16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90550A/550B Series

MB90552A/552B/553A/553B/T552A/T553A MB90F553A/P553A

■ DESCRIPTION

The MB90550A/550B series is a line of general-purpose, high-performance, 16-bit microcontrollers designed for applications which require high-speed real-time processing, such as industrial machines, OA equipment, and process control systems.

While inheriting the AT architecture of the F²MC*-8 family, the instruction set for the MB90550A/550B series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90550A/550B has an on-chip 32-bit accumulator which enables processing of long-word data.

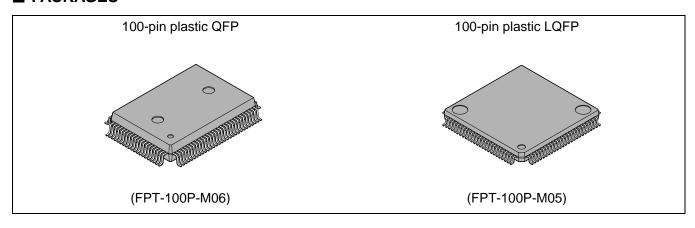
MB90552B and MB90553B are radiation noise decreased type. There are no change in the functional specification.

*: F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.

■ FEATURES

- Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, × four times the PLL clock)
- Maximum memory space: 16 Mbytes
- Instruction set optimized for controller applications

Supported data types: Bit, byte, word and long word


Typical addressing mode: 23 types

Enhanced precision calculation realized by 32-bit accumulator

Enhanced signed multiplication/division instruction and RETI instruction functions

(Continued)

■ PACKAGES

(Continued)

- Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer
 Symmetrical instruction set and barrel shift instructions
- Integrated address match detection function (for two address pointers)
- Faster execution speed: 4-byte queue
- Powerful interrupt functions (Eight priority levels programmable) External interrupt inputs: 8 channels
- Data transfer functions (Intelligent I/O service): Up to 16 channels DTP request inputs: 8 channels
- Embedded ROM size (EPROM, Flash: 128 Kbytes)

Mask ROM: 64 Kbytes/128 Kbytes

• Embedded RAM size (EPROM, Flash: 4 Kbytes)

Mask ROM: 2 Kbytes/4 Kbytes

- General-purpose ports: Up to 83 channels (Input pull-up resistor settable for: 16 channels; Open drain settable for: 8 channels; I/O open drains: 6 channels)
- A/D converter (RC successive approximation type): 8 channels (Resolution: 8 or 10 bits selectable; Conversion time of 26.3 μs minimum)
- UART: 1 channel
- Extended I/O serial interface: 2 channels
- I2C interface: 2 channels

(Two channels, including one switchable between terminal input and output)

- 16-bit reload timer: 2 channels
- 8/16-bit PPG timer: 3 channels

(8 bits \times 2 channels; 16 bits x 1 channel: Mode switching function provided)

- 16-bit I/O timer
 - (Input capture \times 4 channels, output compare \times 4 channels, free run timer \times 1 channel)
- Clock monitor function integrated (Delivering the oscillation clock divided by 21 to 28)
- Timebase timer/watchdog timer: 18 bits
- Low power consumption modes (sleep, stop, hardware standby, and CPU intermittent operation modes)
- Package: QFP-100, LQFP-100
- CMOS technology

■ PRODUCT LINEUP

	em em	MB90552A MB90552B	MB90553A MB90553B	MB90F553A	MB90P553A	MB90T552A	MB90T553A	MB90V550A
Classif	ication	Mask ROM products Flash ROM products OTP			ОТР	External RC	External ROM products	
				Mass	Product			product
ROM s	size	64 Kbytes		128 Kbytes		No	ne	None
RAM s	ize	2 Kbytes		4 Kbytes		2 Kbytes	4 Kbytes	6 Kbytes
CPU fu	ınctions	Interru	The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 ms (at machine clock of 16 MHz, minimum value)					
General-purpose I/O ports (CMOS output): 53 General-purpose I/O ports (with pull-up resistor): 16 Ports General-purpose I/O ports (N-channel open-drain output): 6 General-purpose I/O ports (N-channel open-drain function selectable) Total: 83					tor): 16 n output): 6	e): 8		
UART	(SCI)	Tra	Clock as	synchronized synchronized can be perforn mas	transmission	(62500 bps to ctional serial t	9615 bps)	or by
8/10-bi conver		С	Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)					
8/16-bi	t PPG timer		•			it or 16-bit en duty ratios	can be outpu	
40 -	16-bit free run timer				mber of chanr verflow interr			
16-bit I/O timer	Output compare (OCU)		Pin	Nui input factor: A	mber of chanr match signa		egister	
	Input capture (ICU)	Re	ewriting a re	Nu gister value u	mber of chanr pon a pin inpu		ng or both edç	ges)

(Continued)

(/								
Part number	MB90553A MB90553B	MB90F553A	MB90P553A	MB90T552A	MB90T553A	MB90V550A		
DTP/external interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (EI ² OS) can be used.							
Extended I/O serial interface	Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first							
I ² C interface	Serial I/O port for supporting Inter IC BUS							
Timebase timer	Interrupt	interval: 1.024 (at	18-bit count 4 ms, 4.096 m oscillation of	ıs, 16.384 ms	, 131.072 ms			
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)							
Process	CMOS							
Power supply voltage for operation*			4.5 V to 5.5	V				

^{*:}Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS")
Assurance for the MB90V550A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an operating temperature of 0°C to +25°C, and an operating frequency of 1 MHz to 16 MHz.

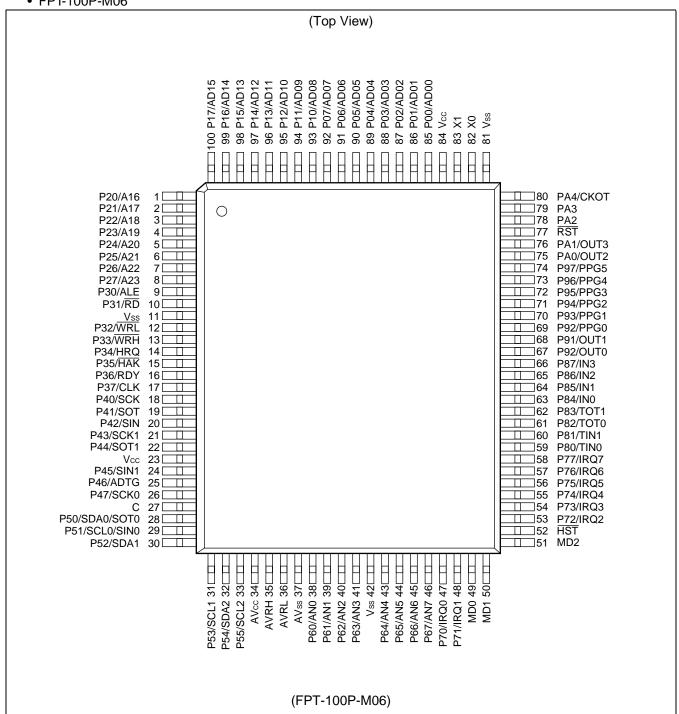
■ PACKAGE AND CORRESPONDING PRODUCTS

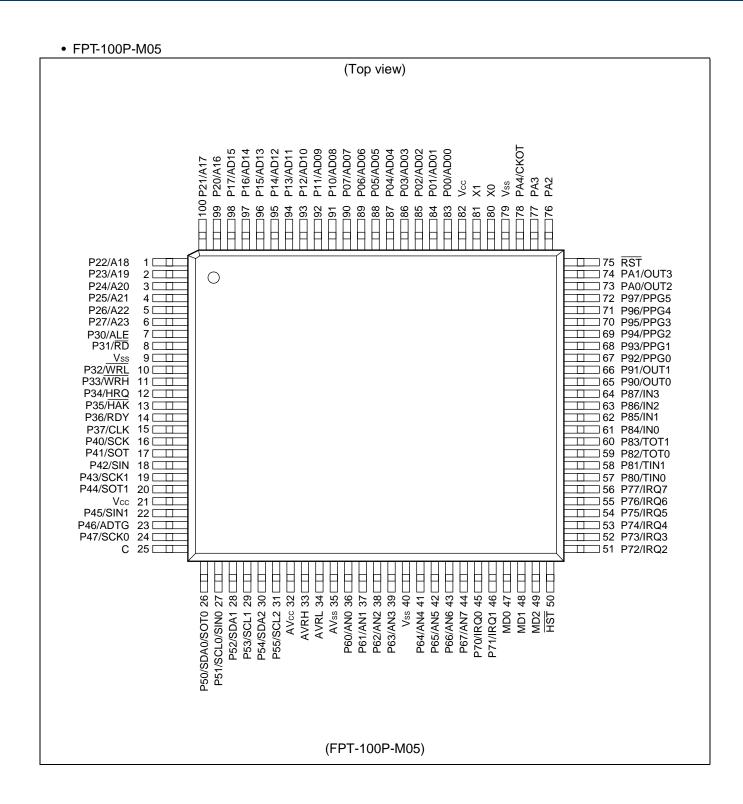
Package	MB90552A MB90552B	MB90553A MB90553B	MB90F553A	MB90P553A
FPT-100P-M05	0	0	0	×
FPT-100P-M06	0	0	0	0

○ : Available ×: Not available

Note:For more information about each package, see section "■ PACKAGE DIMENSIONS"

■ DIFFERENCES AMONG PRODUCTS


Memory Size


In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

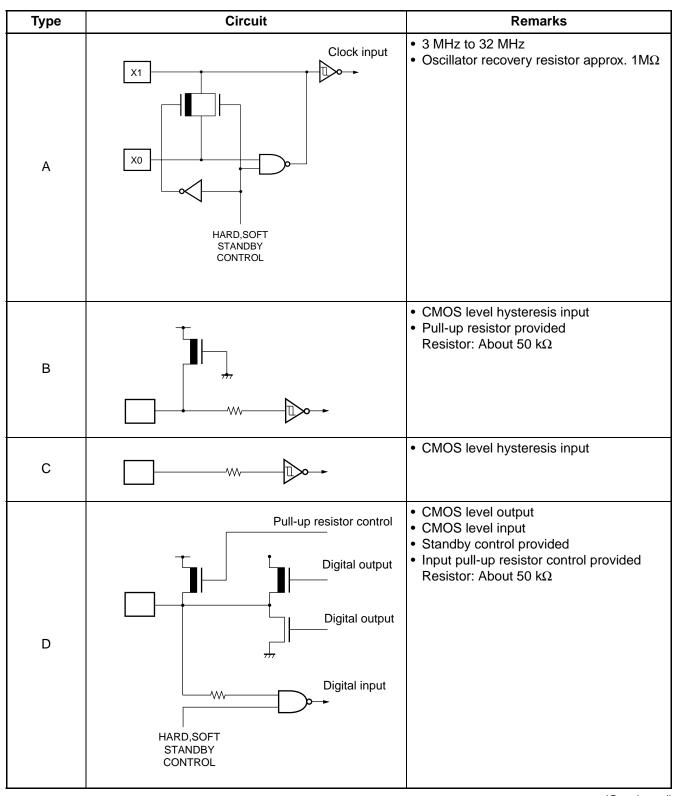
- The MB90V550A does not have an internal ROM. However, operations equivalent to those performed by a
 chip with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM
 size by setting the development tool.
- In the MB90V550A, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH are mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90F553A/553A/553B/552A/552B, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to FF3FFFH to bank FF only.

