

74LCXH16374 Low Voltage 16-Bit D-Type Flip-Flop with Bushold

General Description

The LCXH16374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is $\underline{\text{byte}}$ controlled. A buffered clock (CP) and Output Enable $\overline{\text{(OE)}}$ are common to each byte and can be shorted together for full 16-bit operation.

The LCXH16374 is designed for low voltage (2.5V or 3.3V) $\rm V_{\rm CC}$ applications.

The LCXH16374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

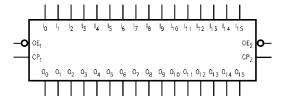
The LCXH16374 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

Features

- 5V tolerant control inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- \blacksquare 6.2 ns t_{PD} max (V $_{CC}$ = 3.3V), 20 μA I_{CC} max
- Bushold on inputs eliminating the need for external pull-up/pull-down resistors
- Power down high impedance outputs
- \pm 24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V Machine model > 200V

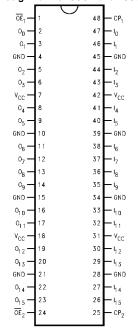
Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

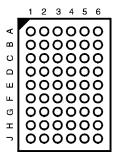

Ordering Code:

Order Number	Package Number	Package Description
74LCXH16374G (Note 1)(Note 3)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LCXH16374MEA (Note 2)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCXH16374MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: Ordering code "G" indicates Trays.

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol


 $\mathsf{GTO}^{\scriptscriptstyle\mathsf{TM}}$ is a trademark of Fairchild Semiconductor Corporation.

Connection Diagrams

Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names Description			
OE n	Output Enable Input (Active LOW)		
CP _n	Clock Pulse Input		
I ₀ -I ₁₅	Bushold Inputs		
O ₀ -O ₁₅	Outputs		
NC	No Connect		

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	CP ₁	NC	I ₀
В	02	O ₁	NC	NC	I ₁	I ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	O ₆	O ₅	GND	GND	I ₅	I ₆
E	Ο ₈	O ₇	GND	GND	I ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
Н	O ₁₄	O ₁₃	NC	NC	I ₁₃	I ₁₄
J	O ₁₅	NC	OE ₂	CP ₂	NC	I ₁₅

Truth Tables

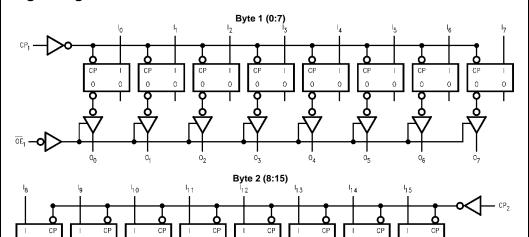
	Outputs		
CP ₁	OE ₁	I ₀ –I ₇	O ₀ -O ₇
~	L	Н	Н
~	L	L	L
L	L	Χ	O ₀
Х	Н	Х	Z

	Inputs		Outputs
CP ₂	OE ₂	I ₈ -I ₁₅	O ₈ -O ₁₅
~	L	Н	Н
~	L	L	L
L	L	Χ	O_0
Х	Н	X	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance


O₀ = Previous O₀ before HIGH-to-LOW of CP

Functional Description

The LCXH16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store

the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

Logic Diagrams

 $0_8 \qquad 0_9 \qquad 0_{10} \qquad 0_{11} \qquad 0_{12} \qquad 0_{13} \qquad 0_{14} \qquad 0_{15}$ Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage I ₀ - I ₁₅	-0.5 to $V_{CC} + 0.5$		V
	\overline{OE}_1 , CP_n	-0.5V to 7.0V		V
Vo	DC Output Voltage	-0.5 to +7.0	3-STATE	V
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 4)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_O > V_{CC}$	ША
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 5)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter		Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Syllibol	Parameter		Conditions	(V)	Min	Max	Ullits
V_{IH}	HIGH Level Input Voltage			2.3 – 2.7	1.7		V
				2.7 – 3.6	2.0		v
V_{IL}	LOW Level Input Voltage			2.3 – 2.7		0.7	V
				2.7 – 3.6		8.0	v
V _{OH} HIGH Level Output Voltage			$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		
			$I_{OH} = -8 \text{ mA}$	2.3	1.8		7
			$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
			$I_{OH} = -18 \text{ mA}$	3.0	2.4		
			$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage		$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	
			I _{OL} = 8 mA	2.3		0.6	
				2.7		0.4	V
			I _{OL} = 16 mA	3.0		0.4	
			$I_{OL} = 24 \text{ mA}$	3.0		0.55	
I _I	Input Leakage Current	Data	$V_I = V_{CC}$ or GND	2.3 – 3.6		±5.0	
		Control	$0V \le V_1 \le 5.5$	2.3 – 3.6		±5.0	μΑ

