32-bit Proprietary Microcontrollers

CMOS

FR30 Family MB91151A Series

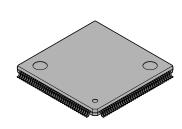
MB91151A

■ DESCRIPTION

The MB91151A is a single-chip microcontroller using a 32-bit RISC-CPU (FR30 family) as its core.

■ FEATURES

CPU


- 32-bit RISC (FR30), load/store architecture, 5-stage pipeline
- General-purpose registers : 32 bits × 16
- 16-bit fixed-length instructions (basic instructions), 1 instruction/ 1 cycle
- Memory-to-memory transfer, bit processing, barrel shift processing : Optimized for embedded applications
- Function entrance/exit instructions, and multiple load/store instructions of register contents, instruction systems supporting high level languages
- · Register interlock functions, efficient assembly language description
- · Branch instructions with delay slots: Reduced overhead time in branching executions
- Internal multiplier/supported at instruction level

Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles

• Interrupt (PC and PS saving) : 6 cycles, 16 priority levels

(Continued)

■ PACKAGE

144-pin plastic LQFP

(FPT-144P-M08)

(Continued)

Bus Interface

- 16-bit address output, 8/16-bit data input and output
- Basic bus cycle : 2-clock cycle
- Support for interface for various types of memory
- Unused data/address pins can be configured as input/output ports
- · Support for little endian mode

Internal RAM

Instruction RAM: 2 Kbytes
Data RAM: 32 Kbytes

DMAC

DMAC in descriptor format for placing transfer parameters on to the main memory.

Capable of transferring a maximum of eight internal and external factors combined.

Three channels for external factors

Bit Search Module

Searches in one cycle for the position of the bit that changes from the MSB in one word to the initial 1/0.

Timers

- 16-bit OCU × 8 channels, ICU × 4 channels, Free-run timer × 1 channel
- 8/16-bit up/down timer/counter (8-bit × 2 channels or 16-bit × 1 channel)
- 16-bit PPG timer × 6 channels. The output pulse cycle and duty can be varied as desired.
- 16-bit reload timer × 4 channels

D/A Converter

• 8-bit × 3 channels

A/D Converter (Sequential Comparison Type)

- 10-bit × 8 channels
- Sequential conversion method (conversion time : 5.0 μs@33 MHz)
- Single conversion or scan conversion can be selected, and one-shot or continuous or stop conversion mode can be set respectively.
- Conversion starting function by hardware/software.

Serial I/O

- UART × 4 channels. Any of them is capable of serial transfer in sync with clock attached with the LSB/MSB switching function.
- Serial data output and serial clock output are selectable by push-pull/open drain software.
- A 16-bit timer (U-timer) is contained as a dedicated baud rate generator allowing any baud rate to be generated.

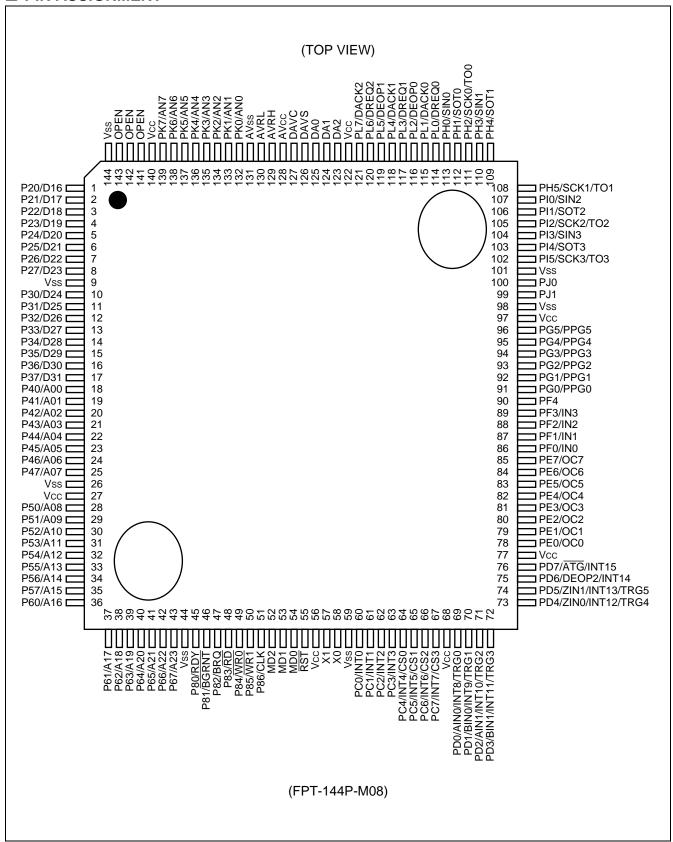
Clock Switching Function

• Gear function: Operating clock ratios to the basic clock can be set independently for the CPU and peripherals from four types, 1:1, 1:2, 1:4 or 1:8.

Interrupt Controller

External interrupt input (16 channels in total)

• Allows the rising edge/falling edge/H level/L level to be set.


Internal interrupt factors

· Interrupt by resources and delay interrupt

Others

- Reset cause: Power on reset/watchdog timer/software reset/external reset
- Low power consumption mode : Sleep/stop
- Package: 144-pin LQFP
- CMOS technology (0.35 μm)
- Power supply voltage: 3.15 V to 3.6 V

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

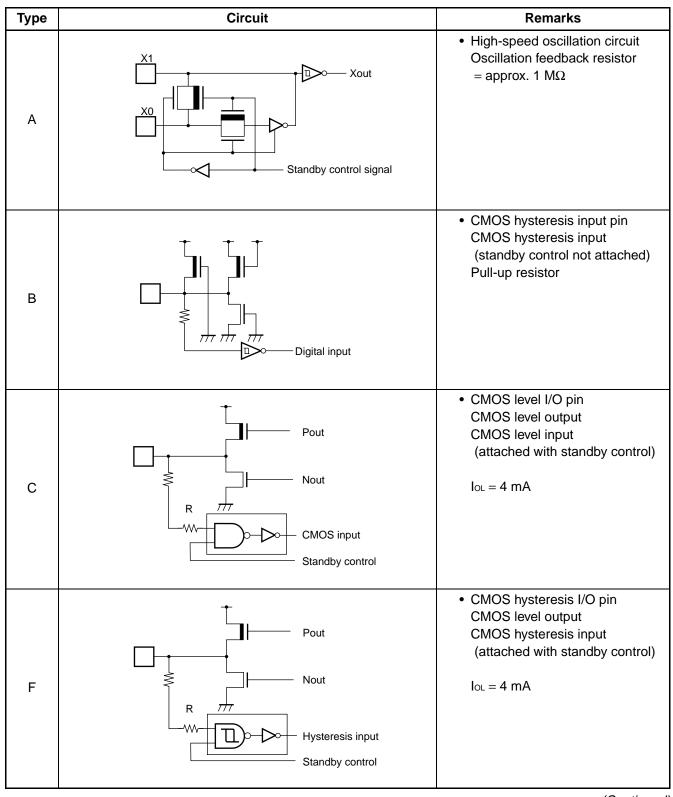
Pin No.	Pin name	Circuit type	Function
1 2 3 4 5 6 7 8	D16/P20 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27	С	Bit 16 to bit 23 of external data bus These pins are activated only in 16-bit external bus mode. These pins are available as ports in single-chip and 8-bit external bus modes.
10 11 12 13 14 15 16 17	D24/P30 D25/P31 D26/P32 D27/P33 D28P34 D29/P35 D30/P36 D31/P37	С	Bit 24 to bit 31 of external data bus These pins are available as ports in single-chip mode.
18 19 20 21 22 23 24 25 28 29 30 31 32 33 34 35	A00/P40 A01/P41 A02/P42 A03/P43 A04/P44 A05/P45 A06/P46 A07/P47 A08/P50 A09/P51 A10/P52 A11/P53 A12/P54 A13/P55 A14/P56 A15/P57	F	Bit 0 to bit 15 of external address bus These pins are activated in external bus mode. These pins are available as ports in single-chip mode.
36 37 38 39 40 41 42 43	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66 A23/P67	0	Bit 16 to bit 23 of external address bus These pins are available as ports when the address bus is not in use.
45	RDY/P80	С	External RDY input This function is activated when external RDY input is allowed. Input "0" when the bus cycle being executed does not end. This pin is available as a port when external RDY input is not in use.

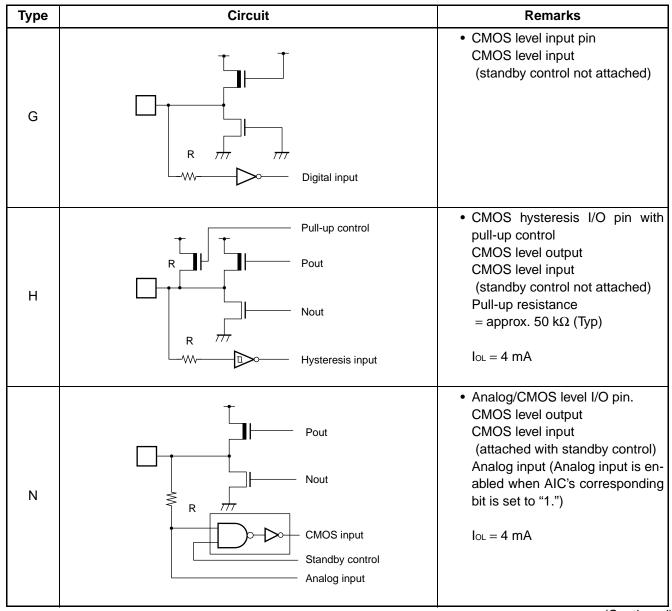
Pin No.	Pin name	Circuit type	Function		
46	BGRNT/P81	F	External bus release acceptance output This function is activated when external bus release acceptance output allowed. Output "L" upon releasing of the external bus. This pin is available as a port when external bus release acceptance ou put is not allowed.		
47	BRQ/P82	С	External bus release request input This function is activated when external bus release request input is allowed. Input "1" when the release of the external bus is desired. This pin is available as a port when external bus release request input is not in use.		
48	RD/P83	F	External bus read strobe output This function is activated when external bus read strobe output is allowed. This pin is available as a port when external bus read strobe output is not allowed.		
49	WR0/P84	F	External bus write strobe output This function is activated in external bus mode. This pin is available as a port in single chip mode.		
50	WR1/P85	F	External bus write strobe output This function is activated in external bus mode when the bus width is 16 bits. This pin is available as a port in single chip mode or when the external bus width is 8 bits.		
51	CLK/P86	F	System clock output The pin outputs the same clock as the external bus operating frequency. The pin is available as a port when it is not used to output the clock.		
52 53 54	MD2 MD1 MD0	G	Mode pins To use these pins, connect them directly to either Vcc or Vss. Use these pins to set the basic MCU operating mode.		
55	RST	В	External reset input		
57 58	X1 X0	А	High-speed clock oscillation pins		
60 61 62 63	INT0/PC0 INT1/PC1 INT2/PC2 INT3/PC3	Н	External interrupt request input 0-3 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is allowed to input also in standby mode, it can be used to reset the standby state. These pins are available as ports when external interrupt request input is not in use.		

Pin No.	Pin name	Circuit type	Function
64 65 66 67	INT4/PC4/CS0 INT5/PC5/CS1 INT6/PC6/CS2 INT7/PC7/CS3	Н	These pins also serve as the chip select output and external interrupt request input 4 to 7. When the chip select output is not allowed, these pins are available as external interrupt requests or ports. Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is also allowed to input in standby mode, the port can be used to reset the standby state. These pins are available as ports when external interrupt request input and chip select output are not in use.
69 70 71 72 73 74	PD0/AIN0/INT8/TRG0 PD1/BIN0/INT9/TRG1 PD2/AIN1/INT10/TRG2 PD3/BIN1/INT11/TRG3 PD4/ZIN0/INT12/TRG4 PD5/ZIN1/INT13/TRG5	Н	External interrupt request input 8 to 13 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [AIN, BIN] Up/down timer input. [TRG] PPG external trigger input. Since this input is used more or less continuously while input is allowed, output by the port needs to be stopped except when it is performed deliberately. These pins are available as ports when the external interrupt request input, up timer counter input, and PPG external trigger input are not in use.
75	PD6/DEOP2/INT14	Н	External interrupt request input 14 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [DEOP2] DMA external transfer end output. This function is activated when DMAC external transfer end output is allowed. This pin is available as a port when it is not in use as the external interrupt request input or DMA external transfer end output.
76	PD7/ATG/INT15	Ħ	External interrupt request input 15 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [ATG] A/D converter external trigger input. Since this input is used more or less continuously when selected as an A/D activation factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when it is not in use as the external interrupt request input or A/D converter external trigger input.

Pin No.	Pin name	Circuit type	Function	
78 79 80 81 82 83 84 85	PE0/OC0 PE1/OC1 PE2/OC2 PE3/OC3 PE4/OC4 PE5/OC5 PE6/OC6 PE7/OC7	F	Output compare output These pins are available as ports when output compare output is not allowed.	
86 87 88 89	PF0/IN0 PF1/IN1 PF2/IN2 PF3/IN3	F	Input capture input This function is activated when the input capture operation is input. These pins are available as ports when input capture input is not in use	
90	PF4	F	General I/O port	
91 92 93 94 95 96	PG0/PPG0 PG1/PPG1 PG2/PPG2 PG3/PPG3 PG4/PPG4 PG5/PPG5	F	PPG timer output This function is activated when PPG timer output is allowed. These pins are available as ports when PPG timer output is not allowed.	
99 100	PJ1 PJ0	Q	General I/O port	
102	PI5/SCK3/TO3	Р	UART3 clock I/O, Reload timer 3 output When UART3 clock output is not allowed, reload timer 3 can be output by allowing it. This pin is available as a port when neither UART3 clock output nor reload timer output is allowed.	
103	PI4/SOT3	Р	UART3 data output This function is activated when UART3 data output is allowed. This pin is available as a port when UART3 clock output is not allowed.	
104	PI3/SIN3	Р	UART3 data input Since this input is used more or less continuously while UART3 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART3 output data input is not in use.	

Pin No.	Pin name	Circuit type	Function			
105	PI2/SCK2/TO2	Р	UART2 clock I/O, Reload timer 2 output When UART2 clock output is not allowed, reload timer 2 can be output by allowing it. This pin is available as a port when neither UART2 clock output nor reload timer output is allowed.			
106	PI1/SOT2	Р	UART2 data output This function is activated when UART2 data output is allowed. This pin is available as a port when UART2 clock output is not allowed.			
107	PI0/SIN2	Р	UART2 data input Since this input is used more or less continuously while UART2 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART2 data input is not in use.			
108	PH5/SCK1/TO1	Р	UART1 clock I/O, Reload timer 1 output When UART1 clock output is not allowed, reload timer 1 can be output by allowing it. This pin is available as a port when neither UART1 clock output nor reload timer output is allowed.			
109	PH4/SOT1	Р	UART1 data output This function is activated when UART1 data output is allowed. This pin is available as a port when UART1 clock output is not allowed.			
110	PH3/SIN1	Р	UART1 data input Since this input is used more or less continuously while UART1 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART1 data input is not in use.			
111	PH2/SCK0/TO0	Р	UART0 clock I/O, Reload timer 0 output When UART0 clock output is not allowed, reload timer 0 can be output by allowing it. This pin is available as a port when neither UART0 clock output nor reload timer output is allowed.			
112	PH1/SOT0	Р	UART0 data output This function is activated when UART0 data output is allowed. This pin is available as a port when UART0 clock output is not allowed.			
113	PH0/SIN0	Р	UART0 data input Since this input is used more or less continuously while UART0 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART0 data input is not in use.			
114	DREQ0/PL0	F	DMA external transfer request input Since this input is used more or less continuously when selected as a DMAC transfer factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when DMA external transfer request input is not in use.			


Pin No.	Pin name	Circuit type	Function		
115	DACK0/PL1	F	DMA external transfer request acceptance output This function is activated when the DMAC external transfer request acceptance is allowed to be output. This pin is available as a port when the DMAC transfer request acceptance is not allowed to be output.		
116	DEOP0/PL2	F	DMA external transfer end output This function is activated when the end of DMAC external transfer is allowed to be output.		
117	DREQ1/PL3	F	DMA external transfer request input Since this input is used more or less continuously when selected as a DMAC transfer factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when DMA external transfer request input is not in use.		
118	DACK1/PL4	F	DMA external transfer request acceptance output This function is activated when the DMAC external transfer request acceptance is allowed to be output. This pin is available as a port when DMAC transfer request acceptance output is not allowed.		
119	DEOP1/PL5	F	DMA external transfer end output This function is activated when the end of DMAC external transfer is a lowed to be output.		
120	DREQ2/PL6	F	DMA external transfer request input Since this input is used more or less continuously when selected as a DMAC transfer factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when DMA external transfer request input is not in use.		
121	DACK2/PL7	F	DMA external transfer request acceptance output This function is activated when the DMAC external transfer request acceptance is allowed to be output. This pin is available as a port when DMAC transfer request acceptance output is not allowed.		
123 124 125	DA2 DA1 DA0	_	D/A converter output This function is activated when D/A converter output is allowed.		
126	DAVS	_	Power supply pin for the D/A converter		
127	DAVC	_	Power supply pin for the D/A converter		
128	AVcc	_	Vcc power supply for the A/D converter		
129	AVRH		A/D converter reference voltage (high potential side) Be sure to turn on/off this pin with potential higher than AVRH applied to Vcc.		
130	AVRL		A/D converter reference voltage (low potential side)		
131	AVss		Vss power supply for the A/D converter		


(Continued)

Pin No.	Pin name	Circuit type	Function
132 133 134 135 136 137 138 139	AN0/PK0 AN1/PK1 AN2/PK2 AN3/PK3 AN4/PK4 AN5/PK5 AN6/PK6 AN7/PK7	N	A/D converter analog input These pins are activated when the AIC register is designated for analog input. These pins are available as ports when A/D converter analog input is not in use.
27, 56, 68, 77, 97, 122, 140	Vcc	_	Power supply pin (Vcc) for digital circuit Always power supply pin (Vcc) must be connected to the power supply.
9, 26, 44, 59, 98, 101, 144	Vss	_	Earth level (Vss) for digital circuit Always power supply pin (Vss) must be connected to the power supply.

Note: On the majority of pins listed above, the I/O port and the resource I/O are multiplexed, such as XXXX/Pxx. When the port and the resource output compete against each other on these pins, priority is given to the resource.

