16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90480 Series

MB90F481/F482

■ DESCRIPTION

The MB90480 series is a 16-bit general-purpose FUJITSU microcontroller designed for process control in consumer devices and other applications requiring high-speed real-time processing.
The F${ }^{2} M C-16 L X$ CPU core instruction set retains the AT architecture of the $F^{2} M^{*}$ family, with additional instructions for high-level languages, expanded addressing mode, enhanced multiply-drive instructions, and complete bit processing. In addition, a 32-bit accumulator is provided to enable long-word processing.
The MB90480 series features embedded peripheral resources including $8 / 16$-bit PPG, expanded I/O serial interface, UART, 10-bit A/D converter, 16-bit I/O timer, 8/16-bit up-counter, DTP/external interrupt, chip select, and 16bit reload timer.

* : F²MC, an abbreviation for FUJITSU Flexible Microcontroller, is a registered trademark of FUJITSU, Ltd.

■ FEATURES

- Clock

Minimum instruction execution time: $40.0 \mathrm{~ns} / 6.25 \mathrm{MHz}$ base frequency multiplied $\times 4(25 \mathrm{MHz}$ internal operating frequency $/ 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)
$62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ base frequency multiplied $\times 4$ (16 MHz internal operating frequency $/ 3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$)
PLL clock multiplier

- Maximum memory space: 16 Mbyte
(Continued)
PACKAGES

MB90480 Series

(Continued)

- Instruction set optimized for controller applications

Supported data types (bit, byte, word, or long word)
Typical addressing modes (23 types)
Enhanced signed multiplication/division instruction and RETI instruction functions
32-bit accumulator for enhanced high-precision calculation

- Instruction set designed for high-level language (C) and multi-task operations

System stack pointer adopted
Instruction set compatibility and barrel shift instructions

- Non-multiplex bus/multiplex bus compatible
- Enhanced execution speed 4 byte instruction queue
- Enhanced interrupt functions 8 levels setting with programmable priority, 8 external interrupts
- Data transmission function ($\mu \mathrm{DMA}$)

Up to 16 channels

- Embedded ROM

Flash versions: 192 KB, 256 KB

- Embedded RAM: 4 KB, 6 KB
- General purpose ports

Up to 84 ports
(Except MB90V480 : Includes 16 ports with input pull-up resistance, 16 ports with output open drain settings)

- A/D converter

8-channel RC sequential comparison type (10-bit resolution, 3.68μ s conversion time (at 25 MHz))

- UART: 1 channel
- I/O expanded serial interface (SIO) : 2 channels
- 8/16-bit PPG: 3 channels (with 8 -bit $\times 6$ channel/ 16 -bit $\times 3$ channel mode switching function)
- $8 / 16$-bit up/down timer: 1 channel (with 8 -bit $\times 2$ channel/ 16 -bit $\times 1$-channel mode switching function)
- 16-bit reload timer: 1 channel
- 16 -bit I/O timer: 2 -channel input capture, 6 -channel output compare, 1 -channel free run timer
- On chip dual clock generator system
- Low-power consumption mode

With stop mode, sleep mode, CPU intermittent operation mode, watch mode, timebase timer mode

- Packages: QFP 100/LQFP 100
- Process: CMOS technology
- Power supply voltage: 3 V , single source

PRODUCT LINEUP

Item \quad Part number		MB90F481	MB90F482	MB90V480
ROM size		FLASH 192 KB	FLASH 256 KB	-
RAM size		4 KB	6 KB	16 KB
CPU function		Number of instructions $: 351$ Instruction bit length $: 8$-bit, 16-bit Instruction length $: 1$ byte to 7 bytes Data bit length $: 1$-bit, 8-bits, 16-bits Minimum execution time $: 40 \mathrm{~ns}$ (25 MHz machine clock)		
Ports		General-purpose I/O ports: up to 84 General-purpose I/O ports (CMOS output) General-purpose I/O ports (with pull-up resistance) General-purpose I/O ports (N-ch open drain)		
UART		1 channel, start-stop synchronized		
8/16-bit PPG timer		8 -bit $\times 6$ channel/ 16 -bit $\times 3$ channel		
8/16-bit up/down counter/timer		6 event input pins, 8 -bit up/down counters: 2 8-bit reload/compare registers: 2		
16-bit I/O timers	16-bit free run timer	Number of channels: 1 Overflow interrupt		
	Output compare (OCU)	Number of channels: 6 Pin input factor: A match signal of compare register		
	Input capture (ICU)	Number of channels: 2 Rewriting a register value upon a pin input (rising, falling, or both edges)		
DTP/external interrupt circuit		Number of external interrupt channels: 8 (edge or level detection)		
Extended I/O serial interface		2 channels, embedded		
Timebase timer		18-bit counter Interrupt cycles: $1.0 \mathrm{~ms}, 4.1 \mathrm{~ms}, 16.4 \mathrm{~ms}, 131.1 \mathrm{~ms}$ (minimum value, at 4 MHz base oscillator)		
A/D converter		Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)		
Watchdog timer		Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (minimum value, at 4 MHz base oscillator)		
Low-power consumption (standby) modes		Sleep mode, stop mode, CPU intermittent mode, watch timer mode, timebase timer mode		
Process		CMOS		
Type		FLASH model	FLASH model	Evaluation product, user terminal, $3 / 5 \mathrm{~V}$ versions
Emulator power supply		-	-	Included

MB90480 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M06)

MB90480 Series

(TOP VIEW)

(FPT-100P-M05)

MB90480 Series

PIN DESCRIPTIONS

Pin No.		Pin name	Circuit type	Function
LQFP**	QFP*2			
80	82	X0	A	Oscillator pin
81	83	X1	A	Oscillator pin
78	80	X0A	A	32 kHz oscillator pin
77	79	X1A	A	32 kHz oscillator pin
75	77	$\overline{\text { RST }}$	B	Reset input pin
83 to 90	85 to 92	P00 to P07	$\begin{gathered} \mathrm{C} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. A setting in the pull-up resistance setting register (RDRO) can be used to apply pull-up resistance (RD00-RD07 = "1") . (Disabled when pin is set for output.)
		AD00 to AD07		In multiplex mode, these pins function as the external address/ data bus low I/O pins.
		D00 to D07		In non-multiplex mode, these pins function as the external data bus low output pins.
91 to 98	$\begin{gathered} 93 \text { to } \\ 100 \end{gathered}$	P10 to P17	$\begin{gathered} \text { C } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. A setting in the pull-up resistance setting resister (RDR1) can be used to apply pull-up resistance (RD10-RD17 = " 1 ") . (Disabled when pin is set for output.)
		AD08 to AD15		In multiplex mode, these pins function as the external address/ data bus high I/O pins.
		D08 to D15		In non-multiplex mode, these pins function as the external data bus high output pins.
$\begin{gathered} 99, \\ 100, \\ 1,2 \end{gathered}$	1 to 4	P20 to P23	$\begin{gathered} E \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
		A16 to A19		When the bits of external address output control register (HACR) are set to " 0 " in multiplex mode, these pins function as address high output pins (A16-A19).
		A16 to A19		When the bits of external address output control register (HACR) are set to " 0 " in non-multiplex mode, these pins function as address high output pins (A16-A19).
3 to 6	5 to 8	P24 to P27	$\begin{gathered} E \\ (\text { CMOS/H) } \end{gathered}$	This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
		A20 to A23		When the bits of external address output control register (HACR) are set to " 0 " in multiplex mode, these pins function as address high output pins (A20-A23).
		A20 to A23		When the bits of external address output control register (HACR) are set to " 0 " in non-multiplex mode, these pins function as address high output pins (A20-A23).
		PPG0 to PPG3		PPG timer output pins.

(Continued)

MB90480 Series

Pin No.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
7	9	P30	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		A00		In non-multiplex mode, this pin functions as an external address pin.
		AIN0		8/16-bit up/down timer input pin (channel 0)
8	10	P31	$\begin{gathered} \text { E } \\ \text { (CMOS/H) } \end{gathered}$	This is a general purpose I/O port.
		A01		In non-multplex mode, this pin functions as an external address pin.
		BIN0		8/16-bit up/down counter input pin (channel0)
10	12	P32	$\begin{gathered} \text { E } \\ \text { (CMOS/H) } \end{gathered}$	This is a general purpose I/O port.
		A02		In non-multiplex mode, this pin functions as an external address pin.
		ZIN0		8/16-bit up/down counter input pin (channel 0)
11	13	P33	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		A03		In non-multiplex mode, this pin functions as an external address pin.
		AIN1		8/16-bit up/down counter input pin (channel 1).
12	14	P34	$\begin{gathered} E \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		A04		In non-multiplex mode, this pin functions as an external address pin.
		BIN1		8/16-bit up/down counter input pin (channel 1).
13	15	P35	$\begin{gathered} \text { E } \\ (\text { CMOS/H } \end{gathered}$	This is a general purpose I/O port.
		A05		In non-multiplex mode, this pin functions as an external address pin.
		ZIN1		8/16-bit up/down counter input pin (channel 1)
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	P36, P37	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
		A06, A07		In non-multiplex mode, this pin functions as an external address pin.
16	18	P40	G (CMOS/H)	This is a general purpose I/O port.
		A08		In non-multiplex mode, this pin functions as an external address pin.
		SIN2		Simple serial I/O input pin.
17	19	P41	$\begin{gathered} \text { F } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
		A09		In non-multiplex mode, this pin functions as an external address pin.
		SOT2		Simple serial I/O output pin.
18	20	P42	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		A10		In non-multiplex mode, this pin functions as an external address pin.
		SCK2		Simple serial I/O clock input/output pin.

(Continued)

MB90480 Series

Pin No.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	P43, P44	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port.
		A11, A12		In non-multiplex mode, this pin functions as an external address pin.
22	24	P45	$\begin{gathered} \text { F } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
		A13		In non-multiplex mode, this pin functions as an external address pin.
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	P46, P47	$\begin{gathered} \text { F } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
		A14, A15		In non-multiplex mode, this pin functions as an external address pin.
		OUT4/OUT5		Output compare event output pins.
68	70	P50	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port. In external bus mode, this pin functions as the ALE pin.
		ALE		In external bus mode, this pin functions as the address load enable (ALE) signal pin.
69	71	P51	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, this pin functions as the $\overline{R D}$ pin.
		$\overline{\mathrm{RD}}$		In external bus mode, this pin functions as the read strobe output $(\overline{\mathrm{RD}})$ signal pin.
70	72	P52	D(CMOS)	This is a general purpose I/O port. In external bus mode, when the WRE pin in the EPCR register is set to " 1 ", this pin functions as the WRL pin.
		$\overline{\text { WRL }}$		In external bus mode, this pin functions as the lower data write strobe output ($\overline{\mathrm{WRL}}$) pin. When the WRE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.
71	73	P53	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode with 16-bit bus width, when the WRE bit in the EPCR register is set to " 1 ", this pin functions as the $\overline{\text { WRH }}$ pin.
		$\overline{\text { WRH }}$		In external bus mode with 16 -bit bus width, this pin functions as the upper data write strobe output (WRH) pin. When the WRE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.
72	74	P54	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to " 1 ", this pin functions as the HRQ pin.
		HRQ		In external bus mode, this pin functions as the hold request input (HRQ) pin. When the HDE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.
73	75	P55	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to " 1 ", this pin functions as the HAK pin.
		$\overline{\text { HAK }}$		In external bus mode, this pin functions as the hold acknowledge (HAK) pin. When the HDE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.

