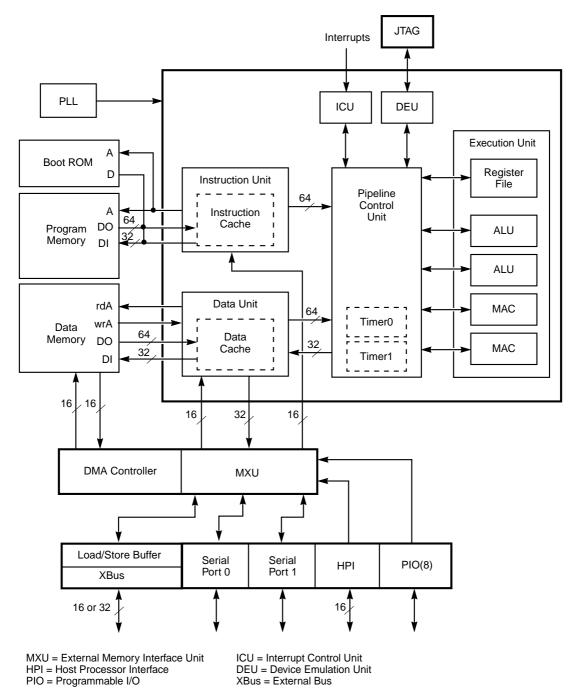
LSI402ZX Digital Signal Processor

LSI LOGIC [®]


Preliminary Datasheet

The LSI402ZX is a 16-bit fixed-point digital signal processor (DSP) based on the LSI Logic ZSP400 DSP core. The LSI402ZX contains an entire DSP system on a single chip, and is designed for applications requiring high throughput and flexibility coupled with a high speed I/O, such as communications infrastructure equipment.

The LSI402ZX operates at a clock rate of 200 MHz for a maximum effective throughput of 800 RISC-like MIPS. The LSI402ZX RISC architecture is easy to program and uses a four-way superscalar pipeline with five stages to process up to 20 instructions at a time. The processor's execution unit contains two multiply-accumulate units (MACs) and two arithmetic logic units (ALUs). The LSI402ZX also supports single cycle add-compare-select, bit manipulation, and 32-bit arithmetic and logic operations.

Figure 1 shows a block diagram of the LSI402ZX.

Figure 1 LSI402ZX Block Diagram

The LSI402ZX provides 62 Kwords of on-chip instruction zero wait-state RAM and 62 Kwords of on-chip data zero wait-state RAM supported by an eight channel DMA controller, which can transfer instructions and data. For optimum I/O performance and flexibility, the LSI402ZX contains two high speed time-division multiplex (TDM) serial ports, a single 16-bit host interface port, an external memory interface unit, and an eight-pin programmable I/O port. An IEEE 1149.1 JTAG port supports program download and debug.

LSI Logic provides a software development kit containing an assembler, linker, GUI debugger, simulator, C compiler, and JTAG-based hardware emulator.

The LSI402ZX is fabricated in the LSI Logic G12TM-p technology. The LSI402ZX is powered by a 1.8 V core and a 3.3 V I/O supply, and is packaged in a 208-ball mini-BGA package.

LSI402ZX Features

Processor

- RISC architecture
 - Instruction grouping by hardware for parallel execution
- Four-way superscalar architecture
 - Two multiply-accumulate units (MACs)
 - Two arithmetic logic units (ALUs)
- 800 RISC-like MIPS maximum throughput at 200 MHz
- Multitasking support
 - Low latency interrupt structure with programmable priority levels
 - Efficient context switch support
- On-chip PLL for clock generation

Applications

- Optimized for communications infrastructure applications
 - Single-cycle dual 16-bit MAC with 40-bit result
 - Single-cycle high-precision (32-bit) MAC with 40-bit result
 - Two-cycle complex multiply
 - Single-cycle add-compare-select for Viterbi decoding

Technology

208-ball mini-BGA package

Memory

- 62 Kword internal instruction RAM
- 62 Kword internal data RAM
- Eight channel DMA controller
 - Supports fast I/O transfers
 - Transfer instructions or data to and from internal memory
- 32-bit external memory interface unit
 - Glueless interface to SBSRAMs
 - 20-bit address space (2 Mwords) for both instruction and data memory
- Glueless interface to 16-bit SRAMs and peripherals
- 2 Kword internal boot ROM

I/O

- Two high-speed serial ports with TDM mode
 - H.100/H.110 bit stream compatible
- 8/16-bit host processor interface
- 8-pin programmable I/O port
- IEEE 1149.1 compliant JTAG port

Timers

- Two 16-bit timers with a 6-bit prescale value
- Single-shot and continuous mode

Functional Description

The LSI402ZX contains an entire DSP system and allows attachment of external memory and peripherals. Refer to Figure 1 for a block diagram of the LSI402ZX.

