

SiW1750 Baseband Processor Data Sheet

BLUETOOTHTM SOLUTIONS

1 INTRODUCTION

The SiW1750 Baseband Processor is part of Silicon Wave's second-generation solutions for Bluetooth[™] wireless communications. The SiW1750 provides the essential Bluetooth baseband link control and link management that meets Bluetooth 1.1 specification in a digital system-on-chip (SoC) with integrated firmware up to the HCI. Combined with the SiW1701 or SiW1502 Radio Modem ICs, it provides a complete and cost effective hardware solution to integrate into products.

2 FEATURES

- Small footprint 132-pin BGA package (8 x 8 mm).
- Fully compliant Bluetooth 1.1 component.
- Low power 1.8 V core with flexible 1.8 V or 3.3 V I/O voltage.
- Full piconet with 7 slaves support.
- Scatternet support.
- Full speed Bluetooth operation.
- HCI UART and USB transport support.
- CODEC interface for audio applications.
- External flash memory interface.
- Easy migration to cost-reduced ROM device.
- ARM7 TDMI® industry standard processor.
- Support for low power sleep modes.

3 APPLICATIONS

The SiW1750 Baseband Controller is ideally suited for high performance systems with fast data transfer and multiple device connectivity requirements. When combined with the SiW1701 or SiW1502 Radio Modem IC, a low power and cost effective integrated Bluetooth system can be easily integrated into the following products:

- Bluetooth enabled printers for home or office.
- Built-in or add-on accessory options for notebook PCs.
- PDAs (personal digital assistant) and palmtop computers.
- Bluetooth enabled network access stations.
- Audio applications such as headsets and mobile phones.

Figure 1: SiW1750 Baseband Processor IC Block Diagram

A typical design of a Bluetooth compliant product consists of the SiW1701 Radio Modem and the SiW1750 Baseband Processor. The Bluetooth link manager firmware is stored in external flash memory. Figure 2 illustrates the connection flow between the system's main components for designs using the SiW1750.

Figure 2: Bluetooth Subsystem

4 BLUETOOTH SUBSYSTEM

4.1 Overview

Adding Bluetooth connectivity to a system is as simple as including the Bluetooth radio, baseband, and link manager firmware. The host system then interfaces to the Bluetooth subsystem via the host controller interface (HCI) transport. The host system can also execute the Bluetooth protocol stack and application software.

Silicon Wave's chip set provides the required Bluetooth connectivity to a system. Starting with the SiW1701 radio modem chip that provides the industry's highest integrated functions and the best RF performance, to the SiW1750 baseband chip with integrated ARM processor core for the execution of Bluetooth firmware, Silicon Wave provides the most efficient solution to enable an OEM project. At the heart of the solution is the SiW1750 baseband hardware and link manager firmware.

4.2 SiW1750 Hardware and Firmware Features

The Bluetooth baseband and link manager firmware provide the essential functions of Bluetooth physical and logical connectivity. The link manager firmware resides in external flash memory. In conjunction with the baseband hardware, the ARM7TDMI processor and the necessary peripherals, the solution provides the following features:

- Supports Bluetooth specification version 1.1 defined connections, links and packet types:
 - FEC-forward error correction.
 - Whiten/De-whiten-scramble/unscramble.
 - **Encrypt/Decrypt**-apply/remove encryption.
 - CRC-cyclic redundancy check.
 - **HEC**-header error correction.
 - Tx/Rx Buffers-storage for received packets and packets to be transmitted.
- ACL and SCO links supported for data and voice applications.
- Point-to-point and point-to-multipoint (with 7 active and 7 parked slaves) connections.
- HCI UART (H:4) and USB (H:2) transports.
- Multi-slot packets minimize packet overhead and maximize data throughput.
- Encryption, authentication, and pairing provide secure data transfer between devices.
- Hold, sniff, and park modes maximize device connectivity and battery life.
- Bluetooth test modes facilitate production testing of the system.

4.3 SiW1750 Audio Features

The SiW1750 incorporates dedicated audio processing circuits to convert audio data between CVSD, linear PCM, and log PCM (A-law or μ -law). The CVSD circuit is useful during SCO connections where data is being transmitted over the air in CVSD format. The converted data can then be directed to an external audio CODEC via the CODEC interface on the SiW1750.

5 EXTERNAL SYSTEM INTERFACES

5.1 Radio Interface

The external radio interface provides control and data transfer capabilities to and from the radio chip. To minimize the power consumption, the interface is designed to operate at 1.8 or 3.0 V. The link manager firmware controls the radio interface at all times so customer intervention is not required.