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	Conditions	(V)	Min	Max	Offics
I _{I(HOLD)}	Bushold Input Minimum	$V_{IN} = 0.7V$	2.3	45		
	Drive Hold Current	V _{IN} = 1.7V	2.3	-45		μА
		V _{IN} = 0.8V	3.0	75		μΛ
		V _{IN} = 2.0V	3.0	-75		
I _{I(OD)}	Bushold Input Over-Drive	(Note 7)	2.7	300		
	Current to Change State	(Note 8)	2.7	-300		μА
		(Note 7)	3.6	450		μ.
		(Note 8)	3.0	-450		
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	μΑ
I _{OFF}	Power-Off Leakage Current	$V_O = V_{CC}$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μА
		3.6V ≤ V _O ≤ 5.5V (Note 6)	2.3 – 3.6		±20	μΛ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ

Note 6: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40^{\circ}$ to $+85^{\circ}$ C, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.3	3V ± 0.3V	V _{CC} =	= 2.7V	V _{CC} = 2.	5V ± 0.2V	Units
Symbol	r ai ainietei	C _L =	50 pF	C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	170						MHz
t _{PHL}	Propagation Delay	1.5	6.2	1.5	6.5	1.5	7.4	ns
t _{PLH}	CP to O _n	1.5	6.2	1.5	6.5	1.5	7.4	115
t_{PZL}	Output Enable time	1.5	6.1	1.5	6.3	1.5	7.9	ns
t _{PZH}		1.5	6.1	1.5	6.3	1.5	7.9	115
t _{PLZ}	Output Disable Time	1.5	6.0	1.5	6.2	1.5	7.2	ns
t_{PHZ}		1.5	6.0	1.5	6.2	1.5	7.2	115
t _S	Setup Time	2.5		2.5		3.0		ns
t _H	Hold Time	1.5		1.5		2.0		ns
t _W	Pulse Width	3.0		3.0		3.5		ns
toshl	Output to Output Skew (Note 9)		1.0					ns
toslh			1.0					- 2

Note 9: Skew is defined as the absolute value of the differences between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc} (v)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V

Capacitance

	Parameter	Conditions	Typical	Units
C _{IN} Ir	nput Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT} C	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD} P	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

 $[\]textbf{Note 7:} \ \textbf{An external driver must source at least the specified current to switch from LOW-to-HIGH.}$

Note 8: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

AC LOADING and WAVEFORMS Generic for LCX Family

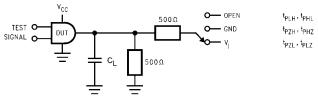
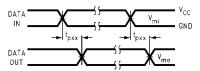
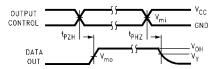
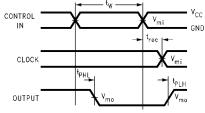
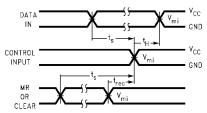
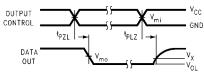




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch	
t _{PLH} , t _{PHL}	Open	
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3$ V, and 2.7V V_{CC} x 2 at $V_{CC} = 2.5 \pm 0.2$ V	
t _{PZH} , t _{PHZ}	GND	

