to end of IOWR# (or IORD#
if used as data strobe) (min.)

(number of setup cycles + access cycles) x tCLK
- 1.0 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signal IOWR#
 (IORD#)
(b) refers to capacitive load on signals D31..D0

t5 Write data D31..D0 hold time
(min)

(number of bus hold cycles) x tCLK
+ 0.1 ns + ∆tN (a) - ∆tN (b)

Note:
(a) refers to capacitive load on signals D31..D0
(b) refers to capacitive load on signal IOWR#
 (IORD#)

t6 Read data D31..D0 setup time to
end of IORD# (min.)

0 ns

t7 Read data D31..D0 hold time
(min.)

0 ns

Note:
Read data is sampled by the skew-compensated
IORD# signal and latched internally

MECHANICAL DATA 7-1

7. Mechanical Data

7.1 GMS30C2132, 160-Pin MQFP-Package

7.1.1 Pin Configuration - View from Top Side
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

99 98 96 95 94 93 92 91 90 89 88 87 86 85 84

121
122
123
124
125
126
127
128
129
130
131
132
133

97

48
47
46
45
44
43
42
41

71
70
69
68
67
66
65
64
63
62

49
50

A24
A23

GND
VCC
A22
A8
A7

VCC
A6
A5
A4

GND
WE0#
WE1#
VCC

CAS0#
A14

GND
VCC
ACT
A13

GND
WE#

GND
VCC

VCC
D23
D22
GND
D5
D4
D3
VCC
D2
D1
D0
VCC
GND
D21
D20

D19
DP2
DP3
VCC
GND
RESET#
GRANT#
VCC

GND
VCC

V
C

C
G

N
D

IO
3

IO
W

R
#

C
S

3#
C

S
2#

C
S

1#
G

N
D

R
A

S
#

A
19

V
C

C
A

20
A

21
G

N
D

D
31

D
30

D
29 A
9

A
10

A
11

A
12

V
C

C
D

28
D

27
D

26

G
N

D

W
E

2#
IO

R
D

#
O

E
#

V
C

C
C

A
S

3#
C

A
S

2#
C

A
S

1#
G

N
D

X
T

A
L1

/C
LK

IN
X

T
A

L2
IO

2
V

C
C

D
16

D
17

D
18

A
3

A
2

A
1

A
0

G
N

D
D

P
1

D
P

0

83 82 81

V
C

C
C

LK
O

U
T

IO
1

G
N

D
R

Q
S

T
IN

T
4

IN
T

3
IN

T
2

IN
T

1

G
N

D
V

C
C

61
60
59
58
57
56
55
54
53
52
51

VCC
GND

D9
GND
D8
D7
VCC
GND
D6
D24

26 27 28 29 30 31 32 33 34 35 36

G
N

D
D

25
D

15
D

14
V

C
C

D
13

D
12

D
11

D
10

G
N

D
V

C
C

134
135
136
137
138
139
140
141
142
143
144

VCC
GND

VCC
A18
A17

GND
VCC
A16
A15
A25

GND

72

GND

V
C

C

W
E

3#

N
C

N
C

N
C

N
C

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

73
74
75
76
77
78
79
80

NC
NC

NC
NC

37 38 39 40

N
C

N
C

N
C

N
C

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

NC
NC

NC
NC

GMS30C2132

Figure 7.1: GMS30C2132, 160-Pin MQFP-Package

7-2 CHAPTER 7

7.1.2 Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A0...................97 D5......................57 GND.................. 65 NC...................124
A1...................98 D6......................51 GND.................. 68 NC...................157
A2...................99 D7......................48 GND.................. 73 NC...................158
A3.................100 D8......................47 GND.................. 79 OE#.................113
A4.................137 D9......................45 GND.................. 82 RAS#11
A5.................138 D10....................36 GND.................. 90 RESET#............74
A6.................139 D11....................35 GND.................. 96 RQST................89
A7.................141 D12....................34 GND................ 108 VCC1
A8.................142 D13....................33 GND................ 119 VCC13
A9...................20 D14....................31 GND................ 122 VCC24
A10.................21 D15....................30 GND................ 126 VCC32
A11.................22 D16..................103 GND................ 130 VCC40
A12.................23 D17..................102 GND................ 136 VCC41
A13...............127 D18..................101 GND................ 145 VCC49
A14...............131 D19....................69 GND................ 148 VCC53
A15...............150 D20....................67 GND................ 153 VCC60
A16...............151 D21....................66 GND................ 159 VCC64
A17...............154 D22....................55 GRANT#........... 75 VCC72
A18...............155 D23....................54 INT1.................. 85 VCC76
A19.................12 D24....................52 INT2.................. 86 VCC80
A20.................14 D25....................29 INT3.................. 87 VCC81
A21.................15 D26....................27 INT4.................. 88 VCC93
A22...............143 D27....................26 IO1.................... 91 VCC104
A23...............146 D28....................25 IO2.................. 105 VCC112
A24...............147 D29....................19 IO3...................... 5 VCC120
A25...............149 D30....................18 IORD#............. 114 VCC121
ACT128 D31....................17 IOWR#................ 6 VCC133
CAS0#..........132 DP094 NC 3 VCC140
CAS1#..........109 DP195 NC 4 VCC156
CAS2#..........110 DP270 NC 37 VCC160
CAS3#..........111 DP371 NC 38 VCC129
CLKOUT.........92 GND2 NC 43 VCC144
CS1#9 GND10 NC 44 VCC152
CS2#8 GND16 NC 77 WE#125
CS3#7 GND28 NC 78 WE0#135
D0...................63 GND39 NC 83 WE1#134
D1...................62 GND42 NC 84 WE2#115
D2...................61 GND46 NC 117 WE3#116
D3...................59 GND50 NC 118 XTAL1/CLKIN .107
D4...................58 GND56 NC 123 XTAL2.............106

MECHANICAL DATA 7-3

7.1.3 Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

 1VCC 41.......VCC 81.......VCC 121....... VCC
 2.......GND 42.......GND 82.......GND 122....... GND
 3.......NC 43.......NC 83.......NC 123....... NC
 4.......NC 44.......NC 84.......NC 124....... NC
 5.......IO3 45.......D9 85....... INT1 125....... WE#
 6.......IOWR# 46.......GND 86....... INT2 126....... GND
 7.......CS3# 47.......D8 87....... INT3 127....... A13
 8.......CS2# 48.......D7 88....... INT4 128....... ACT
 9.......CS1# 49.......VCC 89.......RQST 129....... VCC
 10.......GND 50.......GND 90.......GND 130....... GND
 11.......RAS# 51.......D6 91....... IO1 131....... A14
 12.......A19 52.......D24 92.......CLKOUT 132....... CAS0#
 13.......VCC 53.......VCC 93.......VCC 133....... VCC
 14.......A20 54.......D23 94.......DP0 134....... WE1#
 15.......A21 55.......D22 95.......DP1 135....... WE0#
 16.......GND 56.......GND 96.......GND 136....... GND
 17.......D31 57.......D5 97.......A0 137....... A4
 18.......D30 58.......D4 98.......A1 138....... A5
 19.......D29 59.......D3 99.......A2 139....... A6
 20.......A9 60.......VCC 100.......A3 140....... VCC
 21.......A10 61.......D2 101.......D18 141....... A7
 22.......A11 62.......D1 102.......D17 142....... A8
 23.......A12 63.......D0 103.......D16 143....... A22
 24.......VCC 64.......VCC 104.......VCC 144....... VCC
 25.......D28 65.......GND 105....... IO2 145....... GND
 26.......D27 66.......D21 106.......XTAL2 146....... A23
 27.......D26 67.......D20 107.......XTAL1/CLKIN 147....... A24
 28.......GND 68.......GND 108.......GND 148....... GND
 29.......D25 69.......D19 109.......CAS1# 149....... A25
 30.......D15 70.......DP2 110.......CAS2# 150....... A15
 31.......D14 71.......DP3 111.......CAS3# 151....... A16
 32.......VCC 72.......VCC 112.......VCC 152....... VCC
 33.......D13 73.......GND 113.......OE# 153....... GND
 34.......D12 74.......RESET# 114....... IORD# 154....... A17
 35.......D11 75.......GRANT# 115.......WE2# 155....... A18
 36.......D10 76.......VCC 116.......WE3# 156....... VCC
 37.......NC 77.......NC 117.......NC 157....... NC
 38.......NC 78.......NC 118.......NC 158....... NC
 39.......GND 79.......GND 119.......GND 159....... GND
 40.......VCC 80.......VCC 120.......VCC 160....... VCC

7-4 CHAPTER 7

7.2 GMS30C2132, 144-Pin TQFP-Package

7.2.1 Pin Configuration - View from Top Side

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

99 98 96 95 94 93 92 91 90 89 88 87 86 85

123
124
125
126
127
128
129
130
131
132
133

97

48
47
46
45
44
43

71
70
69
68
67
66
65
64
63
62

49
50

A20
A21

GND
D31
D30
D29

A9
A10
A11
A12

VCC
D28
D27
D26

GND
D25
D15
D14
VCC
D13
D12
D11
D10

GND
VCC

GND
XTAL1/CLKIN
XTAL2
IO2
VCC
D16
D17
D18
A3
A2
A1
A0
GND
DP1
DP0

CLKOUT
IO1
GND
RQST
INT4
INT3
INT2
INT1
GND
VCC

V
C

C
G

N
D

V
C

C
A

18
A

17
G

N
D

V
C

C
A

16
A

15
A

25
G

N
D

A
24

A
23

G
N

D
V

C
C

A
22 A
8

A
7

V
C

C A
6

A
5

A
4

G
N

D
W

E
0#

W
E

1#

G
N

D

G
N

D
D

8
D

7
V

C
C

G
N

D
D

6
D

24
V

C
C

D
23

D
22

G
N

D
D

5
D

4
D

3
V

C
C

D
2

D
1

D
0

V
C

C
G

N
D

D
21

D
20

84 83
G

N
D

D
19

D
P

2
D

P
3

V
C

C
G

N
D

R
E

S
E

T
#

G
R

A
N

T
#

V
C

C
G

N
D

V
C

C

61
60
59
58
57
56
55
54
53
52
51

VCC
GND
WE3#
WE2#
IORD#
OE#
VCC
CAS3#
CAS2#
CAS1#

26 27 28 29 30 31 32 33 34 35 36

V
C

C
C

A
S

0#
A

14
G

N
D

V
C

C
A

C
T

A
13

G
N

D
W

E
#

G
N

D
V

C
C

134
135
136
137
138
139
140
141
142
143
144VCC

GND
IO3

IOWR#
CS3#
CS2#
CS1#
GND

RAS#
A19

VCC

72

VCC

V
C

C

D
9

GMS30C2132

42
41
40
39
38
37

82 81 80 79 78 77 76 75 74 73

109
110
111
112
113
114
115
116
117
118
119
120
121
122

Figure 7.2: GMS30C2132, 144-Pin TQFP-Package

MECHANICAL DATA 7-5

7.2.2 Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A0................... 58 D189 GND 6 RAS# 136
A1................... 57 D290 GND 11 RESET#............ 77
A2................... 56 D392 GND 14 RQST................ 66
A3................... 55 D493 GND 23 VCC 1
A4................... 22 D594 GND 29 VCC 3
A5................... 21 D6100 GND 33 VCC 7
A6................... 20 D7103 GND 35 VCC 15
A7................... 18 D8104 GND 38 VCC 19
A8................... 17 D9106 GND 47 VCC 26
A9................. 127 D10111 GND 59 VCC 30
A10............... 126 D11112 GND 65 VCC 36
A11............... 125 D12113 GND 71 VCC 37
A12............... 124 D13114 GND 74 VCC 43
A13................. 32 D14116 GND 78 VCC 51
A14................. 28 D15117 GND 83 VCC 62
A15................... 9 D1652 GND 86 VCC 72
A16................... 8 D1753 GND 95 VCC 73
A17................... 5 D1854 GND 101 VCC 75
A18................... 4 D1982 GND 105 VCC 79
A19............... 135 D2084 GND 107 VCC 87
A20............... 133 D2185 GND 110 VCC 91
A21............... 132 D2296 GND 119 VCC 98
A22................. 16 D2397 GND 131 VCC 102
A23................. 13 D2499 GND 137 VCC 108
A24................. 12 D25118 GND 143 VCC 109
A25................. 10 D26120 GRANT#........... 76 VCC 115
ACT................ 31 D27121 INT1.................. 70 VCC 123
CAS0#............ 27 D28122 INT2.................. 69 VCC 134
CAS1#............ 46 D29128 INT3.................. 68 VCC 144
CAS2#............ 45 D30129 INT4.................. 67 WE#.................. 34
CAS3#............ 44 D31130 IO1.................... 64 WE0#................ 24
CLKOUT......... 63 DP061 IO2.................... 50 WE1#................ 25
CS1# 138 DP160 IO3.................. 142 WE2#................ 40
CS2# 139 DP281 IORD# 41 WE3#................ 39
CS3# 140 DP380 IOWR#............ 141 XTAL1/CLKIN ... 48
D0................... 88 GND2 OE# 42 XTAL2............... 49