■ I/O CIRCUIT TYPE

Circuit	Remarks
Pull-up control	CMOS hysteresis I/O pin with pull-up control CMOS level output CMOS hysteresis input
Nout	(attached with standby control) Pull-up resistance = approx. 50 kΩ (Typ)
Hysteresis input	IoL = 4 mA
Standby control	
Pull-up control	CMOS hysteresis I/O pin with pull-up control.
R P Open drain control	CMOS level output (attached with open drain control)
Nout R 777	CMOS hysteresis input (attached with standby control) Pull-up resistance
Hysteresis input	= approx. 50 kΩ (Typ)
Standby control	IoL = 4 mA
Nout	Open drain I/O pin 5 V tolerance of voltage CMOS hysteresis input (attached with standby control)
R Hysteresis input Standby control	IoL = 15 mA
	Pull-up control Pout Nout Hysteresis input Standby control Open drain control Nout Hysteresis input Standby control Nout Hysteresis input Standby control

■ HANDLING DEVICES

1. Preventing Latchup

In CMOS ICs, applying voltage higher than V_{CC} or lower than V_{SS} to input/output pin or applying voltage over rating across V_{CC} and V_{SS} may cause latchup.

This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating.

2. Treatment of Pins

· Treatment of unused pins

Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.

· Treatment of open pins

Be sure to use open pins in open state.

· Treatment of output pins

Shortcircuiting an output pin with the power supply or with another output pin or connecting a large-capacity load may causes a flow of large current. If this conditions continues for a lengthy period of time, the device deteriorates. Take great care not to exceed the absolute maximum ratings.

• Mode pins (MD0-MD2)

These pins should be used directly connected to either Vcc or Vss. In order to prevent noise from causing accidental entry into test mode, keep the pattern length as short as possible between each mode pin and Vcc or Vss on the board and connect them with low impedance.

· Power supply pins

When there are several Vcc and Vss pins, each of them is equipotentially connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect all Vcc and Vss pins to the power supply or GND.

It is preferred to connect Vcc and Vss of MB91151A to power supply with minimal impedance possible.

It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1 μ F between Vcc and Vss at a position as close as possible to MB91151A.

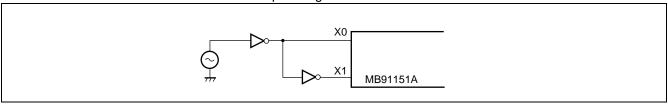
Crystal oscillator circuit

Noises around X0 and X1 pins may cause malfunctions of MB91151A. In designing the PC board, layout X0 and X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.

It is strongly recommended to design PC board so that X0, X1 pins are surrounded by grounding area for stable operation

3. Precautions

External Reset Input


It takes at least 5 machine cycle to input "L" level to the RST pin and to ensure inner reset operation properly.

External Clocks

When using an external clock, normally, a clock of which the phase is opposite to that of X0 must be supplied to the X0 and X1 pins simultaneously. However, when using the clock along with STOP (oscillation stopped) mode, the X1 pin stops when "H" is input in STOP mode. To prevent one output from competing against another, an external resistor of about 1 $k\Omega$ should be provided.

The following figure shows an example usage of an external clock.

An example usage of an external clock

4. Caution During Powering Up

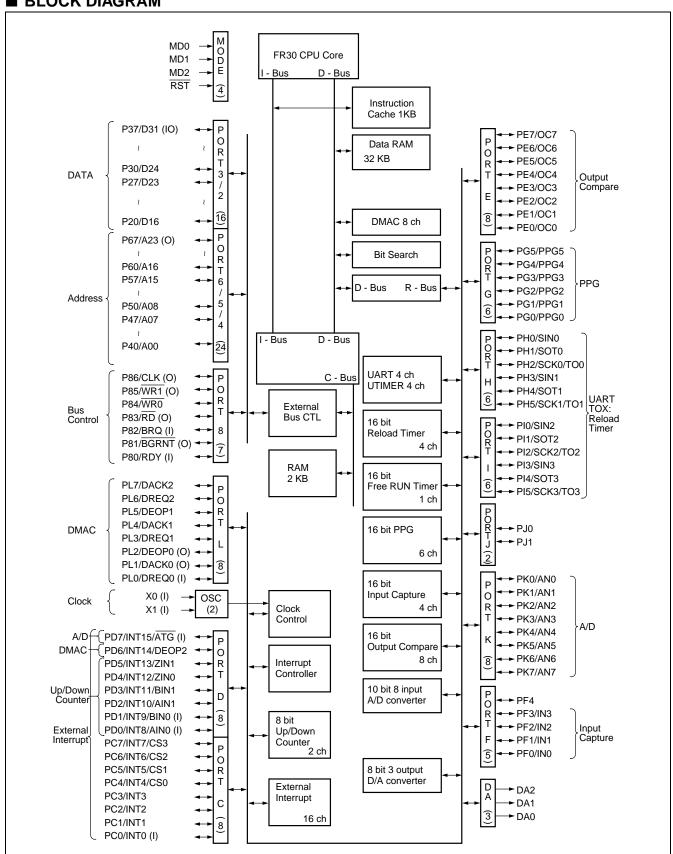
When powering up

When turning on the power supply, never fail to start from setting the \overline{RST} pin to "L" level. And after the power supply voltage goes to Vcc level, at least after ensuring the time for 5 machine cycles, then set to "H" level.

• Source oscillation input

At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting.

Power on resetting


When powering up or when turning the power back on after the supply voltage drops below the operation assurance range, be sure to reset the power.

• Power on sequence

Turn on the power in the order of Vcc, AVcc and AVRH. The power should be disconnected in inverse order.

- Even when an AD converter is not in use, connect AVcc to the Vcc level and AVss to the Vss level.
- Even when a DA converter is not in use, connect DAVC to the Vcc level and DAVS to the Vss level.

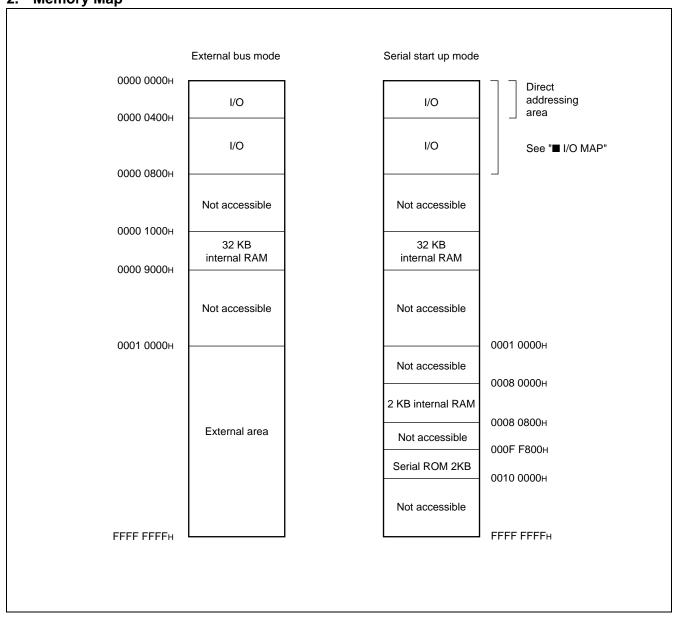
■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The FR family has a logical address space of 4 Gbytes (2³² bytes) and the CPU linearly accesses the memory space.

· Direct addressing area


The following area in the address space is used for I/O.

This area is called direct addressing area and an operand address can be specified directly in an instruction. The direct addressing area varies with the data size to be accessed as follows:

ightarrow byte data access : 000н-0FFн ightarrow half word data access : 000н-1FFн

ightarrow half word data access : 000н-1FFн ightarrow word data access : 000н-3FFн

2. Memory Map

3. Registers

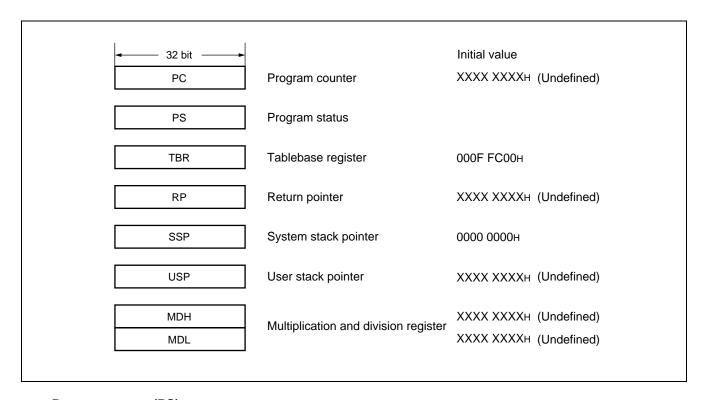
The family of FR microcontrollers has two types of registers: the registers residing in the CPU which are dedicated to applications and the general-purpose registers residing in the memory.

• Dedicated registers :

Program counter (PC) : A 32-bit register to indicate the location where an instructions is stored.

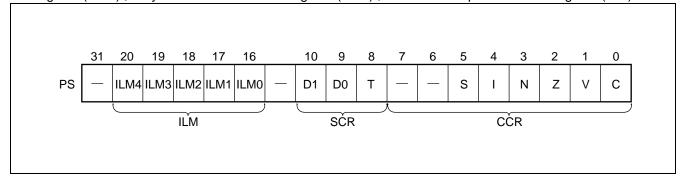
Program status (PS) : A 32-bit register to store a register pointer or a condition code.

Tablebase register (TBR) : Holds the vector table lead address used when EIT (exceptions/interrupt/


trap) is processed.

Return pointer (RP) : Holds the address to return from a subroutine.

System stack pointer (SSP) : Points to the system stack space.


User stack pointer (USP) : Points to the user stack space.

Multiplication and division result register (MDH/MDL): A 32-bit multiplication and division register.

• Program status (PS)

The PS register holds program status and is further divided into three registers which are a Condition Code Register (CCR), a System condition Code Register (SCR), and an Interrupt Level Mask register (ILM).

• Condition Code Register (CCR)

S flag : Designates the stack pointer for use as R15.

I flag : Controls enabling and disabling of user interrupt requests.

N flag : Indicates the sign when arithmetic operation results are considered to be an integer represented

by 2's complement.

Z flag : Indicates if arithmetic results were "0."

V flag : Considers the operand used for an arithmetic operation to be an integer represented by 2's com-

plement and indicates if the operation resulted in an overflow.

C flag : Indicates whether or not an arithmetic operation resulted in a carry or a borrow from the most sig-

nificant bit.

• System condition Code Register (SCR)

T flag : Designates whether or not to enable step trace trap.

• Interrupt Level Mask register (ILM)

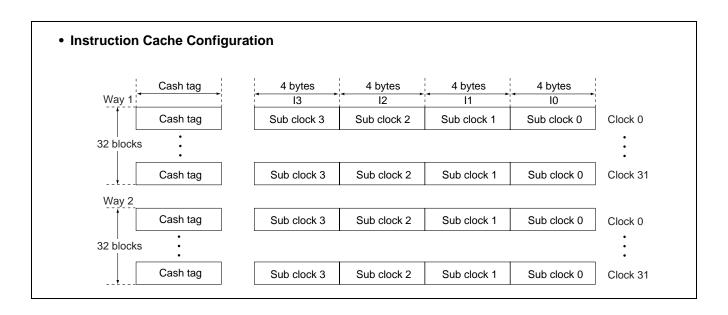
ILM4 to ILM0 : Holds an interrupt level mask value to be used for level masking.

An interrupt request is accepted only if the corresponding interrupt level among interrupt

requests input to the CPU is higher than the value indicated by the ILM register.

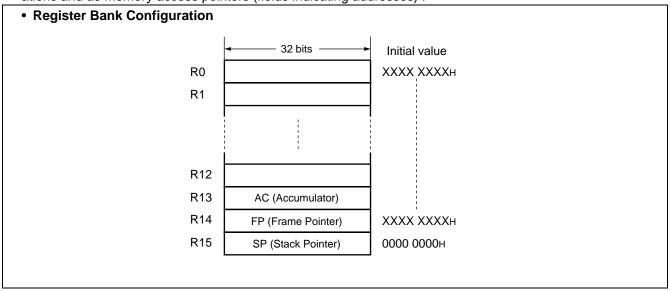
ILM4	ILM3	ILM2	ILM1	ILMO	Interrupt level	High-Low
0	0	0	0	0	0	Higher
		1			:	†
0	1	0	0	0	15	
	<u> </u>	!			:	ļ
1	1	1	1	1	31	Lower

■ Instruction Cache


• Description

The instruction cache is a temporary storage memory. In the event that the instruction codes are accessed from a low speed external memory, it holds the accessed codes internally, and is used to increase the access speed for all subsequent accesses.

Direct read or write access can not be done by instruction cache or instruction cache tag using software.


• Instruction cache configuration

- Basic instruction length of FR series: 2 bytes
- Block layout: 2-way set associative type
- Block
 - 1 way is configured of 32 blocks.
 - 1 block is 16 bytes (= 4 sub blocks)
 - 1 sub block is 4 bytes (= 1 bus access unit)

■ GENERAL-PURPOSE REGISTERS

General-purpose registers are CPU registers R0 through R15 and used as accumulators during various operations and as memory access pointers (fields indicating addresses) .

Of the 16 general-purpose registers, the following registers are assumed for specific applications. For this reason, some instructions are enhanced.

R13: Virtual accumulator (AC)

R14: Frame pointer (FP)

R15 : Stack pointer (SP)

Initial values to which R0 through R14 are reset are not defined. The initial value of R15 is $0000\ 0000 \text{H}$ (the SSP value) .

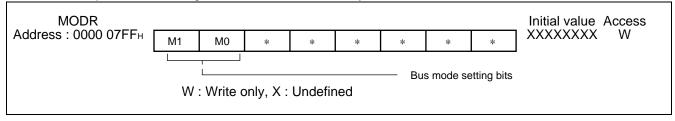
■ MODE SETTING

1. Mode Pins

As shown below, three pins, MD2, MD1, and MD0 are used to indicate an operation.

Mode pins and set modes

N	Mode pin		Mode name	Reset vector	External data	Bus modes	
MD2	MD1	MD0	access area		bus width	bus modes	
0	0	0	External vector mode 0	External	8 bits	External bus mode	
0	0	1	External vector mode 1	External vector mode 1 External 16		External bus mode	
0	1	0	External vector mode 2	External	32 bits	Not available on this product type	
0	1	1	External vector mode	Internal	(Mode register)	Single-chip mode*	
1	_	_	_	_		Not available	


^{*:} Not available on this product type

2. Mode Data

The data which the CPU writes to "0000 07FFH" after reset is called mode data.

It is the mode register (MODR) that exists at "0000 07FFH." Once a mode is set in this register, operations will take place in that mode. The mode register can be written only once after reset.

The mode specified in the register is enabled immediately after it is written.

[bits 7 and 6]: M1, M0

These are bus mode setting bits. Specify the bus mode to be set to after writing to the mode register.

M1	МО	Function	Remarks
0	0	Single-chip mode	Setting not allowed
0	1	Internal RAM-external bus mode	
1	0	External bus mode	
1	1	_	Setting not allowed

Note: Of the above options, only "01" or "10" should be set for this model.

[bits 5 to 0]: *

These bits are reserved for the system.

"0" should be written to these bits at all times.

[Precautions When Writing to the MODR]


Before writing to the MODR, be sure to set AMD0 through AMD5 and determine the bus width in each CS (Chip Select) area.

The MODR does not have bus width setting bits.

The bus width value set with mode pins MD2 through MD0 is enabled before writing to the MODR and the bus width value set with BW1 and BW0 of AMD0 through AMD5 is enabled after writing to the MODR.

For example, the external reset vector is normally executed with area 0 (the area where CS0 is active) and the bus width at that time is determined by pins MD2 through MD0. Suppose that the bus width is set to 32 or 16 bits in MD2 though MD0 but no value is specified in AMD0. If the MODR is written in this state, area 0 then switches to 8-bit bus mode and operates the bus since the initial bus width in AMD0 is set to 8 bits. This causes a malfunction.

In order to prevent this type of problem, AMD0 through AMD5 must always be set before writing to the MODR.

■ I/O MAP

Address		Block				
Address	+0	+1	+2	+3	- BIOCK	
000000н	PDR3 (R/W) XXXXXXXX	PDR2 (R/W) XXXXXXXX	_	_		
000004н	_	PDR6 (R/W) XXXXXXXX	PDR5 (R/W) XXXXXXXX	PDR4 (R/W) XXXXXXXX		
000008н		<u> </u>		PDR8 (R/W) - XXXXXXX		
00000Сн		_	_		Port Data Register	
000010н	PDRF (R/W) XXXXX	PDRE (R/W) XXXXXXXX	PDRD (R/W) XXXXXXXX	PDRC (R/W) XXXXXXXX		
000014н	PDRJ (R/W) 11	PDRI (R/W) XXXXXX	PDRH (R/W) XXXXXX	PDRG (R/W) XXXXXX		
000018н	_	_	PDRL (R/W) XXXXXXXX	PDRK (R/W) XXXXXXXX	†	
00001Сн	SSR0 (R, R/W) 00001000	SIDR0/SODR0 (R, W) XXXXXXXX	SCR0 (R/W, W) 00000100	SMR0 (R/W) 00000 - 00	UART0	
000020н	SSR1 (R, R/W) 00001000	SIDR1/SODR1 (R, W) XXXXXXXX	SCR1 (R/W, W) 00000100	SMR1 (R/W) 00000 - 00	UART1	
000024н	SSR2 (R, R/W) 00001000	SIDR2/SODR2 (R, W) XXXXXXXX	SCR2 (R/W, W) 00000100	SMR2 (R/W) 00000 - 00	UART2	
000028н	SSR3 (R, R/W) 00001000	SIDR3/SODR3 (R, W) XXXXXXXX	SCR3 (R/W, W) 00000100	SMR3 (R/W) 00000 - 00	UART3	
00002Сн	TMRLI XXXXXXXX	` ,	TMR XXXXXXX	` '	Daland Timer 0	
000030н	_		TMCSR 0000	2000000	Reload Timer 0	
000034н	TMRLI XXXXXXXX		TMR XXXXXXX	1 (R) XXXXXXXX	Reload Timer 1	
000038н	_	_	TMCSR 0000		- Reidau Hiller I	
00003Сн	TMRLI XXXXXXXX		TMR XXXXXXX	2 (R) XXXXXXXX	Reload Timer 2	
000040н	_	_	TMCSR 0000		Reidad Hitter 2	