5.2 Host HCI Transport (H:4 UART)

The high speed UART interface provides the physical transport between the SiW1750 and the application host for the transfer of Bluetooth control signals and data compliant to the Bluetooth section H:4 specification. Table 1 shows the supported bit rates. The default baud rate is 115,200, but can be configured depending on the application.

SiW1750 HCI UART Parameters	Required Host Setting
Number of data bits	8
Parity bit	No parity
Stop bit	1 stop bit
Flow control	RTS/CTS
Host flow-off response requirement from SiW1750	8 bytes
SiW1750 flow-off response requirement from host	2 bytes
	9.6k, 19.2k, 38.4k, 57.6k,
Supported baud rates	115.2k ¹ , 230.4k, 460.8k, 500k, 921.6k, 1M

Table 1: Host HCI Transport

¹ Default baud rate.

5.3 Host HCI Transport (H:2 USB)

The USB transport is compliant to USB 1.1 specification and the HCI transport specification within Section H:2 of the Bluetooth specification with all end points supported. The SiW1750 USB interface encompasses three I/O signals: USB_DPLS, USB_DMNS, and USB_DPLS_PULLUP. The USB_DPLS_PULLUP signal is used to control the state of pull-up on the USB_DPLS signal. There are two additional signals, EXT_WAKE and HOST_WAKE, which can be used as signals for power management of the SiW1750 device from the USB host.

A separate sideband signal, HCI_UART_CTS_USB_DETACH, is used to force the USB controller to detach from the USB bus. This input to the SiW1750 is optional and should be pulled low when not used.

5.4 Audio CODEC Interface

The SiW1750 supports direct interface to an external audio CODEC. The interface is configurable to support:

- Standard 64-KHz PCM clock rate.
- Up to 2-MHz clock rates with support for multi-slot handshakes and synchronization.
- Either master or slave (Motorola SSI) mode.

Configuration of the CODEC interface is done by the firmware during boot-up by reading non-volatile memory (NVM) parameters.

The following are examples of supported CODEC modes:

- Generic 64-kHz audio CODEC, such as the OKI MSM-7702.
- Motorola MC145481 or similar CODEC as master.
- Motorola SSI mode as slave device.

5.5 Programmable I/O (PIO)

Eight (8) programmable IO PIO ports are available for customer use in the SiW1750. The PIO ports can be set to input or output. Reading, writing, and controlling the PIO pins by the host application software can be done via vendor specific HCI commands.

5.6 External Memory/Peripheral Interface

An external memory and peripheral interface is available in the SiW1750. Using the external memory interface permits direct connection to memory devices such as flash (recommended flash part: Am29LV200B, part number DS42615), SRAM, and other memory mapped I/O devices such as bridge chips. The interface contains a 22-bit address bus and 16-bit data bus and either 16-bit or 8-bit devices are supported, with four (4) chip-select signals to select the target device. The control of the external memory interface such as timing/wait states is done within the configuration firmware of the boot memory.

5.7 External EEPROM Controller and Interface

The EEPROM interface is not required for configurations with external flash and is not used with the SiW1750. This interface is intended for use with ROM-based solutions. In this case, the EEPROM is the non-volatile memory (NVM) in the system and contains many system configuration parameters such as the Bluetooth device address, the CODEC type, as well as other system related parameters. These default parameters are set at the factory, and some parameters will change depending on the system configuration. Please consult the Silicon Wave application support team for details.

6 CONFIGURATION SELECTION DURING BOOT UP

6.1 HCI Transport Interface Selection

The HCI transport (USB or UART) is selected on power up by sampling PIO2.

Value	Description
0	UART
1	USB

6.2 Firmware Boot Memory Selection

Programmable IO (PIO) pins are sampled at power-on-reset to provide control signals that are required before firmware code is executed. The values on the PIO[0] and PIO[1] pins are sampled when the SYS_RESET_N signal transitions from 0 to 1. After this point, the values on the pins may change to suit any desired application without affecting the captured values. Table 2 shows the pins that are captured and how the captured data is used.

PIO[o]	PIO[1]	Definition
0	0	Boot from internal ROM.
0	1	Reserved.
1	0	Boot from 16-bit external flash (chip select FCS_N).
1	1	Reserved.

Table 2: PIO Pins

7 ON-CHIP MEMORY

20 KB of synchronous static RAM is included on the chip. The SRAM memory is used by the link manager firmware for data storage and is not accessible by the host/application.

Boot ROM is included on the chip and serves to control the boot sequence as well as to direct the execution to the appropriate place for further operation. Further operation may be one of the following:

- Execution of code in off-chip flash
- Flash code download/update utility

8 POWER MANAGEMENT

8.1 General System Power Management Control

EXT_WAKE and HOST_WAKEUP are used by the host and the SiW1750 to signal to each other the status of the power management. These signals are used in both the USB and UART HCI systems.