7-6 CHAPTER 7

7.2.3 Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

 1VCC 37.......VCC 73.......VCC 109.......VCC
 2GND 38.......GND 74.......GND 110.......GND
 3VCC 39.......WE3# 75.......VCC 111.......D10
 4A18 40.......WE2# 76.......GRANT# 112.......D11
 5A17 41.......IORD# 77.......RESET# 113.......D12
 6GND 42.......OE# 78.......GND 114.......D13
 7VCC 43.......VCC 79.......VCC 115.......VCC
 8A16 44.......CAS3# 80.......DP3 116.......D14
 9A15 45.......CAS2# 81.......DP2 117.......D15
 10A25 46.......CAS1# 82.......D19 118.......D25
 11GND 47.......GND 83.......GND 119.......GND
 12A24 48.......XTAL1/CLKIN 84.......D20 120.......D26
 13A23 49.......XTAL2 85.......D21 121.......D27
 14GND 50.......IO2 86.......GND 122.......D28
 15VCC 51.......VCC 87.......VCC 123.......VCC
 16A22 52.......D16 88.......D0 124.......A12
 17A8 53.......D17 89.......D1 125.......A11
 18A7 54.......D18 90.......D2 126.......A10
 19VCC 55.......A3 91.......VCC 127.......A9
 20A6 56.......A2 92.......D3 128.......D29
 21A5 57.......A1 93.......D4 129.......D30
 22A4 58.......A0 94.......D5 130.......D31
 23GND 59.......GND 95.......GND 131.......GND
 24WE0# 60.......DP1 96.......D22 132.......A21
 25WE1# 61.......DP0 97.......D23 133.......A20
 26VCC 62.......VCC 98.......VCC 134.......VCC
 27CAS0# 63.......CLKOUT 99.......D24 135.......A19
 28A14 64.......IO1 100.......D6 136.......RAS#
 29GND 65.......GND 101.......GND 137.......GND
 30VCC 66.......RQST 102.......VCC 138.......CS1#
 31ACT 67.......INT4 103.......D7 139.......CS2#
 32A13 68.......INT3 104.......D8 140.......CS3#
 33GND 69.......INT2 105.......GND 141....... IOWR#
 34WE# 70.......INT1 106.......D9 142....... IO3
 35GND 71.......GND 107.......GND 143.......GND
 36VCC 72.......VCC 108.......VCC 144.......VCC

MECHANICAL DATA 7-7

7.3 GMS30C2116, 100-Pin TQFP-Package

7.3.1 Pin Configuration - View from Top Side

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

75 74 73 72 71 70 69 68 67 66 65 63 62 61 60 59 58 57 56 55 54 53
90
91
92
93
94
95
96
97
98
99
100

64

37
36
35
34
33
32

38
39

A20
A21

GND
A9

A10
A11
A12

VCC
GND
D15
D14
VCC
D13
D12
D11
D10

GND
XTAL1/CLKIN
XTAL2
IO2
VCC
A3
A2
A1
A0
GND
CLKOUT
IO1
GND
RQST
INT4
INT3
INT2
INT1

V
C

C
A

18
A

17
G

N
D

V
C

C
A

16
A

15
G

N
D

G
N

D
V

C
C A
8

A
7

V
C

C A
6

A
5

A
4

G
N

D

G
N

D
D

8
D

7
V

C
C

G
N

D
D

6
G

N
D

D
5

D
4

D
3

V
C

C
D

2
D

1
D

0
V

C
C

G
N

D
G

N
D

V
C

C
G

N
D

R
E

S
E

T
#

G
R

A
N

T
#

V
C

C

WE1#
WE0#
IORD#
OE#
VCC
CAS1#
CAS0#

V
C

C
A

14
G

N
D

V
C

C
A

C
T

A
13

G
N

D
W

E
#

IO3
IOWR#

CS3#
CS2#
CS1#
GND

RAS#
A19

VCC

50

D
9

GMS30C2116

31
30
29
28
27
26

77

79
80
81
82
83
84
85
86
87
88
89

76

78 48
47

49

46
45
44
43
42
41
40

52 51

D
P

0
D

P
1

Figure 7.3: GMS30C2116, 100-Pin TQFP-Package

7-8 CHAPTER 7

7.3.2 Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A0...................41 CLKOUT............43 GND.................. 17 OE#...................29
A1...................40 CS1#96 GND.................. 20 RAS#94
A2...................39 CS2#97 GND.................. 24 RESET#............53
A3...................38 CS3#98 GND.................. 33 RQST................46
A4...................16 D0......................61 GND.................. 42 VCC1
A5...................15 D1......................62 GND.................. 45 VCC5
A6...................14 D2......................63 GND.................. 54 VCC10
A7...................12 D3......................65 GND.................. 58 VCC13
A8...................11 D4......................66 GND.................. 59 VCC18
A9...................88 D5......................67 GND.................. 68 VCC21
A10.................87 D6......................69 GND.................. 70 VCC30
A11.................86 D7......................72 GND.................. 74 VCC37
A12.................85 D8......................73 GND.................. 83 VCC51
A13.................23 D9......................75 GND.................. 89 VCC55
A14.................19 D10....................76 GND.................. 95 VCC60
A15...................7 D11....................77 GRANT#........... 52 VCC64
A16...................6 D12....................78 INT1.................. 50 VCC71
A17...................3 D13....................79 INT2.................. 49 VCC80
A18...................2 D14....................81 INT3.................. 48 VCC84
A19.................93 D15....................82 INT4.................. 47 VCC92
A20.................91 DP057 IO1.................... 44 WE#25
A21.................90 DP156 IO2.................... 36 WE0#27
ACT22 GND4 IO3.................. 100 WE1#26
CAS0#............32 GND8 IORD#............... 28 XTAL1/CLKIN ...34
CAS1#............31 GND9 IOWR#.............. 99 XTAL2...............35

MECHANICAL DATA 7-9

7.3.3 Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

 1VCC 26.......WE1# 51.......VCC 76....... D10
 2.......A18 27.......WE0# 52.......GRANT# 77....... D11
 3.......A17 28....... IORD# 53.......RESET# 78....... D12
 4.......GND 29.......OE# 54.......GND 79....... D13
 5.......VCC 30.......VCC 55.......VCC 80....... VCC
 6.......A16 31.......CAS1# 56.......DP1 81....... D14
 7.......A15 32.......CAS0# 57.......DP0 82....... D15
 8.......GND 33.......GND 58.......GND 83....... GND
 9.......GND 34.......XTAL1/CLKIN 59.......GND 84....... VCC
 10.......VCC 35.......XTAL2 60.......VCC 85....... A12
 11.......A8 36....... IO2 61.......D0 86....... A11
 12.......A7 37.......VCC 62.......D1 87....... A10
 13.......VCC 38.......A3 63.......D2 88....... A9
 14.......A6 39.......A2 64.......VCC 89....... GND
 15.......A5 40.......A1 65.......D3 90....... A21
 16.......A4 41.......A0 66.......D4 91....... A20
 17.......GND 42.......GND 67.......D5 92....... VCC
 18.......VCC 43.......CLKOUT 68.......GND 93....... A19
 19.......A14 44....... IO1 69.......D6 94....... RAS#
 20.......GND 45.......GND 70.......GND 95....... GND
 21.......VCC 46.......RQST 71.......VCC 96....... CS1#
 22.......ACT 47....... INT4 72.......D7 97....... CS2#
 23.......A13 48....... INT3 73.......D8 98....... CS3#
 24.......GND 49....... INT2 74.......GND 99....... IOWR#
 25.......WE# 50....... INT1 75.......D9 100....... IO3

7-10 CHAPTER 7

7.4 Package-Dimensions

b

D

D1

E
1

Index

A
1

A
2

L

θ

E
P

Figure 7.4: GMS30C2132, GMS30C2116 Package-Outline

Symbol Term Definition

A1 Standoff height Height from ground plane to bottom edge of package

A2 Package height Height of package itself

E, D Overall length & width Length and width including leads

D1, E1 Package length & width Length and width of package

L Length of flat lead
section

Length of flat lead section

P Lead pitch Lead pitch

b Lead width Width of a lead

θ Lead angle Angle of lead versus seating plane

MECHANICAL DATA 7-11

7.4 Package-Dimensions (continued)

GMS30C2132, 160-Pin MQFP-Package

Symbol Dimensions in Millimeters Dimensions in Inches

 Min. Nom. Max. Min. Nom. Max

A1 0.25 0.36 0.47 (0.010) (0.014) (0.018)

A2 3.20 3.40 3.60 (0.126) (0.134) (0.142)

E, D 31.20 31.90 32.15 (1.228) (1.256) (1.266)

E1, D1 27.90 28.00 28.10 (1.098) (1.102) (1.106)

L 0.63 0.88 1.03 (0.025) (0.035) (0.041)

P 0.65 (0.0256)

b 0.22 0.29 0.38 (0.009) (0.012) (0.015)

θ 0° 7° (0°) (7°)

GMS30C2132, 144-Pin TQFP-Package

Symbol Dimensions in Millimeters Dimensions in Inches

 Min. Nom. Max. Min. Nom. Max

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006)

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057)

E, D 21.80 22.00 22.20 (0.858) (0.866) (0.874)

E1, D1 19.90 20.00 20.10 (0.783) (0.787) (0.791)

L 0.45 0.60 0.75 (0.018) (0.024) (0.030)

P 0.50 (0.0197)

b 0.17 0.22 0.27 (0.007) (0.009) (0.011)

θ 0° 7° (0°) (7°)

7-12 CHAPTER 7

7.4 Package-Dimensions (continued)

GMS30C2116, 100-Pin TQFP-Package

Symbol Dimensions in Millimeters Dimensions in Inches

 Min. Nom. Max. Min. Nom. Max

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006)

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057)

E, D 15.80 16.00 16.20 (0.622) (0.630) (0.638)

E1, D1 13.90 14.00 14.10 (0.547) (0.551) (0.555)

L 0.45 0.60 0.75 (0.018) (0.024) (0.030)

P 0.50 (0.0197)

b 0.17 0.22 0.27 (0.007) (0.009) (0.011)

θ 0° 7° (0°) (7°)

Appendix A. Instruction Set Details A-1

Appendix. Instruction Set Details

This appendix provides a detailed description of the operation of each GMS30C2116/32
RISC/DSP instruction. The instructions are listed in alphabet order.

The exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. The description of the immediate causes and manner of
handling exceptions is omitted from the instruction description in this chapter. Refer to
chapter 4 for detailed description of exceptions and handling.

Instruction Classes
GMS30C2116/32 RISC/DSP instructions are divided into 7 classes

1. Memory Instruction: Load data form memory in a register or store data from a register
to memory. I/O devices are also addressed by memory instructions.

2. Move Instruction: Source operand or the immediate operand is copied to the
destination register.

3. Computational Instruction: Perform arithmetic, logical, shift and rotate operations on
values in registers.

4. Branch and Delayed Branch Instruction: When the branch condition is met, place the
branch address PC+rel in the program counter PC and clear the cache-mode flag M.

5. Extended DSP Instruction: The extended DSP functions use the on-chip multiply-
accumulate unit.

6. Software Instruction: Cause a branch to the subprogram associated with each Software
instruction.

7. Special Instruction: Call, Trap, Frame, Return and Fetch instruction

Instruction Notation
Instruction notation is same as the notation of using chapter 2 and 3. (see section 2.1
Instruction Notation)

A-2 Appendix A. Instruction Set Details

ADD ADD

Format:

RR format

Rd-code Rs-code
OP-code

0010 10
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

ADD Rd, Rs

ADD Rd, C (when SR is denoted as a Rs)

Description:

The source operand (Rs) is added to the destination operand (Rd), the result is placed in the
destination register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, carry flag C is added instead of the SR.

Operation:

When Rs is not SR

Rd := Rd + Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

When Rs is SR

Rd := Rd + C;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

Exceptions:

None.

Appendix A. Instruction Set Details A-3

ADD with carry ADDC

Format:

RR format

Rd-code Rs-code
OP-code

0101 00
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

ADDC Rd, Rs

ADDC Rd, C (when SR is denoted as a Rs)

Description:

The source operand (Rs) + C is added to the destination operand (Rd), the result is placed
in the destination register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, carry flag C is added instead of the SR.

Operation:

When Rs is not SR

Rd := Rd + Rs + C;
Z := Z and (Rd=0);
N := Rd(31);
V := overflow;
C := carry;

When Rs is SR

Rd := Rd + C;
Z := Z and (Rd=0);
N := Rd(31);
V := overflow;
C := carry;

Exceptions:

None.

A-4 Appendix A. Instruction Set Details

ADD Immediate ADDI

Format:

Rimm format

d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd
n: bit 8 // bit 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values

Rd-code n
OP-code

0100 10
d n

15 10 9 8 7 4 3 0

imm1

imm2

Notation:

ADDI Rd, imm

ADDI Rd, CZ (when n = 0)

Description:

The immediate operand (imm) is added to the destination operand (Rd), the result is placed
in the destination register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the immediate value n = 0, C is only added to the destination operand if Z = 0 or
Rd(0) is one (round to even).

Operation:

When n is not zero

Rd := Rd + imm;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

When n is zero

Rd := Rd + (C and (Z=0 or Rd(0)));
Z := Rd = 0
N := Rd(31);
V := overflow;
C := carry;

Exceptions:

None.

Appendix A. Instruction Set Details A-5

Signed ADD with trap ADDS

Format:

RR format

Rd-code Rs-code
OP-code

0010 11
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

ADDS Rd, Rs

ADDS Rd, C (when SR is denoted as a Rs)

Description:

The source operand (Rs) is added to the destination operand (Rd), the result is placed in the
destination register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are signed integers and a trap to Range Error occurs at
overflow.

When the SR is denoted as a source operand, carry flag C is added instead of the SR.

Operation:

When Rs is not SR

Rd := Rd + Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
if overflow then
 trap -> Range Error

When Rs is SR

Rd := Rd + C;
Z := Rd = 0;
N := Rd(31);
V := overflow;
if overflow then
 trap -> Range Error

Exceptions:

Overflow exception (trap to Range Error).