The pipeline control unit attempts to group instructions for parallel execution, resolving data and resource dependencies in the program sequence. By scheduling instructions for execution by the four functional units (the two MACs and two ALUs), it relieves the programmer and the compiler of this task. The pipeline control unit also synchronizes the entire operation of the pipeline and processes interrupt requests.

The LSI402ZX is a four-way superscalar processor that employs a five-stage pipeline. At any time, there may be a maximum of twenty instructions in various stages of execution in the pipeline. The five pipeline stages of this machine are Fetch/Decode (F/D), Group (G), Read (R), Execute (E), and Write Back (W).

The pipeline control unit also contains two 16-bit timers for interrupt generation. Each timer is fully programmable and has a 6-bit prescaler. Once enabled, the timers count down from the user-specified initial value to zero at a rate determined by the scaled output of the LSI402ZX output clock. The timers generate an interrupt when zero is reached. The timers can be configured to automatically reload with the initial count to generate periodic interrupts.

The interrupt control unit interfaces with the pipeline control unit. A nonmaskable interrupt (NMI) pin into the LSI402ZX allows for a separate interrupt control unit.

The data unit fetches data and sends them to the data cache. The data unit contains the data prefetcher and cache, and contains the logic for two circular buffers.

The instruction unit fetches instructions, decodes and dispatches them, and places the instructions in the instruction cache. The instruction unit contains the instruction cache, the instruction prefetcher, and the instruction dispatch unit. The instruction unit also contains branch prediction logic. The control register file contains a set of 16-bit control registers, used for mode control as well as status and flag information.

The execution unit performs all arithmetic and logical operations in the LSI402ZX. The execution unit contains two 16-bit arithmetic logic units (ALUs), two 16 x 16 multiply and accumulate (MAC) units, and a general purpose (operand) register file.

The two ALUs are identical and can be combined as a single 32-bit ALU. The MAC units can perform two 16-bit x 16-bit multiply operations and a single 40-bit accumulation per cycle or one 32-bit x 32-bit multiply operation and a single 40-bit accumulation per cycle.

The LSI402ZX contains a 2 Kword internal boot ROM that provides self-test and debugging capabilities, as well as the ability to download code to instruction memory through the host processor interface. The boot ROM supports debugging through the JTAG port.

The LSI402ZX provides an eight-channel DMA controller. Each channel supports zero-overhead instruction or data transfers to or from the entire contents of internal instruction and/or data RAM to either the external memory interface unit, one of the serial ports, or the host processor interface. The eight DMA channels are segmented between four nonindexed and four indexed channels.

Nonindexed DMA channels perform only sequential accesses to or from internal memory. A transfer occurs at the specified memory location whenever an interrupt from the specified peripheral occurs. The interrupt request may come from the host processor interface or one of the two serial ports. After the interrupt, the pointer register updates with the next internal memory location. When the DMA channel pointer reaches the buffer length, the processor generates a DMA interrupt request and terminates the DMA transaction.

Indexed DMA channels perform sequential or indexed accesses to or from internal memory. These channels are designed specifically to work with the TDM serial ports, but can be used with other devices in nonindexed mode. Data buffers can read from or write to DSP memory corresponding to logical TDM channels (time slots). The user specifies the buffer length and the number of buffers to service, and the DMA controller automatically updates the pointer for each transfer within a frame. When a frame transfer completes, the pointer updates the memory address and begins transferring data for the next frame. When the DMA channel pointer reaches the last location of the last buffer, the processor generates a DMA interrupt and sets the bit corresponding to the channel in the DMA status register. This terminates the DMA transaction.

The external memory interface unit connects the LSI402ZX to off-chip memory or peripherals through a 32-bit data bus and an 18-bit address bus. The external memory interface unit provides a glueless interface to 16-bit asynchronous memory devices (ROM, EPROM, and SRAM) and 32-bit synchronous-burst SRAMs (SBSRAM). An external memory page register extends the external memory space to 20-bits.

The LSI402ZX contains two identical synchronous serial ports that support 8-bit or 16-bit transfers. The serial ports are capable of generating their own bit clock and frame sync signals. The maximum transfer rate in either active or passive mode is one-half the processor clock rate. The serial ports support burst, continuous, and TDM mode transfers.

Both serial ports of the LSI402ZX provide a TDM mode compatible with T1/E1 framers or the local serial bus of H.100/H.110 interface devices. The TDM mode can also be used to establish a serial multiprocessor communication link with only three signals. The user selects the word length (8- or 16-bits) and frame length (1–128 time slots) for TDM transfers. Transmit and receive time slots are programmed individually and can be modified on the fly.

The host processor interface (HPI) is an asynchronous 8 or 16-bit parallel port. The port is passive only. The HPI supports Motorola and Intel style memory interfaces, and supports word transfers in both modes. The active level of the status signals and the data strobe are programmable by the user.

Eight programmable I/O signals support general-purpose hardware interface. Each programmable I/O may be configured as either an input or an output pin.