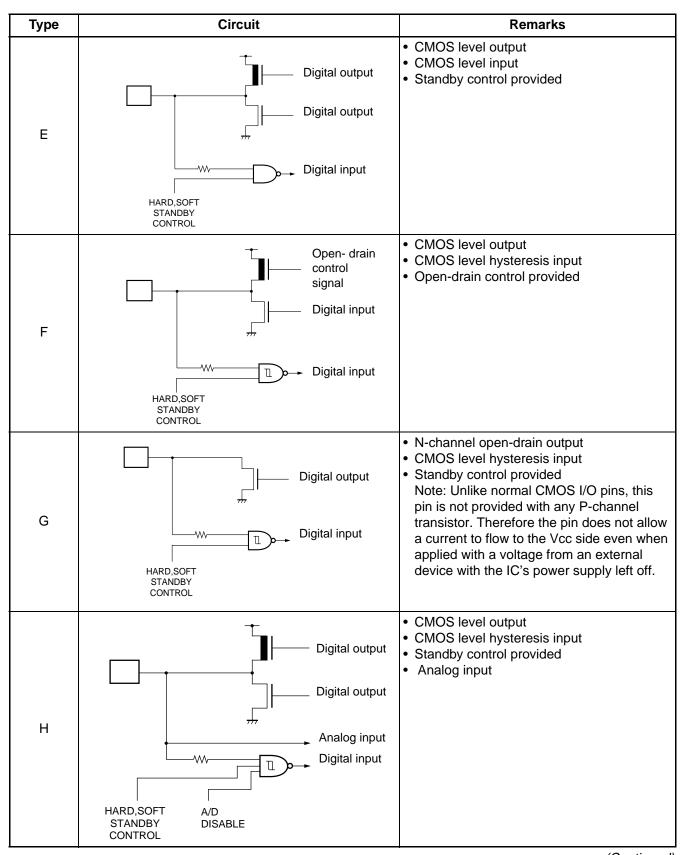
PIN ASSIGNMENTS

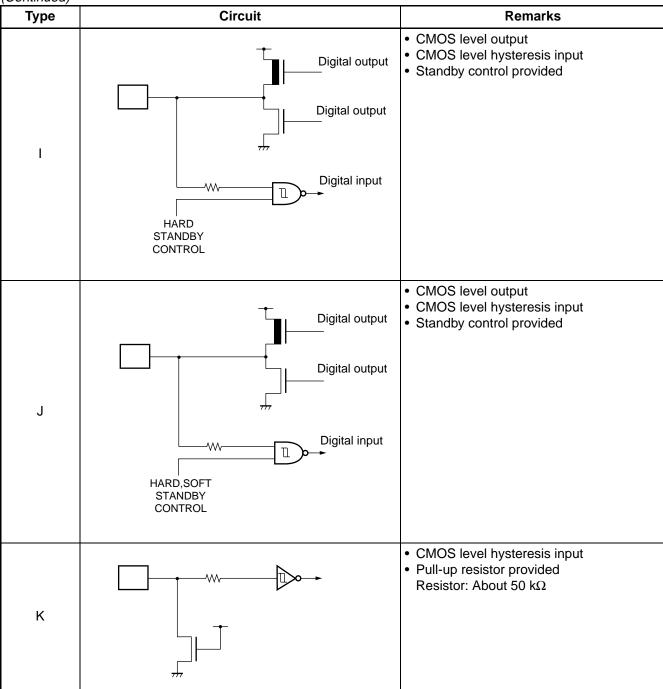
• FPT-100P-M06

■ PIN DESCRIPTION

Pin	no.	D:	Cinavit toma	Function
QFP	LQFP	Pin name	Circuit type	Function
82	80	X0	А	Oscillation pin
83	81	X1	А	Oscillation pin
77	75	RST	В	Reset input pin
52	50	HST	С	Hardware standby input pin
85 to 92	83 to 90	P00 to P07	D (CMOS)	General-purpose I/O ports. A pull-up resistor can be added (RD07 to RD00 = 1) by using the pull-up resistor setting register (RDR0). D07 to D00 = 1: Disabled when the port is set for output.
	AD00 to AD07			Serve as lower data I/O/lower address output (AD00 to AD07) pins in the external bus mode.
93 to 100	91 to 98	P10 to P17	D (CMOS)	General-purpose I/O ports. A pull-up resistor can be added (RD17 to RD10 = 1) by using the pull-up resistor setting register (RDR1). D17 to D10 = 1: Disabled when the port is set for output.
		AD08 to AD15		Serve as upper data I/O/middle address output (AD08 to AD15) pins in the 16-bit bus-width, external bus mode.
4 40 0	99,100,	P20 to P27	E	General-purpose I/O ports. This function is enabled either in single-chip mode or with the external address output control register set to "Port".
1 to 8	1 to 6	A16 to A23	(CMOS)	External address bus A16 to A23 output pins. This function is enabled in an external-bus enabled mode with the external address output register set to "Address".
0	7	P30	Е	General-purpose I/O port. This function is enabled in single-chip mode.
9	,	ALE	(CMOS)	Address latch enable output pin. This function is enabled in an external-bus enabled mode.
10	8	P31	E	General-purpose I/O port. This function is enabled in single-chip mode.
10	O	RD	(CMOS)	Read strobe output pin for the data bus. This function is enabled in an external-bus enabled mode.
12	10	P32	E	General-purpose I/O port. This function is enabled in single-chip mode.
12	10	WRL	(CMOS)	Write strobe output pin for the lower eight bits of the data bus. This function is enabled in an external-bus enabled mode.
13	11	P33	E	General-purpose I/O port. This function is enabled in single-chip mode.
13		WRH (CMOS)		Write strobe output pin for the upper eight bits of the data bus. This function is enabled in an external-bus enabled mode.


Pin	no.			
QFP	LQFP	Pin name	Circuit type	Function
14	12	P34	E	General-purpose I/O port. This function is enabled in single-chip mode
14	12	HRQ	(CMOS)	Hold request input pin. This function is enabled in an external-bus enabled mode.
15	13	P35	E	General-purpose I/O port. This function is enabled in single-chip mode.
10	13	HAK	(CMOS)	Hold acknowledge output pin. This function is enabled in an external-bus enabled mode.
16	14	P36	E	General-purpose I/O port. This function is enabled in single-chip mode.
10	14	RDY	(CMOS)	Ready signal input pin. This function is enabled in an external-bus enabled mode.
17	15	P37	E	General-purpose I/O port. This function is enabled in single-chip mode.
17		CLK	(CMOS)	CLK output pin. This function is enabled in an external-bus enabled mode.
18	16	P40	F (CMOS/H)	General-purpose I/O port. Serves as an open-drain output port (OD40 = 1) depending on the setting of the open-drain control setting register (ODR4). (D40 = 0: Disabled when the port is set for input.)
		SCK		UART serial clock I/O pin. This function is enabled with the UART clock output enabled.
19	17	P41	F (CMOS/H)	General-purpose I/O port. Serves as an open-drain output port (OD41 = 1) depending on the setting of the open-drain control setting register (ODR4). (D41 = 0: Disabled when the port is set for input.)
		SOT		UART serial data output pin. This function is enabled with the UART serial data output enabled.
20	18	P42	F	General-purpose I/O port. Serves as an open-drain output port (OD42 = 1) depending on the setting of the open-drain control setting register (ODR4). (D42 = 0: Disabled when the port is set for input.)
		SIN	(CMOS/H)	UART serial data input pin. Since this input is used as required while the UART is operating for input, the output by any other function must be off unless used intentionally.
21	19	P43	F (CMOS/H)	General-purpose I/O port. Serves as an open-drain output port (OD43 = 1) depending on the setting of the open-drain control setting register (ODR4). (D43 = 0: Disabled when the port is set for input.)
		SCK1		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.


Pin	no.	Pin name	Circuit turns	Firmation	
QFP	LQFP	rin name	Circuit type	Function	
22	20	P44	F - (CMOS/H)	General-purpose I/O port. Serves as an open-drain output port (OD44 = 1) depending on the setting of the open-drain control setting register (ODR4). (D44 = 0: Disabled when the port is set for input.)	
		SOT1	(CIVICO/IT)	Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.	
24	22	P45	F	General-purpose I/O port. Serves as an open-drain output port (OD45 = 1) depending on the setting of the open-drain control setting register (ODR4). (D45 = 0: Disabled when the port is set for input.)	
24	22	SIN1	(CMOS/H)	(D45 = 0: Disabled when the port is set for input.) Extended I/O serial data input pin. Since this input is used as required while the extended I/O se interface is operating for input, the output by any other fund must be off unless used intentionally. General-purpose I/O port. Serves as an open-drain output port (OD46 = 1) depending	
25	23	P46	F	General-purpose I/O port. Serves as an open-drain output port (OD46 = 1) depending on the setting of the open-drain control setting register (ODR4). (D46 = 0: Disabled when the port is set for input.)	
23	23	ADTG	(CMOS/H)	A/D converter external trigger input pin. Since this input is used as required while the A/D converter is operating for input, the output by any other function must be off unless used intentionally.	
26	24	P47	F (CMOS/H)	General-purpose I/O port. Serves as an open-drain output port (OD47 = 1) depending on the setting of the open-drain control setting register (ODR4). D47 = 0: Disabled when the port is set for input.	
		SCK0		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.	
27	25	С	_	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about 0.1 μF .	
		P50		N-channel open-drain I/O port.	
28	26	SDA0 G (NchOD/H)	I ² C interface data I/O pin. This function is enabled with the I ² C interface enabled for operation. While the I ² C interface is operating, place the port output in the Hi-Z state (PDR = 1).		
		SOT0		Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.	


Pin	no.	Din nama	Circuit type	Function
QFP	LQFP	Pin name	Circuit type	Function
		P51		N-channel open-drain I/O port.
29	27	SCL0	G (NchOD/H)	I ² C interface clock I/O pin. This function is enabled with the I ² C interface enabled for operation. While the I ² C interface is operating, place the port output in the Hi-Z state (PDR = 1).
		SIN0	(,	Extended I/O serial data input pin. Since this input is used as required while the extended I/O serial interface is operating for input, the output by any other function must be off unless used intentionally.
		P52,P54		N-channel open-drain I/O ports.
30,32	28,30	SDA1,SDA2	G (NchOD/H)	I^2C interface data I/O pins. This function is enabled with the I^2C interface enabled for operation. While the I^2C interface is operating, place the port output in the Hi-Z state (PDR = 1).
		P53,P55		N-channel open-drain I/O ports.
31,33	29,31	SCL1,SCL2	G (NchOD/H)	I ² C interface clock I/O pins. This function is enabled with the I ² C interface enabled for operation. While the I ² C interface is operating, place the port output in the Hi-Z state (PDR = 1).
38 to 41	36 to 39,	P60 to P67	Н	General-purpose I/O ports.
43 to 46	41 to 44	AN0 to AN7	(CMOS/H)	A/D converter analog input pin. This function is enabled with the analog input enabled.
		P70 to P77		General-purpose I/O ports.
47,48, 53 to 58	45,46, 51 to 56	IRQ0 to IRQ7	(CMOS/H)	External interrupt request input pins. Since this input is used as required while external interrupts remain enabled, the output by any other function must be off unless used intentionally.
		P80,P81		General-purpose I/O ports.
59,60	57,58	TIN0,TIN1	J (CMOS/H)	Reload timer event input pins. Since this input is used as required while the reload timer is operating for input, the output by any other function must be off unless used intentionally.
		P82,P83	J	General-purpose I/O ports.
61,62	59,60	ТОТ0,ТОТ1	(CMOS/H)	Reload timer output pins. This function is enabled with reroad timer output enabled.
		P84 to P87		General-purpose I/O ports.
63 to 66	61 to 64	IN0 to IN3	J (CMOS/H)	Input capture trigger input pins. Since this input is used as required while the input capture unit is operating for input, the output by any other function must be off unless used intentionally.
67.60	SE SS	P90,P91	J	General-purpose I/O ports.
67,68	65,66	OUT0,OUT1	(CMOS/H)	Output compare event output pins.