A-6 Appendix A. Instruction Set Details

Signed ADD Immediate with trap ADDSI

Format:

Rimm format

d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd
n: bit 8 // bit 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values

Rd-code n
OP-code

0110 11
d n

15 10 9 8 7 4 3 0

imm1

imm2

Notation:

ADDSI Rd, imm

ADDSI Rd, CZ (when n = 0)

Description:

The immediate operand (imm) is added to the destination operand (Rd), the result is placed
in the destination register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are signed integers and a trap to Range Error occurs at
overflow.

When the immediate value n = 0, C is only added to the destination operand if Z = 0 or
Rd(0) is one (round to even).

Operation:

When Rs is not SR

Rd := Rd + imm;
Z := Rd = 0;
N := Rd(31);
V := overflow;
if overflow then
 trap -> Range Error

When Rs is SR

Rd := Rd + (C and (Z=0 or Rd(0)));
Z := Rd = 0;
N := Rd(31);
V := overflow;
if overflow then
 trap -> Range Error

Exceptions:

Overflow exception (trap to Range Error)

Appendix A. Instruction Set Details A-7

AND AND

Format:

RR format

Rd-code Rs-code
OP-code

0101 01
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

AND Rd, Rs

Description:

The result of a bitwise logical AND of the source operand (Rs) and the destination operand
(Rd) is placed in the destination register (Rd) and the Z flag is set or cleared accordingly.

Operation:

Rd := Rd and Rs;
Z := Rd = 0;

Exceptions:

None.

A-8 Appendix A. Instruction Set Details

AND with source used inverted ANDN

Format:

RR format

Rd-code Rs-code
OP-code

0011 01
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

ANDN Rd, Rs

Description:

The result of a bitwise logical AND not (ANDN) of the source operand (Rs) and the
destination operand (Rd) is placed in the destination register (Rd) and the Z flag is set or
cleared accordingly. The source operand is used inverted (itself remaining unchanged).

Operation:

Rd := Rd and not Rs;
Z := Rd = 0;

Exceptions:

None.

Appendix A. Instruction Set Details A-9

AND with imm used inverted ANDNI

Format:

Rimm format

d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd
n: bit 8 // bit 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values

Rd-code n
OP-code

0111 01
d n

15 10 9 8 7 4 3 0

imm1

imm2

Notation:

ANDNI Rd, imm

Description:

The result of a bitwise logical AND not (ANDN) of the source operand (Rs) and the
immediate operand (Rd) is placed in the destination register (Rd) and the Z flag is set or
cleared accordingly. The immediate operand is used inverted (itself remaining unchanged).

Operation:

Rd := Rd and not imm;
Z := Rd = 0;

Exceptions:

None.

A-10 Appendix A. Instruction Set Details

Branch on Carry BC

Format:

PCrel format

low-rel
OP-code

1111 0100

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BC rel

Description:

If the carry flag C is set (C = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC and clear the cache-mode flag M;
all condition flags remain unchanged. Then instruction execution proceeds at the branch
address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If C = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-11

Branch on Equal BE

Format:

PCrel format

low-rel
OP-code

1111 0010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BE rel

Description:

If the zero flag is set (Z = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC and clear the cache-mode flag M;
all condition flags remain unchanged. Then instruction execution proceeds at the branch
address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If Z = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-12 Appendix A. Instruction Set Details

Branch on Greater or Equal BGE

Format:

PCrel format

low-rel
OP-code

1111 1001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BGE rel

Description:

If the negative flag N is cleared (N = 0, non-negative), place the branch address PC + rel
(relative of the first byte after the Branch instruction) in the program counter PC and clear
the cache-mode flag M; all condition flags remain unchanged. Then instruction execution
proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-13

Branch on Greater Than BGT

Format:

PCrel format

low-rel
OP-code

1111 1011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BGT rel

Description:

If the negative flag N and the zero flag Z are cleared (N = 0 and Z = 0), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC and clear the cache-mode flag M; all condition flags remain unchanged. Then
instruction execution proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N=0 and Z=0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-14 Appendix A. Instruction Set Details

Branch on Higher or Equal BHE

Format:

PCrel format

low-rel
OP-code

1111 0101

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BHE rel

Description:

If the carry flag C is cleared (C = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If C = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-15

Branch on Higher Than BHT

Format:

PCrel format

low-rel
OP-code

1111 0111

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BHE rel

Description:

If the carry flag C and the zero flag Z are cleared (C = 0 and Z = 0), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC and clear the cache-mode flag M; all condition flags remain unchanged. Then
instruction execution proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If C=0 and Z=0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-16 Appendix A. Instruction Set Details

Branch on Less or Equal BLE

Format:

PCrel format

low-rel
OP-code

1111 1010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BLE rel

Description:

If the negative flag N is set or the zero flag Z is set (N = 1 or Z = 1), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC and clear the cache-mode flag M; all condition flags remain unchanged. Then
instruction execution proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N=1 or Z=1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-17

Branch on Less Than BLT

Format:

PCrel format

low-rel
OP-code

1111 1000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BLT rel

Description:

If the negative flag N is set (N = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-18 Appendix A. Instruction Set Details

Branch on Negative BN

Format:

PCrel format

low-rel
OP-code

1111 1000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BN rel

Description:

If the negative flag N is set (N = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-19

Branch on No Carry BNC

Format:

PCrel format

low-rel
OP-code

1111 0101

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BNC rel

Description:

If the carry flag C is cleared (C = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If C = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-20 Appendix A. Instruction Set Details

Branch on Not Equal BNE

Format:

PCrel format

low-rel
OP-code

1111 0011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BNE rel

Description:

If the zero flag Z is cleared (Z = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If Z = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-21

Branch on Non-Negative BNN

Format:

PCrel format

low-rel
OP-code

1111 1001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BNN rel

Description:

If the negative flag N is cleared (N = 0, non-negative), place the branch address PC + rel
(relative of the first byte after the Branch instruction) in the program counter PC and clear
the cache-mode flag M; all condition flags remain unchanged. Then instruction execution
proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If N = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-22 Appendix A. Instruction Set Details

Branch on Not Overflow BNV

Format:

PCrel format

low-rel
OP-code

1111 0001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BNV rel

Description:

If the overflow flag V is cleared (V = 0), place the branch address PC + rel (relative of the
first byte after the Branch instruction) in the program counter PC and clear the cache-mode
flag M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If V = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-23

Branch on None-Zero BNZ

Format:

PCrel format

low-rel
OP-code

1111 0011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BNZ rel

Description:

If the zero flag Z is cleared (Z = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If Z = 0 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-24 Appendix A. Instruction Set Details

Branch on Smaller or Equal BSE

Format:

PCrel format

low-rel
OP-code

1111 0110

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BSE rel

Description:

If the carry flag C is set (C = 1) or the zero flag is set (Z = 1), place the branch address PC
+ rel (relative of the first byte after the Branch instruction) in the program counter PC and
clear the cache-mode flag M; all condition flags remain unchanged. Then instruction
execution proceeds at the branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If C=1 or Z=1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-25

Branch BR

Format:

PCrel format

low-rel
OP-code

1111 1100

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BR rel

Description:

Place the branch address PC + rel (relative of the first byte after the Branch instruction) in
the program counter PC and clear the cache-mode flag M; all condition flags remain
unchanged. Then instruction execution proceeds at the branch address placed in the PC

Note: rel is signed to allow forward or backward branches.

Operation:

PC := PC + rel
M := 0

Exceptions:

None.

A-26 Appendix A. Instruction Set Details

Branch on Overflow BV

Format:

PCrel format

low-rel
OP-code

1111 0000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BV rel

Description:

If the overflow flag V is set (V = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC and clear the cache-mode flag
M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If V = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

Appendix A. Instruction Set Details A-27

Branch on Zero BZ

Format:

PCrel format

low-rel
OP-code

1111 0010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

BZ rel

Description:

If the zero flag is set (Z = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC and clear the cache-mode flag M;
all condition flags remain unchanged. Then instruction execution proceeds at the branch
address placed in the PC

When the branch condition is not met, the M flag and the condition flags remain
unchanged and instruction execution proceeds sequentially.

Note: rel is signed to allow forward or backward branches.

Operation:

If Z = 1 then
 PC := PC + rel
 M := 0

Exceptions:

None.

A-28 Appendix A. Instruction Set Details

Call CALL

Format:

LRconst format

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs, Ld-code encodes L0..L15 for Ld
S: Sign bit of const
e = 0: const = 18S // const1, range -16,384 ~ 16,383
e = 1: const = 2S // const1 // const2, range -1,073,741,824 ~ 1,073,741,823

Ld-code Rs-code
OP-code

1110111
s

15 9 8 7 4 3 0

imm1imm2const1

const2

e S

Notation:

CALL Ld, Rs, const

CALL Ld, 0, const (when Rs denotes SR)

Description:

The Call instruction causes a branch to a subprogram.

The branch address Rs + const, or const alone if Rs denotes the SR, is placed in the
program counter PC. The old PC containing the return address is saved in Ld; the old
supervisor-state flag S is also saved in bit zero of Ld. The old status register SR is saved in
Ldf, the saved instruction-length code ILC contains the length (2 or 3) of the Call
instruction. Then the frame pointer FP is incremented by the value of the Ld-code and the
frame length FL is set to six, thus creating a new stack frame.

The cache-mode flag M is cleared. All condition flags remain unchanged. Then instruction
execution proceeds at the branch address placed in the PC.

Operation:

If Rs denotes not SR then PC := Rs +const
else PC := const
Ld := old PC(31..1) // old S;
Ldf := old SR;
FP := Fo + Ld code; (Ld-cod 0 is treated as 16)
FL := 6; M:= 0;

Exceptions:

None.

Appendix A. Instruction Set Details A-29

Check CHK

Format:

RR format

Rd-code Rs-code
OP-code

0000 00
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

CHK Rd, Rs

Description:

A destination operand is checked and a trap to a Range Error occurs if the destination
operand is higher than the source operand.

All registers and all condition flags remain unchanged. All operands are interpreted as
unsigned integers.

When Rs denotes the PC, CHK trap if Rd > PC. Thus, CHK PC, PC always traps. Since
CHK PC, PC is encoded as 16 zeros, an erroneous jump into a string of zeros causes a trap
to Range Error, thus trapping some address errors.

Operation:

If Rs does not denote SR and Rd > Rs then
 trap -> Range Error

Exceptions:

Range Error.

A-30 Appendix A. Instruction Set Details

Check Zero CHKZ

Format:

RR format

Rd-code Rs-code
OP-code

0000 00
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

CHK Rd, 0

Description:

A destination operand is checked and a trap to a Range Error occurs if the destination
operand is zero.

All registers and all condition flags remain unchanged. All operands are interpreted as
unsigned integers.

CHKZ shares its basic OP-code with CHK, it is differentiated by denoting the SR as source
operand.

CHKZ may be used to trap on uninitialized pointers with the value zero.

Operation:

If Rs denotes SR and Rd = 0 then
 trap -> Range Error

Exceptions:

Range Error.

Appendix A. Instruction Set Details A-31

Compare with Source Operand CMP

Format:

RR format

Rd-code Rs-code
OP-code

0010 00
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

CMP Rd, Rs

CMP Rd, C (when Rs denotes SR)

Description:

Two operands are compared by subtracting the source operand from the destination
operand. The condition flags are set or cleared according to the result; the result itself is
not retained. Note that the N flag indicates the correct compare result even in the case of an
overflow.

All operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand at CMP, C is subtracted instead of SR.

Operation:

When Rs is not SR

result := Rd - Rs;
Z := Rd = Rs;
N := Rd < Rs signed;
V := overflow;
C := Rd < RS unsigned;

When Rs is SR

result := Rd - C;
Z := Rd = C;
N := Rd < C signed;
V := overflow;
C := Rd < C unsigned;

Exceptions:

None

A-32 Appendix A. Instruction Set Details

Compare Bit CMPB

Format:

RR format

Rd-code Rs-code
OP-code

0011 00
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

CMPB Rd, Rs

Description:

The result of a bitwise logical AND of the source operand and the destination operand is
used to set or clear the Z flag accordingly; the result itself is not retained.

All operands and the result are interpreted as bit-string of 32 bits each.

Operation:

Z := (Rd and Rs) = 0;

Exceptions:

None

Appendix A. Instruction Set Details A-33

Compare Bit with Immediate CMPBI

Format:

Rimm format

d = 0: Rd-code encoded G0..G15 for Rd
d = 0: Rd-code encoded L0..L15 for Rd
n: bit 8 // bit 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values

Rd-code n
OP-code

0111 00
d n

15 10 9 8 7 4 3 0

imm1

imm2

Notation:

CMPBI Rd, imm

CMPBI Rd, ANYBZ (when n = 0)

Description:

The result of a bitwise logical AND of the immediate operand and the destination operand
is used to set or clear the Z flag accordingly; the result itself is not retained.

All operands and the result are interpreted as bit-string of 32 bits each.

A special case of CMPBI differentiated by n = 0, if any byte of the destination operand is
zero then the zero flag Z is set (Z = 1).

Operation:

If n is not zero then
 Z := (Rd and imm);
else
 Z := Rd(31..24) = 0 or Rd(23..16) = 0 or
 Rd(15..8) = 0 or Rd(7..0) = 0

Exceptions:

None

A-34 Appendix A. Instruction Set Details

Compare with Immediate CMPI

Format:

Rimm format

d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd
n: bit 8 // bit 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values

Rd-code n
OP-code

0110 00
d n

15 10 9 8 7 4 3 0

imm1

imm2

Notation:

CMPI Rd, imm

Description:

Two operands are compared by subtracting the source operand from the destination
operand. The condition flags are set or cleared according to the result; the result itself is
not retained. Note that the N flag indicates the correct compare result even in the case of an
overflow.

