32-Bit RISC Microcontroller

CMOS

FR Family MB91110 Series

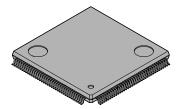
MB91110/MB91V110

■ DESCRIPTION

The MB91110 series is a standard single-chip micro controller featuring various I/O resources and bus control mechanisms to incorporate the control with required for high performance high-speed CPU processes, having a 32-bit RISC CPU (FR30 series) in its core. Although external bus access is the basis for supporting a large address space accessible by a 32-bit CPU, a 1-KB instruction cache memory has been built-in to increase the instruction/execution speed of the CPU.

This unit features the optimal specifications for incorporating applications that require high performance CPU processing power such as navigation systems, high performance facsimile systems, printer control, etc.

■ FEATURES


FR30CPU

- 32-bit RISC, load / store architecture, 5-level pipeline
- Operating frequency: external 25 MHz, internal 50 MHz
- Multi-purpose register : 32 bits × 16
- 16-bit fixed length instructions (basic instruction), 1 instruction per cycle
- Instructions for barrel shift, bit processing and inter memory transfers : Instructions suited to loading purposes
- Function entry / exit instruction, multi load / store instruction of register details: Instruction capable of handling High level language instruction.
- Register Interlock function : Simplification of assembler description

(Continued)

■ PACKAGE

144-pin plastic LQFP

(FPT-144P-M08)

(Continued)

- Branch instruction with delay slot: Reduction in overheads in case of branching
- Multiplier is built-in / Supported at instruction level

Signed 32-bit multiplication: 5 cycles

Signed 16-bit multiplication: 3 cycles

• Interruption (saving PC and PS): 6 cycles, 16 priority levels

Bus Interface

- 24-bit address bus (16 MB space)
- · Operating frequency: 25 MHz
- 16- / 8-bit data bus
- Basic external bus cycle: 2 clock cycles
- Chip select output that can be set to a minimum 64-Kbyte units
- Interface support for various memories

DRAM interface (areas 4, 5)

- Automatic waiting cycle: Can be randomly set from 0 to 7 cycles per area
- Unused data and address pins can be used as input/output ports.
- Supports "little endian" mode (One area is selected from areas 1 to 5)

DRAM Interface

- 2-bank individual control (area 4, 5)
- Normal mode / high speed page mode
- Basic bus cycles: normally 5 cycles, 1 cycle access is possible in high-speed page mode.
- Programmable waveform: 1 cycle waiting can be inserted automatically in RAS and CAS.
- · DRAM refresh

CBR refresh (Interval is randomly set using the 6-bit timer.)

Self refresh mode

- Supports addresses for 8, 9, 10 and 12 columns
- 2CAS/1WE or 2WE/1CAS can be selected.

Cache Memory

- 1 KB instruction cache
- · 2 way set associative
- 32 blocks / way, 4 entries (4 words) / block
- · Lock function: Residing in the specified program codes at cache

DMA Controller (DMAC)

- 5 channels
- External → external 2.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Internal → external 1.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Address register (inc, dec, or reload are possible) : 32 bits \times 5 channels
- Transfer count register (reload possible) : 16 bits × 5 channels
- Transfer factors: external pin / built-in resources interruption request / software
- Transfer sequence

Step transfer / block transfer

Burst / consecutive transfer

- Transfer data length: 8-bit, 16-bit or 32-bit can be selected
- Suspension is possible using NMI / interruption request

UART

- · Fully duplicated double buffer
- Data length: 7 to 9 bits (without parity), 6 to 8 bits (with parity)

- Asynchronous (start-stop synchronization) or CLK synchronized communication can be selected.
- Multiprocessor mode
- Dedicated baud rate generator is built-in.
- External clock can be used as the transfer clock
- · Baud rate clock can be output
- Error detection : parity, frame, overrun

PPG Timer

- 16 bits, 6 channels (frequency setting register / duty setting register)
- PWM function or one-shot function can be selected
- Initiation : Software or external trigger can be selected

A/D Converter (sequential conversion type)

- 10-bit resolution, 8 channels
- Sequential comparison conversion: 5.6 μs in the case of 25 MHz
- Sample & hold circuit is built-in.
- Conversion mode : Single, scan or repeat conversion can be selected.
- Initiation : Software, external trigger or built-in timer can be selected.

Reloading Timer

- 16-bit timer: 2 channels
- Internal clock: 2 clock cycle resolutions, 2, 8 or 32 cycles can be selected.
- Pin input : event counter input / gate function
- · Rectangular wave output

Other Interval Timer

Watchdog timer: 1 channel

Bit Search Module

• Searches the first "1" / "0" change bit positions within 1 cycle from MSB in 1 word.

Interruption Controller

- External interruption input: Mask impossible interruption (NMI), normal interruption × 8 (INT0 to INT7)
- Internal interruption factors: UART, DMAC, A/D, reloading timer, PPG timer, delay interruption
- Priority levels are programmable except for mask impossible interruption (16 levels)

Reset Factors

Power-on reset / hardware standby / watchdog timer / software reset / external reset

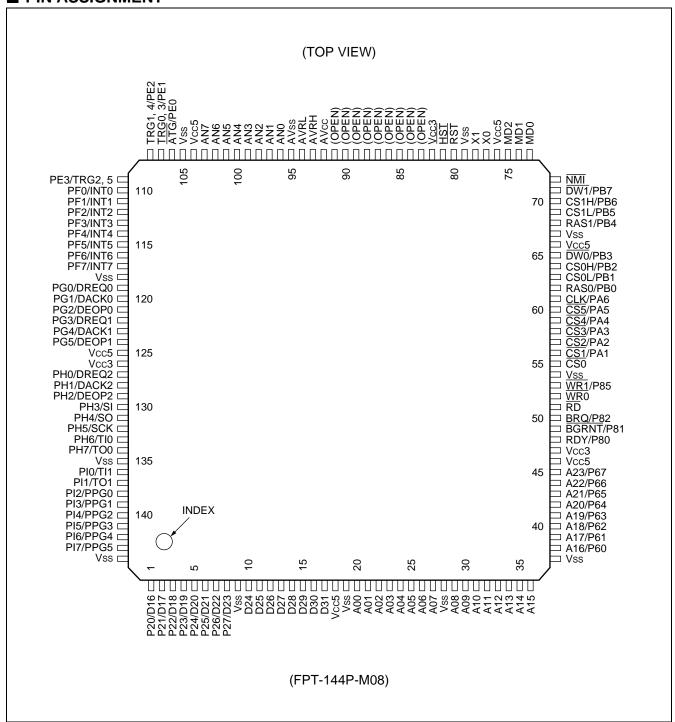
Low Power Consumption Mode

• Sleep / stop mode

Clock Control

• Gear functions: Operating clock frequencies peripheral to the CPU can be set randomly and independently. Gear locks can be selected from 1/1, 1/2, 1/4 or 1/8 (or 1/2, 1/4, 1/8, or 1/16).

Others


• Package: LQFP-144

CMOS technology : 0.35 μm
 Power : 5.0 V ± 10%, 3.3 V ± 5%

■ PRODUCT LINEUP

	MB91V110 (For evaluation)	MB91110 (I-RAM mounted version)
I-RAM	16 Kbyte	16 Kbyte
RAM	5 Kbyte	5 Kbyte
ROM	_	_
I-\$	1 Kbyte	1 Kbyte
DSU3 evaluation function	Mounted	_

■ PIN ASSIGNMENT

■ PIN DESCRIPTIONS

Pin no.	Pin name	I/O*	Circuit type	Function
1 2 3 4 5 6 7 8	D16/P20 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27	I/O	С	These pins use bits 16 to 23 of the external data bus. They can be used as a port (P20 to P27) if the external bus width is 8 bits.
10 11 12 13 14 15 16 17	D24 D25 D26 D27 D28 D29 D30 D31	I/O	С	These pins use bits 24 to 31 of the external data bus.
20 21 22 23 24 25 26 27	A00 A01 A02 A03 A04 A05 A06 A07	I/O	С	These pins use bits 00 to 07 of the external address bus.
29 30 31 32 33 34 35 36	A08 A09 A10 A11 A12 A13 A14 A15	I/O	С	These pins use bits 08 to 15 of the external address bus.
38 39 40 41 42 43 44 45	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66 A23/P67	I/O	С	These pins use bits 16 to 23 of the external address bus.
48	RDY/P80	I/O	С	This is for external ready input. "0" is input if the bus cycle being executed is incomplete. It can be used as a port when not otherwise used.
49	BGRNT/P81	I/O	Н	This is the external bus open reception output. "L" is output if the external bus is opened. It can be used as a port when not otherwise used.

Pin no.	Pin name	I/O*	Circuit type		Functio	n	
50	BRQ/P82	I/O	С	This is the external bus open request input. "1" is input if the external bus is to be opened. It can be used as a port when not otherwise used.			
51	\overline{RD}	0	G	This is the ext	ernal bus read strob	oe.	
52	WR0	0	G	This is the ext	ernal bus write strol	be.	
					16-bit bus width	8-bit bus width	
53	WR1/P85	I/O	Н	D31-24	WR0	WR0	
				D23-16	WR1	(Port is possible)	
55	CS0	0	G	Chip select 0	output (Low active)		
56 57 58 59 60	CS1/PA1 CS2/PA2 CS3/PA3 CS4/PA4 CS5/PA5	I/O	н	Chip select 1 output (Low active) Chip select 2 output (Low active) Chip select 3 output (Low active) Chip select 4 output (Low active) Chip select 5 output (Low active) They can be used as ports when not otherwise used.			
61	CLK/PA6	I/O	н	This is the system clock output. The same clock as the standard clock is output. This can be used as a port when not otherwise used.			
62 63 64 65 68 69 70 71	RAS0/PB0 CS0L/PB1 CS0H/PB2 DW0/PB3 RAS1/PB4 CS1L/PB5 CS1H/PB6 DW1/PB7	I/O	Н	RAS output with DRAM bank 0. CASL output with DRAM bank 0. CASH output with DRAM bank 0. WE output with DRAM bank 0. (Low active) RAS output with DRAM bank 1. CASL output with DRAM bank 1. CASH output with DRAM bank 1. WE output with DRAM bank 1. They can be used as ports when not otherwise used.			
72	NMI	I	Е	Non Maskable	Interrupt (NMI) inp	ut. (Low active)	
73 74 75	MD0 MD1 MD2	I	I	These are mode pins from 0 to 2. Basic MCU operation modes are set using these pins. They should be connected directly to Vcc or Vss for use.			
77 78	X0 X1	I 0	А	Clock (oscillation) input. Clock (oscillation) output.			
80	RST	I	В	This is the ext	ernal reset input. (L	ow active)	
81	HST	I	Е	This is the har	dware standby inpu	it. (Low active)	
83	(OPEN)		_	Set this to OPEN.			
84 85 86	(OPEN) (OPEN) (OPEN)	—	_	Set this to OP	Set this to OPEN. Set this to OPEN.		

Pin no.	Pin name	I/O*	Circuit type	Function	
87 88 89 90	(OPEN) (OPEN) (OPEN) (OPEN)	_	_	Set this to OPEN.	
91	(OPEN)		_	Set this to OPEN.	
92	AVcc	_	_	Vcc power supply for the A/D converter.	
93	AVRH	_	_	A/D converter reference voltage (high potential side). Be sure to turn on/off this pin with potential higher than AVRH applied to Vcc .	
94	AVRL	_	_	A/D converter reference voltage (low potential side).	
95	AVss		_	Vss power supply for the A/D converter.	
96 97 98 99 100 101 102 103	AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7	ı	D	[AN0 to 7] A/D converter analog input.	
106	ATG/PE0	E0 I/O		[ATG] This is the external trigger input for the A/D converter. This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally.	
				[PE0] This is a general-purpose input/output port.	
107	TRG0, 3/PE1			[TRG0 to 5] These are external trigger input pins of the PPG.	
108 109	TRG1, 4/PE2 TRG2, 5/PE3	I/O	Н	[PE1 to 3] These are general-purpose input/output ports.	
110 111 112 113 114 115 116	INTO/PF0 INT1/PF1 INT2/PF2 INT3/PF3 INT4/PF4 INT5/PF5 INT6/PF6	I/O	F	[INT0 to 7] These are external interruption request inputs. This input is always used while the corresponding external interruption is permitted, so output using other functions should be stopped except when carried out intentionally. [PF0 to 7] These are general-purpose input/output ports.	
117	INT7/PF7				
119	DREQ0/PG0	I/O	Н	[DREQ0] This is the DMA external transfer request input (ch 0) . This input is always used if selected as the transfer factor for DMAC, so outputs from other functions should be stopped except when carried out intentionally.	
				[PG0] This is a multi-purpose input/output port.	

Pin no.	Pin name	I/O*	Circuit type	Function
120	120 DACK0/PG1		C	[DACK0] This is the DMAC external transfer request reception output (ch 0) . This function is effective if the transfer request reception output specification of DMAC is permitted.
120	DAGROF GT	I/O	C	[PG1] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.
121	DEOP0/PG2	I/O	С	[DEOP0] This is the DMA transfer end signal output (ch 0) . This function is effective if the transfer end signal output specification of DMAC is permitted.
121	DEOF0/FG2	1/0		[PG2] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.
122	DREQ1/PG3	I/O	Н	[DREQ1] This is the DMA external transfer request input (ch 1). This input is always used if selected as the transfer factor of DMAC, so output using other functions should be stopped except when carried out intentionally.
				[PG3] This is a multi-purpose input/output port.
123				[DACK1] This is the DMAC external transfer request reception output (ch 1). This function is effective if the transfer request reception output specification of DMAC is permitted.
123	DACK1/PG4	I/O	С	[PG4] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.
124	DEOD1/DC5	I/O	С	[DEOP1] This is the DMA transfer end signal output (ch 1) . This function is effective if the transfer end signal output specification of DMAC is permitted.
124	DEOP1/PG5		C	[PG5] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.
127	DREQ2/PH0	I/O	н	[DREQ2] This is the DMA external transfer request input (ch 2) . This input is always used if selected as the transfer factor of DMAC, so output using other functions should be stopped except when carried out intentionally.
				[PH0] This is a multi-purpose input/output port.
128	D 4 O 1 (O / D 1 4)	A OLYO/DUA	С	[DACK2] This is the DMAC external transfer request reception output (ch 2) . This function is effective if the transfer request reception output specification of DMAC is permitted.
120	DAORZ/III	ACK2/PH1 I/O		[PH1] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.

Pin no.	Pin name	I/O*	Circuit type	Function			
129 DEOP2/PH2		H2 I/O	С	[DEOP2] This is the DMA transfer end signal output (ch 2) . This function is effective if the transfer end signal output specification of DMAC is permitted.			
129	DEOF2/F112	1/0		[PH2] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.			
130	SI/PH3	I/O	н	[SI] This is UART data input. This input is always used while UART inputs, so outputs from other functions should be stopped except when carried out intentionally.			
				[PH3] This is a general-purpose input/output port.			
				[SO] This is UART data output. This function is effective when UART data output specification is permitted.			
131	SO/PH4	I/O	С	[PH4] This is a general-purpose input/output port. This function is effective when UART data output specification is prohibited.			
		I/O		[SCK] This is UART clock input/output. Clock output is effective when UART clock output specification is permitted.			
132	SCK/PH5		Н	Н	[PH5] This is a general-purpose input/output port. This function is effective when UART clock output specification is prohibited.		
133	TI0/PH6	I/O	н	[TI0] This is reload timer 0 input. It is always used when reload timer input is permitted, so outputs from other functions should be stopped except when carried out intentionally.			
				[PH6] This is a general-purpose input/output port.			
134	TO0/PH7	I/O	С	[TO0] This is reload timer 0 Output. This function is effective when reload timer specification is permitted.			
134	100/11/	1/0	C	[PH7] This is a general-purpose input/output port. This function is effective when reload timer specification is prohibited.			
136	TI1/PI0	I/O	н	[TI1] This is reload timer 1 input. It is always used when reload timer input is permitted, so outputs from other functions should be stopped except when carried out intentionally.			
	_			[PI0] This is a general-purpose input/output port.			
	TO1/PI1			[T01] This is the reload timer 1 output. This function is effective if the output specification of the reload timer is permitted.			
137		TO1/PI1	TO1/PI1	TO1/PI1	TO1/PI1	I/O) C

(Continued)

Pin no.	Pin name	I/O*	Circuit type	Function
138 139 140	PPG0/PI2 PPG1/PI3 PPG2/PI4	I/O	С	[PPG0 to 5] This is the PPG timer 1 output. This function is effective if the output specification of the PPG timer is permitted.
141 142 143	PPG3/PI5 PPG4/PI6 PPG5/PI7	1/0		[PI2 to 7] This is a multi-purpose input/output port. This function is effective if the output specification of the PPG timer is prohibited.
18 46 66 76 104 125	Vcc5	_	_	This provides power for the 5 V digital circuit system.
47 82 126	Vcc3	_	_	This provides power for the 3 V digital circuit system.
9 19 28 37 54 67 79 105 118 135 144	Vss	_	_	This is the earth level for digital circuits.

^{*:} I/O shown above indicates input/output classification.

Note: The I/O port and resource input/outputs for most of the above pins are multiplexed, i.e. Pxx/xxxx. In the event of both the port and resource outputs were to use the same pins, the resource is given priority.

■ I/O CIRCUIT TYPE

Туре	Circuit types	Remarks
А	X1 Clock input STANDBY CONTROL	 Oscillation feedback resistance : approximately 1 MΩ 12.5 MHz oscillation
В	P-channel type Tr	CMOS level hysteresis input Without standby control With pull-up resistance
С	Digital output Digital output Digital input STANDBY CONTROL	CMOS level output CMOS level input With standby control
D	Analog input	A/D converter Analog input pin

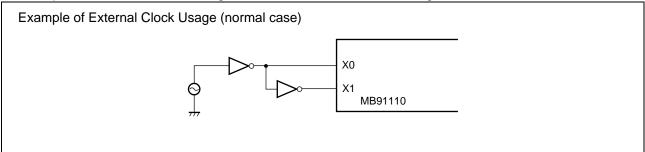
(Continued) Type	Circuit types	Remarks
E	Digital input	CMOS level hysteresis input Without standby control
F	Digital output Digital output Digital input	CMOS level output CMOS level hysteresis input Without standby control
G	Digital output Digital output	CMOS level output
Н	Digital output Digital output Digital input STANDBY CONTROL	CMOS level output CMOS level hysteresis input With standby control
I	Digital input	CMOS level input Without standby control

■ HANDLING DEVICES

Preventing Latch-up

The "Latch-up" phenomenon may be generated if a voltage in excess of Vcc or lower than Vss is applied to the input/output pins, or if the voltage exceeds the rating between Vcc and Vss. If latch-up is generated, the electrical current increases significantly and may destroy certain components due to the excessive heat, so great care must be taken to ensure that the maximum rating is not exceeded during use.

Handling Unused Input Pins


Input pins that are not used should be pulled up or down as they may cause erroneous operations if they are left open.

External Reset Input

"L" level should be input to the $\overline{\mathsf{RST}}$ pin, which is required for at least five machine cycles to ensure the internal status is reset.

Using External Clocks

If external clock is used, X0 pin should be provided, and X1 pin should be provided with reverse phase to X0 pin input. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately 1 $k\Omega$ of resistance should be added externally. An example of the external clock usage methods is shown in the following circuit.

Note: Resistance must be added to the X1 pin if the STOP mode (oscillation stop mode) is used.

• Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 F between Vcc and Vss pins near the device.

Crystal Oscillator Circuits

Noise around the X0 or X1 pins may cause erroneous operation. Make sure to provide bypass capacitors via shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuits not cross the lines of other circuit.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended .

• N.C. Pins

N.C. pins must be opened for use.

Mode Pins (MD0 to MD2)

Those pins must be directly connected to Vcc or Vss for use.

Pattern length between Vcc or Vss and each mode pin on the printed-circuit board should be arranged to be as short as possible to prevent the test mode being erroneously turned on due to noise, they should also be connected with low impedance.

· In the Event that Power Is Turned on

The RST pin must be started from "L" level when the power is turned on, and when the power is adjusted to the Vcc level it should be changed to the "H" level after being left for at least five cycles of the internal operation clock.

Original Oscillation Input in the Event that Power Is Turned on

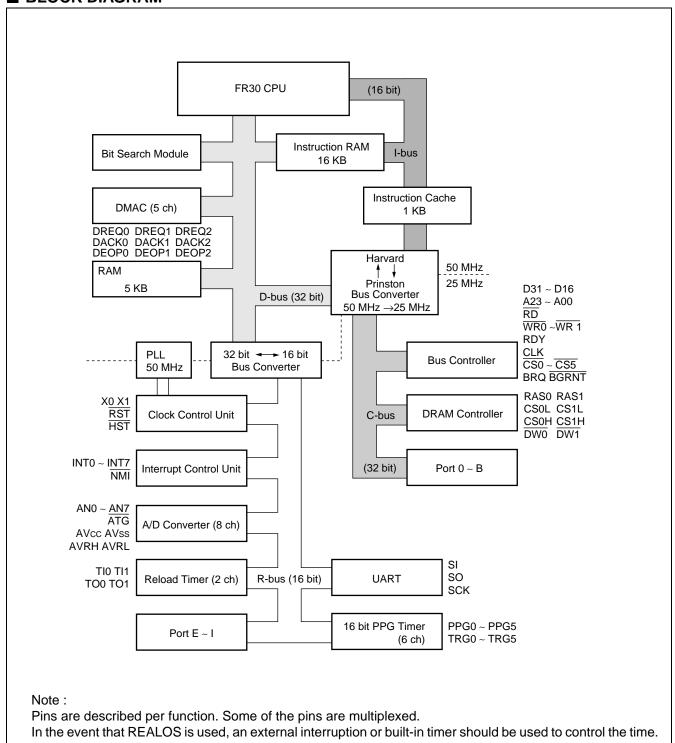
The clock must be input until the waiting status for oscillation stability is reset in the event that power is turned on.

Hardware Standby in the Event that Power Is Turned on

Standby is not set in the event that power is turned on while the $\overline{\mathsf{HST}}$ pin is set at "L" level. The $\overline{\mathsf{HST}}$ pin becomes effective after being reset, but it must first be returned to "H" level.