Pin no.		Pin name	Circuit type	Function		
QFP	LQFP	rin name	Circuit type	Function		
		P92 to P97	1	General-purpose I/O ports.		
69 to 74	67 to 72	PPG0 to PPG5	(CMOS/H)	PPG output pins. This function is enabled with the PPG output enabled.		
75,76	73,74	PA0,PA1	J	General-purpose I/O ports.		
75,76	73,74	OUT2,OUT3	(CMOS/H)	Output compare event output pins.		
78,79	76,77	PA2,PA3	J (CMOS/H)	General-purpose I/O ports.		
80	78	PA4	J	General-purpose I/O port.		
80	70	CKOT	(CMOS/H)	Serves as the CKOT output while the CKOT is operating.		
34	32	AVcc	_	A/D converter power-supply pin.		
35	33	AVRH		A/D converter external reference voltage source pin.		
36	34	AVRL	_	A/D converter external reference voltage source pin.		
37	35	AVss	_	A/D converter power-supply pin.		
49,50	47,48	MD0,MD1	С	Operation mode setting input pins. Connect these pins directly to Vcc or Vss.		
51	49	MD2	К	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90552A/552B/553A/553B/V550A)		
			С	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90P553A/F553A)		
23,84	21,82	Vcc	_	Power (5 V) input pins.		
11,42, 81	9,40, 79	Vss		Power (0 V) input pins.		

■ I/O CIRCUIT TYPE

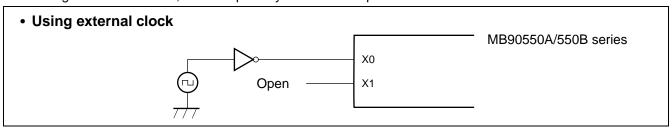
■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

If latchup occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let it occur.

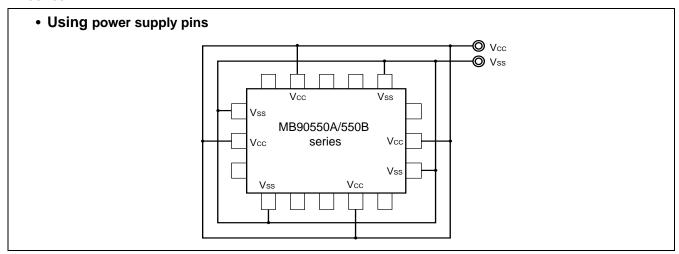

For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply voltage.

2. Handling unused input pins

Leaving unused input pins open may cause a malfunction or latch-up which leads to fatal damage to the device. Therefore they must be pulled up or pulled down through at least 2 k Ω resistance. Also, unused input/output pins should be left open in output state or handled in the same way as unused input pins.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



4. Power Supply Pins (Vcc/Vss)

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, the pins should be connected to external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended that a bypass capacitor of around 0.1 μF be placed between the V_{CC} and V_{SS} pins near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with grand area for stabilizing the operation is highly recommended.

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

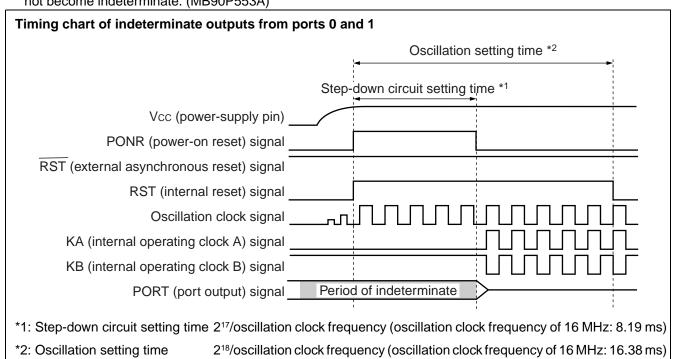
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pin of A/D converter to AVcc = Vcc, AVss = AVRH = AVRL = Vss.

8. N.C. Pin

The N.C. (internally connected) pin must be opened for use.


9. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more.

10. Indeterminate outputs from ports 0 and 1

The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on. (MB90552A, MB90553B, MB90553A, MB90553A, MB90V550A)

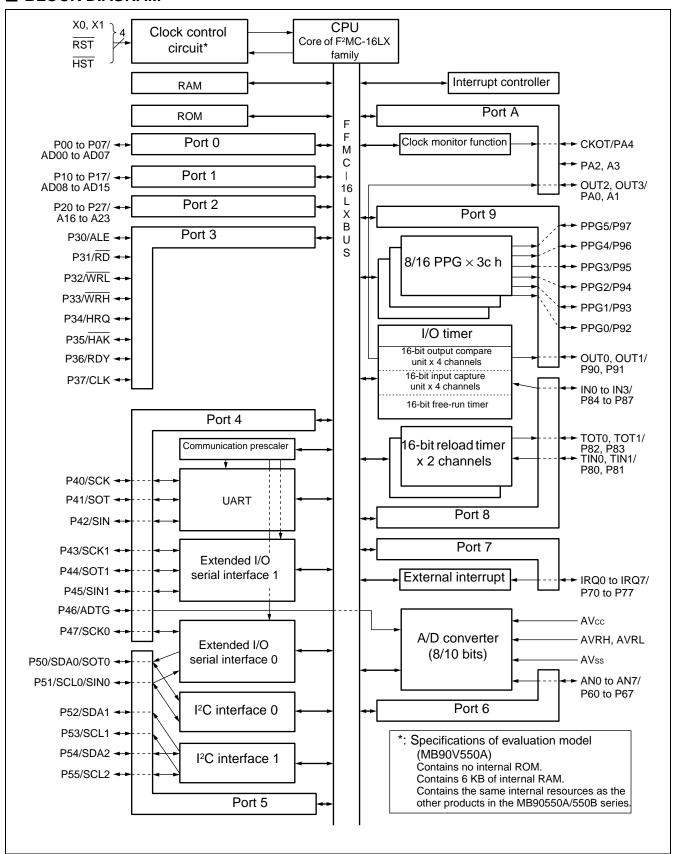
The series without built-in step-down circuit has no oscillation setting time of step-down circuit, so outputs should not become indeterminate. (MB90P553A)

11. Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.

12. Return from standby state

If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.


13. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, Ri' Instructions

The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value '00h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than '00h,' the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

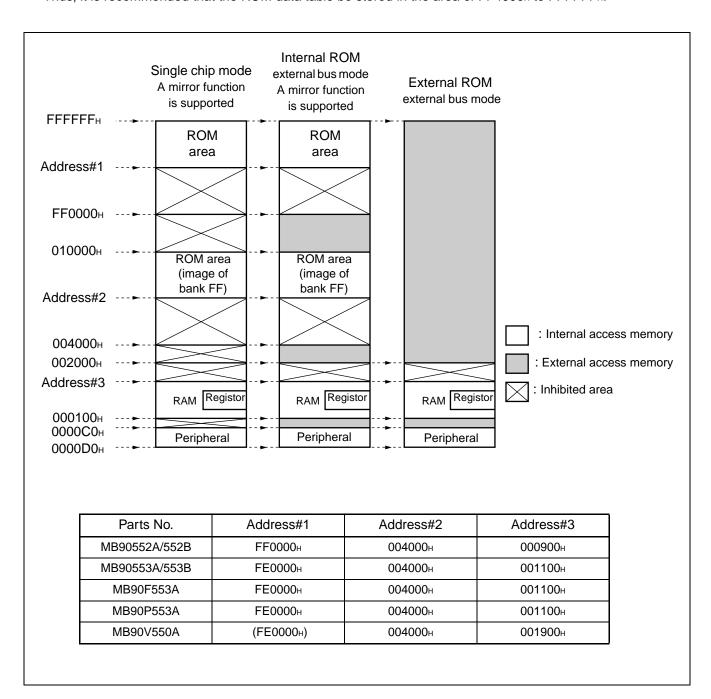
14. Using of REALOS

The use of El²OS is not possible the REALOS real time operating system.

■ BLOCK DIAGRAM

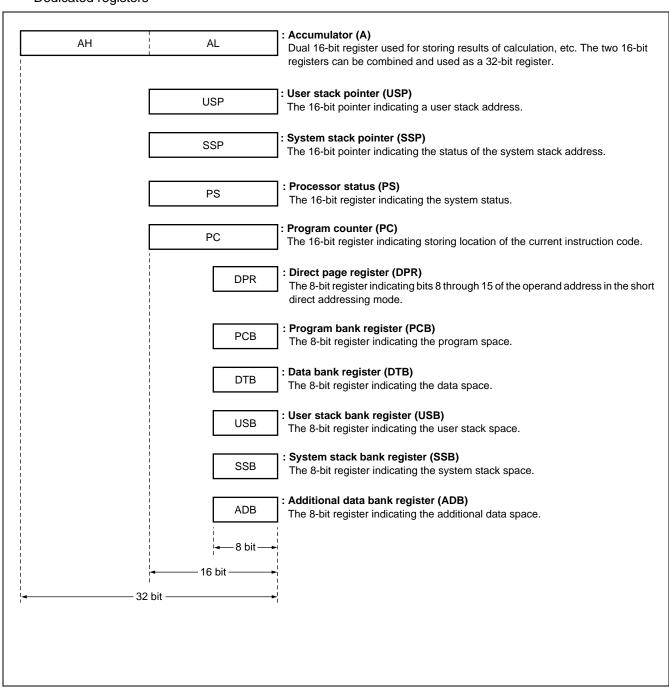
Note: The clock control circuit contains a watchdog timer, time-base timer, and a low power consumption control circuit.

P00 to P07 (8 pins): Input pull-up resistor setting register provided P10 to P17 (8 pins): Input pull-up resistor setting register provided P40 to P47 (8 pins): Open-drain control setting register provided


P50 to P55 (6 pins): N-channel open drain

Ports 0, 1, 2, 3, 4, 6, 7, 8, 9, and A are CMOS level input/output ports.

■ MEMORY MAP


The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFFH.

■ F²MC-16LX CPU PROGRAMMING MODEL

· Dedicated registers

■ I/O MAP

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	111111
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXX
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	XXXXX
0Вн to 0Fн		(Disa	bled)		
10н	Port 0 direction register	DDR0	R/W	Port 0	0000000
11н	Port 1 direction register	DDR1	R/W	Port 1	0000000
12н	Port 2 direction register	DDR2	R/W	Port 2	0000000
13н	Port 3 direction register	DDR3	R/W	Port 3	0000000
14н	Port 4 direction register	DDR4	R/W	Port 4	0000000
15н		(Disa	bled)		1
16н	Port 6 direction register	DDR6	R/W	Port 6	0000000
17н	Port 7 direction register	DDR7	R/W	Port 7	0000000
18н	Port 8 direction register	DDR8	R/W	Port 8	0000000
19н	Port 9 direction register	DDR9	R/W	Port 9	0000000
1Ан	Port A direction register	DDRA	R/W	Port A	00000
1Вн	Port 4 output pin register	ODR4	R/W	Port 4	0000000
1Сн	Port 0 resistor setting register	RDR0	R/W	Port 0	0000000
1Dн	Port 1 resistor setting register	RDR1	R/W	Port 1	0000000
1Ен		(Disa	bled)		1
1Fн	Analog input enable register	ADER	R/W	Port 6, A/D converter	11111111
20н	Serial mode register	SMR	R/W		0000000
21н	Serial control register	SCR	R/W		00000100
22н	Serial input data register / serial output data register	SIDR/SODR	R/W	UART	xxxxxxx
23н	Serial status register	SSR	R/W		00001_00