All operands and the result are interpreted as either all signed or all unsigned integers.

Operation:

result := Rd - imm;
Z := Rd = imm;
N := Rd < imm signed;
V := overflow;
C := Rd < imm unsigned;

Exceptions:

None

Appendix A. Instruction Set Details A-35

Divide with Non-Negative Signed DIVS

Format:

RR format

Rd-code Rs-code
OP-code

0000 11
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

DIVS Rd, Rs

Description:

The double-word destination operand (dividend) is divided by the single-word source
operand (divisor), the quotient is placed in the low-order destination register (Rdf), the
remainder is placed in the high-order destination register (Rd) and the condition flags are
set or cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient exceeds the
integer value range (quotient overflow). The result (in Rd//Rdf) is then undefined. A trap to
Range Error also occurs and the result is undefined if the dividend is negative.

The dividend is a non-negative signed double-word integer, the devisor, the quotient and
the remainder are signed integers; a non-zero remainder has the sign of the dividend.

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or the SR
is denoted.

Operation:

If Rs = 0 or quotient overflow or Rd(31) = 1 then
Rd//Rdf := undefined;
Z := undefined;, N := undefined;,
V :=1 trap -> Range Error

else
remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
Z := Rdf = 0
N := Rd(31), V:= 0;

Exceptions:

Quotient Overflow (Trap to a Range Error)

Division by Zero (Trap to a Range Error)

Dividend is Negative (Trap to a Range Error)

A-36 Appendix A. Instruction Set Details

Divide with Unsigned DIVU

Format:

RR format

Rd-code Rs-code
OP-code

0000 10
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

DIVU Rd, Rs

Description:

The double-word destination operand (dividend) is divided by the single-word source
operand (divisor), the quotient is placed in the low-order destination register (Rdf), the
remainder is placed in the high-order destination register (Rd) and the condition flags are
set or cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient exceeds the
integer value range (quotient overflow). The result (in Rd//Rdf) is then undefined.

The dividend is an unsigned double-word integer, the devisor, the quotient and the
remainder are unsigned integers

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or the SR
is denoted.

Operation:

If Rs = 0 or quotient overflow then
Rd//Rdf := undefined;
Z := undefined;, N := undefined;,
V :=1 trap -> Range Error

else
remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
Z := Rdf = 0
N := Rd(31), V:= 0;

Exceptions:

Quotient Overflow (Trap to a Range Error)

Division by Zero (Trap to a Range Error)

Appendix A. Instruction Set Details A-37

Do DO

Format:

LL format

Ld-code Ls-code
OP-code

1100 1111

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

Notation:

Do xx... Ld, Ls

Description:

The Do instruction is executed as a Software instruction. (The Software instructions causes
a branch to the subprogram associated with each Software instruction.) The associated
subprogram is entered, the stack address other destination operand and one double-word
source operand are passed to it.

The halfword succeeding the Do instruction will be used by the associated subprogram to
differentiate branches to subordinate routines; the associated subprogram must increment
the saved return program counter PC by two.

“xx...” stands for the mnemonic of the differentiating halfword after the OP-code of the Do
instruction.

Operation:

PC := 23 oness // 0 // OP(11..8) // 4 zeros;
(FP + FL)^ := stack address of Ld;
(FP + FL + 1)^ := Ls;
(FP + FL + 2)^ := Lsf;
(FP + FL + 3)^ := old PC(31..1) // old S;
(FP + FL + 4)^ := old SR;
FP := FP + FL, FL := 6;, M := 0;
T := 0; L := 1;

Exceptions:

None

A-38 Appendix A. Instruction Set Details

Halfword (complex) add/sub with fixed-point adjustment EHCFFTD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 1001 0110 (0x0096)

Notation:

EHCFFTD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

Ls does not used and should denote he same register.

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14(31..16) ;= Ld(31..16) + (G14 >> 15);
G14(15..0) ;= Ld(15..0) + (G15 >> 15);
G15(31..16) ;= Ld(31..16) - (G14 >> 15);
G15(15..0) ;= Ld(15..0) - (G15 >> 15);

Exceptions:

Extended Overflow Exception

Appendix A. Instruction Set Details A-39

Halfword complex multiply/add EHCMACD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 0100 1110 (0x004E)

Notation:

EHCMACD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14 := G14 + Ld(31..16) * Ls(31..16) -
Ld(15..0) * Ls(15..0);

G15 := G15 + Ld(31..16) * Ls(31..16) +
Ld(15..0) * Ls(15..0);

Exceptions:

Extended Overflow Exception

A-40 Appendix A. Instruction Set Details

Halfword complex multiply EHCMULD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 0100 0110 (0x0046)

Notation:

EHCMULD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14 := Ld(31..16) * Ls(31..16) - Ld(15..0) * Ls(15..0);
G15 := Ld(31..16) * Ls(31..16) + Ld(15..0) * Ls(15..0);

Exceptions:

Extended Overflow Exception

Appendix A. Instruction Set Details A-41

Halfword (complex) add/subtract EHCSUMD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 1000 0110 (0x0086)

Notation:

EHCSUMD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14(31..16) := Ld(31..16) + G14;
G14(15..0) := Ld(15..0) + G15;
G15(31..16) := Ld(31..16) - G14;
G15(15..0) := Ld(15..0) - G14;

Exceptions:

Extended Overflow Exception

A-42 Appendix A. Instruction Set Details

Signed halfword multiply/add, single word product sum EHMAC

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 0010 1010 (0x002A)

Notation:

EHMAC Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Single-word results always use register G15 as destination register. The condition flags
remain unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G15 := G15 + Ld(31..16) * Ls(31..16) + Ld(15..0) * Ls(15..0);

Exceptions:

Extended Overflow Exception

Appendix A. Instruction Set Details A-43

Signed halfword multiply/add, double word product sum EHMACD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0000 0010 1110 (0x002E)

Notation:

EHMACD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14//G15 = G14//G15 + Ld(31..16) * Ls(31..16) +
 Ld(15..0) * Ls(15..0);

Exceptions:

Extended Overflow Exception

A-44 Appendix A. Instruction Set Details

Signed multiply/add, single word product sum EMAC

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0000 1010 (0x010A)

Notation:

EMAC Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Single-word results always use register G15 as destination register. The condition flags
remain unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G15 = G15 + Ld * Ls

Exceptions:

Extended Overflow Exception

Appendix A. Instruction Set Details A-45

Signed multiply/add, double word product sum EMACD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0000 1110 (0x010E)

Notation:

EMACD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14//G15 = G14//G15 + Ld * Ls

Exceptions:

Extended Overflow Exception

A-46 Appendix A. Instruction Set Details

Signed multiply/subtract, single word product difference EMSUB

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0001 1010 (0x011A)

Notation:

EMSUB Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Single-word results always use register G15 as destination register. The condition flags
remain unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G15 = G15 - Ld * Ls

Exceptions:

Extended Overflow Exception

Appendix A. Instruction Set Details A-47

Signed multiply/subtract, double word product difference EMSUBD

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0001 1110 (0x011E)

Notation:

EMSUBD Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

This instruction can cause a n Extended Overflow exception when the Extended Overflow
Exception flag is enabled (FCR(16) = 0). Note that this overflow occurs asynchronously to
the execution of the Extended DSP instruction and any succeeding instructions.

Operation:

G14//G15 = G14//G15 - Ld * Ls

Exceptions:

Extended Overflow Exception

A-48 Appendix A. Instruction Set Details

Signed or unsigned multiplication, single word product EMUL

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0000 0000 (0x0100)

Notation:

EMUL Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Single-word results always use register G15 as destination register. The condition flags
remain unchanged

Operation:

G15 = Ld * Ls

Exceptions:

None.

Appendix A. Instruction Set Details A-49

Signed multiplication, double word product EMULS

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0000 0110 (0x0106)

Notation:

EMULS Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

Operation:

G14//G15 = Ld * Ls

Exceptions:

None.

A-50 Appendix A. Instruction Set Details

Unsigned multiplication, double word product EMULU

Format:

LLext format

Ld-code Ls-code
OP-code

1100 1110

15 8 7 4 3 0

Ls-code encoded L0..L15 for Ls
Ld-code encoded L0..L15 for Ld

OP-code extention
0000 0001 0000 0100 (0x0104)

Notation:

EMULU Ld, Ls

Description:

The extended DSP instruction uses on-chip multiply-accumulate unit. An Extended DSP
instruction is issued in one cycle; the processor starts execution of the next instruction
before the Extended DSP instruction is finished.

Double-word results are always placed in G14 and G15. The condition flags remain
unchanged

Operation:

G14//G15 = Ld * Ls

Exceptions:

None.

Appendix A. Instruction Set Details A-51

Delayed Branch on Carry DBC

Format:

PCrel format

low-rel
OP-code

1110 0100

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBC rel

Description:

If the carry flag C is set (C = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC. All condition flags and the cache
mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 0 then
PC := PC + rel

Exceptions:

None.

A-52 Appendix A. Instruction Set Details

Delayed Branch on Equal DBE

Format:

PCrel format

low-rel
OP-code

1110 0010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBE rel

Description:

If the zero flag is set (Z = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC. All condition flags and the cache
mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If Z = 1 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-53

Delayed Branch on Greater or Equal DBGE

Format:

PCrel format

low-rel
OP-code

1110 1001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBGE rel

Description:

If the negative flag N is cleared (N = 0, non-negative), place the branch address PC + rel
(relative of the first byte after the Branch instruction) in the program counter PC. All
condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 0 then
PC := PC + rel

Exceptions:

None.

A-54 Appendix A. Instruction Set Details

Delayed Branch on Greater Than DBGT

Format:

PCrel format

low-rel
OP-code

1110 1011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBGT rel

Description:

If the negative flag N and the zero flag Z are cleared (N = 0 and Z = 0), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 0 & Z = 0 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-55

Delayed Branch on Higher or Equal DBHE

Format:

PCrel format

low-rel
OP-code

1110 1001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBHE rel

Description:

If the carry flag C is cleared (C = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 0 then
PC := PC + rel

Exceptions:

None.

A-56 Appendix A. Instruction Set Details

Delayed Branch on Higher Than DBHT

Format:

PCrel format

low-rel
OP-code

1110 0111

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBHE rel

Description:

If the carry flag C and the zero flag Z are cleared (C = 0 and Z = 0), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 0 & Z = 0 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-57

Delayed Branch on Less or Equal DBLE

Format:

PCrel format

low-rel
OP-code

1110 1010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBLE rel

Description:

If the negative flag N is set or the zero flag Z is set (N = 1 or Z = 1), place the branch
address PC + rel (relative of the first byte after the Branch instruction) in the program
counter PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 1 or Z = 1 then
PC := PC + rel

Exceptions:

None.

A-58 Appendix A. Instruction Set Details

Delayed Branch on Less Than DBLT

Format:

PCrel format

low-rel
OP-code

1110 1000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBLT rel

Description:

If the negative flag N is set (N = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 1 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-59

Delayed Branch on Negative DBN

Format:

PCrel format

low-rel
OP-code

1110 1000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBN rel

Description:

If the negative flag N is set (N = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 1 then
PC := PC + rel

Exceptions:

None.

A-60 Appendix A. Instruction Set Details

Delayed Branch on No Carry DBNC

Format:

PCrel format

low-rel
OP-code

1110 0101

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBNC rel

Description:

If the carry flag C is cleared (C = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 0 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-61

Delayed Branch on Not Equal DBNE

Format:

PCrel format

low-rel
OP-code

1110 0011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBNE rel

Description:

If the zero flag Z is cleared (Z = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If Z = 0 then
PC := PC + rel

Exceptions:

None.

A-62 Appendix A. Instruction Set Details

Delayed Branch on Non-Negative DBNN

Format:

PCrel format

low-rel
OP-code

1110 1001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBNN rel

Description:

If the negative flag N is cleared (N = 0, non-negative), place the branch address PC + rel
(relative of the first byte after the Branch instruction) in the program counter PC. All
condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If N = 0 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-63

Delayed Branch on Not Overflow DBNV

Format:

PCrel format

low-rel
OP-code

1110 0001

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBNV rel

Description:

If the overflow flag V is cleared (V = 0), place the branch address PC + rel (relative of the
first byte after the Branch instruction) in the program counter PC. All condition flags and
the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If V = 0 then
PC := PC + rel

Exceptions:

None.

A-64 Appendix A. Instruction Set Details

Delayed Branch on None-Zero DBNZ

Format:

PCrel format

low-rel
OP-code

1110 0011

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBNZ rel

Description:

If the zero flag Z is cleared (Z = 0), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If Z = 0 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-65

Delayed Branch on Smaller or Equal DBSE

Format:

PCrel format

low-rel
OP-code

1110 0110

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBSE rel

Description:

If the carry flag C is set (C = 1) or the zero flag is set (Z = 1), place the branch address PC
+ rel (relative of the first byte after the Branch instruction) in the program counter PC. All
condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 1 or Z = 1 then
PC := PC + rel

Exceptions:

None.

A-66 Appendix A. Instruction Set Details

Delayed Branch DBR

Format:

PCrel format

low-rel
OP-code

1110 1100

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBR rel

Description:

Place the branch address PC + rel (relative of the first byte after the Branch instruction) in
the program counter PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken

Operation:

PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-67

Delayed Branch on Smaller Than DBST

Format:

PCrel format

low-rel
OP-code

1110 0100

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBST rel

Description:

If the carry flag C is set (C = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC. All condition flags and the cache
mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If C = 1 then
PC := PC + rel

Exceptions:

None.