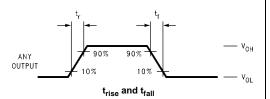
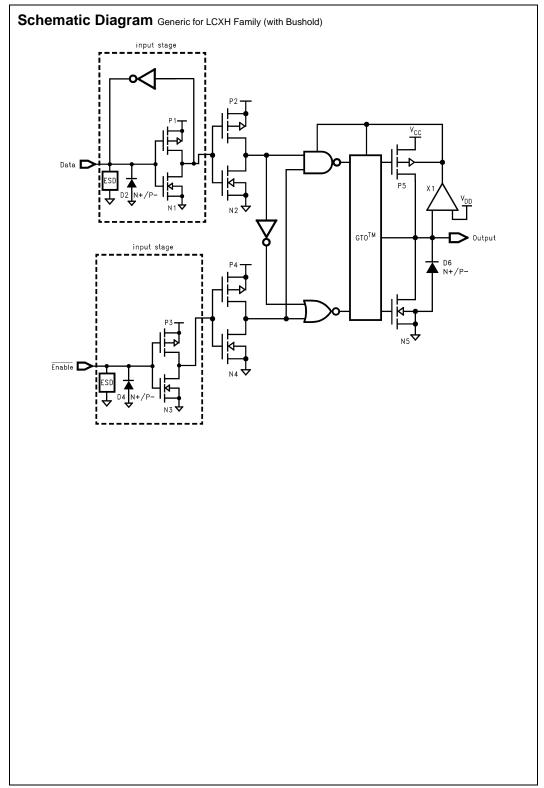
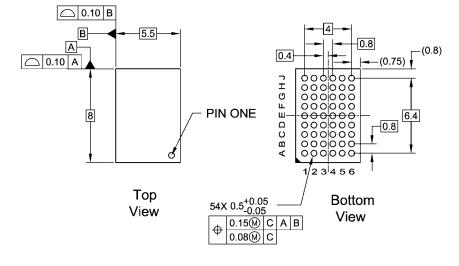

Waveform for Inverting and Non-Inverting Functions

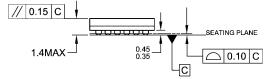

3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and t_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

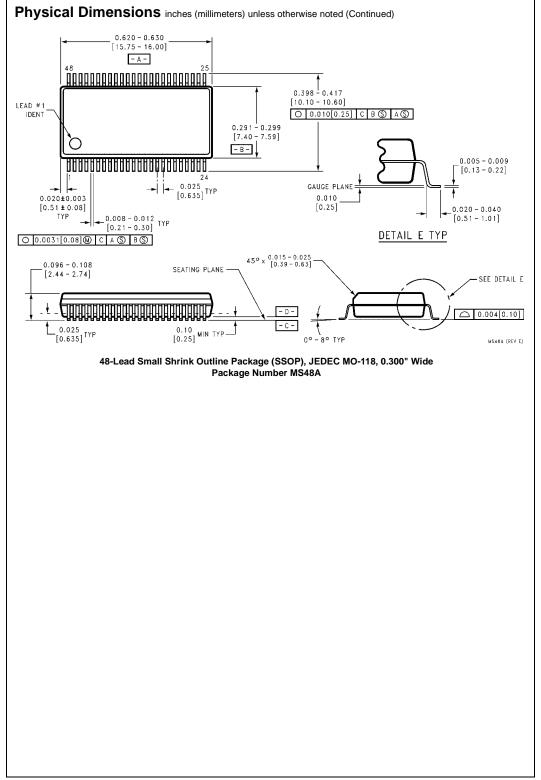
3-STATE Output Low Enable and Disable Times for Logic

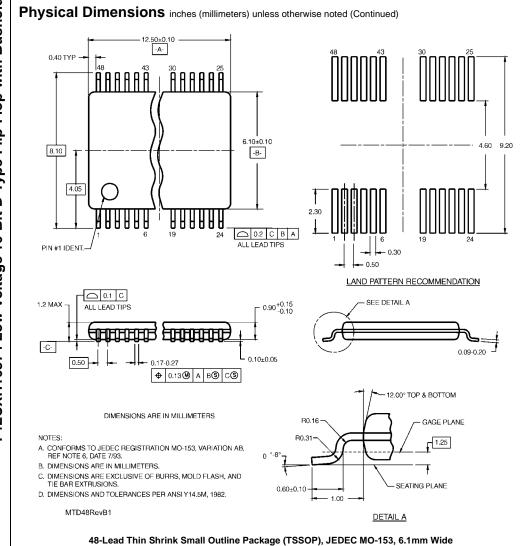





FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_r = t_f = 3ns$)

Symbol	V _{cc}		
	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V
V _{mi}	1.5V	1.5V	V _{CC} /2
V _{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V

Physical Dimensions inches (millimeters) unless otherwise noted




NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- **B. ALL DIMENSIONS IN MILLIMETERS**
- C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com