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
24н	Serial mode control status register 0	SMCS0	R/W	Forter de d.I/O	0000
25н	Serial mode control status register 0	SIVICSO	SMCS0 Extended I/0 R/W! serial interface		0000010
26н	Serial data register 0	SDR0	R/W		XXXXXXXX
27н	Clock frequency-divider control register	CDCR	R/W	Communication prescaler	01111
28н	Serial mode control status register 1	SMCS1	R/W	F (1) (1) (1) (2)	0000
29н	Serial mode control status register 1	SIVICST	R/W!	Extended I/O serial interface 1	0000010
2Ан	Serial data register 1	SDR1	R/W		XXXXXXXX
2Вн		(Disa	bled)		
2Сн	I ² C bus status register 0	IBSR0	R		0000000
2Dн	I ² C bus control register 0	IBCR0	R/W		0000000
2Ен	I ² C bus clock select register 0	ICCR0	R/W	I ² C interface 0	0XXXXX
2Fн	I ² C bus address register 0	IADR0	R/W		_ XXXXXXX
30н	I ² C bus data register 0	IDAR0	R/W		XXXXXXXX
31н		(Disa	bled)		
32н	I ² C bus status register 1	IBSR1	R		0000000
33н	I ² C bus control register 1	IBCR1	R/W		00000000
34н	I ² C bus clock select register 1	ICCR1	R/W	I ² C interface 1	0XXXXX
35н	I ² C bus address register 1	IADR1	R/W	1ºC interface i	_ xxxxxxx
36н	I ² C bus data register 1	IDAR1	R/W		XXXXXXXX
37н	I ² C bus port select register	ISEL	R/W		0
38н	Interrupt/DTP enable register	ENIR	R/W		0000000
39н	Interrupt/DTP factor register	EIRR	R/W	DTP/external	XXXXXXXX
ЗАн	Request level setting register	ELVR	R/W	interrupt	0000000
3Вн	Trequest level setting register	LLVN	IV/VV		0000000
3Сн	Control status register	ADCS0	R/W		00000000
3Dн	Control status register	ADCS1	R/W!	A/D convertor	0000000
3Ен	Data register	ADCR0	R		XXXXXXXX
3Fн	Dala register	ADCR1	R/W!		0 0 0 0 1 _XX

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
40н	Reload register L (ch.0)	PRLL0	R/W		XXXXXXXX
41н	Reload register H (ch.0)	PRLH0	R/W	8/16.hit PPC0/1	XXXXXXXX
42н	Reload register L (ch.1)	PRLL1	R/W		XXXXXXXX
43н	Reload register H (ch.1)	PRLH1	R/W		XXXXXXXX
44н	PPG0 operating mode control register	PPGC0	R/W	8/16-bit PPG0/1	0_0001
45н	PPG1 operating mode control register	PPGC1	R/W		0_00001
46н	PPG0 and 1 output control register	PPGE1	R/W		0000000
47 H		(Disa	bled)		
48н	Reload register L (ch.2)	PRLL2	R/W		XXXXXXXX
49н	Reload register H (ch.2)	PRLH2	R/W	8/16-bit PPG2/3	XXXXXXXX
4Ан	Reload register L (ch.3)	PRLL3	R/W		XXXXXXXX
4Вн	Reload register H (ch.3)	PRLH3	R/W		XXXXXXXX
4Сн	PPG2 operating mode control register	PPGC2	R/W		0_0001
4Он	PPG3 operating mode control register	PPGC3	R/W		0_00001
4Ен	PPG2 and 3 output control register	PPGE2	R/W		0000000
4 Fн		(Disa	bled)		
50н	Reload register L (ch.4)	PRLL4	R/W		XXXXXXXX
51н	Reload register H (ch.4)	PRLH4	R/W		XXXXXXXX
52н	Reload register L (ch.5)	PRLL5	R/W		XXXXXXXX
53н	Reload register H (ch.5)	PRLH5	R/W		XXXXXXXX
54н	PPG4 operating mode control register	PPGC4	R/W	8/16-bit PPG4/5	0_0001
55н	PPG5 operating mode control register	PPGC5	R/W		0_00001
56н	PPG4 and 5 output control register	PPGE3	R/W		0000000
57н		(Disa	bled)		+
58н	Clock output enable register	CLKR	R/W	Clock monitor function	0000
59н		(Disa	bled)		1

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
5Ан	Control status register 0	TMCSR0	R/W		00000000
5Вн	Control status register o	TWCSKO	IX/VV	16-bit	0000
5Сн	16 bit timer register 0/	TMR0/	R/W	reload timer 0	XXXXXXXX
5Dн	16 bit reload register 0	TMRLR0	IX/VV		XXXXXXXX
5Ен	Control status register 1	TMCSR1	R/W		00000000
5 Fн	Control status register 1	TWCSKT	17/ / /	16-bit	0000
60н	16 bit timer register 1/	TMR1/	R/W	reload timer 1	XXXXXXXX
61н	16 bit reload register 1	TMRLR1	R/VV		XXXXXXXX
62н	Input capture register, channel-0 lower bits	IPCP0	R		xxxxxxx
63н	Input capture register, channel-0 upper bits	IFCFU	K		xxxxxxx
64н	Input capture register, channel-1 lower bits	IPCP1	R		xxxxxxx
65н	Input capture register, channel-1 upper bits	IPCPT	K		xxxxxxx
66н	Input capture register, channel-2 lower bits	IPCP2	D	16-bit I/O timer	xxxxxxx
67н	Input capture register, channel-2 upper bits	IPGP2	R	Input capture (ch.0 to ch.3)	xxxxxxx
68н	Input capture register, channel-3 lower bits	IDCD2	Б		xxxxxxx
69н	Input capture register, channel-3 upper bits	- IPCP3	R		xxxxxxx
6Ан	Input capture control status register	ICS01	R/W		0000000
6Вн	Input capture control status register	ICS23	R/W		0000000
6Сн	Timer data register, lower bits	TODT	R/W	16-bit	00000000
6Dн	Timer data register, upper bits	TCDT	R/W	I/O timer	00000000
6Ен	Timer control status register	TCCS	R/W	free run timer	00000000
6 Fн	ROM mirroring function selection register	ROMM	W	ROM mirroring function	1

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
70н	Compare register, channel-0 lower bits	OCCDO	R/W		XXXXXXXX
71н	Compare register, channel-0 upper bits	OCCP0	R/VV		XXXXXXXX
72н	Compare register, channel-1 lower bits	OCCP1	R/W		XXXXXXXX
73н	Compare register, channel-1 upper bits	OCCFT	R/VV		xxxxxxx
74н	Compare register, channel-2 lower bits	OCCP2	R/W		xxxxxxx
75н	Compare register, channel-2 upper bits	OCCP2	K/VV	16-bit I/O timer	xxxxxxx
76н	Compare register, channel-3 lower bits	OCCD2	DAM	output compare (ch.0 to ch.3)	xxxxxxx
77н	Compare register, channel-3 upper bits	OCCP3	R/W		xxxxxxx
78н	Compare control status register, channel-0	OCS0	R/W		000000
79н	Compare control status register, channel-1	OCS1	R/W		00000
7Ан	Compare control status register, channel-2	OCS2	R/W		000000
7Вн	Compare control status register, channel-3	OCS3	R/W		00000
7Сн to 9Dн		(Disa	bled)		
9Ен	Program address detection control register	PACSR	R/W	Address match detection function	0000000
9Fн	Delayed interrupt factor generation/cancellation register	DIRR	R/W	Delayed interrupt	0
АОн	Low-power consumption mode control register	LPMCR	R/W!	Low power consumption control	00011000
А1н	Clock select register	CKSCR	R/W!	circuit	11111100
A2н to A4н		(Disa	bled)		
А5н	Automatic ready function select register	ARSR	W		001100
А6н	External address output control register	HACR	W	External bus pin control circuit	0000000
А7н	Bus control signal select register	ECSR	W		0000000_

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value				
А8н	Watchdog timer control register	WDTC	R/W!	Watchdog timer	XXXXX 1 1 1				
А9н	Timebase timer control register	TBTC	R/W!	Timebase timer	100100				
AAн to ADн	(Disabled)								
АЕн	Flash memory control status register FMCS R/W Flash memory interface circuit								
AFн		(Disa	bled)						
В0н	Interrupt control register 00	ICR00	R/W!		00000111				
В1н	Interrupt control register 01	ICR01	R/W!		00000111				
В2н	Interrupt control register 02	ICR02	R/W!		00000111				
ВЗн	Interrupt control register 03	ICR03	R/W!		00000111				
В4н	Interrupt control register 04	ICR04	R/W!		00000111				
В5н	Interrupt control register 05	ICR05	R/W!		00000111				
В6н	Interrupt control register 06	ICR06	R/W!		00000111				
В7н	Interrupt control register 07	ICR07	R/W!	Interment controller	00000111				
В8н	Interrupt control register 08	ICR08	R/W!	Interrupt controller	00000111				
В9н	Interrupt control register 09	ICR09	R/W!		00000111				
ВАн	Interrupt control register 10	ICR10	R/W!		00000111				
ВВн	Interrupt control register 11	ICR11	R/W!		00000111				
ВСн	Interrupt control register 12	ICR12	R/W!		00000111				
ВОн	Interrupt control register 13	ICR13	R/W!		00000111				
ВЕн	Interrupt control register 14	ICR14	R/W!		00000111				
ВГн	Interrupt control register 15	ICR15	R/W!		00000111				
C0н to FFн									
100н to #н	(RAM area)								
#н to 1FEFн	(Reserved area)								

(Continued)

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value		
1FF0н	Program address detection register 0		R/W		xxxxxxx		
1FF1 _H	Program address detection register 1	PADR0	R/W	Address match detection function	xxxxxxx		
1FF2н	Program address detection register 2		R/W		xxxxxxx		
1FF3н	Program address detection register 3		R/W		xxxxxxx		
1FF4⊦	Program address detection register 4	PADR1	R/W		xxxxxxx		
1FF5⊦	Program address detection register 5		R/W		xxxxxxx		
1FF6н to 1FFFн	(Reserved area)						

- Initial value representations
 - 0: Initial value of 0
 - 1: Initial value of 1
 - X: Initial value undefined
 - _: Initial value undefined (none)
- Addresses that follow 00FFH are a reserved area.
- The boundary #H between the RAM and reserved areas is different depending on each product.

Note: For writable bits, the initial value column contains the initial value to which the bit is initialized at a reset.

Notice that it is not the value read from the bit.

The LPMCR, CKSCR, and WDTC registers may be initialized or not at a reset, depending on the type of the reset. Their initial values in the above list are those to which the registers are initialized, of course.

"R/W!" in the access column indicates that the register contains read-only or write-only bits.

If a read-modify-write instruction (such as a bit setting instruction) is used to access a register marked "R/W!" "R/W*", or "W" in the access column, the bit focused on by the instruction is set to the desired value but a malfunction occurs if the other bits contains a write-only bit. Do not use such instructions to access those registers.