• Power on Reset

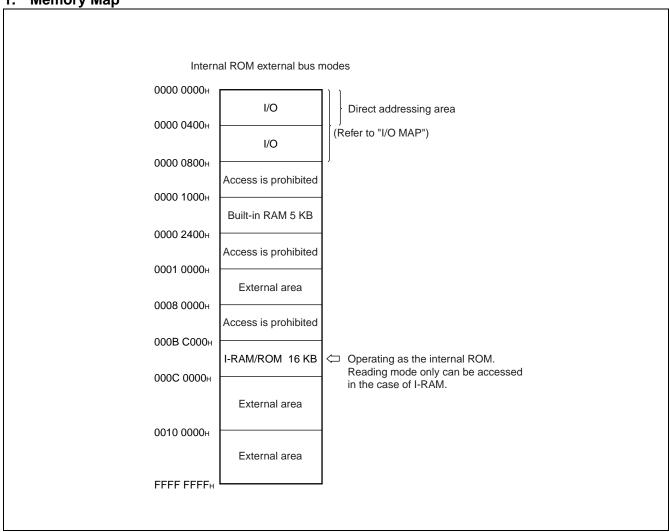
When power is turned on, "Power on reset" must be executed. If the power voltage falls below the guaranteed operating voltage, "Power on reset" must be executed by turning on power supply again.


Restrictions for Standby

Programs to be set for stop and sleep must be placed on the ROM in the C-bus or address area of the external memory. If placed in the ROM address area on the I-bus, operation can not be guaranteed after returning.

• Execution of Programs in I-ROM/RAM Areas

In the event that programs in the I-ROM/RAM areas are executed, enter the I-ROM/RAM areas in accordance with the JMP system instruction. Conversely, when accessing from programs in the I-ROM/RAM area to those in other areas, exit in accordance with the JMP system instructions.


■ BLOCK DIAGRAM

■ MEMORY SPACE

The FR30 series has 4 Gbytes (2³² addresses) of logic address space which the CPU accesses linearly.

Memory Map

Note: MB91110 series only supports internal ROM external bus mode.

· Direct addressing area

The following areas of the address space are used for I/O. This area is called the "direct addressing area" and the address of the operand can be specified directly during instruction. The direct area differs depending on data size to be accessed.

 Byte data access : **0-0**FFн • Half-word data access : 0-1FFн • Word data access : 0-3FFн

2. Registers

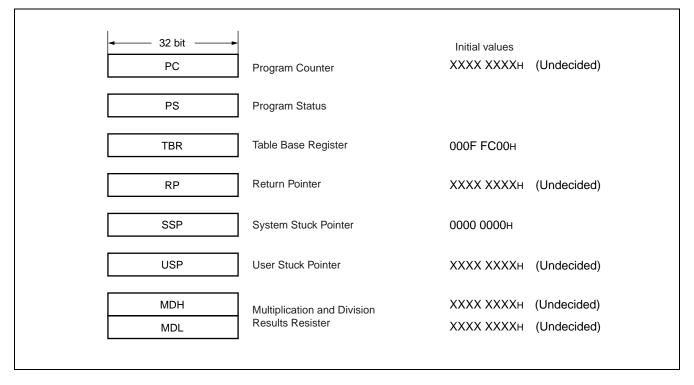
There are two types of multi-purpose registers in the FR family. One is a dedicated purpose register that exists within the CPU and the other is a multi-purpose register that exists in the memory.

• Dedicated Registers

Program Counter (PC) : 32-bit length; indicates instruction storage position.

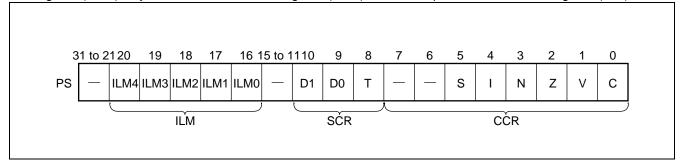
Program Status (PS) : 32-bit length; stores register pointers and condition codes.

Table Base Register (TBR) : Holds the starting address of the vector table to be used for Exception, In-


terruption and Trapping (EIT).

Return Pointer (RP) : Holds the address to which you will return to from the sub-routine.

System Stuck Pointer (SSP) : Indicates the systems stuck position.
User Stuck Pointer (USP) : Indicates the user's stuck position.


Multiplication and Division : 32-bit length; These are the registers for multiplication and division.

Results Resister (MDH/MDL)

• Program Status (PS)

PS is the register that holds the program status and is classified into three categories, namely, Condition Code Register (CCR), System Condition Code Register (SCR) and Interruption Level Master Register (ILM).

• Condition Code Register (CCR)

S flag : Specifies the stuck pointer to be used as R15.

I flag : Controls permission and prohibition of user interruption requests.

N flag : Indicates codes when the computation results are defined as integers that are expressed in

complements of 2.

: Indicates if arithmetic results were "0." Z flag

Indicates when operands are used for computation and defined as integers expressed in com-V flag

plements of 2, and indicates whether or not an overflow is generated as a result of the compu-

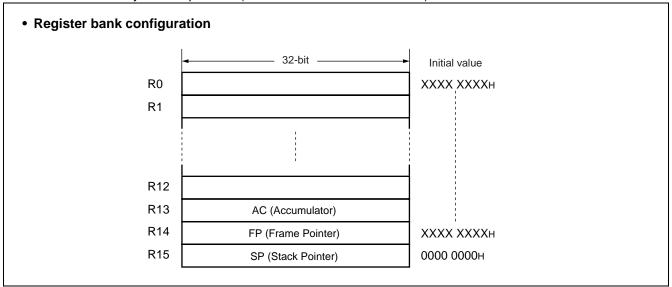
tation.

: Indicates whether carrying or borrowing is generated from the highest bit as a result of the com-C flag

putation.

System Condition Code Register (SCR)

: Specifies whether or not the step- trace- trap will be valid.


• Interruption Level Mask Register (ILM)

ILM4 to ILM0 : Holds the interruption level mask values, and those values that are held by the ILM are used for the level mask. Interruption requests can only be accepted when the interruption levels handled within the interruption requests to be input into the CPU are stronger than the levels shown by the ILM.

ILM4	ILM3	ILM2	ILM1	ILM0	Interruption level	Strength
0	0	0	0	0	0	Strong
		1				†
0	1	0	0	0	15	
		1 1			:	
1	1	1	1	1	31	Weak

■ MULTI-PURPOSE REGISTERS

The multi-purpose registers are CPU registers (R0 to R15) which are used as accumulators for various computations and memory access pointers (field that indicates the address).

Special purposes are assumed for the following three registers out of the 16 registers. Thus, some instructions are emphasized.

R13: Virtual accumulator (AC)

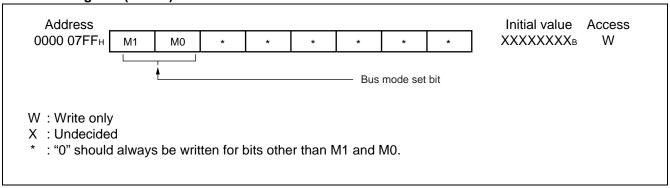
R14: Frame Pointer (FP)

R15: Stack Pointer (SP)

Initial values for R0 to R14 on resetting are unspecified. The initial value of R15 will be 0000 0000H (SSP value).

■ MODE SETTING

1. Pins


• Mode pins and set mode

IV	Mode pins		Mode name	Reset vector	External data bus	Bus modes		
MD2	MD1	MD0	Wode name	access areas	width	Dus modes		
0	0	0	External vector mode 0	External	8-bit	External ROM external		
0	0	1	External vector mode 1	External	16-bit	bus mode		
0	1	0	_	_	_	Setting is prohibited		
0	1	1	Internal vector mode	Internal	(Mode register)	Single chip mode*		
1	_	_	_	_	_	Usage is prohibited		

^{*:} MB91110 series is not supported single chip mode.

2. Register

• Mode register (MODR) and set mode

• Bus mode set bit and its functions

M1	MO	Functions	Remarks
0	0	Single chip mode	Not supported
0	1	Internal ROM external bus mode	
1	0	External ROM external bus mode	
1	1	_	Setting is prohibited

■ I/O MAP

Address		Regi	ister		Internal resource			
Address	+0	+1	+2	+3	- internal resource			
000000н	_	PDR2 (R/W) XXXXXXXX	_	_				
000004н	_	PDR6 (R/W) XXXXXXXX	_					
000008н	PDRB (R/W) XXXXXXXX	PDRA (R/W) -XXXXXX-		PDR8 (R/W) XXXX	Port data register			
00000Сн		_	_		Fort data register			
000010н	_	_	PDRE (R/W)	PDRF (R/W) XXXXXXXX				
000014н	PDRG (R/W)XXXXXX	PDRH (R/W) XXXXXXXX	PDRI (R/W) XXXXXXXX	_				
000018н		_	_		Reserved			
00001Сн		_	_		Reserved			
000020н	SSR (R/W) 00001-00	SIDR/SODR (R/W) XXXXXXXX	SCR (R/W) 00000100	SMR (R/W) 00000-00	LIADT			
000024н	_	CDCR (R/W) 0 1 1 1 1 1	_	_	UART			
000028н	TMRLR XXXXXXXX	(W) XXXXXXXX	TMR XXXXXXXX	(R) XXXXXXXX	Reload timer 0			
00002Сн	_	_	TMCSR 0000	(R/W) 00000000	Reload timer o			
000030н	TMRLR XXXXXXXX	(W) XXXXXXXX	TMR XXXXXXXX	Dalaad timar 4				
000034н	_	_	TMCSR 0000	Reload timer 1				
000038н	ADCR	A/D converter (Sequential comparison type)						
00003Сн		_	_		Reserved			

Address		Internal resource						
Address	+0	+1	+2	+3	internal resource			
000040н			_	_				
000044н	Access is	orohibited	PCSR XXXXXXXX	(W) XXXXXXX	DDC0			
000048н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	PPG0			
00004Сн	Access is	orohibited	PCSR XXXXXXXX	(W) XXXXXXX	PPG1			
000050н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	PPG1			
000054н	Access is	orohibited	PCSR XXXXXXXX	(W) XXXXXXX	PPG2			
000058н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	11 02			
00005Сн	Access is	orohibited	- PPG3					
000060н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	7763			
000064н	Access is	orohibited	PCSR XXXXXXXX	(W) XXXXXXX	DDO4			
000068н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	PPG4			
00006Сн	Access is	orohibited	PCSR XXXXXXXX	(W) XXXXXXX	PPG5			
000070н	PDUT XXXXXXXX	(W) XXXXXXX	PCNH (R/W) 0000000-	PCNL (R/W)	1			
000074н			_					
000078н		Reserved						
00007Сн		1.6361 VGU						
000080н								

Address			Internal resource		
Address	+0	+1	+2	+3	- Internal resource
000084н					
000088н		Reserved			
00008Сн					
000090н		_			
000094н	EIRR (R/W) 0000000	ENIR (R/W) 00000000	-	_	External interruption/
000098н	ELVR 00000000	(R/W) 00000000	-	_	NMI
00009Сн		_			
0000А0н		_			
0000А4н		_			
0000А8н		_			
0000АСн		_			
0000В0н		_			Reserved
0000В4н					
0000В8н					
0000ВСн					
0000С0н					
0000С4н		_			(Continued

A ddraga		Internal recourse							
Address	+0	Internal resource							
0000С8н		-	- 		Reserved				
0000ССн		-	_						
0000D0н	_	_	DDRE (W)	DDRF (W) 0000000	Data direction				
0000Д4н	DDRG (W) 000000	DDRH (W)	DDRI (W)	_	register				
0000D8н to 0000FCн	Reserved								
000100н to 0001FCн	to —								
000200н	DMACS0								
000204н	DMACC0	xx xxxx-xxx	xxxxxxx xx	(R/W) XXXXXX	DMA controller channel 0				
000208н	DMASA0 XXXXXX	xx xxxxxxx	xxxxxxx xx	(R/W) XXXXXX					
00020Сн	DMADA0 XXXXXX	xx xxxxxxx	xxxxxxx xx	(R/W) XXXXXX					
000210н	DMACS1	000 000000	XX-00000	(R/W) XX-X					
000214н	DMACC1	DMA controller							
000218н	DMASA1	channel 1							
00021Сн		DMADA1 (R/W) XXXXXXXX XXXXXXXX XXXXXXXXX							

Address			Internal recovers		
Address	+0	+1	+2	+3	Internal resource
000000	DMACS2	2	•	(R/W)	
000220н	0-00-	000 00000	XX-00000	XX-X	
000004	DMACC2	2		(R/W)	
000224н	XX	XX XXXX-XXX	xxxxxxx xx	XXXXX	DMA controller
000000	DMASA2	2		(R/W)	channel 2
000228н	XXXXX	xxx xxxxxxx	XXXXXXXX XX	XXXXXX	
000000	DMADA2	2		(R/W)	
00022Сн	XXXXX	xxx xxxxxxx	xxxxxxxx xx	XXXXXX	
000000	DMACS3	3		(R/W)	
000230н	0-00-	000 00000	XX-00000	XX-X	
000004	DMACC3	3		(R/W)	
000234н	XX	XX XXXX-XXX	xxxxxxx xx	XXXXX	DMA controller
000000	DMASA3	3	channel 3		
000238н	XXXXX	xxx xxxxxxx	xxxxxxxx xx	XXXXXX	
000000	DMADA3	3		(R/W)	
00023Сн	XXXXX	xxx xxxxxxx	xxxxxxxx xx	XXXXXX	
000240	DMACS4	1		(R/W)	
000240н	0-00-	000 000000	XX-00000	XX-X	
000244	DMACC4	1		(R/W)	
000244н	XX	XX XXXX-XXX	XXXXXXXX XXX	XXXXX	DMA controller
000248н	DMASA4	channel 4			
000246H	XXXXX	xxx xxxxxxx	XXXXXXXX XX	XXXXXX	
00024Сн	DMADA4	1		(R/W)	
00024CH	XXXXX	XXX XXXXXXX	XXXXXXXX XX	XXXXXX	
000250н	DMACR			(R/W)	Overall DMA
000230H			0 0	0	controller
000254н					
000254H					
000258н					
300200n					Reserved
00025Сн			_		110001700
000260н		_	_		
					(Continuo

A al al		Internal reservoir			
Address	+0	Internal resource			
000264н					
000268н					
00026Сн		_	_		
000270н		_	_		Reserved
000274н		_	_		
000278н to 0002FCн		_	_		
000300н to 0003E0н		_	_		
0003Е4н		_		ICHCR (R/W) 000000	Instruction cache
0003Е8н		-	_		Reserved
0003ЕСн		_		IRMC (R/W)	I-RAM control
0003F0н	BSD0 XXXXXX	xxx xxxxxxxx	xxxxxxx xx	(W) XXXXX	
0003F4н	BSD1 XXXXXX	xx xxxxxxx	xxxxxxx xx	(R/W) XXXXXX	Bit search module
0003F8н	BSDC XXXXXX	- Dit Search Module			
0003FСн	BSRR XXXXXX				
000400н	ICR00 (R/W)	ICR01 (R/W)	ICR02 (R/W)	ICR03 (R/W)	Interruption controller
000404н	ICR04 (R/W)	ICR05 (R/W)	ICR06 (R/W)	ICR07 (R/W)	Interruption controller

Addusses		Regi	ster		Into we all no accounts
Address	+0	+1	+2	+3	Internal resource
000408н	ICR08 (R/W)	ICR09 (R/W)	ICR10 (R/W)	ICR11 (R/W)	
000400H	11111	11111	11111	11111	
00040Сн	ICR12 (R/W)	ICR13 (R/W)	ICR14 (R/W)	ICR15 (R/W)	
000 1 00	11111	11111	11111	11111	
000410н	ICR16 (R/W)	ICR17 (R/W)	ICR18 (R/W)	ICR19 (R/W)	
	11111	11111	11111	11111	
000414н	ICR20 (R/W)	ICR21 (R/W)	ICR22 (R/W)	ICR23 (R/W)	
00041411	11111	11111	11111	11111	
000418н	ICR24 (R/W)	ICR25 (R/W)	ICR26 (R/W)	ICR27 (R/W)	
	11111	11111	11111	11111	Interruption controller
00041Сн	ICR28 (R/W)	ICR29 (R/W)	ICR30 (R/W)	ICR31 (R/W)	Therraphori controller
000+10H	11111	11111	11111	11111	
000420н	ICR32 (R/W)	ICR33 (R/W)	ICR34 (R/W)	ICR35 (R/W)	
00042011	11111	11111	11111	11111	
000424н	ICR36 (R/W)	ICR37 (R/W)	ICR38 (R/W)	ICR39 (R/W)	
00042411	11111	11111	11111	11111	
000428н	ICR40 (R/W)	ICR41 (R/W)	ICR42 (R/W)	ICR43 (R/W)	
00042011	11111	11111	11111	11111	
00042Сн	ICR44 (R/W)	ICR45 (R/W)	ICR46 (R/W)	ICR47 (R/W)	
	11111	11111	11111	11111	
000430н	DICR (R/W)	HRCL (R/W)			Delay interruption
	0	11111			Doiay interruption
000434н					Reserved
to 00047Сн		_	_		Reserved
000400	RSRR/WTCR (R/W)	STCR (R/W)	PDRR (R/W)	CTBR (W)	
000480н	1 XXXX-0 0	000111	0000	xxxxxxx	Ola ale a a utual a ua a
000404	GCR (R/W)	WPR (W)		I	Clock control area
000484н	110011-1	XXXXXXXX	_	_	
000488н	PCTR (R/W)				PLL control register
000466Н	0 00				PLL control register
00048Сн					
to 0005FC⊦ı		_	_		Reserved
00001 011					(Continued

(Continued)

Address		Reg	ister		Internal resource
Address	+0	+1	+2	+3	- internal resource
000600н	_	DDR2 (W) 00000000	_	_	
000604н	_	DDR6 (W)	_	_	Data direction register
000608н	DDRB (W)	DDRA (W)		DDR8 (W)	
00000011	0000000	-000000-		0000	
00060Сн	ASR1	(W)	AMR1	(VV)	
ОООООСН	00000000	0000001	00000000	0000000	
000610н	ASR2	(W)	AMR2	(W)	
000010H	00000000	0000010	00000000	0000000	
000614н	ASR3	(W)	AMR3	(W)	
000014H	00000000	00000011	00000000	00000000	
000040	ASR4	(W)	AMR4	(W)	
000618н	00000000	00000100	00000000	00000000	
000040	ASR5	(W)	AMR5	(W)	External bus
00061Сн	00000000	00000101	00000000	00000000	interface
000620н	AMD0 (R/W)	AMD1 (R/W)	AMD32 (R/W)	AMD4 (R/W)	
000620H	00111	000000	00000000	000000	
000624н	AMD5 (R/W)	DSCR (W)	RFCR	(R/W)	
000624H	000000	00000000	XXXXXX	00000	
000628н	EPCR0	(W)	EPCR1	(W)	
000020H	1100	-1111111		11111111	
00062Сн	DMCR4	DMCR4 (R/W) DMCR5 (R/		(R/W)]
00002CH	0000000	0000000-	0000000	000000-	
000630н to 0007F8н		-	_		Reserved
0007FСн	_	_	LER (W) MODR (W)000 XXXXXXXX		"Little endian" register Mode register

Note: Do not execute RMW instructions to registers with write-only bits.

RMW instruction (RMW : Read / Modify / Write)

AND Rj, @Ri OR Rj, @Ri EOR Rj, @Ri ANDH Rj, @Ri ORH Rj, @Ri EORH Rj, @Ri ANDB Rj, @Ri ORB Rj, @Ri **EORB** Rj, @Ri BANDL #u4, @Ri BORL #u4, @Ri BEORL #u4, @Ri BANDH #u4, @Ri BORH #u4, @Ri BEORH #u4, @Ri

Data in areas with "—" or reserved ones is undecided.

■ INTERRUPTION VECTOR

Interruption factor and allocation of interruption vectors / interruption control registers are described in the interruption vector table.