The active level for both EXT_WAKE and HOST_WAKEUP may be either a low or high voltage level depending on the user configuration. This polarity defaults to "active low" that wakes up the respective device, but it is programmable through an NVM parameter.

- **EXT_** From Host to SiW1750. The polarity of this sig-
- WAKE nal is programmable via an NVM parameter; the default is active low. When this signal is asserted, it causes the SiW1750 to remain awake and ready to communicate with the host. When this signal is de-asserted, it allows the SiW1750 to enter its lowest power consumption state.
- HOST_ From SiW1750 to Host. The polarity of this sig-
- **WAKEUP** nal is programmable via an NVM parameter; the default is active low. When this signal is asserted, the host must remain awake and ready to communicate with the SiW1750. When this signal is de-asserted, it allows the host to optionally shut down the HCI and enter a low power state.

EXT_WAKE and HOST_WAKEUP are on the HCI UART power rail. In UART HCI operational modes this power rail may be either 1.8 V or 3.0 V depending on the voltage of the host/transceiver. In the USB HCI operational mode, this power rail is connected to the USB regulated voltage of 3.2 V.

9 POWER SUPPLY REQUIREMENTS

There are multiple power requirements in the SiW1750 that need to be supplied with the proper voltage. Depending on the type of device connected and the desired power management control, various configurations are possible.

Pin	Usage	Voltage
VDD_RM	I/O voltage for radio interface.	3.3 V ± 10%, 3.0 V ± 10%, 1.8 V ± 10%.
VDD_USB	I/O PAD voltage for USB transceiver.	3.1 V to 3.6 V.
VDD_UART	I/O PAD voltage for UART HCI transport.	3.3 V ± 10%, 3.0 V ± 10%, 1.8 V ± 10%.
VDD_P	I/O PAD voltage for all other I/O's.	3.3 V ± 10%, 3.0 V ± 10%, 1.8 V ± 10% 3.3 V with AMD flash.
VDD_C	Core digital voltage.	1.8 V ± 10%.
VDD_S	Core digital supply for ROM memory.	1.8 V ± 10%.
VDD_PLL	Power for 32.768-kHz oscillator circuit and PLL for the USB con- troller.	1.8 V ±10%.
VSS_X (all pins)	Ground.	Common ground.

Table 3: Power Requirements

10 CLOCKING REQUIREMENTS

10.1 System Clock

The SiW1750 uses a 16-MHz system clock as the reference clock rate for internal system functions.

The USB logic has its own PLL circuit to generate the required 48-MHz clock from the 16-MHz main system clock. This 48-MHz clock is used exclusively for the USB controller logic. This 48-MHz clock is internal to the SiW1750 is not available to the host or application software.

10.2 Low Power Clock

For the Bluetooth low power clock, a 32.768-kHz crystal may be used to drive the SiW1750 oscillator circuit, or alternatively, a 32.768-kHz reference clock signal can be used instead of a crystal. If lowest power consumption is not required during low-power modes such as sniff, hold, park, and idle modes, the 32.768-kHz crystal may be omitted in the design.

11 JTAG AND TEST INTERFACE

11.1 Boundary Scan

There is an implementation of IEEE 1149.1 JTAG on the SiW1750. It supports only the mandatory instructions.

The IDCODE for the device is formed from the 8-bit JEDEC code for Silicon Wave and the version register.

Bits	Field	Value	Comment
31:28	HW version register.	0x02	
27:24	Unused.	0x0	Reserved for future use.
23:18	Product code.	0x02	Identification of the SiW1750.
17:12	Major features.	0x03	CVSD accelerator and USB port present.
11:1	Manufacturer.	0x17C	See below.
0	LSB.	0x1	Fixed value of 1.

Table 4: JTAG and Test Interface¹

¹ The manufacturer code is formed from the Silicon Wave JEDEC code of 0x7C0 bank 3 in the manner described.