(Continued)

MB90480 Series

Pin No.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
74	76	P56	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, when the RYE bit in the EPCR register is set to " 1 ", this pin functions as the RDY pin.
		RDY		In external bus mode, this pin functions as the external ready (RDY) input pin. When the RYE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.
76	78	P57	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port. In external bus mode, when the CKE bit in the EPCR register is set to " 1 ", this pin functions as the CLK pin.
		CLK		In external bus mode, this pin functions as the machine cycle clock (CLK) output pin. When the CKE bit in the EPCR register is set to " 0 ", this pin functions as a general purpose I/O port.
36 to 39	38 to 41	P60 to P63	$\begin{gathered} \mathrm{H} \\ \text { (CMOS) } \end{gathered}$	These are general purpose I/O ports.
		AN0 to AN3		These are the analog input pins.
41 to 44	43 to 46	P64 to P67	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS}) \end{gathered}$	These are general purpose I/O ports.
		AN4 to AN7		These are the analog input pins.
25	27	P70	G (CMOS/H)	This is a general purpose I/O port.
		SIN0		This is the UART data input pin.
26	28	P71	$\begin{gathered} \text { F } \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port.
		SOT0		This is the UART data output pin.
27	29	P72	G (CMOS/H)	This is a general purpose I/O port.
		SCK0		This is the UART clock I/O pin.
28	30	P73	G (CMOS/H)	This is a general purpose I/O port.
		TIN0		This is the 16-bit reload timer event input pin.
29	31	P74	(CMOS)	This is a general purpose I/O port.
		TOT0		This is the 16-bit reload timer output pin.
30	32	P75	$\stackrel{\mathrm{F}}{(\mathrm{CMOS})}$	This is a general purpose I/O port.
31	33	P76	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port.
32	34	P77	$\begin{gathered} \mathrm{F} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
$\begin{aligned} & 45, \\ & 46 \end{aligned}$	$\begin{aligned} & 47, \\ & 48 \end{aligned}$	P80, P81	$\begin{gathered} \hline \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	These are general purpose I/O ports.
		IRQ0, IRQ1		External interrupt input pins.
50 to 55	52 to 57	P82 to P87	$\begin{gathered} E \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	These are general purpose I/O ports.
		IRQ2 to IRQ7		External interrupt input pins.

(Continued)

MB90480 Series

(Continued)

Pin No.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
56	58	P90	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		SIN1		Simple serial I/O data input pin.
		CSO		Chip select 0 .
57	59	P91	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	This is a general purpose I/O port.
		SOT1		Simple serial I/O data output pin.
		CS1		Chip select 1.
58	60	P92	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		SCK1		Simple serial I/O data input/output pin.
		CS2		Chip select 2.
59	61	P93	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		FRCK		When the free run timer is in use, this pin functions as the external clock input pin.
		ADTG		When the A/D converter is in use, this pin functions as the external trigger input pin.
		CS3		Chip select 3.
60	62	P94	$\begin{gathered} \text { D } \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port.
		PPG4		PPG timer output pin.
61	63	P95	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	This is a general purpose I/O port.
		PPG5		PPG timer output pin.
62	64	P96		This is a general purpose I/O port.
		IN0		Input capture channel 0 trigger input pin.
63	65	P97	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	This is a general purpose I/O port.
		IN1		Input capture channel 1 trigger input pin.
64 to 67	66 to 69	PA0 to PA3	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	These are general purpose I/O ports.
		OUT0 to OUT3		Output compare event output pins.
33	35	AV cc	-	A/D converter power supply pin.
34	36	AVRH	-	A/D converter external reference voltage supply pin.
35	37	AVss	-	A/D converter power supply pin.
47 to 49	49 to 51	MD0 to MD2	$\begin{gathered} \mathrm{J} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	Operating mode selection input pins.
21, 82	23, 84	Vcc	-	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ power supply pins (Vcc3)
$\begin{gathered} \hline 9 \\ 40 \\ 79 \end{gathered}$	$\begin{aligned} & 11 \\ & 42 \\ & 81 \end{aligned}$	Vss	-	Power supply input pins (GND)

*1 : LQFP : FPT-100P-M05
*2 : QFP : FPT-100P-M06

MB90480 Series

I/O CIRCUIT TYPES

(Continued)

MB90480 Series

(Continued)

| Type | | Remarks |
| :--- | :--- | :--- | :--- | :--- |

MB90480 Series

■ HANDLING DEVICES

1. Power-on and Preventing Latch-up

CMOS IC devices are subject to the phenomenon known as latch-up in conditions such as the following.
(1) When voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ are applied to input pins or output pins.
(2) When voltages higher than rated voltage levels are applied between Vcc and Vss.
(3) When the $A V c c$ power supply is applied before the Vcc power.

Power to an analog system must always be turned on at the same time as the Vcc power supply, or after the digital power supply is on. (Analog power must also be turned off before or at the same time as other power.) When latch-up occurs, power supply current increases rapidly, resulting in thermal damage to circuit elements.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause abnormal operation. Unused input pins should always be pulled up or down. When the A / D converter is not in use, be sure to make the necessary connections AV cc $=\mathrm{AVRH}=\mathrm{V} \mathrm{cc}$, and $\mathrm{AV} \mathrm{ss}=\mathrm{V}$ ss.

3. Notes on Using External Clock

Connections for external clock use :

4. Treatment of Power Supply Pins ($\mathrm{Vcc}_{\mathrm{cc}} / \mathrm{Vss}_{\mathrm{ss}}$)

When multiple $\mathrm{V}_{\mathrm{cc}} / \mathrm{Vss}$ pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal storobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.
Consideration should be given to connecting power supply sources to the $\mathrm{V}_{\mathrm{cc}} / \mathrm{V}_{\mathrm{ss}}$ terminals of this device with as low impedane as possible. It is also recommended that a bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ be placed between the V_{cc} and V_{ss} lines as close to this device as possible.

5. Crystal Oscillator Circuits

Noise around the $\mathrm{X} 0 / \mathrm{X} 1$, or $\mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the $\mathrm{X} 0 / \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A} / \mathrm{X1} 1 \mathrm{~A}$ and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

6. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

MB90480 Series

7. Supply Voltage Stabilization

Even within the operating range of Vcc supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak Vcc ripple voltage at commercial supply frequency (50 Hz to 60 Hz) be 10% or less of V_{cc}, and that the transient voltage fluctuation be no more than $0.1 \mathrm{~V} / \mathrm{ms}$ or less when the power supply is turned on or off.
8. When the dual-system NB90480 series microcontroller is used as a single system, use connections so the $\mathrm{X} 0 \mathrm{~A}=\mathrm{Vss}$, and $\mathrm{X} 1 \mathrm{~A}=0$ Open.
9. For serial writing to FLASH memory, always ensure that the operating voltage Vcc is between 3.13 V and 3.6 V .
For normal writing to FLASH memory, always ensure that the operating voltage Vcc is between 3.0 V and 3.6 V.

MB90480 Series

BLOCK DIAGRAM

P00 to P07 (8 pins) : with an input pull-up resistance setting register.
P10 to P17 (8 pins) : with an input pull-up resistance setting register.
P40 to P47 (8 pins) : with an open drain setting register.
P70 to P75 (6 pins) : with an open drain setting register.
Note: In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

MB90480 Series

MEMORY MAP

Model	Address \#1	Address \#2	Address \#3
MB90F481	FCOOOOH *	004000н or 008000н, selected by the MS bit in the ROMM register	001100н (access inhibited to 001FFFH)
MB90F482	FCOOOOH		001900 (access inhibited to 001FFFH)
MB90V480	(FC0000н)		004000н

* : No memory cells from FC0000н to FC7FFFн аnd FE0000н to FE7FFFн.

The upper part of the 00 bank is set up to mirror the image of FF bank ROM, to enable efficient use of small model C compilers. Because the lower 16 -bit address of the FF bank and the lower 16 -bit address of the 00 bank is the same, enabling reference to tables in ROM without the "far" pointer declaration.
For example, in accessing address 00 COOOH it is actually the contents of ROM at FFCOOOH that are accessed. If the MS bit in the ROMM register is set to " 0 ", the ROM area in the FF bank will exceed 48 K bytes and it is not possible to reflect the entire area in the image in the 00 bank. Therefore the image from FF4000H to FFFFFFFH is reflected in the 00 bank and the area from $\operatorname{FFO000}$ н to FF^{2} FFFн can be seen in the FF bank only.

MB90480 Series

F2 MC-16L CPU PROGRAMMING MODEL

- Dedicated registers

- Generl purpose registers

- Processor status

MB90480 Series

I/O MAP

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04,	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07\%	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	----XXXX
ОВн	Port 3 timer input enable register	UDRE	R/W	U/D timer input control	XX 000000
0 CH	Interrupt/DTP enable register	ENIR	R/W		00000000
ODH	Interrupt/DTP enable register	EIRR	R/W	DTP/external	XXXXXXXX
0Ен	Request level setting register		R/W	interrupts	00000000
OFH	Request level setting register	ELVR	R/W		00000000
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000
12н	Port 2 direction register	DDR2	R/W	Port 2	00000000
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000
14 H	Port 4 direction register	DDR4	R/W	Port 4	00000000
15 H	Port 5 direction register	DDR5	R/W	Port 5	00000000
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000
17\%	Port 7 direction register	DDR7	R/W	Port 7	00000000
18н	Port 8 direction register	DDR8	R/W	Port 8	00000000
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000
$1 \mathrm{~A}_{\text {н }}$	Port A direction register	DDRA	R/W	Port A	---0000
1Вн	Port 4 pin register	ODR4	R/W	Port 4 (OD control)	00000000
1 CH	Port 0 resistance register	RDR0	R/W	Port 0 (Pull-up)	00000000
1訾	Port 1 resistance register	RDR1	R/W	Port 1 (Pull-up)	00000000
1 E	Port 7 pin register	ODR7	R/W	Port 7 (OD control)	00000000
1 FH	Analog input enable register	ADER	R/W	Port 5, A/D	11111111
20н	Serial mode register 0	SMR0	R/W		00000×00
21H	Serial control register 0	SCR0	R/W		00000100
22н	Serial input register/serial output register	$\begin{gathered} \hline \text { SIDR/ } \\ \text { SODRO } \end{gathered}$	R/W	UARTO	XXXXXXXX
23н	Serial status register	SSR0	R/W		00001000
24H	(Reserved area)				

(Continued)