	Interrupti	on number	Interruption		Interruption vector	
Interruption source	Decimal	Hexadeci- mal	level *1	Offset	address to TBR of default *2	
Reset	0	00	_	3ГСн	000FFFFCн	
System reservation	1	01	_	3F8н	000FFFF8н	
System reservation	2	02	_	3F4н	000FFFF4н	
System reservation	3	03	_	3F0н	000FFFF0 _H	
System reservation	4	04	_	3ЕСн	000FFFECн	
System reservation	5	05	_	3Е8н	000FFFE8н	
System reservation	6	06	_	3Е4н	000FFFE4н	
Coprocessor absence trap	7	07	_	3Е0н	000FFFE0н	
Coprocessor error trap	8	08	_	3DСн	000FFFDCн	
INTE instruction	9	09	4 fixed	3D8н	000FFFD8н	
System reservation	10	0A	_	3D4н	000FFFD4н	
System reservation	11	0B	_	3D0н	000FFFD0н	
Step trace trap	12	0C	4 fixed	3ССн	000FFFCCн	
System reservation	13	0D	_	3С8н	000FFFC8н	
Exceptions to undefined instructions	14	0E	_	3С4н	000FFFC4н	
NMI request	15	0F	15 (Fн) fixed	3С0н	000FFFC0н	
System reservation	16	10	ICR00	3ВСн	000FFFBCн	
System reservation	17	11	ICR01	3В8н	000FFFB8н	
External interruption 0	18	12	ICR02	3В4н	000FFFB4н	
External interruption 1	19	13	ICR03	3В0н	000FFFB0н	
External interruption 2	20	14	ICR04	3АСн	000FFFACн	
External interruption 3	21	15	ICR05	3А8н	000FFFA8н	
External interruption 4	22	16	ICR06	3А4н	000FFFA4н	
External interruption 5	23	17	ICR07	3А0н	000FFFA0н	
External interruption 6	24	18	ICR08	39Сн	000FFF9Cн	
External interruption 7	25	19	ICR09	398н	000FFF98н	
System reservation	26	1A	ICR10	394н	000FFF94н	
UART reception completion	27	1B	ICR11	390н	000FFF90н	
System reservation	28	1C	ICR12	38Сн	000FFF8Сн	
System reservation	29	1D	ICR13	388н	000FFF88н	
UART transmission completion	30	1E	ICR14	384н	000FFF84н	
System reservation	31	1F	ICR15	380н	000FFF80н	

	Interrupti	on number			Interruption vector
Interruption source	Decimal	Hexadeci- mal	Interruption level *1	Offset	address to TBR of default *2
System reservation	32	20	ICR16	37Сн	000FFF7Сн
DMAC0 (end, error)	33	21	ICR17	378н	000FFF78н
DMAC1 (end, error)	34	22	ICR18	374н	000FFF74н
DMAC2 (end, error)	35	23	ICR19	370н	000FFF70н
DMAC3 (end, error)	36	24	ICR20	36Сн	000FFF6Сн
DMAC4 (end, error)	37	25	ICR21	368н	000FFF68н
System reservation	38	26	ICR22	364н	000FFF64н
System reservation	39	27	ICR23	360н	000FFF60н
System reservation	40	28	ICR24	35Сн	000FFF5Сн
A/D sequential conversion type	41	29	ICR25	358н	000FFF58н
Reload timer 0	42	2A	ICR26	354н	000FFF54н
Reload timer 1	43	2B	ICR27	350н	000FFF50н
16-bit PPG timer 0	44	2C	ICR28	34Сн	000FFF4Сн
16-bit PPG timer 1	45	2D	ICR29	348н	000FFF48н
16-bit PPG timer 2	46	2E	ICR30	344н	000FFF44н
16-bit PPG timer 3	47	2F	ICR31	340н	000FFF40н
16-bit PPG timer 4	48	30	ICR32	33Сн	000FFF3Сн
16-bit PPG timer 5	49	31	ICR33	338н	000FFF38н
System reservation	50	32	ICR34	334н	000FFF34н
System reservation	51	33	ICR35	330н	000FFF30н
System reservation	52	34	ICR36	32Сн	000FFF2Сн
System reservation	53	35	ICR37	328н	000FFF28н
System reservation	54	36	ICR38	324н	000FFF24н
System reservation	55	37	ICR39	320н	000FFF20н
System reservation	56	38	ICR40	31Сн	000FFF1Сн
System reservation	57	39	ICR41	318н	000FFF18н
System reservation	58	3A	ICR42	314н	000FFF14
System reservation	59	3B	ICR43	310н	000FFF10 _H
System reservation	60	3C	ICR44	30Сн	000FFF0Сн
System reservation	61	3D	ICR45	308н	000FFF08н
System reservation	62	3E	ICR46	304н	000FFF04н
Delay interruption factor bit	63	3F	ICR47	300н	000FFF00н
System reservation (used under REALOS) *3	64	40	_	2FСн	000FFEFCH

(Continued)

	Interrupti	on number	Interruption		Interruption vector	
Interruption source	Decimal	Hexadeci- mal	level *1	Offset	address to TBR of default *2	
System reservation (used under REALOS) *3	65	41	_	2F8н	000FFEF8⊦	
Used under INT instruction	66 to 255	42 to FF	_	2F4н to 000н	000FFEF4н to 000FFD00н	

^{*1:} ICR sets the interruption level for each interruption request using the register built into the interruption controller. ICR is prepared in accordance with each interruption request.

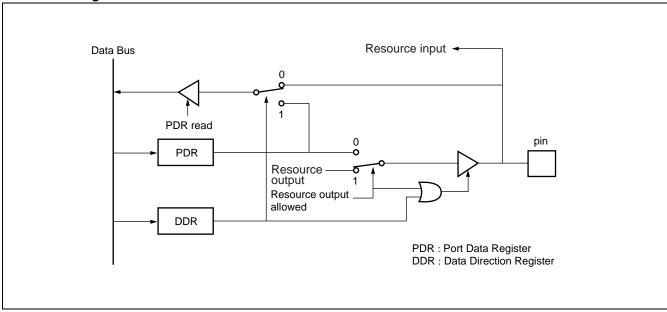
- *2: TBR is the register that indicates the starting address of the vector table for EIT.

 Addresses with added offset values that are specified per TBR and EIT factor will be the vector addresses.
- *3: REALOS OS/FR uses 0X40, 0X41 interruptions for system codes.

Reference:

The vector area for EIT is 1 KB in accordance with the address shown by TBR.

The size per vector is 4 bytes, and the relationship between the vector numbers and their addresses is shown as follows.


$$\begin{aligned} \text{vctadr} &= \text{TBR} + \text{vctofs} \\ &= \text{TBR} + (3\text{FC}_{\text{H}} - 4 \times \text{vct}) \\ &\quad \text{vctadr} : \text{vector address} \quad \text{vctofs} : \text{vector offset} \quad \text{vct} : \text{vector number} \end{aligned}$$

■ PERIPHERAL RESOURCES

1. I/O Port

MB91110 series can be used as the I/O port when settings for resources that handle each pin do not to use the pins for input/output.

· Block diagram

• I/O Port Registers

I/O port is composed of the Port Data Register (PDR) and Data Direction Register (DDR) .

• In cases where the input mode is DDR = "0"

For PDR reading: Level of external pins to be handled is read out.

For PDR writing: Set value is written in PDR.

• In cases where the output mode is DDR = "1"

For PDR reading: PDR value is read out.

For PDR writing: Set value is written in PDR and the PDR value is simultaneously output to the externally handled pin.

2. Port Data Register (PDR)

Port Data Register (PDR2-I) is the input/output data register for the I/O port.

Input/output control is carried out by the handled data direction register (DDR2-I).

• Port Data Register (PDR)

PDR2		_	_						Initial value Access
Address : 000001H	7 P27	6 P26	5 P25	4 P24	3 P23	2	1 P21	0 P20	l xxxxxxxxx R/W
	P27	P26	P25	P24	P23	P22	PZT	P20	l
PDR6	7	6	5	4	3	2	1	0	Initial value Access
Address: 000005H	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXX _B R/W
PDR8	7	6	5	4	3	2	1	0	Initial value Access
Address: 00000BH	_	_	P85	_	_	P82	P81	P80	X XXX _B R/W
PDRA	7	6	5	4	3	2	1	0	Initial value Access
Address: 000009H		PA6	PA5	PA4	PA3	PA2	PA1		- XXXXXX- в R/W
PDRB	7	6	5	4	3	2	1	0	Initial value Access
Address: 000008H	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	XXXXXXXXB R/W
PDRE	7	6		4	2	2	1	0	Initial value Access
Address: 000012H	7	6	5 	4	PE3	PE2	PE1	PE0	XXXX _B R/W
PDRF	7	6	5	4	3	2	1	0	Initial value Access
Address: 000013H	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	XXXXXXXXB R/W
PDRG	7	6		4	2	2	4	0	Initial value Access
Address: 000014H	7	6	5 PG5	PG4	3 PG3	PG2	1 PG1	PG0	XXXXXX _B R/W
PDRH				4					Initial value Access
Address : 000015н	7 PH7	6 PH6	5 PH5	4 PH4	3 PH3	2 PH2	1 PH1	0 PH0	XXXXXXXXB R/W
	FIII	FIIO	FIIS	F114	FIIS	FIIZ	FIII	FIIU	
PDRI	7	6	5	4	3	2	1	0	Initial value Access
Address: 000016H	PI7	PI6	PI5	PI4	PI3	PI2	PI1	PI0	XXXXXXXXB R/W

3. Data Direction Register (DDR)

The Data Direction Register (DDR2-I) controls the input/output direction of the I/O port per bit. 0 is used for input and 1 is used to execute output control.

• Data Direction Register (DDR)

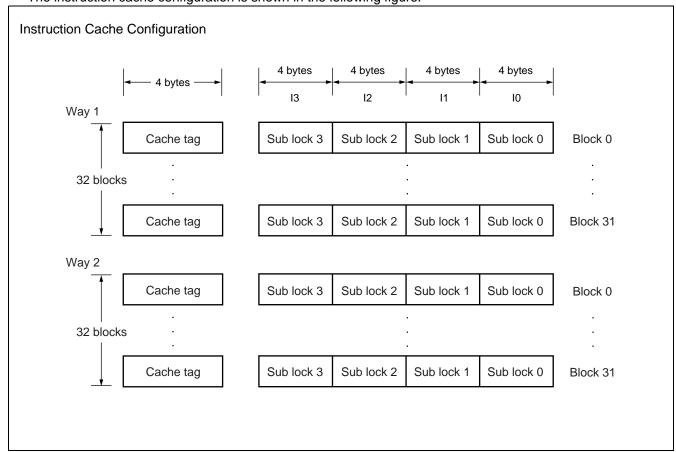
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
DDR2	7	6	5	4	3	2	1	0	Initial value Access
Address : 000601 _H	P27	P26	P25	P24	P23	P22	P21	P20	00000000в W
DDR6	7	6	5	4	3	2	1	0	Initial value Access
Address: 000605H	P67	P66	P65	P64	P63	P62	P61	P60	00000000в W
DDR8	7	6	5	4	3	2	1	0	Initial value Access
Address: 00060BH			P85			P82	P81	P80	0000в W
DDRA	7	6	5	4	3	2	1	0	Initial value Access
Address : 000609н		PA6	PA5	PA4	PA3	PA2	PA1	- 0	- 000000 -в W
ເ DDRB			_				_		Initial value Access
Address : 000608 _H	7 PB7	6 PB6	5 PB5	4 PB4	3 PB3	PB2	1 PB1	PB0	00000000в W
l	1 07	1 00	1 00	1 04	1 00	1 02	101	1 00	
DDRE .	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000D2H	_	_	_	_	PE3	PE2	PE1	PE0	0000в W
DDRF	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000D3H	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	00000000в W
DDRG	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000D4H		_	PG5	PG4	PG3	PG2	PG1	PG0	000000в W
ເ DDRH				<u> </u>					Initial value Access
Address: 0000D5H	7 PH7	6 PH6	5 PH5	4 PH4	3 PH3	2 PH2	1 PH1	0 PH0	00000000в W
ו DDRI		1	1		1		1	1 1110	Initial value Access
	7	6	5	4	3	2	1	0	Initial value Access
Address : 0000D6н	PI7	PI6	PI5	PI4	PI3	PI2	PI1	PI0	00000000в W

4. Instruction Cache

The instruction cache is a temporary storage memory. In the event that the instruction codes are accessed from a low speed external memory, it holds the accessed codes internally, and is used to increase the access speed for all subsequent accesses.

Direct read or write access can not be done by instruction cache or instruction cache tag using software.

· Cacheable area of the instruction cache

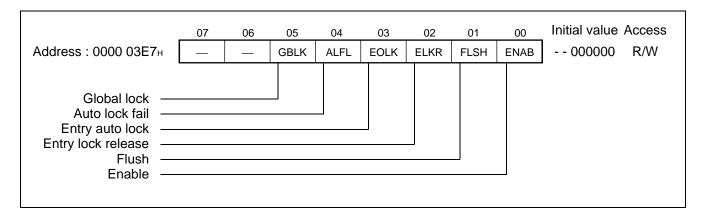

Instruction cache allows all space to become a cacheable area.

- Built-in ROM shall also be cacheable for products featuring built-in ROMs.
- It is assumed that instruction access is not carried out to spaces other than external areas and built-in ROMs. Thus, even if an instruction access is made, it would be cacheable to the control register in the I/O area.
- Even though details of the external memory are updated by DMA transfer, it is not coherent with the cache details. In this case, coherency should be established by flushing the cache.

Instruction cache configuration

- Basic instruction length of FR series : 2 bytes
- Block layout : 2-way set associative type
- Block
 - 1 way is configured of 32 blocks.
 - 1 block is 16 bytes (= 4 sub blocks)
 - 1 sub block is 4 bytes (= 1 bus access unit)

The instruction cache configuration is shown in the following figure.

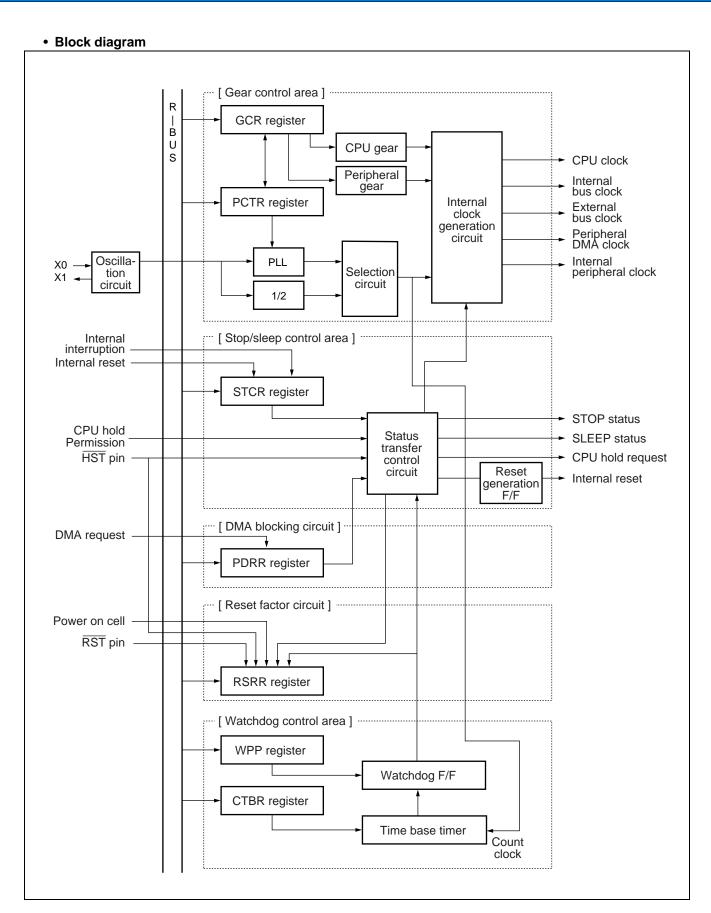


5. Instruction Cache Control Register (ICHCR)

The Instruction Cache Control Register (ICHCR) controls the operation of the instruction cache. Writing to ICHCR may effect the cache operation of instructions to be retrieved within the next three cycles.

• Instruction Cache Control Register (ICHCR)

Instruction Cache Control Register (ICHCR) is shared for use by ways 1 and 2.


6. Clock Generator (Low power consumption mechanism)

The clock generation area is a module with the following functions.

- CPU clock generation (including gear function)
- Peripheral clock generation (including gear function)
- · Reset generation and holding factors
- Standby function (including hardware standby)
- Restraining DMA request
- PLL (Phase Locked Loop) is built in

• Register list

Address	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00	Initial value	
000480н 000481н	RS	RR/W	TCR						ST	CR							1XXXX- 00в 000111 в	R/W R/W
000482н 000483н					PD	RR			СТ	BR							0000в XXXXXXXX	R/W W
000484н 000485н	GC	R							W	PR							110011- 1в XXXXXXXX	R/W W
000488н	PC.	TR]								00 0 в	R/W

7. Bus Interface Outline

The bus interface controls the interface with external memory and external I/O.

Bus Interface Characteristics

- 24-bit (16 MB) address output
- 6 individual banks using chip selection function

Random positional setting is possible on the logical address space at minimum 64-KB units.

Total 16 MB × 6 areas can be set using the address pin and chip selection pin.

- 16/8-bit bus width can be set per chip selection area.
- Insertion of programmable "automatic memory wait" (maximum of 7 cycles)
- Supports DRAM interface
 - 3 types of DRAM interface

Double CAS DRAM (Normal DRAM I/F)

Single CAS DRAM

Hyper DRAM

2-bank individual control (control signal i.e. RAS and CAS)

DRAM can be selected from 2CAS/1WE or 1CAS/2WE.

Supports high-speed page mode

Supports CBR / self refresh

Programmable corrugation

- Unused addresses / data pins can be used as I/O ports.
- Supports "little endian" mode
- Using clock doubler: Internal 50 MHz, external bus 25 MHz operation

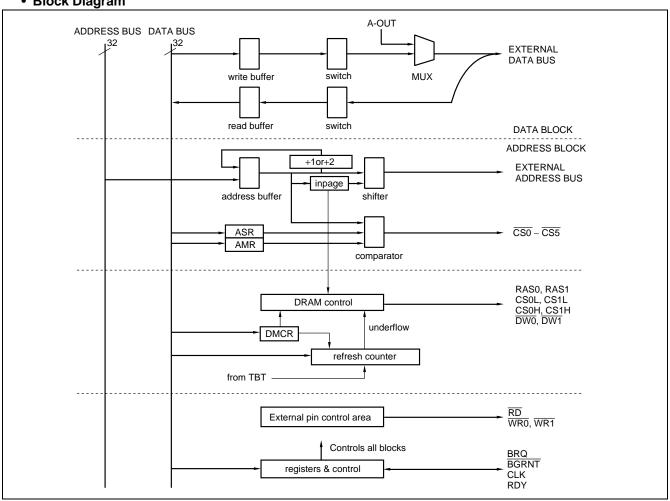
• Chip Selection Area

A total of six types of chip selection areas are prepared for the bus interface. The position of each area can be randomly arranged per 64 KB at least using area selection registers (ASR1 to 5) and area mask registers (AMR1 to 5) in an area of 4 GB. In the event that access to an external bus is attempted in areas that are specified by those registers, the supported chip selection signals (CSO to CS5) become activated to "L". Such pins other than CSO are deactivated to "H" when reset.

Note: The area 0 is allocated to space outside the area specified by ASR1 to ASR5. External areas other than 0001 0000_H to 0005 FFFF_H are deemed area 0 on resetting.

Interface

The bus interface has the following interface types.


- · Normal bus interface
- DRAM interface

These interfaces can only be used in predetermined areas. The following table shows each chip selection area and the usable interface functions. Which interface is to be used is selected in the Area Mode Register (AMD). If no selection is made, it defaults to the normal bus interface.

Chip Selection Area and Selectable Bus Interfaces

Areas	:	Selectable bus interfac	e	Remarks
Aleas	Normal bus	Time division	DRAM	Remarks
0	0	_	_	On resetting
1	0	_	_	
2	0	_	_	
3	0	_	_	
4	0	_	0	
5	0	_	0	

• Block Diagram

• Register List

00060Сн 00060Ен	ASR1 (Area	Select Reg. 1)	AMR1 (Area	Mode Reg. 1)	00000000	00000001 в 00000000 в	W
000610н 000612н	ASR2 (Area	Select Reg. 2)	AMR2 (Area	Mode Reg. 2)	00000000	00000010 в 00000000 в	W W
000614н 000616н	ASR3 (Area	Select Reg. 3)	AMR3 (Area	Mode Reg. 3)	00000000	00000011 в 00000000 в	W
000618н 00061Ан	ASR4 (Area	Select Reg. 4)	AMR4 (Area	Mode Reg. 4)	00000000	00000100 в 00000000 в	W
00061Сн 00061Ен	ASR5 (Area	Select Reg. 5)	AMR5 (Area	Mode Reg. 5)	00000000	00000101 в 00000000 в	W
000620н 000622н	AMD0 *1	AMD1 *1	AMD32 *1	AMD4 *1	00111 00000000	0 00000 в 0 00000 в	R/W R/W
000624н 000626н	AMD5 *1	DSCR *2	RFCR (Refresh	Control Register)	0 00000 XXXXXX	00000000 в 0 0000 в	R/W R/W
000628н 00062Ан	EPCR0 (Exteri	nal Pin Control 0)	EPCR1 (Extern	nal Pin Control 1)	1100	- 0000000 в 11111111 в	W
00062Сн 00062Ен	DMCR4 (DRAI	M Control Reg. 4)	DMCR5 (DRAM	M Control Reg. 5)	00000000	0000000- в 0000000- в	R/W R/W
					_		
0007FСн			LER *3	MODR *4	00	XXXXXXXX в	W

8. 16-bit Reload Timer

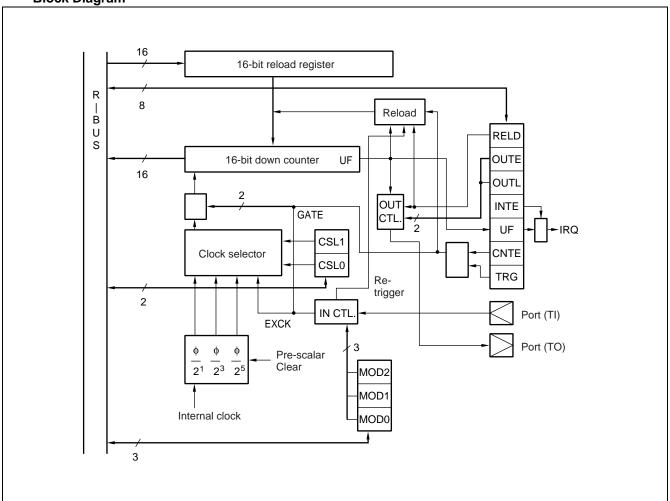
The 16-bit timer is composed of a 16-bit down counter, 16-bit reload register, a pre-scalar for internal count clock preparation and a control register. Selection of the input clock can be made from three types of internal clock (machine clocks with 2, 8 and 32 cycles) and an external clock are selectable for input clock.

Characteristics of the 16-bit reload timer

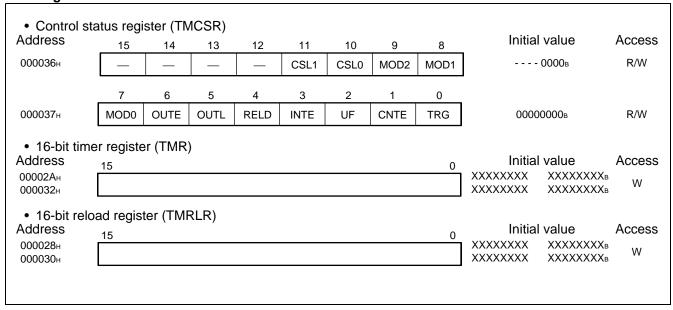
The Pin Output (TO) outputs a toggle waveform whenever underflow is generated in reload mode, and outputs rectangular waves indicating that it is counting in the case of one shot mode.

Pin Input (TI) can be used for event input in the case of external event count mode, trigger input or gate input for internal clock mode.

If the external event count function is used as the reload mode, it can be used as the cycle device for the external clock.


In this type, a 2-channel timer is built-in.

Channel 0 of the reload timer can start up DMA transfer using the interruption request signal.


The DMA controller clears the interruption flag of the reload timer at the same time as receiving the transfer request.

The TO output from channel 0 for the reload timer is connected to the A/D converter inside the LSI. Thus, A/D conversion can be started on a cycle set at the reload register.