■ INTERRUPT FACTORS

INTERRUPT VECTORS, INTERRUPT CONTROL REGISTERS

Intervent course	El ² OS	Interrupt vectors		Interrupt control registers		
Interrupt source	support	Number	Address	ICR	Address	
Reset	×	# 08	FFFFDC _H	_	_	
INT9 instruction	×	# 09	FFFFD8 _H	_	_	
Exception	×	# 10	FFFFD4 _H	_	_	
A/D converter	0	# 11	FFFFD0 _H	ICR00	0000В0н	
Timebase timer	×	# 12	FFFFCCH	ICKOO	ООООВОН	
DTP0 (external interrupt 0)	0	# 13	FFFFC8 _H	ICR01	0000В1н	
DTP4/5 (external interrupt 4/5)	0	# 14	FFFFC4 _H	ICIO	0000BTH	
DTP1 (external interrupt 1)	0	# 15	FFFFC0 _H	ICR02	0000В2н	
8/16-bit PPG timer0 counter borrow	×	# 16	FFFFBC _H	ICINOZ	0000BZH	
DTP2 (external interrupt 2)	0	# 17	FFFFB8 _H	ICR03	0000ВЗн	
8/16-bit PPG timer 1 counter borrow	×	# 18	FFFFB4 _H	ICKUS	ООООВЗН	
DTP3 (external interrupt 3)	0	# 19	FFFFB0 _H	ICR04	0000В4н	
8/16-bit PPG timer 2 counter borrow	×	# 20	FFFFAC⊢	10004		
Extended I/O serial interface 0	0	# 21	FFFFA8 _H	ICR05	0000В5н	
8/16-bit PPG timer 3 counter borrow	×	# 22	FFFFA4 _H	ICKUS		
Extended I/O serial interface 1	0	# 23	FFFFA0 _H	ICR06	0000В6н	
16-bit free-run timer (I/O timer) overflow	0	# 24	FFFF9C _H	ICKOO		
16-bit re-load timer 0	0	# 25	FFFF98⊦	ICR07	0000В7н	
DTP6/7 (external interrupt 6/7)	0	# 26	FFFF94 _H	ICK07	0000В7н	
16-bit re-load timer 1	0	# 27	FFFF90 _H	ICR08	0000В8н	
8/16-bit PPG timer 4/5 counter borrow	×	# 28	FFFF8C _H	ICKU	ООООВОН	
Input capture (ch.0) include (I/O timer)	0	# 29	FFFF88 _H	ICR09	0000В9н	
Input capture (ch.1) include (I/O timer)	0	# 30	FFFF84 _H	ICKU9	ООООБЭН	
Input capture (ch.2) include (I/O timer)	0	# 31	FFFF80 _H	ICR10	0000ВАн	
Input capture (ch.3) include (I/O timer)	0	# 32	FFFF7C _H	ICKIU	OOOODAH	
Output compare (ch.0) match (Output timer)	0	#33	FFFF78 _H	ICR11	0000ВВн	
Output compare (ch.1) match (Output timer)	0	# 34	FFFF74 _H	ICKII	ООООВЬН	
Output compare (ch.2) match (Output timer)	0	# 35	FFFF70 _H	ICR12	0000ВСн	
Output compare (ch.3) match (Output timer)	0	# 36	FFFF6C _H	ICK12	0000BCH	
UART transmission complete	0	# 37	FFFF68 _H	ICD42	000000	
I ² C interface 0	×	# 38	FFFF64 _H	ICR13	0000ВDн	
UART0 reception complete	0	# 39	FFFF60 _H	ICD44	000005	
I ² C interface 1	×	# 40	FFFF5C _H	ICR14	0000ВЕн	
Flash memory status	×	# 41	FFFF58 _H	IOD45	000005	
Delayed interrupt generation module	×	# 42	FFFF54 _H	ICR15	0000ВFн	

The interrupt request flag is cleared by the El²OS interrupt clear signal. The stop request is available.

^{○ :}The interrupt request flag is cleared by the El²OS interrupt clear signal.

 $[\]times$::The interrupt request flag is not cleared by the El2OS interrupt clear signal.

Note: On using the El²OS Function with Extended I/O Serial Interface 2

If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the El²OS interrupt clear signal. When the El²OS function is used for one of the two interrupt sources, therefore, the other interrupt function cannot be used. Set the interrupt request enable bit for the relevant resource to "0" for software polling processing.

Interrupt source	Interrupt No.	Interrupt control register	Resource interrupt request
Extended I/O serial interface 1	# 23		Enabled
16-bit free-run timer (I/O timer) overflow	# 24	ICR06	Disabled

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Зуньы	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Dower oumply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ AVcc *1
Power supply voltage	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH ≥ AVRL
	AVRL	Vss - 0.3	Vss + 6.0	V	AVCC ZAVKH ZAVKL
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*5
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*5
"L" level maximum output current *2	lo _{L1}	_	10	mA	Other than P20 to P27
L levermaximum output current -	lol2	_	20	mA	P20 to P27
"L" level average output current	lolav1	_	4	mA	Other than P20 to P27
L level average output current	lolav2	_	12	mA	P20 to P27
"L" level total maximum output current	∑lo∟	_	150	mA	
"L" level total average output current	\sum lolav	_	80	mA	
"H" level maximum output current *2	Іон	_	-15	mA	
"H" level average output current *3	І онаv	_	-4	mA	
"H" level total maximum output current	\sum loн	_	-100	mA	
"H" level total average output current *4	\sum lohav	_	-50	mA	
			550	mW	MB90P553A
Power consumption	P□		450	mW	MB90F553A
Power consumption	P υ	_	200	mW	MB90553A/553B
			180	mW	MB90552A/552B
Operating temperature	TA	-40	+85	°C	
Storage temperature	Тѕтс	- 55	+150	°C	

^{*1 :} Be careful not to let AVcc exceed Vcc, for example, when the power supply is turned on.

Note: Average output current = operating current \times operating efficiency

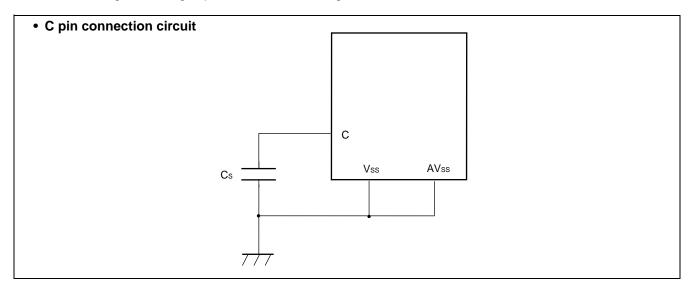
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} The maximum output current is a peak value for a corresponding pin.

^{*3 :} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*4:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

^{*5 :} V₁ and V₀ should not exceed V_{CC} + 0.3V.


2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks
Parameter	Syllibol	Min.	Max.	Oilit	Remarks
Power supply voltage		4.5	5.5	V	Normal operation (MB90F553A, MB90P553A, MB90V550A)
	Vcc AVcc	3.5	5.5	V	Normal operation (MB90553A, MB90553B, MB90552A, MB90552B)
		3.5	5.5	V	Retains status at the time of operation stop
Smoothing capacitor	Cs	0.1	1.0	μF	*
Operating temperature	TA	-40	+85	°C	

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

For connecting smoothing capacitor Cs, see the diagram below:

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ °C to } +85 \text{ °C})$

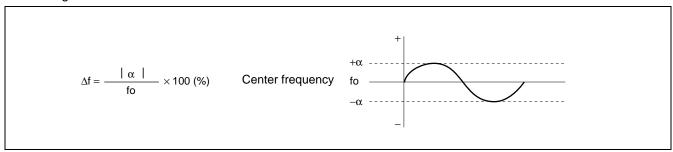
Danamatan	Coursels al	·	Condition		Value		Unit	ĺ
Parameter	Symbol	Pin name	Condition	Min. Ty		Тур. Мах.		Remarks
"U" lovel input	Vін	CMOS input pin*1	_	0.7Vcc	_	Vcc+0.3	V	
"H" level input voltage	Vihs	CMOS hysteresys input pin*2	_	0.8Vcc	_	Vcc+0.3	V	
voitage	Vінм	MD pin input*3	_	Vcc - 0.3	_	Vcc+0.3	V	
"I " lovel input	Vı∟	CMOS input pin*1	_	Vss - 0.3	_	0.3Vcc	V	
"L" level input voltage	VILS	CMOS hysteresys input pin*2	_	Vss - 0.3	_	0.2Vcc	V	
voitage	VILM	MD pin input*3	_	Vss - 0.3	_	Vss+0.3	V	
Open-drain output pin voltage	VD	P50 to P55	_	Vss - 0.3	_	Vss + 6.0	V	
"H" level output voltage	Vон	Other than P50 to P55	Vcc = 4.5V, Iон = -4.0 mA	Vcc – 0.5	_	_	V	
"L" level output voltage 1	V _{OL1}	Other than P20 to P27	$V_{CC} = 4.5V$, $I_{OL} = 4.0 mA$	_	_	0.4	V	
"L" level output voltage 2	V _{OL2}	P20 to P27	Vcc = 4.5V, loL = 12.0mA	_	_	0.4	V	
Input leakage current	lı∟	All output pins	Vcc = 5.5V, Vss < Vı < Vcc	- 5	_	5	μΑ	
			Internal	_	30	40	mΑ	MB90V550A
	Icc		operation at 16	_	80	110	mΑ	MB90P553A
			MHz Vcc = 5.5 V	_	60	90	mΑ	MB90F553A
			Normal opera-	_	30	40	mΑ	MB90553A/B
			tion	_	25	35	mΑ	MB90552A/B
			When data writ- ten in flash mode	_	100	150	mA	MB90F553A
Power supply		Vcc	Internal	_	7	10	mΑ	MB90V550A
current *4		VCC	operation at 16	_	25	30	mΑ	MB90P553A
	Iccs		MHz	_	10	20	mΑ	MB90F553A
			Vcc = 5.5 V	_	7	10	mΑ	MB90553A/B
			In sleep mode	_	7	10	mΑ	MB90552A/B
				_	5	20	μΑ	MB90V550A
			Vcc = 5.5V,	_	0.1	10	μΑ	MB90P553A
	Іссн		$T_A = +25^{\circ}C$	_	5	20	μΑ	MB90F553A
			In stop mode	_	5	20	μΑ	MB90553A/B
				_	5	20	μΑ	MB90552A/B
Input capacitance	Cin	Other than AVcc, AVss, C, Vcc and Vss	_	_	10	_	pF	
Open-drain output leakage current	leak	P50 to P55	_	_	0.1	5	μΑ	
Pull-up resistance	Rup	P00 to P07 and P10 to P17 (In pull-up	_	25	50	100	kΩ	Other than MB90V550A
. 5510101100		setting), RST		20	40	100	kΩ	MB90V550A

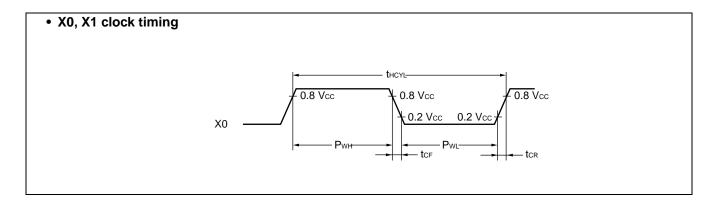
^{*1 :} P00 to P07, P10 to P17, P20 to P27, P30 to P37

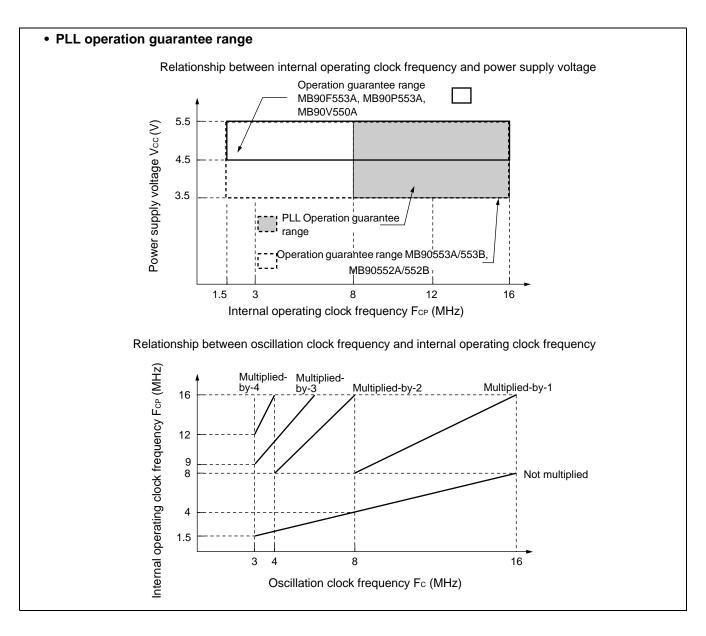
^{*2 :} X0, HST, RST, P40 to P47, P50 to P55, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA4

^{*3:} MD0, MD1 and MD2

^{*4 :} The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

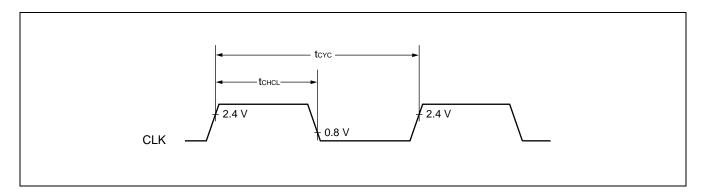

4. AC Characteristics


(1) Clock Timing


 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

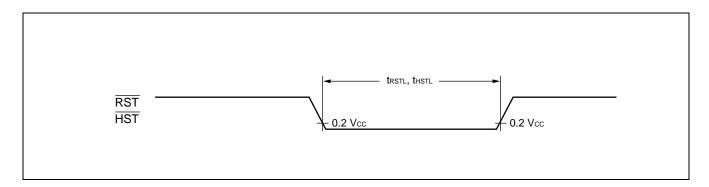
	(, 100 – 71				
Parameter	Symbol	Pin name	Value		Unit	Unit	
raiailletei	Syllibol	Fili lialile	Min.	Тур.	Max.	Oilit	Offic
Oscillation clock frequency	Fc	X0, X1	3	_	16	MHz	
Oscillation clock cycle time	t c	X0, X1	62.5		333	ns	
Frequency fluctuation rate locked*	Δf	_	_		5	%	
Input clock pulse width	Pwh PwL	X0	10	_	_	ns	Recommended duty ratio of 40% to 60%
Input clock rising/falling time	tcr, tcf	X0	_		5	ns	External clock operation
Internal operating clock	Eop		8.0	_	16	MHz	PLL operation
frequency	Fcp	_	1.5	_	16	MHz	Main clock operation
Internal operating clock	ton		62.5	_	125	ns	PLL operation
cycle time	t CP		62.5	_	666	ns	Main clock operation

^{* :}The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.