A-68 Appendix A. Instruction Set Details

Delayed Branch on Overflow DBV

Format:

PCrel format

low-rel
OP-code

1110 0000

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBV rel

Description:

If the overflow flag V is set (V = 1), place the branch address PC + rel (relative of the first
byte after the Branch instruction) in the program counter PC. All condition flags and the
cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If V = 1 then
PC := PC + rel

Exceptions:

None.

Appendix A. Instruction Set Details A-69

Delayed Branch on Zero DBZ

Format:

PCrel format

low-rel
OP-code

1110 0010

15 68 7 0

S: sign bit of rel
 rel = 25 S // low-rel // 0
 range -128 ~ 126

0 S

Notation:

DBZ rel

Description:

If the zero flag is set (Z = 1), place the branch address PC + rel (relative of the first byte
after the Branch instruction) in the program counter PC. All condition flags and the cache
mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction
references the delayed-branch target address.

Operation:

If Z = 1 then
PC := PC + rel

Exceptions:

None.

A-70 Appendix A. Instruction Set Details

Floating-point Add (single precision) FADD

Format:

LL format

OP-code
1100 0000

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FADD Ld, Ls

Description:

The source operand (Ls) is added to the destination operand (Ld), the result is placed in the
destination register (Ld) and all condition flags remain unchanged to allow future
concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld := Ld + Ls

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

Appendix A. Instruction Set Details A-71

Floating-point Add (double precision) FADDD

Format:

LL format

OP-code
1100 0001

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FADDD Ld, Ls

Description:

The source operand (Ls//Lsf) is added to the destination operand (Ld//Ldf), the result is
placed in the destination register (Ld//Ldf) and all condition flags remain unchanged to
allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld//Ldf := Ld//Ldf + Ls//Lsf

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

A-72 Appendix A. Instruction Set Details

Floating-point Compare (single precision) FCMP

Format:

LL format

OP-code
1100 1000

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCMPU Ld, Ls

Description:

Two operands are compared by subtracting the source operand form the destination
operand and all condition flags remain unchanged to allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise only the Invalid Operation exception (at unordered). If the data
type of two operands are different (unordered) the Invalid Operation exception is occurred.

Operation:

result := Ld - Ls;
Z := Ld = Ls and not unordered;
N := Ld < Ls or unordered;
C := Ld < Ls and not unordered;
V := unordered;
if unordered then
 Invalid Operation exception

Exceptions:

Invalid Operation.

Appendix A. Instruction Set Details A-73

Floating-point Compare (double precision) FCMPD

Format:

LL format

OP-code
1100 1001

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCMPD Ld, Ls

Description:

Two operands are compared by subtracting the source operand form the destination
operand and all condition flags remain unchanged to allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise only the Invalid Operation exception (at unordered). If the data
type of two operands are different (unordered) the Invalid Operation exception is occurred.

Operation:

result := Ld//Ldf - Ls//Lsf;
Z := Ld//Ldf = Ls//Lsf and not unordered;
N := Ld//Ldf < Ls//Lsf or unordered;
C := Ld//Ldf < Ls//Lsf and not unordered;
V := unordered;
if unordered then
 Invalid Operation exception;

Exceptions:

Invalid Operation.

A-74 Appendix A. Instruction Set Details

Floating-point Compare without exception (single precision) FCMPU

Format:

LL format

OP-code
1100 1010

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCMPU Ld, Ls

Description:

Two operands are compared by subtracting the source operand form the destination
operand and all condition flags remain unchanged to allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any exception.

Operation:

result := Ld - Ls;
Z := Ld = Ls and not unordered;
N := Ld < Ls or unordered;
C := Ld < Ls and not unordered;
V := unordered; - no exception

Exceptions:

None.

Appendix A. Instruction Set Details A-75

Floating-point Compare without exception (double precision)
 FCMPUD

Format:

LL format

OP-code
1100 1011

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCMPUD Ld, Ls

Description:

Two operands are compared by subtracting the source operand form the destination
operand and all condition flags remain unchanged to allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise only the Invalid Operation exception (at unordered). If the data
type of two operands are different (unordered) the Invalid Operation exception is occurred.

Operation:

result := Ld//Ldf - Ls//Lsf;
Z := Ld//Ldf = Ls//Lsf and not unordered;
N := Ld//Ldf < Ls//Lsf or unordered;
C := Ld//Ldf < Ls//Lsf and not unordered;
V := unordered; - no exception

Exceptions:

None.

A-76 Appendix A. Instruction Set Details

Floating-point Convert (double => single) FCVT

Format:

LL format

OP-code
1100 1100

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCVT Ld, Ls

Description:

The double-precision source operand (Ls//Lsf) is converted to the single-precision
destination operand (Ld) and all condition flags remain unchanged to allow future
concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld := (Ls//Lsf)

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

Appendix A. Instruction Set Details A-77

Floating-point Convert (single => double) FCVTD

Format:

LL format

OP-code
1100 1101

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FCVTD Ld, Ls

Description:

The single-precision source operand (Ls) is converted to the double-precision destination
operand (Ld//Ldf) and all condition flags remain unchanged to allow future concurrent
execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

(Ld//Ldf) := Ls;

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

A-78 Appendix A. Instruction Set Details

Floating-point Division (single precision) FDIV

Format:

LL format

OP-code
1100 0110

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FDIV Ld, Ls

Description:

The destination operand (Ld) is divided by the source operand (Ls), the result is placed in
the destination register (Ld) and all condition flags remain unchanged to allow future
concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld := Ld / Ls

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

Appendix A. Instruction Set Details A-79

Floating-point Division (double precision) FDIVD

Format:

LL format

OP-code
1100 0111

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FDIVD Ld, Ls

Description:

The destination operand (Ld//Ldf) is divided by the source operand (Ls//Lsf), the result is
placed in the destination register (Ld//Ldf) and all condition flags remain unchanged to
allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld//Ldf := Ld//Ldf / Ls//Lsf

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

A-80 Appendix A. Instruction Set Details

Fetch FETCH

Format:

Rn format

Rd-code
1 (G1 = SR)

15 8 7 4 3 0

d = 0: Rd-code encoded R0..R15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31

n
d
0

n

910

OP-code
1011 10

Notation:

FETCH Ld, Ls

Description:

The instruction execution is halted until a number of at least n/2 + 1 (n = 0, 2, 4, ..., 30)
instruction halfwords succeeding the Fetch instruction are prefetched in the instruction
cache. The number of n/2 is derived by using bits 4..1 of n, bit 0 of n must be zero.

The Fetch instruction must not be placed as a delay instruction; when the preceding branch
is taken, the prefetch is undefined.

The Fetch instruction shares the basic OP-code SETxx, it is differentiated by denoting the
SR for the Rd-code.

Operation:

FETCH 1 Wait until 1 instruction halfword is fetched
FETCH 2 Wait until 2 instruction halfwords are fetched
........
FETCH 16 Wait until 2 instruction halfwords are fetched

Exceptions:

None.

Appendix A. Instruction Set Details A-81

Floating-point Multiplication (single precision) FMUL

Format:

LL format

OP-code
1100 0100

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FMUL Ld, Ls

Description:

The source operand (Ls) and destination operand(Ld) are multiplied, the result is placed in
the destination register (Ld) and all condition flags remain unchanged to allow future
concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld := Ld * Ls

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

A-82 Appendix A. Instruction Set Details

Floating-point Multiplication (double precision) FMULD

Format:

LL format

OP-code
1100 0101

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FMULD Ld, Ls

Description:

The source operand (Ls//Lsf) and destination operand(Ld//Ldf) are multiplied, the result is
placed in the destination register (Ld//Ldf) and all condition flags remain unchanged to
allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld//Ldf := Ld//Ldf *Ls//Lsf

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

Appendix A. Instruction Set Details A-83

Frame FRAME

Format:

LL format

OP-code
1110 1101

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FRAME Ld, Ls

Description:

A Frame instruction restructures the current stack frame by

l decreasing the frame pointer FP to include (optionally) passed parameters in the local
register addressing range; the first parameter passed is then addressable as L0;

l resetting the frame length FL to the actual number of registers needed for the current
stack frame.

The frame pointer FP is decreased by the value of the Ls-code and the Ld-code is placed in
the frame length FL (FL = 0 is always interpreted as FL = 16). Then the difference
(available number of registers) - (required number of registers + 10) is evaluated and
interpreted as a signed 7-bit integer.

If difference is not negative, all the registers required plus the reserve of 10 fit into the
register part of the stack; no further action is needed and the Frame instruction is finished.

If difference is negative, the content of the old stack pointer SP is compared with the
address in the upper stack bound UB. If the value in the SP is equal or higher than the
value in the UB, a temporary flag is set. Then the contents of the number of local registers
equal to the negative difference evaluated are pushed onto the memory part of the stack,
beginning with the content of the local register addressed absolutely by SP(7..2) being
pushed onto the location addressed by the SP.

All condition flags remain unchanged.

Attention: The Frame instruction must always be the first instruction executed in a function
entered by a Call instruction, otherwise the Frame instruction could be separated form the
preceding Call instruction by an Interrupt, Parity Error, Extended Overflow of Trace
exception.

A-84 Appendix A. Instruction Set Details

Frame (continued) FRAME

Operation:

FP := FP - Ls-code;
FL := Ld code;
M := 0;
difference (6..0) := SP(8..2) + (64-16) - (FP + FL);
if defference > 0 then continue at next instruction
else temporary flag := SP > UB;

repeat memory SP := register SP(7..2)^;
SP := SP + 4;
difference := difference + 1;

until difference = 0;
if temporary flag = 1 then trap => Range Error

Exceptions:

Range Error exception.

Appendix A. Instruction Set Details A-85

Floating-point Subtract (single precision) FSUB

Format:

LL format

OP-code
1100 0010

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FSUB Ld, Ls

Description:

The source operand (Ls) is subtracted from the destination operand (Ld), the result is
placed in the destination register (Ld) and all condition flags remain unchanged to allow
future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses single-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld := Ld - Ls

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

A-86 Appendix A. Instruction Set Details

Floating-point Subtract (double precision) FSUBD

Format:

LL format

OP-code
1100 0011

Ld-code Ls-code

15 8 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

FSUBD Ld, Ls

Description:

The source operand (Ls//Lsf) is subtracted from the destination operand (Ld//Ldf), the
result is placed in the destination register (Ld//Ldf) and all condition flags remain
unchanged to allow future concurrent execution.

The floating-point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions.

This instruction uses double-precision operands and it must not placed as delay instructions.
A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN form a non-NaN.

This instruction can raise any of the exceptions Invalid Operation, Division by Zero,
Overflow, Underflow or Inexact.

Operation:

Ld//Ldf := Ld//Ldf - Ls//Lsf

Exceptions:

Invalid Operation, Division by Zero, Overflow, Underflow or Inexact.

Appendix A. Instruction Set Details A-87

Load (absolute address mode) LDxx.A

Format:

RRdis format

OP-code 1001 00 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDxx.A 0, Rs, dis

Description:

The Load instruction of absolute address mode transfers data from the addressed memory
location, displacement dis is used as an address, into a register Rs or a register pair Rs//Rsf.

The displacement dis is used as an address into memory address space. Rd must denote the
SR to differentiate this mode from the displacement address mode; the content of the SR is
not used.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

Rs := dis^;
[Rsf := (dis+4)^;

Exceptions:

None.

A-88 Appendix A. Instruction Set Details

Load Double Word (post-increment address mode) LDD.P

Format:

LR format

OP-code
1101 011

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

LDD.P Ld, Rs

Description:

The Load instruction of post-increment address mode transfers data from the addressed
memory location, Ld is used as an address, into a register pair Rs//Rsf.

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of double-word memory
instruction by 8, regardless of any exception occurring. Ld is incremented by 8 at the first
memory cycle.

Operation:

Rs := Ld^; Ld := Ld + 4;
Rsf := (old Ld + 4)^;

Exceptions:

None.

Appendix A. Instruction Set Details A-89

Load Double Word (register address mode) LDD.R

Format:

LR format

OP-code
1101 001

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

LDD.R Ld, Rs

Description:

The Load instruction of register address mode transfers data from the addressed memory
location, Ld is used as an address, into a register pair Rs//Rsf.

The content of the destination register Ld is used as an address into memory address space.

Operation:

Rs := Ld^
Rsf := (Ld + 4)^;

Exceptions:

None.

A-90 Appendix A. Instruction Set Details

Load (displacement address mode) LDxx.D

Format:

RRdis format

OP-code 1001 00 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDxx.D Rd, Rs, dis

Description:

The Load instruction of displacement address mode transfers data from the addressed
memory location, Rd plus a signed dis is used as an address, into a register Rs or a register
pair Rs//Rsf.

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the absolute address mode.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

Rs := (Rd + dis)^;
[Rsf := (Rd + dis + 4)^;

Exceptions:

None.

Appendix A. Instruction Set Details A-91

Load (I/O absolute address mode) LDxx.IOA

Format:

RRdis format

OP-code 1001 00 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDxx.IOA 0, Rs, dis

Description:

The Load instruction of I/O absolute address mode transfers data from the addressed
memory location, dis is used as an address, into a register Rs or a register pair Rs//Rsf.

The displacement dis is used as an address into I/O address space.