A alal # 0 0 0		Block				
Address	+0	+1	+2	+3	- BIOCK	
000044н	TMRLR3 (W) TMR3 (R) XXXXXXXX XXXXXXXX XXXXXXXX			Reload Timer 3		
000048н	_	_	TMCSR 0000	3 (R/W) 00000000	Reload Timer 5	
00004Сн	CDCR1 (R/W) 0 0000	_	CDCR0 (R/W) 0 0000	_	Communications	
000050н	CDCR3 (R/W) 0 0000	_	CDCR2 (R/W) 0 0000	_	prescaler 1	
000054н to 000058н		-	_		Reserved	
00005Сн	RCR1 (W) 00000000	RCR0 (W) 00000000	UDCR1 (R) 00000000	UDCR0 (R) 00000000		
000060н	CCRH0 (R/W) 00000000	CCRL0 (R/W, W) - 000X000		CSR0 (R/W, R) 00000000	8/16 bit U/D Counter	
000064н	CCRH1 (R/W) - 0000000	CCRL1 (R/W, W) - 000X000		CSR1 (R/W, R) 00000000		
000068н	IPCP XXXXXXXX	1 (R) XXXXXXXX	IPCP XXXXXXXX	0 (R) XXXXXXXX		
00006Сн	IPCP XXXXXXXX	3 (R) XXXXXXXX	IPCP XXXXXXXX	2 (R) XXXXXXXX	16 bit ICU	
000070н	_	ICS23 (R/W) 00000000		ICS01 (R/W) 00000000		
000074н		I (R/W) XXXXXXX	OCCP(XXXXXXXX	O (R/W) XXXXXXXX		
000078н	OCCP3 XXXXXXXX	3 (R/W) XXXXXXXX	OCCP2 XXXXXXXX	2 (R/W) XXXXXXXX		
00007Сн	OCCP5 XXXXXXXX	5 (R/W) XXXXXXXX	OCCP4 XXXXXXXX	4 (R/W) XXXXXXXX	- 16 bit OCU	
000080н		7 (R/W) XXXXXXXX		6 (R/W) XXXXXXXX	10 811 000	
000084н		3 (R/W) 0000XX00		1 (R/W) 0000XX00		
000088н	OCS6, XXX00000	7 (R/W) 0000XX00	OCS4, 5 (R/W) XXX00000 0000XX00			
00008Сн	TCDT 00000000		TCCS 0	(R/W) 00000000	16 bit Freerun Timer	
000090н	STPR0 (R/W) 0000	STPR1 (R/W) 00000 - 00	STPR2 (R/W) 000000	_	Stop Register 0, 1, 2	
000094н	GCN1 00110010		_	GCN2 (R/W) 00000000	PPG ctl	

Address		Block				
Address	+0	+1	+2	+3	BIOCK	
000098н	PTMF 11111111			PCSR0 (W) XXXXXXXX XXXXXXX		
00009Сн	PDUT XXXXXXXX	O (W) XXXXXXXX	PCNH0 (R/W) 0000000 -	PCNL0 (R/W) 00000000	- PPG0	
0000А0н	PTMF 11111111		PCSR XXXXXXXX		PPG1	
0000А4н	PDUT XXXXXXXX	1 (W) XXXXXXXX	PCNH1 (R/W) 0000000 -	PCNL1 (R/W) 00000000	- PPG1	
0000А8н	PTMF 11111111	R2 (R) 11111111	PCSR XXXXXXXX		PPG2	
0000АСн	PDUT2 (W) XXXXXXXX XXXXXXX		PCNH2 (R/W) 0000000 -	PCNL2 (R/W) 00000000	FFG2	
0000В0н	PTMF 11111111		PCSR XXXXXXXX		PPG3	
0000В4н	PDUT XXXXXXX	3 (W) XXXXXXX	PCNH3 (R/W) 0000000 -	PCNL3 (R/W) 00000000	7	
0000В8н	PTMF 11111111	R4 (R) 11111111	PCSR XXXXXXXX	` '	PPG4	
0000ВСн	PDUT XXXXXXXX	4 (W) XXXXXXXX	PCNH4 (R/W) 0000000 -	PCNL4 (R/W) 00000000	FFG4	
0000С0н	PTMF 11111111		PCSR XXXXXXXX		PPG5	
0000С4н	PDUT XXXXXXXX		PCNH5 (R/W) 0000000 -	PCNL5 (R/W) 00000000	7 7793	
0000С8н	EIRR0 (R/W) 00000000	ENIR0 (R/W) 00000000	EIRR1 (R/W) 00000000	ENIR1 (R/W) 00000000	Ext int	
0000ССн	ELVR0 00000000	` ,	ELVR1 00000000		- EXTIII	
0000D0н to 0000D8н		-	_		Reserved	
0000DСн	_	DACR2 (R/W)	DACR1 (R/W)	DACR0 (R/W)	D/A Conventor	
0000Е0н	_	DADR2 (R/W) XXXXXXXX	DADR1 (R/W) XXXXXXXX	DADR0 (R/W) XXXXXXXX	D/A Converter	
0000Е4н	ADCR 00101- XX	(R, W) XXXXXXX	ADCS1 (R/W, W) 00000000	ADCS0 (R/W) 00000000	A/D Converter (Sequential type)	
0000Е8н		_		AICK (R/W) 00000000	Analog Input Control	
0000ECн to 0000F0н		-	_		Reserved	

Address		Disale				
Address	+0	+1	+2	+3	Block	
0000F4н	PCRI (R/W) 000000	PCRH (R/W) 000000	PCRD (R/W) 00000000	PCRC (R/W) 00000000	Pull Up Control	
0000F8н	OCRI (R/W) 000000	OCRH (R/W) 000000	_	_		
0000FСн	DDRF (R/W) 00000	DDRE (R/W) 00000000	DDRD (R/W) 00000000	DDRC (R/W) 00000000		
000100н	_	DDRI (R/W) - 0000000	DDRH (R/W) 000000	DDRG (R/W) 000000	Data Direction Reg- ister	
000104н	_	_	DDRL (R/W) 00000000	DDRK (R/W) 00000000		
000108н to 0001FCн		_	_	Reserved		
000200н		DPDP (R/W) 0000000				
000204н	0	DACSF 0000000 00000000	R (R/W) 00000000 0000000	00	DMAC	
000208н	XXX					
00020Сн to 0003Е0н		Reserved				
0003Е4н	ICHCR (R/W)				Instruction cache	
0003E8н to 0003EСн		Reserved				
0003F0н	XXXX	BSD(XXXXX XXXXXXX	0 (W) XXXXXXXX XXXX	xxxx		
0003Е4н	XXXX	BSD1 XXXXX XXXXXXX	(R/W) XXXXXXXX XXXX	XXXX	Dit Cooreb Module	
0003F8н	XXX>	BSD(XXXXX XXXXXXXX	C (W) XXXXXXXX XXXX	XXXX	Bit Search Module	
0003FСн	XXXX	BSR XXXXX XXXXXXX	R (R) XXXXXXXX XXXX	XXXX		

Adduses		Dlack			
Address	+0	+1	+2	+3	Block
000400н	ICR00 (R/W) 1111	ICR01 (R/W) 1111	ICR02 (R/W) 1111	ICR03 (R/W) 1111	
000404н	ICR04 (R/W) 1111	ICR05 (R/W) 1111	ICR06 (R/W) 1111	ICR07 (R/W) 1111	1
000408н	ICR08 (R/W) 1111	ICR09 (R/W) 1111	ICR10 (R/W) 1111	ICR11 (R/W) 1111	1
00040Сн	ICR12 (R/W) 1111	ICR13 (R/W) 1111	ICR14 (R/W) 1111	ICR15 (R/W) 1111	
000410н	ICR16 (R/W)	ICR17 (R/W)	ICR18 (R/W) 1111	ICR19 (R/W)	
000414н	ICR20 (R/W)	ICR21 (R/W) 1111	ICR22 (R/W) 1111	ICR23 (R/W) 1111	1
000418н	ICR24 (R/W) 1111	ICR25 (R/W) 1111	ICR26 (R/W) 1111	ICR27 (R/W) 1111	Interrupt Control unit
00041Сн	ICR28 (R/W) 1111	ICR29 (R/W) 1111	ICR30 (R/W)	ICR31 (R/W)	
000420н	ICR32 (R/W)	ICR33 (R/W)	ICR34 (R/W) 1111	ICR35 (R/W)	
000424н	ICR36 (R/W) 1111	ICR37 (R/W)	ICR38 (R/W) 1111	ICR39 (R/W) 1111	
000428н	ICR40 (R/W) 1111	ICR41 (R/W) 1111	ICR42 (R/W) 1111	ICR43 (R/W) 1111	
00042Сн	ICR44 (R/W) 1111	ICR45 (R/W) 1111	ICR46 (R/W) 1111	ICR47 (R/W) 1111	
000430н	DICR (R/W)	HRCL (R/W) 1111	_	_	Delay int
000434н to 00047Сн		_	_		Reserved
000480н	RSRR/WTCR (R, W) 1-XXX-00	STCR (R/W, W) 000111	PDRR (R/W) 0000	CTBR (W) XXXXXXXX	Clock Control unit
000484н	GCR (R/W, R) 110011-1	WPR (W) XXXXXXXX	_	_	
000488н	PTCR (R/W) 00XX0XXX		_	PLL Control	
00048Сн to 0005FСн		_	_		Reserved

(Continued)

Address		Block			
Address	+0	+1	+2	+3	DIOCK
000600н	DDR3 (W) 00000000	DDR2 (W) 00000000	_	_	
000604н	_	DDR6 (W) 00000000	DDR5 (W) 00000000	DDR4 (W) 00000000	Data Direction Register
000608н		_		DDR8 (W) - 0000000	
00060Сн	ASR 00000000		AMR 00000000		
000610н	ASR: 00000000		AMR: 00000000		
000614н	ASR: 00000000		AMR: 00000000		T-unit
000618н	ASR/ 00000000		AMR- 00000000		
00061Сн	ASR: 00000000		AMR: 00000000		1-unit
000620н	AMD0 (R/W) 00111	AMD1 (R/W) 0 00000	AMD32 (R/W) 00000000	AMD4 (R/W) 0 00000	
000624н	AMD5 (R/W) 0 00000		_		
000628н	EPCR 1100	0 (W) -1111111	EPCR		
00062Сн		-	_		Reserved
000630н	_	PCR6 (R/W) 00000000	_		Pull Up Control
000634н to 0007F8н		_	_	Reserved	
0007FСн	_	_	LER (W)	MODR (W) XXXXXXXX	Little Endian Register Mode Register

Note: Do not execute RMW instructions on registers having a write-only bit.

RMW instructions (RMW : Read Modify Write)

AND EOR Rj, @Ri Rj, @Ri OR Rj, @Ri ANDH Rj, @Ri ORH Rj, @Ri **EORH** Rj, @Ri ANDB Rj, @Ri ORB Rj, @Ri **EORB** Rj, @Ri BANDL #u4, @Ri BORL #u4, @Ri BEORL #u4, @Ri BANDH #u4, @Ri BORH #u4, @Ri BEORH #u4, @Ri

Data is undefined in "Reserved" or (—) areas.

(): Access
R/W: Read/Write enabled
R: Read only
W: Write only
Not in use
X: Undefined

■ INTERRUPT FACTORS AND ASSIGNMENT OF INTERRUPT VECTORS AND RESISTERS

Footor	Interru	Interrupt No.		Offers	Default TBR
Factor	Decimal	Hex.	Interrupt level	Offset	address
Reset	0	00	_	3FСн	000FFFCн
Reserved for the system	1	01	_	3F8н	000FFFF8н
Reserved for the system	2	02	_	3F4н	000FFFF4н
Reserved for the system	3	03	_	3F0н	000FFF0н
Reserved for the system	4	04	_	3ЕСн	000FFFECн
Reserved for the system	5	05	_	3Е8н	000FFFE8н
Reserved for the system	6	06	_	3Е4н	000FFFE4н
Reserved for the system	7	07	_	3Е0н	000FFFE0н
Reserved for the system	8	08	_	3DСн	000FFFDCн
Reserved for the system	9	09	_	3D8н	000FFFD8н
Reserved for the system	10	0A	_	3D4н	000FFFD4н
Reserved for the system	11	0B	_	3D0н	000FFFD0н
Reserved for the system	12	0C	_	3ССн	000FFFCCн
Reserved for the system	13	0D	_	3С8н	000FFFC8н
Undefined instruction exception	14	0E	_	3С4н	000FFFC4н
Reserved for the system	15	0F	_	3С0н	000FFFC0н
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н
External interrupt 4	20	14	ICR04	3АСн	000FFFACн
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н
External interrupt 6	22	16	ICR06	3А4н	000FFFA4н
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н
External interrupts 8 to 15	24	18	ICR08	39Сн	000FFF9Сн
Reserved for the system	25	19	_	398н	000FFF98н
UART0 (receiving complete)	26	1A	ICR10	394н	000FFF94н
UART1 (receiving complete)	27	1B	ICR11	390н	000FFF90н
UART2 (receiving complete)	28	1C	ICR12	38Сн	000FFF8Сн
UART3 (receiving complete)	29	1D	ICR13	388н	000FFF88н
Reserved for the system	30	1E	_	384н	000FFF84н
UART0 (sending complete)	31	1F	ICR15	380н	000FFF80н
UART1 (sending complete)	32	20	ICR16	37Сн	000FFF7Сн
UART2 (sending complete)	33	21	ICR17	378н	000FFF78н

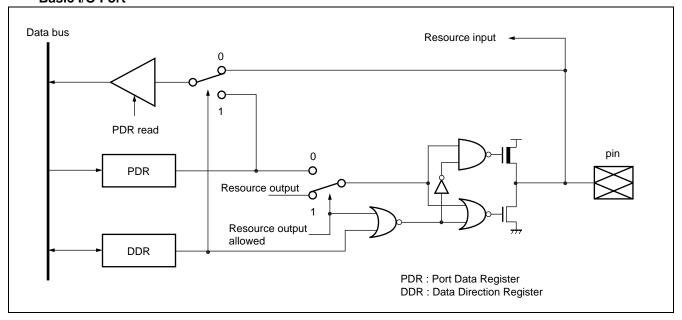
Factor	Interrupt No.		Interrupt	0" 1	Default TBR
Factor	Decimal	Hex.	level	Offset	address
UART3 (sending complete)	34	22	ICR18	374н	000FFF74н
System reservation	35	23	_	370н	000FFF70н
DMAC (End, Error)	36	24	ICR20	36Сн	000FFF6Сн
Reload timer 0	37	25	ICR21	368н	000FFF68н
Reload timer 1	38	26	ICR22	364н	000FFF64н
Reload timer 2	39	27	ICR23	360н	000FFF60н
Reload timer 3	40	28	ICR24	35Сн	000FFF5Сн
A/D (sequential type)	42	2A	ICR26	354н	000FFF54н
PPG0	43	2B	ICR27	350н	000FFF50н
PPG1	44	2C	ICR28	34Сн	000FFF4Сн
PPG2	45	2D	ICR29	348н	000FFF48н
PPG3	46	2E	ICR30	344н	000FFF44н
PPG4	47	2F	ICR31	340н	000FFF40н
PPG5	48	30	ICR32	33Сн	000FFF3Сн
U/Dcounter 0 (compare/underflow, overflow, up-down inversion)	49	31	ICR33	338н	000FFF38н
U/Dcounter 1 (compare/underflow, overflow, up-down inversion	50	32	ICR34	334н	000FFF34н
ICU0 (Read)	51	33	ICR35	330н	000FFF30н
ICU1 (Read)	52	34	ICR36	32Сн	000FFF2Сн
ICU2 (Read)	53	35	ICR37	328н	000FFF28н
ICU3 (Read)	54	36	ICR38	324н	000FFF24н
OCU0 (Match)	55	37	ICR39	320н	000FFF20н
OCU1 (Match)	56	38	ICR40	31Сн	000FFF1Сн
OCU2 (Match)	57	39	ICR41	318н	000FFF18н
OCU3 (Match)	58	3A	ICR42	314н	000FFF14н
OCU4/5 (Match)	59	3B	ICR43	310н	000FFF10н
OCU6/7 (Match)	60	3C	ICR44	30Сн	000FFF0Сн
Reserved for the system	61	3D	_	308н	000FFF08н
16-bit free-run timer	62	3E	ICR46	304н	000FFF04н
Delay interrupt factor bit	63	3F	ICR47	300н	000FFF00н

Factor	Interrupt No. Decimal Hex.		Interrupt	Officet	Default TBR
Factor			level	Offset	address
Reserved for the system (used by REALOS*)	64	40	_	2FCн	000FFEFCн
Reserved for the system (used by REALOS*)	65	41	_	2F8 _H	000FFEF8н
Reserved for the system	66	42	_	2F4 _H	000FFEF4н
Reserved for the system	67	43	_	2F0н	000FFEF0н
Reserved for the system	68	44	_	2ЕСн	000FFEECн
Reserved for the system	69	45	_	2Е8н	000FFEE8н
Reserved for the system	70	46	_	2Е4н	000FFEE4н
Reserved for the system	71	47	_	2Е0н	000FFEE0н
Reserved for the system	72	48	_	2DC _H	000FFEDCн
Reserved for the system	73	49	_	2D8н	000FFED8н
Reserved for the system	74	4A	_	2D4н	000FFED4н
Reserved for the system	75	4B	_	2D0н	000FFED0н
Reserved for the system	76	4C	_	2ССн	000FFECCн
Reserved for the system	77	4D	_	2С8н	000FFEC8н
Reserved for the system	78	4E	_	2С4н	000FFEC4н
Reserved for the system	79	4F	_	2С0н	000FFEC0н
Used with the INT instruction	80 to 255	50 to FF	_	2ВСн to 000н	000FFEBCн to 000FFC00н

^{*:} REALOS/FR uses 0X40 and 0X41 interrupts for system codes.

■ PERIPHERAL RESOURCES

1. I/O Port


(1) Port Block Diagram

This LSI is available as an I/O port when the resource associated with each pin is set not to use a pin for input/output.

The pin level is read from the port (PDR) when it is set for input. When the port is set for output, the value in the data register is read. The same also applies to reload by read modify write.

When switching from input to output, output data is set in the data register beforehand. However, if a read modify write instruction (such as bit set) is used at that time, keep in mind that it is the input data from the pin that is read, not the latch value of the data register.

• Basic I/O Port

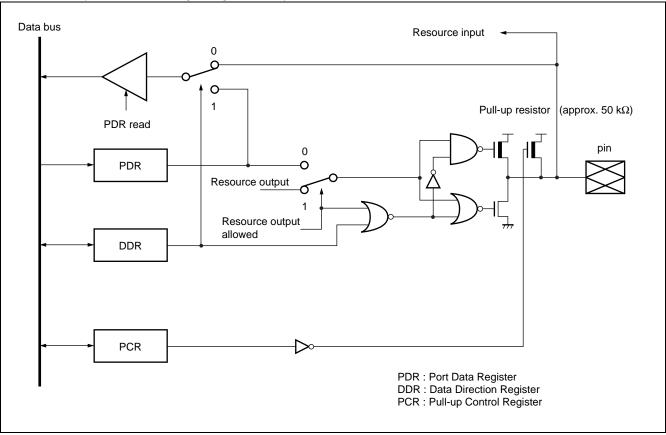
The I/O port consists of the PDR (Port Data Register) and the DDR (Data Direction Register). In input mode (DDR = "0") \rightarrow PDR read: Reads the level of the corresponding external pin.

