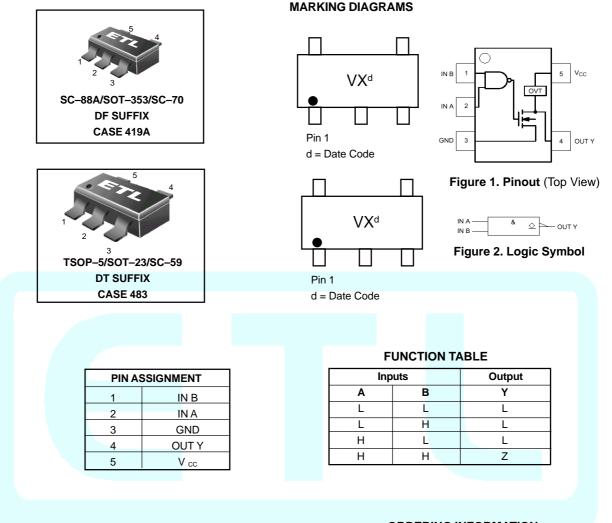


# 2-Input AND Gate with Open Drain Output




The MC74VHC1G09 is an advanced high speed CMOS 2-input AND gate with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G09 to be used to interface 5 V circuits to circuits of any voltage between V cc and 7 V using an external resistor and power supply.

The MC74VHC1G09 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage.

- High Speed: t  $_{PD}$  = 4.3 ns (Typ) at V  $_{CC}$  = 5 V
- Low Internal Power Dissipation: I  $_{CC}$  = 2 mA (Max) at T  $_{A}$  = 25°C
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 62; Equivalent Gates = 16



# ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.



# MC74VHC1G09

#### **MAXIMUM RATINGS**

| Symbol               | Paramete                        | er                                                         | Value          | Unit |
|----------------------|---------------------------------|------------------------------------------------------------|----------------|------|
| V <sub>cc</sub>      | DC Supply Voltage               |                                                            | - 0.5 to + 7.0 | V    |
| V IN                 | DC Input Voltage                |                                                            | - 0.5 to +7.0  | V    |
| V <sub>OUT</sub>     | DC Output Voltage               |                                                            | - 0.5 to +7.0  | V    |
| l <sub>ік</sub>      | Input Diode Current             |                                                            | -20            | mA   |
| I <sub>ок</sub>      | Output Diode Current            | V <sub>out</sub> < GND; V <sub>out</sub> > V <sub>cc</sub> | +20            | mA   |
| l <sub>out</sub>     | DC Output Current, per Pin      |                                                            | + 25           | mA   |
| I <sub>cc</sub>      | DC Supply Current, V cc and GNI | 0                                                          | +50            | mA   |
| PD                   | Power dissipation in still air  | SC–88A, TSOP–5                                             | 200            | mW   |
| $\theta_{\text{JA}}$ | Thermal resistance              | SC–88A, TSOP–5                                             | 333            | °C/W |
| ΤL                   | Lead Temperature, 1 mm from C   | ase for 10 s                                               | 260            | °C   |
| ΤJ                   | Junction Temperature Under Bias | 3                                                          | + 150          | °C   |
| T stg                | Storage temperature             |                                                            | -65 to +150    | °C   |
| V <sub>ESD</sub>     | ESD Withstand Voltage           | Human Body Model (Note 2)                                  | >2000          | V    |
|                      |                                 | Machine Model (Note 3)                                     | > 200          |      |
|                      |                                 | Charged Device Model (Note 4)                              | N/A            |      |
| LATCH-UP             | Latch–Up Performance Above      | V cc and Below GND at 125°C (Note 5)                       | ± 500          | mA   |