12 PINOUT

12.1 Pin Diagram

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A B C D	A1 HCI_UAR_T VDD_UART VDD_UART HCI_UART_CTS USB_DETACH USB_DETACH D1	(A2) HCL_DAR_R TS (B2) HCL_DAR_R (C2) A[17] (D2)	A3 RACS_N B3 HOST_ WAKEUP C3 EXT_WAKE D3 FOR T	(A4) A[9] (B4) D[9] (C4) CODEC_P CMIN	(A5) A[4] (B5) D[4] (C5) CODEC_B CLK	$(A6)$ $D[1]$ $(B6)$ $A[1]$ $(C6)$ $VS5_P$	A7 oE_N B7 CODEC PCMOUT VDD_P	(A8) A[6] B8 VDD_C (C8) D[6]	A9 contc_s Vic B9 VDD_P VDD_P	A10 PI0[5] B10 VS5_C (10) PI0[3]	(A11) $A(19)$ $(B11)$ $P(0[6]$ $(C11)$ $A(18)$	A12 USB_DMNS B12 USB_DPLS_ PULUP C12 VSS_USB D12	A13 VDD_USB (B13) USB_DPLS (13) VSS_PLL (D13) USD	A14 VDD_PLL B14 CLK32K_IN CL4 CLK32K_ OUT D14 Uat
Ε	(E1)	E2	E3									E12	E13	(E14)
F	A[10]	VSS_C (F2) A[8]	F3 VSS_P									EEPROM_WP	(F13)	F14 EEPROM_
G	G1	G2	G3			S	SiW1	175	0			G12	G13	G14
Н			H3			Т	OP Y	VIE	N			H12	SCL VDD P	H14
J	J1 VDD P													J14 VDD C
K	(K1)	K2 VSS_P	K3 VDD_C									(K12)	K13	K14 BL1_N
L												(L12)	(L13)	L14
м	(M1)	M2	M3	(M4)	(M5)	(M6)	M7	<u>M8</u>	M9	M10	(M11)	M12	M13	M14
Ν		A[11]	D[14]	A[14]	RM_TX_DATA	VSS_P	VDD_RM	N8	VSS_P	SPI_CLK	N11	PWR2_EN	PWR1_EN	ENABLE_RM
Ρ	PIO[0]	PIO[4]	TMODE[0]	VSS_C	RBCS_N (P5) A[16]	VDD_C P6 SPI_MISO	VSS_C P7 SPI_MOSI	TMODE[1]	VSS_C P9 SYS_CLK	VDD_C P10 VSS_P	VDD_RM	TX_DATA	RM_RESET_N	VDD_RM
		2												

GROUND

12.2 Pin List

Table 5 shows a complete list of the pins on the SiW1750.

Neme		Dell	Comment	Reset				
Name	і/О туре	Ball	Comment	Direction and				
System Clock and	Pocot (Power from)	ום חח/	M)	output ratue				
System Clock and								
SYS_CLK	CMOS Input	P9	System clock input at 16 MHz.	_				
SYS_RESET_N	CMOS Input	P8	Power-up reset for the chip. Active low.	_				
Crystal Oscillator	(Power from VDD_P	LL)						
CLK32K_IN	Analog	B14	For crystal or external clock input (32.768 kHz).	_				
CLK32K_OUT	Analog	C14	Drive for crystal.	-				
Power Control Inte	erface (Power from V	/DD_R/	n)					
	CHOC O. t t	14.2	Enable for optional external switch to control power to	1				
PWR2_EN	CMOS Output	M12	VDD_S power pad (internal ROM).	In				
	CMOS Quitaut	M12	Enable for optional external switch to control power to	l m				
PWKI_EN	CMOS Output	10112	VDD_P power pad (external flash and CODEC).	111				
		M14	Enable for the radio modem. Forced high during reset.	"1"				
ENADLE_KM	CMOS Output	11114	Active high.	I				
Radio Modem Inte	Radio Modem Interface (Power from VDD_RM)							
SPI_MISO	CMOS Input	P6	SPI port serial data.	_				
SPI_MOSI	CMOS Output	P7	SPI port serial data.	"0"				
SPI_CLK	CMOS Output	M10	SPI port clock for serial data.	"0"				
SPI_SS	CMOS Output	M11	SPI port slave select signal.	"1"				
	CMOS Output	N13	Reset control for the radio modem.	"0" then "1"				
KIWI_KESET_IN			Active low.	U then I				
PM CD TYEN	Bi-directional with	D13	Carrier detect from radio modem during receive slots and	In				
	internal pull-down	117	transmit enable control during transmit slots.					
RM_HOP_STRB	CMOS Output	N14	Hop strobe signal for radio modem.	"0"				
RM RX TX DATA	Bi-directional with	N12	Normally bi-directional, but may also be used as receive	In				
	internal pull-down	1112	data from radio modem.					
RM_TX_DATA	CMOS output	M5	Transmit data to radio modem.	"0"				
Peripheral Interfa	ce (Power from VDD	_P)						
PIO[7]	Bi-directional	E14	Programmable input/output.	"0"				
PIO[6]	Bi-directional	B11	Programmable input/output.	"0"				
PIO[5]	Bi-directional	A10	Programmable input/output.	"0"				
			Programmable input/output.					
	Bi-directional	NO	Sampled following reset.	"0"				
F10[4]	Di-unectionat	NZ	PIO[4] = 0, execute ROM application.	U				
			PIO[4] = 1, execute flash application.					
PIO[3]	Bi-directional	C10	Programmable input/output	"1"				
			Programmable input/output.					
PIO[2]	Bi-directional	L1	Sampled following reset.	In				
			PIO[2] = 0, selects UART transport.					
			PIO[2] = 1, selects USB transport.					