PDR write: Writes the set value to the PDR.

In output mode (DDR = "1") \rightarrow PDR read : Reads the PDR value.

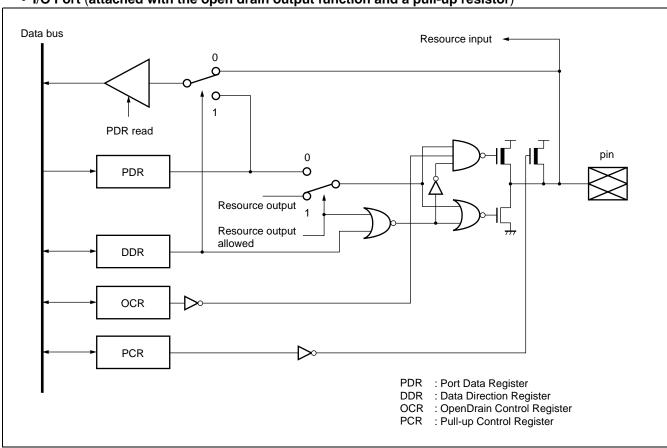
PDR write: Outputs the PDR value to the corresponding external pin.

Notes: AIC controls switching between the resource and port of the analog pin (A/D).


AICK (Analog Input Control register on port-K)

The register controls whether port K should be used for analog input or as a general-purpose port.

0 : General-purpose port


1: Analog input (A/D)

Notes: • Pull-up resistor control register (PCR) R/W Controls turning the pull-up resistor on/off.

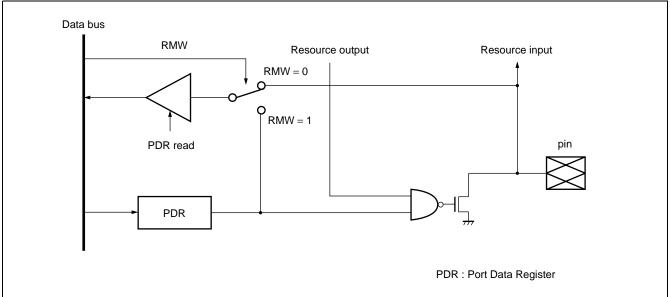
- 0 : Pull-up resistor disabled
- 1 : Pull-up resistor enabled
- In stop mode priority is also given to the setting of the pull-up resistor control register.
- This function is not available when a relevant pin is in use as an external bus pin. Do not write "1" to this register.

• I/O Port (attached with the open drain output function and a pull-up resistor)

Notes: • Pull-up resistor setup register (PCR) R/W

Controls turning the pull-up resistor on/off.

- 0 : Pull-up resistor disabled
- 1 : Pull-up resistor enabled
- Open drain control register (OCR) R/W


Controls open drain in output mode.

- 0: Standard output port during output mode
- 1 : Open-drain output port during output mode

This register has no significance in input mode (output High-Z) . Input/output mode is determined by the direction register (DDR) .

- Priority is also given to the setting of the pull-up resistor control register in stop mode.
- When a relevant pin is used as an external bus pin, neither function is available. Do not write "1" to either register.

• I/O Port (open drain)

Notes: • When using as an input port or for resource input, set the PDR and resource output to "1."

• During read by RMW, it is the PDR value that is read, not the pin value.

(2) Register Descripti	
 Port Data Registe 	r (PDR)
PDR2	7
Address : 000001н	P27

PDR2	7 (FDR)	6	5	4	3	2	1	0	Initial value Access
Address : 000001н	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXB R/W
PDR3	7	6	5	4	3	2	1	0	Initial value Access
Address: 000000H	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB R/W
PDR4	7	6	5	4	3	2	1	0	Initial value Access
Address: 000007 _H	P47	P46	P45	P44	P43	P42	P41	P40	XXXXXXXXB R/W
PDR5	7	6	5	4	3	2	1	0	Initial value Access
Address: 000006н	P57	P56	P55	P54	P53	P52	P51	P50	XXXXXXXXB R/W
PDR6	7	6	5	4	3	2	1	0	Initial value Access
Address: 000005 _H	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXB R/W
PDR8	7	6	5	4	3	2	1	0	Initial value Access
Address: 00000BH		P86	P85	P84	P83	P82	P81	P80	- XXXXXXXB R/W
PDRC	7	6	5	4	3	2	1	0	Initial value Access
Address: 000013H	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	XXXXXXXXB R/W
PDRD	7	6	5	4	3	2	1	0	Initial value Access
Address: 000012H	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	XXXXXXXXB R/W
PDRE	7	6	5	4	3	2	1	0	Initial value Access
Address: 000011H	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	XXXXXXXXB R/W
PDRF	7	6	5	4	3	2	1	0	Initial value Access
Address: 000010 _H	<u> </u>	_	_	PF4	PF3	PF2	PF1	PF0	XXXXXB R/W
PDRG	7	6	5	4	3	2	1	0	Initial value Access
Address: 000017 _H		_	PG5	PG4	PG3	PG2	PG1	PG0	XXXXXXB R/W
PDRH	7	6	5	4	3	2	1	0	Initial value Access
Address: 000016H		_	PH5	PH4	PH3	PH2	PH1	PH0	XXXXXXB R/W
PDRI	7	6	5	4	3	2	1	0	Initial value Access
Address: 000015 _H		_	PI5	PI4	PI3	PI2	PI1	PI0	XXXXXXB R/W
PDRJ	7	6	5	4	3	2	1	0	Initial value Access
Address: 000014H		_	_		_		PJ1	PJ0	11в R/W
PDRK		6	5	4	3	2	1	0	Initial value Access
Address: 00001B _H	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0	XXXXXXXXB R/W
PDRL	7	6	5	4	3	2	1	0	Initial value Access
Address: 00001AH	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	XXXXXXXXB R/W
PDR2 to PDRL are t Input/output is contro R/W : Read/Write en	olled with	h corres	sponding	DDR2	to DDR	L.			

37

Data Direction Re	Data Direction Register (DDR)												
DDR2	7	6	5	4	3	2	1	0	Initial value	Access			
Address: 000601H	P27	P26	P25	P24	P23	P22	P21	P20	0000000В	W			
DDR3	7	6	5	4	3	2	1	0	Initial value	Access			
Address: 000600H	P37	P36	P35	P34	P33	P32	P31	P30	0000000В	W			
DDR4	7	6	5	4	3	2	1	0	Initial value	Access			
Address : 000607н	P47	P46	P45	P44	P43	P42	P41	P40	0000000В	W			
DDR5	7	6	5	4	3	2	1	0	Initial value	Access			
Address : 000606н	P57	P56	P55	P54	P53	P52	P51	P50	0000000	W			
DDR6									Initial value	Access			
Address : 000605н	7 P67	6 P66	5 P65	4 P64	3 P63	2 P62	1 P61	0 P60	00000000	W			
DDR8	F01	F00	F03	F 04	F03	F 02	FUI	F00					
Address: 00060B _H	7	6	5	4	3	2	1	0	Initial value	Access W			
		P86	P85	P84	P83	P82	P81	P80					
DDRC	7	6	5	4	3	2	1	0	Initial value	Access			
Address : 0000FFH	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0000000	R/W			
DDRD	7	6	5	4	3	2	1	0	Initial value	Access			
Address : 0000FEH	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000000В	R/W			
DDRE	7	6	5	4	3	2	1	0	Initial value	Access			
Address: 0000FDH	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	0000000В	R/W			
DDRF	7	6	5	4	3	2	1	0	Initial value	Access			
Address: 0000FCH		_	_	PF4	PF3	PF2	PF1	PF0	00000 _B	R/W			
DDRG	7	6	5	4	3	2	1	0	Initial value	Access			
Address: 000103H			PG5	PG4	PG3	PG2	PG1	PG0	000000в	R/W			
DDRH									Initial value	Access			
Address : 000102H	7	6	5 PH5	4 PH4	3 PH3	2 PH2	1 PH1	0 PH0	000000в	R/W			
DDRI									Initial value	Access			
Address : 000101н	7	6	5	4	3	2	1	0	- 0000000в	R/W			
		TEST	PI5	PI4	PI3	PI2	PI1	PI0					
DDRK Address : 000107н	7	6	5	4	3	2	1	0	Initial value	Access R/W			
	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0	0000000в				
DDRL	7	6	5	4	3	2	1	0	Initial value	Access			
Address : 000106н	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	0000000В	R/W			
DDR = 0 : Port input DDR = 1 : Port outpu	DDR2 to DDRL control the I/O direction of the I/O port by bit. DDR = 0 : Port input DDR = 1 : Port output Note : DDRI's bit 6 is a test bit. Be sure to write "0" to the bit.												
"0" is the value	e that is	read.											

R/W: Read/Write enabled, W: Write only, —: Not in use

• Pull-up Control Register (PCR)

PCR6 Initial value Access 6 5 4 3 2 1 0 0000000В Address : 000631H R/W P67 P66 P65 P64 P63 P62 P61 P60 **PCRC** Initial value Access 7 5 0 6 4 3 Address: 0000F7H 0000000в R/W PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 **PCRD** Initial value Access 0 7 6 5 4 3 2 1 Address: 0000F6H 0000000в R/W PD7 PD3 PD2 PD1 PD6 PD5 PD4 PD0 **PCRH** Initial value Access 6 5 3 2 0 Address: 0000F5H - - 000000B R/W PH5 PH4 PH3 PH2 PH1 PH0 **PCRI** Initial value Access 5 0 Address: 0000F4H - - 000000B R/W PI5 PI4 PI3 PI2 PI1 PI0

PCR6 to PCRI control the pull-up resistor when the corresponding I/O port is in input mode.

PCR = 0 : Pull-up resistor not available in input mode

PCR = 1 : Pull-up resistor available in input mode

The register has no significance in output mode (a pull-up resistor not available) .

• Open Drain Control Register (OCR)

OCRH Initial value Access 5 0 3 2 1 Address: 0000F9H - - 000000_B R/W PH3 PH5 PH4 PH2 PH1 PH0 **OCRI** Initial value Access 6 0 Address: 0000F8H - - 000000_B R/W PI5 PI4 PI3 PI2 PI1 PI0

OCRH and OCRI control open drain when the corresponding I/O port is in output mode.

OCR = 0 : Standard output port during output mode

OCR = 1 : Open drain output port during output mode

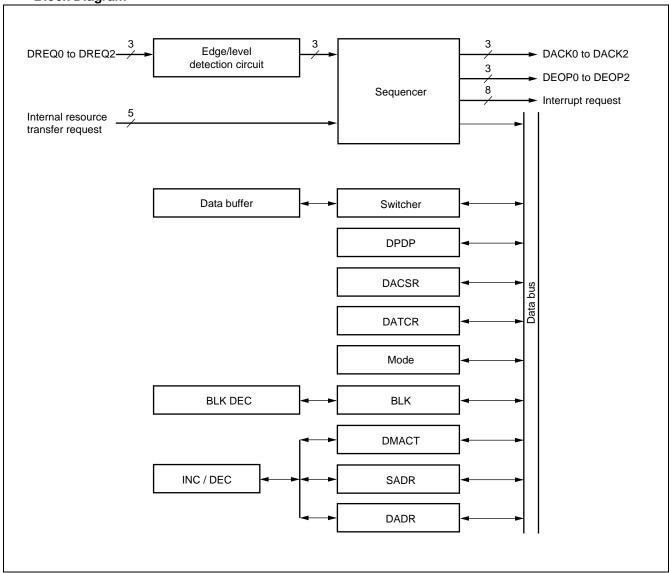
The register has no significance in input mode (output High-Z).

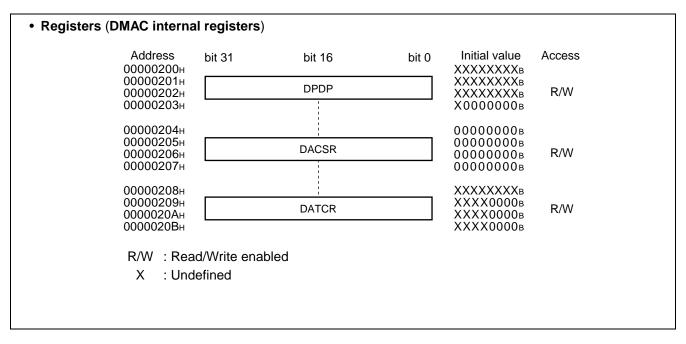
• Analog Input Control Register (AICR)

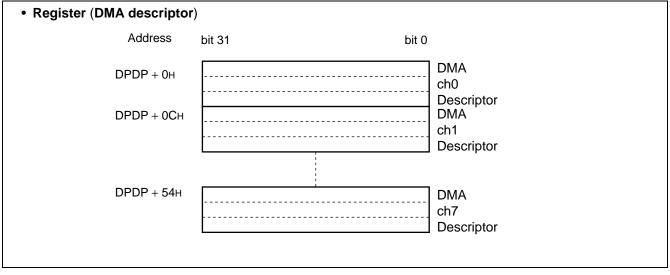
AICK Initial value Access 6 5 3 0 Address: 0000EBH 0000000В R/W PK6 PK7 PK5 PK4 PK3 PK2 PK1 PK0

The AICK controls each pin of a corresponding I/O port as follows:

AIC = 0 : Port input mode AIC = 1 : Analog input mode The register is reset to "0."

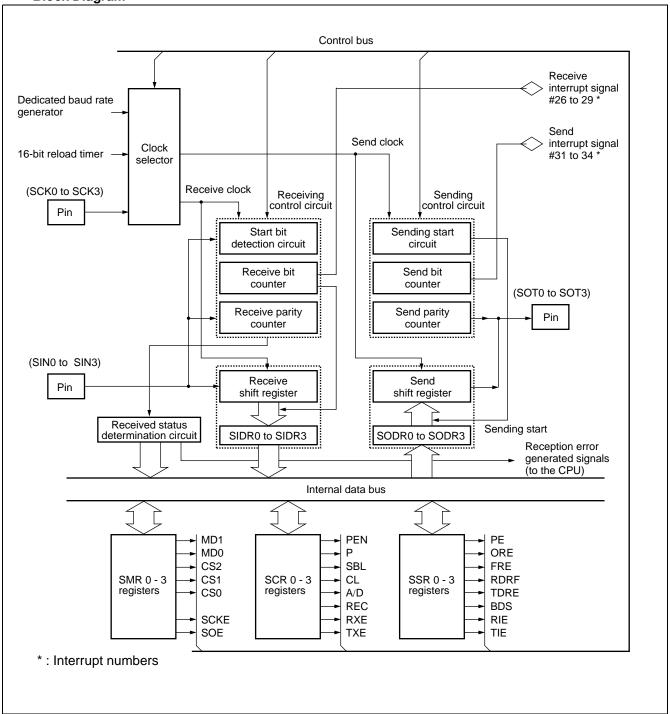

R/W : Read/Write enabled, — : Not in use

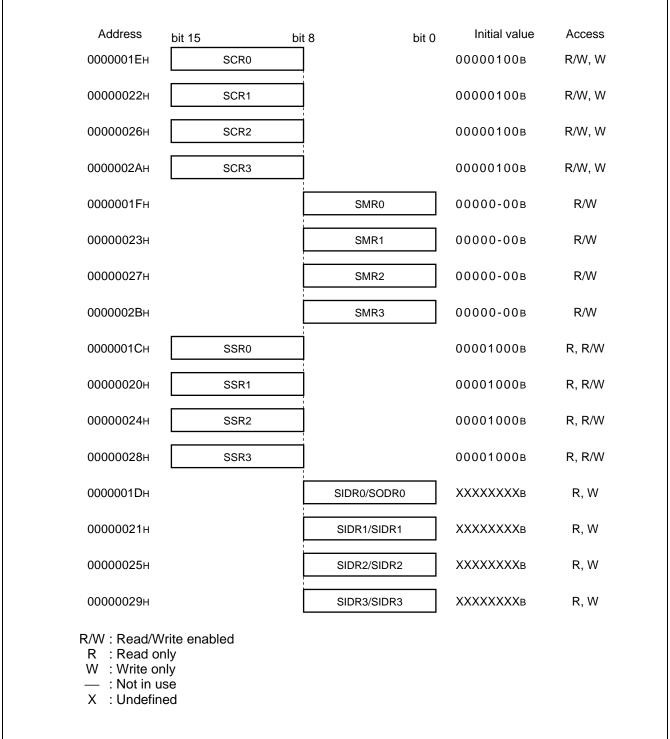

2. DMA Controller (DMAC)


The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access) transfer.

DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to enhanced performance of the system.