• Block Diagram

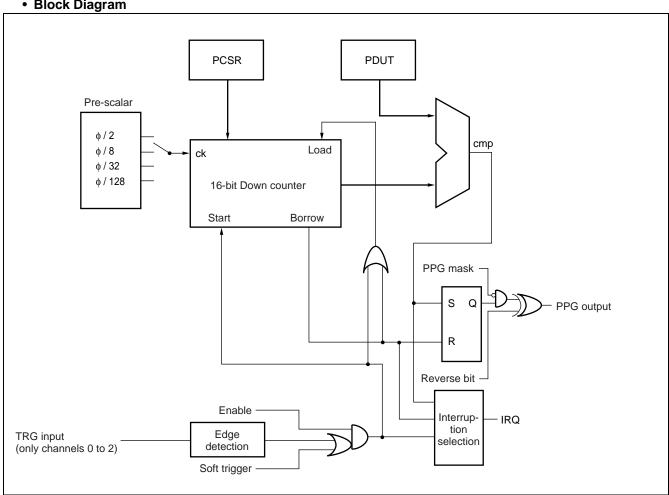
• Register List

9. PPG Timer

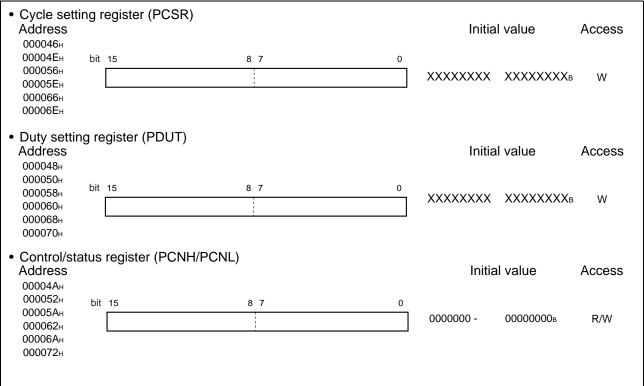
The PPG timer can output pulses that are synchronized with soft triggers or externally. Also, the cycle and duty of the output pulses can be changed randomly by replacing the two 16-bit register values. In this type, there are 6 built-in channels with this function.

• PPG timer function

The PPG timer has two functions as follows.

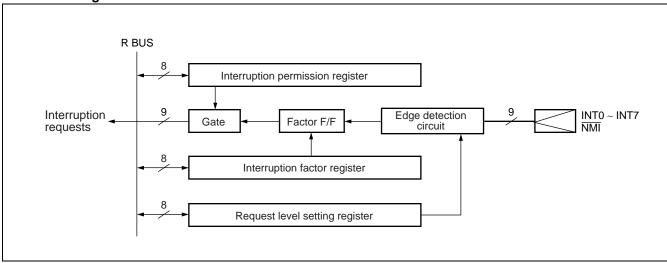

• PWM function

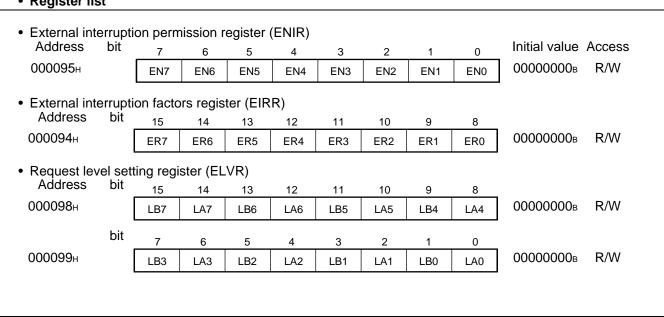
This can be synchronized to the trigger and is programmable to output pulses while rewriting the above register values. It can also be used as a D/A converter by using an additional circuit.


One-shot function

This detects the edge of the trigger input and outputs a single pulse.

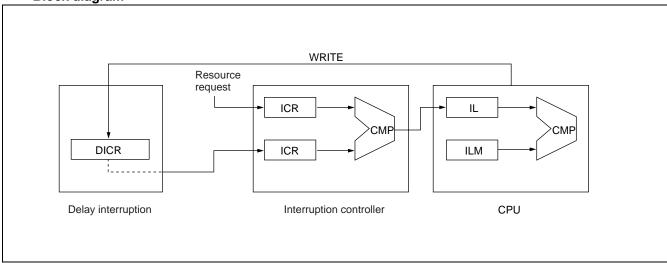
• Block Diagram

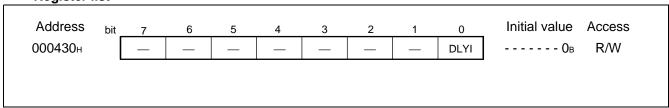

• Register List


10. External Interruption/NMI Control Area

The external interruption / NMI control area controls the external interruption requests to be input to the NMI and INT0 to INT7. "H" or "L" and "rising edge" or "falling edge" can be selected as the requested detection level (except for NMI). Also, four requests from INT0 to INT3 can be used as the DMA request.

Block diagram


Register list


11. Delay Interruption Modules

This is a module to generate interruptions to switch tasks. This module can be used with software to generate / cancel interruption requests to the CPU.

• Block diagram

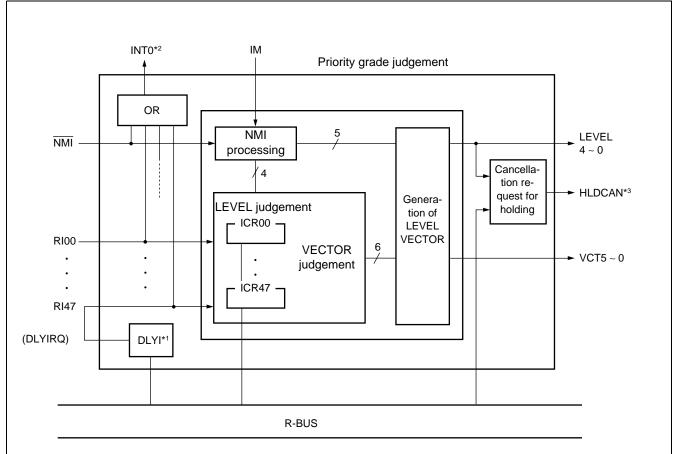
• Register list

12. Interruption Controller

The interruption controller carries out interruption reception and arbitration.

· Hardware configuration of the interruption controller

This module is configured for the following items.


- ICR register
- Interruption priority judgement circuit
- Interruption level, interruption number (vector) generation area
- · Cancellation request generation area for HOLD request

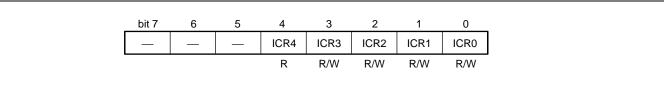
• Major interruption controller functions

This module has the following functions.

- Detection of NMI request / interruption request
- Priority grade judgement (depending on the level and number)
- Transferring interruption level of factors for the judgement results (to CPU)
- Transferring interruption number of factors for the judgement results (to CPU)
- Recovery instruction from stop mode by generating NMI / interruption
- Cancellation of HOLD request to the bus master

• Block Diagram

- *1 : DLYI indicates delay interruption. (Refer to the chapter on delay interruption module for details.)
- *2: INTO is the wake-up signal to the clock control area in case of sleep or stop.
- *3: HLDCAN is the bus vacation request signal to bus masters other than the CPU.


• Register list

Address	bit 7	6	5	4	3	2	1	0	10000	Initial value	Acces
000400н		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR00	11111	R/W
000401н			_	ICR4	ICR3	ICR2		ICR0	ICR01	11111	R/W
000402н		_	_	ICR4	ICR3	ICR2		ICR0	ICR02	11111	R/W
000403н		_		ICR4	ICR3	ICR2		ICR0	ICR03	11111	R/W
000404н	_	_	_	ICR4	ICR3	ICR2		ICR0	ICR04	11111	R/W
000405н	_	_	_	ICR4	ICR3	ICR2		ICR0	ICR05	11111	R/W
000406н			_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR06	11111	R/W
000407н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR07	11111	R/W
000408н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR08	11111	R/W
000409н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR09	11111	R/W
00040Ан	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR10	11111	R/W
00040Вн	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR11	11111	R/W
00040Сн	_	<u> </u>	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR12	11111	R/W
00040Дн		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR13	11111	R/W
00040Ен		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR14	11111	R/W
00040Fн	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR15	11111	R/W
000410н				ICR4	ICR3	ICR2		ICR0	ICR16	11111	R/W
000411н			_	ICR4	ICR3	ICR2		ICR0	ICR17	11111	R/W
000412н	_	l	_	ICR4	ICR3	ICR2		ICR0	ICR18	11111	R/W
000413н	<u> </u>	 		ICR4	ICR3	ICR2		ICR0	ICR19	11111	R/W
000414н	<u> </u>	<u> </u>		ICR4	ICR3	ICR2		ICR0	ICR20	11111	R/W
000414н				ICR4	ICR3	ICR2		ICR0	ICR21	11111	R/W
000416н		_		ICR4	ICR3	ICR2		ICR0	ICR22	11111	R/W
000410н 000417н	_	_		ICR4	ICR3	ICR2		ICR0	ICR22		R/W
		_	_	-		ICR2				11111	
000418н		_	_	ICR4	ICR3			ICR0	ICR24	11111	R/W
000419н		_	_	ICR4	ICR3	ICR2		ICR0	ICR25	11111	R/W
00041Ан	\vdash	_	_	ICR4	ICR3	ICR2		ICR0	ICR26	11111	R/W
00041Вн				ICR4	ICR3	ICR2		ICR0	ICR27	11111	R/W
00041Сн		_	_	ICR4	ICR3	ICR2		ICR0	ICR28	11111	R/W
00041Dн			_	ICR4	ICR3	ICR2		ICR0	ICR29	11111	R/W
00041Ен			_	ICR4	ICR3	ICR2		ICR0	ICR30	11111	R/W
00041Fн		_	_	ICR4	ICR3	ICR2		ICR0	ICR31	11111	R/W
000420н		_	_	ICR4	ICR3	ICR2	_	ICR0	ICR32	11111	R/W
000421н		_	_	ICR4	ICR3	ICR2		ICR0	ICR33	11111	R/W
000422н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR34	11111	R/W
000423н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR35	11111	R/W
000424н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR36	11111	R/W
000425н			_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR37	11111	R/W
000426н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR38	11111	R/W
000427н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR39	11111	R/W
000428н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR40	11111	R/W
000429н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR41	11111	R/W
00042Ан	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR42	11111	R/W
00042Вн	_	_	<u> </u>	ICR4	ICR3	ICR2		ICR0	ICR43	11111	R/W
00042Сн	_	_	_	ICR4	ICR3	ICR2		ICR0	ICR44	11111	R/W
00042Dн		_	<u> </u>	ICR4	ICR3	ICR2		ICR0	ICR45	11111	R/W
00042Ен		<u> </u>		ICR4	ICR3	ICR2		ICR0	ICR46	11111	R/W
00042Fн		_	<u> </u>	ICR4	ICR3	ICR2	ICR1	ICR0	ICR47	11111	R/W
0007 21 f		1		R	R/W	R/W	R/W	R/W	101171	- 11111	1 V/ V V
000431н				LVL4	LVL3	LVL2	LVL1	LVL0	HRCL	11111	R/W
000 4 31H				R R	R/W	R/W	R/W	R/W	TINGL	(11111	IN/ V V

13. Interruption Control Register (ICR)

This function is set up per interruption input and sets the interruption level of interruption requests to be handled.

• Register list

[bit 4 to 0] ICR4 to 0

The interruption level of the interruption requests that are handled is specified by the interruption level setting bit. In cases where the interruption level that is set in this register is the same as or more than the level mask value that is set (has been set) in the ILM register of the CPU, the interruption request is masked at the CPU side. It is initialized to 11111_B on resetting. The settable interruption level setting bit and interruption level are shown in following Table.

Interruption Level Setting Bit and Interruption Level

ICR4	ICR3	ICR2	ICR1	ICR0		Interruption level
0	0	0	0	0	0	System reservation
0	1	1	1	0	14	System reservation
0	1	1	1	1	15	NMI
1	0	0	0	0	16	Maximum settable level
1	0	0	0	1	17	(High)
1	0	0	1	0	18	
1	0	0	1	1	19	
1	0	1	0	0	20	
1	0	1	0	1	21	
1	0	1	1	0	22	
1	0	1	1	1	23	
1	1	0	0	0	24	
1	1	0	0	1	25	
1	1	0	1	0	26	
1	1	0	1	1	27	
1	1	1	0	0	28	
1	1	1	0	1	29	
1	1	1	1	0	30	(Low)
1	1	1	1	1	31	Interruption is prohibited

Note: ICR 4 is fixed as "1" and can not be written as "0".

14. 10-bit A/D Converter

The A/D converter is the module that converts analog input voltages to a digital value.

Characteristics of A/D Converter

Minimum converting time: 5.6 μs/channel

· Sample & hold circuit is built-in.

• Resolution: 10 bits

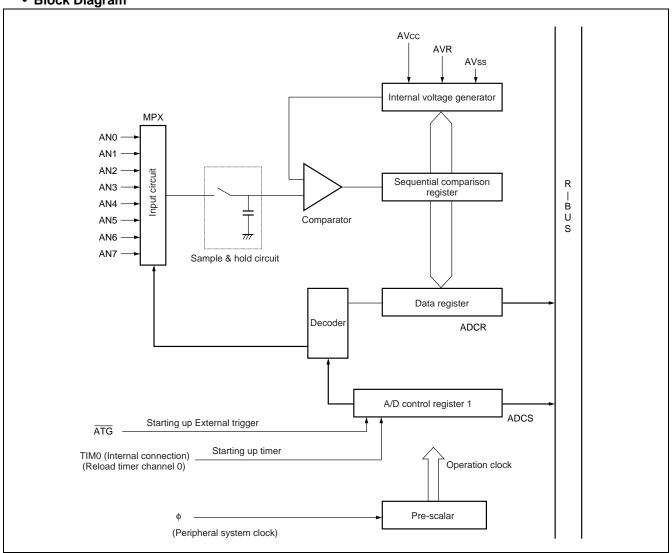
• Selection can be made for analog input from 8 channels.

Single conversion mode : 1 channel is selected for conversion

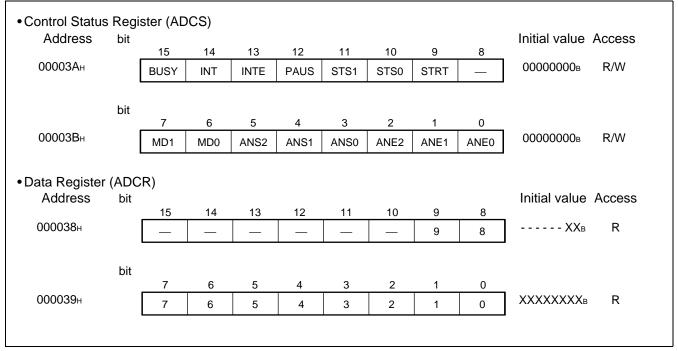
Scan conversion mode : Converts multiple number of consecutive channels.

Maximum 8 channels are programmable.

Consecutive conversion mode : Repeatedly converts the specified channel.


Suspension / conversion mode : Suspends after converting 1 channel and waits until the next one is

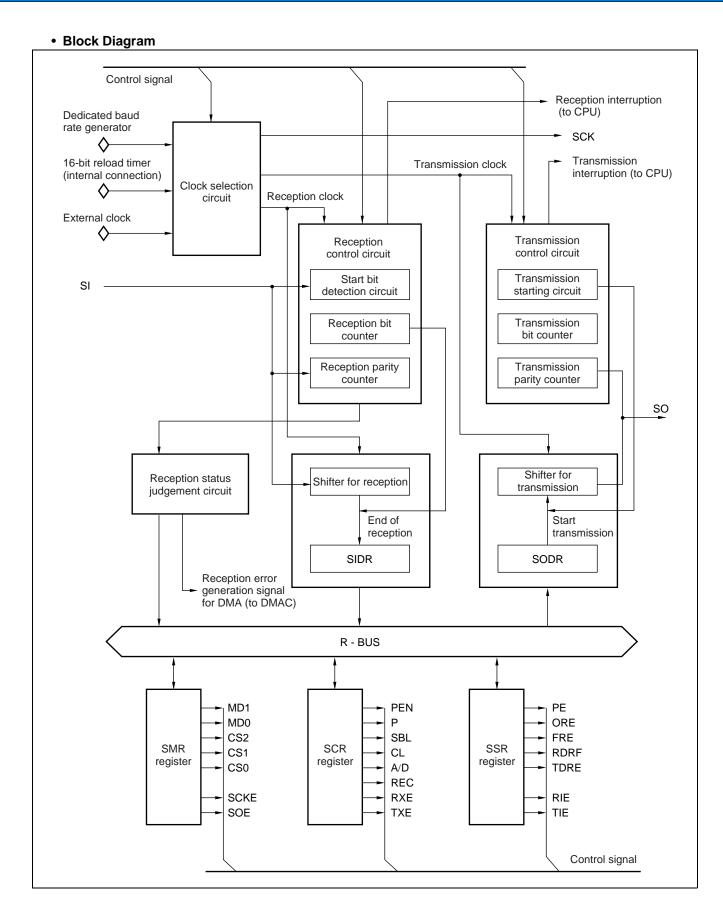
started up (synchronization for starting conversion is possible)


• Initiation of DMA transfer by interruption is possible.

• Initiation factor can be selected from software, external trigger (falling edge) or reload timer (rising edge) .

• Block Diagram

• Register List



15. UART

UART is the serial I/O port for carrying out asynchronous (start-stop synchronization) or CLK synchronous communication.

• Characteristics of UART

- FDX double buffer
- Asynchronous (start-stop synchronization) and CLK synchronous communication are possible.
- Supports multi processor mode
- Dedicated baud rate generator is built-in.
- Free baud rate can be set using an external clock.
- Error detection function (parity, framing, overrun)
- Transfer signal is NRZ code
- Initiation of DMA transfer is possible by interruption.

• Register List

Address bi	t <u>7</u>	6	5	4	3	2	1	0	Initial value	Access
000023н	MD1	MD0	CS2	CS1	CS0	_	SCKE	SOE	00000 - 00в	R/W
Serial Control	Register (SCR)								
bi	15	14	13	12	11	10	9	8	Initial value	Access
000022н	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	00000100в	R/W
Serial Input Da	ıta Regist	er/Serial	Output	Data R	egister (SIDR/S	ODR)			
. bi		6	5	4	3	2	1	0	Initial value	Access
000021н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB	R/W
Serial Status F	Register (S	SSR)								
bi		14	13	12	11	10	9	8	Initial value	Access
000020н	PE	ORE	FRE	RDRF	TDRE	_	RIE	TIE	00001 - 00в	R/W
Communicatio	n Pre-sca	lar Cont	rol Regi	ster (CE	OCR)					
bi		6	5	4	3	2	1	0	Initial value	Access
000025н	MD	_	_	DIV4	DIV3	DIV2	DIV1	DIV0	0 11111в	R/W
	· · · ·								•	

16. DMA Controller (DMAC)

The DMA controller is the module to realize Direct Memory Access (DMA) transfers with FR 30 series devices. DMA transfers controlled by this module enable quick and direct transfer of all data without using the CPU and thus system performance is increased.

• Hardware Configuration of DMA Controller

This module is mainly configured of the following items.

- Internal I/O access control circuit
- 32-bit address counters (possible reload specification : 10)
- 16-bit transfer number counters (possible reload specification : 5)
- External transfer request input pin : DREQ0, DREQ1, DREQ2
- External transfer request reception output pin : DACK0, DACK1, DACK2 (external bus synchronization)
- External transfer termination output pin: DEOP0, DEOP1, DEOP2 (external bus synchronization)

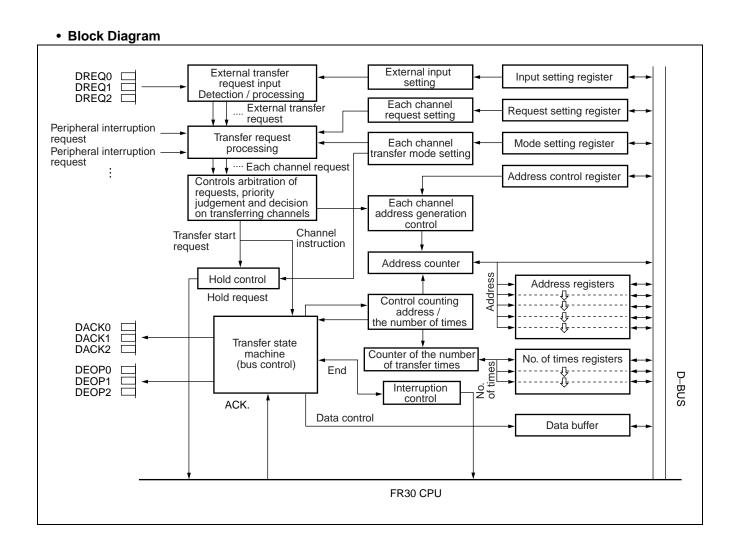
• Major Function of DMA Controller

There are the following functions for data transfer using this module.

- Independent data transfer of a number of channels is possible (5 ch)
- · Priority ranking amongst channels
 - Fixed ranking (ch.0 > ch.1 > ch.2 > ch.3 > ch.4)

Ranking between channel 0 and 1 can be reversed.

Transfer request

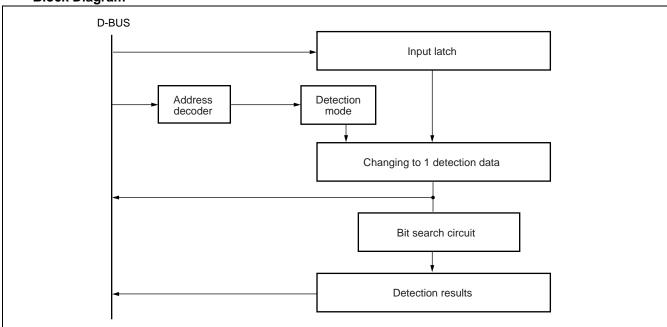

Dedicated external pin input (Edge detection / level detection selection are possible for channels 0 to 2 only.) Built-in peripheral request (interruption requests are shared. External interruption is included.) Software request (register writing)

• Transfer sequence

Consecutive / burst transfer

Step transfer / block transfer (Maximum 16 words are settable.)

- Addressing mode: 32-bit full address specification (increase / decrease / fix)
- Data types: Byte, half word, word length
- Single shot or reload can be selected.