The AC ratings are measured for the following measurement reference voltages.

(2) Clock Output Timing

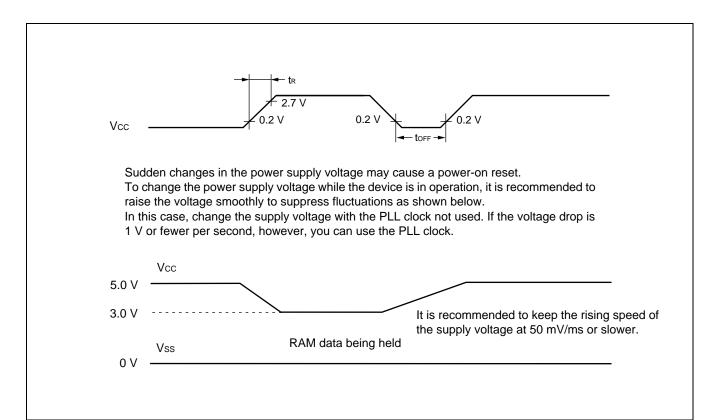
(Vcc = 5.0 V $\pm 10\%$, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Symbol	Symbol Pin name		lue	Unit	Remarks
Parameter	Symbol	Finitianie	Min.	Max.	Onic	Remarks
Cycle time	t cyc	CLK	62.5	_	ns	
$CLK \uparrow \to CLK \downarrow time$	t chcL	CLK	tcp/2 - 20	tcp/2+20	ns	

(3) Reset, Hardware Standby Input Timing

(Vcc = 5.0 V $\pm 10\%$, Vss = AVss = 0.0 V, TA = -40 °C to +85 °C)

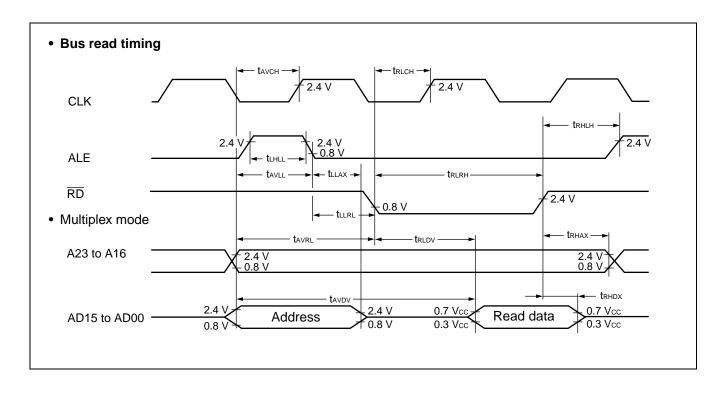
Parameter	Symbol	Pin name	Value		Unit	Remarks
Parameter	Syllibol	Fili liaille	Min.	Max.	Oilit	Remarks
Reset input time	t RSTL	RST	16 tcp	_	ns	
Hardware standby input time	t HSTL	HST	16 tcp	_	ns	


(4) Specification for Power-on Reset

(Vcc = 5.0 V \pm 10 %, Vss = AVss = 0.0 V, TA = -40 °C to +85 °C)

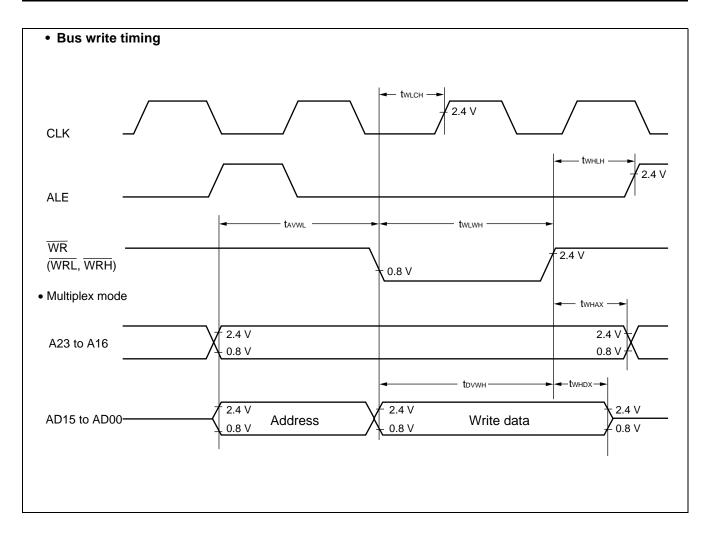
Parameter	Symbol	Pin name	Val	lue	Unit	Remarks
Parameter	Symbol	riii name	Min.	Max.	Ullit	Remarks
Power supply rising time	t R		0.05	30	ms	
Power-supply start voltage	Voff	Vcc	_	0.2	V	
Power-supply end voltage	Von	VCC	2.7	_	V	
Power supply cut-off time	t off		4	_	ms	Due to repeated operations

Note • Vcc must be kept lower than 0.2 V before power-on.


- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

(5) Bus Read Timing

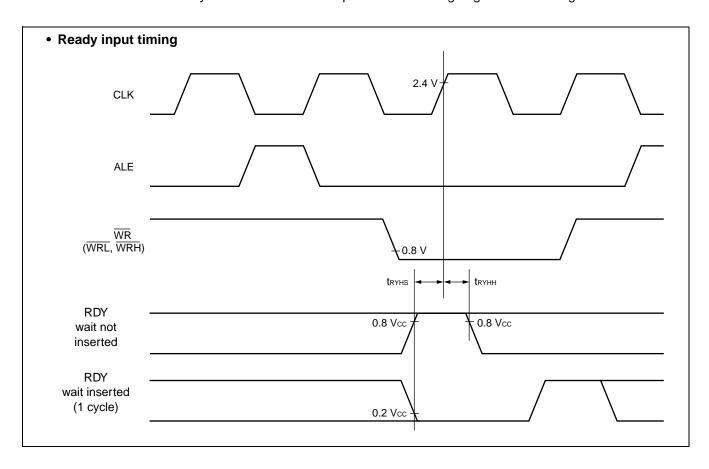
(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)


Doromotor	Cymala al	Din nome	Va	lue	Unit	Domorko
Parameter	Symbol	Pin name	Min.	Max.	Unit	Remarks
ALE pulse width	t LHLL	ALE	tcp/2 - 20	_	ns	
Effective address $ ightarrow$ ALE \downarrow time	t avll	ALE, A23 to A16, AD15 to AD00	tcp/2 - 20	_	ns	
ALE \downarrow \rightarrow address effective time	tLLAX	ALE, AD15 to AD00	tcp/2 - 15	_	ns	
Effective address $ ightarrow \overline{RD} \downarrow time$	tavrl	A23 to A16, AD15 to AD00, RD	tcp - 15	_	ns	
	tavdv	A23 to A16, AD15 to AD00	_	5 tcp/2 - 60	ns	
RD pulse width	t rlrh	RD	3 tcp/2 - 20	_	ns	
$\overline{RD} \downarrow o$ valid data input	t rldv	RD, AD15 to AD00	_	3 tcp/2 - 60	ns	
$\overline{RD} \uparrow o data$ hold time	t RHDX	RD, AD15 to AD00	0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	tcp/2 - 15	_	ns	
$\overline{RD} \uparrow \to address$ effective time	t rhax	ALE, A23 to A16	tcp/2 - 10	_	ns	
Effective address → CLK ↑ time	t avch	A23 to A16, AD15 to AD00, CLK	tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK	tcp/2 - 20	_	ns	
$ALE \downarrow \to \overline{RD} \ \downarrow time$	t llrl	ALE, RD	tcp/2 - 15		ns	

(6) Bus Write Timing

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol Pin name		Va	lue	Unit	Remarks
raiailletei	Syllibol	riii iiaiiie	Min.	Max.	Offic	Nemarks
Effective address $ ightarrow \overline{WR} \downarrow$ time	tavwl	A23 to A16, AD15 to AD00, WRH, WRL	tcp - 15	_	ns	
WR pulse width	twlwh	WRH, WRL	3 tcp/2 - 20	_	ns	
valid data output \rightarrow $\overline{\mathrm{WR}}$ \uparrow time	t _{DVWH}	AD15 to AD00, WRH, WRL	3 tcp/2 - 20	_	ns	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	AD15 to AD00, WRH, WRL	20	_	ns	Multiplex mode
$\overline{ m WR} \uparrow ightarrow$ address effective time	twhax	A23 to A16, WRH, WRL	tcp/2 - 10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WRH, WRL, ALE	tcp/2 - 15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WRH, WRL, CLK	tcp/2 - 20	_	ns	

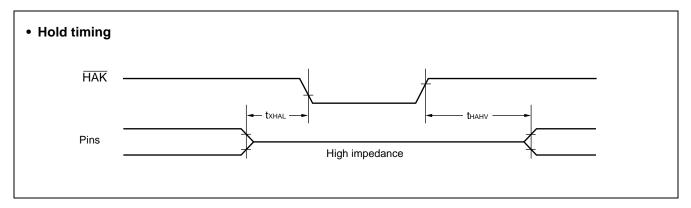


(7) Ready Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol Pin name		Val	ue	Unit	Remarks	
Farameter	Symbol	Fill Hallie	Min.	Max.	Oilit	iveillai ks	
RDY setup time	t RYHS	RDY	45	_	ns		
RDY hold time	t RYHH	CLK	0	_	ns		

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

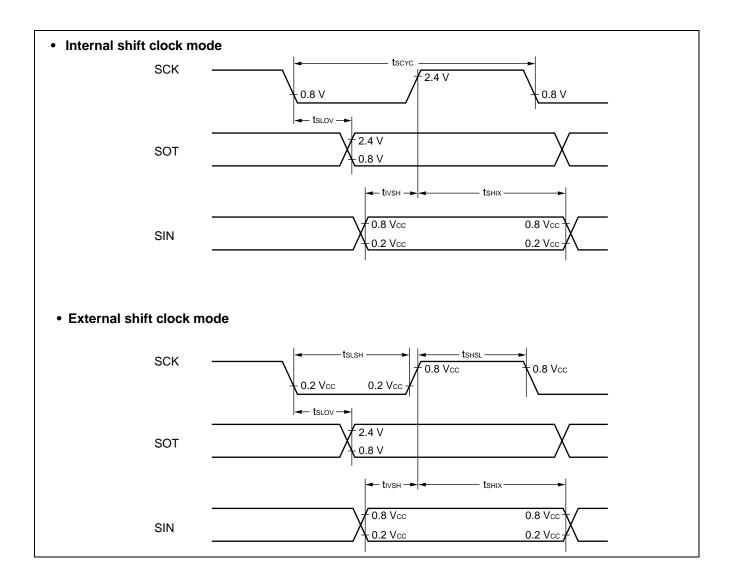


(8) Hold Timing

$$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$$

Parameter	Symbol	Pin name	Value		Unit	Remarks
raiametei	Syllibol	Fili liaille	Min.	Max.	Onic	Remarks
Pins in floating status $\rightarrow \overline{\text{HAK}} \downarrow \text{time}$	t xhal	HAK	30	t cp	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t hahv	TIAN	t CP	2 tcp	ns	

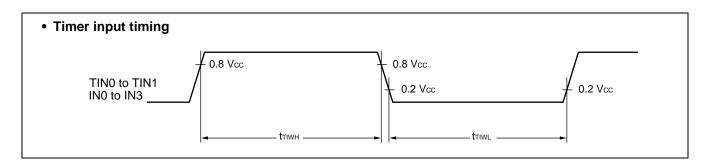
Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.