The JTAG port of the LSI402ZX is an IEEE 1149.1 compliant test access port (TAP) that provides access to all on-chip resources. The device emulation unit (DEU) works in conjunction with code residing in the boot ROM to provide full-speed in-circuit emulation, allowing full visibility and control of the device memory and registers. Working together, the JTAG port, the device emulation unit, and the boot ROM provide the capability to download to the LSI402ZX internal and external memory.

The LSI402ZX uses an on-chip PLL to generate a high frequency processor clock from a slower, off-chip external clock source. The off-chip clock source is applied to the CLKIN pin of the LSI402ZX and must be a crystal oscillator within the frequency range of 2 to 40 MHz¹. The CLKOUT pin reflects the processor clock frequency. The processor clock can use an off-chip clock source directly by bypassing the on-chip PLL.

Instruction Set Summary

Table 1 summarizes the ZSP instruction set used by the LSI402ZX.

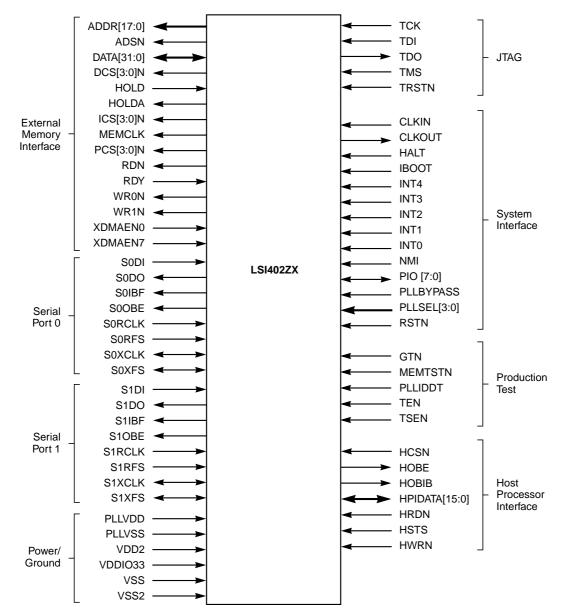
Instruction	Description		
ABS	Absolute Value		
ABS.E	Absolute Value (Extended Precision)		
ADD	Add Immediate		
ADD	Add Registers		
ADD.E	Add Registers (Extended Precision)		
ADDC.E	Add With Carry (Extended Precision)		
AGN0	Again0		
AGN1	Again1		
AGN2	Again2		
AGN3	Again3		
AND	Logical AND		
(Sheet 1 of 6)			

Table 1ZSP Instruction Set

^{1.} The 402ZX is a fully static device. The CLKIN signal will accept input down to DC when the PLL is bypassed.

Instruction	Description		
AND.E	Logical AND (Extended Precision)		
BC	Branch on Carry		
BGE	Branch on Greater than or Equal To		
BGT	Branch on Greater Than		
BITC	Bit Clear Control Register		
BITC	Bit Clear Operand Register		
BITI	Bit Invert Control Register		
ВІТІ	Bit Invert Operand Register		
BITS	Bit Set Control Register		
BITS	Bit Set Operand Register		
ВІТТ	Bit Test Control Register		
ВІТТ	Bit Test Operand Register		
BLE	Branch On Less Than Or Equal To		
BLT	Branch On Less Than		
BNC	Branch On No Carry		
BNOV	Branch On No Overflow		
BNZ	Branch On Not Zero		
BOV	Branch On Overflow		
BR	Unconditional Branch		
BZ	Branch On Zero		
CALL	Call Label/Operand Register		
CMACI.A	Complex MAC Imaginary To Accumulator A		
CMACI.B	Complex MAC Imaginary To Accumulator B		
CMACR.A	Complex MAC Real To Accumulator A		
(Sheet 2 of 6)			

Instruction	Description		
CMACR.B	Complex MAC Real To Accumulator B		
CMP	Compare Immediate/Register to Register		
CMP.E	Compare Immediate/Register to Register (Extended Precision)		
CMULI.A	Complex Multiplication Imaginary To Accumulator A		
CMULI.B	Complex Multiplication Imaginary To Accumulator B		
CMULR.A	Complex Multiplication Real To Accumulator A		
CMULR.B	Complex Multiplication Real To Accumulator B		
DMAC.A	Double MAC To Accumulator A		
DMAC.B	Double MAC To Accumulator B		
DMUL.A	Multiplication (Extended Precision) To Accumulator A		
DMUL.B	Multiplication (Extended Precision) To Accumulator B		
IMUL.A	Integer Multiply To Accumulator A		
IMUL.B	Integer Multiply To Accumulator B		
LD	Load		
LDDU	Load Double With Update		
LDU	Load With Update		
LDX	Load With Register Based Offset		
LDXU	Load With Register Based Offset And Update		
MAC.A	Multiply Accumulate To Accumulator A		
MAC.B	Multiply Accumulate To Accumulator B		
MAC2.A	Dual MAC To Accumulator A		
MAC2.B	Dual MAC To Accumulator B		
MACN.A	Multiply Accumulate With Negation To Accumulator A		
MACN.B	Multiply Accumulate With Negation To Accumulator B		
(Sheet 3 of 6)			