• Register List

Address bit	31	0	Initial value	Access
000200н	ch.0 Control/status register	DMACS0	0-00-000000000в XX-00000XX-Хв	R/W
000204н	ch.0 Addressing/transfer counting register	DMACC0	XXXX XXXX-XXX _B XXXXXXXX XXXXXXX _B	R/W
000208н	ch.0 Transfer originator address register	DMASA0	XXXXXXXX XXXXXXXXB XXXXXXXX XXXXXXXB	R/W
00020Сн	ch.0 Destination address register	DMADA0	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
000210н	ch.1 Control/status register	DMACS1	0-00-000000000в XX-00000XX-Хв	R/W
000214н	ch.1 Addressing/transfer counting register	DMACC1	XXXX XXXX-XXXB	R/W
000218н	ch.1 Transfer originator address register	DMASA1	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
00021Сн	ch.1 Destination address register	DMADA1	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
000220н	ch.2 Control/status register	DMACS2	0-00-000000000в XX-00000XX-Хв	R/W
000224н	ch.2 Addressing/transfer counting register	DMACC2	XXXX XXXX-XXXB XXXXXXXX XXXXXXXB	R/W
000228н	ch.2 Transfer originator address register	DMASA2	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
00022Сн	ch.2 Destination address register	DMADA2	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
000230н	ch.3 Control/status register	DMACS3	0-00-000000000в XX-00000XX-Хв	R/W
000234н	ch.3 Addressing/transfer counting register	DMACC3	XXXX XXXX-XXXB XXXXXXXX XXXXXXXB	R/W
000238н	ch.3 Transfer originator address register	DMASA3	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
00023Сн	ch.3 Destination address register	DMADA3	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
000240н	ch.4 Control/status register	DMACS4	0-00-000000000в XX-00000XX-Хв	R/W
000244н	ch.4 Addressing/transfer counting register	DMACC4	XXXX XXXX-XXX _B XXXXXXXX XXXXXXXX _B	R/W
000248н	ch.4 Transfer originator address register	DMASA4	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXXB	R/W
00024Сн	ch.4 Destination address register	DMADA4	XXXXXXXX XXXXXXXXB XXXXXXXX XXXXXXXXB	R/W
000250н	Overall control register	DMACR		R/W

17. Bit Search Module

Bit search module searches for 0, 1 or change points on data that has been written in the input register, and returns the detected bit position.

• Block Diagram

Registers List

Address	31 0	Initial value	Access
0003F0н	Data register for 0 detection(BSD0)	XXXXXXXXXXXXXXXB $XXXXXXXXXXXXXXXXXXXX$	W
0003F4н	Data register for 1 detection(BSD1)	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXB	R/W
0003F8н	Data Register for Change Point Detection(BSDC)	XXXXXXXX XXXXXXXB XXXXXXXX XXXXXXB	W
0003FСн	Detection Results Register(BSRR)	XXXXXXXX XXXXXXB XXXXXXXX XXXXXXB	R

18. I-RAM

This type has 16 KB of built-in I-RAM (RAM dedicated for instructions) . Efficient processing becomes possible by pre-arranging interruption processing programs and such like in this area. Writing on I-RAM is possible via the data bus and is used in case of debugging.

Register List

• Register List									
IRMC	7	6	5	4	3	2	1	0	Initial value Access
Address: 0003EFH	_			_				IRMD	0 R/W

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = AVRL = 0 V)

Parameter	Symbol	Ra	ting	Unit	Remarks
Farameter	Symbol	Min.	Max.	Unit	Remarks
Dower voltage	Vcc5	Vcc3 - 0.3	Vss + 6.0	V	*1
Power voltage	Vcc3	Vss - 0.3	Vss + 3.6	V	*1
Analog power voltage	AVcc	Vss - 0.3	Vss + 3.6	V	*2
Standard analog voltage	AVRH	Vss - 0.3	Vss + 3.6	V	*2
Input voltage	Vı	Vss - 0.3	Vcc5 + 0.3	V	
Analog pin input voltage	VIA	Vss - 0.3	AVcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc5 + 0.3	V	
Maximum "L" level output current	loL	_	10	mA	*3
Average "L" level output current	lolav	_	4	mA	*4
Maximum total "L" level output current	Σ loL	_	100	mA	
Average "L" level total output current	Σ lolav	_	50	mA	*5
Maximum "H" level output current	Іон	_	-10	mA	*3
Average "H" level output current	Іонаv	_	-4	mA	*4
Maximum total "H" level output current	ΣІон	_	-50	mA	
Average "H" level total output current	Σ lohav	_	-20	mA	*5
Electricity consumption	PD	_	650	mW	
Operating temperature	TA	0	+70	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1 :} Vcc3/Vcc5 must not be lower than Vss - 0.3 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} Care must be taken that this does not exceed Vcc + 0.3 V when the power is turned on.

^{*3 :} Peak value of the pin concerned is regulated as the maximum output current.

^{*4 :} Average current within 100 ms flowing in the pin concerned is regulated as the average output current.

^{*5 :} Average current within 100 ms flowing in all pins concerned is regulated as the average total output current.

2. Recommended Operating Conditions

(Vss = AVss = AVRL = 0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Onit	Remarks
_	Vcc5	4.5	5.5		Keeping RAM status in the
Power voltage	Vcc3	3.135	3.465	V	case of normal operations / stopping
Analog power voltage	AVcc	Vss - 3.0	Vss + 3.465	V	
Standard analog voltage	AVRH	AVss	AVcc	V	
Operating temperature	TA	0	+70	°C	

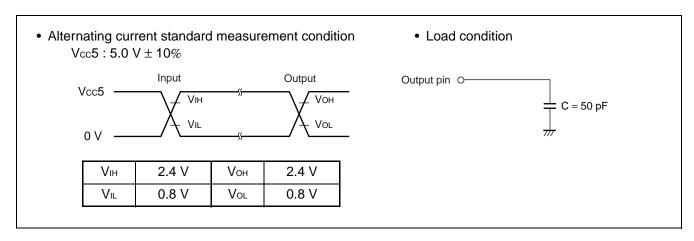
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, TA = 0 °C to +70 °C)

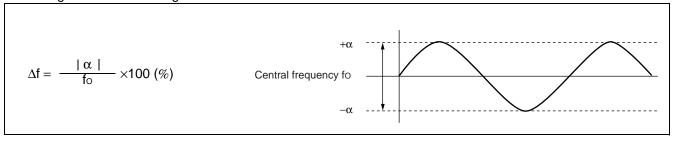

Parameter	Sym	Pin name	Conditions		Value		Unit	Remarks
Parameter	bol	Pin name	Conditions	Min.	Тур.	Max.	Unit	Remarks
"H" level	Vıн	Input excluding following	_	0.65 × Vcc3	_	Vcc5 + 0.3	V	
input voltage	Vihs	Refer to *	_	0.8 × Vcc3	_	Vcc5 + 0.3	V	Hysteresis input
"L" level	VıL	Input excluding following	_	Vss - 0.3		0.25 × Vcc3	V	
input voltage	VILS	Refer to *	_	Vss - 0.3	_	0.2 × Vcc3	V	Hysteresis input
"H" level output voltage	Vон	_	Vcc5 = 4.5 V IoH = -4.0 mA	Vcc5 – 0.5	_		V	
"L" level output voltage	Vol	_	Vcc5 = 4.5 V IoL = 4.0 mA	_	_	0.4	V	
Input leak current (Hi-Z output leak current)	lu	_	Vcc5 = 5.5 V 0.45 V < Vı < Vcc5	-5	_	+5	μА	
Pull-up resistance value	RPULL	RST	Vcc5 = 5.5 V Vı = 0.45 V	25	50	200	kΩ	
		Vcc5	fc = 12.5 MHz	_	50	70	mA	(4 times) in
	Icc	Vcc3	Vcc5 = 5.5 V Vcc3 = 3.465 V	_	100	150	mA	case of 50 MHz operation
		Vcc5	fc = 12.5 MHz		20	30	mA	In case of
Power current	Iccs	Vcc3	Vcc5 = 5.5 V Vcc3 = 3.465 V	_	50	70	mA	sleeping
	١.	Vcc5	T _A = 25 °C		10	20	μΑ	In case of
	Іссн	Vcc3	Vcc5 = 5.5 V Vcc3 = 3.465 V	_	200	900	μΑ	stopping
Input capacity	Cin	Other than Vcc, Avcc, Avss and Vss	_	_	10		pF	

^{*:} Hysteresis input pins: RST, HST, NMI, PE0/ATG, PE1/TRG0, 3, PE2/TRG1, 4, PE3/TRG2, 5, PF0/INT0 to PF7/INT7, PG0/DREQ0, PG3/DREQ1, PH0/DREQ2, PH3/SI, PH5/SCK, PH6/TI0, PI0/TI1, BGRNT/P81, WR1/P85, CS1/PA0 to CLK/PA6, RAS0/PB0 to DW1/PB7

4. AC Characteristics

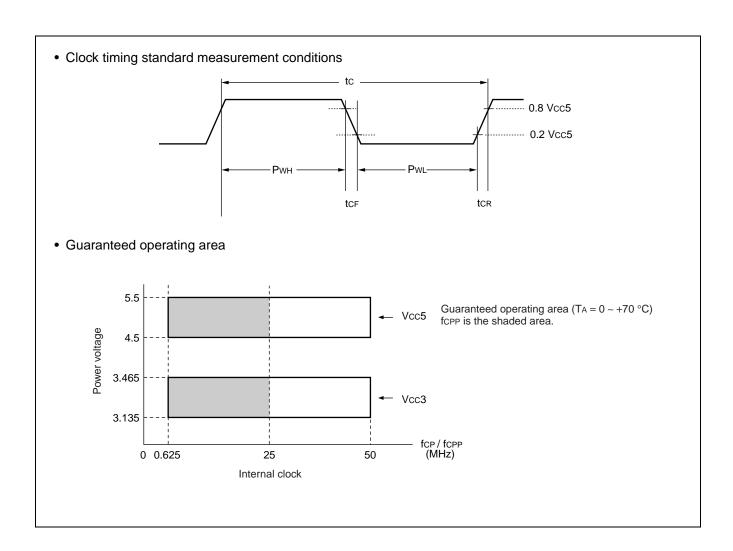
Measurement Conditions

The following conditions are applied to items without particular specifications.

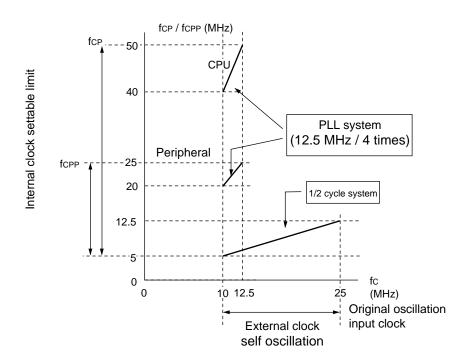


(1) Clock Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, Ta = 0 °C to +70 °C)


Doromotor	Sym-	Pin	Conditions	Value		Unit	Domorko	
Parameter	bol	Name	Conditions	Min.	Max.	Unit	Remarks	
Clock frequency (1)	fc	X0 X1		10.0	12.5	MHz	Self oscillation 12.5	
Clock cycle time	t c	X0 X1	_	80	100	ns	MHz Internal 50 MHz operation (via PLL,	
Frequency fluctuation rate*1 (when locked)	Δf	_			5	%	4 times)	
Clock frequency (2)	fc	X0 X1		10	25	MHz	Self oscillation (1/2 cycle input)	
Clock frequency (3)	f c	X0 X1	_	10	25	MHz	External clock (1/2 cycle input)	
Clock cycle time	t c	X0 X1		40	100	ns		
Input clock pulse width	Pwh PwL	X0 X1		10	_	ns	Clock is input to X0/X1	
	Рwн	X0		25	_	ns	Clock is input to X0 only	
Input clock rising/falling time	tcr tcf	X0 X1	_	_	8	ns	(tcr + tcr)	
Internal operation clock frequency	fср			0.625*2	50		CPU system	
	fсрв			0.625*2	25*3	MHz	Bus system	
	fcpp			0.625*2	25		Peripheral system	
Internal operation clock cycle time	t CP		_	20	1600*2		CPU system	
	tсрв			40*3	1600*2	ns	Bus system	
	t CPP			40	1600*2		Peripheral system	

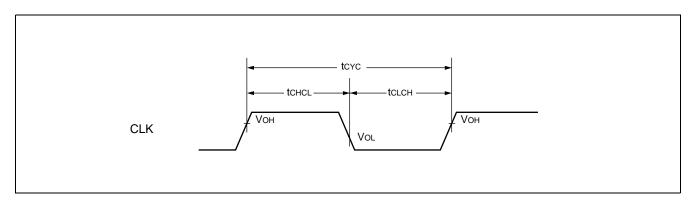
^{*1 :} Frequency fluctuation rate indicates the maximum fluctuation ratio from the setting central frequency during locking in case of doubling.



^{*2 :} This is the value when 10 MHz, which is the minimum value of the clock frequency, is input to X0 and 1/2 cycle of the oscillation circuit and gearing of 1/8 are used.

^{*3 :} This is the value when doubler is used with a 50 MHz CPU.

• External/internal clock settable area


Notes: • 10.0 MHz to 12.5 MHz must be input for external clock input when PLL is used.

- \bullet PLL oscillation stabilization time should be larger than 100 $\mu s.$
- Internal clock gear should be set within the above range.

(2) Clock Output Timing

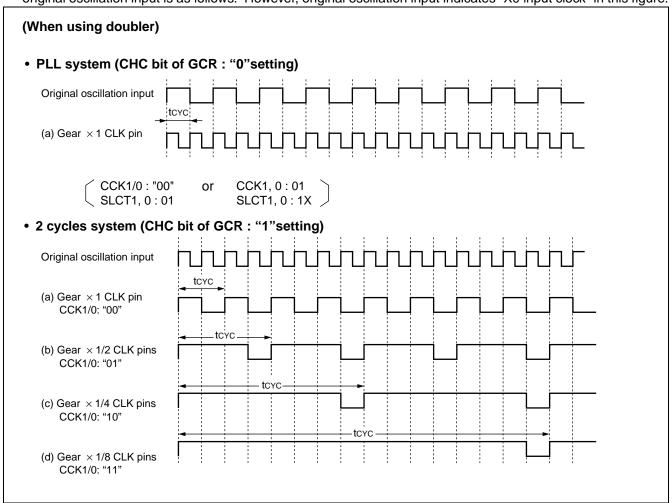
 $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, TA = 0 °C to +70 °C)$

Parameter	Sym- bol	Pin Name	Condi- tions	Va	lue	Unit	Remarks
				Min.	Max.		
				tcp	_		*1
Cycle time	t cyc	CLK		2 × tcp	_	ns	In case of using doubler
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK		1 / 2 × tcyc - 10	1 / 2 × tcyc + 10	ns	*2
$CLK \downarrow \to CLK \uparrow$	t clch	CLK		1 / 2 × tcyc - 10	1 / 2 × tcyc + 10	ns	*3

- *1 : tcyc is frequency of 1 clock cycle including the gear cycle.
- *2 : This standard value is in the case where the gear cycle is 1.

 If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.
 - Minimum : $(1 n / 2) \times t$ cyc 10
 - Maximum : (1 − n / 2) × tcyc + 10

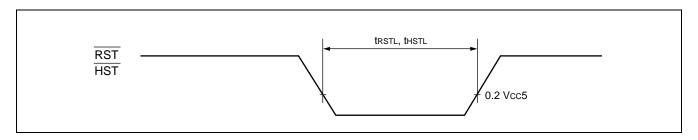
Gear cycle of 1 should be taken when using a doubler.


*3 : This standard value is in the case where the gear cycle is 1.

If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

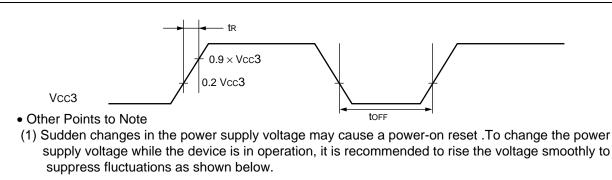
- Minimum : $n / 2 \times t$ cyc 10
- Maximum : n / 2 × tcyc + 10

Gear cycle of 1 should be taken when using a doubler.


The relationship between the CLK pin set using CHC/CCK1/CCK0 bit of the "Gear Control Register" (GCR) and original oscillation input is as follows. However, original oscillation input indicates "X0 input clock" in this figure.

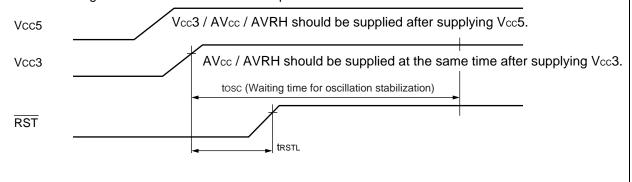
(3) Reset / Hardware Standby Input

 $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)$


Parameter	Sym-	Pin	Conditions	Value		Unit	Remarks
raiametei	bol	Name	Conditions	Min.	Max.	Oilit	iveillai və
Reset input time	t RSTL	RST	_	$t_{\text{CP}} \times 5$	_	ns	
Hardware standby input time	t HSTL	HST	_	tcp × 5	_	ns	

(4) Power On Reset

 $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, TA = 0 °C to +70 °C)$


Parameter	Sym- bol	Pin Name	Conditions	Va	lue	Unit	Remarks
				Min.	Max.		
Power startup time t _R			Vcc5 = 5 V	_	30	ı me i	Vcc is less than 0.2 V before power is turned on.
	t R	Vcc5	Vcc3 = 3.3 V		18		
Power cut time	t off	Vcc3	_	1	_	ms	Repeated operation
Waiting time for oscillation stabilization	tosc		_	$2 \times tc \times 2^{21}$ + 100 µs	_	ns	

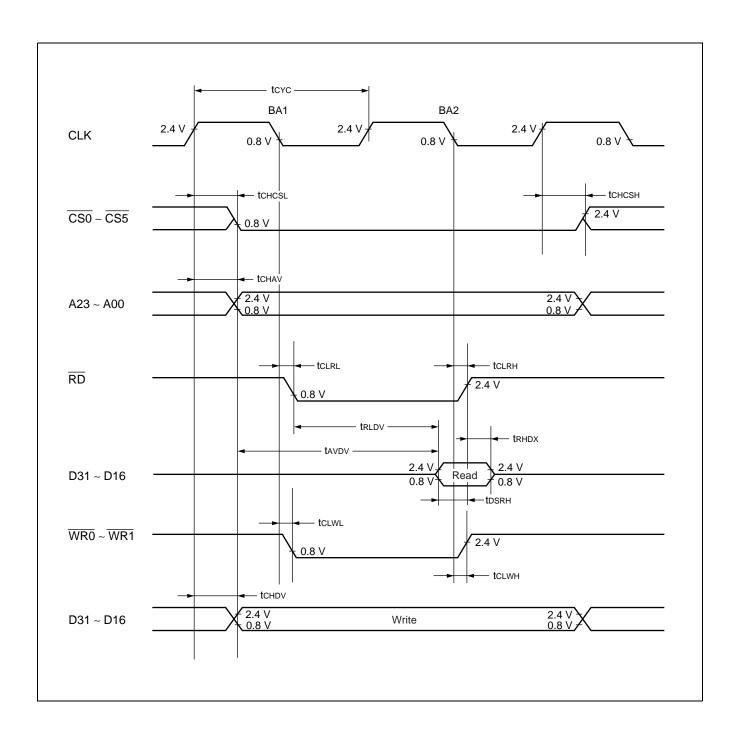
supply voltage while the device is in operation, it is recommended to rise the voltage smoothly to

Vcc3 It is recommended to keep the rising speed of the supply voltage at 50 mV/ms or slower. Vss

(2) When power is turned on, it must be started while the RST pin is set to "L" level, after which wait for trestle and change the level to "H" once the Vcc power level is reached.

(5) Normal Bus Access Read/Write Operation

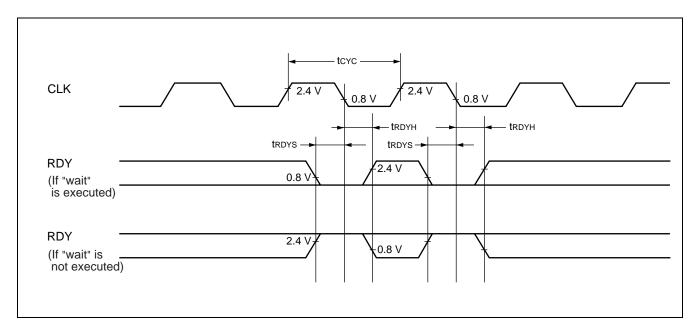
 $(Vcc5 = 5 \text{ V} \pm 10\%, Vcc3 = 3.3 \text{ V} \pm 5\%, Vss = AVss = AVRL = 0 \text{ V}, T_A = 0 \text{ °C to } +70 \text{ °C})$


		0		l	V:	alue		
Parameter		Sym-	Pin Name	Condi-		Г	Unit	Remarks
		bol		tions	Min.	Max.		
CS0 to CS5 delay time)	tchcsl	CLK		_	15	ns	
CS0 to CS5 delay time)	tcнcsн	CS0 to CS5		_	15	ns	
Address delay time		t CHAV	CLK A23 to A00		_	15	ns	
Data delay time (write)		t chdv	CLK D31 to D16			15	ns	
RD delay time		tclrl	CLK		_	10	ns	
RD delay time		tclrh	RD		_	10	ns	
WR0 to WR1 delay tim	ne	tclwl	CLK	_	_	10	ns	
WR0 to WR1 delay tim	ne	t clwh	WR0 to WR1		_	10	ns	
Valid address → Valid data input time		tavdv	A23 to A00 D31 to D16		_	3/2× tcyc - 40	ns	*1 *2
RD ↓ → Valid data input time	Read	t RLDV			_	tcyc – 25	ns	*1
Data setup → RD ↑ time	Neau	t dsrh	RD D31 to D16		25	_	ns	
RD ↑ → Data holding time		t RHDX			0	_	ns	

^{*1 :} Time (tcyc × number of cycles extended) needs to be added to this standard if the bus is extended by automatic waiting insertion and RDY input.

