

PRELIMINARY DATA SHEET

LPD200MX

PACKAGED HIGH DYNAMIC RANGE PHEMT

FEATURES

- ◆ 1.0 dB Noise Figure at 1.8 GHz
- ◆ 15.5 dBm P-1dB 1.8 GHz, 17dBm@6GHz, 10.5dBm@12GHz
- ◆ 19 dB Power Gain at 1.8 GHz, 10dB@6GHz, 8dB@12GHz
- ♦ 31 dBm IP3 at 1.8 GHz
- ♦ 60% Power-Added-Efficiency

DESCRIPTION AND APPLICATIONS

The LPD200 is an Aluminum Gallium Arsenide / Indium Gallium Arsenide (AlGaAs/InGaAs) Pseudomorphic High Electron Mobility Transistor (PHEMT), utilizing an Electron-Beam direct-write $0.25~\mu m$ by $200~\mu m$ Schottky barrier gate. The recessed "mushroom" Ti/Pt/Au gate structure minimizes parasitic gate-source and gate resistances. The epitaxial structure and processing have been optimized for high dynamic range. The LPD200's active areas are passivated with Si_3N_4 , and the micro X package is ideal for low-cost, high-performance applications that require a surface-mount package.

The LPD200MX is designed for commercial systems for use in low noise amplifiers and oscillators operating over the RF and Microwave frequency ranges. The low noise figure makes it appropriate for use in receivers in MMDS and GPS. This device is also suitable as a driver stage for WLAN and ISM band spread spectrum applications.

• ELECTRICAL SPECIFICATIONS @ T_{Ambient} = 25°C

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Saturated Drain-Source Current	I_{DSS}	$V_{DS} = 2 \text{ V}; V_{GS} = 0 \text{ V}$	45		75	mA
Power at 1-dB Compression	P-1dB	$f=1.8GHz; V_{DS} = 5 V; I_{DS} = 50\% I_{DSS}$	14	15.5		dBm
Power Gain at 1-dB Compression	G-1dB	$f=1.8GHz; V_{DS} = 5 V; I_{DS} = 50\% I_{DSS}$	18	19		dB
Power-Added Efficiency	PAE	f=1.8GHz; $V_{DS} = 5 \text{ V}$; $I_{DS} = 50\% \text{ I}_{DSS}$; $P_{OUT} = 19.5 \text{ dBm}$		60		%
Noise Figure	NF	$f=1.8GHz; V_{DS} = 5V; I_{DS} = 50\% I_{DSS}$		1.4		dB
		$f=1.8GHz; V_{DS} = 3V; I_{DS} = 25\% I_{DSS}$		1.0		
Output Intercept Point	IP3	f =1.8 GHz ; $V_{DS} = 5V$; $I_{DS} = 50\%$ I_{DSS} ; $P_{OUT} = 4$ dBm		31		dBm
Transconductance	G_{M}	$V_{DS} = 2 \text{ V}; V_{GS} = 0 \text{ V}$	50	70		mS
Gate-Source Leakage Current	I_{GSO}	$V_{GS} = -5 \text{ V}$		1	10	μΑ
Pinch-Off Voltage	V_{P}	$V_{DS} = 2 \text{ V}; I_{DS} = 1 \text{ mA}$	-0.25		-1.5	V
Gate-Source Breakdown Voltage Magnitude	$ V_{\mathrm{BDGS}} $	$I_{GS} = 1 \text{ mA}$	6	7		V
Gate-Drain Breakdown Voltage Magnitude	$ V_{BDGD} $	$I_{GD} = 1 \text{ mA}$	8	9		V

 Phone: (408) 988-1845
 http:// www.filss.com
 Revised: 5/02/01

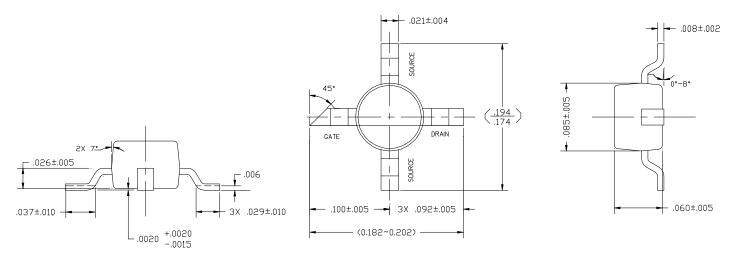
 Fax: (408) 970-9950
 Email: sales@filss.com

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain-Source Voltage	V _{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		7	V
Gate-Source Voltage	V _{GS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		-3	V
Drain-Source Current	I_{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		I_{DSS}	mA
Gate Current	I_G	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		5	mA
RF Input Power	P_{IN}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		60	mW
Channel Operating Temperature	T_{CH}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		175	°C
Storage Temperature	T _{STG}	_	-65	175	°C

Notes: Even temporary operating condions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.

HANDLING PRECAUTIONS


To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

APPLICATIONS NOTES & DESIGN DATA

Applications Notes are available from your local Filtronic Sales Representative or directly from the factory. Complete design data, including S-parameters, noise data, and large-signal models are available on the Filtronic web site.

PACKAGE OUTLINE

(dimensions in inches)

All information and specifications are subject to change without notice.