Instruction	Description		
MAX	Maximum		
MAX.E	Maximum (Extended Precision)		
MIN	Minimum		
MIN.E	Minimum (Extended Precision)		
MOV	Move Control Register To Operand Register		
MOV	Move Immediate To Operand Register		
MOV	Move Operand Register To Control Register		
MOV	Move Operand Register To Operand Register		
MOV	Move to PC		
MOVH	Move Immediate To Higher Byte Of Control Register		
MOVH	Move Immediate To Higher Byte Of Operand Register		
MOVL	Move Immediate To Lower Byte Of Operand Register		
MOVL	Move Immediate To Lower Byte Of Control Register		
MUL.A	Multiply To Accumulator A		
MUL.B	Multiply To Accumulator B		
MULN.A	Multiply With Negation To Accumulator A		
MULN.B	Multiply With Negation To Accumulator B		
NEG	Negate		
NEG.E	Negate (Extended Precision)		
NOP	No Operation		
NORM	Normalize		
NORM.E	Normalize (Extended Precision)		
NOT	Logical Not		
NOT.E	Logical Not (Extended Precision)		
(Sheet 4 of 6)			

Instruction	Description		
OR	Logical Or		
OR.E	Logical Or (Extended Precision)		
PADD.A	Parallel Add Registers To Accumulator A		
PADD.B	Parallel Add Registers To Accumulator B		
PSUB.A	Parallel Subtract Registers To Accumulator A		
PSUB.B	Parallel Subtract Registers To Accumulator B		
RET	Return From Subroutine		
RETI	Return From Interrupt		
REVB	Reverse Bit		
ROUND.E	Round (Extended Precision)		
SHLA	Shift Left Arithmetic Immediate		
SHLA	Shift Left Arithmetic Register		
SHLA.E	Shift Left Arithmetic Immediate (Extended Precision)		
SHLA.E	Shift Left Arithmetic Register (Extended Precision)		
SHLL	Shift Left Logical Immediate		
SHLL	Shift Left Logical Register		
SHLL.E	Shift Left Logical Immediate (Extended Precision)		
SHLL.E	Shift Left Logical Register (Extended Precision)		
SHRA	Shift Right Arithmetic Immediate		
SHRA	Shift Right Arithmetic Register		
SHRA.E	Shift Right Arithmetic Immediate (Extended Precision)		
SHRA.E	Shift Right Arithmetic Register (Extended Precision)		
SHRL	Shift Right Logical Immediate		
SHRL	Shift Right Logical Register		
(Sheet 5 of 6)			

Instruction	Description		
SHRL.E	Shift Right Logical Immediate (Extended Precision)		
SHRL.E	Shift Right Logical Register (Extended Precision)		
ST	Store		
STDU	Store Double With Update		
STU	Store With Update		
STX	Store With Register Based Offset		
STXU	Store With Register Based Offset And Update		
SUB	Subtract		
SUB.E	Subtract (Extended Precision)		
SUBC.E	Subtract With Carry (Extended Precision)		
VIT_A	Viterbi Instruction For Point A		
VIT_B	Viterbi Instruction For Point B		
XOR	Exclusive Or		
XOR.E	Exclusive Or (Extended Precision)		
(Sheet 6 of 6)			

Signal Descriptions

This section describes the LSI402ZX signals, as shown in Figure 2.

Figure 2 LSI402ZX System Interfaces

The signals have been divided into the following tables:

- Table 2, "System Interface Signals," on page 15
- Table 3, "External Memory Interface Unit Signals," on page 16
- Table 4, "Serial Port Signals," on page 17
- Table 5, "Host Processor Interface (HPI) Signals," on page 17
- Table 6, "JTAG Interface Signals," on page 18
- Table 7, "Power/Ground Signals," on page 18
- Table 8, "Production Test Signals," on page 18

For complete signal descriptions, refer to the LSI402ZX Digital Signal Processor User's Guide.

Signal	I/O	Description
CLKIN	Input	Master Clock Input
CLKOUT	Output	Clock Out (reflects the processor clock)
HALT	Input	Halt Processor Clock ¹
IBOOT	Input	Boot Device Select
INT4	Input	External Hardware Interrupt 4
INT3	Input	External Hardware Interrupt 3
INT2	Input	External Hardware Interrupt 2
INT1	Input	External Hardware Interrupt 1
INT0	Input	External Hardware Interrupt 0
NMI	Input	Nonmaskable Interrupt
PIO[7:0]	Bidirectional	Programmable I/O
PLLBYPASS	Input	PLL Bypass ²
PLLSEL[3:0]	Input	PLL Multiplier Select
RSTN	Input	Device Reset (active LOW)

