FAIRCHILD

SEMICONDUCTOR

74F543 Octal Registered Transceiver

General Description

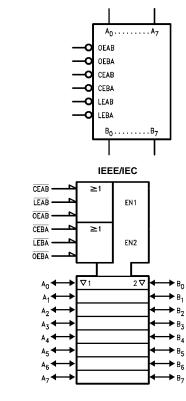
The F543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA while the B outputs are rated for 64 mA.

Features

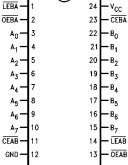
- 8-bit octal transceiver
- Back-to-back registers for storage
- Separate controls for data flow in each direction

April 1988

Revised March 1999


- A outputs sink 24 mA
- B outputs sink 64 mA

Ordering Code:


Order Number	Package Number	Package Description
74F543SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F543MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F543SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

© 1999 Fairchild Semiconductor Corporation DS009554.prf

74F543

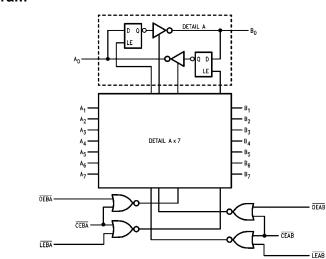
Unit Loading/Fan Out

Pin Names	D esistent	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
OEAB	A-to-B Output Enable Input (Active LOW)	1.0/1.0	20 µA/0.6 mA		
OEBA	B-to-A Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA		
CEAB	A-to-B Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
CEBA	B-to-A Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
LEAB	A-to-B Latch Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
LEBA	B-to-A Latch Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
A ₀ -A ₇	A-to-B Data Inputs or	3.5/1.083	70 μA/–650 μA		
	B-to-A 3-STATE Outputs	150/40 (33.8)	–3 mA/24 mA (20 mA)		
В ₀ –В ₇	B-to-A Data Inputs or	3.5/1.083	70 μA/–650 μA		
	A-to-B 3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)		

Functional Description

The F543 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (CEAB) input must be LOW in order to enter data from A₀-A₇ or take data from B₀-B₇, as indicated in the Data I/O Control Table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the CEBA, LEBA and OEBA inputs.

Data I/O Control Table


	Inputs		Latch	Output	
CEAB	LEAB	OEAB	Status	Buffers	
Н	Х	Х	Latched	High Z	
х	Н	Х	Latched	—	
L	L	Х	Transparent	—	
х	Х	Н	—	High Z	
L	Х	L	_	Driving	

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{CEBA}, \overline{LEBA}$ and \overline{OEBA}

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with V_{CC} = 0V) Standard Output 3-STATE Output Current Applied to Output -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

0°C to +70°C

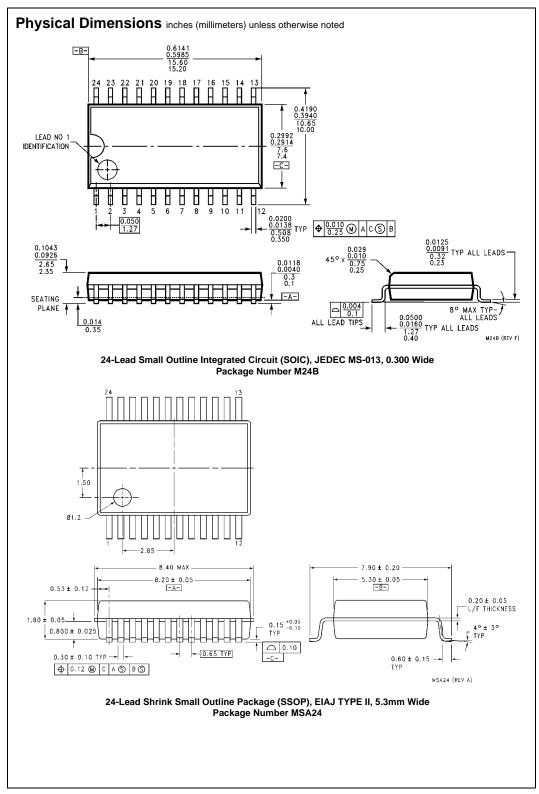
74F543

+4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

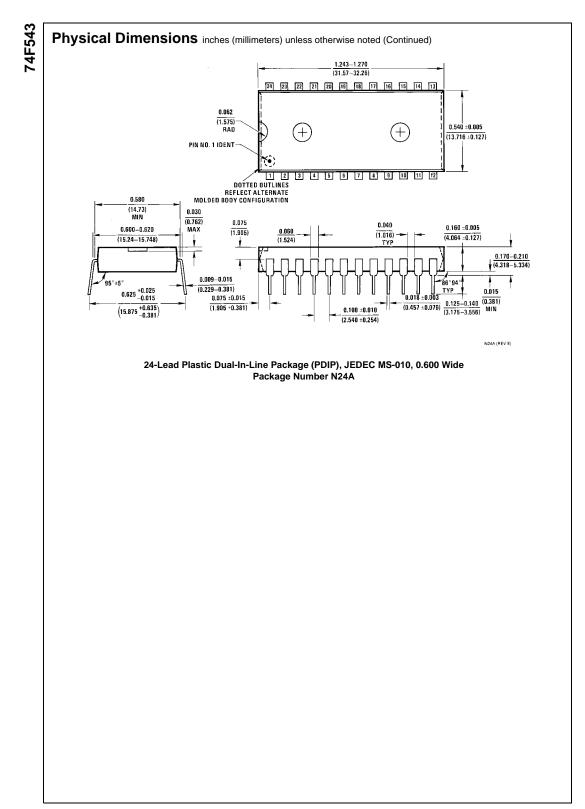
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