1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

2. Tested to EIA/JESD22-A114-A

3. Tested to EIA/JESD22-A115-A

4. Tested to JESD22–C101–A


5. Tested to EIA/JESD78

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                         | Parameter                   |                          | Min  | Max   | Unit |
|--------------------------------|-----------------------------|--------------------------|------|-------|------|
| V <sub>cc</sub>                | DC Supply Voltage           |                          | 2.0  | 5.5   | V    |
| V <sub>IN</sub>                | DC Input Voltage            |                          | 0.0  | 5.5   | V    |
| V <sub>OUT</sub>               | DC Output Voltage           |                          | 0.0  | 7.0   | V    |
| TA                             | Operating Temperature Range |                          | - 55 | + 125 | °C   |
| t <sub>r</sub> ,t <sub>f</sub> | Input Rise and Fall Time    | $V_{cc} = 3.3 \pm 0.3 V$ | 0    | 100   | ns/V |
|                                |                             | $V_{cc} = 5.0 \pm 0.5 V$ | 0    | 20    |      |

#### DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

| Junction       | Time,     | Time, |  |  |
|----------------|-----------|-------|--|--|
| Temperature °C | Hours     | Years |  |  |
| 80             | 1,032,200 | 117.8 |  |  |
| 90             | 419,300   | 47.9  |  |  |
| 100            | 178,700   | 20.4  |  |  |
| 110            | 79,600    | 9.4   |  |  |
| 120            | 37,000    | 4.2   |  |  |
| 130            | 17,800    | 2.0   |  |  |
| 140            | 8,900     | 1.0   |  |  |
|                |           |       |  |  |



TIME, YEARS

Figure 3. Failure Rate vs. Time Junction Temperature

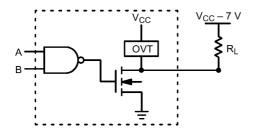


# MC74VHC1G09

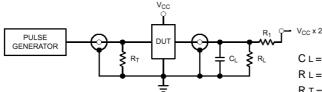
## DC ELECTRICAL CHARACTERISTICS

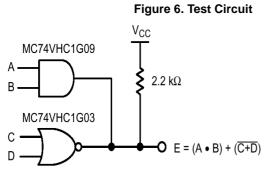
|                 |                                      |                                      | V <sub>cc</sub> | <b>T</b> <sub>A</sub> <b>= 25</b> °C |     | T <sub>∧</sub> ≤ | <b>85</b> °C | -55°C≤ | ≤T <sub>A</sub> ≤125°C |      |      |
|-----------------|--------------------------------------|--------------------------------------|-----------------|--------------------------------------|-----|------------------|--------------|--------|------------------------|------|------|
| Symbol          | Parameter                            | <b>Test Conditions</b>               | (V)             | Min                                  | Тур | Max              | Min          | Max    | Min                    | Max  | Unit |
| V IH            | Minimum High–Level                   |                                      | 2.0             | 1.5                                  |     |                  | 1.5          |        | 1.5                    |      | V    |
|                 | Input Voltage                        |                                      | 3.0             | 2.1                                  |     |                  | 2.1          |        | 2.1                    |      |      |
|                 |                                      |                                      | 4.5             | 3.15                                 |     |                  | 3.15         |        | 3.15                   |      |      |
|                 |                                      |                                      | 5.5             | 3.85                                 |     |                  | 3.85         |        | 3.85                   |      |      |
| V IL            | Maximum Low–Level                    |                                      | 2.0             |                                      |     | 0.5              |              | 0.5    |                        | 0.5  | V    |
|                 | Input Voltage                        |                                      | 3.0             |                                      |     | 0.9              |              | 0.9    |                        | 0.9  |      |
|                 |                                      |                                      | 4.5             |                                      |     | 1.35             |              | 1.35   |                        | 1.35 |      |
|                 |                                      |                                      | 5.5             |                                      |     | 1.65             |              | 1.65   |                        | 1.65 |      |
| V <sub>OH</sub> | Minimum High–Level                   | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | 2.0             | 1.9                                  | 2.0 |                  | 1.9          |        | 1.9                    |      | V    |
|                 | Output Voltage                       | I <sub>OH</sub> = - 50 μA            | 3.0             | 2.9                                  | 3.0 |                  | 2.9          |        | 2.9                    |      |      |
|                 | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                                      | 4.5             | 4.4                                  | 4.0 |                  | 4.4          |        | 4.4                    |      |      |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                                      |     |                  |              |        |                        |      |      |
|                 |                                      | I <sub>он</sub> = –4 mA              | 3.0             | 2.58                                 |     |                  | 2.48         |        | 2.34                   |      |      |
|                 |                                      | I <sub>он</sub> = -8 mА              | 4.5             | 3.94                                 |     |                  | 3.80         |        | 3.66                   |      |      |
| V <sub>OL</sub> | Maximum Low-Level                    | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | 2.0             |                                      | 0.0 | 0.1              |              | 0.1    |                        | 0.1  | V    |
|                 | Output Voltage                       | I <sub>OL</sub> = 50 μA              | 3.0             |                                      | 0.0 | 0.1              |              | 0.1    |                        | 0.1  |      |
|                 | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                                      | 4.5             |                                      | 0.0 | 0.1              |              | 0.1    |                        | 0.1  |      |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                                      |     |                  |              |        |                        |      |      |
|                 |                                      | $I_{OL} = 4 \text{ mA}$              | 3.0             |                                      |     | 0.36             |              | 0.44   |                        | 0.52 |      |
|                 |                                      | I <sub>oL</sub> =8 mA                | 4.5             |                                      |     | 0.36             |              | 0.44   |                        | 0.52 |      |
| I <sub>IN</sub> | Maximum Input                        | V $_{\rm IN}$ = 5.5 V or GND         | 0 to5.5         |                                      |     | ±0.1             |              | ±1.0   |                        | ±1.0 | μΑ   |
|                 | Leakage Current                      |                                      |                 |                                      |     |                  |              |        |                        |      |      |
| I <sub>cc</sub> | Maximum Quiescent                    | $V_{IN} = V_{CC} \text{ or } GND$    | 5.5             |                                      |     | 2.0              |              | 20     |                        | 40   | μΑ   |
|                 | Supply Current                       |                                      |                 |                                      |     |                  |              |        |                        |      |      |
| I OPD           | Maximum Off-state                    | V <sub>OUT</sub> = 5.5 V             | 0               |                                      |     | 0.25             |              | 2.5    |                        | 5.0  | μΑ   |
|                 | Leakage Current                      |                                      |                 |                                      |     |                  |              |        |                        |      |      |

