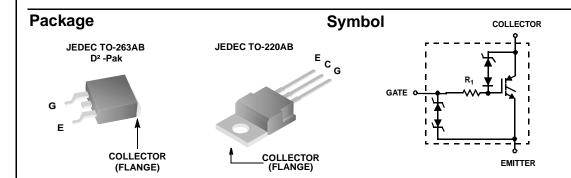


HGTP14N40F3VL / HGT1S14N40F3VLS

330mJ, 400V, N-Channel Ignition IGBT

General Description

This N-Channel IGBT is a MOS gated, logic level device which is intended to be used as an ignition coil driver in automotive ignition circuits. Unique features include an active voltage clamp between the drain and the gate and ESD protection for the logic level gate. Some specifications are unique to this automotive application and are intended to assure device survival in this harsh environment.


Formerly Developmental Type 49023

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil-On Plug Applications

Features

- Logic Level Gate Drive
- Internal Voltage Clamp
- ESD Gate Protection
- Max $T_{.1} = 175^{\circ}C$
- SCIS Energy = 330mJ at T_J = 25°C

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CES}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	420	V
BV _{CGR}	Collector to Gate Breakdown Voltage (R _{GE} = 10KΩ)	420	
E _{SCIS25}	Drain to Source Avalanche Energy at L = 2.3mHy, T _C = 25°C	330	mJ
I _{C25}	Collector Current Continuous, at T _C = 25°C, V _{GE} = 4.5V	38	Α
I _{C90}	Collector Current Continuous, at T _C = 90°C, V _{GE} = 4.5V	35	Α
V_{GES}	Gate to Emitter Voltage Continuous	±10	V
V_{GEM}	Gate to Emitter Voltage Pulsed	±12	V
I _{CO}	L = 2.3mHy, T _C = 25°C	17	Α
Ico	$L = 2.3 \text{mHy}, T_C = 150 ^{\circ} \text{C}$	12	Α
P_{D}	Power Dissipation Total T _C = 25°C	262	W
	Power Dissipation Derating T _C > 25°C	1.75	W/°C
T _{J,} T _{STG}	Operating and Storage Junction Temperature Range	-40 to 175	°C
T _L	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	6	KV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
14N40FVL	HGT1S14N40F3VLT	TO-263AB	24mm	24mm	800 units
14N40FVL	HGT1S14N40F3VLS	TO-263AB	Tube	N/A	50 units
14N40FVL	HGTP14N40F3VL	TO-220AB	Tube	N/A	50 units

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Co	nditions	Min	Тур	Max	Units
Off State	Characteristics						
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10 \text{mA},$	T _C = 150°C	345	370	415	V
		$V_{GE} = 0$	$T_C = 25^{\circ}C$	350	375	420	V
			$T_C = -40$ °C	355	380	425	V
BV _{CE(CL)}	Collector to Emitter Clamp Breakdown Voltage	$I_C = 10A,$ $R_G = 0$	T _C = 150°C	350	385	430	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = 1mA$	T _C = 25°C	24	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ±1mA		±12	-	-	V
I _{CES}	Collector to Emitter Leakage Current	V _{CE} = 250V,	T _C = 25°C	-	-	50	μΑ
			$T_C = 150$ °C	-	-	250	μΑ
I _{GES}	Gate to Emitter Leakage Current	$V_{GE} = \pm 10V$	T _C = 25°C	-	-	±10	μA
R ₁	Series Gate Resistance			-	1000	-	Ω
n State	Characteristics						
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_C = 10A$,	$T_C = 25^{\circ}C$	-	1.3	2.0	V
		$V_{GE} = 4.5V$	$T_C = 150$ °C	-	1.4	2.3	V
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_C = 1mA$,	T _C = 25°C	1.0	-	2.0	V
		$V_{CE} = V_{GE}$	$T_{\rm C} = 150^{\circ}{\rm C}$	0.5	-	-	V

Switching Characteristics

t _{d(OFF)I} + t _{f(OFF)I}	Current Turn-Off Time-Inductive Load	$I_C = 6.5A, R_G = L = 550\mu Hy, V_C = 5V, T_C = 1000$	$_{CL} = 320V$,	-	12	16	μs
SCIS	,		$T_C = 25^{\circ}C$	17	-	-	Α
		V _{GE} = 5V, See Fig. 1 & 2	T _C = 150°C	12	-	-	Α

Thermal Characteristics

R _{0,JC} Thermal Resistance Junction to Case - - 0.57 °C/W				1		
	$R_{ hetaJC}$	Thermal Resistance Junction to Case	-	-	0.57	~(:/\//