Table 5: SiW1750 Pin List

Data Sheet

Name	I/О Туре	Ball	Comme	Reset Direction and Output Value					
			Program	nmable in	put/output sampled following reset to				
			select fi	rmware bo	pot.				
PIO[1]	Ri-directional	Ц1	PIO[0]	PI0[1]	Definition	In			
FIO[1]	Di-unectionat	пт	0	0	Boot from internal ROM.	111			
	Bi-directional	N1	0	1	Reserved.	In			
	Di-unectionat	INT	1	0	Boot from 16-bit external flash				
					(chip select FCS_N).				
			1	1	Reserved.				
	Bi-directional if		EEPRON	l interface	SCL clock line.				
EEPROM_SCL	used as PIO and	G13	Reserve	d for futur	re use.	"1"			
	Output if EEPROM								
EEPROM SDA	Bi-directional with	F14	EEPRON	l interface	SDA data line.	In			
	internal pull-up		Reserve	d for futur	re use.				
	Bi-directional if		EEPRON	\ interface	write protect line.				
EEPROM_WP	used as PIO and	E12	Reserve	d for futur	e use.	"1"			
	Output if EEPROM								
AUX_UART_TXD	CMOS Output	G2	Auxiliary	y UART tr	ransmit data used for debugging pur-	"1"			
CODEC_PCMOUT	CMOS Input	B7	CODEC F	PCM data	input.	In			
CODEC_PCMIN	CMOS Output	C4	CODEC F	PCM data	output.	_			
CODEC_BCLK	CMOS Output	C5	CODEC F	PCM clock	. Input for Motorola SSI slave mode.	-			
		40	CODEC F	CODEC PCM synchronization signal. Input for Motorola SSI					
CODEC_SYNC	CMOS Output	A9	slave m	ode.		In			
HCI Transport Inte	rface (Power from V	DD_UA	RT)						
EXT_WAKE	CMOS Input	C3	Wake up	o signal fro	om host.	_			
HOST_WAKEUP	CMOS Output	B3	Wake up	o signal to	host.	"0"			
HCI_UART_RXD	CMOS Input	B2	HCI UAR	T receive	data.	_			
HCI_UART_TXD	CMOS Output	A1	HCI UAR	T transmi	t data.	"1"			
HCI_UART_CTS_	CMOS Input	C1	HCI UAR	RT flow co	ntrol "Clear to send" for UART transport				
USB_DETACH	Civios input	CI	and USE	3 sideban	d "Detach" when USB for USB transport.	_			
HCI_UART_RTS	CMOS Output	A2	HCI UAR	T flow con	itrol "Ready to send."	"1"			
USB_DPLS	Analog	B13	USB diff	erential p	air positive signal.	_			
USB_DMNS	Analog	A12	USB diff	ferential p	air negative signal.	_			
USB_DPLS_	Bi-directional	B12	Output	signal for	controlling the on/off of the pull-up of	In			
PULLUP	Di-unectionat	DIZ	the USB	_DPLS lin	е.				
Test Pins (Power f	rom VDD_P)								
	CMOS Input with	NB	Reserve	d for chip	-level production testing.	-			
Imobeloj	internal pull-down		Leave ui	nconnecte	ed.				
TMODE[1]	CMOS Input with	N8	Reserve	d for chip	-level production testing.	-			
IMODE[I]	internal pull-down	no	Leave ui	nconnecte	ed.				
	CMOS Input with		Reserve	d for chip	o-level production testing and available				
TRST_N	internal null-un	D3	as IEEE :	1149.1 pi	ns for board testing.	-			
	internatipati ap		If not im	plemente	d, connect to ground.				
	CMOS Input with		Reserve	d for chip	o-level production testing and available				
тск	internal pull-up	M1	as IEEE	1149.1 pi	ns for board testing.	-			
			If not im	plemente	d, leave unconnected.				

