

February 1994 Revised April 1999

74LCX16646

Low Voltage 16-Bit Transceiver/Register with 5V Tolerant Inputs and Outputs

General Description

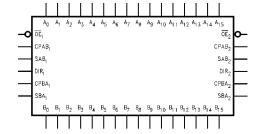
The LCX16646 contains sixteen non-inverting bidirectional registered bus transceivers with 3-STATE outputs, providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The DIR inputs determine the direction of data flow through the device. The CPAB and CPBA inputs load data into the registers on the LOW-to-HIGH transition (see Functional Description).

The LCX16646 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment

The LCX16646 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

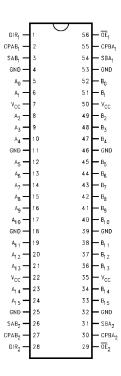
- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- \blacksquare 5.2 ns t_{PD} max (V $_{CC}$ = 3.3V), 20 μA I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA Output Drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human Body Model > 2000V Machine Model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX16646MEA MS56A 56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide		56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCX16646MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

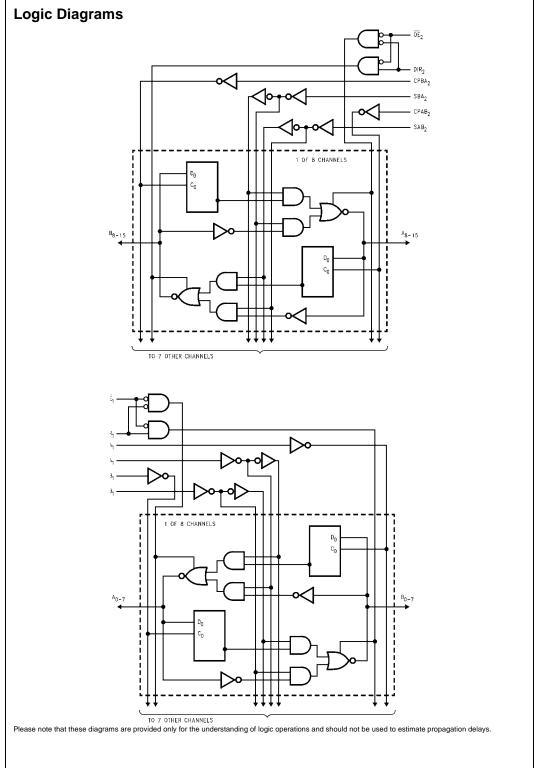

Logic Symbol

Pin Descriptions

Pin Names	Description
A _n	Side A Inputs or 3-STATE Outputs
B _n	Side B Inputs or 3-STATE Outputs
OE n	Output Enable Inputs
CPAB _n , CPBA _n	Clock Pulse Inputs
SAB _n , SBA _n	Select Inputs
DIR _n	Direction Control Inputs

Connection Diagram

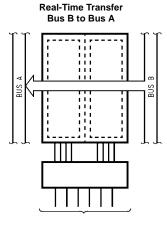
Truth Table

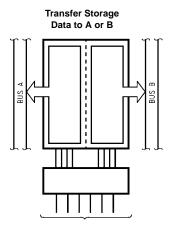

(Note 2)

(14010 2)								
		Inp	uts			Data I/O		Output Operation Made
OE ₁	DIR ₁	CPAB ₁	CPBA ₁	SAB ₁	SBA ₁	A ₀₋₇	B ₀₋₇ Output Operation Mode	
Н	Х	H or L	H or L	X	Х			Isolation
Н	X	~	Χ	X	X	Input	Input	Clock An Data into A Register
Н	X	X	~	X	X			Clock B _n Data Into B Register
L	Н	Х	Х	L	Х			A _n to B _n —Real Time (Transparent Mode)
L	Н	~	Χ	L	Χ	Input	Output	Clock A _n Data to A Register
L	Н	H or L	Χ	Н	Χ			A Register to B _n (Stored Mode)
L	Н	~	X	Н	X			Clock A_n Data into A Register and Output to B_n
L	L	Х	Х	Х	L			B _n to A _n —Real Time (Transparent Mode)
L	L	Χ	~	Χ	L	Output	Input	Clock B _n Data into B Register
L	L	Χ	H or L	X	Н			B Register to A _n (Stored Mode)
L	L	Χ	~	X	Н			Clock B_n into B Register and Output to A_n

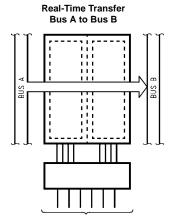
X = Immaterial

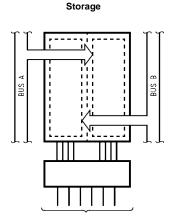
Note 2: The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control pins.