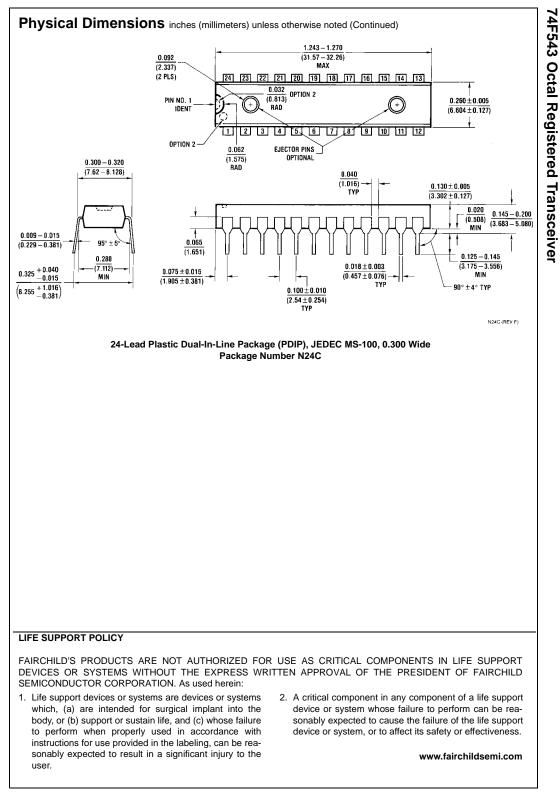
e an entri i ppne a	to output
in LOW State	(Max)


Symbol	Paramete	er	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volta	age			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$
		10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
		5% V _{CC}	2.7			V	Min	$I_{OH} = -1 \text{ mA} (A_n)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
		10% V _{CC}	2.0					I _{OH} = -15 mA (B _n)
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$
	Voltage	10% V _{CC}			0.55			$I_{OL} = 64 \text{ mA} (B_n)$
IIH	Input HIGH Current				5.0	μA	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current				7.0	μA	Max	(OEAB, OEBA, LEAB,
	Breakdown Test							LEBA, CEAB, CEBA)
I _{BVIT}	Input HIGH Current				0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$
	Breakdown (I/O)							
I _{CEX}	Output HIGH				50	μΑ	Max	V _{OUT} = V _{CC}
	Leakage Current							
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V (\overline{OEAB}, \overline{OEBA})$
					-1.2			$V_{IN} = 0.5V \ (\overline{CEAB}, \ \overline{CEBA})$
I _{IH} + I _{OZH}	Output Leakage Current	t			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current	t			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
I _{OS}	Output Short-Circuit Cur	rrent	-60		-150	mA	Max	$V_{OUT} = 0V(A_n)$
			-100		-225			$V_{OUT} = 0V (B_n)$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V (A_n, B_n)$
I _{CCH}	Power Supply Current			67	100	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			83	125	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			83	125	mA	Max	V _O = HIGH Z

DC Electrical Characteristics

			$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$				Units
Symbol	Parameter						
Symbol	Parameter		C _L = 50 pF				
		Min	Тур	Max	Min	Max	-
t _{PLH}	Propagation Delay	3.0	5.5	7.5	3.0	8.5	
t _{PHL}	Transparent Mode	3.0	5.0	6.5	3.0	7.5	ns
	A _n to B _n or B _n to A _n						
t _{PLH}	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
t _{PHL}	LEBA to A _n	4.5	8.5	11.0	4.5	12.5	
t _{PLH}	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
t _{PHL}	LEAB to B _n	4.5	8.5	11.0	4.5	12.5	
t _{PZH}	Output Enable Time						
t _{PZL}	\overline{OEBA} or \overline{OEAB} to A_n or B_n	3.0	7.0	9.0	3.0	10.0	
	CEBA or CEAB to An or Bn	4.0	7.5	10.5	4.0	12.0	ns
t _{PHZ}	Output Disable Time						
t _{PLZ}	\overline{OEBA} or \overline{OEAB} to A_n or B_n	1.0	6.0	8.0	1.0	9.0	
	\overline{CEBA} or \overline{CEAB} to A_n or B_n	2.5	5.5	10.5	2.5	11.5	


AC Operating Requirements


Symbol	Parameter		+25°C : +5.0V	T _A = 0°C to +70°C		Units
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5		
t _S (L)	A _n or B _n to LEBA or LEAB	3.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.5		
t _H (L)	A _n or B _n to LEBA or LEAB	3.0		3.5		
t _W (L)	Latch Enable, B to A or	8.0		9.0		ns
	B to A Pulse Width, LOW					

www.fairchildsemi.com

74F543

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.