Rd must denote the SR to differentiate this mode from the I/O displacement address mode;
the content of the SR is not used.

Data type xx is with

W: Word D: Double-word

Operation:

Rs := dis^;
[Rsf := (dis+4)^;

Exceptions:

None.

A-92 Appendix A. Instruction Set Details

Load (I/O displacement address mode) LDxx.IOD

Format:

RRdis format

OP-code 1001 00 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDxx.IOD Rd, Rs, dis

Description:

The Load instruction of I/O displacement address mode transfers data from the addressed
memory location, Rd plus a signed dis is used as an address, into a register Rs or a register
pair Rs//Rsf.

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an I/O address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the I/O absolute address mode.

Data type xx is with

W: Word D: Double-word

Operation:

Rs := (Rd + dis)^;
[Rsf := (Rd + dis + 4)^;

Exceptions:

None.

Appendix A. Instruction Set Details A-93

Load (next address mode) LDxx.N

Format:

RRdis format

OP-code 1001 01 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDxx.N Rd, Rs, dis

Description:

The Load instruction of next address mode transfers data from the addressed memory
location, Rd is used as an address, into a register Rs or a register pair Rs//Rsf.

The content of the destination register Rd is used as an address into memory address space,
then Rd is incremented by the signed displacement dis regardless of any exception
occurring. At a double-word data type, Rd is incremented at the first memory cycle.

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

Rs := Rd^; Rd := Rd + dis
[Rsf := (old Rd + 4)^];

Exceptions:

None.

A-94 Appendix A. Instruction Set Details

Load Word (post-increment address mode) LDW.P

Format:

LR format

OP-code
1101 010

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

LDW.P Ld, Rs

Description:

The Load instruction of post-increment address mode transfers data from the addressed
memory location, Ld is used as an address, into a register Rs.

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of a word by 4, regardless of
any exception occurring.

Operation:

Rs := Ld^;
Ld := Ld + 4;

Exceptions:

None.

Appendix A. Instruction Set Details A-95

Load Word (register address mode) LDW.R

Format:

LR format

OP-code
1101 000

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

LDW.R Ld, Rs

Description:

The Load instruction of register address mode transfers data from the addressed memory
location, Ld is used as an address, into a register Rs.

The content of the destination register Ld is used as an address into memory address space.

Operation:

Rs := Ld^;

Exceptions:

None.

A-96 Appendix A. Instruction Set Details

Load Word (stack address mode) LDW.S

Format:

RRdis format

OP-code 1001 01 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

LDW.S Rd, Rs, dis

Description:

The Load instruction of stack address mode transfers data from the addressed memory
location, Ld is used as an address, into a register Rs.

The content of the destination register Rd is used as stack address, then Rd is incremented
by dis regardless of any exception occurred.

Operation:

Rs := Rd^;
Rd := Rd + dis;

Exceptions:

None.

Appendix A. Instruction Set Details A-97

Mask MASK

Format:

RRconst format

OP-code 0001 01 Rd-code Rs-code

15 8 7 4 3 0

cosnt2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: const = 18S // const1 (range -16,384..16,383)

e = 1: const = 2S // const1 // const2 (range -1,073,741,824...1,073,741,823)

e const1S

d s

Notation:

MASK Rd, Rs, const

Description:

The result of a bitwise logical AND of the source operand and the immediate operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bit-string of 32 bits each.

Operation:

Rs := Rd and const;
Z := Rd = 0;

Exceptions:

None.

A-98 Appendix A. Instruction Set Details

Move Word MOV

Format:

RR format

Rd-code Rs-code
OP-code

0010 01
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

MOV Rd, Rs

Description:

The source operand is copied to the destination register and condition flags are set or
cleared accordingly.

Operation:

Rd := Rs;
Z := Rd = 0;
N := Rd(31);
V := Undefined

Exceptions:

None.

Appendix A. Instruction Set Details A-99

Move Double Word MOVD

Format:

RR format

Rd-code Rs-code
OP-code

0000 01
d s

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

MOVD Rd, Rs

MOVD Rd, 0 (When SR is denoted as a source operand)

Description:

The double-word source operand is copied to the double-word destination register pair and
condition flags are set or cleared accordingly. The high-order word in Rs is copied first.

When the SR is denoted as a source operand, the source operand is supplied as zero
regardless of the content of SR//G2. When the PC is denoted as destination, the Return
instruction RET is executed instead of the Move Double-Word instruction.

Operation:

If Rd does not denote PC and
Rs does not denote SR then

Rd := Rs;
Rdf := Rsf;
Z := Rd//Rsf = 0;
N := Rd(31);
V := Undefined

If Rd does not denote PC and
Rs denotes SR then

Rd := 0;
Rdf := 0;
Z := 1;
N := 0;
V := Undefined

Exceptions:

None.

A-100 Appendix A. Instruction Set Details

Move Word Immediate MOVI

Format:

Rimm format

15 8 7 4 3 0

imm2

d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values for encoding of imm

imm1

OP-code 0110 01 Rd-code nd n

Notation:

MOVI Rd, imm

Description:

The immediate operand is copied to the destination register and condition flags are set or
cleared accordingly.

Operation:

Rs := imm;
Z := Rd = 0;
N := Rd(31);
V := 0;

Exceptions:

None.

Appendix A. Instruction Set Details A-101

Multiply Word MUL

Format:

RR format

OP-code
1011 11

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

MUL Rd, Rs

Description:

The source operand and the destination operand are multiplied, the low-order word of the
product is placed in the destination register (the high-order product word is not evaluated)
and the condition flags are set or cleared according to the single-word product.

Both operands are either signed or unsigned integers, the product is a single-word integer.

The result is undefined if the PC or the SR is denoted.

Operation:

Rs := low order word of product Rd * Rs;
Z := sinlgeword product = 0;
N := Rd(31);

- sing of singleword product;
- valid for singed operands;

V := undefined;
C := undefined;

Exceptions:

None.

A-102 Appendix A. Instruction Set Details

Multiply Signed Double-Word MULS

Format:

RR format

OP-code
1011 01

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

MULS Rd, Rs

Description:

The source operand and the destination operand are multiplied, the double-word product is
placed in the destination register pair (the destination register expanded by the register
following it) and the condition flags are set or cleared according to the double-word
product.

Both operands are signed integers and the product is a signed double-word integer.

The result is undefined if the PC or the SR is denoted.

Operation:

Rs//Rdf := signed doubleword product Rd * Rs;
Z := Rd//Rdf = 0;

- doubleword product is zero
N := Rd(31);

- doubleword product is negative
V := undefined;
C := undefined;

Exceptions:

None.

Appendix A. Instruction Set Details A-103

Multiply Unsigned Double-Word MULU

Format:

RR format

OP-code
1011 00

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

MULU Rd, Rs

Description:

The source operand and the destination operand are multiplied, the double-word product is
placed in the destination register pair (the destination register expanded by the register
following it) and the condition flags are set or cleared according to the double-word
product.

Both operands are unsigned integers and the product is a unsigned double-word integer.

The result is undefined if the PC or the SR is denoted.

Operation:

Rs//Rdf := unsigned doubleword product Rd * Rs;
Z := Rd//Rdf = 0;

- doubleword product is zero
N := Rd(31);
V := undefined;
C := undefined;

Exceptions:

None.

A-104 Appendix A. Instruction Set Details

Negate (unsigned or unsigned) NEG

Format:

RR format

OP-code
0101 10

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

NEG Rd, Rs

NEG Rd, C (when SR is denoted as a Rs)

Description:

The source operand (Rs) is subtracted from zero, the result is placed in the destination
register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, carry flag C is negated instead of the SR.

Operation:

When Rs is SR

Rd := - C;
Z := Rd = 0; N := Rd(31);
V := overflow; C := carry;
if C is set then Rd := -1;
else Rd := 0;

When Rs is not SR

Rd := - Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

Exceptions:

None.

Appendix A. Instruction Set Details A-105

Negate (signed) NEGS

Format:

RR format

OP-code
0101 11

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

NEGS Rd, Rs

NEGS Rd, C (when SR is denoted as a Rs)

Description:

The source operand (Rs) is subtracted from zero, the result is placed in the destination
register (Rd) and the condition flag are set or cleared accordingly.

Both operands and the result are interpreted as all signed.

When the SR is denoted as a source operand, carry flag C is negated instead of the SR.

Operation:

When Rs is SR

Rd := - C;
Z := Rd = 0;
N := Rd(31);
V := overflow; C := carry;
if C is set then Rd := -1;

else Rd := 0;

When Rs is not SR

Rd := - Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
if overflow then

trap => Range Error

Exceptions:

Overflow: Range Error.

A-106 Appendix A. Instruction Set Details

No Operation NOP

Format:

RR format

OP-code
0000 00

Rs-code (L0)
0000

s
1

d
1

Rd-code (L0)
0000

15 10 9 8 7 4 3 0

Notation:

NOP

Description:

The instruction CHK L0, L0 cannot cause any trap. Since CHK leaves all registers and
condition flags unchanged, it can be used as a No Operation instruction.

Operation:

None.

Exceptions:

None.

Appendix A. Instruction Set Details A-107

Invert NOT

Format:

RR format

OP-code
0100 01

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

NOT Rd, Rs

Description:

The source operand (Rs) is placed bitwise inverted in the designation register and the Z
flag is set or cleared accordingly.

The source operand and the result are interpreted as bit-strings of 32 bits each.

Operation:

Rd := not Rs;
Z := Rd = 0;

Exceptions:

None.

A-108 Appendix A. Instruction Set Details

OR OR

Format:

RR format

OP-code
0011 10

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

OR Rd, Rs

Description:

The result of a bitwise logical OR of the source operand and the destination operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bit-strings of 32 bits each.

Operation:

Rs := Rd or Rs;
Z := Rd = 0;

Exceptions:

None.

Appendix A. Instruction Set Details A-109

OR Immediate ORI

Format:

Rimm format

15 8 7 4 3 0

imm2

d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values for encoding of imm

imm1

OP-code 0111 10 Rd-code nd n

Notation:

ORI Rd, imm

Description:

The result of a bitwise logical OR of the immediate operand and the destination operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bit-strings of 32 bits each.

Operation:

Rs := Rd or imm;
Z := Rd = 0;

Exceptions:

None.

A-110 Appendix A. Instruction Set Details

Return RET

Format:

RR format

OP-code
0000 01

Rs-codesd Rd-code

15 10 9 8 7 4 3 0

s = 0: Rs-code encoded G0..G15 for Rs
s = 1: Rs-code encoded L0..L15 for Rs
d = 0: Rd-code encoded G0..G15 for Rd
d = 1: Rd-code encoded L0..L15 for Rd

Notation:

RET PC, Rs

Description:

The Return instruction returns control from a subprogram entered through a Call, Trap or
Software instruction or an exception to the instruction located at the return address and
restores the status from the saved return status.

The source operand pair Rs//Rsf is placed in the register pair PC//SR. The program counter
PC is restored first from Rs. Then all bits of the status register SR are replaced by Rsf;
except the supervisor flag S, which is restored from bit zero of Rs and except the
instruction length code ILC, which is cleared to zero.

The Return instruction shares its basic OP-code with the Move Double-Word instruction. It
is differentiated from it by denoting the PC as destination register Rd.

Operation:

old S := S; old L := L;
PC := Rs(31..1)//0;
SR := Rs(31..32)//00//Rs(0)//Rsf(17..0); - ILC := 0; S := Rs(0);
If (old S = 0 and S = 1) or (S=0 and old L= 0 and L = 1) then trap => Privilege Error;
difference(6..0) := FP - SP(8..2); - difference is signed, difference(6) = sign bit
If difference > 0 then continue at next instructio;
else

repeat
SP := SP -4; register SP(7..2)^ := memory SP^;
difference := difference + 1;

until difference = 0;

Exceptions:

Privilege Error.

Appendix A. Instruction Set Details A-111

Rotate Left ROL

Format:

LL format

OP-code
1000 1111

Ls-codeLd-code

15 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

ROL Ld, Ls

Description:

The destination operand is shifted left by a number of bit positions and the bits shifted out
are inserted in the vacated bit positions; thus, the destination operand is rotated. The
condition flags are set or cleared accordingly. Bits 4..0 of the source operand specify a
rotation by 0..31 bit positions; bits 31..5 of the source operand are ignored.

Operation:

Ld := Ld rotated left by Ls(4..0);
Z := Ld = 0;
N := Ld(31);
V := undefined;
C := undefined;

Exceptions:

None.

A-112 Appendix A. Instruction Set Details

Shift Right (Signed Single Word) SAR

Format:

LL format

OP-code
1000 0111

Ls-code

15 7 4 3 0

Ld-code

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

SAR Ld, Ls

Description:

The destination operand is shifted right by a number of bit positions specified by bits 4..0
of the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a signed integer.

The Shift Right instruction inserts sign bits in the vacated bit positions at the left.

Operation:

Ld := Ld >> by Ls(4..0);
Z := Ld =0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

Appendix A. Instruction Set Details A-113

Shift Right (Signed Double Word) SARD

Format:

LL format

OP-code
1000 0110

Ls-code

15 7 4 3 0

Ld-code

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

SARD Ld, Ls

Description:

The destination operand is shifted right by a number of bit positions specified by bits 4..0
of the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a signed double-word integer.

The Shift Right instruction inserts sign bits in the vacated bit positions at the left.

The double-word Shift Right instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf >> by Ls(4..0);
Z := Ld//Ldf =0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

A-114 Appendix A. Instruction Set Details

Shift Right Immediate (Signed Double Word) SARDI

Format:

Ln format

OP-code
1000 010

nn

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
n: Bit 8//bit 3..0 encode n = 0..31

Ld-code

89

Notation:

SARDI Ld, n

Description:

The destination operand is shifted right by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a signed double-word integer.