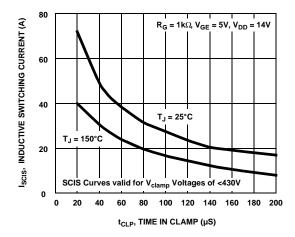


Figure 1. Self Clamped Inductive Switching Current vs Time

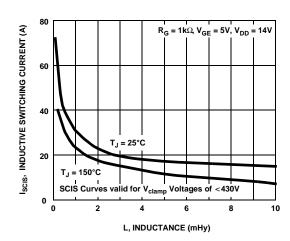


Figure 2. Self Clamped Inductive Switching Current vs Inductance

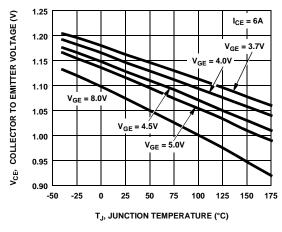


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

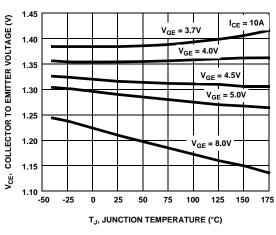


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

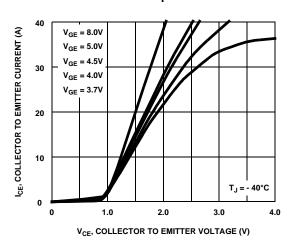


Figure 5. Collector to Emitter Current vs Collector to Emitter On-State Voltage

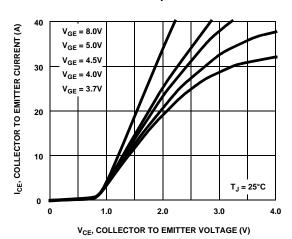


Figure 6. Collector to Emitter Current vs Collector to Emitter On-State Voltage

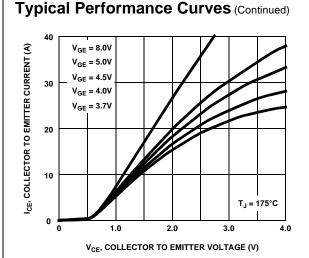


Figure 7. Collector to Emitter Current vs Collector to Emitter On-State Voltage

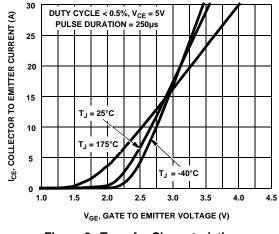


Figure 8. Transfer Characteristics

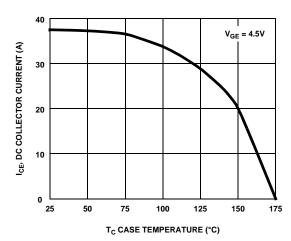


Figure 9. DC Collector Current vs Case Temperature

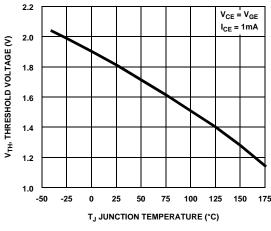


Figure 10. Threshold Voltage vs Junction Temperature

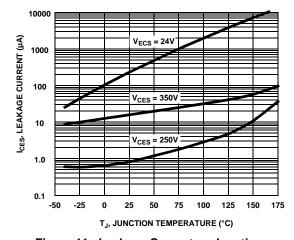


Figure 11. Leakage Current vs Junction Temperature

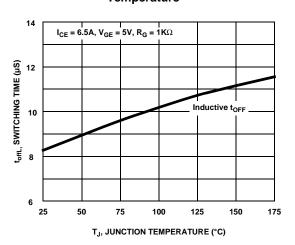
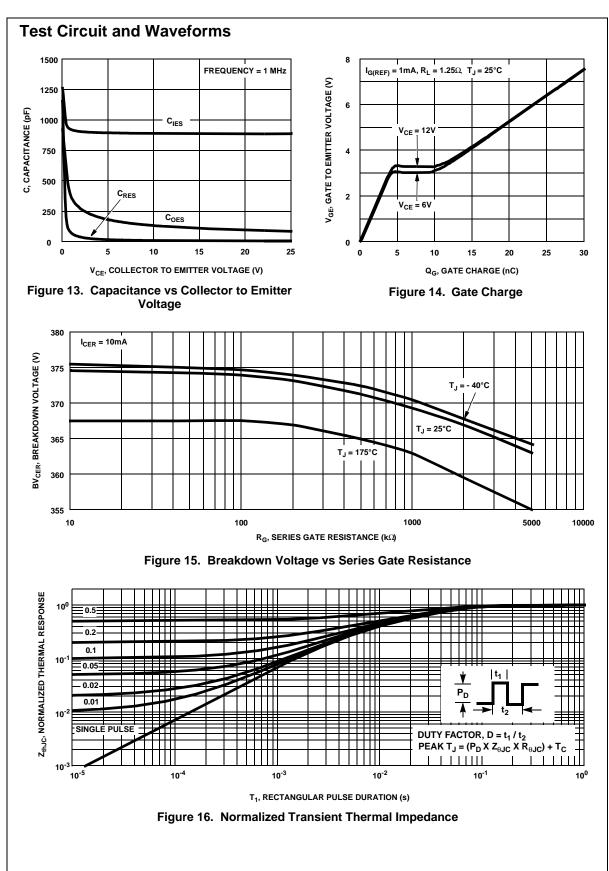
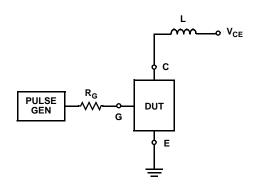




Figure 12. Switching Time vs Junction Temperature

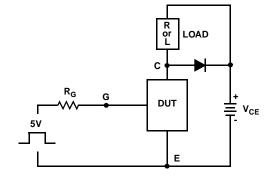
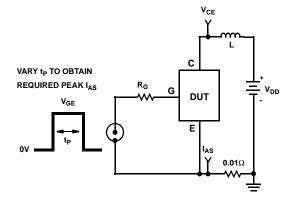



Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

BV_{CES / R}

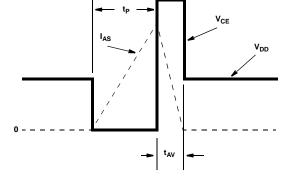


Figure 19. Unclamped Energy Test Circuit

Figure 20. Unclamped Energy Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4