• Calculation formula : $(2 - n / 2) \times tcyc - 40$

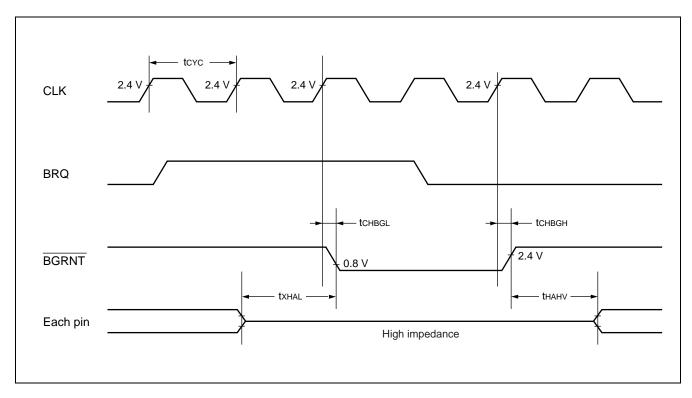
^{*2 :} Values of this standard are in case of gear cycle × 1.


If the gear cycle is set to 1/2, 1/4 or 1/8, calculations should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

(6) Ready Input Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, Ta = 0 °C to +70 °C)

Parameter	Sym-	Pin Name	Conditions	Val	lue	Unit	Remarks
	bol	1 III Hailic	Conditions	Min.	Max.	Oilit	Remarks
RDY setup time \rightarrow CLK \downarrow	t RDYS	RDY CLK		20	_	ns	
$\begin{array}{c} CLK \downarrow \to \\ RDY \ holding \ time \end{array}$	t RDYH	RDY CLK		0		ns	



(7) Holding timing

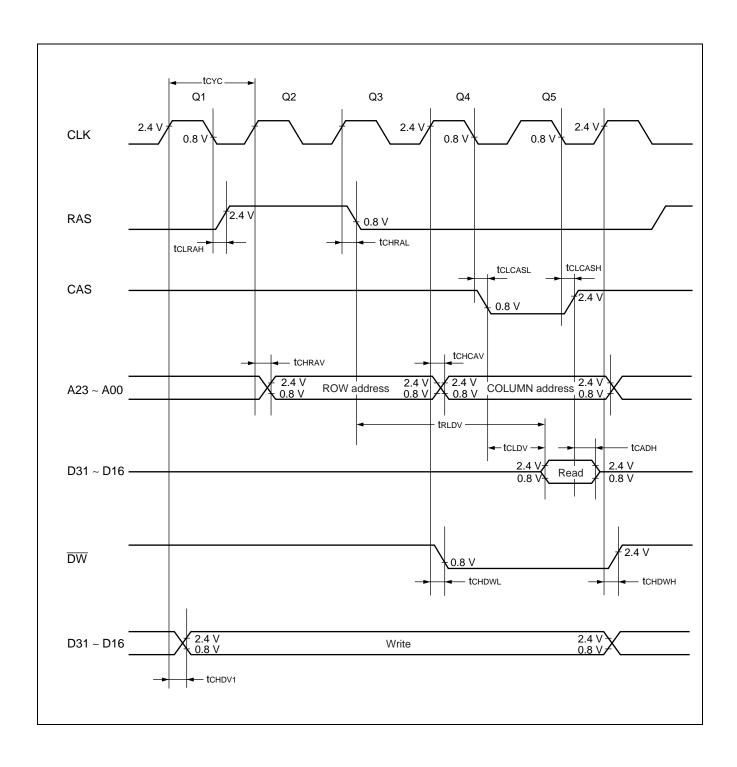
(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, Ta = 0 °C to +70 °C)

Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
	bol	Pili Name	tions	Min.	Max.	Unit	Remarks
BGRNT delay time	t CHBGL	CLK		_	10	ns	
BGRNT delay time	t снвGн	BGRNT		_	10	ns	
$\frac{\text{Pin floating} \rightarrow}{\text{BGRNT}} \downarrow \text{time}$	t xhal	BGRNT		tcyc - 10	tcyc + 10	ns	
BGRNT ↑ → Pin valid time	t HAHV	DGMM		tcyc - 10	tcyc + 10	ns	

Note : It takes at least one cycle from loading the BRQ to when $\overline{\text{BGRNT}}$ is changed.

(8) Read/Write Cycle of the Normal DRAM Mode

($Vcc5 = 5 \text{ V} \pm 10\%$, $Vcc3 = 3.3 \text{ V} \pm 5\%$, Vss = AVss = AVRL = 0 V, $T_A = 0 \text{ °C to } +70 \text{ °C}$)

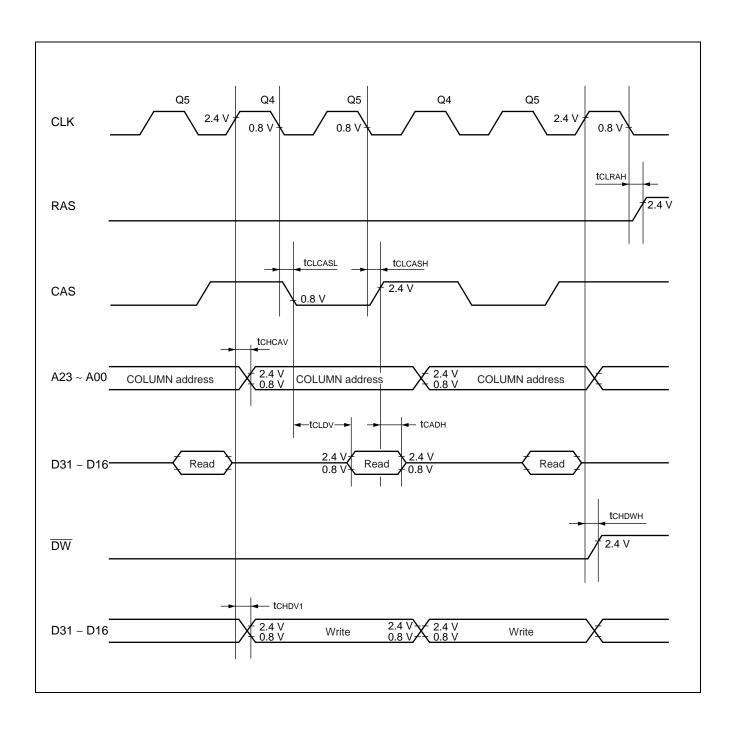

Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
Parameter	bol	Pili Name	tions	Min.	Max.	Unit	Remarks
RAS delay time	t CLRAH	CLK		_	10	ns	
RAS delay time	tchral	RAS		_	10	ns	
CAS delay time	tclcasl	CLK		_	10	ns	
CAS delay time	tclcash	CAS		_	10	ns	
ROW address delay time	t CHRAV	CLK		_	15	ns	
COLUMN address delay time	tchcav	A23 to A00		_	15	ns	
DW delay time	tchdwl	CLK		_	15	ns	
DW delay time	tchdwh	DW		_	15	ns	
Output data delay time	tcHDV1	CLK D31 to D16		_	15	ns	
RAS \downarrow \rightarrow valid data input time	t RLDV	RAS D31 to D16		_	5 / 2 × tcyc – 20	ns	*1 *2
$CAS \downarrow \to valid \; data \; input \; time$	tcldv	CAS		_	tcyc – 17	ns	*1
$CAS \uparrow \to data \; holding \; time$	t CADH	D31 to D16		0		ns	

^{*1 :} If either the Q1 or A4 cycle is extended for one cycle, the toyc time needs to be added to this standard.

If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

 \bullet Calculation formula : (3 – n / 2) $\times t \text{cyc} - 20$

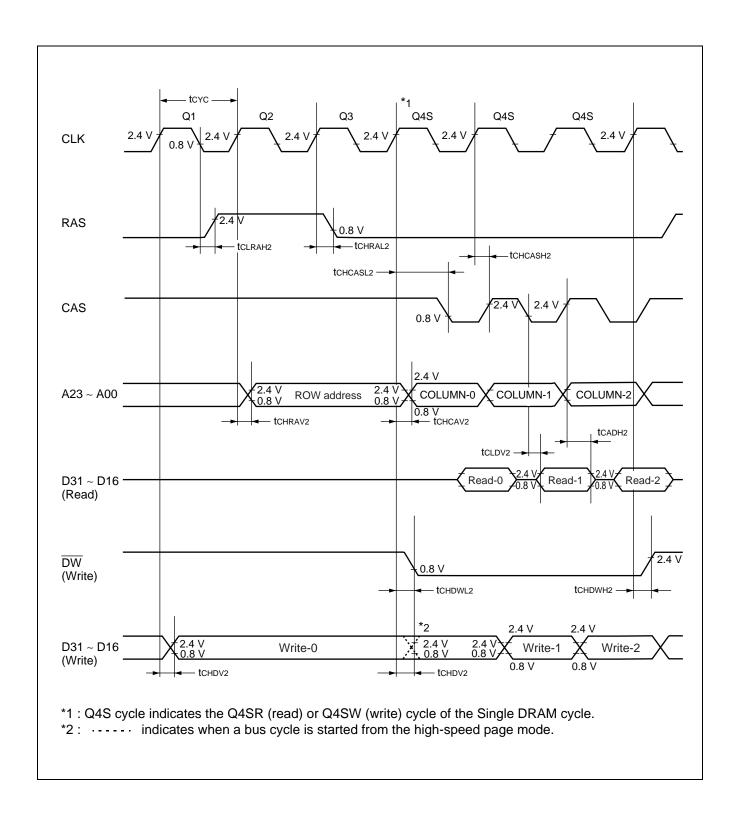
^{*2 :} Values of this standard are in case of gear cycle \times 1.



(9) High Speed Page Read/Write Cycle of the Normal DRAM Mode

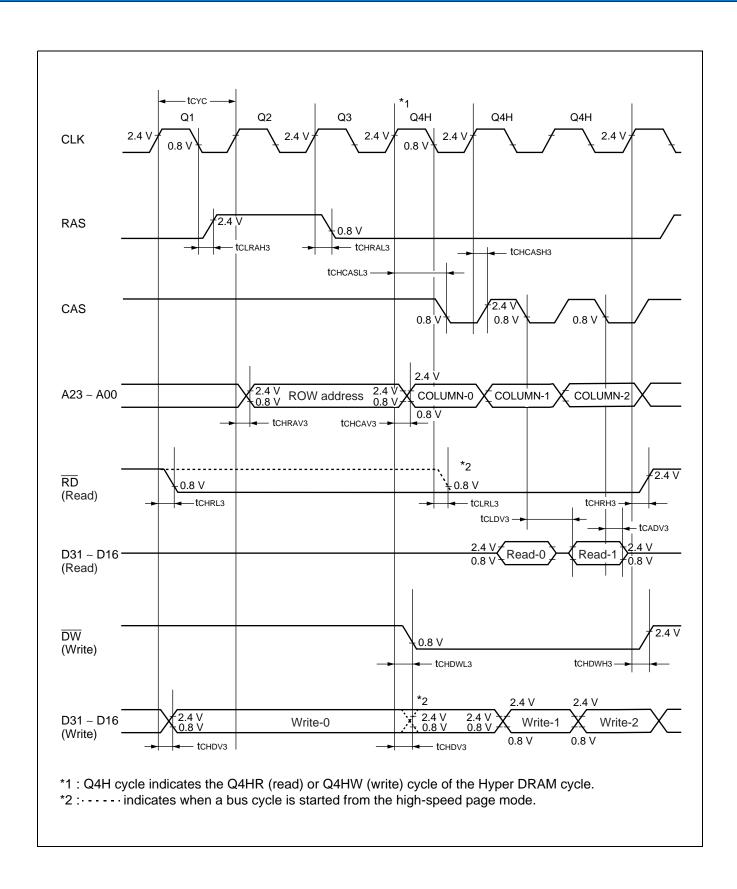
 $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)$

Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
i arameter	bol	i iii ivaiiie	tions	Min.	Max.	Oilit	
RAS delay time	t CLRAH	CLK, RAS		_	10	ns	
CAS delay time	tclcasl	CLK		_	10	ns	
CAS delay time	tclcash	CAS			10	ns	
COLUMN address delay time	t chcav	CLK A23 to A00		_	15	ns	
DW delay time	tchdwh	CLK, DW			15	ns	
Output data delay time	tcHDV1	CLK D31 to D16		_	15	ns	
$CAS \downarrow \to valid \; data \; input \; time$	tcldv	CAS			tcyc - 17	ns	*
$CAS \uparrow \rightarrow data holding time$	t CADH	D31 to D16		0		ns	


^{*:} When Q4 cycle is extended for 1 cycle, add toyc time to this rating.

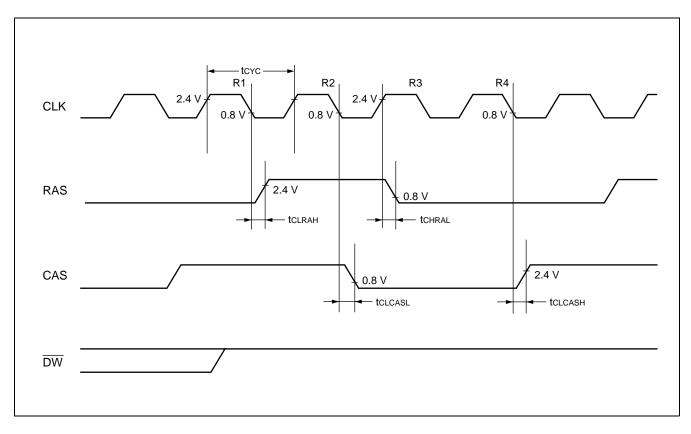
(10) Single DRAM Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)


Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
raiailletei	bol	Fill Name	tions	Min.	Max.	Onne	Remarks
RAS delay time	tclrah2	CLK		_	10	ns	
RAS delay time	tchral2	RAS		_	10	ns	
CAS delay time	tchcasl2	CLK CAS			n / 2 × tcyc + 8	ns	
CAS delay time	tchcash2	CAS		_	10	ns	
ROW address delay time	tCHRAV2	CLK		_	15	ns	
COLUMN address delay time	tchcav2	A23 to A00		_	15	ns	
DW delay time	tchdwl2	CLK		_	15	ns	
DW delay time	tchdwh2	DW		_	15	ns	
Output data delay time	tchdv2	CLK D31 to D16		_	15	ns	
$CAS \downarrow \to valid \; data \; input \; time$	tcldv2	CAS D31 to D16		_	(1 – n / 2) × tcyc – 17	ns	
CAS $\uparrow \rightarrow$ data holding time	tCADH2	סום טו וכם		0	_	ns	

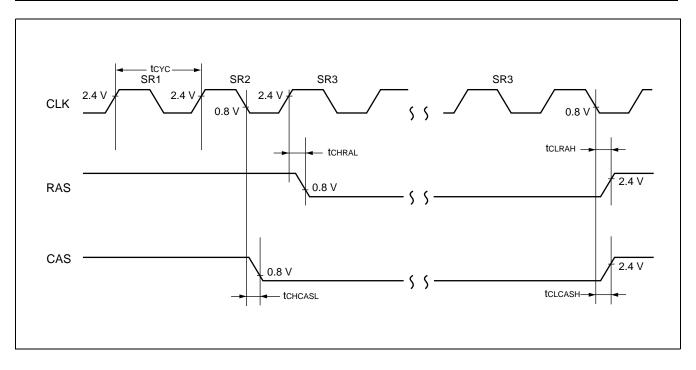
(11) Hyper DRAM Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)


Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
raiailletei	bol	FIII Naiile	tions	Min.	Max.	Oilit	Remarks
RAS delay time	t CLRAH3	CLK		_	10	ns	
RAS delay time	tchral3	RAS		_	10	ns	
CAS delay time	tchcasl3	CLK CAS		_	n / 2 × tcyc + 8	ns	
CAS delay time	tchcash3	CAS		_	10	ns	
ROW address delay time	tchrav3	CLK	•	_	15	ns	
COLUMN address delay time	tchcav3	A23 to A00		_	15	ns	
RD delay time	t CHRL3	01.14		_	15	ns	
RD delay time	t CHRH3	CLK RD		_	15	ns	
RD delay time	tclrl3			_	15	ns	
DW delay time	tchdwl3	CLK	•	_	15	ns	
DW delay time	tсноwнз	DW		_	15	ns	
Output data delay time	t CHDV3	CLK D31 to D16		_	15	ns	
$CAS \downarrow \to valid \; data \; input \; time$	t CLDV3	CAS		_	tcyc - 20	ns	
$CAS \downarrow \to data \; holding \; time$	t CADH3	D31 to D16		0	_	ns	

(12) CBR Refresh

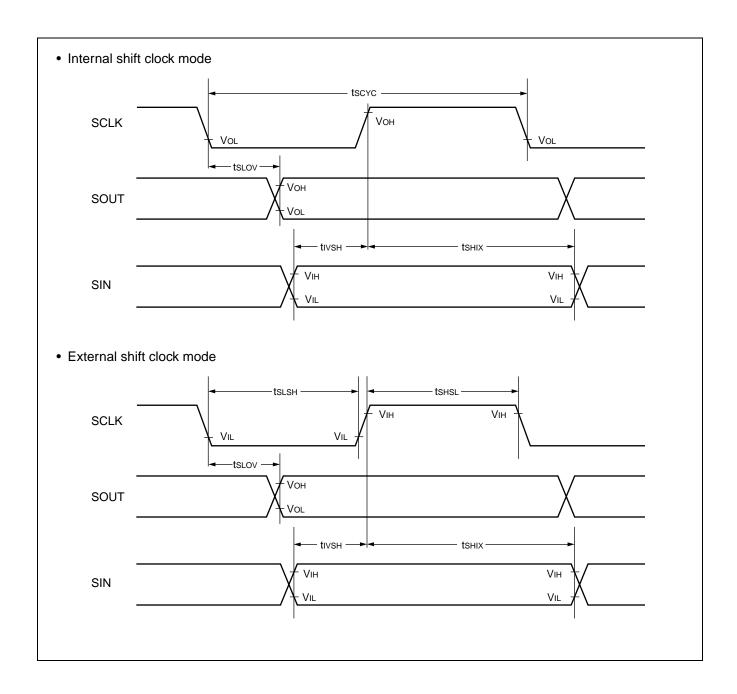
(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)


Parameter	Sym-	Pin Name	Condi- tions	Va	lue	Unit	Remarks
rarameter	bol			Min.	Max.	Oilit	
RAS delay time	t CLRAH	CLK		_	10	ns	
RAS delay time	tchral	RAS		_	10	ns	
CAS delay time	tclcasl	CLK		_	10	ns	
CAS delay time	t CLCASH	CAS			10	ns	

(13) Self Refresh

($Vcc5 = 5 V \pm 10\%$, $Vcc3 = 3.3 V \pm 5\%$, Vss = AVss = AVRL = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Sym-	Pin Name	Condi-	Va	Unit	Remarks	
raiametei	bol	Fill Naille	tions	Min.	Max.	Oilit	Kemarks
RAS delay time	t CLRAH	CLK		_	10	ns	
RAS delay time	t CHRAL	RAS		_	10	ns	
CAS delay time	tclcasl	CLK		_	10	ns	
CAS delay time	t CLCASH	CAS		_	10	ns	

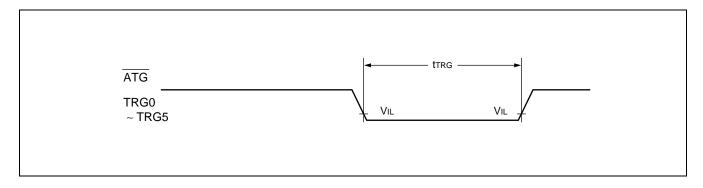

(14) UART Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, Ta = 0 °C to +70 °C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
raiailletei	Symbol	riii Naiile	Conditions	Min.	Max.	Oilit	Remarks
Serial clock cycle time	tscyc	_		8 tcycp	_	ns	
$\begin{array}{c} SCLK \downarrow \to SOUT \\ Delay \ time \end{array}$	tsLov	_	Internal shift	-80	80	ns	
Valid SIN → SCLK ↑	t ıvsh	_	clock mode	100	_	ns	
SCLK ↑ → Valid SIN holding lock	t sнıx	_		60	_	ns	
Serial clock "H" pulse width	t shsl	_		4 tcycp	_	ns	
Serial clock "L" pulse width	t slsh	_		4 tcycp	_	ns	
$\begin{array}{c} SCLK \downarrow \to SOUT \\ Delay \ time \end{array}$	t sLOV	_	External shift clock mode		150	ns	
Valid SIN \rightarrow SCLK ↑	tıvsн	_	olook mode	60	_	ns	
SCLK ↑ → Valid SIN holding lock	t shix	_		60	_	ns	

Notes: • This is the AC standard in the case of CLK synchronous mode.

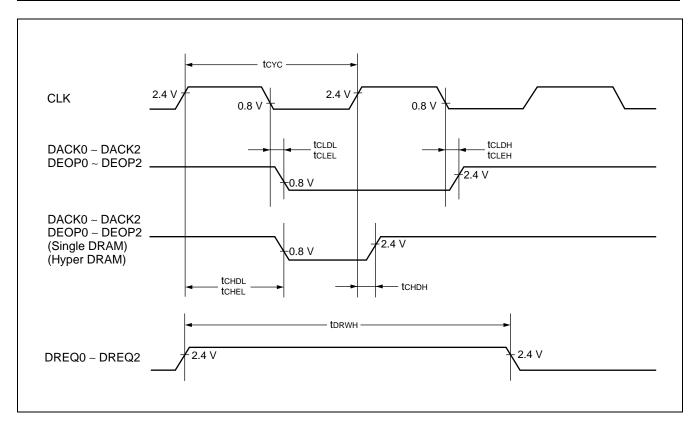
• tcycp is the cycle time of the peripheral system clock.



(15) Trigger System Input Timing

(Vcc5 = 5 V \pm 10%, Vcc3 = 3.3 V \pm 5%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)

Parameter	Sym-	Pin Name	Pin Name Conditions	Va	Unit	Remarks	
	bol			Min.	Max.	Oilit	INGIIIAI NS
A/D initiation trigger input time		ĀTG				ns	
PPG initiation trigger input time	t trg	TRG0 to TRG5	_	5 tcycp		ns	


Note : t_{CYCP} is the cycle time of the peripheral system clock.