- 8 channels
- Mode: single/block transfer, burst transfer and continuous transfer: 3 kinds of transfer
- Transfer all through the area
- Max 65536 of transfer cycles
- · Interrupt function right after the transfer
- Selectable for address transfer increase/decrease by the software
- External transfer request input pin, external transfer request accept output pin, external transfer complete output pin three pins for each

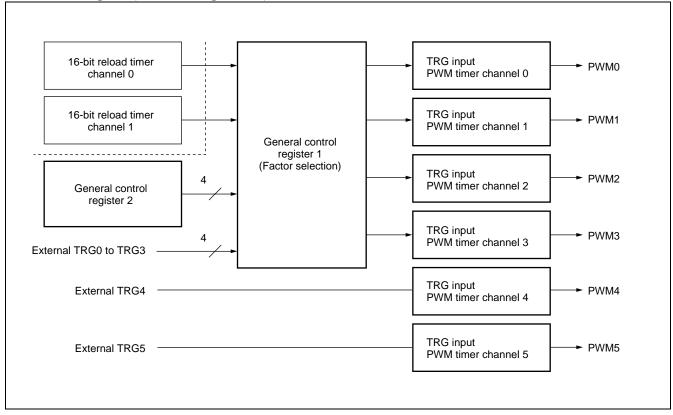


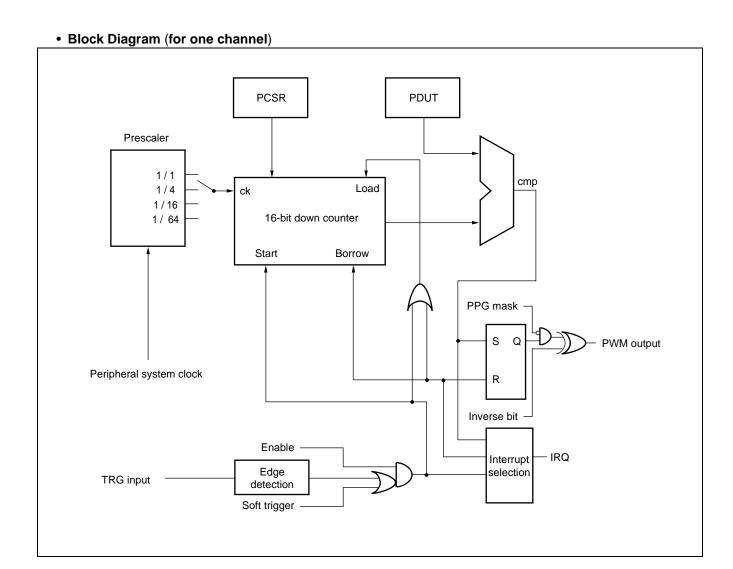


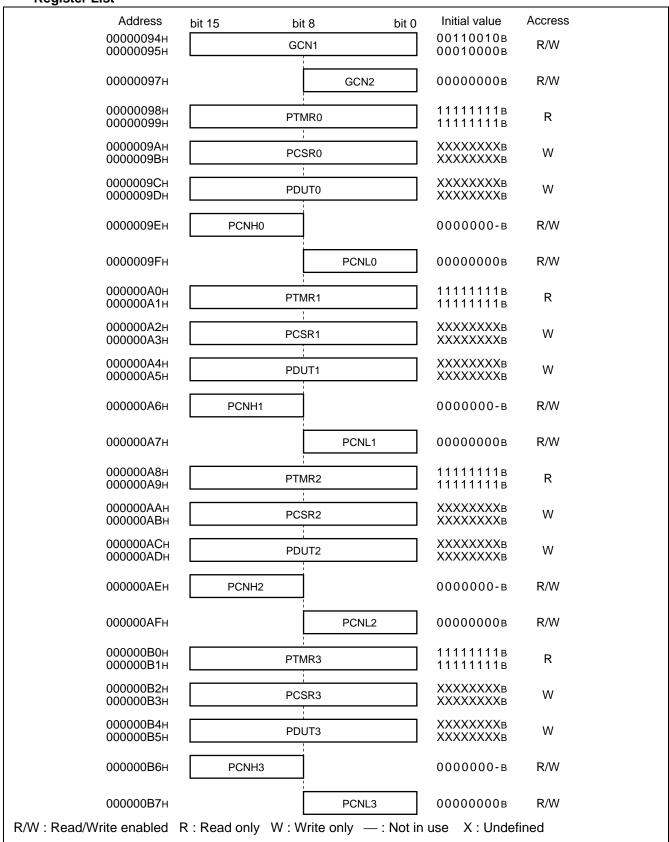
3. UART

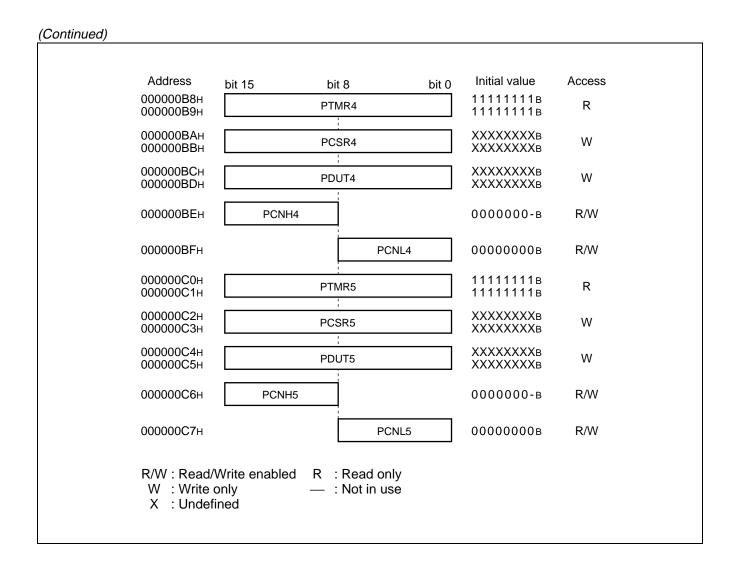
The UART is a serial I/O port for asynchronous (start and stop synchronization) communication or CLK synchronous communication. This product type contains this UART for four channels. Its features are as follows:

- Full-duplex double buffer
- Capable of asynchronous (start and stop synchronization) and CLK synchronous communication.
- Support for multiprocessor mode
- Baud rate by a dedicated baud rate generator
- Baud rate by an internal timer
 The baud rate can be set with a 16-bit reload timer.
- Any baud rate can be set using an external clock.
- Error detection function (parity, framing, and overrun)
- NRZ-encoded transfer signals
- DMA transfer can be invoked by interrupt.

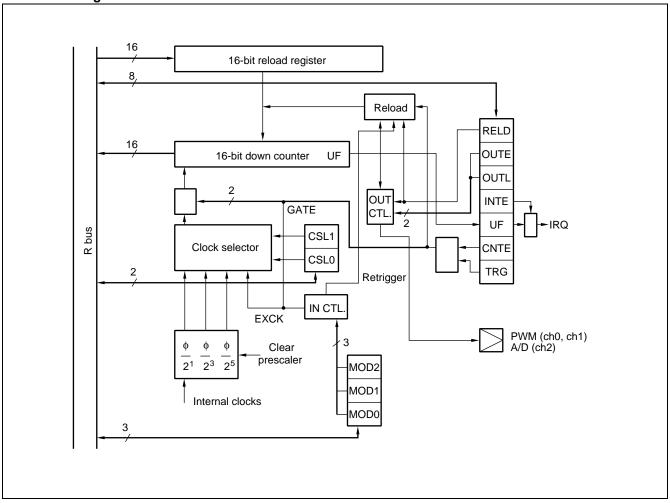

4. PPG Timer


The PPG timer can output highly accurate PWM waveforms efficiently.


The MB91151A contains six PPG timer channels and its features are as follows:


- Each channel consists of a 16-bit down counter, a 16-bit data register attached with a frequency setting buffer, a 16-bit compare register attached with a duty setting buffer, and a pin controller.
- The count clock for the 16-bit down counter can be selected from the following four types : Internal clocks ϕ , $\phi/4$, $\phi/16$, and $\phi/64$
- The counter value can be initialized by reset or counter borrow to "FFFFH."
- PWM output (by channel)
- DMA transfer can be invoked by interrupt.

• Block Diagram (Entire configuration)

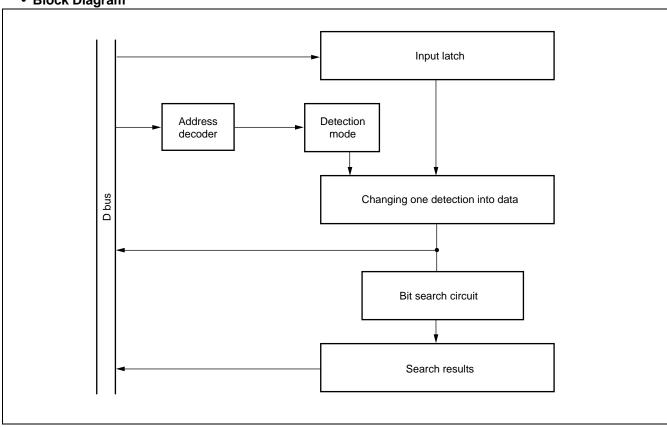

5. 16-bit Reload Timer

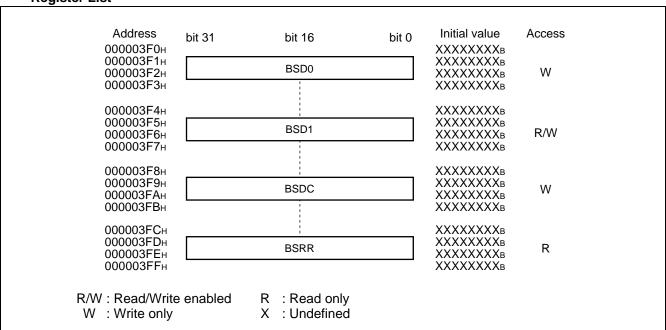
The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, a prescaler for creating internal count clocks, and a control register.

The input clock can be selected from three internal clock types (2/8/32 machine clock divisions) .

DMA transfer can be invoked by interrupt.

This product type contains this 16-bit reload timer for four channels.




Address	bit 15	bit 0 Ir	nitial value	Access
00000032н 00000033н	TMCSR0		0000в 0000000в	R/W
0000003Ан 0000003Вн	TMCSR1		0000в 0000000в	R/W
00000042н 00000043н	TMCSR2		0000в 0000000в	R/W
0000004Ан 0000004Вн	TMCSR3		0000в 0000000в	R/W
0000002Ен 0000002Fн	TMR0		(XXXXXXB (XXXXXXB	R
00000036н 00000037н	TMR1		(XXXXXXB (XXXXXXB	R
0000003Eн 0000003Fн	TMR2		(XXXXXXB (XXXXXXB	R
00000046н 00000047н	TMR3		(XXXXXXB (XXXXXXB	R
0000002Сн 0000002Dн	TMRLR0		(XXXXXXB (XXXXXXB	W
00000034н 00000035н	TMRLR1		(XXXXXXB (XXXXXXB	W
0000003Сн 0000003Dн	TMRLR2		(XXXXXXB (XXXXXXB	W
00000044н 00000045н	TMRLR3		(XXXXXXB (XXXXXXB	W
R/W : Read R : Read W : Write — : Not ir X : Unde	only use			

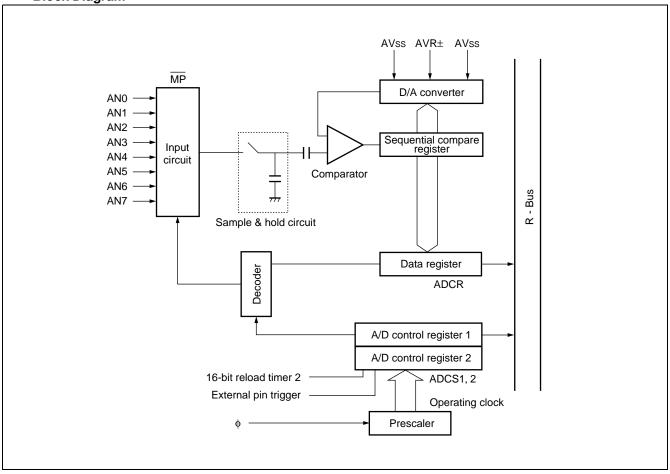
6. Bit Search Module

The module searches data written to the input register for "0" or "1" or a "change" and returns the detected bit position.

7. 8/10-bit A/D Converter (Sequential Conversion Type)

The A/D converter is a module that converts analog input voltage into a digital value. Its features are as follows:

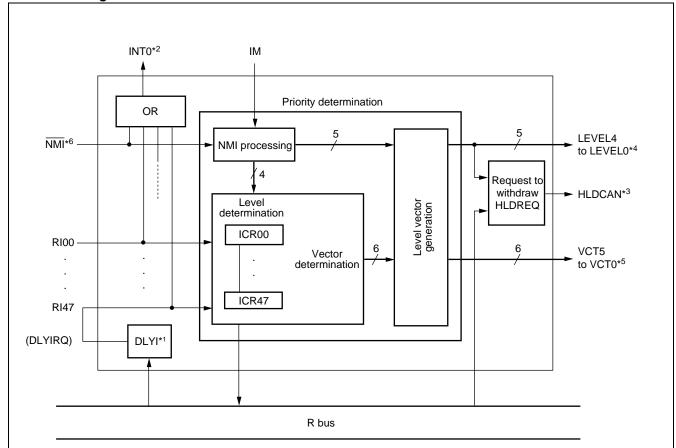
- A minimum conversion time of 5.0 μs/ch. (Including sampling time at a 33 MHz machine clock)
- Contains a sample and hold circuit.
- Resolution: 10 or 8 bits selectable.
- Selection of analog input from eight channels by program


Single conversion mode: Selects and converts one channel.

Continuous conversion mode: Converts a specified channel repeatedly.

Stop and convert mode: Stops after converting one channel and stands by until invoked the next time.

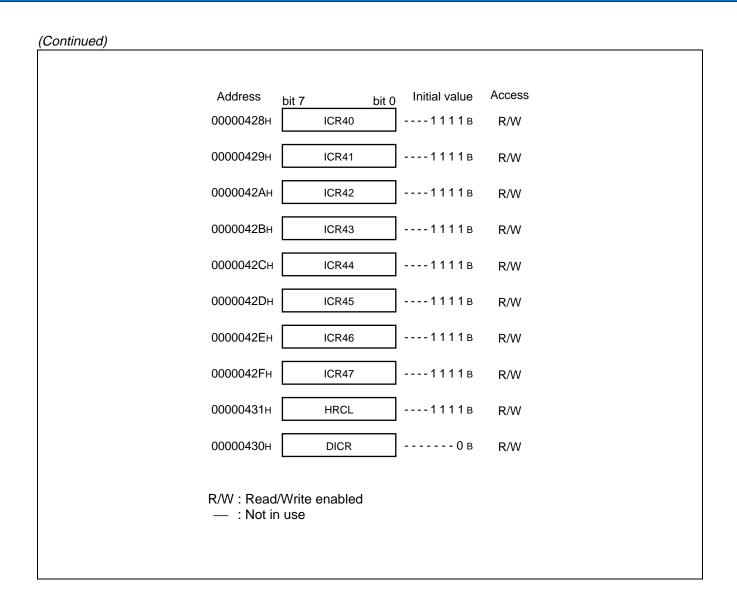
(Conversion invoking can be synchronized.)


- DMA transfer can be invoked by interrupt.
- Selection of an invoking factor from software, external pin trigger (falling edge), and 16-bit reload timer (rising edge).

• Register List Address Initial value Access bit 0 bit 15 000000Е4н 00101-XXB W, R **ADCR** 000000E5н XXXXXXXXB Ŕ 000000Е6н ADCS1 0000000В R/W, W 000000E7H ADCS0 0000000В R/W 000000ЕВн 0000000В R/W AICK R/W: Read/Write enabled R : Read only W: Write only - : Not in use X: Undefined

8. Interrupt Controller

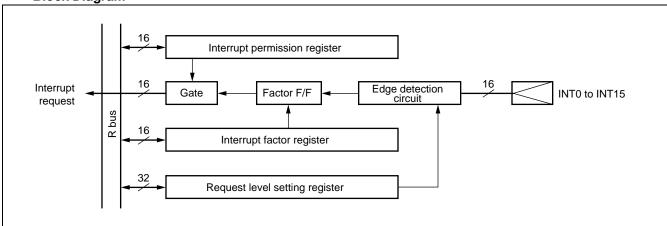
The interrupt controller accepts and arbitrates interrupts.

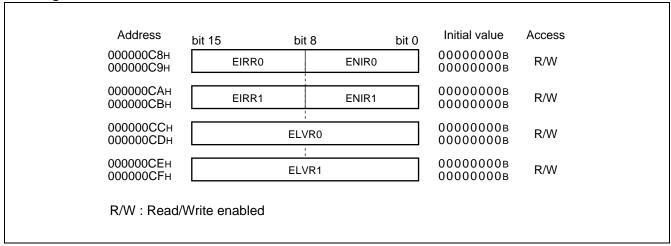


- *1 : DLY1 represents the delay interrupt module (delay interrupt generator) . For detailed information, see "10. Delay Interrupt Module."
- *2: INT0 is a wake-up signal for the clock controller in sleep or stop mode.
- *3: HLDCAN is a bus surrender request signal for bus masters except for the CPU.
- *4: LEVEL 4 to LEVEL 0 are interrupt level outputs.
- *5: VCT 5 to VCT 0 are interrupt vector outputs.
- *6: This product type does not have the NMI function.

• Register List

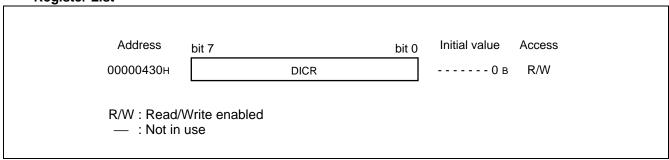
Address	bit 7 bit 0	nitial value	Access	Address	bit 7	bit 0	Initial value	Access
00000400н	ICR00	1111в	R/W	00000414н	ICR20	Dit 0	1111в	R/W
00000401н	ICR01]1111в	R/W	00000415н	ICR21		1111в	R/W
00000402н	ICR02]1111в	R/W	00000416н	ICR22		1111в	R/W
00000403н	ICR03]1111в	R/W	00000417н	ICR23		1111в	R/W
00000404н	ICR04]1111в	R/W	00000418н	ICR24		1111в	R/W
00000405н	ICR05]1111в	R/W	00000419н	ICR25		1111в	R/W
00000406н	ICR06]1111в	R/W	0000041Ан	ICR26		1111в	R/W
00000407н	ICR07]1111в	R/W	0000041Вн	ICR27		1111в	R/W
00000408н	ICR08	1111в	R/W	0000041Сн	ICR28		1111в	R/W
00000409н	ICR09]1111в	R/W	0000041Dн	ICR29		1111в	R/W
0000040Ан	ICR10]1111в	R/W	0000041Ен	ICR30		1111в	R/W
0000040Вн	ICR11	1111в	R/W	0000041Fн	ICR31		1111в	R/W
0000040Сн	ICR12]1111в	R/W	00000420н	ICR32		1111В	R/W
0000040Dн	ICR13]1111в	R/W	00000421н	ICR33		1111в	R/W
0000040Ен	ICR14]1111в	R/W	00000422н	ICR34		1111в	R/W
0000040Fн	ICR15]1111в	R/W	00000423н	ICR35		1111в	R/W
00000410н	ICR16]1111в	R/W	00000424н	ICR36		1111в	R/W
00000411н	ICR17]1111в	R/W	00000425н	ICR37		1111в	R/W
00000412н	ICR18]1111в	R/W	00000426н	ICR38		1111в	R/W
00000413н	ICR19]1111в	R/W	00000427н	ICR39		1111в	R/W
R/W : Re — : No	ad/Write enabled t in use							


(Continued)


9. External Interrupt

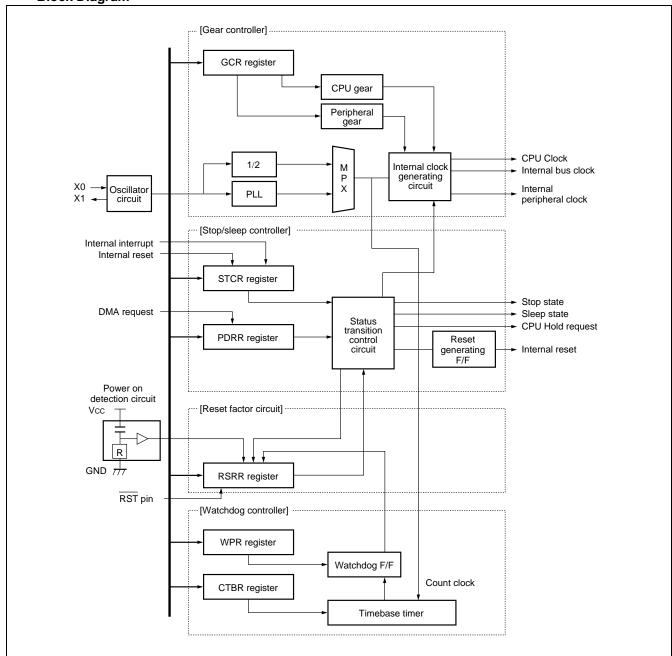
The external interrupt controller controls external interrupt requests input to INT0 through INT15. The level of requests to be detected can be selected from "H," "L," rising edge, and falling edge.