H = HIGH Voltage Level L = LOW Voltage Level


Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select $(\mathsf{SAB}_n,\ \mathsf{SBA}_n)$ controls can multiplex stored and real-time. The examples shown below demonstrate the four fundamental bus-management functions that can be performed.


The direction control (DIR_n) determines which bus will receive data when $\overline{\text{OE}}_n$ is LOW. In the isolation mode ($\overline{\text{OE}}_n$ HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.


OE DIR CPAB CPBA SAB SBA

OE DIR CPAB CPBA SAB SBA
L L X HorL X H
L H HorL X H X

OE DIR CPAB CPBA SAB SBA

OΕ	DIR	CPAB	CPBA	SAB	SBA
L	Н		Χ	L	Χ
L	Χ	Χ	_	Χ	L
Н	Χ	_	Χ	Χ	Χ
Н	Χ	Χ	_	Χ	Χ

Absolute Maximum Ratings(Note 3) Symbol **Parameter** Value Conditions Units Supply Voltage -0.5 to +7.0 V_{CC} DC Input Voltage -0.5 to +7.0 DC Output Voltage -0.5 to +7.0 Output in 3-STATE -0.5 to $V_{CC} + 0.5$ Output in HIGH or LOW State (Note 4) DC Input Diode Current $V_I < GND$ -50 mΑ DC Output Diode Current -50 $V_O < GND$ I_{OK} $\mathsf{m}\mathsf{A}$ +50 $V_O > V_{CC}$ I_0 DC Output Source/Sink Current ±50 mΑ DC Supply Current per Supply Pin ±100 mΑ DC Ground Current per Ground Pin ±100 mΑ Storage Temperature -65 to +150 °C

Recommended Operating Conditions (Note 5)

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: $\rm I_{\rm O}$ Absolute Maximum Rating must be observed.

 T_{STG}

Note 5: Unused inputs and I/Os must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Cymbol		Conditions	(V)	Min	Max	Oillis
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
lı	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 – 3.6		±5.0	μΑ
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}				μА
I _{OFF}	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μΑ

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°	C to +85°C	Units
- Cy	r aramoto.	- Communication	(V)	Min	Max	•
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μА
		3.6V ≤ V _I , V _O ≤ 5.5V (Note 6)	2.3 – 3.6		±20	μΛ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ

Note 6: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40$ °C to $+85$ °C, $R_L = 500\Omega$						
0	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	= 2.7V	V _{CC} = 2.	5V ± 0.2V	Units
Symbol	Parameter	C _L =	50 pF	C _L =	50 pF	C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	170						ns
t _{PHL}	Propagation Delay	1.5	5.2	1.5	6.0	1.5	6.2	ns
t _{PLH}	Bus to Bus	1.5	5.2	1.5	6.0	1.5	6.2	115
t _{PHL}	Propagation Delay	1.5	6.0	1.5	7.0	1.5	7.2	
t _{PLH}	Clock to Bus	1.5	6.0	1.5	7.0	1.5	7.2	ns
t _{PHL}	Propagation Delay	1.5	6.0	1.5	7.0	1.5	7.2	
t _{PLH}	Select to Bus	1.5	6.0	1.5	7.0	1.5	7.2	ns
t _{PZL}	Output Enable Time	1.5	7.5	1.5	8.5	1.5	9.8	ns
t _{PZH}		1.5	7.5	1.5	8.5	1.5	9.8	115
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.5	1.5	7.8	ns
t_{PHZ}		1.5	6.5	1.5	7.5	1.5	7.8	115
t _S	Setup Time	2.5		2.5		3.0		ns
t _H	Hold Time	1.5		1.5		2.0		ns
t _W	Pulse Width	3.0		3.0		3.5		ns
toshl	Output to Output Skew (Note 7)		1.0					
t _{OSLH}			1.0					ns

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
Symbol	r arameter	Conditions	(V)	Typical	Omits
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $F = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