Table 2 System Interface Signals

1. When HIGH.

2. LSI402ZX uses internal PLL when LOW, uses CLKIN signal directly (bypassing internal PLL) when HIGH.

Table 3 External Memory	Interface Unit Signals
-------------------------	------------------------

Signal	I/O	Description
ADDR[17:0]	Output	External Memory Address Bus
ADSN	Output	Address Strobe
DATA[31:0]	Bidirectional	External Memory Data Bus
DCS[3:0]N	Output	Data Memory Chip Selects
HOLD	Input	External Memory Access Hold Request
HOLDA	Output	External Memory Access Hold Acknowledge
ICS[3:0]N	Output	Instruction Memory Chip Selects
MEMCLK	Output	Memory Clock
PCS[3:0]N	Output	Memory-Mapped Peripheral Chip Selects
RDN	Output	External Memory Read Strobe
RDY	Input	Hardware Wait State
WR0N	Output	External Memory Interface Write Strobe
WR1N	Output	External Memory Interface Write Strobe
XDMAEN0 ¹	Input	External DMA Channel 0 Enable
XDMAEN7 ²	Input	External DMA Channel 7 Enable

The TEN and XDMAEN0 signals share a package ball. PLLSEL[3:0] controls the currently active signal. When PLLSEL[3:0] is set to 0b1111, the TEN signal is active. All other settings of PLLSEL[3:0] enable the XDMAEN0 signal.
 The TSEN and XDMAEN7 signals share a package ball. PLLSEL[3:0] controls the currently

 The TSEN and XDMAEN7 signals share a package ball. PLLSEL[3:0] controls the currently active signal. When PLLSEL[3:0] is set to 0b1111, the TSEN signal is active. All other settings of PLLSEL[3:0] enable the XDMAEN7 signal.

Table 4Serial Port Signals

Signal ¹	I/O	Description
SxDI	Input	Data Input
SxDO	Output	Data Output
SxIBF	Output	Input Buffer Full
SxOBE	Output	Output Buffer Empty
SxRCLK	Input	Receive Clock
SxRFS	Input	Receive Frame Sync
SxXCLK	Bidirectional	Transmit Clock
SxXFS	Bidirectional	Transmit Frame Sync

1. Each serial port signal exists for both serial port 0 and serial port 1. The signal names are prepended with S0 and S1 (for example, S0DO and S1DO).

Table 5 Host Processor Interface (HPI) Signals

Signal	I/O	Description
HCSN	Input	HPI Chip Select
HOBE	Output	HPI Output Buffer Empty
НОВІВ	Output	HPI Output Status
HPIDATA[15:0]	Bidirectional	HPI Data Bus
HRDN	Input	HPI Intel Mode Read Strobe/Motorola Mode Data Strobe
HSTS	Input	HPI Input Status
HWRN	Input	HPI Intel Mode Write Strobe/Motorola Mode Data Direction

Table 6 JTAG Interface Signals

Signal	I/O	Description
тск	Input	Test Clock
TDI	Input	Test Data Input
TDO	Output	Test Data Output
TMS	Input	Test Mode Select
TRSTN	Input	Test Port Reset

Table 7Power/Ground Signals

Signal	I/O	Description
PLLVDD	Input	PLL Power
PLLVSS	Input	PLL Ground
VDD2	Input	Core Power
VDDIO33	Input	I/O Device Power
VSS	Input	I/O Device Ground
VSS2	Input	Core Ground

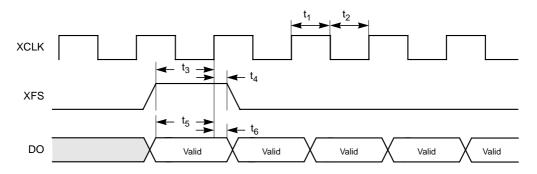
Table 8 Production Test Signals

Signal	I/O	Description
GTN	Input	Global Test (Tie HIGH during Normal Operation)
MEMTSTN	Input	Reserved. Must be Tied HIGH (3.3 V)
PLLIDDT	Input	Reserved. Must be tied LOW.
TEN ¹	Input	Production Test Enable
TSEN ²	Input	Production Test Enable

1. The TEN and XDMAEN0 signals share a package ball. PLLSEL[3:0] controls the currently active signal. When PLLSEL[3:0] is set to 0b1111, the TEN signal is active. All other settings of PLLSEL[3:0] enable the XDMAEN0 signal.

 The TSEN and XDMAEN7 signals share a package ball. PLLSEL[3:0] controls the currently active signal. When PLLSEL[3:0] is set to 0b1111, the TSEN signal is active. All other settings of PLLSEL[3:0] enable the XDMAEN7 signal.

Functional Waveforms


This section contains functional waveforms for selected LSI402ZX operations. For complete timing information refer to the *LSI402ZX Digital Signal Processor User's Guide*.