MB90480 Series

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
25	Clock multiplier control register	CDCR	R/W	Communication prescaler (UART)	00--0000
26	Serial mode control status register 0	SMCS0	R/W	SCI1 (ch0)	---0000
27 H	Serial mode control status register 0	SMCS0	R/W		00000010
28H	Serial data register	SDR0	R/W		XXXXXXXX
29 н	Clock multiplier control register	SDCR0	R/W	Communication prescaler (SCl1)	0-- 0000
2 Ан $^{\text {¢ }}$	Serial mode control status register 1	SMCS1	R/W	SCl2 (ch1)	---0000
2Вн	Serial mode control status register 1	SMCS1	R/W		00000010
2 CH	Serial data register	SDR1	R/W		XXXXXXXX
2Dн	Clock multiplier control register	SDCR1	R/W	Communication prescaler (SCl2)	0-- 0000
2Ен	PPG reload register L (ch0)	PRLLO	R/W	$\begin{aligned} & \text { 8/16-bit PPG } \\ & \text { (ch0-ch5) } \end{aligned}$	XXXXXXXX
2 F	PPG reload register H (ch0)	PRLH0	R/W		XXXXXXXX
30н	PPG reload register L (ch1)	PRLL1	R/W		XXXXXXXX
31н	PPG reload resister H (ch1)	PRLH1	R/W		XXXXXXXX
32н	PPG reload register L (ch2)	PRLL2	R/W		XXXXXXXX
33н	PPG reload register H (ch2)	PRLH2	R/W		XXXXXXXX
34	PPG reload register L (ch3)	PRLL3	R/W		XXXXXXXX
35 +	PPG reload register H (ch3)	PRLH3	R/W		XXXXXXXX
36	PPG reload register L (ch4)	PRLL4	R/W		XXXXXXXX
37	PPG reload register H (ch4)	PRLH4	R/W		XXXXXXXX
38н	PPG reload register L (ch5)	PRLL5	R/W		XXXXXXXX
39н	PPG reload register H (ch5)	PRLH5	R/W		XXXXXXXX
ЗАн	PPG0 operating mode control register	PPGC0	R/W		0X000XX 1
3Вн	PPG1 operating mode control register	PPGC1	R/W		0×000001
3CH	PPG2 operating mode control register	PPGC2	R/W		0X000XX 1
3Dн	PPG3 operating mode control register	PPGC3	R/W		0×000001
ЗЕн	PPG4 operating mode control register	PPGC4	R/W		$0 \times 000 \times \mathrm{C} 1$
3 FH	PPG5 operating mode control register	PPGC5	R/W		0×000001
40 H	PPG0, 1 output control register	PPG01	R/W	8/16-bit PPG	00000000
41н	(Reserved area)				
42 H	PPG2, 3 output control register	PPG23	R/W	8/16-bit PPG	00000000
43н	(Reserved area)				
44 +	PPG4, 5 output control register	PPG45	R/W	8/16-bit PPG	00000000
45 H	(Reserved area)				
46н	Control status register	ADCS1	R/W	A/Dconverter	00000000
47\%		ADCS2	R/W		00000000
48H	Data register	ADCR1	R		XXXXXXXX
49н		ADCR2	R		00000 XXX

(Continued)

MB90480 Series

Address	Register name	$\begin{gathered} \text { Abbreviated } \\ \text { register } \\ \text { name } \\ \hline \end{gathered}$	Read/ Write	Resource name	Initial value
4Ан	Output compare register (ch0) lower digits	OCCPO	R/W	16-bit output timer output compare (ch0-ch5)	00000000
4Вн	Output compare register (ch0) upper digits				00000000
$4 \mathrm{CH}_{\text {}}$	Output compare register (ch1) lower digits	OCCP1	R/W		00000000
4D	Output compare register (ch1) upper digits				00000000
4Ен	Output compare register (ch2) lower digits	OCCP2	R/W		00000000
4FH	Output compare register (ch2) upper digits				00000000
50н	Output compare register (ch3) lower digits	OCCP3	R/W		00000000
51н	Output compare register (ch3) upper digits				00000000
52н	Output compare register (ch4) lower digits	OCCP4	R/W		00000000
53н	Output compare register (ch4) upper digits				00000000
54	Output compare register (ch5) lower digits	OCCP5	R/W		00000000
55	Output compare register (ch5) upper digits				00000000
56н	Output compare control register (ch0)	OCSO	R/W		0000--00
57	Output compare control register (ch1)	OCS1	R/W		$--00000$
58H	Output compare control register (ch2)	OCS2	R/W		0000--00
59н	Output compare control register (ch3)	OCS3	R/W		--00000
5 Ан $^{\text {¢ }}$	Output compare control register (ch4)	OCS4	R/W		0000--00
5Вн	Output compare control register (ch5)	OCS5	R/W		--00000
$5 \mathrm{CH}_{+}$	Input capture register (ch0) lower digits	IPCP0	R	16-bit output timer input capture (ch0, ch1)	XXXXXXXX
5D	Input capture register (ch0) upper digits		R		XXXXXXXX
5Ен	Input capture register (ch1) lower digits	IPCP1	R		XXXXXXXX
$5 \mathrm{~F}_{\mathrm{H}}$	Input capture register (ch1) upper digits		R		XXXXXXXX
60н	Input capture control register	ICS01	R/W		00000000
61\%	(Reserved area)				
62н	Timer data register lower digits	TCDT	R/W	16-bit output timer free run timer	00000000
63н	Timer data register upper digits	TCDT	R/W		00000000
64	Timer control status register	TCCS	R/W		00000000
65	Timer control status register	TCCS	R/W		0--00000
66н	Compare clear register lower digits	CPCLR	R/W		XXXXXXXX
67\%	Compare clear register upper digits				XXXXXXXX
68н	Up/down count register ch0	UDCR0	R	8/16-bit up/down timer counter	00000000
69н	Up/down count register ch1	UDCR1	R		00000000
6Ан	Reload compare register ch0	RCR0	W		00000000
6Вн	Reload compare register ch1	RCR1	W		00000000
6 CH	Counter control register lower digits ch0	CCRL0	R/W		0×00×000
6Dн	Counter control register upper digits ch0	CCRH0	R/W		00000000
6Ен	(Reserved area)				
6F\%	ROM mirror function select register	ROMM	R/W	ROM mirroring function	----- 01

(Continued)

MB90480 Series

(Continued)

MB90480 Series

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
A1H	Clock select register	CKSCR	R/W	low-power operation	11111100
$\begin{gathered} \text { A2н to } \\ \text { АЗн } \end{gathered}$	(Reserved area)				
A4,	μ DMA stop status register	DSSR	R/W	$\mu \mathrm{DMA}$	00000000
$\mathrm{A}^{\text {H }}$	Automatic ready function select register	ARSR	W	External pins	0011--00
A6H	External address output control register	HACR	W	External pins	*******
A7\%	Bus control signal control register	EPCR	W	External pins	1000*10-
A8 ${ }^{\text {f }}$	Watchdog control register	WDTC	R/W	Watchdog timer	XXXXX 111
$\mathrm{A}^{\text {H }}$	Timebase timer control register	TBTC	R/W	Timebase timer	$1 \times \times 00100$
ААн	Watch timer control register	WTC	R/W	Watch timer	10001000
ABн	(Reserved area)				
ACH	$\mu \mathrm{DMA}$ control area	DERL	R/W	$\mu \mathrm{DMA}$	00000000
AD	$\mu \mathrm{DMA}$ control area	DERH	R/W	$\mu \mathrm{DMA}$	00000000
АЕн	Flash memory control status register	FMCR	R/W	Flash memory interface	000×0000
AFH	(Disabled)				
BOH	Interrupt control register 00	ICRO0	W, R/W	-	XXXX0111
B1н	Interrupt control register 01	ICR01	W, R/W	-	XXXX0111
В2н	Interrupt control register 02	ICR02	W, R/W	-	XXXX0111
B3н	Interrupt control register 03	ICR03	W, R/W	-	XXXX0111
B4н	Interrupt control register 04	ICR04	W, R/W	-	XXXX0111
B5	Interrupt control register 05	ICR05	W, R/W	-	XXXX0111
B6	Interrupt control register 06	ICR06	W, R/W	-	XXXX0111
B7	interrupt control register 07	ICR07	W, R/W	-	XXXX0111
B8н	Interrput control register 08	ICR08	W, R/W	-	XXXX0111
B9н	Interrupt control register 09	ICR09	W, R/W	-	XXXX0111
ВАн	Interrupt control register 10	ICR10	W, R/W	-	XXXX0111
BBн	Interrupt control register 11	ICR11	W, R/W	-	XXXX0111
BCH	Interrupt control register 12	ICR12	W, R/W	-	XXXX0111
BD	Interrupt control register 13	ICR13	W, R/W	-	XXXX0111
ВЕн	Interrupt control register 14	ICR14	W, R/W	-	XXXX0111
BFH	Interrupt control register 15	ICR15	W, R/W	-	XXXX0111
COH	Chip select mask register 0	CMR0	R/W	Chip select function	00001111
C1н	Chip select area register 0	CAR0	R/W	-	11111111
С2н	Chip select mask register 1	CMR1	R/W	-	00001111
СЗн	Chip select area register 1	CAR1	R/W	-	11111111
C4H	Chip select mask register 2	CMR2	R/W	-	00001111
C_{5}	Chip select area register 2	CAR2	R/W	-	11111111

(Continued)

MB90480 Series

(Continued)

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
C6\%	Chip select mask register 3	CMR3	R/W	-	00001111
C7\%	Chip select area register 3	CAR3	R/W	-	11111111
C8H	Chip select control register	CSCR	R/W	-	---000*
C9H	Chip select active level register	CALR	R/W	-	$---0000$
САн	Timer control status register	TMCSR	R/W	16-bit reload timer	00000000
СВ					---0000
CCH	16-bit timer register/ 16-bit reload register	TMR/TMRLR	R/W		XXXXXXXX
CD					
СЕн	(Reserved area)				
CF\%	PLL output control register	PLLOS	W	Low-power operation	-----X 0
$\begin{aligned} & \hline \mathrm{DOH}_{\mathrm{H}} \mathrm{o} \\ & \mathrm{FF}_{\mathrm{H}} \end{aligned}$	(External area)				
100н to \#н	(RAM area)				

Descriptions for read/write
R/W : Readable and writable
R : Read only
W : Write only

Descriptions for initial value

0 : The initila value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.

- : This bit is not used.
* : The initial value of this bit is " 1 " or " 0 ".

MB90480 Series

INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	μ DMA cnannel number	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	-	\#08	FFFFDC	-	-
INT9 instruction	-	\#09	FFFFD8 ${ }_{\text {н }}$	-	-
Exception	-	\#10	FFFFD 4 н	-	-
INT0	0	\#11	FFFFD0н	ICR00	0000B0н
INT1	\times	\#12	FFFFCC ${ }_{\text {H }}$		
INT2	\times	\#13	FFFFFC8	ICR01	0000B1н
INT3	\times	\#14	FFFFFC4		
INT4	\times	\#15	FFFFFC0 ${ }_{\text {H }}$	ICR02	0000В2н
INT5	\times	\#16	FFFFBC		
INT6	\times	\#17	FFFFB8	ICR03	0000В3н
INT7	\times	\#18	FFFFB4		
-	-	\#19	FFFFB0н	ICR04	0000B4н
-	-	\#20	FFFFACH		
-	-	\#21	FFFFA8н	ICR05	0000B5
PPG0/PPG1 counter borrow	2	\#22	FFFFA4		
PPG2/PPG3 counter borrow	3	\#23	FFFFA0н	ICR06	0000B6н
PPG4/PPG5 counter borrow	4	\#24	FFFF9C		
8/16-bit up/down counter timer compare/underflow/overflow/ inversion (ch0, 1)	\times	\#25	FFFF98	ICR07	0000B7 ${ }_{\text {H }}$
Input capture (ch0) load	5	\#26	FFFF94 ${ }_{\text {H }}$		
Input capture (ch1) load	6	\#27	FFFF90н	ICR08	0000B8н
Output compare (ch0) match	8	\#28	FFFF8C ${ }_{\text {н }}$		
Output compare (ch1) match	9	\#29	FFFF88н	ICR09	0000B9
Output compare (ch2) match	10	\#30	FFFF84 ${ }_{\text {н }}$		
Output compare (ch3) match	\times	\#31	FFFF80н	ICR10	0000ВАн
Output compare (ch4) match	\times	\#32	FFFF7C ${ }_{\text {¢ }}$		
Output compare (ch5) match	\times	\#33	FFFF78н	ICR11	0000ВВн
UART sending completed	11	\#34	FFFF74		
16-bit free run timer/16-bit reload timer overflow	12	\#35	FFFF70 ${ }_{\text {H }}$	ICR12	0000 BCH
UART receiving compleated	7	\#36	FFFF6C ${ }_{\text {¢ }}$		
SIO1	13	\#37	FFFF68н	ICR13	0000BDн
SIO2	14	\#38	FFFF64н		

(Continued)

MB90480 Series

(Continued)

Interrupt source	μ DMA channel number	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
-	-	\#39	FFFF60н	ICR14	0000ВЕн
A/D conversion	15	\#40	FFFF5CH		
FLASH write/erase timebase timer/ watch timer *	\times	\#41	FFFF58	ICR15	0000BFн
Delay interrupt generator module	\times	\#42	FFFF54		

x : Interrupt request flag not cleared by the interrupt clear signal.
If there are two interrupt sources for the same interrupt number, the resource will clear both interrupt request flags at the DMAC interrupt clear signal. Therefore if either of the two sources uses the DMAC function, the other interrupt function cannot be used. The interrupt request enable bit for the corresponding resource should be set to " 0 " and interrupt requests from that resource should be handled by software polling.
*: Caution : The FLASH write/erase, timebase timer, and watch timer cannot be used at the same time.