Table 5: SiW1750 Pin List (Continued)

Data Sheet

Name	I/О Туре	Ball	Comment	Reset Direction and Output Value
TMS	CMOS Input with internal pull-up	Р3	Reserved for chip-level production testing and available as IEEE 1149.1 pins for board testing. If not implemented, leave unconnected.	_
TDI	CMOS Input with internal pull-up	P1	Reserved for chip-level production testing and available as IEEE 1149.1 pins for board testing. If not implemented, leave unconnected.	-
TDO	CMOS Output, tri-statable	P2	Reserved for chip-level production testing and available as IEEE 1149.1 pins for board testing. If not implemented, leave unconnected.	"Z"
External Memory I	nterface Pins (powe	er from	VDD_P)	
A[21] A[20] A[19] A[18] A[17] A[16] A[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1]	CMOS Output	D14 D13 A11 C11 C2 P5 L12 M4 D1 F13 M2 E1 A4 F2 L2 A8 K12 A5 H2 J12 B6	Address bus for external flash. Every bit except A[0] is a forcing zero at reset to ensure that there are no un-driven addresses to external memory devices; bit zero is a forcing one at reset because it might be being used as a low byte signal.	"0"
A[0]		J2		"1"
D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]	Bi-directional with internal pull-down	L13 M3 D2 G14 L3 E3 B4 G1 K1 C8 J13 B5 G3 H14 A6 J3	Data bus for external flash. Every bit becomes an input at reset to ensure that there are no conflicts with external memory devices.	In

Table 5: SiW1750 Pin List (Continued)

Data Sheet

Name	I/О Туре	Ball	Comment	Reset Direction and Output Value
OE_N	CMOS Output	A7	Output enable for controlling read data from external devices. Active low.	"1"
WE_N	CMOS Output	H12	Write enable for controlling write data to external devices. Active low.	"1"
RACS_N	CMOS Output	A3	RAM A chip select. Active low. Reserved for debug use only.	"1"
RBCS_N	CMOS Output	N5	RAM B chip select. Active low. Reserved for debug use only.	"1"
FCS_N	CMOS Output	H3	Flash chip select. Active low.	"1"
PCS_N	CMOS Output	L14	Peripheral chip select. Active low. Reserved for debug use only.	"1"
BL1_N	CMOS Output	K14	Byte lane 1 for 16-bit flash with low and high byte enables. Active low. Byte lane 0 is overlaid on with A[0].	"1"
FLASH_RST_N	CMOS Output	D12	Reset for flash (if required). Active low.	"1"
Power and Ground	Pins			
VDD_RM	Power	N11 M7 P14	Pad ring $V_{\rm dd}$ supply for the section that tracks the voltage of the radio modem IC.	-
VDD_P	Power	P4 F12 B9 J1 H13 C7	Pad ring V _{dd} supply for the section that may either track the radio modem IC voltage or be supplied by an external regulator.	_
VDD_C	Power	N6 N10 P11 K3 J14 B8	V _{dd} supply for those sections of the core that must always be powered up.	_
VDD_S	Power	F1	Independent, switchable V _{dd} supply for sections of the core that can be powered down to save current.	-
VDD_UART	Power	B1	V _{dd} supply for section of the power ring that includes the HCI UART and associated sleep signals.	_
VDD_USB	Power	A13	USB transceiver cell V _{dd} supply.	_
VDD_PLL	Power	A14	PLL and 32.768-kHz oscillator V _{dd} supply.	-
VSS_P	Ground	F3 M6 M8 P10 G12 C9 K2 M9 E13 C6	Pad ring V _{SS} supply.	_

Table 5: SiW1750 Pin List (Continued)

Data Sheet

Name	I/О Туре	Ball	Comment	Reset Direction and Output Value
VSS_C	Ground	N7 N9 P12 E2 N4 K13 B10	Core cell V _{SS} supply.	_
VSS_USB	Ground	C12	USB transceiver cell V _{SS} connection.	_
VSS_PLL32K	Ground	C13	PLL and 32.768-kHz oscillator V _{SS} connection.	_

Table 5: SiW1750 Pin List (Continued)

12.3 Special Pins

Table 6 shows a list of pins on the SiW1750 that need special consideration on the board.