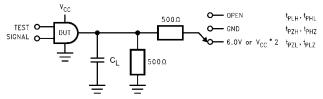
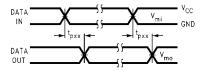
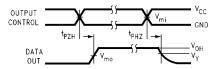
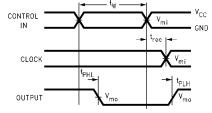
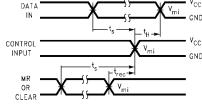
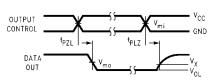




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t _{PZH} ,t _{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and t_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

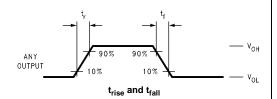
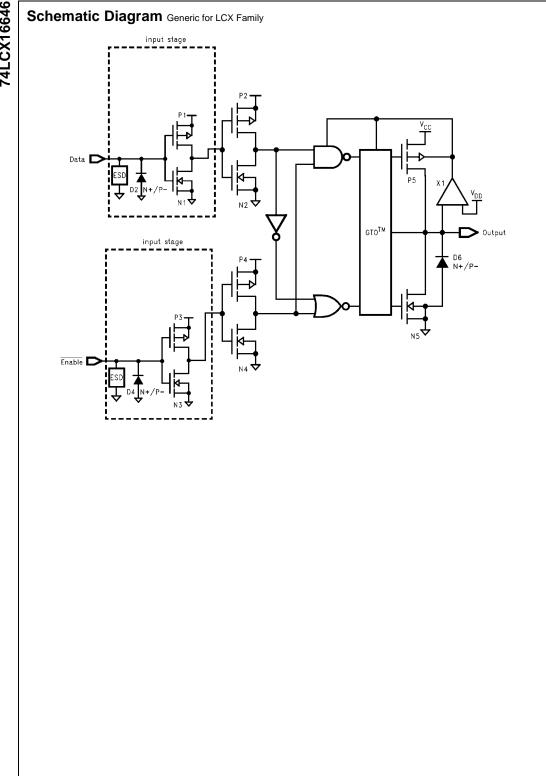
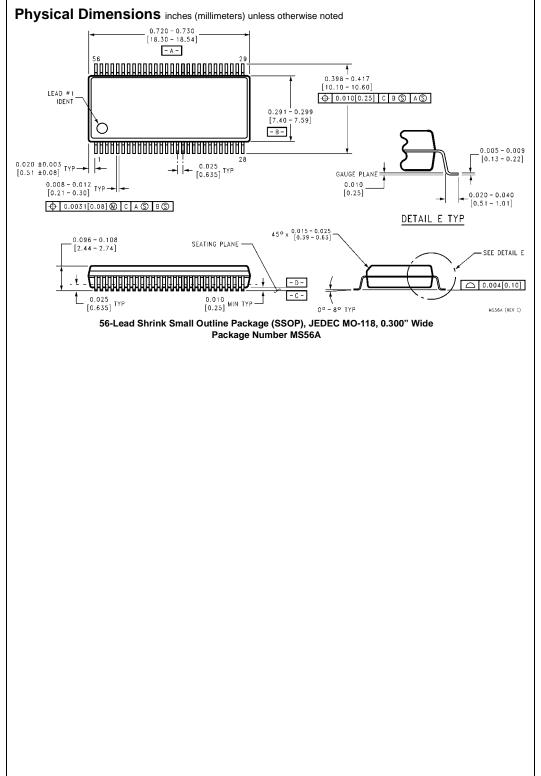
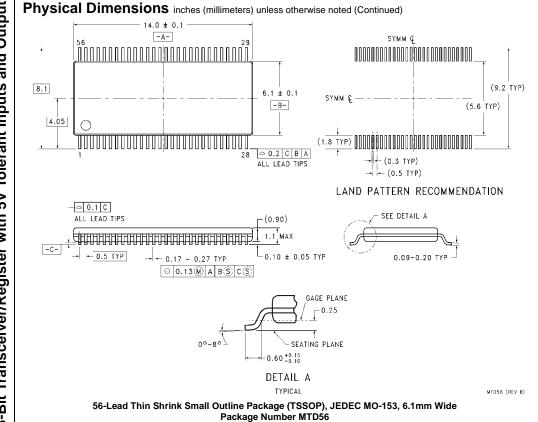





FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_R = t_F = 3ns$)

Symbol	V _{CC}					
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	2.7V	2.5V ± 0.2V			
V_{mi}	1.5V	1.5V	V _{CC} /2			
V_{mo}	1.5V	1.5V	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V			
V.,	V _{OH} - 0.3V	V _{OH} - 0.3V	V _{OH} - 0.15V			

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com