MB90480 Series

■ PERIPHERAL RESOURCES

1. I/O Ports

The I/O ports perform the functions of either sending data from the CPU to the I/O pins, or loading information from the I/O into the CPU, according to the setting of the corresponding port register (PDR) . The input/output direction of each I/O pin can be set in individual bit units by the port direction register (DDR) for each port. The MB90480 series has 84 input/output pins. The I/O ports are port 0 through port A.

(1) Port Registers

PDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000000H	P07	P06	P05	P04	P03	P02	P01	P00	Undefined	R/W*
PDR1	7	6	5	4	3	2	1	0		
Address: 000001H	P17	P16	P15	P14	P13	P12	P11	P10	Undefined	R/W*
PDR2	7	6	5	4	3	2	1	0		
Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*
PDR3	7	6	5	4	3	2	1	0		
Address : 000003H	P37	P36	P35	P34	P33	P32	P31	P30	Undefined	R/W*
PDR4	7	6	5	4	3	2	1	0		
Address : 000004H	P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*
PDR5	7	6	5	4	3	2	1	0		
Address : 000005H	P57	P56	P55	P54	P53	P52	P51	P50	Undefined	R/W*
PDR6	7	6	5	4	3	2	1	0		
Address : 000006H	P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*
PDR7	7	6	5	4	3	2	1	0		
Address : 000007H	P77	P76	P75	P74	P73	P72	P71	P70	Undefined	R/W*
PDR8	7	6	5	4	3	2	1	0		
Address : 000008H	P87	P86	P85	P84	P83	P82	P81	P80	Undefined	R/W*
PDR9	7	6	5	4	3	2	1	0		
Address : 000009H	P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*
PDRA	7	6	5	4	3	2	1	0		
Address : 00000Ан	-	-	-	-	PA3	PA2	PA1	PAO	Undefined	R/W*

[^0]
MB90480 Series

(2) Port Direction Registers

DDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000010н	D07	D06	D05	D04	D03	D02	D01	D 00	00000000	R/W
DDR1	7	6	5	4	3	2	1	0		
Address : 000011н	D17	D16	D15	D14	D13	D12	D11	D10	00000000	R/W
DDR2	7	6	5	4	3	2	1	0		
Address : 000012н	D27	D26	D25	D24	D23	D22	D21	D20	00000000	R/W
DDR3	7	6	5	4	3	2	1	0		
Address : 000013н	D37	D36	D35	D34	D33	D32	D31	D30	00000000	R/W
DDR4	7	6	5	4	3	2	1	0		
Address : 000014H	D47	D46	D45	D44	D43	D42	D41	D40	00000000	R/W
DDR5	7	6	5	4	3	2	1	0		
Address : 000015H	D57	D56	D55	D54	D53	D52	D51	D50	00000000	R/W
DDR6	7	6	5	4	3	2	1	0		
Address : 000016H	D67	D66	D65	D64	D63	D62	D61	D60	00000000	R/W
DDR7	7	6	5	4	3	2	1	0		
Address : 000017H	D77	D76	D75	D74	D73	D72	D71	D70	00000000	R/W
DDR8	7	6	5	4	3	2	1	0		
Address : 000018н	D87	D86	D85	D84	D83	D82	D81	D80	00000000	R/W
DDR9	7	6	5	4	3	2	1	0		
Address : 000019н	D97	D96	D95	D94	D93	D92	D91	D90	00000000	R/W
DDRA	7	6	5	4	3	2	1	0		
Address : 00001Aн	-	-	-	-	DA3	DA2	DA1	DA0	--- 0000	R/W

- When a set of pins is functioning as a port, the corresponding signal pins are controlled as follows.

0 : Input mode
1 : Output mode Reset to " 0 ".
Note : When any of these register are accessed using a read-modify-write type instruction (such as a bit set instruction), the bit specified in the instruction will be set to the indicated value. However, the contents of output registers corresponding to any other bits having input settings will be rewritten to the input values of those pins at that time.
For this reason, when changing any pin that has been used for input to output, first write the desired value to the PDR register before setting the DDR register for output.

MB90480 Series

(3) Input resistance Registers

RDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000	R/W

RDR1
Address : 00001D

7	6	5	4	3	2	1	0
RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10

00000000 R/W

These registers control the use of pull-up resistance in input mode.
0 : No pull-up resistance in input mode.
1 : With pull-up resistance in input mode.
In output mode, these registers have no significance (no pull-up resistance). Input/output mode settings are controlled by the direction (DDR) registers.
In case of a stop (SPL = 1), no pull-up resistance is applied (high impedance). This function is prohibited when an external bus is used. Do not write to these registers.
(4) Output Pin Registers

ODR
Address : 00001Ен

7	6	5	4	3	2	1	0
OD77	OD76	OD75	OD74	OD73	OD72	OD71	OD70

Initial value Access
00000000 R/W
ODR4
Address : 00001Bн

7	6	5	4	3	2	1	0
OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40

00000000 R/W

These registers control open drain settings in output mode.
0 : Standard output port functions in output mode.
1 : Open drain output port in output mode.
In input mode these registers have no significance (High-Z output) . Input/output mode settings are controlled by direction (DDR) registers. This function is prohibited when an exteral bus is used. Do not write to these registers.
(5) Analog Input Enable Register

ADER
Address: 00001FH

Initial value Access
11111111 R/W

This resister controls the port 6 pins as follows.
0 : Port input/output mode.
1 : Analog input mode. The default value at reset is all " 1 ".
(6) Up-down Timer Input Enable Register

UDER
Address : 00000Вн

7	6	5	4	3	2	1	0
-	-	UDE5	UDE4	UDE3	UDE2	UDE1	UDE0

Initial value Access XX000000 R/W

This register controls the port 3 pins as follows.
0 : Port input mode.
1 : Up/down timer input mode. The default value at reset is " 0 ".
The MB90480 series uses the following setting values : UDE0 : P30/AIN0, UDE1 : P31/BIN0/UDE2 : P32/ZIN0, UDE3 : P33/AIN1, UDE4 : P34/BIN1, UDE5 : P35/ZIN1

MB90480 Series

2. UART

The UART is a serial I/O port for asynchronous (start-stop synchronized) communication as well as CLK synchronized communication.

- Full duplex double buffer
- Transfer modes : asynchronous (start-stop synchronized) , or CLK synchronized (no start bit or stop bit) .
- Multi-processor mode supported.
- Embedded proprietary baud rate generator

Asynchronous : 76923/38461/19230/9615/500 K/250 Kbps
CLK synchronized : 16 M/8 M/4 M/2 M/1 M/500 K

- External clock setting available, allows use of any desired baud rate.
- Can use internal clock feed from PPG1.
- Data length : 7-bit (asynchronous normal mode only) or 8-bit.
- Master/slave type communication functions (in multi-processor mode).
- Error detection functions (parity, framing, overrun)
- Transmission signals are NRZ encorded.
- DMAC supported (for receiving/sending)

MB90480 Series

(1) Register List

15	8
CDCR	-
SCR	SMR
SSR	SIDR (R)/SODR (W)
$~ 8$ bit $\longrightarrow 8$ bit \longrightarrow	

Serial mode register (SMR)
000020н

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD1 | MD0 | CS2 | CS1 | CS0 | Reserved | SCKE | SOE |

Serial control register (SCR)

000021н

15	14	13	12	11	10	9	8
PEN	P	SBL	CL	A/D	REC	RXE	TXE
(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(W)	(R/W)	(R/W)
(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)

Initial value
Serial I/O register (SIDR/SODR)
000022н

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Serial data register (SSR)
000023н

Initial value
Communication prescaler control register (CDCR)
000025

15	14	13	12	11	10	9	8
MD	SRST	-	-	DIV3	DIV2	DIV1	DIV0
$($ R/W $)$	$($ R/W $)$	$(-)$	$(-)$	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$
(0)	(0)	$(-)$	$(-)$	(0)	(0)	(0)	(0)

Initial value

MB90480 Series

(2) Block Diagram

MB90480 Series

3. Expanded I/O Serial Interface

The expanded I/O serial interface is an 8-bit $\times 1$-channel serial I/O interface for clock synchronized data transmission. A selection of LSB-first or MSB-first data transmission is provided.

There are two serial I/O operation modes.

- Internal shift clock mode : Data transmission is synchronized with the internal clock siganl.
- External shift clock mode
: Data transmission is synchronized with a clock signal input from the external clock signal pin (SCK). In this mode the general-purpose port that shares the external clock signal pin (SCK) can be used for transmission according to CPU instructions.
(1) Register List

Serial mode control status register (SMCS)
Address: $: \begin{aligned} & 000027 \mathrm{H} \\ & 00002 \mathrm{BH}\end{aligned}$

15	14	13	12	11	10	9	8
SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT
R/W							

Initial value
00000010

Address: \(\begin{aligned} \& 000026H

\& 00002AH\end{aligned} \quad\)| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | MODE | BDS | SOE | SCOE |

Serial data register (SDR)
Address: ${ }_{00002 \mathrm{CH}_{\mathrm{H}}}^{00002 \mathrm{H}^{2}}$

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0
R/W							

XXXXXXXX

Communication prescaler control register (SDCR0, SDCR1)
Address : ${ }_{0}^{000002 \text { H }_{\text {н }}}$

15	14	13	12	11	10	9	8
MD	-	-	-	DIV3	DIV2	DIV1	DIV0
(R/W)	$(-)$	$(-)$	$(-)$	$($ R/W $)$	$($ R/W $)$	(R/W)	(R/W)

0---0000

MB90480 Series

(2) Block Diagram

MB90480 Series

4. 8/10-bit A/D Converter

The A/D converter converts analog input voltage input voltages to digital values, and provides the following features.

- Conversion time : minimum $3.68 \mu \mathrm{~s}$ per channel (92 machine cycles at 25 MHz machine clock, including sampling time)
- Sampling time : minimum $1.92 \mu \mathrm{~s}$ per channel (48 machine cycles at 25 MHz machine clock)
- RC sequential comparison conversion method, with sample \& hold circuit.
- 8-bit or 10-bit resolution
- Analog input selection of 8 channels

Single conversion mode : Conversion from one selected channel.
Scan conversion mode : Conversion from multiple consecutive channels, programmable selection of up to 8 channels.
Continuous conversion mode : Repeated conversion of specified channels.
Stop conversion mode : Conversion from one channel followed by a pause until the next activation.