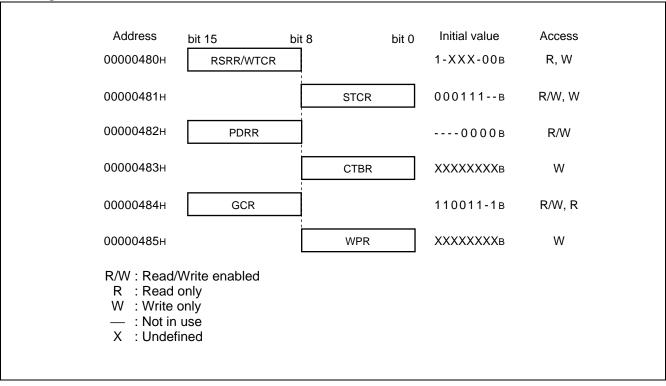
• Block Diagram


Register List

10. Delay Interrupt Module

The delay interrupt is a module that generates task switching interrupts. The use of this module allows the software to generate/cancel interrupt requests to the CPU.

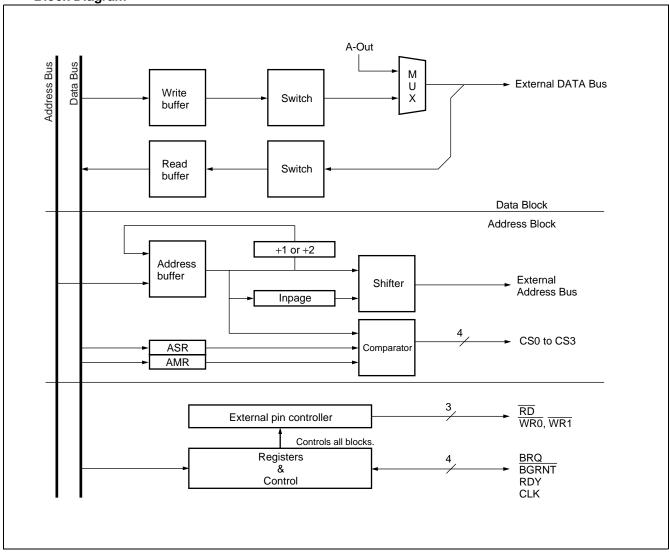

For the block diagram of the delay interrupt module, see "8. Interrupt Controller."

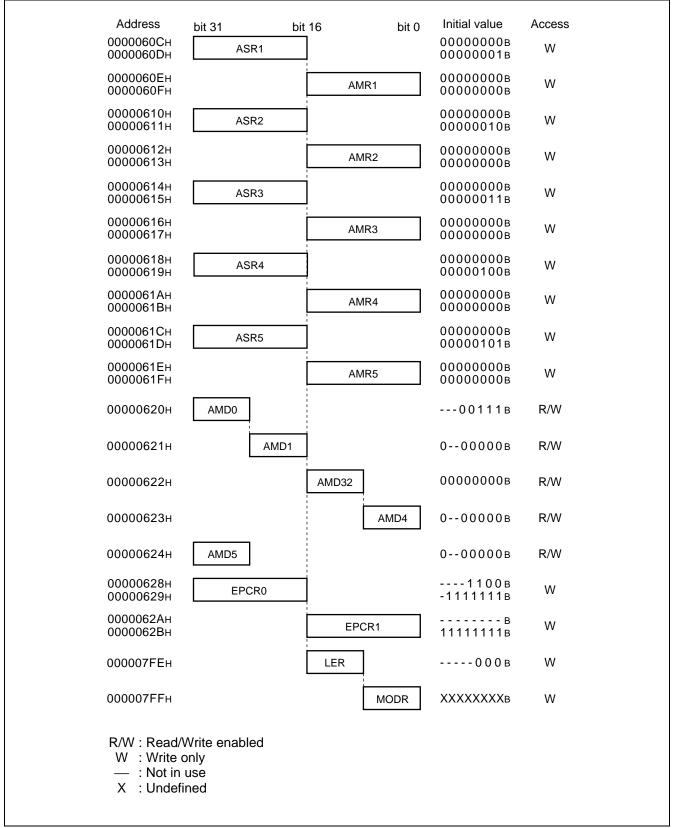


11. Clock Generator (Low power consumption mechanism)

The clock generator is responsible for the following functions :

- CPU clock generation (including the gear function)
- Peripheral clock generation (including the gear function)
- · Reset generation and holding factors
- Standby function (including hardware standby)
- Contains PLL (multiplication circuit)





12. External Bus Interface

The external bus interface controls the interface between the external memory and the external I/O. Its features are as follows:

- 24-bit (16 MB) address output
- An 8/16-bit bus width can be set by chip select area.
- Inserts an automatic and programmable memory wait (for seven cycles at maximum) .
- Unused addresses/data pins are available as I/O ports.
- Support for little endian mode
- When use of a clock doubler, bus speed is half of CPU.
- The use is not allowed when the external bus exceeds 25 MHz.

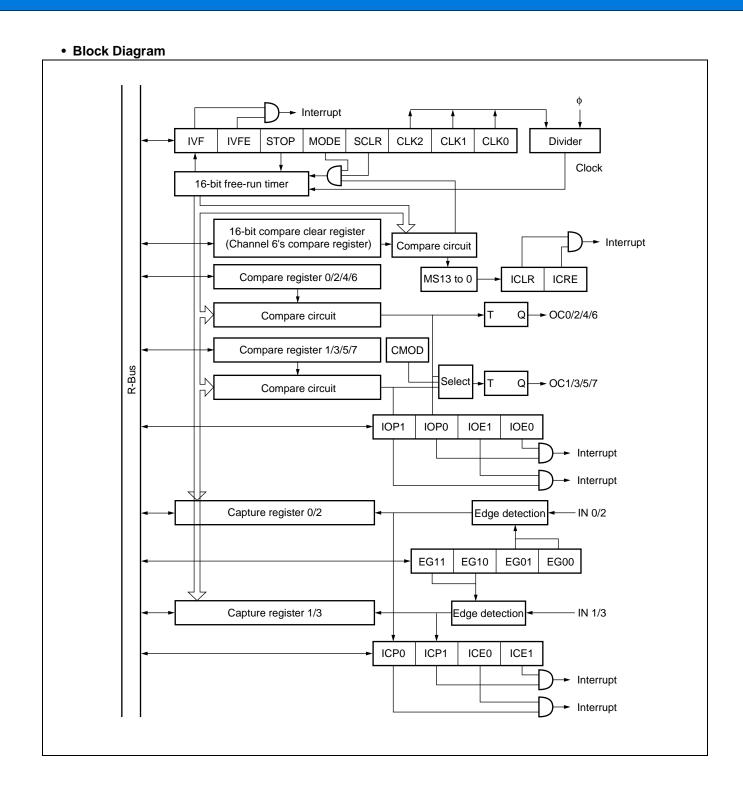
13. Multifunction Timer

The multifunction timer unit consists of one 16-bit free-run timer, eight 16-bit output compare registers, four 16-bit input capture registers, and six 16-bit PPG timer channels. By using this function waveforms can be output based on the 16-bit free-run timer and the input pulse width and external clock cycle can also be measured.

• Timer Components

• 16-bit free-run timer (× 1)

The 16-bit free-run timer consists of a 16-bit up counter, a control register, a 16-bit compare clear register, and a prescaler. The output value of this counter is used as the basic time (base timer) for output compare and input capture.

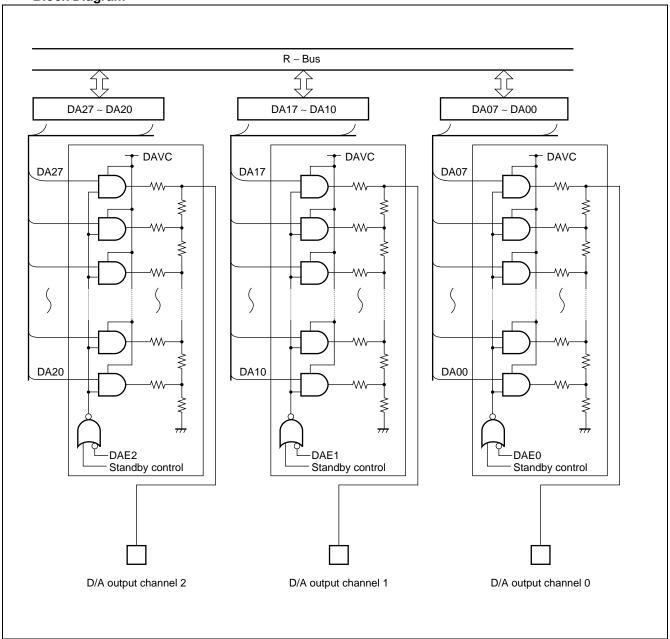

• Output compare (× 8)

The output compare consists of eight 16-bit compare registers, a compare output latch, and a control register. When the 16-bit free-run timer value agrees to the compare register value, the output level can be inverted and an interrupt can also be generated.

• Input capture (× 4)

The input capture consists of capture registers corresponding to four independent external input pins and a control register. By detecting any edge of signals input from external input pins, the 16-bit free-run timer value can be held in the capture register and an interrupt can be generated at the same time.

• 16-bit PPG timer (×6) See "4. PPG Timer".

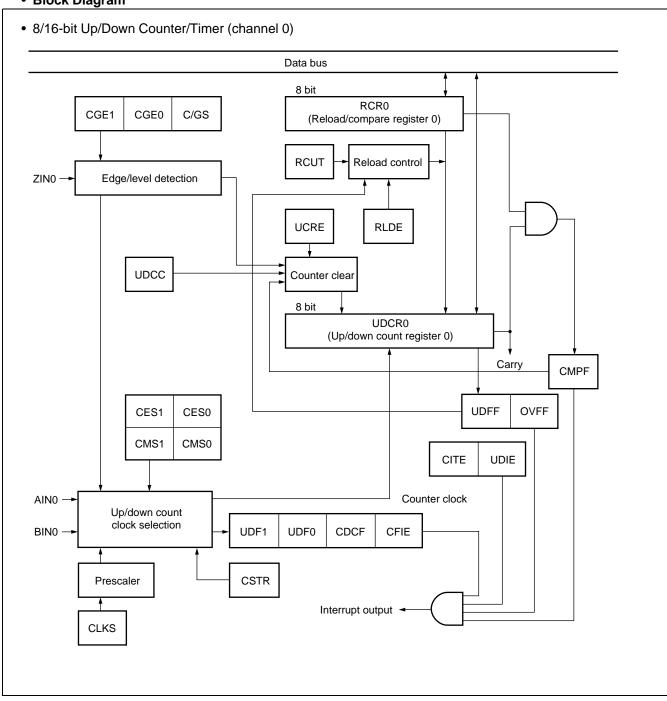


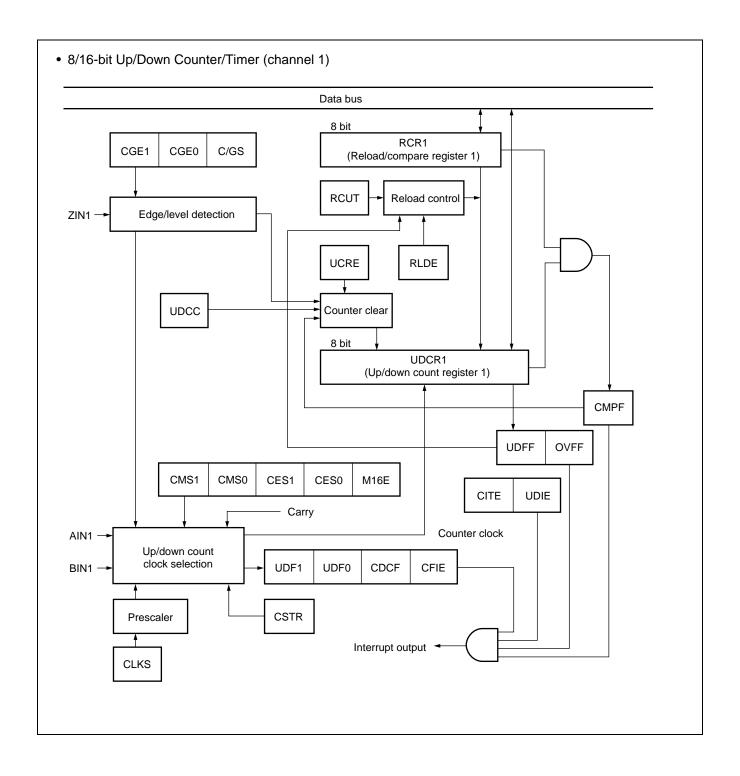
• Register List					
	Address	bit15····· bit8 bit7···· bit0	Initial value	Access	
	000068н	IPCP1	XXXXXXXXB	R	
	000069н		XXXXXXXXB	R	
	00006Ан	IPCP0	XXXXXXXXB	R	
	00006Вн	11 01 0	XXXXXXXXB	R	
	00006Сн	IPCP3	XXXXXXXXB	R	
	00006Dн	IFCFS	XXXXXXXXB	R	
	00006Ен	[JBOBS	XXXXXXXXB	R	
	00006Fн	IPCP2	XXXXXXXXB	R	
	000071н	[00000000в	R/W	
	00007 111	ICS23	00000000		
	000073н		00000000в	R/W	
	00007311	ICS01	00000000	FC/ VV	
	000074		XXXXXXXX	D/M/	
	000074н 000075н	OCCP1	XXXXXXXXB	R/W R/W	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.44	
	000076н 000077н	OCCP0	XXXXXXXB XXXXXXXB	R/W R/W	
	000078н 000079н	ОССР3	XXXXXXXB XXXXXXXB	R/W R/W	
	00007311		XXXXXXXXXX	TQ VV	
	00007Ан 00007Вн	OCCP2	XXXXXXXB XXXXXXXB	R/W R/W	
	00007BH		VVVVVVV	K/VV	
	00007Сн	OCCP5	XXXXXXXXB	R/W	
	00007Dн	566.5	XXXXXXXXB	R/W	
	00007Ен	OCCP4	XXXXXXXXB	R/W	
	00007Fн	3331 4	XXXXXXXXB	R/W	
	000080н	OCCP7	XXXXXXXXB	R/W	
	000081н	00017	XXXXXXX	R/W	
	000082н	OCCP6	XXXXXXXXB	R/W	
	000083н	OCCF0	XXXXXXXXB	R/W	
	000084н	00000	ХХХ00000в	R/W	
	000085н	OCS3,2	0000ХХ00в	R/W	
	000086н		ХХХ00000в	R/W	
	000087н	OCS1,0	0000ХХ00в	R/W	
	000088н		ХХХ00000в	R/W	
	000089н	OCS7,6	0000XX00B	R/W	
	00000 111		VVV00000p	D AAA	
	00008Ан 00008Вн	OC\$5,4	XXX00000в 0000XX00в	R/W R/W	
	000000		00000000-	D // /	
	00008Сн 00008Dн	TCDT	00000000в 00000000в	R/W R/W	
	00008Ен 00008Fн	TCCS	0 в 00000000в	R/W R/W	
DAM - DoodAM:		P : Bood only Not in use . V		1 X/ V V	
K/W: Kead/Write	e enabled l	R : Read only — : Not in use X	: Undefined		

14. 8-bit D/A Converter

This block is of an 8-bit resolution, R-2R D/A converter. The block contains three D/A converter channels and each D/A control register can control output independently.

The D/A converter pin is a dedicated pin.

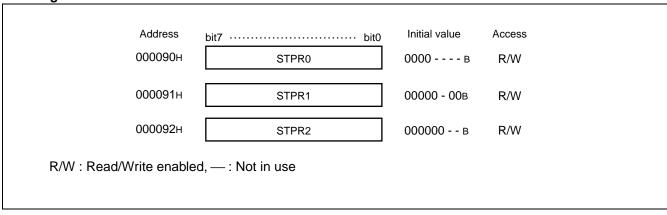

	bit	7	6	5	4	3	2	1	0	Initial value A	Access
Address: 00000E3H					DA	DR0				XXXXXXXXB	R/W
	bit	15	14	13	12	11	10	9	8	Initial value	
Address: 00000E2H					DA	DR1				XXXXXXXXB	R/W
	bit	23	22	21	20	19	18	17	16	Initial value	
Address: 00000E1H					DA	DR2				XXXXXXXXB	R/W
	bit	7	6	5	4	3	2	1	0	Initial value	
Address: 00000DFH					DA	CR0				Ов	R/W
	bit	15	14	13	12	11	10	9	8	Initial value	
Address: 00000DEH					DA	CR1				Ов	R/W
	bit	23	22	21	20	19	18	17	16	Initial value	
Address: 00000DDH					DA	CR2				Ов	R/W
R/W : Read/Writ	e ena	abled, —	– : Not i	n use, >	(: Unde	fined					


15. 8/16-bit Up/Down Counters/Timers

This is the up/down counter/timer block consisting of six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, and their control circuits.

The features of this module are as follows:

- Capable of counting in the (0) d- (255) d range by the 8-bit count register. (In 16-bit × 1 operating mode, the register can count in the (0) d- (65535) d range.)
- Four count modes to choose from by the count clock.
- In timer mode the count clock can be selected from two internal clock types.
- In up/down count mode an external pin input signal detection edge can be selected.
- The phase-difference count mode is suitable for encoder counting, such as of motors. Rotation angles, rotating speeds, and so on can be counted accurately and easily by inputting the output of phases A, B, and Z.
- Two types of function to choose from for the ZIN pin. (Enabled in all modes)
- Equipped with compare and reload functions which can be used individually or in combination. When combined, these functions can count up/down at any width.
- The immediately preceding count direction can be identified by the count direction flag.
- Capable of individually controlling interrupt generation when comparison results match, at occurrence of reload (underflow) or overflow, or when the count direction changes.



rtogiotor Elot											
Address : 00005FH	bit	7	6	5	4	3	2	1	0	Initial value	Access R
	bit	15	14	13	12	11	10	9	8	J Initial value	
Address : 00005EH	bit	7	6	5	4 4	CR1 3	2	1	0	000000008 Initial value	R
Address : 00005DH	Dit	,				CR0		'		00000000в	W
Address : 00005CH	bit	15	14	13	12 RC	11 CR1	10	9	8	Initial value 00000000B	W
Address : 000063н	bit	7	6	5	4	3 SR0	2	1	0	Initial value	R/W. R
	bit	7	6	5	4	3	2	1	0	I Initial value	·
Address: 000067 _H						SR1				000000008 Initial value	R/W, R
Address : 000061н	bit	7	6	5	4 CC	RL0	2	1	0	-000Х000в	R/W, W
Address : 000065н	bit	7	6	5	4 CC	3 RL1	2	1	0	Initial value -000X000 _B	R/W, W
Address : 000060н	bit	15	14	13	12	11	10	9	8	Initial value	R/W
Address . 000000H	bit	15	14	13	12	RH0 11	10	9	8	Initial value	IX/VV
Address : 000064H						RH1				-0000000в	R/W
R/W : Read/Write	enat	oled, R:	Read o	nly, W :	Write o	nly, — :	Not in u	ıse, X :	Undefir	ned	

16. Peripheral STOP Control

This function can be used to stop the clock of unused resources in order to conserve more power.