(9) UART, Extended I/O Serial 0, 1 Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

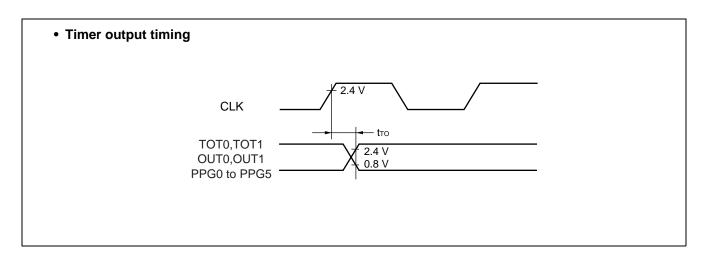
Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Farameter	Syllibol	Fili lialile	Condition	Min.	Max.	Oilit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLOV	SCK0 to SCK2, SOT0 to SOT2	Internal shift clock mode	-80	80	ns	
$Valid\;SIN\toSCK\;\!\!\uparrow$	t ıvsh	SCK0 to SCK2, SIN0 to SIN2	C _L = 80 pF + 1 TTL for an out-	100	_	ns	
$SCK \uparrow \rightarrow valid SIN hold time$	t sнıx	SCK0 to SCK2, SIN0 to SIN2	put pin	t CP	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK2		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK2	External shift clock	4 tcp	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0 to SCK2, SOT0 to SOT2	mode C _L = 80 pF	_	150	ns	
$Valid\;SIN\toSCK\;\!\!\uparrow$	t ıvsh	SCK0 to SCK2, SIN0 to SIN2	+ 1 TTL for an output pin	60	_	ns	
$SCK \uparrow \to valid \; SIN \; hold \; time$	t sнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes: • These are AC ratings in the CLK synchronous mode.


• C_L is the load capacitance value connected to pins while testing.

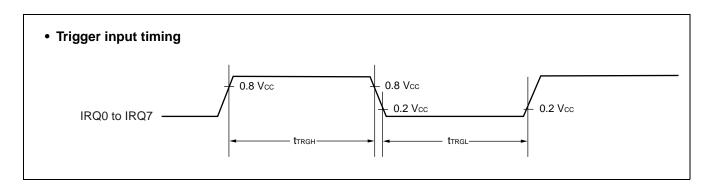
(10) Timer Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	mbol Pin name Value		Unit	Remarks		
rarameter	Syllibol	Fill lialite	Min.	Max.	Oilit	Remarks	
Input pulse width	t тıwн t тıwL	TIN0, TIN1 IN0 to IN3	4 tcp	_	ns		

(11) Timer Output Timing

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

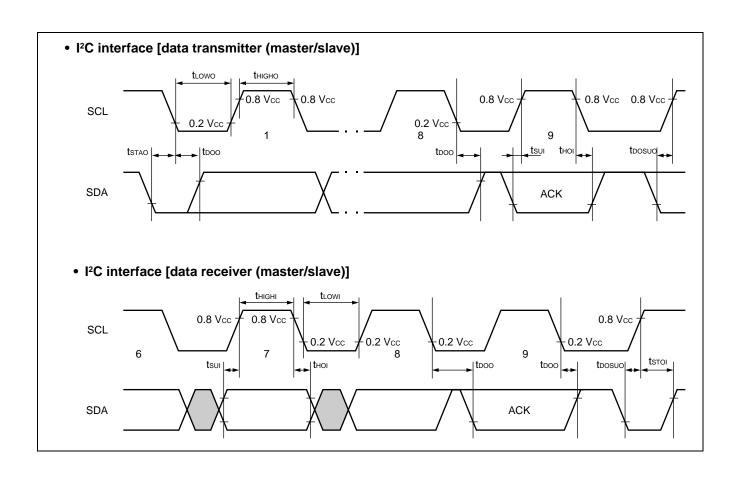

Parameter	Svmbol	Pin name	Va	lue	Unit	Remarks	
Farameter	Syllibol	riii iiaiiie	Min.	Max.	Oilit	iveillai ks	
$CLK \uparrow \to T_{OUT} \text{ transition time}$	t то	TOT0,TOT1,OUT0, OUT1,PPG0 to PPG5	30	1	ns		

(12) Trigger Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Pin name	Value Min. Max.		Unit	Remarks
Farameter	Symbol	Finitianie			Oilit	iveillai ks
Input pulse width	t trgl	IRQ0 to IRQ7	5 t cp	_	ns	

(13) I²C Interface


 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Pin name	Va	lue	Unit	Remarks	
raiailletei	Syllibol	Fill Hallie	Min.	Max.	Oilit	Remarks	
Internal clock cycle time	t cp	_	62.5	666	ns	All products	
Start condition output	t stao		$t_{CP} \times m \times n/2 - 20$	$t_{CP} \times m \times n/2 + 20$	ns		
Stop condition output	t sтоо	SDA0 to SDA2 SCL0 toSCL2	tcp (m × n/2 + 4) - 20	$t_{CP} (m \times n/2 + 4) + 20$	ns	Only as master	
Start condition detection	t stai	3CL0 103CL2	3 tcp + 40	_	ns	Only on alove	
Stop condition detection	t stoi		3 tcp + 40	_	ns	Only as slave	
SCL output "L" width	t Lowo		$t_{CP} \times m \times n/2 - 20$	$t_{\text{CP}} \times m \times n/2 + 20$	ns		
SCL output "H" width	t HIGHO	SCL0 to SCL2	tcp (m × n/2 + 4) - 20	tcp (m × n/2 + 4) + 20	ns	Only as master	
SDA output delay time	t DOO	SDA0 to SDA2	2 tcp - 20	2 tcp + 20	ns		
Setup after SDA output interrupt period	toosuo	SCL0 to SCL2	4 tcp - 20	_	ns		
SCL input "L" width	t LOWI	SCL0 to SCL2	3 tcp + 40	_	ns		
SCL input "H" width	t HIGHI	30L0 10 30L2	tcp + 40	_	ns		
SDA input setup time	t sui	SDA0 to SDA2	40	_	ns		
SDA input hold time	t HOI	SCL0 to SCL2	0	_	ns		

Notes: • "m" and "n" in the above table represent the values of shift clock frequency setting bits (CS4 to CS0) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

[•] toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL "L" width.

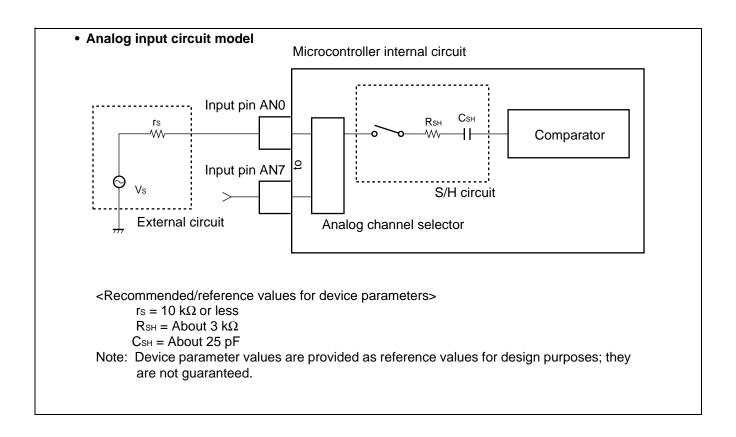
[•] The SDA and SCL output values indicate that that rise time is 0 ns.

5. A/D Converter

(1) Electrical Characteristics

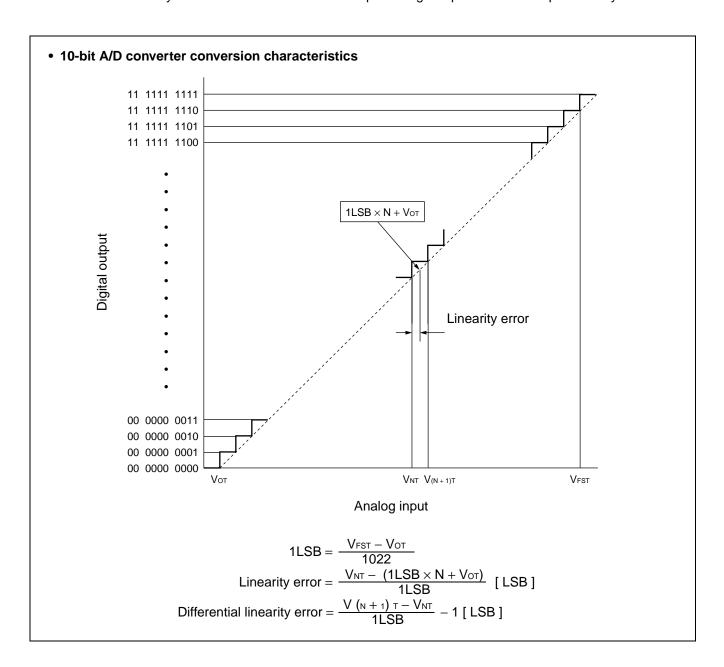
 $(4.5 \text{ V} \le \text{AVRH} - \text{AVRL}, \text{Vcc} = \text{AVcc} = 5.0 \text{ V} \pm 10\%, \text{Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$

Parameter	Symbol	Pin name		Value		Unit	Domarka
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	Remarks
Resolution	_	_	_	10	_	bit	
Total error	_	_	_	_	±5.0	LSB	
Non-linearity error	_	_	_	_	±2.5	LSB	
Differential linearity error	_	_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL- 3.5LSB	AVRL+ 0.5LSB	AVRL+ 4.5LSB	V	1LSB= (AVRH-AVRL)
Full-scale transition voltage	V _{FST}	AN0 to AN7	AVRH- 6.5LSB	AVRH- 1.5LSB	AVRH+ 1.5LSB	V	/1024
Sampling period	t smp	_	64	_	4096	tcp	
Compare time	t cmp		22		_	μs	*1
A/D Conversion time	tcnv	_	26.3	_	_	μs	*2
Analog port input current	Iain	AN0 to AN7	_	_	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVRL	_	AVRH	V	
Reference voltage	_	AVRH	AVRL	_	AVcc	V	
Reference voltage	_	AVRL	0	_	AVRH	V	
Power supply current	lΑ	AVcc	_	3.5	7.0	mA	
Fower supply current	Іан	AVCC	_	_	5	μΑ	*3
Reference voltage	IR	AVRH	_	300	500	μΑ	
supply current	lпн	AVELL	_	_	5	μΑ	*3
Offset between channels	_	AN0 to AN7	_	_	4	LSB	

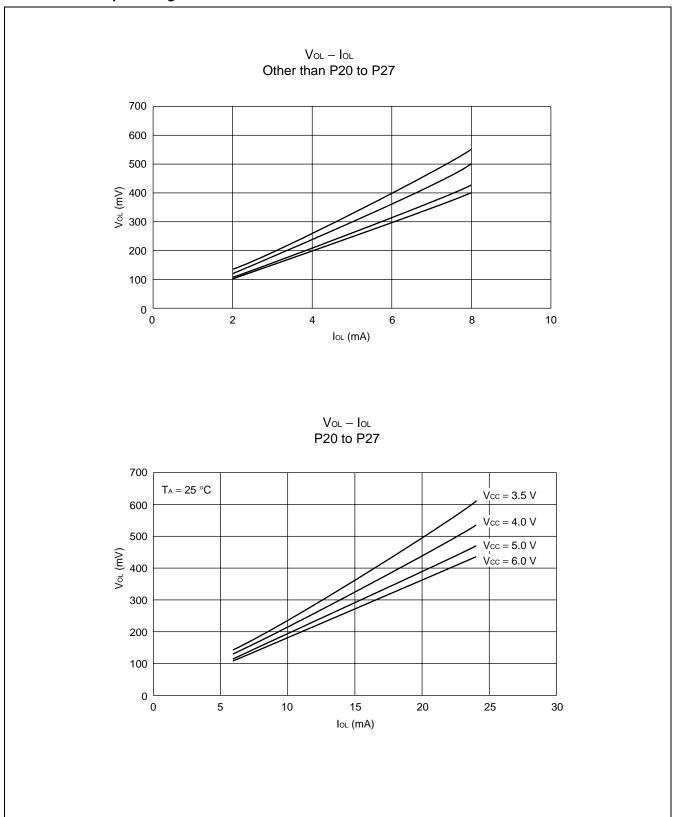

^{*1:} When Fcp = 8 MHz, tcmp = $176 \times \text{tcp}$. When Fcp = 16 MHz, tcmp = $352 \times \text{tcp}$.