- At the end of A / D conversion, an A / D conversion completed interrupt request can be generated. The interrupt can be used activate the $\mu \mathrm{DMA}$ in order to transfer the results of A / D conversion to memory for efficient continuous processing.
- The starting factor conversion may be selected from software, external trigger (falling edge) , or timer (rising edge).
(1) Register List

ADCS2, ADCS1 (Control status register)

ADCS1		7	6	5	4	3	2	1	0	\leftarrow Initial value \leftarrow Bit attributes
Address : 000046н		MD1	MDO	ANS2	ANS1	ANSO	ANE2	ANE1	ANEO	
		$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	
ADCS2	bit	15	14	13	12	11	10	9	8	\leftarrow Initial value \leftarrow Bit attributes
Address	: 000047н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	-	
		$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	0	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{aligned} & \hline 0 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	

ADCR2, ADCR1 (Data register)

MB90480 Series

(2) Block Diagram

MB90480 Series

5. 8/16-bit PPG

The $8 / 16$-bit PPG is an 8 -bit reload timer module that produces a PPG output using a pulse from the timer operation. Hardware resources include 6×8-bit down counters, 12×8-bit reload timers, 3×16-bit control registers, 6 external bus output pins, and 6 interrupt outputs. Note that MB90480 series has six channels for 8 -bit PPG use, which can also be combined as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5 to operate as a three-channel 16 -bit PPG. The following is a summary of functions.

- 8-bit PPG output 6-channel independent mode : Provides PPG output operation on six independent channels.
- 16-bit PPG output operation mode : Provides 16-bit PPG output on three channels. The six original channels are used in combination as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5.
- $8+8$-bit PPG operation mode : Output from PPG0 (PPG2/PPG4) is used as clock input to PPG1 (PPG3/ PPG5) to provide to 8-bit PPG output at any desired period length.
- PPG output operation : Produces pulse waves at any desired period and duty ratio. The PPG module can also be used with external cirsuits as a D/A converter.
(1) Register List

PPGC0 (PPG0/2/4 operation mode control register)

	7	6	5	4	3	2	1	0
00003Сн	PEN0	-	PE00	PIE0	PUF0	-	-	Reserved
00003Eн	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	(\bar{x})	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	(\bar{x})	(\bar{x})	$(-)$

Read/write Initial value

PPGC1 (PPG1/3/5 operation mode control register)

	15	14	13	12	11	10	9	
$0^{0} 0003 B_{H}$								
$0^{2} 0003 D_{H}$	PEN1	-	PE10	PIE1	PUF1	MD1	MD0	Reserved
$0_{0} 0003 F_{H}$	$(\mathrm{R} / \mathrm{W})$	$(-)$	$(\mathrm{R} / \mathrm{W})$	$(-)$				
	(0)	(X)	(0)	(0)	(0)	(0)	(0)	(1)

Read/write
Initial value
PPG01/PPG23/PPG45 (PPG0 to PPG5 output control register)
000040н
000042н
000044н

7	6	5	4	3	2	1	0
PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	Reserved	Reserved
(R/W)	$(\mathrm{R} / \mathrm{W})$						
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

Read/write Initial value

PPLL0 to PPLL5 (Reload register L)
00002Ен
000030н
000032н
000034н
000036н

7	6	5
D07	D06	D05
(R/W)	$($ R/W $)$	$(\mathrm{R} / \mathrm{W})$
(X)	(X)	(X)

PPLH0 to PPLH5 (Reload register H)
00002Fн
000031н
000033н
000035
000037н

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D09	D08
$($ R/W)	$($ R/W $)$	(R/W)	(R/W)	$($ R/W)	$($ R/W)	$($ R/W)	$($ R/W $)$
(X)							

Read/write Initial value 000039н

MB90480 Series

(2) Block Diagram

- 8-bit PPG channel 0/2/4 block Diagram

MB90480 Series

- 8-bit PPG ch1/3/5 Block Diagram

MB90480 Series

6. 8/16-bit up/down Counter/Timer

This block consists of up/down counter/timer circuits including six event input pins, two 8-bit up/down counters, two 8 -bit reload/compare registers, as well as the related control circuits.

(1) Principal Functions

- 8 -bit count register enables counting in the range 0 to 256 .
(In 16 -bit $\times 1$ mode, counting is enabled in the range 0 to 65535)
- Count clock selection provides four count modes.

Count modes
 Timer mode Up down count mode Phase differential count mode ($\times 2$)

Phase differential count mode ($\times 8$)

- In timer mode, there is a choice of two internal count clock signals.

Count clock

- In up/down count mode there is a choice of trigger edge detection for the input signal from external pins.

Edge detection \qquad Falling edge detection
__Rising edge detection
_Both rising/falling edge detection
Edge detection disabled

- In phase differential count mode, to handle encoder counting for mortors, the encode A-phase, B-phase, and Z-phase are each input, enabling easy and highly accurate counting of angle of rotation, speed of rotation, etc.
- The ZIN pin provides a selection of two functions

ZIN pin
 Counter clear function

Gate functions

- A compare function and reload function are provided, each for use separately or in combination. Both functions can be activated together for up/down counting in any desired bandwidth.
Compare/reload function
 Compare function (output interrupt at compare events) Compare function (output interrupt and clear counter at compare events)
Reload function (output interrupt and reload at underflow events)
Compare/reload function
(output interrupt and clear counter at compare events, output interrupt and reload at underflow events)
Compare/reload disabled
- Individual control over interrupts at compare, reload (underflow) and overflow events.
- Count direction flag enables identification of the last previous count direction.
- Interrupt generated when count direction changes.

MB90480 Series

(2) Register List

87	
UDCR1	UDCR0
RCR1	RCR0
Reserved area	CSR0
CCRH0	CCRL0
Reserved area	CSR1
CCRH1	CCRL1
8 bit	8 bit \longrightarrow

CCRH0 (Counter Control Register High ch.0)

Address : 00006D	15	14	13	12	11	10	9	8
	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CESO
	R/W							

Initial value 00000000в

CCRH1 (Counter Control Register High ch.1)
Address : 000071H

CCRLO/1 (Counter Control Register Low ch.0/1)
Address : 00006C
Address : 000070

	6	5	4	3	2	1	0
UDMS	CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0
R/W	W	R/W	R/W	W	R/W	R/W	R/W

CSRO/1 (Counter Status Register ch.0/1)

UDCR0/1 (Up Down Count Register ch.0/1)

Address : 000069н	15	14	13	12	11	10	9	8
	D17	D16	D15	D14	D13	D12	D11	D10
	R	R	R	R	R	R	R	R

Address : 000068

RCR0/1 (Reload/Compare Register ch.0/1)

Address:00006Aн \(\begin{gathered}H

\end{gathered}\)| | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D07 | D06 | D05 | D04 | D03 | D02 | D01 |
| W | W | W | W | W | W | W | W |

Initial value 00000000в

MB90480 Series

(3) Block Diagram

MB90480 Series

7. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16LX CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU to activate the extended intelligent $\mu \mathrm{DMA}$ or interrupt processing.
(1) Detailed Register Descriptions

Interrupt/DTP Enable Register (ENIR : Enable Interrupt Request Register)

ENIR	7	6	5	4	3	2	1	0
Address : 00000CH	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO
	R/W							

Interrupt/DTP Source Register (EIRR : External Interrupt Request Register)

EIRR	15	14	13	12	11	10	9	8
Address : 00000D ${ }_{\text {H }}$	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0
	R/W	R/						

Initial value
XXXXXXXX

Interrupt Level Setting Register (ELVR : External Level Register)

	7	6	5	4	3	2	1	0	Initial value
Address : 00000Ен	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LAO	00000000в
	R/W								

	15	14	13	12	11	10	9	8
Address : 00000FH	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4
	R/W							

Initial value 00000000 в

(2) Block Diagram

F2MC-16 bus

Request input

MB90480 Series

8. 16-bit Input/Output Timer

The 16-bit input/output timer module is composed of one 16-bit free run timer, six output compare and two input capture modules. These functions can be used to output six independent waveforms based on the 16 -bit free run timer, enabling input pilse width measurement and external clock frequency measurement.

- Register List

- 16 -bit free run timer

- 16 -bit output compare

| 000056, 58, 5Ан |
| :--- | :--- | :--- |
| $000057,59,5$ Нн | \(\begin{aligned} \& OCS 1 / 3 / 5

\& Control status

\& registers\end{aligned}\)

- 16-bit input capture

- 15		Compare register
00005C, 5E	IPCP0, IPCP1	
000060H	ICS	Control status register

MB90480 Series

MB90480 Series

(1) 16-bit Free Run Timer

The 16 -bit free run timer is composed of a 16 -bit up-down counter and control status register.
The counter value of this timer is used as the base timer for the input capture and output compare.

- The counter operation provides a choice of eight clock types.
- A counter overflow interrupt can be produced.
- A mode setting is available to initialize the counter value whenever the output compare value matches the value in the compare clear register.

- Register List

Compare clear register (CPCLR)

Initial value XXXXXXXX

000066н

7	6	5	4	3	2	1	0
CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00
(R/W)							

Initial value
XXXXXXXX

Timer counter data register (TCDT)

000063н	15	14	13	12	11	10	9	8
	T15	T14	T13	T12	T11	T10	T09	T08
	(R/W)	(R/W)	(R/W)	R/W)	(R/W)	(R/W)	(R/W)	(R/W)

000062н	7	6	5	4	3	2	1	0
	T07	T06	T05	T04	T03	T02	T01	T00
	(R/W)	R/W)	R/W)	R/W)	(R/W)	R/W)	R/W)	(R/W)

Timer counter control/status register (TCCS)
000065 ${ }^{\text {H }}$

000064

7	6	5	4	3		2	1
IVF	IVFE	STOP	MODE	SCLR	CLK2	CLK1	CLK00
(R/W)	$($ R/W $)$						

Initial value $0-00000$ в
Initial value 00000000в

Initial value
00000000в

MB90480 Series

- Block Diagram

MB90480 Series

(2) Output Compare

The output compare module is composed of a 16-bit compare register, compare output pin group, and control register. When the value in the compare register in this module matches the 16 -bit free run timer, the pin output levels can be inverted and an interrupt generated.

- There are six compare registers in all, each operating independently. A setting is available to allow two compare registers to be used to control output.
- Interrupts can be set in terms of compare match events.

- Register List

Compare registers (OCCP0 to OCCP5)

	15	14	13	12	11	10	9	8	Initial value
00004Вн	C15	C14	C13	C12	C11	C10	C09	C08	00000000в
$\mathrm{0}^{00004 \mathrm{D}_{\text {н }}}$	(R/W)								
000051H									
000053н									
000055									
	6	5	4	3	2	1	0		Initial value
00004Ан	C07	C06	C05	C04	C03	C02	C01	C00	00000000b
00004Ен	(R/W)								
000050н									
000052н									
000054н									

Control registers (OCS1/3/5)

	15	14	13	12	11	10	9	8
	-	-	-	CMOD	OTE1	OTE0	OTD1	OTDO
000059н 00005Вн	(-1	(-)	-)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)

Initial value
---00000в

Control registers (OCSO/2/4)
000056 000058н 00005 Ан

7	6	5	4	3	2	1	0
ICPIC	ICP0	ICE1	ICE0	-	-	CST1	CST0
(R/W)	(R/W)	(R/W)	(R/W)	$(-)$	$(-)$	(R / W)	(R / W)

Initial values 0000--00в

MB90480 Series

- Block Diagram

MB90480 Series

(3) Input Capture

The input capture module performs the functions of detecting the rising edge, falling edge, or both edges of signal input from external circuits, and saving the 16 -bit free run timer value at that moment to a register. An interrupt can also be generated at the instant of edge detection.
The input capture module consists of input capture registers and a control register. Each input capture module has its own external input pin.