## AC ELECTRICAL CHARACTERISTICS C $_{load}$ = 50 pF, Input t $_{r}$ = t $_{f}$ = 3.0 ns


|                   |                                                                                                        | T <sub>A</sub> = 25°C                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>A</sub> ≤ 85°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | –55°C to 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter         | Test Conditions                                                                                        | Min                                                                                                                                                                                                                                                                                                                                                                                                                      | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min                                                    | Max                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Maximum Output    | V CC = 3.3 ± 0.3 V C L = 15 pF                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 12.5                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enable Time,      | $R L = R I = 500 \Omega$ $C L = 50 pF$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 16.5                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Input A or B to Y |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | V CC = 5.0 ± 0.5 V C L = 15 pF                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 9.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | $R L = R I = 500 \Omega$ $C L = 50 pF$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 11.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Maximum Output    | V CC = 3.3 ± 0.3 V C L = 50 pF                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 16.5                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Disable Time      | R L = R I = 500 Ω                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | V CC = 5.0 ± 0.5 V C L = 50 pF                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 11.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | R L = R I = 500 Ω                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Maximum Input     |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 10                                                     | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Capacitance       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Maximum Output<br>Enable Time,<br>Input A or B to Y<br>Maximum Output<br>Disable Time<br>Maximum Input | Maximum OutputV $CC = 3.3 \pm 0.3$ V $CL = 15$ pFEnable Time,<br>Input A or B to YR L = R I = 500 $\Omega$ C L = 50 pFV $CC = 5.0 \pm 0.5$ V C L = 15 pFR L = R I = 500 $\Omega$ C L = 50 pFMaximum Output<br>Disable TimeV $CC = 3.3 \pm 0.3$ V C L = 50 pFR L = R I = 500 $\Omega$<br>V CC = $3.3 \pm 0.3$ V C L = 50 pFMaximum InputV CC = $5.0 \pm 0.5$ V C L = 50 pFMaximum InputV CC = $5.0 \pm 0.5$ V C L = 50 pF | ParameterTest ConditionsMinMaximum Output $V CC = 3.3 \pm 0.3 V C L = 15 pF$ $R L = R I = 500 \Omega C L = 50 pF$ Enable Time, $R L = R I = 500 \Omega C L = 50 pF$ $V CC = 5.0 \pm 0.5 V C L = 15 pF$ Input A or B to Y $V CC = 5.0 \pm 0.5 V C L = 15 pF$ $R L = R I = 500 \Omega C L = 50 pF$ Maximum Output $V CC = 3.3 \pm 0.3 V C L = 50 pF$ $R L = R I = 500 \Omega$ Disable Time $V CC = 5.0 \pm 0.5 V C L = 50 pF$ $R L = R I = 500 \Omega$ Maximum Input $V CC = 5.0 \pm 0.5 V C L = 50 pF$ $R L = R I = 500 \Omega$ | ParameterTest ConditionsMinTypMaximum Output $V CC = 3.3 \pm 0.3 V C L = 15 pF$<br>R L = R I = 500 $\Omega$ C L = 50 pF6.2Enable Time,<br>Input A or B to Y $V CC = 5.0 \pm 0.5 V C L = 50 pF$ 8.7V CC = 5.0 \pm 0.5 V C L = 15 pF<br>R L = R I = 500 $\Omega$ C L = 50 pF4.3Maximum Output<br>Disable Time $V CC = 3.3 \pm 0.3 V C L = 50 pF$ 5.8Maximum Input $V CC = 3.0 \pm 0.5 V C L = 50 pF$ 8.7Maximum Input $V CC = 5.0 \pm 0.5 V C L = 50 pF$ 5.8Maximum Input $V CC = 5.0 \pm 0.5 V C L = 50 pF$ 5.8 | Parameter Test Conditions Min Typ Max   Maximum Output V CC = $3.3 \pm 0.3$ V C L = $15$ pF 6.2 8.8   Enable Time, R L = R I = $500 \Omega$ C L = $50$ pF 8.7 12.3   Input A or B to Y V CC = $5.0 \pm 0.5$ V C L = $15$ pF 4.3 5.9   R L = R I = $500 \Omega$ C L = $50$ pF 5.8 7.9   Maximum Output V CC = $3.3 \pm 0.3$ V C L = $50$ pF 8.7 12.3   Disable Time V CC = $3.3 \pm 0.3$ V C L = $50$ pF 8.7 12.3   Maximum Output V CC = $3.3 \pm 0.3$ V C L = $50$ pF 8.7 12.3   Disable Time V CC = $5.0 \pm 0.5$ V C L = $50$ pF 8.7 12.3   Maximum Input V CC = $5.0 \pm 0.5$ V C L = $50$ pF 5.8 7.9   Maximum Input G D D D D D 5.8 7.9 | $\begin{array}{c c c c c c c c c } \mbox{Parameter} & \mbox{Test Conditions} & \mbox{Min} & \mbox{Typ} & \mbox{Max} & \mbox{Min} \\ \mbox{Maximum Output} & V CC = 3.3 \pm 0.3 V C L = 15 pF \\ Enable Time, \\ Input A or B to Y & \\ \hline V CC = 5.0 \pm 0.5 V C L = 50 pF & \\ \hline V CC = 5.0 \pm 0.5 V C L = 15 pF \\ R L = R I = 500 \Omega & C L = 50 pF & \\ \hline V CC = 3.3 \pm 0.3 V & C L = 50 pF & \\ \hline R L = R I = 500 \Omega & \\ \hline V CC = 5.0 \pm 0.5 V C L = 50 pF & \\ \hline R L = R I = 500 \Omega & \\ \hline V CC = 5.0 \pm 0.5 V C L = 50 pF & \\ \hline R L = R I = 500 \Omega & \\ \hline V CC = 5.0 \pm 0.5 V C L = 50 pF & \\ \hline R L = R I = 500 \Omega & \\ \hline V CC = 5.0 \pm 0.5 V C L = 50 pF & \\ \hline R L = R I = 500 \Omega & \\ \hline \end{array} \qquad \begin{array}{c} \mbox{A : } & $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Parameter Test Conditions Min Typ Max Min Max Min Max   Maximum Output V CC = $3.3 \pm 0.3$ V C L = 15 pF 6.2 8.8 10.5 12.5   Enable Time, R L = R I = 500 \Omega C L = 50 pF 8.7 12.3 14.0 16.5   Input A or B to Y V CC = $5.0 \pm 0.5$ V C L = 15 pF 4.3 5.9 7.0 9.0   Maximum Output V CC = $3.3 \pm 0.3$ V C L = 50 pF 8.7 12.3 14.0 16.5   Maximum Output V CC = $3.3 \pm 0.3$ V C L = 50 pF 5.8 7.9 9.0 11.0   Maximum Output V CC = $3.3 \pm 0.3$ V C L = 50 pF 8.7 12.3 14.0 16.5   Disable Time V CC = $5.0 \pm 0.5$ V C L = 50 pF 8.7 12.3 14.0 16.5   Maximum Input V CC = $5.0 \pm 0.5$ V C L = 50 pF 5.8 7.9 9.0 11.0   Maximum Input Maximum Input 6.0 10 10 10 10 |