Notes: • The error becomes larger relatively as |AVRH-AVRL| becomes smaller.

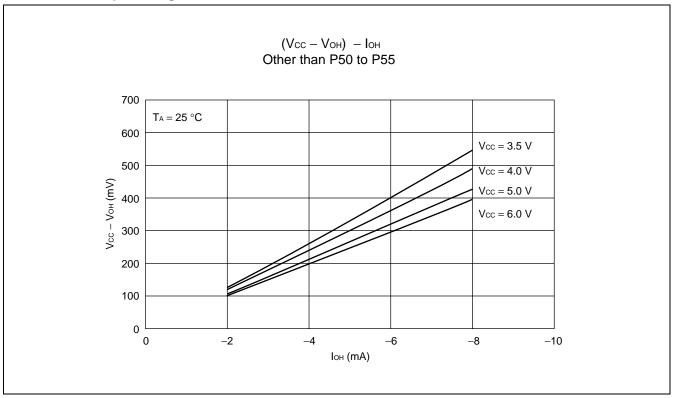
- Use the output impedance rs of the external circuit for analog input under the following condition: External circuit output impedance rs = $10 \text{ k}\Omega$ Max.
- If the output impedance of the external circuit is too high, the analog voltage sampling time may be insufficient.
- If you insert a DC-blocking capacitor between the external circuit and the input pin, select a capacitance that is about several thousands times the sampling capacitance C_{SH} in the chip to suppress the effect of capacity potential division with C_{SH}.


^{*2:} Equivalent to the time for conversion per channel if " $t_{SMP} = 64 \times t_{CP}$ " or " $t_{CMP} = 352 \times t_{CP}$ " is selected when $F_{CP} = 16$ MHz.

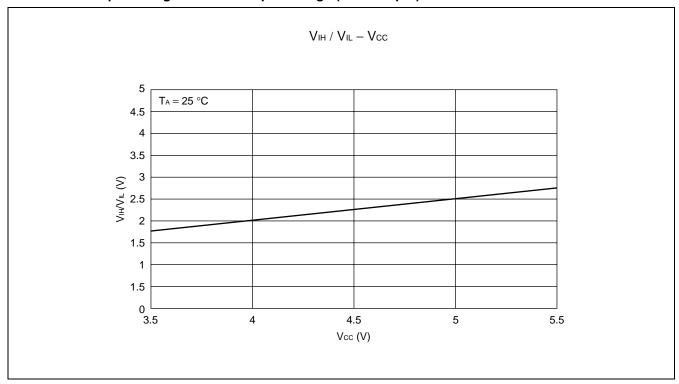
^{*3:} Specifies the power-supply current (Vcc = AVcc = AVRH = 5.0 V) when the A/D converter is inactive and the CPU has been stopped.

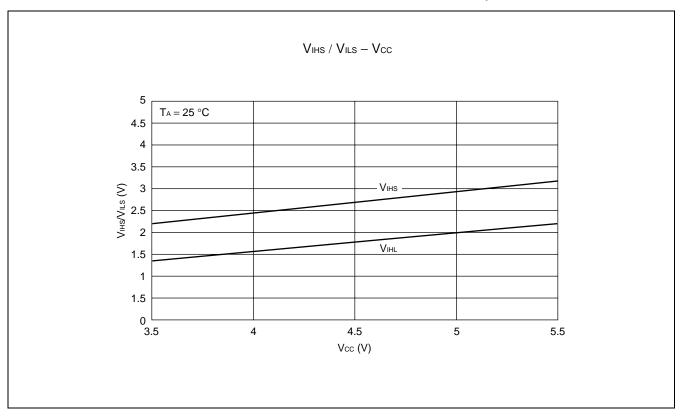

(2) Definitions of Terms

- Resolution: Analog transition identifiable by the A/D converter.
 Analog voltage can be divided into 1024 (2¹⁰) components at 10-bit resolution.
- Total error: Difference between actual and logical values. This error is the sum of an offset error, gain error, non-linearity error and an error caused by noise.
- Linearity error: Deviation of the straight line drawn between the zero transition point (00 0000 0000 <-> 00 0000 0001) and the full-scale transition point (11 1111 1110 <-> 11 1111 1111) of the device from actual conversion characteristics
- Differential linearity error: Deviation from the ideal input voltage required to shift output code by one LSB



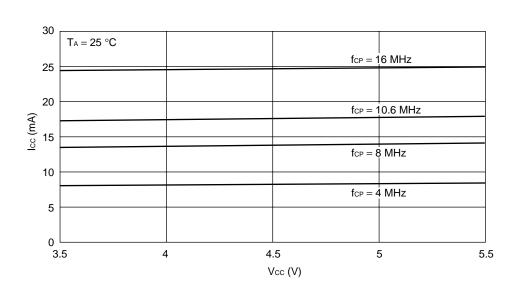
■ EXAMPLE CHARACTERISTICS


1. "L" level output voltage

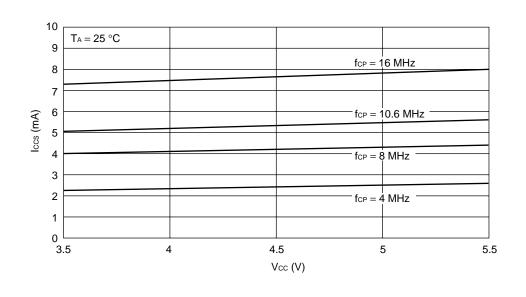

2. "H" level output voltage

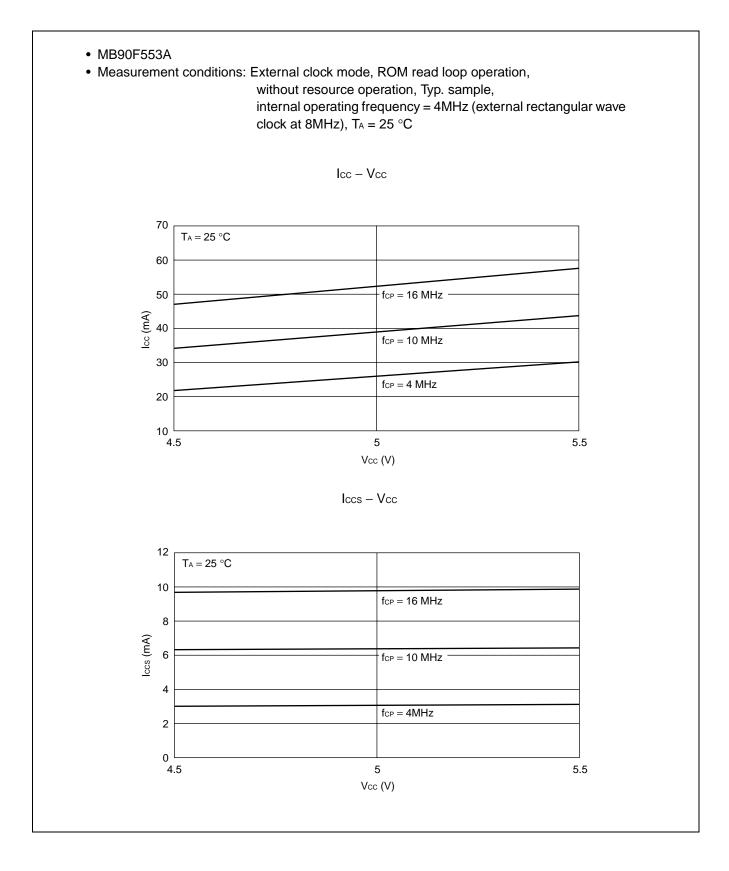
3. "H" level input voltage / "L" level input voltage (CMOS input)

4. "H" level input voltage / "L" level input voltage (CMOS hysteresis input)

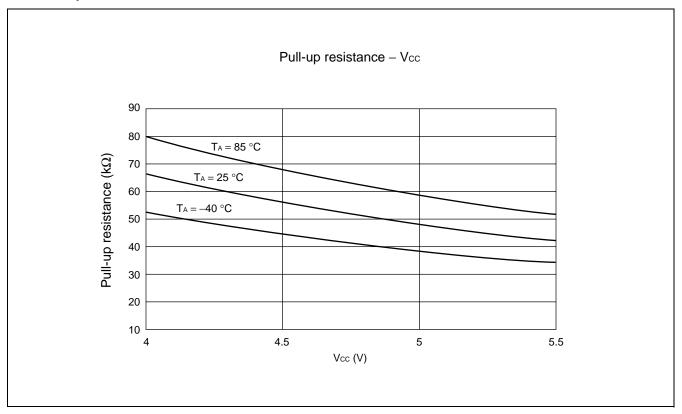


5. Power supply current

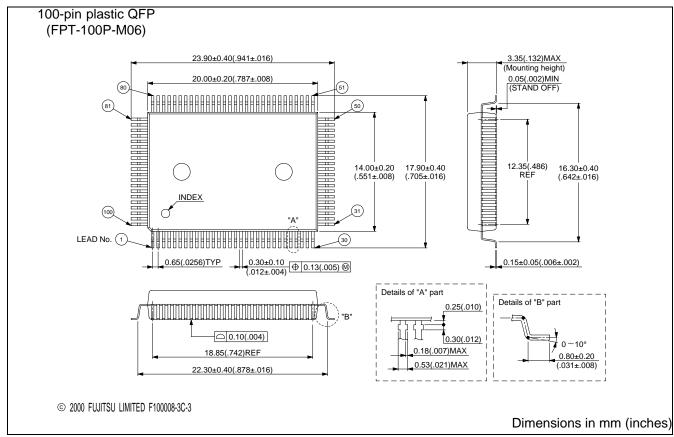

(fcp = internal operating clock frequency)


- MB90552A
- Measurement conditions: External clock mode, ROM read loop operation, without resource operation, Typ. sample, internal operating frequency = 4MHz (external rectangular wave clock at 8MHz), $T_A = 25$ °C

Icc - Vcc



Iccs - Vcc


6. Pull-up resistance

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90552APF MB90552BPF MB90553APF MB90553BPF MB90T552APF MB90T553APF MB90F553APF MB90P553APF	100-pin plastic QFP (FPT-100P-M06)	
MB90552APFV MB90552BPFV MB90553APFV MB90553BPFV MB90T552APFV MB90T553APFV MB90F553APFV MB90P553APFV	100-pin plastic LQFP (FPT-100P-M05)	

■ PACKAGE DIMENSIONS

(Continued)

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386 http://edevice.fujitsu.com/

Namel and Caralla Annamica

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0101

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.