Serial Port Timing

The two serial ports in the LSI402ZX are identical. This section contains transmit and receive timing waveforms for the serial ports. The timing for both burst/continuous mode and TDM mode is identical.

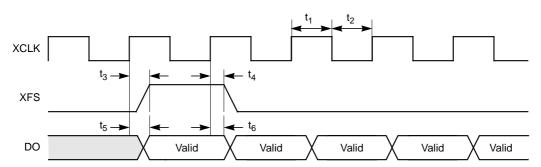
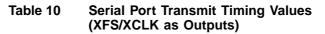
Figure 3 shows the transmit timing for the serial ports when the frame sync and data lines are coincident and the transmit frame sync and clock signals are generated externally. Table 9 shows the timing relations for the signals in Figure 3.

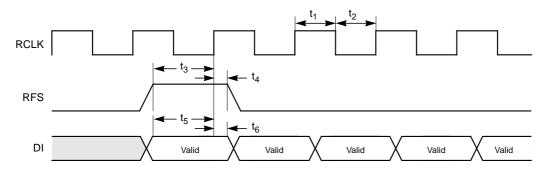
Figure 3 Serial Port Transmit Timing for axfs = 0b00 (XFS/XCLK as Inputs)

Symbol	Parameter	Min	Max	Unit
t ₁	Clock HIGH ¹	1	-	Processor Clock Periods
t ₂	Clock LOW ¹	1	-	
t ₃	XFS Setup Time	4	-	ns
t ₄	XFS Hold Time	1	-	
t ₅	Data Out Setup Time	4	-	
t ₆	Data Out Hold Time	1	-	

1. XCLK must maintain a 50% duty cycle.

Figure 4 shows the transmit timing for the serial ports when the frame sync and data lines are coincident and the transmit frame sync and clock signals are generated by the serial port. Table 10 shows the timing relations for the signals in Figure 4.


Figure 4 Serial Port Transmit Timing for axfs = 0b00 (XFS/XCLK as Outputs)

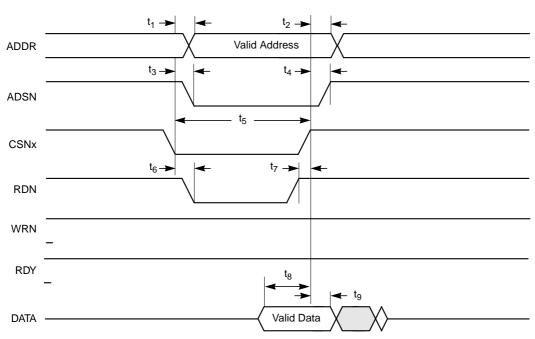
Symbol	Parameter	Min	Max	Unit
t ₁	Clock HIGH	1	_	Processor Clock Periods
t ₂	Clock LOW	1	_	
t ₃	XFS Propagation Delay	1	4	ns
t ₄	XFS Propagation Delay	1	-	
t ₅	Data Out Propagation Delay	1	4	
t ₆	Data Out Hold Time	1	_	

Figure 5 shows the receive timing for the serial ports when the frame sync and data lines are coincident. The receive frame sync and clock signals are always generated externally. Table 11 shows the timing relations for the signals in Figure 5.

Symbol	Parameter	Min	Max	Unit
t ₁	Clock HIGH ¹	1	_	Processor Clock Periods
t ₂	Clock LOW ¹	1	_	
t ₃	RFS Setup Time	4	_	ns
t ₄	RFS Hold Time	1	-	
t ₅	Data In Setup Time	4	_	
t ₆	Data In Hold Time	1	_	

1. RCLK must maintain a 50% duty cycle.

External Memory Interface Unit Timing


The external memory interface unit connects the LSI402ZX to external memory and peripherals.

Asynchronous Mode

For all waveforms in this section, the dwait register fields have the following values:

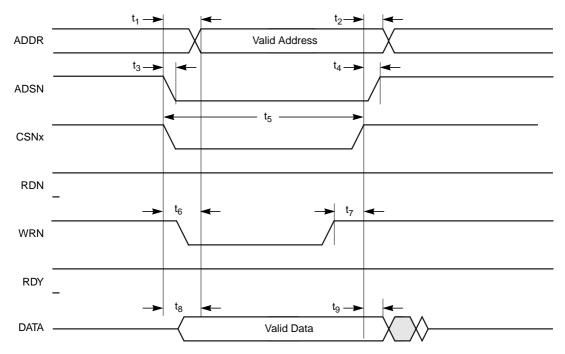
- csrw is set to 0x0
- rwpw is set to 0x4
- rwcs is set to 0x0

Figure 6 shows an instruction or data memory read with four wait-state cycles. Table 12 describes the timing relationships in Figure 6.