(16) DMA Controller Timing

 $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)$

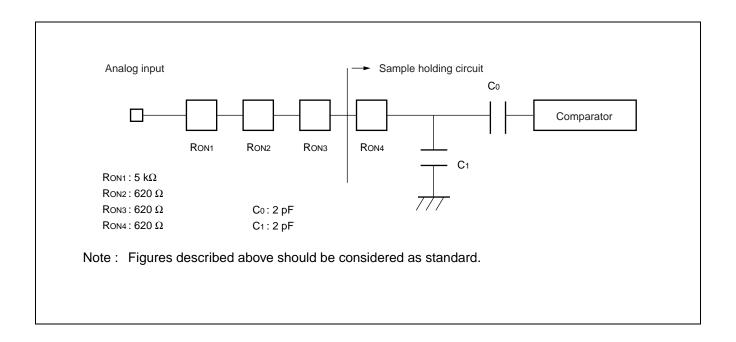
Parameter	Sym-	Pin Name	Condi-	Va	lue	Unit	Remarks
Farameter	bol	Fili Naille	tions	Min.	Max.	Oilit	Remarks
DREQ input pulse width	t drwh	DREQ0 to DREQ2		2 tcyc	_	ns	
DACK delay time	tcldl	CLK		_	6	ns	
(Normal bus) (Normal DRAM)	t CLDH	DACK0 to DACK2			6	ns	
EOP delay time	tclel	CLK		_	6	ns	
(Normal bus) (Normal DRAM)	tcleh	DEOP0 to DEOP2	_	_	6	ns	
DACK delay time	tchdl	CLK		_	$n / 2 \times t$ cyc	ns	
(Single DRAM) (Hyper DRAM)	t сн D H	DACK0 to DACK2		_	6	ns	
EOP delay time	tchel	CLK		_	$n / 2 \times t$ cyc	ns	
(Single DRAM) (Hyper DRAM)	tcheh	DEOP0 to DEOP2		_	6	ns	

5. A/D Converter Electrical Characteristics

 $(Vcc5 = 5 V \pm 10\%, Vcc3 = AVcc = AVRH = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)$

Parameter	Sym-	Pin Name		Value		Unit
Parameter	bol	Pin Name	Min.	Тур.	Max.	Unit
Resolution	_	_		10	10	BIT
Conversion error	_	_			±3.0	LSB
Linearity error	_	_			±2.5	LSB
Differential linearity error	_	_			±1.9	LSB
Zero transition error	Vот	AN0 to AN7	-1.5	+0.5	+2.5	LSB
Full-scale transition error	V _{FST}	AN0 to AN7	AVRH – 4.5	AVRH – 1.5	AVRH + 0.5	LSB
Conversion time	_	_	5.6* ¹		_	μs
Analog port input current	Iain	AN0 to AN7		0.1	10	μΑ
Analog input voltage	Vain	AN0 to AN7	AVss		AVRH	V
Standard voltage	_	AVRH	AVss		AVcc	V
Dower cumply current	lΑ	AVcc		4	_	mA
Power supply current	Іан	AVCC			5* ²	μΑ
Standard voltage current cumplied	lR	AVRH	_	110	_	μΑ
Standard voltage current supplied	I RH	AVKI	_	_	5*2	μΑ
Tolerance between channels	_	AN0 to AN7	_	_	4	LSB

^{*1 :} In case of $Vcc3 = AVcc = 3.3 \text{ V} \pm 5\%$, machine clock 25 MHz

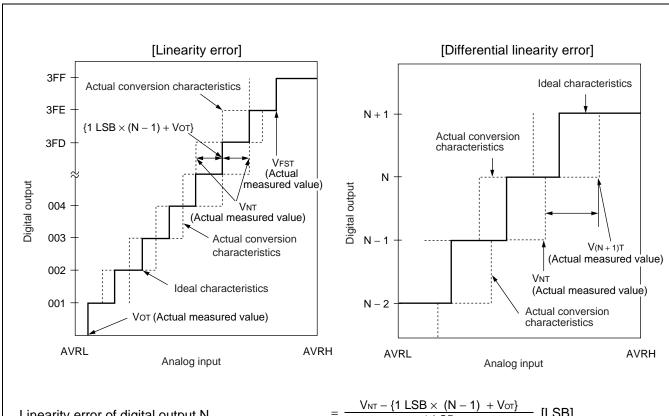

Notes: • As the AVRH becomes smaller, the tolerance becomes relatively larger.

• Output impedance of external circuits other than analog input must be used under the following condition.

Output impedance of external circuits $< 7 \text{ k}\Omega$

If the output impedance of the external circuits is too high, the sampling time for the analog voltage may be insufficient.

^{*2 :} This is the current in the case that the A/D converter is not activated and the CPU is stopped (in case of Vcc3 = Avcc = AVRH = 3.465 V)


Definition of A/D Converter Terms

- Resolution
 - Analog changes that can be identified by A/D converter
- · Linearity error

Difference between the straight line linking the zero transition point (00 0000 0000 \longleftrightarrow 00 0000 0001) to the full-scale transition point (11 1111 1110 \longleftrightarrow 11 1111 1111) and actual conversion characteristics.

· Differential linearity error

Difference compared to the ideal input voltage value required to change the output code 1LSB

Linearity error of digital output N

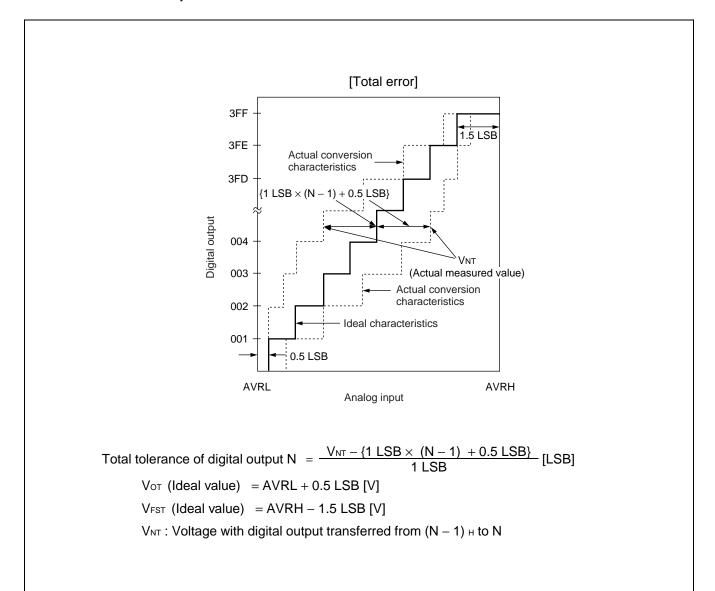
$$= \frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + V_{OT}\}}{1 \text{ LSB}} \text{ [LSB]}$$

Differential linearity error of digital output N

$$= \frac{V(N+1)T - VNT}{1LSB} -1$$
 [LSB]

$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

1 LSB (Ideal value) =
$$\frac{AVRH - AVRL}{1024}$$
 [V]


Voт: Voltage with digital output transferred from (000) н to (001) н

V_{FST}: Voltage with digital output transferred from (3FE) н to (3FF) н

 V_{NT} : Voltage with digital output transferred from (N-1) H to N

Total error

This indicates the difference between the actual and theoretical values and includes zero transition, full-scale transition and linearity error.

■ INSTRUCTIONS (165 INSTRUCTIONS)

1. How to Read Instruction Set Summary

Mnemonic	Туре	OP	CYC	NZVC	Operation	Remarks
ADD Rj, Ri	Α	A6	1	CCCC	$Ri + Rj \rightarrow Ri$	
* ADD #s5, Ri	С	A4	1	CCCC	$Ri + s5 \rightarrow Ri$	
,	,	,	,	,	,	
,	,	,	,	,	,	
\downarrow \downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
(1) (2)	(3)	(4)	(5)	(6)	(7)	

(1) Names of instructions

Instructions marked with * are not included in CPU specifications. These are extended instruction codes added/extended at assembly language levels.

- (2) Addressing modes specified as operands are listed in symbols. Refer to "2. Addressing mode symbols" for further information.
- (3) Instruction types
- (4) Hexa-decimal expressions of instructions
- (5) The number of machine cycles needed for execution
 - a: Memory access cycle and it has possibility of delay by Ready function.
 - b: Memory access cycle and it has possibility of delay by Ready function.
 If an object register in a LD operation is referenced by an immediately following instruction, the interlock function is activated and number of cycles needed for execution increases.
 - c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or if the instruction belongs to instruction format A group, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
 - d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.

For a, b, c and d, minimum execution cycle is 1.

- (6) Change in flag sign
 - Flag change
 - C: Change
 - : No change
 - 0 : Clear
 - 1 : Set
 - Flag meanings
 - N: Negative flag
 - Z: Zero flag
 - V: Over flag
 - C: Carry flag
- (7) Operation carried out by instruction

2. Addressing Mode Symbols

Ri : Register direct (R0 to R15, AC, FP, SP)
Rj : Register direct (R0 to R15, AC, FP, SP)

R13 : Register direct (R13, AC)

Ps : Register direct (Program status register)

Rs : Register direct (TBR, RP, SSP, USP, MDH, MDL)

CRi : Register direct (CR0 to CR15)
CRj : Register direct (CR0 to CR15)

#i8 : Unsigned 8-bit immediate (-128 to 255)

Note: -128 to -1 are interpreted as 128 to 255

#i20 : Unsigned 20-bit immediate (-0X80000 to 0XFFFFF)

Note: -0X7FFFF to -1 are interpreted as 0X7FFFF to 0XFFFFF

#i32 : Unsigned 32-bit immediate (–0X80000000 to 0XFFFFFFF)

Note: -0X80000000 to -1 are interpreted as 0X80000000 to 0XFFFFFFF

#s5 : Signed 5-bit immediate (–16 to 15)

#s10 : Signed 10-bit immediate (-512 to 508, multiple of 4 only)

#u4 : Unsigned 4-bit immediate (0 to 15) #u5 : Unsigned 5-bit immediate (0 to 31) #u8 : Unsigned 8-bit immediate (0 to 255)

#u10 : Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)

@dir8 : Unsigned 8-bit direct address (0 to 0XFF)

@dir9
 : Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
 @dir10
 : Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)
 | Signed 9-bit branch address (-0X100 to 0XFC, multiple of 2 only)
 | Signed 12-bit branch address (-0X800 to 0X7FC, multiple of 2 only)

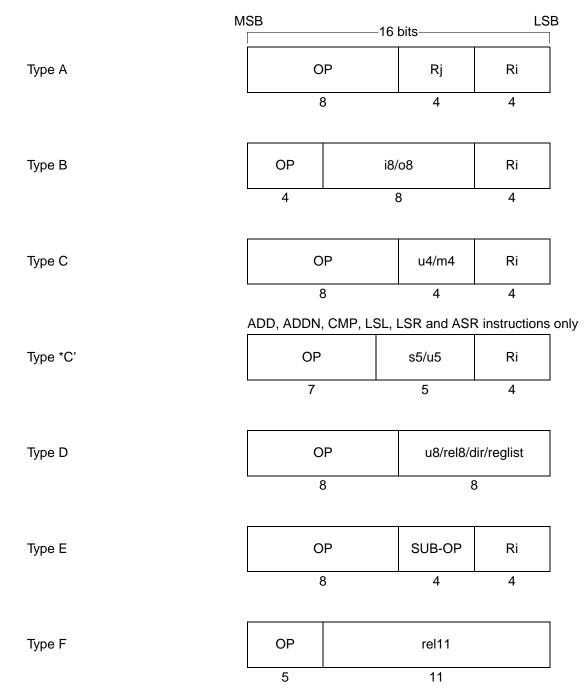
label20 : Signed 20-bit branch address (-0X80000 to 0X7FFFF)

label32 : Signed 32-bit branch address (-0X80000000 to 0X7FFFFFFF)

@Ri : Register indirect (R0 to R15, AC, FP, SP)@Rj : Register indirect (R0 to R15, AC, FP, SP)

@(R13, Rj) : Register relative indirect (Rj: R0 to R15, AC, FP, SP)

@(R14, disp10): Register relative indirect (disp10: -0X200 to 0X1FC, multiple of 4 only) @(R14, disp9): Register relative indirect (disp9: -0X100 to 0XFE, multiple of 2 only)


@(R14, disp8) : Register relative indirect (disp8: -0X80 to 0X7F) @(R15, udisp6) : Register relative (udisp6: 0 to 60, multiple of 4 only)

@Ri+ : Register indirect with post-increment (R0 to R15, AC, FP, SP)

@R13+ : Register indirect with post-increment (R13, AC)

@SP+ : Stack pop @-SP : Stack push (reglist) : Register list

3. Instruction Types

4. Detailed Description of Instructions

• Add/subtract operation instructions (10 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
ADD * ADD	Rj, Ri #s5, Ri	A C'	A6 A4	1 1		$Ri + Rj \rightarrow Ri$ $Ri + s5 \rightarrow Ri$	MSB is interpreted as a sign in assembly language
ADD ADD2	#i4, Ri #i4, Ri	C C	A4 A5	1 1		Ri + extu (i4) \rightarrow Ri Ri + extu (i4) \rightarrow Ri	Zero-extension Sign-extension
ADDC	Rj, Ri	А	A7	1	CCCC	$Ri + Rj + c \rightarrow Ri$	Add operation with sign
ADDN * ADDN	Rj, Ri #s5, Ri	A C'	A2 A0	1 1		$Ri + Rj \rightarrow Ri$ $Ri + s5 \rightarrow Ri$	MSB is interpreted as a sign in assembly language
ADDN ADDN2	#i4, Ri #i4, Ri	C C	A0 A1	1		Ri + extu (i4) \rightarrow Ri Ri + extu (i4) \rightarrow Ri	Zero-extension Sign-extension
SUB	Rj, Ri	Α	AC	1	CCCC	$Ri - Rj \rightarrow Ri$	
SUBC	Rj, Ri	Α	AD	1	CCCC	$Ri - Rj - c \rightarrow Ri$	Subtract operation with carry
SUBN	Rj, Ri	Α	AE	1		$Ri - Rj \rightarrow Ri$	

• Compare operation instructions (3 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
CMP	Rj, Ri	Α	AA	1	CCCC	Ri – Rj	
* CMP	#s5, Ri	C'	A8	1	cccc	Ri – s5	MSB is interpreted as a sign in assembly language
CMP	#i4, Ri	С	A8	1	CCCC	Ri + extu (i4)	Zero-extension
CMP2	#i4, Ri	С	A9	1	CCCC	Ri + extu (i4)	Sign-extension

• Logical operation instructions (12 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
AND	Rj, Ri	Α	82	1		Ri & = Rj	Word
AND	Rj, @Ri	Α	84			(Ri) & = Rj	Word
ANDH	Rj, @Ri	Α	85	1 + 2a	C C	(Ri) & = Rj	Half word
ANDB	Rj, @Ri	Α	86	1 + 2a	C C	(Ri) & = Rj	Byte
OR	Rj, Ri	Α	92	1	C C	Ri = Rj	Word
OR	Rj, @Ri	Α	94	1 + 2a	C C	$(Ri) \mid = Rj$	Word
ORH	Rj, @Ri	Α	95	1 + 2a	C C	$(Ri) \mid = Ri$	Half word
ORB	Rj, @Ri	Α	96	1 + 2a	C C	$(Ri) \mid = Rj$	Byte
EOR	Rj, Ri	Α	9A	1	C C	Ri ^ = Rj	Word
EOR	Rj, @Ri	Α	9C	1 + 2a	C C	$(Ri) \wedge = Rj$	Word
EORH	Rj, @Ri	Α	9D	1 + 2a	C C	$(Ri) \wedge = Ri$	Half word
EORB	Rj, @Ri	Α	9E	1 + 2a	C C	$(Ri)^{\wedge} = Rj$	Byte

• Bit manipulation arithmetic instructions (8 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
BANDL	#u4, @Ri (u4: 0 to 0Fн)	С	80	1 + 2a		(Ri) & = (F0 _H + u4)	Manipulate lower 4 bits
BANDH	#u4, @Ri (u4: 0 to 0Fн)	С	81	1 + 2a		(Ri) & = $((u4 << 4) + 0F_H)$	Manipulate upper 4 bits
* BAND	`	*1		_		(Ri) & = u8	
BORL	#u4, @Ri (u4: 0 to 0Fн)	С	90	1 + 2a		(Ri) = u4	Manipulate lower 4 bits
BORH	`#u4, @Ri (u4: 0 to 0Fн)	С	91	1 + 2a		(Ri) = (u4<<4)	Manipulate upper 4 bits
* BOR		*2		-		(Ri) = u8	
BEORL	#u4, @Ri (u4: 0 to 0Fн)	С	98	1 + 2a		(Ri) ^ = u4	Manipulate lower 4 bits
BEORH	`#u4, @Ri (u4: 0 to 0Fн)	С	99	1 + 2a		$(Ri)^ = (u4 << 4)$	Manipulate upper 4 bits
* BEOR	#u8, @Ri	*3		_		$(Ri)^ = u8$	
BTSTL	#u4, @Ri (u4: 0 to 0Fн)	С	88	2 + a	0 C	(Ri) & u4	Test lower 4 bits
BTSTH	⊮u4, @Ri (u4: 0 to 0Fн)	С	89	2 + a	C C	(Ri) & (u4<<4)	Test upper 4 bits

^{*1:} Assembler generates BANDL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates BANDH if "u8&0xF0" leaves an active bit. Depending on the value in the "u8" format, both BANDL and BANDH may be generated.

• Add/subtract operation instructions (10 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
MUL	Rj, Ri	Α	AF	5	CCC-	$Rj \times Ri \rightarrow MDH, MDL$	32 -bit \times 32 -bit = 64 -bit
MULU	Rj, Ri	Α	AB	5	CCC-	$Rj \times Ri \rightarrow MDH, MDL$	Unsigned
MULH	Rj, Ri	Α	BF	3	C C	$Ri \times Ri \rightarrow MDL$	16 -bit \times 16 -bit $=$ 32 -bit
MULUH	Rj, Ri	Α	BB	3	C C	$Rj \times Ri \rightarrow MDL$	Unsigned
DIVOS	Ri	Е	97 – 4	1			Step calculation
DIVOU	Ri	E	97 - 5	1			32-bit/32-bit = 32-bit
DIV1	Ri	E	97 - 6	d	- C - C		
DIV2	Ri	E	97 - 7	1	-C-C		
DIV3		E	9F - 6	1			
DIV4S		E	9F – 7	1			
* DIV	Ri *	1		_	-C-C	$MDL/Ri \rightarrow MDL$,	
						MDL%Ri → MDH	
* DIVU	Ri *	2		_	- C - C	$\begin{array}{l} MDL/Ri \to MDL, \\ MDL\%Ri \to MDH \end{array}$	Unsigned

^{*1:} DIVOS, DIV1 × 32, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.

^{*2:} Assembler generates BORL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates BORH if "u8&0xF0" leaves an active bit.

^{*3:} Assembler generates BEORL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates BEORH if "u8&0xF0" leaves an active bit.

^{*2:} DIVOU and DIV1 \times 32 are generated. A total instruction code length of 66 bytes.

• Shift arithmetic instructions (9 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
LSL * LSL LSL LSL2	Rj, Ri #u5, Ri #u4, Ri #u4, Ri	A C' C C	B6 B4 B4 B5	1 1 1	CC-C	$Ri << Rj \rightarrow Ri$ $Ri << u5 \rightarrow Ri$ $Ri << u4 \rightarrow Ri$ $Ri << (u4 + 16) \rightarrow Ri$	Logical shift
LSR * LSR LSR LSR2	Rj, Ri #u5, Ri #u4, Ri #u4, Ri	A C' C C	B2 B0 B0 B1	1 1 1	CC-C	Ri>>Rj \rightarrow Ri Ri>>u5 \rightarrow Ri Ri>>u4 \rightarrow Ri Ri>>(u4 + 16) \rightarrow Ri	Logical shift
ASR * ASR ASR ASR2	Rj, Ri #u5, Ri #u4, Ri #u4, Ri	A C' C C	BA B8 B8 B9	1 1 1	C C – C	Ri>>Rj \rightarrow Ri Ri>>u5 \rightarrow Ri Ri>>u4 \rightarrow Ri Ri>>(u4 + 16) \rightarrow Ri	Logical shift

• Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer instruction) (3 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
LDI: 32 LDI: 20	#i32, Ri #i20, Ri	E C	9F – 8 9B	3 2		$ i32 \rightarrow Ri $ $ i20 \rightarrow Ri $	Upper 12 bits are zero- extended
LDI: 8 * LDI	#i8, Ri # {i8 i20 i32}, Ri *1	В	C0	1		$i8 \rightarrow Ri$ $\{i8 \mid i20 \mid i32\} \rightarrow Ri$	Upper 24 bits are zero- extended

^{*1:} If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection. If an immediate value contains relative value or external reference, assembler selects i32.

• Memory load instructions (13 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
LD LD LD LD LD	@Rj, Ri @(R13, Rj), Ri @(R14, disp10), Ri @(R15, udisp6), Ri @R15 +, Ri		04 00 20 03 07 – 0	b b b b	 	$(Rj) \rightarrow Ri$ $(R13 + Rj) \rightarrow Ri$ $(R14 + disp10) \rightarrow Ri$ $(R15 + udisp6) \rightarrow Ri$ $(R15) \rightarrow Ri, R15 + = 4$	
LD LD	@R15 +, Rs @R15 +, PS	E	07 - 8 $07 - 9$	b 1+a+b		$(R15) \rightarrow Rs, R15 += 4$ $(R15) \rightarrow PS, R15 += 4$	Rs: Special-purpose register
LDUH LDUH LDUH	@Rj, Ri @(R13, Rj), Ri @(R14, disp9), Ri	A A B	05 01 40	ь ь		$(Rj) \rightarrow Ri$ $(R13 + Rj) \rightarrow Ri$ $(R14 + disp9) \rightarrow Ri$	Zero-extension Zero-extension Zero-extension
LDUB LDUB LDUB	@Rj, Ri @(R13, Rj), Ri @(R14, disp8), Ri	A A B	06 02 60	b b		$(Rj) \rightarrow Ri$ $(R13 + Rj) \rightarrow Ri$ $(R14 + disp8) \rightarrow Ri$	Zero-extension Zero-extension Zero-extension

Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:

 $disp8 \rightarrow o8 = disp8$:Each disp is a code extension.

 $disp9 \rightarrow o8 = disp9 >> 1$:Each disp is a code extension.

 $disp10 \rightarrow o8 = disp10 >> 2$:Each disp is a code extension.

udisp6 \rightarrow u4 = udisp6>>2:udisp4 is a 0 extension.