- Section of three types of valid edge for external input signals.

Rising edge, falling edge, both edges.

- An interrupt can be generated when a valid edge is detected in the external input signal.
- Register List

Input capture data register (IPCP0, IPCP1)
00005Fн

15	14	13	12	11	10	9	8
CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08
(R)							

Initial value
XXXXXXXX

Initial value XXXXXXXX

Control status register (ICS0, ICS1)

Initial value
00000000в

- Block Diagram

MB90480 Series

9. 16-bit Reload Timer

The 16-bit reload timer provides a choice of functions, including internal clock signals that count down in synchronization with three types of internal clock, as well as an event count mode that counts down at specified edge detection events in pulse signals input from external pins. This timer defines an underflow as a change in count value from 0000 н to FFFFh. Thus an underflow will occur when counting from the value "reload register setting value +1 ". The choice of counting operations includes reload mode, in which the count setting values is reload and counting continues following an underflow event, and one-shot mode, in which an underflow event causes counting to stop. An interrupt can be generated at counter underflow, and the timer is DTC compatible.

(1) Register List

- TMCSR (Timer control status register)

Timer control status register (high) (TMCSR)
0000 CB н

15	14	13	12	11	10	9	8
-	-	-	-	CSL1	CSL0	MOD2	MOD1
$(-)$	$(-)$	$(-)$	$(-)$	$($ R/W $)$	(R/W)	$($ R/W $)$	(R/W)
$(-)$	$(-)$	$(-)$	$(-)$	(0)	(0)	(0)	(0)

Read/Write Initial value

Timer control status register (low) (TMCSR)

0000САн	7	6	5	4	3	2	1	0
	MODO	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG
	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\text { R/W }) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$

Read/Write Initial value

- 16-bit timer register/16-bit reload register TMR/TMRLR (high)

0000CDн	15	14	13	12	11	10	9	8
	D15	D14	D13	D12	D11	D10	D09	D08
	(R/W)							
	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)

Read/Write Initial value

TMR/TMRLR (low)
0000CCH

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00
(R/W)							
(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)

Read/Write Initial value

MB90480 Series

(2) Block Diagram

MB90480 Series

10. Watch Timer

The watch timer is a 15 -bit timer using the sub clock. This circuit can generate interrupts at predetermined intervals. Also a setting is available to enable it to be used as the clock source for the watchdog timer.
(1) Register List

Watch timer control register (WTC)
0000ААн

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WDCS | SCE | WTIE | WTOF | WTR | WTC2 | WTC1 | WTC0 |
| (R/W) | $($ R $)$ | (R/W) | $($ R/W $)$ |
| (1) | (0) | (0) | (0) | (1) | (0) | (0) | (0) |

Initial value
(2) Block Diagram

To watchdog timer

MB90480 Series

11. Watchdog timer

The watchdog timer is a 2-bit counter that uses the output from the timebase timer or watch timer as acount clock signal, and will reset the CPU if not cleared within a predetermined time interval after it is activated.
(1) Register List

Watchdog timer control register (WDTC)
0000А8

7	6	5	4	3	2	1	0
PONR	Reserved	WRST	ERST	SRST	WTE	WT1	WT0

(2) Block Diagram

MB90480 Series

12. Timebase Timer

The timebase timer is an 18-bit free run counter (timebase counter) that counts up in synchronization with the internal count clock signal (base oscillator $\times 2$), and functions as an interval timer with a choice of four types of time intervals. Other functions provided by this module include timer output for the oscillator stabilization wait period, and operating clock signal feed for other timer circuits such as the watchdog timer.
(1) Register List

Timebase timer control register (TBTC)

0000А9н	15	14	13	12	11	10	9	8
	RESV	-	-	TBIE	TBOF	TBR	TBC1	TBCO
	(R/W)	(- ${ }^{\text {(}}$)	(-)	(R/W)	(R/W)	(W)	(R/W)	(R/W)
	(1)	(X)	(X)	(0)	(0)	(1)	(0)	(0)

(2) Block Diagram

MB90480 Series

13. Clock

The clock generator module controls the operation of the internal clock circuits that serve as the operating clock for the CPU and peripheral devices. This internal clock is referred to as the machine clock, and one cycle os refferd to as a machine cycle. Also, the clock signals from the base oscillator are called the oscillator clock, and those from the PLL oscillator are called the PLL clock.
(1) Register List

Clock select register (CKSCR)
0000A1н

15	14	13	12	11	10	9	8
SCM	MCM	WS1	WS0	SCS	MCS	CS1	CSO
(R)	(R)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)
(1)	(1)	(1)	(1)	(1)	(1)	(0)	(0)

Initial value
PLL output select register (PLLOS)
$0000 \mathrm{CF}_{\mathrm{H}}$

Initial value

MB90480 Series

(2) Block Diagram

MB90480 Series

(3) Clock Feed Map

MB90480 Series

14. Low-power Consumption Mode

The MB90480 series uses operating clock selection and clock operation controls to provide the following CPU operating modes :

- Clock modes
(PLL clock mode, main clock mode, sub clock mode)
- CPU intermittent operating modes
(PLL clock intermittent mode, main clock intermittent mode, sub clock intermittent mode)
- Standby modes
(Sleep mode, timebase timer mode, stop mode, watch mode)

(1) Register List

Low-power mode control register (LPMCR)

0000A0н	7	6	5	4	3	2	1	0	Initial value
	STP	SLP	SPL	RST	TMD	CG1	CG0	Reserved	
	$\begin{gathered} (W) \\ (0) \end{gathered}$	$\begin{gathered} (W) \\ (0) \end{gathered}$	$(\mathrm{R} / \mathrm{W})$	$\begin{gathered} (W) \\ (1) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	

MB90480 Series

(2) Block Diagram

MB90480 Series

(3) Status Transition Chart

MB90480 Series

15. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins used to expand the CPU address/data bus connections to external circuits.

(1) Register List

- Auto ready function select register (ARSR)

Address : 0000А5 ${ }^{\text {H }}$

| bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 | bit 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IOR1 | IOR0 | HMR1 | HMR0 | - | - | LMR1 | LMR0 |
| W | W | W | W | - | - | W | W |

Initial value 0011--00в

- External address output control register (HACR)

Address : 0000A6H

Initial value
********в

- Bus control signal select register (EPCR)

Address : 0000A7H

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
CKE	RYE	HDE	IOBS	HMBS	WRE	LMBS	-
W	W	W	W	W	W	W	-

Initial value $1000 * 10$-в

W : Write only

- : Not used
* : May be either " 1 " or " 0 "
(2) Block Diagram

MB90480 Series

16. Chip Select Function Description

The chip select module generators a chip select signals, which are used to facilitate connections to external memory devices. The MB90480 series has four chip select output pins, each having a chip select area register setting that specifies the corresponding hardware area and select signal that is output when access to the corresponding external address is detected.

- Chip select function features

The chip select function uses two 8 -bit registers for each output pin. One of these registers (CARx) is able to detect memory areas in 64 Kbyte units by specifying the upper 8 -bit of the address for match detection. The other register (CMRx) can be used to expand the detection area beyond 64 Kbytes by masking bits for match detection.
Note that during external bus holds, the CS output is set to high impedance.

(1) Register List

15	8
7	0
CAR0	CMR0
CAR1	CMR1
CAR2	CMR2
CAR3	CMR3
CALR	CSCR

(R/W)
Chip select area mask register (CMRx)
0000 COH
0000 C 2 H
0000 C 4 H
0000 C 6 H

7	6
M7	M6
(R / W)	(R / W)
(0)	(0)
register (CARx)	

0000 C 1 H
0000 C 3 H
0000 C 5 H
0000 C 7 H

15	14	
A7	A6	
(R/W) (R / W) (1) (1) (1) ol register (CSCR)		

0000C8н

7	6	5	4	3	2	1	0
-	-	-	-	OPL3	OPL2	OPL1	OPL0
$(-)$	$(-)$	$(-)$	$(-)$	(R/W)	(R/W)	$($ R/W)	(R/W)
$(-)$	$(-)$	$(-)$	$(-)$	(0)	(0)	(0)	$(*)$

Chip select active level register (CALR)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | ACTL3 | ACTL2 | ACTL1 | ACTL0 |
| $(-)$ | $(-)$ | $(-)$ | $(-)$ | $($ R/W $)$ | $($ R/W $)$ | $($ R/W $)$ | $($ R/W $)$ |
| $(-)$ | $(-)$ | $(-)$ | $(-)$ | (0) | (0) | (0) | (0) |

Read/write initial value

MB90480 Series

(2) Block Diagram

MB90480 Series

17. ROM Mirror Function Select Module

The ROM mirror function select module provides registers for selecting the mirroring of ROM located in the FF bank into the 00 bank.
(1) Register List

(2) Block Diagram

Note : Do not use this register to access address 004000н to 00FFFFH (008000н to 00FFFFF) during operation.

MB90480 Series

18. Interrupt Controller

Interrupt control registers are located inside the interrupt controller module, for all I/O signals having interrupt functions.

- Setting the interrupt level for the corresponding peripheral device.
(1) Register List

Note : The use of access involving read-modify-write instructions may lead to abnormal operation, and should be avoided.

MB90480 Series

(2) Block Diagram

MB90480 Series

19. $\mu \mathrm{DMAC}$

The μ DMAC is a simplified DMA module with functions equivalent to $E I^{2} \mathrm{OS}$. The $\mu \mathrm{DMA}$ has 16 DMA data transfer channels, and provides the following functions.

- Automatic data transfer between peripheral resources (I/O) and memory.
- CPU program execution stops during DMA operation.
- Incremental addressing for transfer source and destination can be turned on and off.
- DMA transfer control from the DMA enable register, DMA stop status register, DMA status register, and descriptor.
- Stop requests from resources can stop DMA transfer.
- When DMA transfer is completed, the DMA status register sets a flag in the bit for the corresponding channel on which transfer was completed, and outputs a completion interrupt to the interrupt controller.

(1) Register List

DMA enable register

DERH : 0000ADH	15	14	13	12	11	10	9	8
	EN15	EN14	EN13	EN12	EN11	EN10	EN9	EN8
	R/W							

Initial value 00000000в

DMA enable register
bit
DERL : 0000ACH

DMA stop status register
bit
DSSR :0000A4н

DMA status register
bit
DSRH : 00009Dн

15	14	13	12	11	10	9	8
DE15	DE14	DE13	DE12	DE11	DE10	DE9	DE8
R/W							

DMA status register
bit
DSRL :00009Сн

7	6	5	4	3	2	1	0
DE7	DE6	DE5	DE4	DE3	DE2	DE1	DE0
R/W							

Initial value 00000000в

Initial value 00000000в

Initial value 00000000 в

Initial value 00000000в

MB90480 Series

(2) Block Diagram

MB90480 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	Vss -0.3	Vss +4.0	V	
	AVcc	Vss -0.3	Vss +4.0	V	*1
	AVRH	Vss -0.3	Vss +4.0	V	
Input voltage	V_{1}	Vss -0.3	Vss +4.0	V	*2
Output volatage	Vo	Vss -0.3	Vss +4.0	V	*2
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*6
Total maximum clamp current	$\Sigma \mid$ Iclamp \mid	-	20	mA	* 6
"L" level maximum output current	loL	-	10	mA	*3
"L" level average output current	lolav	-	3	mA	*4
"L" level maximum total output current	Elo	-	60	mA	
"L" level total average output current	Elolav	-	30	mA	*5
"H" level maximum output current	Іон	-	-10	mA	*3
"H" level average output current	lohav	-	-3	mA	*4
"H" level maximum total output current	Σ Іон	-	-60	mA	
"H" level total average output current	Elohav	-	-30	mA	*5
Power consumption	PD	-	320	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : AVcc and AVRH must not exceed Vcc . Also, AVRH must not exceed AVcc .
${ }^{*} 2: V_{1}$ and V_{0} must not exceed V cc +0.3 V .
*3 : Maximum output current is defined as the peak value for one of the corresponding pins.
*4 : Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.
*5 : Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.
*6 : • Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA3

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a $+B$ signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.