The Shift Right instruction inserts sign bits in the vacated bit positions at the left.

The double-word Shift Right instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf >> by n;
Z := Ld//Ldf = 0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

Appendix A. Instruction Set Details A-115

Shift Right Immediate (Signed Single Word) SARI

Format:

Rn format

OP-code
1010 01

nn

15 7 4 3 0

d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8//bit 3..0 encode n = 0..31

Rd-code

89

d

Notation:

SARI Ld, n

Description:

The destination operand is shifted right by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a signed integer.

The Shift Right instruction inserts sign bits in the vacated bit positions at the left.

Operation:

Ld := Ld >> by n;
Z := Ld/ = 0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

A-116 Appendix A. Instruction Set Details

Shift Left (Single Word) SHL

Format:

LL format

OP-code
1000 1011

Ls-code

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
Ls-code encodes L0..L15 for Ls

Ld-code

8

Notation:

SHL Ld, Ls

Description:

The destination operand is shifted left by a number of bit positions specified by bits 4..0 of
the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a signed or unsigned integer.

The Shift Left instruction inserts zeros in the vacated bit positions at the right.

Operation:

Ld := Ld << by Ls(4..0);
Z := Ld = 0;
N := Ld(31);
C := undefined;
V := undefined;

Exceptions:

None.

Appendix A. Instruction Set Details A-117

Shift Left (Double Word) SHLD

Format:

LL format

OP-code
1000 1010

Ls-code

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
Ls-code encodes L0..L15 for Ls

Ld-code

8

Notation:

SHLD Ld, Ls

Description:

The destination operand is shifted left by a number of bit positions specified by bits 4..0 of
the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a signed or unsigned double-word
integer.

The Shift Left instruction inserts zeros in the vacated bit positions at the right.

The double-word Shift Left instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf << by Ls(4..0);
Z := Ld//Ldf = 0;
N := Ld(31);
C := undefined;
V := undefined;

Exceptions:

None.

A-118 Appendix A. Instruction Set Details

Shift Left Immediate (Double Word) SHLDI

Format:

Ln format

OP-code
1000 100

n

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
n: Bit 8//bit 3..0 encode n = 0..31

Ld-code

8

n

9

Notation:

SHLDI Ld, n

Description:

The destination operand is shifted left by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a signed or unsigned double-
word integer.

The Shift Left instruction inserts zeros in the vacated bit positions at the right.

The double-word Shift Left instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf << by n;
Z := Ld//Ldf = 0;
N := Ld(31);
C := undefined;
V := undefined;

Exceptions:

None.

Appendix A. Instruction Set Details A-119

Shift Left Immediate (Single Word) SHLI

Format:

Rn format

OP-code
1010 10

nn

15 7 4 3 0

d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8//bit 3..0 encode n = 0..31

Rd-code

89

d

Notation:

SHLI Ld, n

Description:

The destination operand is shifted left by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a signed or unsigned integer.

The Shift left instruction inserts zeros in the vacated bit positions at the right.

Operation:

Ld := Ld << by n;
Z := Ld = 0;
N := Ld(31);
C := undefined;
V := undefined;

Exceptions:

None.

A-120 Appendix A. Instruction Set Details

Shift Right (Unsigned Single Word) SHR

Format:

LL format

OP-code
1000 0011

Ls-code

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
Ls-code encodes L0..L15 for Ls

Ld-code

8

Notation:

SHR Ld, Ls

Description:

The destination operand is shifted right by a number of bit positions specified by bits 4..0
of the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a unsigned integer.

The Shift Right instruction inserts zeros in the vacated bit positions at the left.

Operation:

Ld := Ld >> by Ls(4..0);
Z := Ld =0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

Appendix A. Instruction Set Details A-121

Shift Right (Unsigned Double Word) SHRD

Format:

LL format

OP-code
1000 0010

Ls-code

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
Ls-code encodes L0..L15 for Ls

Ld-code

8

Notation:

SHRD Ld, Ls

Description:

The destination operand is shifted right by a number of bit positions specified by bits 4..0
of the source operand as a shift by 0..31. The higher-order bits of the source operand are
ignored. The destination operand is interpreted as a unsigned double-word integer.

The Shift Right instruction inserts zeros in the vacated bit positions at the left.

The double-word Shift Right instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf >> by Ls(4..0);
Z := Ld//Ldf =0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

A-122 Appendix A. Instruction Set Details

Shift Right Immediate (Unsigned Double Word) SHRDI

Format:

Ln format

OP-code
1000 000

n

15 7 4 3 0

Ld-code encodes L0..L15 for Ld
n: Bit 8//bit 3..0 encode n = 0..31

Ld-code

8

n

9

Notation:

SHRDI Ld, n

Description:

The destination operand is shifted right by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a unsigned double-word
integer.

The Shift Right instruction inserts zeros in the vacated bit positions at the left.

The double-word Shift Right instruction executes in two cycles. The high-order operand in
Ld is shifted first. The result is undefined if Ls denotes the same register as Ld or Ldf.

Operation:

Ld//Ldf := Ld//Ldf >> by n;
Z := Ld//Ldf = 0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

Appendix A. Instruction Set Details A-123

Shift Right Immediate (Unsigned Single Word) SHRI

Format:

Rn format

OP-code
1010 00

nn

15 7 4 3 0

d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8//bit 3..0 encode n = 0..31

Rd-code

89

d

Notation:

SHRI Ld, n

Description:

The destination operand is shifted right by a number of bit positions specified by n = 0..31
as a shift by 0..31. The destination operand is interpreted as a unsigned integer.

The Shift Right instruction inserts zeros in the vacated bit positions at the left.

Operation:

Ld := Ld >> by n;
Z := Ld/ = 0;
N := Ld(31);
C := last bit shifted out is "one"

Exceptions:

None.

A-124 Appendix A. Instruction Set Details

Set Stack Address SETADR

Format:

Rn format

OP-code
1011 10

n
0000

d

15 7 4 3 0

d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31

n
0

Rd-code

Notation:

SETADR Rd

Description:

The Set Stack Address instruction calculates the stack address of the beginning of the
current stack frame. L0..L15 of this frame can then be addressed relative to this stack
address in the stack address mode with displacement values of 0..60 respectively.

The frame pointer FP is placed, expanded to the stack address, in the destination register.
The FP itself and all condition flags remain unchanged. The expanded FP address is the
address at which the content of L0 would be stored if pushed onto the memory part of the
stack.

The Set Stack Address instruction shares the basic OP-code SETxx, it is differentiated by n
= 0 and not denoting the SR or the PC.

Operation:

Rd := SP(31..9) // SR(31..25) // 00 + carry into bit 9
- SR(31..25) is FP
- carry into bit 9 := (SP(8)=1 and SR(31)=0)

Exceptions:

None.

Appendix A. Instruction Set Details A-125

Set Conditional Instruction SETxx

Format:

Rn format

OP-code
1011 10

nd

15 7 4 3 0

d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31

n Rd-code

Notation:

SETxx Rd

Description:

The destination register is set or cleared according to the states of the condition flags
specified by n. The condition flags themselves remain unchanged.

The Set Conditional instruction share the basic OP-code SETxx, they are differentiated by
n = 1..31 and not denoting the SR or the PC.

l n = 0 while not denoting the SR or the PC differentiates the Set Stack Address
instruction.

l n = 1..31 while not denoting the SR or the PC differentiates the Set Conditional
instruction.

l Denoting the SR differentiates the Fetch instruction.

l Denoting the PC is reserved for future use.

Operation:

 n Notation or Alternative Operation

 1 Reserved

 2 SET1 Rd Rd := 1;

 3 SET0 Rd Rd := 0;

 4 SETLE Rd if N = 1 or Z = 1 then Rd := 1 else Rd := 0;

 5 SETGT Rd if N = 0 and Z = 0 then Rd := 1 else Rd := 0;

 6 SETLT Rd SETN Rd if N = 1 then Rd := 1 else Rd := 0;

 7 SETGE Rd SETNN Rd if N = 0 then Rd := 1 else Rd := 0;

 8 SETSE Rd if C = 1 or Z = 1 then Rd := 1 else Rd := 0;

 9 SETHT Rd if C = 0 and Z = 0 then Rd := 1 else Rd := 0;

 10 SETST Rd SETC Rd if C = 1 then Rd := 1 else Rd := 0;

A-126 Appendix A. Instruction Set Details

Set Conditional Instruction (continued) SETxx

 n Notation or Alternative Operation

 11 SETHE Rd SETNC Rd if C = 0 then Rd := 1 else Rd := 0;

 12 SETE SETZ if Z = 1 then Rd := 1 else Rd := 0;

 13 SETNE SETNZ if Z = 0 then Rd := 1 else Rd := 0;

 14 SETV Rd if V = 1 then Rd := 1 else Rd := 0;

 15 SETNV Rd if V = 0 then Rd := 1 else Rd := 0;

 16 Reserved

 17 Reserved

 18 SET1M Rd Rd := -1;

 19 Reserved

 20 SETLEM Rd if N = 1 or Z = 1 then Rd := -1 else Rd := 0;

 21 SETGTM Rd if N = 0 and Z = 0 then Rd := -1 else Rd := 0;

 22 SETLTM Rd SETNM Rd if N = 1 then Rd := -1 else Rd := 0;

 23 SETGEM Rd SETNNM Rd if N = 0 then Rd := -1 else Rd := 0;

 24 SETSEM Rd if C = 1 or Z = 1 then Rd := -1 else Rd := 0;

 25 SETHTM Rd if C = 0 and Z = 0 then Rd := -1 else Rd := 0;

 26 SETSTM Rd SETCM Rd if C = 1 then Rd := -1 else Rd := 0;

 27 SETHEM Rd SETNCM Rd if C = 0 then Rd := -1 else Rd := 0;

 28 SETEM SETZM if Z = 1 then Rd := -1 else Rd := 0;

 29 SETNEM SETNZM if Z = 0 then Rd := -1 else Rd := 0;

 30 SETVM Rd if V = 1 then Rd := -1 else Rd := 0;

 31 SETNVM Rd if V = 0 then Rd := -1 else Rd := 0;

Exceptions:

None.

Appendix A. Instruction Set Details A-127

Store (absolute address mode) STxx.A

Format:

RRdis format

OP-code 1001 10 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STxx.A 0, Rs, dis

Description:

The Store instruction of absolute address mode transfers data from a register Rs or a
register pair Rs//Rsf into the addressed memory location, displacement dis is used as an
address.

The displacement dis is used as an address into memory address space. Rd must denote the
SR to differentiate this mode from the displacement address mode; the content of the SR is
not used.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

dis^ := Rs;
[(dis+4)^ := Rsf;]

Exceptions:

None.

A-128 Appendix A. Instruction Set Details

Store Double Word (post-increment address mode) STD.P

Format:

LR format

OP-code
1101 111

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

STD.P Ld, Rs

Description:

The Store instruction of post-increment address mode transfers data from a register pair
Rs//Rsf into the addressed memory location, Ld is used as an address.

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of double-word memory
instruction by 8, regardless of any exception occurring. Ld is incremented by 8 at the first
memory cycle.

Operation:

Ld^ := Rs; Ld := Ld +size;
(old Ld + 4)^ := Rsf;

Exceptions:

None.

Appendix A. Instruction Set Details A-129

Store Double Word (register address mode) STD.R

Format:

LR format

OP-code
1101 101

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

STD.R Ld, Rs

Description:

The Store instruction of register address mode transfers data from a register pair Rs//Rsf
into the addressed memory location, Ld is used as an address.

The content of the destination register Ld is used as an address into memory address space.

Operation:

Ld^ := Rs;
(Ld + 4)^ := Rsf;

Exceptions:

None.

A-130 Appendix A. Instruction Set Details

Store (displacement address mode) STxx.D

Format:

RRdis format

OP-code 1001 10 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STxx.D Rd, Rs, dis

Description:

The Store instruction of displacement address mode transfers data from a register Rs or a
register pair Rs//Rsf. into the addressed memory location, Rd plus a signed dis is used as
an address.

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the absolute address mode.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

(Rd + dis)^ := Rs;
[(Rd + dis +4)^ := Rsf;]

Exceptions:

None.

Appendix A. Instruction Set Details A-131

Store (I/O absolute address mode) STxx.IOA

Format:

RRdis format

OP-code 1001 10 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STxx.IOA 0, Rs, dis

Description:

The Store instruction of I/O absolute address mode transfers data from a register Rs or a
register pair Rs//Rsf into the addressed memory location, dis is used as an address.

The displacement dis is used as an address into I/O address space.

Rd must denote the SR to differentiate this mode from the I/O displacement address mode;
the content of the SR is not used.

Data type xx is with

W: Word D: Double-word

Operation:

dis^ := Rs;
[(dis +4)^ := Rsf;]

Exceptions:

None.

A-132 Appendix A. Instruction Set Details

Store (I/O displacement address mode) STxx.IOD

Format:

RRdis format

OP-code 1001 10 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STxx.IOD Rd, Rs, dis

Description:

The Store instruction of I/O displacement address mode transfers data from a register Rs or
a register pair Rs//Rsf. into the addressed memory location, Rd plus a signed dis is used as
an address.

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an I/O address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the I/O absolute address mode.

Data type xx is with

W: Word D: Double-word

Operation:

(Rd + dis)^ := Rs;
[(Rd + dis +4)^ := Rsf;]

Exceptions:

None.