|      |                                        | Typical @ 25°C, V $_{cc}$ = 5.0 V |    |
|------|----------------------------------------|-----------------------------------|----|
| C PD | Power Dissipation Capacitance (Note 6) | 18                                | рF |


6. C <sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC(OPR)} = C_{PD} X V_{CC} X f_{in} + I_{CC} C_{PD}$  is used to determine the no–load dynamic power consumption;  $P_{D} = C_{PD} X V_{CC}^2 X f_{in} + I_{CC} X V_{CC}$ .




# MC74VHC1G09



#### Figure 4. Output Voltage Mismatch Application





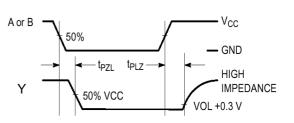
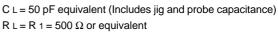




Figure 5. Switching Waveforms



R T = Z OUT of pulse generator (typically 50  $\Omega$ )

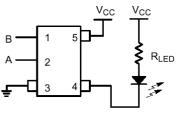



Figure 8. LED Driver

Figure 7. Complex Boolean Functions

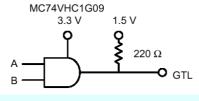



Figure 9. GTL Driver

## **DEVICE ORDERING INFORMATION**

| Device Order<br>Number | Logic<br>Circuit<br>Indicator | Temp<br>Range<br>Identifier | Technology | Device<br>Functio | Package<br>on Suffix | Tape and<br>Reel Suffix | Package Type<br>(Name/SOT#/<br>Common Name) | Tape and<br>Reel Size |
|------------------------|-------------------------------|-----------------------------|------------|-------------------|----------------------|-------------------------|---------------------------------------------|-----------------------|
| MC74VHC1G09DFT1        | MC                            | 74                          | VHC1G      | 09                | DF                   | T1                      | SC-70/SC-88A/                               | 178 mm (7 in)         |
|                        |                               |                             |            |                   |                      |                         | SOT-353                                     | 3000 Unit             |
| MC74VHC1G09DFT2        | MC                            | 74                          | VHC1G      | 09                | DF                   | T2                      | SC-70/SC-88A/                               | 178 mm (7 in)         |
|                        |                               |                             |            |                   |                      |                         | SOT-353                                     | 3000 Unit             |
| MC74VHC1G09DFT4        | MC                            | 74                          | VHC1G      | 09                | DF                   | T4                      | SC-70/SC-88A/                               | 330 mm (13 in)        |
|                        |                               |                             |            |                   |                      |                         | SOT-353                                     | 10,000 Unit           |
| MC74VHC1G09DTT1        | MC                            | 74                          | VHC1G      | 09                | DT                   | T1                      | SOT-23/TSOPS/                               | 178 mm (7 in)         |
|                        |                               |                             |            |                   |                      |                         | SC-59                                       | 3000 Unit             |
| MC74VHC1G09DTT3        | MC                            | 74                          | VHC1G      | 09                | DT                   | Т3                      | SOT-23/TSOPS/                               | 330 mm (13 in)        |
|                        |                               |                             |            |                   |                      |                         | SC59                                        | 10,000 Unit           |
|                        |                               |                             |            |                   |                      |                         |                                             |                       |