MB90480 Series

- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:
- Input/Output Equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90480 Series

2. Recommended Operating Conditions

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Supply voltage	Vcc	2.7	3.6	V	During normal operation
		1.8	3.6	V	To maintain RAM state in stop mode
" H " level input voltage	V_{H}	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	All pins other than $\mathrm{V}_{\text {Iнs, }}$, ІІнм and $\mathrm{V}_{\text {ннх }}$
	VIHs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	Hysteresis input pins
	Vihm	$\mathrm{Vcc}-0.3$	$\mathrm{Vcc}+0.3$	V	MD pin input
	V HX	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	X0A pin, X1A pin
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	All pins other than Vils, Vilm and Vilx
	VILs	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
	VILM	Vss - 0.3	V ss +0.3	V	MD pin input
	VILx	Vss - 0.3	0.1	V	X0A pin, X1A pin
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90480 Series

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	Vcc3-0.3	-	-	V	
"L" level output voltage	VoL	All output pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	+10	$\mu \mathrm{A}$	
Pull-up resistance	RPULL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \text { at } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	20	53	200	k Ω	
Open drain output current	lleak	$\begin{aligned} & \text { P40 to P47, } \\ & \text { P70 to P77 } \end{aligned}$	-	-	0.1	10	$\mu \mathrm{A}$	
Power supply current	Icc	-	At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ internal 25 MHz operation, normal operation	-	45	60	mA	
	Iccs	-	At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ internal 25 MHz operation, sleep mode	-	17	35	mA	
	Iccl	-	At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ external 32 kHz , internal 8 kHz operation, sub clock operation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	15	140	$\mu \mathrm{A}$	
	Ісст	-	At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$, external 32 kHz , internal 8 kHz operation, watch mode $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$	-	1.8	40	$\mu \mathrm{A}$	
	Icch	-	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ stop mode, At $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$	-	0.8	40	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AV} \mathrm{cc}, \mathrm{AVss}, \mathrm{Vcc}$, Vss	-	-	5	15	pF	

Note : Pins P40 to P47, and P70 to P77 are controlled N-ch open drain pins, and should always be used at CMOS levels.

MB90480 Series

4. AC Characteristics

(1) Clock Timing Standards

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pinname	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	$\mathrm{Fch}^{\text {ch }}$	X0, X1	-	3	-	25	MHz	External crystal oscillator*3
			-	3	-	50		External clock input*3
	FcL	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	tc	X0, X1	-	20	-	333	ns	*1
	tcı	X0A, X1A	-	-	30.5	-	us	
Input clock pulse width	$\begin{aligned} & \hline \mathrm{PwH}^{2} \\ & \mathrm{P}_{\mathrm{wwL}} \end{aligned}$	X0	-	5	-	-	ns	
	РwLн PwLL	X0A	-	-	15.2	-	$\mu \mathrm{s}$	*2
Input clock rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{cor}} \\ & \mathrm{t}_{\mathrm{cf}} \end{aligned}$	X0	-	-	-	5	ns	With external clock
Internal operating clock frequency	fcp	-	-	1.5	-	25	MHz	*1
	fcpL	-	-	-	8.192	-	kHz	
Internal operating clock cycle time	tcp	-	-	40.0	-	666	ns	*1
	tcPL	-	-	-	122.1	-	$\mu \mathrm{s}$	

*1: Be careful of the operating voltage.
*2 : Duty raito should be $50 \% \pm 3 \%$.
*3 : When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Base oscillator frequency vs. Internal operating clock frequency".

MB90480 Series

- X0, X1 clock timing

- X0A, X1A clock timing

MB90480 Series

- Range of warranted PLL operation

Note: For A/D operating frequency, refer to " 5 . A/D Converter Electrical Characteristics"

Notes : • In the PLL operation at 20 MHz to 25 MHz , set the PLL2 bit in the PLLOS register.

- When the internal clock is operating at 20 MHz to 25 MHz , the PLL clock is the clock that the following have been set.
- Set CS1 (CSO) in the CKSCR register to multiplied-by-1 (multiplied-by-2)
- Set PLL 2 bit in the PLLOS register to " 1 "

AC standards are set at the following measurement voltage values.

- Input signal waveform

Hysteresis input pins

0.2 Vcc

- Output signal waveform

Output pins

- Pins other than hysteresis input/MD input
0.7 Vcc
0.3 Vcc

MB90480 Series

(2) Clock output timing
$\left(\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	CLK	-	tcp*	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK	$\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V	top* / $2-15$	tcp* / $2+15$	ns	at $\mathrm{f}_{\mathrm{p}}=25 \mathrm{MHz}$
			$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 3.3 V	top* / $2-20$	tcp* / $2+20$	ns	at $\mathrm{f}_{\mathrm{p}}=16 \mathrm{MHz}$
			$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 3.3 V	top* / $2-64$	tcp* / $2+64$	ns	at $\mathrm{f}_{\mathrm{p}}=5 \mathrm{MHz}$

* : For top see " (1) Clock Timing Standards."

MB90480 Series

(3) Reset Input Standards

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
				16 top	-	ns	Normal operation
Reset input time	trstı	$\overline{\mathrm{RST}}$	-	Oscillator oscillation time* $+4 \text { tcp }$	-	ms	Stop mode

*: Oscillator oscillation time is the time to 90% of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a FAR/ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms .

- In stop mode

- Condition for measurement of AC standards

C_{L} : Load capacitance applied during testing
CLK, ALE : C $=30 \mathrm{pF}$
AD15 to AD00 (address data bus) , $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$,
A23 to A00/D15 to D00 : CL=80 pF

MB90480 Series

(4) Power-on Reset Stanards

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power rise time	tR	Vcc	-	-	30	ms	*
Power down time	toff	Vcc		1	-	ms	In repeated operation

*: Power rise time requires VCC $<0.2 \mathrm{~V}$.
Notes: \bullet The above standards are for the application of a power-on reset.
-Within the device, the power-on reset should be applied by switching the power supply off and on again.

MB90480 Series

(5) Bus Read Timing
($\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
ALE pulse width	tLHLL	ALE	-	tcp* / 2 - 15	-	ns	at $\mathrm{f}_{\mathrm{cp}}=25 \mathrm{MHz}$
				tcp* / $2-20$	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
				tcp*/2-35	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
Valid address \rightarrow ALE \downarrow time	tavil	Address, ALE	-	tcp* / $2-17$	-	ns	
				tcp* $/ 2-40$	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
ALE $\downarrow \rightarrow$ address valid time	tılax	ALE, Address	-	tcp* / 2 - 12	-	ns	
$\begin{aligned} & \text { Valid address } \rightarrow \\ & \hline \text { RD } \downarrow \text { time } \end{aligned}$	tavgl	$\begin{gathered} \overline{\mathrm{RD},} \\ \text { address } \end{gathered}$	-	tcp* -25	-	ns	
Valid address \rightarrow valid data input	tavov	Address, Data	-	-	5 tcp $^{*} / 2-55$	ns	
				-	5 tcp* $^{*} / 2-80$	ns	at $\mathrm{fcp}=8 \mathrm{MHz}$
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$	-	3 tcp* / $2-25$	-	ns	at $\mathrm{f}_{\mathrm{cp}}=25 \mathrm{MHz}$
				$3 \mathrm{tcp}{ }^{*} / 2-20$	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trldv	$\overline{\mathrm{RD}}$, Data	-	-	$3 \mathrm{tcp}^{*} / 2-55$	ns	
				-	3 tcp** $^{*} 2-80$	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhdx	$\overline{\mathrm{RD}}$, Data	-	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE}$ ¢ rise time	trнLн	$\overline{\mathrm{RD}}, \mathrm{ALE}$	-	tcp* $/ 2-15$	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address valid time	trhax	Address, $\overline{R D}$	-	tcp* / 2 - 10	-	ns	
Valid address \rightarrow CLK 个time	tavch	Address, CLK	-	tcp* / 2 - 17	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK个time	trLCH	RD, CLK	-	tcp* / 2 - 17	-	ns	
ALE $\downarrow \rightarrow$ RD \downarrow time	tLlRL	RD, ALE	-	tcp* / $2-15$	-	ns	

[^1]
MB90480 Series

MB90480 Series

(6) Bus Write Timing
($\mathrm{Vcc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	$\underset{\substack{\text { Sym- } \\ \text { bol }}}{ }$	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	Address, WR	-	tcp* -15	-	ns	
$\overline{\text { WR }}$ pulse width	twLwh	$\overline{\text { WRL, }} \overline{\text { WRH }}$	-	3 tpp*$^{*} / 2-25$	-	ns	at $\mathrm{f}_{\mathrm{cp}}=25 \mathrm{MHz}$
			-	3 tcp* / 2 - 20	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
Valid data output $\rightarrow \overline{\mathrm{WR}}$ time	tovw	Data, $\overline{\mathrm{WR}}$	-	3 tp** $/ 2-15^{\text {a }}$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhox	$\overline{W R}$, Data	-	10	-	ns	at $\mathrm{f}_{\mathrm{cp}}=25 \mathrm{MHz}$
			-	20	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
			-	30	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address valid time	twhax	$\overline{\mathrm{WR}}$, Address	-	tcp* / 2 - 10	-	ns	
$\overline{\overline{W R} \uparrow \rightarrow \text { ALE } \uparrow \text { time }}$	twHLH	$\overline{\text { WR, ALE }}$	-	tcp* / 2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twlch	$\overline{\mathrm{WR}}, \mathrm{CLK}$	-	tcp* / 2-17	-	ns	

* : tcp : See " (1) Clock Timing Standards".

MB90480 Series

(7) Ready Input Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time	tryhs	RDY	-	35	-	ns	
			-	70	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
RDY hold time	tRYнн		-	0	-	ns	

Notes: • If the RDY setup time is insufficient, use the auto ready function.

- Warning : For input from the RDY pin, if the AC ratings are not satisfied the chip may unexpected operation.

MB90480 Series

(8) Hold Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Pin floating $\rightarrow \overline{\text { HAK }} \downarrow$ time	txhaL	HAK	-	30	tcp*	ns	
$\overline{\text { HAK }} \downarrow \rightarrow$ pin valid time	thanv	HAK		tcp	2 tcp*	ns	

* : tcp : See " (1) Clock Timing Standards".

Note : One or more cycles are required from the time the HRQ pin is read until the $\overline{\text { HAK }}$ signal changes.

(9) UART Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	-	Internal shift clock mode output pins : $\mathrm{CL}^{\star{ }^{\star 1}}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*2	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	+80	ns	
				-120	+120	ns	$\mathrm{f}_{\mathrm{pp}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	
				200	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp*2	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pins : $\mathrm{CL}^{\star{ }^{*}}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp*2	-	ns	
Serial clock "L" pulse width	tsıs,	-		4 tcp $^{* 2}$	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	-		-	150	ns	
				-	200	ns	$\mathrm{f}_{\mathrm{p}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
				120	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$

*1 : C_{L} is the load capacitance applied to pins for testing.
*2 : tcp : See " (1) Clock Timing Standards".
Note : AC ratings are for CLK synchronized mode.