Pin	Function	Comment
CLK32K_IN	Pull-down	If no external 32.768-kHz crystal is needed, pull this pin low.
CLK32K_OUT	Float	If no external 32.768-kHz crystal is needed, leave this pin unconnected.
RM_CD_TXEN	Pull down	A pull-down resistor of 1.5 k Ω is recommended on this pin.
		PIO bits 0, 1, and 2 may be left as inputs and pulled to ground to avoid float-
PIO[N]	Pull down	ing, or they may be made outputs and driven low. PIO bits 3, 4, 5, 6, and 7
		reset as outputs and should be left unconnected if not used.
HCI_UART_RXD	Pull down	If no device is connected to the HCI UART port, pull this pin to ground.
HCI_UART_CTS_USB_	Pull down	If no device is connected to the HCI UART port, or if flow control is not being
DETACH	Full down	used, pull this pin to ground.
CODEC_PCMOUT	Pull down	If no device is connected to the CODEC port, pull this pin to ground.
EXT_WAKE	Pull down	If no external host is present, or if wake up from the host is not required, pull
		this pin to ground.
USB_DPLS and	Float	If no device is connected to the USB port, leave the differential data pair
USB_DMNS	Tiout	unconnected.
TRST_N	Ground	This pin should be connected to ground.
TDI	Float	This pin has an internal pull-up and may be left unconnected.
ТСК	Float	This pin has an internal pull-up and may be left unconnected.
TMS	Float	This pin has an internal pull-up and may be left unconnected.
D[N] (all data bits D[0]		If not all external data bus bits are required (for example, if only 8-bit memory
through D[15])	Float	is being used), leave the unused bits unconnected since the pins have inter-
		nal pull-downs.
TMODE[0]	Float	These pins have internal pull-downs and may be left unconnected.
TMODE[1]	11041	nese pris nave internat part donno and may be tert unconnecteur

Table 6: Special Pins

13 ELECTRICAL SPECIFICATIONS

13.1 Absolute Maximum Ratings

Symbol	Description	Min	Max	Unit
T _{ST}	Storage temperature.	-55	+125	°C
V _{ddmax}	Supply voltage.	-0.3	+4.0	V
l _{in}	Input current.	-10	+10	mA

13.2 ESD Rating

Symbol	Description	Rating
ESD	ESD protection - all pins.	2000 V

Note: This device is a high performance integrated circuit with an ESD rating of 2,000 volts (HBM conditions per Mil-Std-883, Method 3015). Handling and assembly of this device should only be done using appropriate ESD controlled processes.

13.3 Recommended Operating Conditions

Symbol	Description	Min	Max	Unit
T _{OP}	Operating temperature (industrial).	-40	+85	°C

13.4 Supply Voltage DC Parameters ($T_{OP} = 25^{\circ}C$)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power supply V _{dd_p}	V _{vdd_p}	$V_{dd_p} = 3.3 V$	2.97	3.3	3.63	V
Power supply V _{dd_p}	V _{vdd_p}	$V_{dd_p} = 3.0 V$	2.70	3.0	3.30	V
Power supply V _{dd_p}	V _{vdd_p}	$V_{dd_p} = 1.8 V$	1.62	1.8	1.98	V
Power supply V _{dd_rm}	V _{vdd_rm}	$V_{dd_{rm}} = 3.3 V$	2.97	3.3	3.63	V
Power supply V _{dd_rm}	V _{vdd_rm}	$V_{dd_{rm}} = 3.0 V$	2.70	3.0	3.30	V
Power supply V _{dd_rm}	V _{vdd_rm}	$V_{dd_{rm}} = 1.8 V$	1.62	1.8	1.98	V
Power supply V _{dd_uart}	V _{vdd_uart}	$V_{dd_uart} = 3.3 V$	2.97	3.3	3.63	V
Power supply V _{dd_uart}	V _{vdd_uart}	$V_{dd_uart} = 3.0 V$	2.70	3.0	3.30	V
Power supply V _{dd_uart}	V _{vdd_uart}	$V_{dd_uart} = 1.8 V$	1.62	1.8	1.98	V
Power supply V _{dd_usb}	V _{vdd_usb}	-	3.10	3.2	3.60	V
Power supply V _{dd_pll32k}	V _{vdd_pll32k}	-	1.62	1.8	1.98	V
Power supply V _{dd_c}	V_{vdd_c}	-	1.62	1.8	1.98	V
Power supply V _{dd_s}	V_{vdd_s}	-	1.62	1.8	1.98	V

13.5 I/O DC Parameters ($T_{OP} = 25^{\circ}C$, $V_{dd} = 3.0 V$)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input low voltage	V _{il}	$V_{dd} = 3.0 V$	-0.3	-	0.8	V
Input high voltage	V _{ih}	$V_{dd} = 3.0 V$	2.0	-	V _{dd} + 0.5	V
Output low voltage	V _{ol}	$V_{dd} = 3.0 V$ $I_{ol} = 2 mA$	GND	0.2	0.4	V