Appendix A. Instruction Set Details A-133

Store (next address mode) STxx.N

Format:

RRdis format

OP-code 1001 11 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STxx.N Rd, Rs, dis

Description:

The Store instruction of next address mode transfers data from a register Rs or a register
pair Rs//Rsf into the addressed memory location, Rd is used as an address.

The content of the destination register Rd is used as an address into memory address space,
then Rd is incremented by the signed displacement dis regardless of any exception
occurring. At a double-word data type, Rd is incremented at the first memory cycle.

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Data type xx is with

BU: Byte unsigned HU: Halfword unsigned W: Word

BS: Byte singed HS: Halfword signed D: Double-word

Operation:

Rd^ := Rs; Rd := Rd + dis;
[(old Rd +4)^ := Rsf;]

Exceptions:

None.

A-134 Appendix A. Instruction Set Details

Store Word (post-increment address mode) STW.P

Format:

LR format

OP-code
1101 110

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

STW.P Ld, Rs

Description:

The Store instruction of post-increment address mode transfers data from a register Rs into
the addressed memory location, Ld is used as an address.

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of a word by 4, regardless of
any exception occurring.

Operation:

Ld^ := Rs;
Ld := Ld + 4;

Exceptions:

None.

Appendix A. Instruction Set Details A-135

Store Word (register address mode) STW.R

Format:

LR format

OP-code
1101 100

Ld-code Rs-code

15 8 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs

Ld-code encodes L0..L15 for Ld

s

Notation:

STW.R Ld, Rs

Description:

The Store instruction of register address mode transfers data from into a register Rs into
the addressed memory location, Ld is used as an address.

The content of the destination register Ld is used as an address into memory address space.

Operation:

Ld^ := Rs;

Exceptions:

None.

A-136 Appendix A. Instruction Set Details

Store Word (stack address mode) STW.S

Format:

RRdis format

OP-code 1001 11 Rd-code Rs-code

15 8 7 4 3 0

dis2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: dis = 20S // dis1(range -4,096..4,095)

e = 1: dis = 4S // dis1 // dis2 (range -268,435,456...268,435,455)
DD: D-code, D13..D12 encode data types at memory instructions

e dis1S

d s

DD

Notation:

STW.S Rd, Rs, dis

Description:

The Store instruction of stack address mode transfers data from into a register Rs into the
addressed memory location, Ld is used as an address.

The content of the destination register Rd is used as stack address, then Rd is incremented
by dis regardless of any exception occurred.

Operation:

Rd^ := Rs;
Rd := Rd + dis;

Exceptions:

None.

Appendix A. Instruction Set Details A-137

Subtract SUB

Format:

RR format

OP-code
0100 10

Rs-coded

15 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd

s Rd-code

89

Notation:

SUB Rd, Rs

SUB Rd, C (When SR is denoted as a source operand)

Description:

The source operand is subtracted form the destination operand, the result is placed in the
destination register and the condition flags are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, C is subtracted instead of the SR.

Operation:

When Rs does not denote SR

Rd := Rd - Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := borrow;

When Rs denotes SR

Rd := Rd - C;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := borrow;

Exceptions:

None.

A-138 Appendix A. Instruction Set Details

Subtract with Borrow SUBC

Format:

RR format

OP-code
0100 00

Rs-coded

15 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd

s Rd-code

89

Notation:

SUBC Rd, Rs

SUBC Rd, C (When SR is denoted as a source operand)

Description:

The source operand + C is subtracted form the destination operand, the result is placed in
the destination register and the condition flags are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, C is subtracted instead of the SR.

Operation:

When Rs does not denote SR

Rd := Rd - (Rs + C);
Z := Z and (Rd = 0);
N := Rd(31);
V := overflow;
C := borrow;

When Rs denotes SR

Rd := Rd - C;
Z := Z and (Rd = 0);
N := Rd(31);
V := overflow;
C := borrow;

Exceptions:

None.

Appendix A. Instruction Set Details A-139

Signed Subtract with Trap SUBS

Format:

RR format

OP-code
0100 11

Rs-coded

15 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd

s Rd-code

89

Notation:

SUBS Rd, Rs

SUBS Rd, C (When SR is denoted as a source operand)

Description:

The source operand is subtracted form the destination operand, the result is placed in the
destination register and the condition flags are set or cleared accordingly.

Both operands and the result are interpreted as all signed integers and a trap to Range Error
occurs at overflow.

When the SR is denoted as a source operand, C is subtracted instead of the SR.

Operation:

When Rs does not denote SR

Rd := Rd - Rs
Z := Rd = 0;
N := Rd(31);
V := overflow;
If overflow then

trap => Range Error

When Rs denotes SR

Rd := Rd - Rs;
Z := Rd = 0;
N := Rd(31);
V := overflow;
If overflow then

trap => Range Error

Exceptions:

Overflow (Trap to Range Error).

A-140 Appendix A. Instruction Set Details

Sum SUM

Format:

RRconst format

OP-code 0001 10 Rd-code Rs-code

15 8 7 4 3 0

cosnt2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: const = 18S // const1 (range -16,384..16,383)

e = 1: const = 2S // const1 // const2 (range -1,073,741,824...1,073,741,823)

e const1S

d s

Notation:

SUM Rd, Rs, const

SUM Rd, C, const (When SR is denoted as a source operand)

Description:

The sum of the source operand is placed in the destination register and the condition flags
are set or cleared accordingly.

Both operands and the result are interpreted as either all signed or all unsigned integers.

When the SR is denoted as a source operand, C is added instead of the SR.

Operation:

When Rs does not denote SR

Rd := Rs + const;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

When Rs denotes SR

Rd := C + const;
Z := Rd = 0;
N := Rd(31);
V := overflow;
C := carry;

Exceptions:

None.

Appendix A. Instruction Set Details A-141

Signed Sum with Trap SUMS

Format:

RRconst format

OP-code 0001 11 Rd-code Rs-code

15 8 7 4 3 0

cosnt2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
S : Sign bit of dis, e = 0: const = 18S // const1 (range -16,384..16,383)

e = 1: const = 2S // const1 // const2 (range -1,073,741,824...1,073,741,823)

e const1S

d s

Notation:

SUMS Rd, Rs, const

SUMS Rd, C, const (When SR is denoted as a source operand)

Description:

The sum of the source operand is placed in the destination register and the condition flags
are set or cleared accordingly.

Both operands and the result are interpreted as all signed integers and a trap to Range Error
occurs at overflow.

When the SR is denoted as a source operand, C is added instead of the SR.

Operation:

When Rs does not denote SR

Rd := Rs + const;
Z := Rd = 0;
N := Rd(31);
V := overflow;
If overflow then

trap => Range Error

When Rs denotes SR

Rd := C + const;
Z := Rd = 0;
N := Rd(31);
V := overflow;
If overflow then

trap => Range Error

Exceptions:

Overflow (Trap to Range Error).

A-142 Appendix A. Instruction Set Details

Test Leading Zeros TESTLZ

Format:

LL format

OP-code
1000 1110

Ls-codeLd-code

15 7 4 3 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Notation:

TESTLZ Ld, Ls

Description:

The number of leading zeros in the source operand is tested and placed in the destination
register. A source operand equal to zero yields 32 as a result. All condition flags remain
unchanged.

Operation:

Ld := number of leading zeros in Ls;

Exceptions:

None.

Appendix A. Instruction Set Details A-143

Trap TRAPxx

Format:

PCadr format

OP-code
1111 1101

adr-byte

15 7 0

adr = 24 ones's // adr-byte(7..2) // 00;

8

Notation:

TRAPxx trapno

Description:

The Trap instructions TRAP and any of the conditional Trap instructions when the trap
condition is met, cause a branch to one out of 64 supervisor subprogram entries (see
section 2.4. Entry Tables).

When the trap condition is not met, instruction execution proceeds sequentially.

When the subprogram branch is taken, the subprogram entry address adr is placed in the
program counter PC and the supervisor-state flag S is set to one. The old PC containing the
return address is saved in the register addressed by FP + FL; the old S flag is also saved in
bit zero of this register. The old status register SR is saved in the register addressed by
FP + FL + 1 (FL = 0 is interpreted as FL = 16); the saved instruction-length code ILC
contains the length (1) of the Trap instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged. Then
instruction execution proceeds at the entry address placed in the PC.

The trap instructions are differentiated by the 12 code values given by the bits 9 and 8 of
the OP-code and bits 1 and 0 of the adr-byte (code = OP(9..8)//adr-byte(1..0)). Since
OP(9..8) = 0 does not denote Trap instructions (the code is occupied by the BR instruction),
trap codes 0..3 are not available.

A-144 Appendix A. Instruction Set Details

Trap (continued) TRAPxx

Operation:

Code Notation Operation

 4 TRAPLE trapno if N = 1 or Z = 1 then execute TRAP else execute next instruction;

 5 TRAPGT trapno if N = 0 and Z = 0 then execute TRAP else execute next
instruction;

 6 TRAPLT trapno if N = 1 then execute TRAP else execute next instruction;

 7 TRAPGE trapno if N = 0 then execute TRAP else execute next instruction;

 8 TRAPSE trapno if C = 1 or Z = 1 then execute TRAP else execute next instruction;

 9 TRAPHT trapno if C = 0 and Z = 0 then execute TRAP else execute next
instruction;

 10 TRAPST trapno if C = 1 then execute TRAP else execute next instruction;

 11 TRAPHE trapno if C = 0 then execute TRAP else execute next instruction;

 12 TRAPE trapno if Z = 1 then execute TRAP else execute next instruction;

 13 TRAPNE trapno if Z = 0 then execute TRAP else execute next instruction;

 14 TRAPV trapno if V = 1 then execute TRAP else execute next instruction;

 15 TRAP trapno PC := adr;
 S := 1;
 (FP + FL)^ := old PC(31..1)//old S;
 (FP + FL + 1)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 6;
 M := 0;
 T := 0;
 L := 1;

trapno indicates one of the traps 0..63.

Exceptions:

None.

Appendix A. Instruction Set Details A-145

Index Move XMx

Format:

RRlim format

15 8 7 4 3 0

lim2

s = 0: Rs-code encodes G0..G15 for Rs, s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
XXX: X-code, X14..X12 encode index instructions
e = 0: lim = 20 zeros // lim1, range 0..4,095
e = 1: lim = 4 zeros // lim1 // lim2, range 0..268,435,455

lim1

OP-code 0001 00 Rd-code Rs-coded s

9

e XXX

Notation:

XMx Rd, Rs, imm

XMx Rd, Rs, 0 (Move without flag change)

Description:

The source operand is placed shifted left by 0, 1, 2 or 3 bit positions in the destination
register, corresponding to a multiplication by 1, 2, 4 or 8. At XM1..XM4, a trap to Range
Error occurs if the source operand is higher than the immediate operand lim (upper bound).

All condition flags remain unchanged. All operands and the result are interpreted as
unsigned integers.

The SR must not be denoted as a source or as a destination, nor the PC as a destination
operand; these notations are reversed for future expansion. When the PC is denoted as a
source operand, a trap to Range Error occurs if PC > lim.

Operation:

X-code Format Notation Operation

 0 RRlim XM1 Rd, Rs, lim Rd := Rs ∗ 1;
 if Rs > lim then
 trap ⇒ Range Error;

 1 RRlim XM2 Rd, Rs, lim Rd := Rs ∗ 2;
 if Rs > lim then
 trap ⇒ Range Error;

 2 RRlim XM4 Rd, Rs, lim Rd := Rs ∗ 4;
 if Rs > lim then
 trap ⇒ Range Error;

A-146 Appendix A. Instruction Set Details

Index Move (continued) XMx

 3 RRlim XM8 Rd, Rs, lim Rd := Rs ∗ 8;
 if Rs > lim then
 trap ⇒ Range Error;

 4 RRlim XX1 Rd, Rs, 0 Rd := Rs ∗ 1; -- Move without flag change

 5 RRlim XX2 Rd, Rs, 0 Rd := Rs ∗ 2;

 6 RRlim XX4 Rd, Rs, 0 Rd := Rs ∗ 4;

 7 RRlim XX8 Rd, Rs, 0 Rd := Rs ∗ 8;

Exceptions:

None.

Appendix A. Instruction Set Details A-147

Exclusive OR XOR

Format:

RR format

OP-code
0011 11

Rs-coded

15 7 4 3 0

s = 0: Rs-code encodes G0..G15 for Rs
s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd

s Rd-code

89

Notation:

XOR Rd, Rs

Description:

The result of a bitwise exclusive OR (XOR) of the source operand (Rs) and the destination
operand (Rd) is placed in the destination register (Rd) and the Z flag is set or cleared
accordingly.

All operands and the results are interpreted as bit-stings of 32bits each.

Operation:

Rd := Rd xor Rs;
Z := Rd = 0;

Exceptions:

None.

A-148 Appendix A. Instruction Set Details

Exclusive OR Immediate XORI

Format:

Rimm format

15 8 7 4 3 0

imm2

d = 0: Rd-code encodes G0..G15 for Rd, d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8 // bits 3..0 encode n = 0..31, see Table 2.3 Encoding of Immediate Values for encoding of imm

imm1

OP-code 0111 11 Rd-code nd n

Notation:

XORI Rd, imm

Description:

The result of a bitwise exclusive OR (XOR) of the immediate operand (imm) and the
destination operand (Rd) is placed in the destination register (Rd) and the Z flag is set or
cleared accordingly.

All operands and the results are interpreted as bit-stings of 32bits each.

Operation:

Rd := Rd xor imm;
Z := Rd = 0;

Exceptions:None.