■ SERIAL START UP

The serial startup mode is the internal RAM (2 KB) serial write or RAM program startup mode using the internal dedicated ROM. While this mode executes communication through the UART channel 1 built in this model, it can also serve for data transfer to external flash memory. Either synchronous or asynchronous communication can be selected by setting the relevant pin. For asynchronous communication, a baud rate of 9600 bps can be used either at a machine clock frequency of 25 MHz (oscillation frequency of 12.5 MHz) orat a machine clock frequency of 33 MHz (oscillation frequency of 16.5 MHz) selectively.

(Note that serial startup using asynchronous communication cannot be performed at a machine clock frequency of 36 MHz at an oscillation frequency of 18 MHz.)

· Communication specifications

(1) Asynchronous communication at a machine clock frequency of 33 MHz

The device performs serial communication in the asynchronous (normal) mode of UART channel 1.

The baud rate is 9600 bps at a machine clock frequency of 33 MHz (based on a 16.5 MHz external crystal oscillator) .

Serial mode settings are: a data length of 8 bits, a stop bit length of 1 bit, no parity, and LSB-first transfer.

(2) Asynchronous communication at a machine clock frequency of 25 MHz

The device performs serial communication in the asynchronous (normal) mode of UART channel 1.

The baud rate is 9600 bps at a machine clock frequency of 25 MHz (based on a 12.5 MHz external crystal oscillator).

Serial mode settings are: a data length of 8 bits, a stop bit length of 1 bit, no parity, and LSB-first transfer.

(3) Synchronous communication

The device performs serial communication in the synchronous (normal) mode of UART channel 1.

The baud rate can be set freely depending on the external clock input (the baud rate is determined directly by the external clock frequency) .

The maximum input frequency of the external clock is the peripheral operating clock frequency devided by 8. (The peripheral operating clock setting is the fastest PLL frequency.)

Serial mode settings are: a data length of 8 bits, no parity, and LSB-first transfer.

In each fo these modes, the devices passes the following three items of download information data to the FR, byte by byte in sequence from the high-order byte:

- 1. Command data (00H)
- 2. 4 bytes of the download destination RAM address (00080400H to 000807FFH)
- 3. 4 bytes specifying the number of bytes download (up to 000003FFH)

Then the device gives resulting SUM check data (the lower eight bits extracted from these data items added together), entering the RAM download routine.

The device then passes the data to be downloaded to RAM to the FR, byte by byte in sequence from the highorder byte, and the resulting SUM check data as well in the same way. Upon completion of transfer, a jump to RAM takes place and the downloaded program is executed.

Method of setting

		External pin name									
	MD2	MD1	MD0	PG5	PG4	PG3					
Asynchronous communication • machine clock 33 MHz	1	1	0	1	0	0					
Asynchronous communication • machine clock 25 MHz	1	1	0	1	0	1					
Synchronous communication	1	1	0	1	1	0					

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Symbol	Ra	ting	Unit	Remarks
Farameter	Symbol	Min	Max	Offic	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 3.6	V	
Analog supply voltage	AVcc	Vss - 0.3	Vss + 3.6	V	*1
Analog reference voltage	AVRH	Vss - 0.3	Vss + 3.6	V	*1
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	
Input voltage (open drain port J)	V _{I2}	Vss - 0.3	Vss + 5.5	V	
Analog pin input voltage	VIA	Vss - 0.3	AVcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level maximum output current	lol	_	10	mA	*2
"L" level average output current	lolav	_	4	mA	*3
"L" level total maximum output current	Σ loL	_	100	mA	
"L" level total average output current	Σ lolav	_	50	mA	*4
"H" level maximum output current	Іон	_	-10	mA	*2
"H" level average output current	Іонаv	_	-4	mA	*3
"H" level total maximum output current	ΣІон	_	-50	mA	
"H" level total average output current	Σ lohav	_	-20	mA	*4
Power consumption	Po	_	500	mW	
Operating temperature	TA	0	+70	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1 :} Take care not to exceed Vcc + 0.3 V when turning on the power, for example.

Take care also to prevent AVcc from exceeding Vcc when turning on the power, for example.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} The maximum output current stipulates the peak value of a single concerned pin.

^{*3:} The average output current stipulates the average current flowing through a single concerned pin over a period of 100 ms.

^{*4 :} The total average output current stipulates the average current flowing through all concerned pins over a period of 100 ms.

Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
rarameter	Symbol	Min	Max	Offic	Remarks
		3.15	3.6		During normal operations.
Power supply voltage	Vcc	2.0	3.6	V	The RAM state is retained when stopped.
Analog supply voltage	AVcc	Vss + 3.15	Vss + 3.6	V	
Analog reference voltage (High voltage side)	AVRH	AVcc-0.3	AVcc	V	
Analog reference voltage (Low voltage side)	AVRL	AVss	AVss + 0.3	V	
Operating temperature	TA	0	+70	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

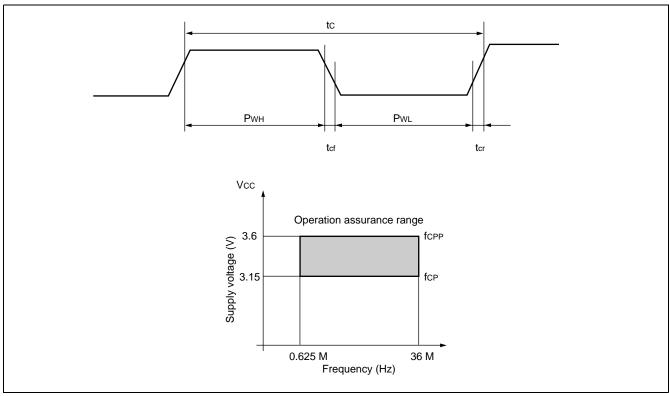
> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

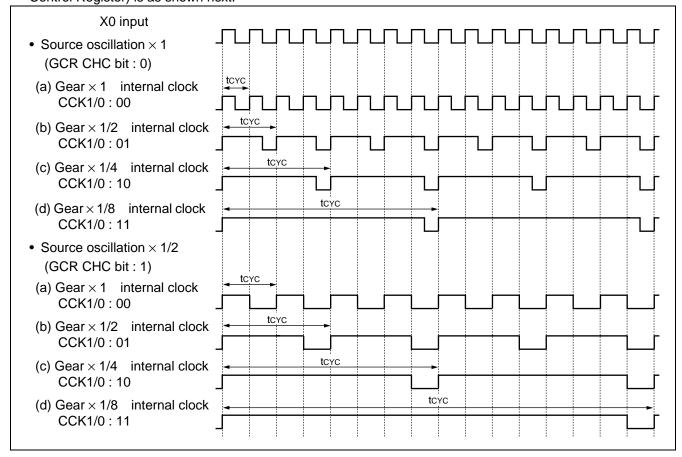
Doromotor	Comple al	Din nama	Condition		Value		Unit	Domorko
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level input	Vıн	Input except for hysteresis input pin*	_	0.65×Vcc	_	Vcc + 0.3	V	
voltage	Vihs	Hysteresis input pin*	_	0.8 × Vcc		Vcc + 0.3	V	
"L" level input	VIL	Input except for hysteresis input pin*	_	Vss - 0.3		0.25×Vcc	V	
voltage	VILS	Hysteresis input pin*	_	Vss - 0.3	_	0.2 × Vcc	V	
"H" level output voltage	Vон	Except for port J.	$V_{CC} = 3.15 \text{ V},$ $I_{OH} = 4.0 \text{ mA}$	Vcc - 0.5		_	V	
"L" level output voltage	Vol	Except for port J.	Vcc = 3.15 V, $IoL = 4.0 mA$			0.4	V	
Input leakage current	lu	_	Vcc = 3.6 V, Vss <vı <="" td="" vcc<=""><td></td><td></td><td>±5</td><td>μΑ</td><td></td></vı>			±5	μΑ	
"L" level output voltage	V _{OL2}	Port J	$V_{CC} = 3.15 \text{ V},$ $I_{OL} = 15 \text{ mA}$	_		0.4	V	Open drain
Output application voltage	VD	Port J	_	Vcc - 0.3		Vss + 5.0	V	Open drain
Pull-up resistance	RPULL	RST, pull-up pin	_	_	50	_	kΩ	
	Icc	Vcc	Vcc = 3.3 V	_	85	120	mA	
Power supply current	Iccs	Vcc	Vcc = 3.3 V	_	60	100	mA	During sleep mode
Garron	Іссн	Vcc	Vcc = 3.3 V, $T_A = +25 {}^{\circ}C$	_	15	150	μΑ	In stop mpde
Input capacity	Cin	Other than Vcc, Vss, AVcc, AVss, and AVRH	_	_	10	_	pF	

^{* :} See "■ I/O CIRCUIT TYPE".

4. AC Characteristics

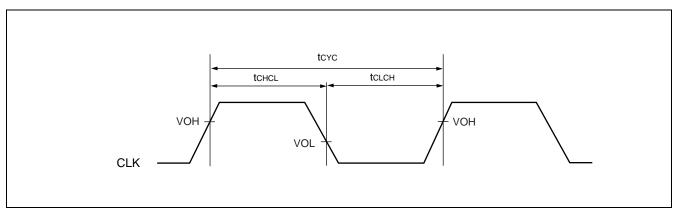

(1) Clock Timing Ratings

Parame	otor	Sym-	Pin	Condition	Val	lue	Unit	Remarks
Faraille	ilei	bol	name	Condition	Min	Max	Oilit	Remarks
Clock frequency (high speed and tion)	self oscilla-			_				Range in which self oscillation is allowed
Clock frequency (high speed and	PLL in use)	fc	X0, X1	_	10	18	MHz	Range in which self oscillation and the use of the PLL for ex- ternal clock input are allowed
Clock frequency (High speed an input)	1/2 division			_	10	18	MHz	Range in which external clocks can be input
Clock cycle time		t c	X0, X1	_	55.6	100	ns	
Input clock pulse	width	Pwn	X0, X1		25		ns	
liiput clock puise	widti	PwL	λο, λ ι		15		ns	
Input clock rising		t cr	X0, X1	_		8	ns	(tcr+tcf)
Input clock falling	9	t cf	7,0,7,1			J	110	(torrior)
	CPU system	fсР			0.625*3	36		
Internal operat- ing clock fre-	Bus system	fсрв	_		0.625*3	25*2	MHz	
quency	Peripheral system	f CPP		One wait is	0.625*3	33		Analog section excluded. *1
	System			set with the	1	33		Analog section *1
	CPU system	t cp		wait con- troller.	27.8	1600*3		
Internal operat- ing clock cycle	Bus system	t CPB	_		40*2	1600*³	ns	
time	Peripheral system	t cpp			30.3	1600*3		Analog section excluded. *1
	System				30.3	1000		Analog section *1


^{*1 :} The target analog section is the A/D.

^{*2 :} The maximum external bus operating frequency allowed is 25 MHz.

^{*3 :} The value when a minimum clock frequency of 10 MHz is input to X0 and half a division of the oscillator circuit and the 1/8 gear are in use.


The relationship between the X0 input and the internal clock set with the CHC/CCK1/CCK0 bit of the GCR (Gear Control Register) is as shown next.

(2) Clock Output Timing

(Vcc = 3.15 V to 3.6 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Symbol Pin		Condition	Va	lue	Unit	Remarks	
raiailletei	Syllibol	name	Condition	Min	Max	Oiii	Kemarks	
Cycle time	tcyc	CLK		t cp	_	ns	*1	
Cycle time	L CYC	CLN		t CPB	_	113	At using doubla	
CLK↑→CLK↓	t chcl	CLK	_	tcyc/2-10	tcyc/2+10	ns	*2	
CLK↓→CLK↑	t clch	CLK		tcyc/2-10	tcyc/2+10	ns	*3	

*1 : teye is a frequency for one clock including a gear cycle.

The doubler is used when the CPU runs at 25 MHz or higher.

*2 : Rating at a gear cycle of \times 1.

When a gear cycle of 1/2, 1/4, or 1/8 is set, substitute 1/2, 1/4, or 1/8 for "n" in the following equations, respectively.

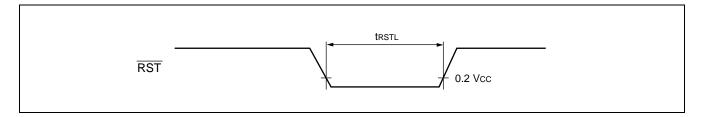
• Min : (1-n/2) × tcyc-10

• Max : $(1-n/2) \times t_{CYC}+10$

When the doubler is used, set the gear cycle to $\times 1$.

*3 : Rating at a gear cycle of \times 1.

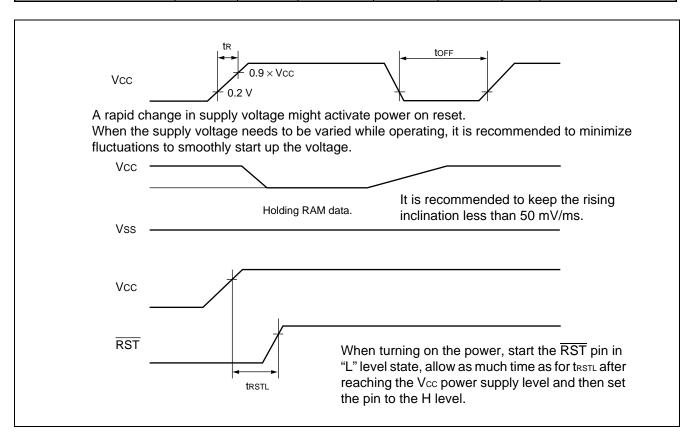
When a gear cycle of 1/2, 1/4, or 1/8 is set, substitute 1/2, 1/4, or 1/8 for "n" in the following equations, respectively.


Min : n/2 × tcyc-10
 Max : n/2 × tcyc+10

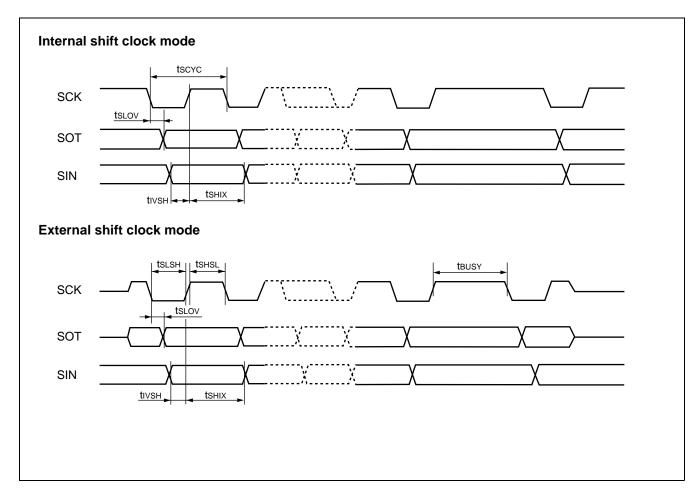
When the doubler is used, set the gear cycle to $\times 1$.

(3) Reset Input Ratings

(Vcc = 3.15 V to 3.6 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)


Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
Parameter	nar	name	Condition	Min	Max	Oill	Nemai ks	
Reset input time	t RSTL	RST	_	$t_{\text{CP}} \times 5$		ns		

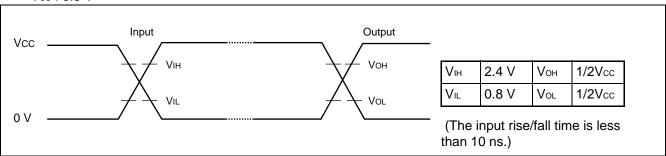
(4) Power On Reset


 $(Vcc = 3.15 \text{ V to } 3.6 \text{ V}, Vss = AVss = 0 \text{ V}, T_A = 0 ^{\circ}\text{C to } +70 ^{\circ}\text{C})$

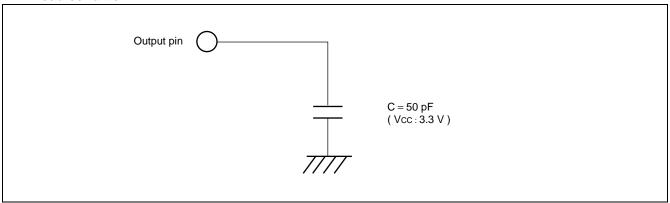
Parameter	Symbol	Pin	Condition	Val	ue	Unit	Remarks
raiailletei	Syllibol	name	Condition	Min	Max	Oill	Remarks
Power supply rising time	t _R	Vcc	_	_	20	ms	Vcc < 0.2 V before turning up the power.
Power supply cutoff time	t off			2	_	ms	

(5) Serial I/O (CH0 to CH4)

Parameter	Symbol	Pin	Condition	Valu	re	Unit	Remarks
raiametei	Syllibol	name	Condition	Min	Max	Oilit	Remarks
Serial clock cycle time	tscyc	_	Internal clock	8 tcpp	_	ns	
$SCK \downarrow \to SOT$ delay time	t slov	_		-10	+50	ns	
Valid SIN \rightarrow SCK ↑	t ıvsH			50		ns	
$SCK \uparrow \rightarrow valid SIN hold time$	t shix	_		50	_	ns	
Serial clock "H" pulse width	t shsl	_		4 tcpp - 10	_	ns	
Serial clock "L" pulse width	t slsh			4 tcpp - 10		ns	
$SCK \downarrow \to SOT$ delay time	t slov	_	External	0	50	ns	
Valid SIN \rightarrow SCK $↑$	t ıvsh	_	clock	50	_	ns	
$SCK \uparrow \to valid \; SIN \; hold \; time$	t shix	_		50	_	ns	
Serial busy period	t BUSY				6 tcpp	ns	



(6) External Bus Measurement Conditions

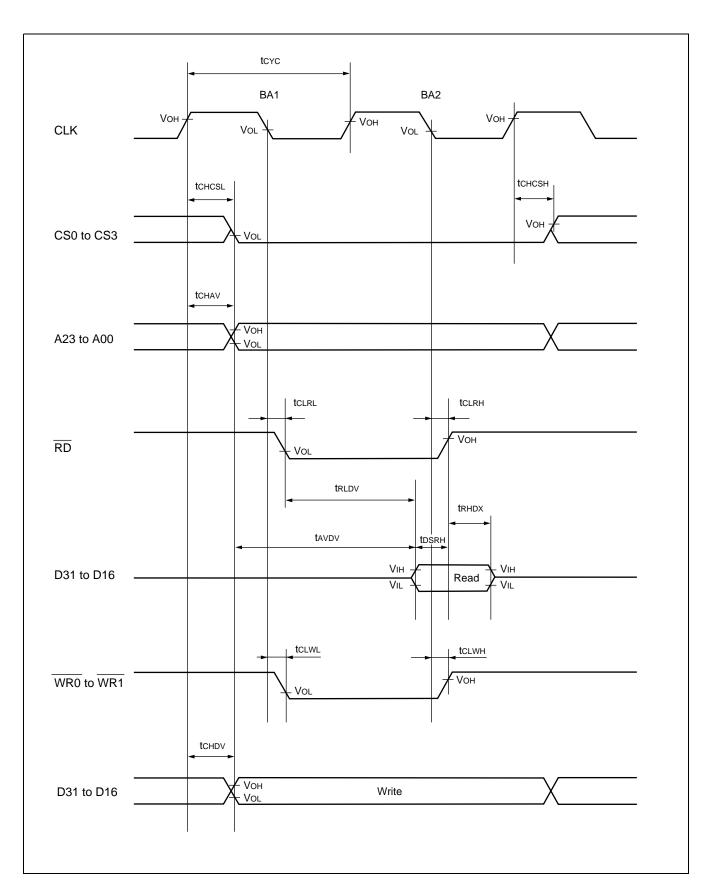

The following conditions apply to items that are not specifically stipulated.