• Memory store instructions (13 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
ST	Ri, @Rj	Α	14	а		$Ri \rightarrow (Rj)$	Word
ST	Ri, @(R13, Rj)	Α	10	а		$Ri \rightarrow (R13 + Rj)$	Word
ST	Ri, @(R14, disp10)	В	30	а		$Ri \rightarrow (R14 + disp10)$	Word
ST	Ri, @(R15, udisp6)	С	13	а		$Ri \rightarrow (R15 + usidp6)$	
ST	Ri, @-R15	Е	17 - 0	а		$R15 - = 4$, Ri \rightarrow (R15)	
ST	Rs, @-R15	E	17 – 8	а		$R15 -= 4$, $Rs \rightarrow (R15)$	Rs: Special-purpose
							register
ST	PS, @-R15	Е	17 – 9	а		$R15 -= 4, PS \rightarrow (R15)$	-
STH	Ri, @Rj	Α	15	а		$Ri \rightarrow (Rj)$	Half word
STH	Ri, @(Ŕ13, Rj)	Α	11	а		$Ri \rightarrow (R'13 + Rj)$	Half word
STH	Ri, @(R14, disp9)	В	50	а		$Ri \rightarrow (R14 + disp9)$	Half word
STB	Ri, @Rj	Α	16	а		$Ri \rightarrow (Rj)$	Byte
STB	Ri, @(Ŕ13, Rj)	Α	12	а		$Ri \rightarrow (R'13 + Rj)$	Byte
STB	Ri, @(R14, disp8)	В	70	а		$Ri \rightarrow (R14 + disp8)$	Byte

Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:

 $disp8 \rightarrow o8 = disp8$:Each disp is a code extension.

 $disp9 \rightarrow o8 = disp9 >> 1$:Each disp is a code extension.

 $disp10 \rightarrow o8 = disp10 >> 2$:Each disp is a code extension.

udisp6 \rightarrow u4 = udisp6>>2:udisp4 is a 0 extension.

• Transfer instructions between registers/special-purpose registers transfer instructions (5 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
MOV	Rj, Ri	А	8B	1		$Rj \rightarrow Ri$	Transfer between general-purpose registers
MOV	Rs, Ri	Α	B7	1		$Rs \rightarrow Ri$	Rs: Special-purpose register
MOV	Ri, Rs	Α	В3	1		$Ri \rightarrow Rs$	Rs: Special-purpose register
MOV MOV	PS, Ri Ri, PS	E E	17 – 1 07 – 1			$\begin{array}{c} PS \rightarrow Ri \\ Ri \rightarrow PS \end{array}$	

• Non-delay normal branch instructions (23 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
JMP	@Ri	Е	97 – 0	2		$Ri \rightarrow PC$	
CALL	label12	F	D0	2		$PC + 2 \rightarrow RP$, $PC + 2 + rel11 \times 2 \rightarrow PC$	
CALL	@Ri	Е	97 – 1	2		$PC + 2 \rightarrow RP, Ri \rightarrow PC$	
RET		Е	97 – 2	2		$RP \to PC$	Return
INT	#u8	D	1F	3+3a		$\begin{array}{l} \text{SSP} -= 4, \ \text{PS} \rightarrow (\text{SSP}), \\ \text{SSP} -= 4, \\ \text{PC} + 2 \rightarrow (\text{SSP}), \\ 0 \rightarrow \text{I flag}, \\ 0 \rightarrow \text{S flag}, \\ (\text{TBR} + 3\text{FC} - \text{u8} \times 4) \rightarrow \text{PC} \end{array}$	
INTE		Е	9F – 3	3 + 3a		$\begin{array}{l} \text{SSP} -= 4, \ \text{PS} \rightarrow (\text{SSP}), \\ \text{SSP} -= 4, \\ \text{PC} + 2 \rightarrow (\text{SSP}), \\ 0 \rightarrow \text{S flag}, \\ (\text{TBR} + 3\text{D8} - \text{u8} \times 4) \rightarrow \text{PC} \end{array}$	For emulator
RETI		Е	97 – 3	2 + 2a	CCCC	$(R15) \rightarrow PC, R15 -= 4, (R15) \rightarrow PS, R15 -= 4$	
BNO BRA BEQ BNE BC BNC BN BP BV BNV BLT BGE BLE BGT BLS BHI	label9		E1 E0 E2 E3 E4 E5 E6 E7 E8 EC ED EEF	1 2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1		Non-branch PC + 2 + rel8 \times 2 \rightarrow PC PCif Z = 1 PCif Z = 0 PCif C = 1 PCif C = 0 PCif N = 1 PCif N = 0 PCif V = 1 PCif V = 0 PCif V xor N = 1 PCif V xor N = 0 PCif (V xor N) or Z = 1 PCif (V xor N) or Z = 1 PCif C or Z = 1 PCif C or Z = 0	

Notes: • "2/1" in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.

• The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows.

label9
$$\rightarrow$$
 rel8 = (label9 - PC - 2)/2
label12 \rightarrow rel11 = (label12 - PC - 2)/2

• RETI must be operated while S flag = 0.

• Branch instructions with delays (20 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
JMP:D	@Ri	Е	9F – 0	1		$Ri \rightarrow PC$	
CALL:D	label12	F	D8	1		$PC + 4 \rightarrow RP$, $PC + 2 + rel11 \times 2 \rightarrow PC$	
CALL:D	@Ri	Е	9F – 1	1		$PC + 4 \rightarrow RP, Ri \rightarrow PC$	
RET:D		E	9F – 2	1		$RP \rightarrow PC$	Return
BNO:D	label9	D	F1	1		Non-branch	
BRA:D	label9	D	F0	1		$PC + 2 + rel8 \times 2 \rightarrow PC$	
BEQ:D	label9	D	F2	1		PCif Z = = 1	
BNE:D	label9	D	F3	1		PCif Z = 0	
BC:D	label9	D	F4	1		PCif C = = 1	
BNC:D	label9	D	F5	1		PCif C = 0	
BN:D	label9	D	F6	1		PCif N = = 1	
BP:D	label9	D	F7	1		PCif N = 0	
BV:D	label9	D	F8	1		PCif V = = 1	
BNV:D	label9	D	F9	1		PCif V = 0	
BLT:D	label9	D	FA	1		PCif V xor $N = 1$	
BGE:D	label9	D	FB	1		PCif V xor $N = 0$	
BLE:D	label9	D	FC	1		PCif (V xor N) or $Z = 1$	
BGT:D	label9	D	FD	1		PCif (V xor N) or $Z = 0$	
BLS:D	label9	D	FE	1		PCif C or $Z = 1$	
BHI:D	label9	D	FF	1		PCif C or $Z = 0$	

Notes: • The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows. label9 → rel8 = (label9 − PC − 2)/2

label12 \rightarrow rel11 = (label12 - PC - 2)/2

- Delayed branch operation always executes next instruction (delay slot) before making a branch.
- Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other instruction is stored, this device may operate other operation than defined.

The instruction described "1" in the other cycle column than branch instruction.

The instruction described "a", "b", "c" or "d" in the cycle column.

• Direct addressing instructions

	Mnemonic		Туре	OP	Cycle	NZVC	Operation	Remarks
DMOV DMOV DMOV DMOV DMOV DMOV	R13, (@-R15	D D D D D	08 18 0C 1C 0B 1B	b 2a 2a 2a 2a		$ \begin{array}{l} (\text{dir}10) \rightarrow \text{R}13 \\ \text{R}13 \rightarrow (\text{dir}10) \\ (\text{dir}10) \rightarrow (\text{R}13), \text{R}13 += 4 \\ (\text{R}13) \rightarrow (\text{dir}10), \text{R}13 += 4 \\ \text{R}15 -= 4, (\text{dir}10) \rightarrow (\text{R}15) \\ (\text{R}15) \rightarrow (\text{dir}10), \text{R}15 += 4 \\ \end{array} $	Word Word
DMOVH DMOVH DMOVH DMOVH	R13, (0 @dir9, (0	R13 @dir9 @R13+ @dir9	D D D	09 19 0D 1D	b a 2a 2a		$(dir9) \rightarrow R13$ $R13 \rightarrow (dir9)$ $(dir9) \rightarrow (R13), R13 + = 2$ $(R13) \rightarrow (dir9), R13 + = 2$	
DMOVB DMOVB DMOVB DMOVB	R13, @dir8, @	R13 @dir8 @R13+ @dir8	D D D	0A 1A 0E 1E	b a 2a 2a		$(dir8) \rightarrow R13$ $R13 \rightarrow (dir8)$ $(dir8) \rightarrow (R13), R13 + +$ $(R13) \rightarrow (dir8), R13 + +$	Byte Byte Byte Byte

Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from disp8 to disp10 are as follows:

 $\mbox{disp8} \rightarrow \mbox{dir} + \mbox{disp8:Each disp is a code extension}$

 $disp9 \rightarrow dir = disp9 >> 1$:Each disp is a code extension

 $disp10 \rightarrow dir = disp10 >> 2$:Each disp is a code extension

• Resource instructions (2 instructions)

	Mnemon	ic	Туре	OP	Cycle	NZVC	Operation	Remarks
LDRES	@Ri+,	#u4	С	ВС	а		$(Ri) \rightarrow u4$ resource $Ri + = 4$	u4: Channel number
STRES	#u4,	@Ri+	С	BD	а		u4 resource → (Ri) Ri + = 4	u4: Channel number

• Co-processor instructions (4 instructions)

	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
COPOP	#u4, #CC, CRj, CRi	Е	9F – C	2 + a		Calculation	
COPLD	#u4, #CC, Rj, CRi	E	9F – D	1 + 2a		$Rj \rightarrow CRi$	
COPST	#u4, #CC, CRj, Ri	E	9F – E	1 + 2a		CRj → Ri	
COPSV	#u4, #CC, CRj, Ri	Е	9F – F	1 + 2a		CRj → Ri	No error traps

• Other instructions (16 instructions)

ı	Mnemonic	Туре	OP	Cycle	NZVC	Operation	Remarks
NOP		Е	9F – A	1		No changes	
ANDCCR ORCCR	#u8 #u8	D D	83 93	C C		CCR and u8 → CCR CCR or u8 → CCR	
STILM	#u8	D	87	1		i8 → ILM	Set ILM immediate value
ADDSP	#s10 *1	D	А3	1		R15 + = s10	ADD SP instruction
EXTSB EXTUB EXTSH EXTUH	Ri Ri Ri Ri	E E E	97 – 8 97 – 9 97 – A 97 – B	1		Sign extension $8 \rightarrow 32$ bits Zero extension $8 \rightarrow 32$ bits Sign extension $16 \rightarrow 32$ bits Zero extension $16 \rightarrow 32$ bits	
LDM0	(reglist)	D	8C	*4		(R15) → reglist,	Load-multi R0 to R7
LDM1	(reglist)	D	8D	*4		R15 increment (R15) → reglist, R15 increment	Load-multi R8 to R15
* LDM	(reglist) *3			_		$(R15 + +) \rightarrow reglist,$	Load-multi R0 to R15
STM0	(reglist)	D	8E	*6		R15 decrement, reglist → (R15)	Store-multi R0 to R7
STM1	(reglist)	D	8F	*6		R15 decrement, reglist → (R15)	Store-multi R8 to R15
* STM2	(reglist) *5			_		reglist \rightarrow (R15 + +)	Store-multi R0 to R15
ENTER	#u10 *2	D	0F	1+a		R14 \rightarrow (R15 – 4), R15 – 4 \rightarrow R14, R15 – u10 \rightarrow R15	Entrance processing of function
LEAVE		Е	9F – 9	b		$R14 + 4 \rightarrow R15,$ $(R15 - 4) \rightarrow R14$	Exit processing of function
XCHB	@Rj, Ri	A	8A	2a		$Ri \rightarrow TEMP$, $(Rj) \rightarrow Ri$, $TEMP \rightarrow (Rj)$	For SEMAFO management Byte data

^{*1:} In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler description s10 is as follows.

 $s10 \rightarrow s8 = s10 >> 2$

 $u10 \rightarrow u8 = u10 >> 2$

- *3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified, assembler generates LDM1. Both LDM0 and LDM1 may be generated.
- *4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following calculation; $a \times (n-1) + b + 1$ when "n" is number of registers specified.
- *5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified, assembler generates STM1. Both STM0 and STM1 may be generated.
- *6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following calculation; $a \times n + 1$ when "n" is number of registers specified.

^{*2:} In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler description u10 is as follows.

• 20-bit normal branch macro instructions

М	nemonic	Operation	Remarks	
* CALL20	label20, Ri	Next instruction address \rightarrow RP, label20 \rightarrow PC	Ri: Temporary register	*1
* BRA20	label20, Ri	label20 → PC	Ri: Temporary register	*2
* BEQ20	label20, Ri	if $(Z = = 1)$ then label $20 \rightarrow PC$	Ri: Temporary register	*3
* BNE20	label20, Ri	ifs/Z = 0	Ri: Temporary register	*3
* BC20	label20, Ri	ifs/C = = 1	Ri: Temporary register	*3
* BNC20	label20, Ri	ifs/C = 0	Ri: Temporary register	*3
* BN20	label20, Ri	ifs/N = 1	Ri: Temporary register	*3
* BP20	label20, Ri	ifs/N = 0	Ri: Temporary register	*3
* BV20	label20, Ri	ifs/V = = 1	Ri: Temporary register	*3
* BNV20	label20, Ri	ifs/V = 0	Ri: Temporary register	*3
* BLT20	label20, Ri	ifs/V xor $N = 1$	Ri: Temporary register	*3
* BGE20	label20, Ri	ifs/V xor $N = 0$	Ri: Temporary register	*3
* BLE20	label20, Ri	ifs/(V xor N) or $Z = 1$	Ri: Temporary register	*3
* BGT20	label20, Ri	ifs/ $(V \times N)$ or $Z = 0$	Ri: Temporary register	*3
* BLS20	label20, Ri	ifs/C or $Z = 1$	Ri: Temporary register	*3
* BHI20	label20, Ri	ifs/C or $Z = 0$	Ri: Temporary register	*3

*1: CALL20

- (1) If label20 PC 2 is between -0x800 and +0x7fe, instruction is generated as follows;
 - CALL label12
- (2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 #label20, Ri CALL @Ri

*2: BRA20

- (1) If label20 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;
 - BRA label9
- (2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 #label20, Ri JMP @Ri

- *3: Bcc20 (BEQ20 to BHI20)
 - (1) If label20 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;

Bcc label9

(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc LDI:20 #label20, Ri JMP @Ri false:

20-bit delayed branch macro instructions

Mn	emonic	Operation	Remarks	
* CALL20:D	label20, Ri	Next instruction address + 2 \rightarrow RP, label20 \rightarrow PC	Ri: Temporary register	*1
* BRA20:D	label20, Ri	label20 → PC	Ri: Temporary register	*2
* BEQ20:D	label20, Ri	if $(Z = = 1)$ then label $20 \rightarrow PC$	Ri: Temporary register	*3
* BNE20:D	label20, Ri	ifs/Z = 0	Ri: Temporary register	*3
* BC20:D	label20, Ri	ifs/C = 1	Ri: Temporary register	*3
* BNC20:D	label20, Ri	ifs/C = 0	Ri: Temporary register	*3
* BN20:D	label20, Ri	ifs/N = 1	Ri: Temporary register	*3
* BP20:D	label20, Ri	ifs/N = 0	Ri: Temporary register	*3
* BV20:D	label20, Ri	ifs/V = = 1	Ri: Temporary register	*3
* BNV20:D	label20, Ri	ifs/V = 0	Ri: Temporary register	*3
* BLT20:D	label20, Ri	ifs/V xor $N = 1$	Ri: Temporary register	*3
* BGE20:D	label20, Ri	ifs/V xor $N = 0$	Ri: Temporary register	*3
* BLE20:D	label20, Ri	ifs/($V \times V$) or $Z = 1$	Ri: Temporary register	*3
* BGT20:D	label20, Ri	ifs/($V \times V$) or $Z = 0$	Ri: Temporary register	*3
* BLS20:D	label20, Ri	ifs/C or $Z = 1$	Ri: Temporary register	*3
* BHI20:D	label20, Ri	ifs/C or $Z = 0$	Ri: Temporary register	*3

*1: CALL20:D

- (1) If label20 PC 2 is between -0x800 and +0x7fe, instruction is generated as follows;
 - CALL:D label12
- (2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 #label20, Ri

CALL:D @Ri

*2: BRA20:D

- (1) If label20 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;
 - BRA:D label9
- (2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 #label20, Ri

JMP:D @Ri

- *3: Bcc20:D (BEQ20:D to BHI20:D)
 - (1) If label20 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;

Bcc:D label9

(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc

LDI:20 #label20, Ri

JMP:D @Ri

false:

• 32-bit normal macro branch instructions

М	nemonic	Operation	Remarks	
* CALL32	label32, Ri	Next instruction address \rightarrow RP, label32 \rightarrow PC	Ri: Temporary register	*1
* BRA32	label32, Ri	label32 → PC	Ri: Temporary register	*2
* BEQ32	label32, Ri	if $(Z = = 1)$ then label32 \rightarrow PC	Ri: Temporary register	*3
* BNE32	label32, Ri	ifs/Z = 0	Ri: Temporary register	*3
* BC32	label32, Ri	ifs/C = 1	Ri: Temporary register	*3
* BNC32	label32, Ri	ifs/C = 0	Ri: Temporary register	*3
* BN32	label32, Ri	ifs/N = 1	Ri: Temporary register	*3
* BP32	label32, Ri	ifs/N = 0	Ri: Temporary register	*3
* BV32	label32, Ri	ifs/V = 1	Ri: Temporary register	*3
* BNV32	label32, Ri	ifs/V = 0	Ri: Temporary register	*3
* BLT32	label32, Ri	ifs/V xor $N = 1$	Ri: Temporary register	*3
* BGE32	label32, Ri	ifs/V xor $N = 0$	Ri: Temporary register	*3
* BLE32	label32, Ri	ifs/(V xor N) or $Z = 1$	Ri: Temporary register	*3
* BGT32	label32, Ri	ifs/ $(V \times N)$ or $Z = 0$	Ri: Temporary register	*3
* BLS32	label32, Ri	ifs/ C or $Z = 1$	Ri: Temporary register	*3
* BHI32	label32, Ri	ifs/C or $Z = 0$	Ri: Temporary register	*3

*1: CALL32

- (1) If label32 PC 2 is between –0x800 and +0x7fe, instruction is generated as follows;
- (2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 #label32, Ri CALL @Ri

- *2: BRA32
 - (1) If label 32 PC 2 is between -0x100 and +0xfe, instruction is generated as follows; BRA
 - (2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 #label32, Ri **JMP** @Ri

- *3: Bcc32 (BEQ32 to BHI32)
 - (1) If label 32 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;

(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

xcc is a revolt condition of cc Bxcc false LDI:32 #label32, Ri @Ri

JMP false:

• 32-bit delayed macro branch instructions

Mn	emonic	Operation	Remarks	
* CALL32:D	label32, Ri	Next instruction address + 2 \rightarrow RP, label32 \rightarrow PC	Ri: Temporary register	*1
* BRA32:D	label32, Ri	label32 → PC	Ri: Temporary register	*2
* BEQ32:D	label32, Ri	if $(Z = = 1)$ then label32 \rightarrow PC	Ri: Temporary register	*3
* BNE32:D	label32, Ri	ifs/Z = 0	Ri: Temporary register	*3
* BC32:D	label32, Ri	ifs/C = 1	Ri: Temporary register	*3
* BNC32:D	label32, Ri	ifs/C = 0	Ri: Temporary register	*3
* BN32:D	label32, Ri	ifs/N = 1	Ri: Temporary register	*3
* BP32:D	label32, Ri	ifs/N = 0	Ri: Temporary register	*3
* BV32:D	label32, Ri	ifs/V = = 1	Ri: Temporary register	*3
* BNV32:D	label32, Ri	ifs/V = 0	Ri: Temporary register	*3
* BLT32:D	label32, Ri	ifs/V xor $N = 1$	Ri: Temporary register	*3
* BGE32:D	label32, Ri	ifs/V xor $N = 0$	Ri: Temporary register	*3
* BLE32:D	label32, Ri	ifs/(V xor N) or $Z = 1$	Ri: Temporary register	*3
* BGT32:D	label32, Ri	ifs/($V \times V$) or $Z = 0$	Ri: Temporary register	*3
* BLS32:D	label32, Ri	ifs/C or $Z = 1$	Ri: Temporary register	*3
* BHI32:D	label32, Ri	ifs/C or $Z = 0$	Ri: Temporary register	*3

*1: CALL32:D

- (1) If label32 PC 2 is between -0x800 and +0x7fe, instruction is generated as follows;
 - CALL:D label12
- (2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 #label32, Ri

CALL:D @Ri

*2: BRA32:D

- (1) If label 32 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;
 - BRA:D label9
- (2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 #label32, Ri

JMP:D @Ri

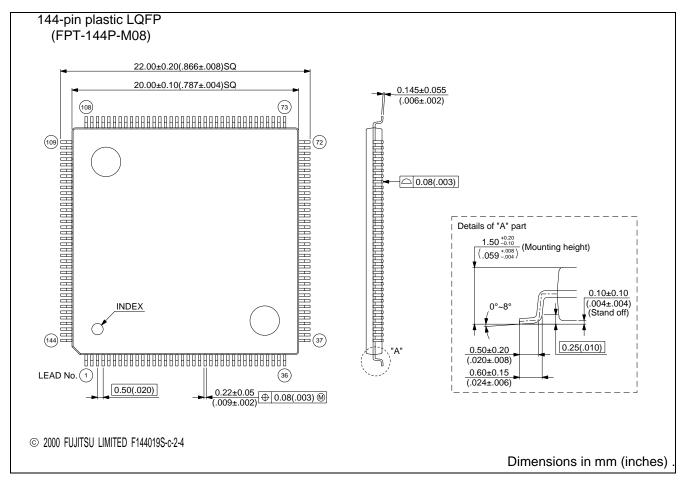
- *3: Bcc32:D (BEQ32:D to BHI32:D)
 - (1) If label 32 PC 2 is between -0x100 and +0xfe, instruction is generated as follows;

Bcc:D label9

(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc

LDI:32 #label32, Ri


JMP:D @Ri

false:

■ ORDERING INFORMATION

Part number	Package	Remarks
MB911110PMT2	144-pin plastic LQFP (FPT-144P-M08)	
MB911V110CR	PGA-299C-A01	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386 http://edevice.fujitsu.com/

Namel and Caralla Annamica

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0101

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.