FAIRCHILD

SEMICONDUCTOR

74ALVC16835 Low Voltage 18-Bit Universal Bus Driver with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16835 low voltage 18-bit universal bus driver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Data flow is controlled by output-enable (\overline{OE}) , latch-enable (LE), and clock (CLK) inputs. The device operates in Transparent Mode when LE is held HIGH. The device operates in clocked mode when LE is LOW and CLK is toggled. Data transfers from the Inputs (I_n) to Ouputs (O_n) on a Positive Edge Transition of the Clock. When OE is LOW, the output data is enabled. When OE is HIGH the output port is in a high impedance state.

The 74ALVC16835 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74ALVC16835 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

■ Compatible with PC100 DIMM module specifications

September 2001

Revised February 2002

- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n) 4.5 ns max for 3.0V to 3.6V V_{CC}
 - 5.5 ns max for 2.3V to 2.7V V_{CC} 9.2 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1) ■ Latchup conforms to JEDEC JED78
- ESD performance:
- Human body model > 2000V

Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} (OE to GND) through a pulldown resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

	Order Number	Package Number	Package Description			
	74ALVC16835MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available in Tape and Real. Specify by appending the suffix letter "Y" to the ordering code						

© 2002 Fairchild Semiconductor Corporation DS500645

74ALVC16835

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Connection D	iagram		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NC —	1	56	-GND
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NC -	2	55	- NC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₁	3	54	-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GND	4	53	-GND
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₂	5	52	-1 ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	о _{з —}	6	51	-1 ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{cc} —	7	50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₄ —	8	49	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	° ₅ —	9	48	- 1 ₅
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₆ —	10	47	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GND —	11	46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 ₇ —	12	45	- I ₇
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₈ —	13	44	-1 ₈
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₉ —	14	43	_ lg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 ₁₀ —	15	42	-1 ₁₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₁₁ —	16	41	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 ₁₂ —	17	40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GND 🗕	18	39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₁₃ —	19	38	-1 ₁₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₁₄ —	20	37	-1 ₁₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 ₁₅ —	21	36	-1 ₁₅
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{cc} —	22	35	-v _{cc}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ₁₆ —	23	34	
$\begin{array}{c} O_{18} - & 26 & 31 \\ \hline OE - & 27 & 30 \\ \hline \end{array} - CLK$	0 ₁₇ -	24	33	- I ₁₇
OE 27 30 CLK	GND —	25	32	- GND
		26	31	-1 ₁₈
LE - 28 29 - GND	ÖE -	27	30	
	LE 🗕	28	29	GND

Pin Descriptions

Pin Names	Description
OE	Output Enable Input (Active LOW)
LE	Latch Enable Input
CLK	Clock Input
I ₁ - I ₁₈	Data Inputs
I ₁ - I ₁₈ O ₁ - O ₁₈	3-STATE Outputs
NC	No Connect

Truth Table

	Inp	Outputs		
OE	OE LE CLK I _n			O _n
Н	Х	Х	Х	Z
L	Н	Х	L	L
L	Н	Х	н	н
L	L	\uparrow	L	L
L	L	\uparrow	н	н
L	L	н	Х	O ₀ (Note 2)
L	L	L	Х	O ₀ (Note 3)

H = Logic HIGH

L = Logic LOWX = Don't Care, but not floating

Z = High Impedance $\uparrow = LOW-to-HIGH Clock Transition$

Note 2: Output level before the indicated steady-state input conditions were established provided that CLK was HIGH before LE went LOW.

Note 3: Output level before the indicated steady-state input conditions were established.

Absolute Maximum Ratings(Note 4)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 5)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (I _{IK})	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T_{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

74ALVC16835

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed, limited to 4.6V. Note 6: Floating or unused control inputs must be held HIGH or LOW.

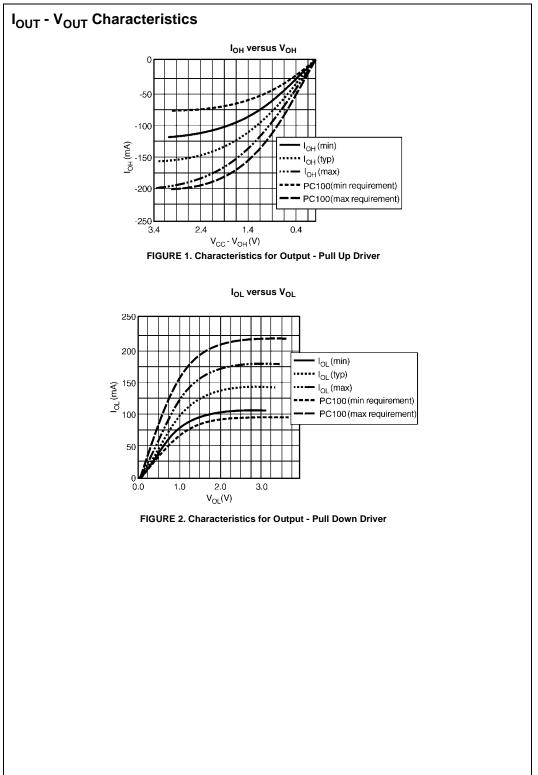
Symbol	Parameter	Conditions	V _{CC}	Min	Мах	Units
Symbol	Farameter	Conditions	(V)	WIIII	WIdx	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	$0.65 \times V_{CC}$		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		$0.35 \times V_{CC}$	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
V _{IL} V _{OH} V _{OL}		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	v
		I _{OL} = 12 mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA

DC Electrical Characteristics

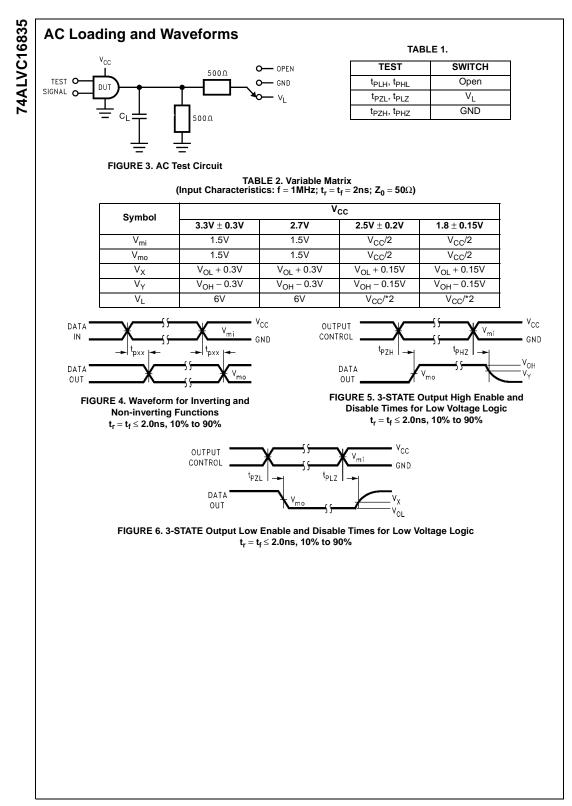
ŝ
က
ω
ဖ
~
C
>
1
∢
4
N

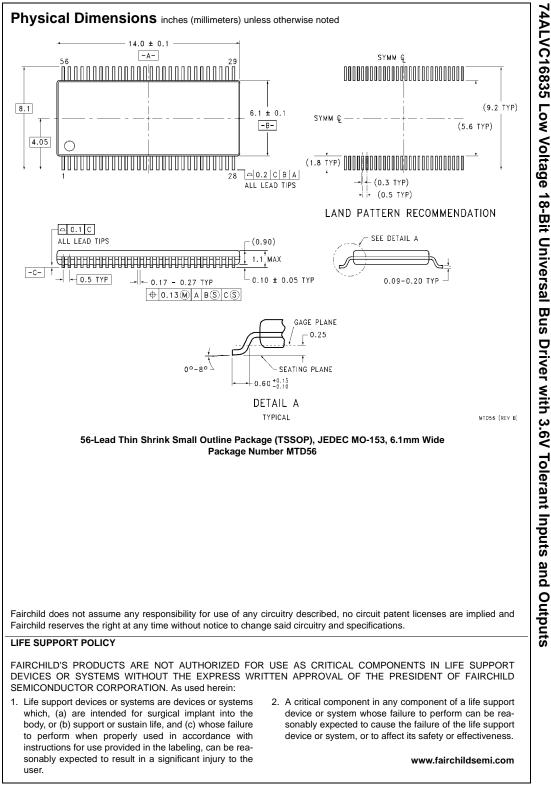
AC Electrical Characteristics

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$ $C_L = 50 \ pF$ $C_L = 30 \ pF$ Symbol Parameter Units $V_{CC}=3.3V\pm0.3V$ $V_{CC} = 2.7V$ $V_{CC} = 2.5V \pm 0.2V \quad V_{CC} = 1.8V \pm 0.15V$ Min Min Max Min Max Max Min Max 150 150 150 100 MHz **f**CLOCK Clock Frequency Pulse Width LE High 3.3 3.3 3.3 4.0 t_W ns CLK High or Low 3.3 3.3 3.3 4.0 Setup Time Data Before CLK 1.7 2.1 2.2 2.5 ts Data Before LE \downarrow CLK High 1.5 1.6 1.9 ns CLK Low 1.0 1.1 1.3 Data After CLK Hold Time 0.7 0.6 0.6 1.0 t_H Data After LE \downarrow CLK High ns 1.4 1.7 1.4 or Low 150 MHz f_{MAX} Maximum Clock Frequency 150 150 100 4.2 t_{PHL}, t_{PLH} Propagation Delay I to O 1 3.6 4.2 1.0 1.5 8.4 LE to O 1.3 5.0 1.5 9.8 4.2 4.9 1.3 ns CLK to O 1.4 4.5 5.2 1.4 5.5 2 9.2 t_{PZL}, t_{PZH} Output Enable Time 1.1 4.6 5.6 1.4 5.5 1.5 9.8 ns t_{PLZ}, t_{PHZ} Output Disable Time 1.3 3.9 4.3 1.0 4.5 1.5 7.6 ns


AC Electrical Characteristics Over Load (Note 7)

			$\textbf{R}_{L}=\textbf{500}\Omega,\textbf{V}_{\textbf{CC}}=\textbf{3.3}\pm\textbf{0.15V}$			
Symbol	Parameter	T _A = -0°0	$T_{A} = -0^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 0 \text{ pF}$		$T_{A} = -0^{\circ}C \text{ to } +65^{\circ}C$ $C_{L} = 50 \text{ pF}$	
	Farameter	C _L =				
		Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	0.9	2.0	1.0	4.0	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus	1.5	2.9	1.7	4.5	ns


Note 7: This parameter is guaranteed by characterization but not tested.


Capacitance

0h.el	Parameter		Conditions	T _A =	T _A = +25°C	
Symbol				V _{CC}	Typical	Units
CIN	Input Capacitance	Control	$V_I = 0V \text{ or } V_{CC}$	3.3	3	pF
		Data	$V_I = 0V \text{ or } V_{CC}$	3.3	6	рг
C _{OUT}	Output Capacitance	•	$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 0 \text{ pF}$	3.3	31	
				2.5	26	pF
		Outputs Disabled	$f = 10 \text{ MHz}, C_L = 0 \text{ pF}$	3.3	14	ρг
				2.5	12	

74ALVC16835