• AC characteristics measurement conditions

Vcc: 3.3 V

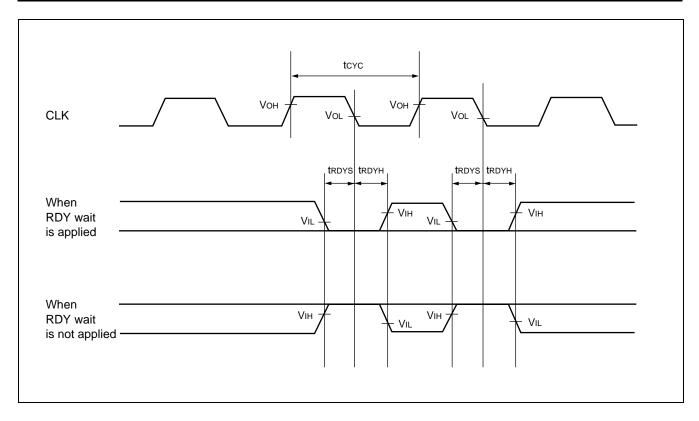
• Load condition

(7) Normal Bus Access and Read/Write Operations


(Vcc = 3.15 V to 3.6 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Syllibol	Fili liaille	Condition	Min	Max	Ullit	Remarks
CS0 to CS3 delay time	t chcsL	CLK		_	15	ns	
CS0 to CS3 delay time	t снсsн	CS0 to CS3		_	15	ns	
Address delay time	t chav	CLK A23 to A00		_	15	ns	
Data delay time	tchdv	CLK D31 to D16		_	15	ns	
RD delay time	tclrl	CLK		_	10	ns	
RD delay time	t CLRH	RD	_	_	10	ns	
WR0 to WR1 delay time	t CLWL	CLK		_	10	ns	
WR0 to WR1 delay time	t cLWH	WR0 to WR1		_	10	ns	
Valid address → valid data input time	tavdv	A23 to A00 D31 to D16		_	3 / 2 × tcyc – 13	ns	*1, *2
$\overline{RD} \downarrow \to valid$ data input time	t RLDV			_	tcyc - 25	ns	*1
$Data\;setup\to\overline{RD}\;\!\!\uparrowtime$	t dsrh	RD D31 to D16		25	_	ns	
$\overline{RD} \uparrow \to Rdata$ hold time	t RHDX	201.10210		0	_	ns	

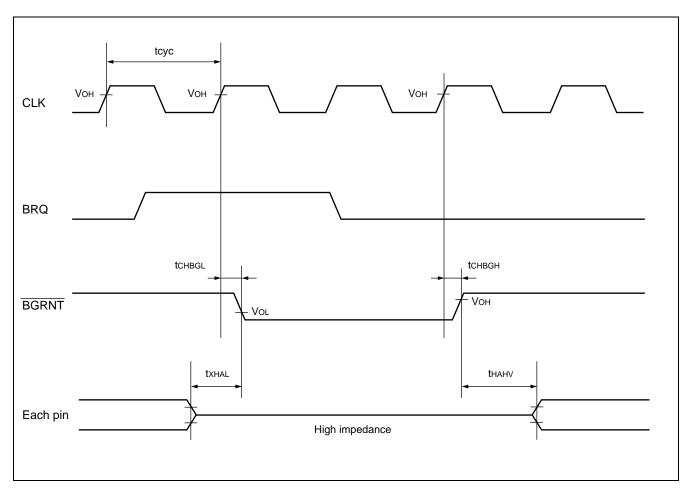
^{*1 :} If the bus is extended with either automatic wait insertion or RDY input, add the (tcvc × the number of extended cycles) time to this value.


Formula: $(2 - n / 2) \times tcyc - 13$

^{*2 :} This is the value at the time of (gear cycle \times 1) . When the gear cycle is set to 1/2, 1/4 or 1/8, substitute "n" in the following formula with 1/2, 1/4 or 1/8 respectively.

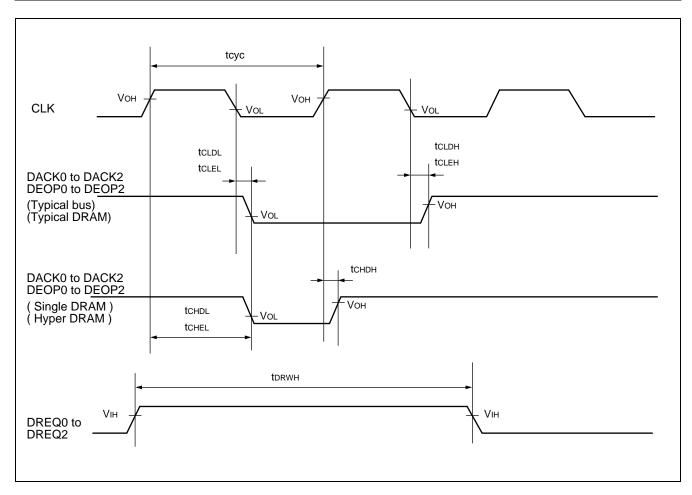
(8) Ready Input Timing

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
	Syllibol	name	Condition	Min	Max	Oilit	Nemaiks
RDY setup time $ ightarrow$ CLK \downarrow	t RDYS	RDY CLK		20	_	ns	
$CLK \downarrow \to RDY$ hold time	t RDYH	RDY CLK		0	_	ns	



(9) Hold Timing

(Vcc = 3.15 V to 3.6 V, Vss = AVss = 0 V,
$$T_A$$
 = 0 °C to +70 °C)


Parameter	Symbol	Pin	Condition	Val	lue	Unit	Remarks
raidilietei	Syllibol	name	Condition	Min	Max	Oilit	Remarks
BGRNT delay time	t CHBGL	CLK		_	10	ns	
BGRNT delay time	t chbgh	BGRNT			10	ns	
Pin floating \rightarrow $\overline{BGRNT}\ \downarrow$ time	txhal	BGRNT	_	tcyc - 10	tcyc + 10	ns	
$\overline{BGRNT} \uparrow \to Pin \ valid \ time$	t hahv	ואואוטט		tcyc - 10	tcyc + 10	ns	

Note : More than one cycle exist after BRQ is fetched and before $\overline{\text{BGRNT}}$ changes.

(10) DMA Controller Timing

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Symbol	Fill flame	Condition	Min	Max	Offic	Remarks
DREQ input pulse width	t DRWH	DREQ0 to DREQ2		2 tcyc	_	ns	
DACK delay time	t CLDL	CLK			6	ns	
(typical bus) (typical DRAM)	t CLDH	DACK0 to DACK2		_	6	ns	
DEOP delay time	t CLEL	CLK		_	6	ns	
(typical bus) (typical DRAM)	t CLEH	DEOP0 to DEOP2	_	_	6	ns	
DACK delay time	t CHDL	CLK			$n / 2 \times t$ cyc	ns	
(Single Dram) (Hyper Dram)	t chdh	DACK0 to DACK2		_	6	ns	
DEOP delay time	t CHEL	CLK			$n \mathrel{/} 2 \times t \text{cyc}$	ns	
(Single Dram) (Hyper Dram)	t cheh	DEOP0 to DEOP2		_	6	ns	

5. A/D Converter Electrical Characteristics

 $(Vcc = 3.15 \text{ V to } 3.6 \text{ V}, Vss = AVss = 0 \text{ V}, T_A = 0 ^{\circ}C \text{ to } +70 ^{\circ}C)$

Parameter		Sym- bol	Pin name	Condition	Value			Unit	Re-
					Min	Тур	Max	Oilit	marks
Resolution		_	_		_	_	10	Bit	
Conversion time		_	_		5.1	_	_	μs	
Total error		_	_	AVcc = 3.3 V, AVRH = 3.3 V	_	_	±4.0	LSB	
Linearity error		_			_		±3.5	LSB	-
Differential linearity error		_					±2.0	LSB	
Zero transition error		Vот	AN0 to AN7	AVcc = 3.3 V, AV _{RH} = 3.3 V	AVss - 1.5	AVss+0.5	AVss+2.5	LSB	
Full-scale transition error		V _{FST}	AN0 to AN7		AV _{RH} – 5.5	AV _{RH} – 1.5	AV _{RH} + 0.5	LSB	
Analog input current		IAIN	AN0 to AN7		_	0.1	10	μΑ	
Analog input voltage		Vain	AN0 to AN7		AVss		AV _{RH}	V	
Reference voltage		AVRH	AVRH	_	_		AVcc	V	
Supply cur- rent	Conversion in operation	la	AVcc	AVcc = 3.3 V	_	3.0	5.0	mA	
	Conversion stopped	Іан				_	5.0	μΑ	
Reference voltage supply cur- rent	Conversion in operation	IR	AVRH	AVcc = 3.3 V, AVRH = 3.3 V	_	2.0	3.0	mA	
	Conversion stopped	I RH			_	_	10	μΑ	
Interchannel variation			AN0 to AN7	_	_	_	4	LSB	

Notes : \bullet The smaller the |AVRH| is, the greater the error is in general.

• The external circuit output impedance of analog input should be used in compliance with the following requirements :

External circuit output impedance ≤ 2 (k Ω)

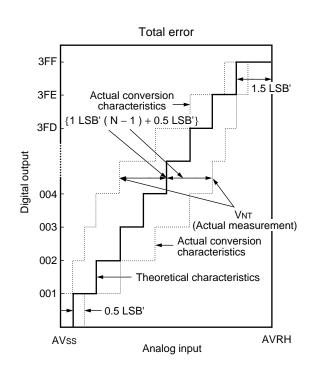
If the output impedance of the external circuit is too high, an analog voltage sampling duration shortage might occur. (Sampling duration = $1.4 \, \mu s$: @33 MHz)

A/D Converter Glossary

• Resolution : Analog changes that are identifiable by the A/D converter.

• Linearity error : The deviation of the straight line connecting the zero transition point

(00 0000 0000 \longleftrightarrow 00 0000 0001) with the full-scale transition point


(11 1111 1110 \longleftrightarrow 11 1111 1111) from actual conversion characteristics.

• Differential linearity error : The deviation of input voltage needed to change the output code by one LSB

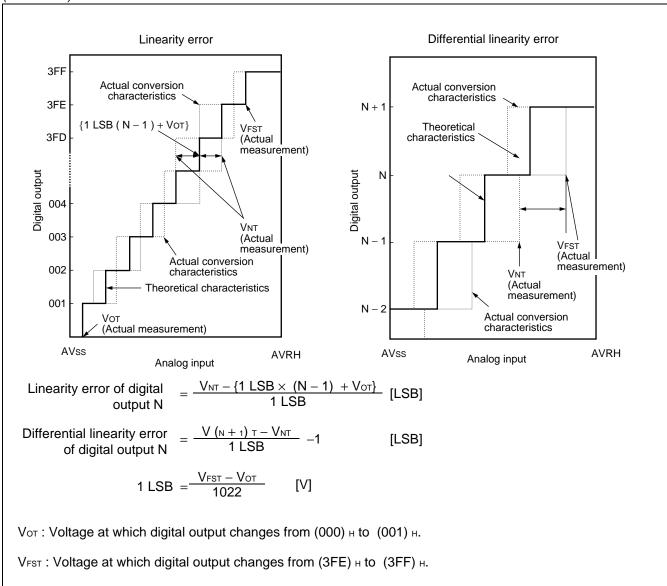
from the theoretical value.

Total error
 The difference between actual and theoretical conversion values including a

zero transition/full-scale transition/linearity error.

1 LSB' (theoretical value) =
$$\frac{AVRH - AV_{SS}}{1024}$$
 [V]

Vot' (theoretical value) = AVss + 0.5 LSB' [V]


V_{FST}' (theoretical value) = AVRH - 1.5 LSB' [V]

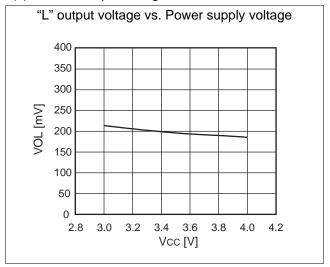
Total error of digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB'} \times (N-1) + 0.5 \text{ LSB'}\}}{1 \text{ LSB'}}$$

 V_{NT} : Voltage at which digital output changes from (N + 1) to N.

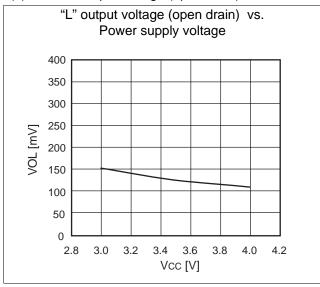
(Continued)

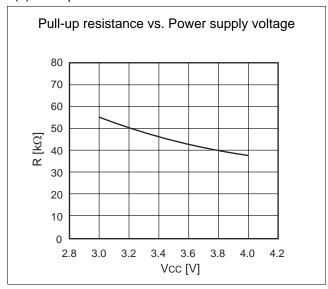

6. D/A Converter Electrical Characteristics

Devementes	Symbol	Pin name	Condi- tion	Value			1110:4	Re-
Parameter				Min	Тур	Max	Unit	marks
Resolution	_	_	_	_	_	8	Bit	
Differential linearity error	_	_	_	_	_	1	LSB	
Conversion time	_	_	_	_	_	20	μs	*
Analog output impedance	_	_	_	_	29	_	kΩ	

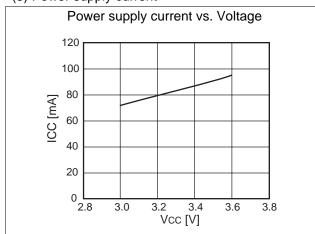

^{* :} CL = 20 pF

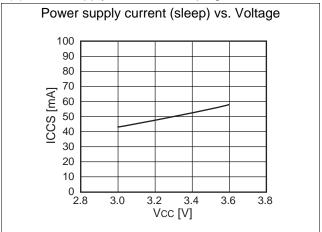
■ EXAMPLE CHARACTERISTICS


(1) "H" level output voltage

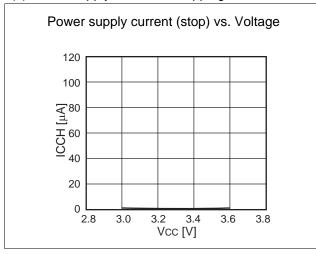

(2) "L" level output voltage

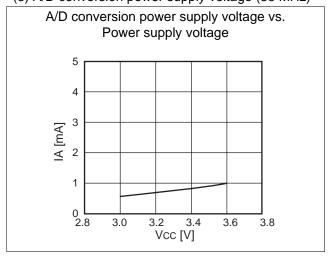
(3) "L" level output voltage (open drain)

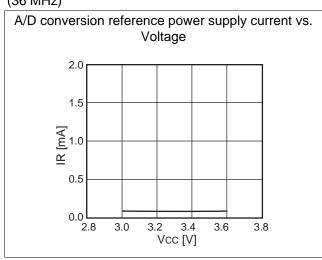

(4) Pull-up resistance

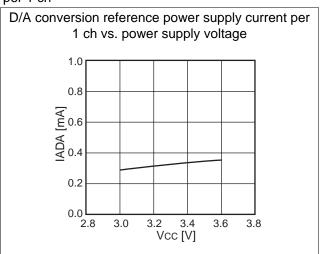

(Continued)

(Continued)

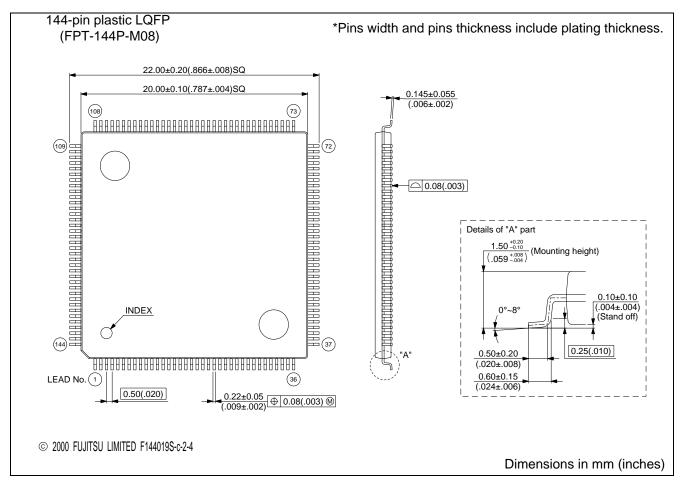

(5) Power supply current


(6) Power supply current at sleeping


(7) Power supply current at stopping


(8) A/D conversion power supply voltage (36 MHz)

(9) A/D conversion reference power supply current (36 MHz)


(10) D/A conversion reference power supply current per 1 ch

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91151APMT2-G	144-pin plastic LQFP (FPT-144P-M08)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0206

© FUJITSU LIMITED Printed in Japan