Figure 6 Asynchronous External Instruction or Data Memory Read (4-Cycle Wait State)

Table 12 External Instruction Or Data Read Timing (4-Cycle Wait State)

Reference	Description	Min ¹	Max ¹	Unit
t ₁	CSNx LOW to ADDR Valid	-	1	ns
t ₂	ADDR Hold Time (CSNx HIGH to ADDR Invalid)	2	-	ns
t ₃	CSNx LOW to ADSN LOW	_	1	ns
t ₄	ADSN Hold Time (CSNx HIGH to ADSN HIGH)	0	-	ns
t ₅	Enable Pulse Width (CSNx LOW to CSNx HIGH)	T ● (csrw + rwpw + rwcs)	_	ns
t ₆	CSNx LOW to RDN LOW	_	T • csrw	ns


Table 12 External Instruction Or Data Read Timing (4-Cycle Wait State)

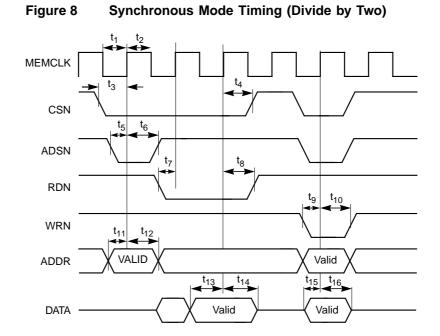
Reference	Description	Min ¹	Max ¹	Unit
t ₇	RDN HIGH to CSNx HIGH	_	T • rwcs	ns
t ₈	Data Valid to CSNx HIGH	т	-	ns
t ₉	Data Hold Time	0	_	ns

1. T is the processor clock cycle; csrw, rwpw, and rwcs are fields in the dwait register.

Figure 7 shows an instruction or data memory write with four wait-state cycles. Table 13 describes the timing relationships in Figure 7.

Figure 7 Asynchronous External Data or Instruction Memory Write (4-Cycle Wait State)

Reference	Description	Min ¹	Max ¹	Units
t ₁	CSNx LOW to ADDR Valid	_	1	ns
t ₂	ADDR Hold Time (CSNx HIGH to ADDR Invalid)	2	-	ns
t ₃	CSNx LOW to ADSN LOW	-	1	ns
t ₄	ADSN Hold Time (CSNx HIGH to ADSN HIGH)	0	-	ns
t ₅	CSNx LOW to CSNx HIGH ²	T ● (csrw + rwpw + rwcs)	-	ns
t ₆	CSNx LOW to WRN LOW ²	-	T • csrw	ns
t ₇	WRN HIGH to CSNx HIGH ²	-	T • rwcs	ns
t ₈	CSNx LOW to Data Valid	-	1	ns
t ₉	Data Hold Time (CSNx HIGH to Data Invalid)	0	-	ns


Table 13 External Instruction or Data Write Timing

1. T is the processor clock cycle; csrw, rwpw, and rwcs are fields in the dwait register.

2. These values are much greater (~10 ns) than t_9 (~1 ns).

Synchronous Mode

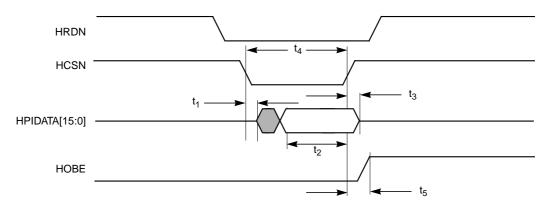
Figure 8 shows the timing relationships for synchronous external instruction or data reads. Table 14 describes the annotations shown in Figure 8.

Table 14 Synchronous Memory Timing, 2:1 Mode

Symbol	Description	Min	Max	Units
t ₁	Clock LOW	1	_	Cycles
t ₂	Clock HIGH	1	_	Cycles
t ₃	Clock LOW to CSN LOW	-	1	ns
t ₄	Clock LOW to CSN HIGH	-	1	ns
t ₅	Clock LOW to ADSN LOW	-	1	ns
t ₆	Clock LOW to ADSN HIGH	-	1	ns
t ₇	Clock LOW to RDN LOW	-	1	ns
t ₈	Clock LOW to RDN HIGH	-	1	ns
t ₉	Clock LOW to WRN LOW	-	1	ns
t ₁₀	Clock LOW to WRN HIGH	-	1	ns
t ₁₁	Clock LOW to ADDR Valid	-	1	ns
t ₁₂	Clock LOW to ADDR Invalid	-	1	ns

Table 14 Synchronous Memory Timing, 2:1 Mode

Symbol	Description	Min	Мах	Units
t ₁₃	Read Data Setup	2	_	ns
t ₁₄	Read Data Hold	1	-	ns
t ₁₅	Clock LOW to Write Data Valid	-	1	ns
t ₁₆	Clock LOW to Write Data Invalid	-	1	ns


Host Port Interface Timing

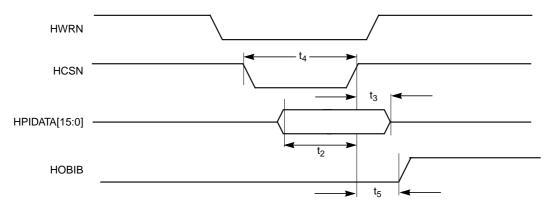
The host processor interface (HPI) provides an asynchronous 16-bit parallel port for interfacing with off-chip devices. The HPI operates in either Intel or Motorola mode.

