SEMICONDUCTOR

2-Input NAND Gate

MC74VHC1G00

The MC74VHC1G00 is an advanced high speed CMOS 2-input NAND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The MC74VHC1G00 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be used to interface 5 V circuits to 3 V
circuits.

- High Speed: $t_{p d}=3.0 \mathrm{~ns}$ (Typ) at $\mathrm{V} \mathrm{cc}=5 \mathrm{~V}$
- Low Power Dissipation: $I_{C C}=2 \mathrm{~mA}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families

MARKING DIAGRAMS

Pin 1
d = Date Code

Pin 1
$d=$ Date Code

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT $\overline{\mathrm{Y}}$
5	$\mathrm{~V}_{\mathrm{cc}}$

FUNCTION TABLE

Inputs		Output
\mathbf{A}	\mathbf{B}	$\overline{\mathbf{Y}}$
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

SEMICONDUCTOR

MC74VHC1G00

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage	-0.5 to V cc +0.5	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	± 20	mA
I ок	DC Output Diode Current	± 20	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Sink Current	± 12.5	mA
I cc	DC Supply Current per Supply Pin	± 25	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance SC-70/SC-88A (Note 1)	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TSOP-5	200	
P_{D}	Power Dissipation in Still Air at 85C SC-70/SC-88A	150	mW
	TSOP-5	230	
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\%-35\%	UL 94 V-0 (0.125 in)	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2)	>2000	V
	Machine Model (Note 3)	> 200	
	Charged Device Model (Note 4)	N/A	
$\mathrm{I}_{\text {Latch-up }}$	Latch-Up Performance Above V cc and Below GND at 85C (Note 5)	± 500	mA

Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0.0	5.5	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0.0	$\mathrm{~V}_{\mathrm{cc}}$	V
T_{A}	Operating Temperature Range		-55	+125
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	0	100
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	0	$\mathrm{~ns} / \mathrm{V}$
			0	

DEVICE JUNCTION TEMPERATURE VERSUS

 TIME TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathrm{C}$ | Time,
 Hours | Time,
 Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 3. Failure Rate vs. Time Junction Temperature

MC74VHC1G00
DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\text {IH }}$	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{array}{\|c\|} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{array}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V он	Minimum High-Level Output Voltage $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {H }}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {OH }}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\left\|\begin{array}{l} 2.58 \\ 3.94 \end{array}\right\|$			$\begin{aligned} & 2.48 \\ & 3.80 \\ & \hline \end{aligned}$		$\begin{array}{\|l} 2.34 \\ 3.66 \\ \hline \end{array}$		
V oL	Maximum Low-Level Output Voltage$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathbb{I L}}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathbb{I L}} \\ & \mathrm{I}_{\text {OL }}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\left\|\begin{array}{l} 0.44 \\ 0.44 \end{array}\right\|$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	0 to5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I cc	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {cc }}$ or GND	5.5			2.0		20		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $C_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		${ }^{-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$,	Maximum	$\mathrm{V}_{\mathrm{cc}}=3.3 \pm 0.3 \mathrm{~V} \quad \mathrm{C}_{L}=15 \mathrm{pF}$		4.5	7.9		9.5		11.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Input A or B to \bar{Y}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5.6	11.4		13.0		15.1	
		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{cc}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 8.5 \end{aligned}$		$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			5.5	10		10		10	pF
			Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$							
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 6)		10						pF	

6. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \cdot V_{C C} \cdot f_{\text {in }}+I_{C C} \cdot C_{P D}$ is used to determine the noload dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathrm{cc}}$.

Figure 4. Switching Waveforms

OUTPUT
*Includes all probe and jig capacitance. A $1-\mathrm{MHz}$ square input wave is recommended for propagation delay tests.

Figure 5. Test Circuit

SEMICONDUCTOR

MC74VHC1G00

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size
	Logic Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape and Reel Suffix		
MC74VHC1G00DFT	MC	74	VHC1G	00	DF	T1	SC-70/SC-88A/	178 mm (7 in)
							SOT-353	3000 Unit
MC74VHC1G00DFT2	MC	74	VHC1G	00	DF	T2	SC-70/SC-88A/	178 mm (7 in)
							SOT-353	3000 Unit
MC74VHC1G00DTT1	MC	74	VHC1G	00	DT	T1	SOT-23/TSOP-5/	178 mm (7 in)
							SC-59	3000 Unit