MB90480 Series

- Internal shift clock mode

- External shift clock mode

MB90480 Series

(10) I/O Expanded Serial Interface Timing

$$
\left(\mathrm{V} \mathrm{Cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	-	Internal shift clock mode output pins : $\mathrm{C}^{\star{ }^{\star 1}}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*2	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	+ 80	ns	
				-120	+ 120	ns	$\mathrm{fcp}_{\mathrm{cp}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	
				200	-	ns	$\mathrm{fcp}_{\text {c }}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp*2	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pins : $\mathrm{CL}^{\star 1}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp*2	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcp*2	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-	150	ns	
				-	200	ns	$\mathrm{fcp}_{\text {c }}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{fcp}_{\text {c }}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
				120	-	ns	$\mathrm{fcp}^{\text {a }}$ 8 MHz

${ }^{* 1}$: CL_{L} is the load capacitance applied to pins for testing.
*2 : tcp : See " (1) Clock Timing Standards".
Notes: \bullet AC ratings are for CLK synchronized mode.

- Values on this table are target values.

MB90480 Series

- Internal shift clock mode

- External shift clock mode

MB90480 Series

(11) Timer Input Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	$\begin{aligned} & \hline \text { tTIWh } \\ & \text { tTIWL } \end{aligned}$	$\begin{gathered} \text { TIN0 } \\ \text { IN0, IN1 } \end{gathered}$	-	4 tcp*	-	ns	

* : tcp : See " (1) Clock Timing Standards".

(12) Timer Output Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym-	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
CLK $\uparrow \rightarrow$ Tout change time PPG0 to PPG5 change time OUT0 to OUT5 change time	too	TOTO PPG0 to PPG5 OUT0 to OUT5	Load conditions 80 pF	30	-	ns	

MB90480 Series

(13) Trigger Input Timing
($\mathrm{Vcc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrgh ttrgl	ADTG IRQ0 to IRQ7	-	5 tcp*	-	ns	Normal operation
				1	-	$\mu \mathrm{s}$	Stop mode

* : top : See " (1) Clock Timing Standards".

(14) Up-down Counter Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to 3.6 V, V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
AIN input "H" pulse width	tahL	AINO, AIN1 BINO, BIN1	Load conditions 80 pF	8 tcp*	-	ns	
AIN input "L" pulse width	tall			8 tcp*	-	ns	
BIN input "H" pulse width	tbrL			8 tcp*	-	ns	
BIN input "L" pulse width	tblı			8 tcp*	-	ns	
AIN $\uparrow \rightarrow$ BIN \uparrow rise time	taubu			4 tcp*	-	ns	
BIN $\uparrow \rightarrow$ AIN \downarrow fall time	teuad			4 tcp*	-	ns	
AIN $\downarrow \rightarrow$ BIN \uparrow rise time	tadbo			4 tcp*	-	ns	
BIN $\downarrow \rightarrow$ AIN \uparrow rise tome	tbdau			4 tcp*	-	ns	
$\operatorname{BIN} \uparrow \rightarrow \mathrm{AlN} \uparrow$ rise time	tbuau			4 tcp*	-	ns	
AIN $\uparrow \rightarrow \mathrm{BIN} \downarrow$ fall time	taubd			4 tcp*	-	ns	
BIN $\downarrow \rightarrow$ AIN \uparrow rise time	tbdad			4 tcp*	-	ns	
AIN $\downarrow \rightarrow$ BIN \uparrow rise time	tadbu			4 tcp*	-	ns	
ZIN input "H" pulse width	tzHL	ZIN0, ZIN1		4 tcp*	-	ns	
ZIN input "L" pulse width	tzul			4 tcp*	-	ns	

*: tcp : See " (1) Clock Timing Standards".

MB90480 Series

MB90480 Series

(15) Chip Select Output Timing
(V cc $=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Chip select output valid time $\rightarrow \overline{\mathrm{RD}} \downarrow$	tsvaL	$\frac{\mathrm{CS} 0 \text { to }}{\mathrm{RD}} \mathrm{CS3}$	-	$\operatorname{tcp}^{*} / 2-7$	-	ns	
Chip select output valid time $\rightarrow \overline{W R} \downarrow$	tsvwL	$\begin{aligned} & \text { CS0 to } \mathrm{CS3} \\ & \mathrm{WRH}, \mathrm{WRL} \end{aligned}$	-	$\operatorname{tcp}^{*} / 2-7$	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ chip select output valid time	trhsv	$\begin{gathered} \overline{\mathrm{RD}} \\ \mathrm{CS} \text { to } \mathrm{CS} 3 \end{gathered}$	-	tcp* $/ 2-17$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ chip select output valid time	twhsv	$\overline{\text { WRH, }} \overline{\text { WRL }}$ CS0 to CS3	-	tcp* / 2 - 17	-	ns	

* : top : See " (1) Clock Timing Standards".

Note : Due to the configuration of the internal bus, changes in the chip select output signal are clock synchronous and therefore may causes bus conflict conditions. AC cannot be warranted between the ALE output signal and the chip select output signal.

MB90480 Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Non-linear error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	ANO to AN7	$\begin{gathered} \hline \mathrm{AV}_{\text {ss }}-1.5 \\ \text { LSB } \end{gathered}$	$\begin{gathered} \hline \mathrm{AVss}_{\mathrm{ss}}+0.5 \\ \text { LSB } \end{gathered}$	$\begin{gathered} \mathrm{AV}_{\mathrm{ss}}+2.5 \\ \mathrm{LSB} \end{gathered}$	mV	
Full scale transition voltage	Vfst	$\begin{aligned} & \text { AN0 to } \\ & \text { AN7 } \end{aligned}$	$\begin{gathered} \text { AVRH - } 3.5 \\ \text { LSB } \end{gathered}$	$\text { AVRH - } 1.5$ LSB	$\text { AVRH }+0.5$ LSB	mV	
Conversion time	-	-	3.68 *1	-	-	$\mu \mathrm{s}$	
Analog port input current	Iain	ANO to AN7	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AVss + 2.2	-	$\mathrm{AV}_{\text {cc }}$	V	
Power supply current	I_{A}	AVcc	-	1.4	3.5	mA	
	ІАн	AV ${ }_{\text {cc }}$	-	-	5 *2	$\mu \mathrm{A}$	
Reference voltage supply current	I_{R}	AVRH	-	94	150	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	$5^{* 2}$	$\mu \mathrm{A}$	
Offset between channels	-	$\begin{aligned} & \text { AN0 to } \\ & \text { AN7 } \end{aligned}$	-	-	4	LSB	

*1 : At machine clock frequency of 25 MHz .
*2 : CPU stop mode current when A/D converter is not operating (at $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.0 \mathrm{~V}$).

MB90480 Series

Notes : • Error increases in absolute terms as the value |AVRH - AVss|decreases.
-The external circuit output impedance for analog input channels should be set according to the following conditions.
External circuit output impedance of approximately $4 \mathrm{k} \Omega$ or less is recommended. If an external capacitor is used, then due to considerations of capacitance division between the external capacitor and on-chip capacitors the external capacitor should be on the order of several thousand times the level of the internal capacitors.

- If the output impedance of external circuits is set too high, the analog voltage sampling time may be too short (sampling time $=1.92 \mu$ s at machine clock 25 MHz).
- Concerning analog input circuits
- Model analog input circuit
 Rons : Approx. $1.9 \mathrm{k} \Omega$

Total C : 32.3 pF

Note: Values shown here are intended as guidelines.

Note : Concerning sampling time, and compare time When $3.6 \mathrm{~V} \geq \mathrm{AV} \mathrm{cc} \geq 2.7 \mathrm{~V}$, then
Sampling time : $1.92 \mu \mathrm{~s}$, compare time : $1.1 \mu \mathrm{~s}$
Settings should ensure that actual values do not go below these values due to operating frequency changes.

- Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00 н programming prior erasure
Chip erase time		-	7	-	s	Excludes 00 н programming prior erasure
Word (16-bit) programming time		-	16	3,600	$\mu \mathrm{s}$	Excludes system-level overhead
Program/Erase cycle	-	10,000	-	-	cycle	
Data hold time	-	100,000	-	-	h	

MB90480 Series

6. Handling of Semiconductor Devices

- Be careful never to exceed maximum rated voltages (preventing latchup)

In CMOS IC devices, a condition known as latchup may occur if voltages higher than Vcc or loser than Vss are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between Vcc and Vss exceeds the rated voltage level.
When latchup occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV cc and AVRH) and analog input voltages do not exceed the digital power supply (Vcc) .

- Keep power supply voltages as stable as possible.

Rapid fluctuation of the voltage may cause the device to operate abnormally, even if the voltage remains within the allowed operaing range. As a standard for power supply voltage stability, it is recommended that the peak-to-peak V_{cc} ripple voltage at commercial supply frequency (50 Hz to 60 Hz) be 10% or less of V_{cc}. Also when the power supply is turned on or off the transient voltage fluctuation be no more than $0.1 \mathrm{~V} / \mathrm{ms}$ or less.

- Precautions when turning the power supply on

In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of $50 \mu \mathrm{~s}(0.2 \mathrm{~V}$ to 2.7 V$)$ or greater should be assured.

- Treatment of N.C. pins
N.C. (internally connected) pins should always be left open.
- Treatment of power supply pins on models with A/D converters

Even when the A / D converters are not in use, be sure to make the necessary connections $A V c c=A V R H=V c c$, and AV ss $=\mathrm{V}$ ss.

- Precautions for using an external clock

Even when using an external clock signal, an oscilltion stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When using an external clock, 25 MHz should be the upper frequency limit.

- Power-on sequence

Always shut off the A / D converter power supply (AV cc, AVRH) and analog input (AN0 to AN7) before shutting off the digital voltage (Vcc).

Power should be switched on and off so that AVRH does not exceed $A V c c$.

- Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latchup, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \mathrm{k} \Omega$. Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

MB90480 Series

- Use of the $\mathrm{X} 0 / \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins

When used with a crystal oscillator

- Sample use with external clock input

EXAMPLE CHARACTERISTICS

MB90480 Series

(Continued)

MB90480 Series

(Continued)

MB90480 Series

■ ORDERING INFORMATION

Model	Package	Remarks
MB90F481PF	Plastic QFP, 100-pin (FPT-100P-M06)	
MB90F482PF	Plastic LQFP, 100-pin (FPT-100P-M05)	
MB90F481PFV		

MB90480 Series

PACKAGE DIMENSIONS

Plastic QFP, 100-pin \quad Note : Pin width and pin thickness include plating.
(FPT-100P-M06)

© 2001 FUITSU LIMTED F100008S-C4-4
Units : mm (inches)
(Continued)

MB90480 Series

（Continued）

$\begin{aligned} & \text { Plastic LQFP, 100-pin } \\ & \text { (FPT-100P-M05) } \end{aligned}$	Note ：Pin width and pin thickness include plating．	
$16.00 \pm 0.20(.630 \pm .008) S Q$		
區		
鳬		
葍		
蒫		
	0.145 ± 0.055	
© 2000 FUJTSU LIMTED F100075－3C－5		
		Units ：mm（inches）

MB90480 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: The R/W indication for I/O ports is somewhat different than R/W access to memory, and involves the following operations.

 - Input mode

 Read: Reads the corresponding siganl pin level.
 Write : Writes to the output latch.

 - Output mode

 Read : Reads the value from the data register latch.
 Write : Outputs the value to the corresponding signal pin.

[^1]: *: tcp : See " (1) Clock Timing Standards".