Page 12 of 15 60 0015 R02A SiW1750 Baseband Processor DS September 27, 2002

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output high voltage	V _{oh}	$V_{dd} = 3.0 V,$ $I_{oh} = -2 mA$	V _{dd} - 0.5	_	V_{dd}	V
Input high current	l _{ih}	-	-	75	-	μA
Input low current	l _{il}	-	-	-15	-	μA
Input capacitance	C _i	All inputs.	-	-	TBD	pF
Output capacitance	C _o	All outputs.	-	-	TBD	pF

13.6 I/O DC Parameters ($T_{op} = 25^{\circ}C$, $V_{dd} = 1.8 V$)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input low voltage	V _{il}	V _{dd} = 1.8 V	-0.3	_	V _{dd} * 0.3	V
Input high voltage	V _{ih}	V _{dd} = 1.8 V	$V_{dd} \cdot 0.7$	-	V _{dd} + 0.3	V
Output low voltage	V _{ol}	$V_{dd} = 1.8 V$ $I_{ol} = 1 mA$	GND	0.2	0.4	V
Output high voltage	V _{oh}	V _{dd} = 1.8 V I _{oh} = -1mA	V _{dd} - 0.5	-	V _{dd}	V
Input high current	l _{ih}	-	-	25	-	μA
Input low current	l _{il}	-	-	-5	-	μA

13.7 Current Consumption ($T_{op} = 25^{\circ}C$, $V_{dd} = 1.8 \text{ V}$)

Symbol	Description	Тур	Unit
I _{DD} (sleep)	Current during sleep with low power 32.768KHz crystal option.	40	μA
I _{DD} (idle) UART	Current in active mode (USB not included). SYS_CLK is running, but there is no Bluetooth activity.	7	mA
I _{DD} (idle) USB	Current for USB controller and transceiver when using USB transport.	9	mA
I _{DD} (active) UART	Average current in a typical full-duplex Bluetooth connection state (UART transport).	12	mA
I _{DD} (active) USB Average current in a typical full-duplex Bluetooth connection state (USB transport).		14	mA

14 PACKAGE SPECIFICATION

The packaging diagrams for the 132-pin BGA package are shown below.

14.1 132-Pin BGA (8-mm x 8-mm Body)

Figure 4: 132-Pin BGA Package

7.

Notes: Unless otherwise specified:

- 1. All dimensions and tolerances conform to ASME Y14.5M-1994.
- 2. The basic solder ball grid pitch is 0.50.
- 3. The maximum solder ball matrix size is 14 x 14.
- 4. The maximum allowable number of solder balls is 132.
- 5. Dimension is measured at the maximum solder ball diameter, parallel to primary datum Z.

15 I/O ASSIGNMENT

Figure 5: 132-Pin BGA I/O Pad

16 SIW1750 PRODUCT MARKING

B.AAWW SPEC #001-0519-2062: Marking.

crowns of the solder balls.

Reference specifications:

6. Primary datum Z and seating plane are defined by the spherical

A.AAWW SPEC #001-0531-2234: Packing Operation Procedure.

Figure 6: SiW1750 Product Marking

17 ORDERING INFORMATION

Part Number	Operational Temperature Range	Package	Ordering Quantity
SiW1750RI	Industrial.	BGA-132	360 pcs. per tray.
SiW1750RI-TR13	Industrial.	BGA-132	2500 pcs. per reel.

CONTACT INFORMATION

Japan Silicon Wave Japan, K.K. +81.45.701.5620 tel/fax sales@siliconwave.com Worldwide Headquarters Silicon Wave, Inc. 6256 Greenwich Drive Suite 300 San Diego, CA 92122 +1.858.453.9100 tel +1.858.453.3332 fax +1.888.293.6650 toll free sales@siliconwave.com

Europe

Silicon Wave, Inc. +44.1256.463.858 tel +44.1256.463.859 fax sales@siliconwave.com

Asia Pacific Silicon Wave, Inc. +1.858.404.5218 tel +1.858.453.3332 fax sales@siliconwave.com

Information disclosed in this document is preliminary in nature and subject to change. Silicon Wave, Inc. reserves the right to make changes to its products without notice, and advises customers to verify that the information being relied on is current. These products are not designed, manufactured or intended for use in equipment for health care, life support, aircraft control or navigation, or any other applications that require fails afe operation. Silicon Wave disclaims all liability whatsoever for their use in any such applications.

© 2002 Silicon Wave, Inc. The diamond logo design, Silicon Wave, and the SiW product name prefix are trademarks of Silicon Wave, Inc. Bluetooth is a trademark owned by Bluetooth SIG, Inc. USA and licensed to Silicon Wave. All other product, service and company names are trademarks, registered trademarks or service marks of their respective owners.

Page 15 of 15 60 0015 R02A SiW1750 Baseband Processor DS September 27, 2002