Intel Mode

In Intel mode, HPI read cycles can be initiated/ended by either the HRDN read strobe signal or the HCSN chip select signal. The read cycle starts when the latter of both HCSN and HRDN go LOW. That is, to begin the read, both HCSN and HRDN must be LOW, but the last falling edge is used to determine the starting time of the read cycle. Conversely, the first rising edge of either HCSN or HRDN signals the end of the read cycle.

Figure 9 illustrates a host read initiated and completed by HCSN. Table 15 describes the timing relationships in Figure 9.

Figure 9 HPI Host Read, Intel Mode (HPICTL = 0b0000.00xx)


Table 15 HPI Host Read Timing, Intel Mode

Reference	Description	Min	Max	Units
t ₁	Strobe (HRDN or HCSN) to Nonhigh-Z State	0.5	-	ns
t ₂	Read Data Setup Time	0	-	ns
t ₃	Read Data Hold Time	3T	-	ns
t ₄	Strobe (HRDN or HCSN) LOW Pulse Width	Т	_	ns
t ₅	HOBE Delay Time	0	-	ns

In Intel mode, HPI write cycles can be initiated/ended by either the HWRN write strobe signal or the HCSN chip select signal. The write cycle starts when the latter of both HCSN and HWRN go LOW. That is, to begin the write, both HCSN and HWRN must be LOW, but the last falling edge is used to determine the starting time of the write cycle. Conversely, the first rising edge of either HCSN or HWRN signals the end of the write cycle.

Figure 10 illustrates a host write initiated and completed by HCSN. Table 16 describes the timing relationships in Figure 10.

Table 16 HPI Host Write Timing, Intel Mode

Reference	Description	Min	Max	Units
t ₁	Strobe (HWRN or HCSN) to Nonhigh-Z State	0.5	-	ns
t ₂	Write Data Setup Time	0	-	ns
t ₃	Write Data Hold Time	3T	-	ns
t ₄	Strobe (HWRN or HCSN) LOW Pulse Width	Т	-	ns
t ₅	HOBE Delay Time	0	-	ns

Motorola Mode

In Motorola mode, the HRDN signal operates as a data strobe for both reads and writes. The HWRN signal determines the data direction. For writes, HWRN must be LOW.

Figure 11 illustrates a host read initiated and completed by HRDN. Table 17 describes the timing relationships in Figure 11.

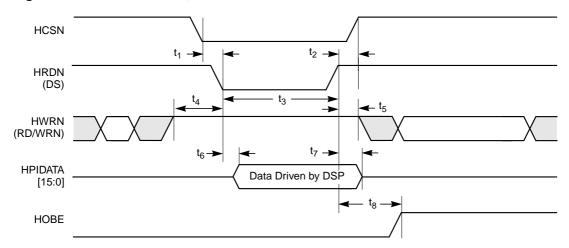


Figure 11 HPI Host Read, Motorola Mode

Table 17 HPI Host Read Timing, Motorola Mode

Reference	Description	Min	Max	Units
t ₁	HCSN to DS Setup Time (LOW to LOW)	0.5	-	ns
t ₂	DS to HCSN Hold Time (HIGH to HIGH)	0	_	ns
t ₃	DS Pulse Width (LOW to HIGH)	3T	-	ns
t ₄	RD/WRN to DS Setup Time (HIGH to LOW)	Т	-	ns
t ₅	DS to RD/WRN Hold Time	0	-	ns
t ₆	Data Delay (LOW to Valid)	-	Т	ns
t ₇	Data Hold (HIGH to Invalid)	0	-	ns
t ₈	HOBE Delay Time (HIGH to HIGH)	_	Т	ns

The HCSN and HRDN signals must both be asserted to perform a host write. The write begins when both signals have been asserted. The write ends when either HCSN or HRDN is deasserted. Figure 12 illustrates a host write initiated and completed by HRDN. Table 18 describes the timing relationships in Figure 12.

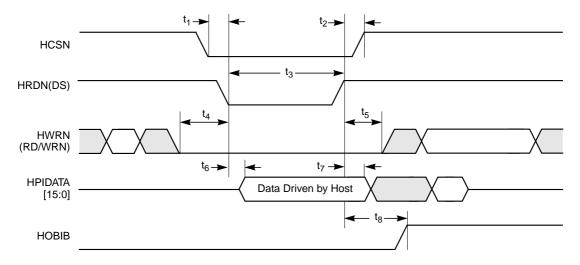


Figure 12 HPI Host Write, Motorola Mode

Table 18 HPI Host Write Timing, Motorola Mode

Reference	Description	Min	Max	Units
t ₁	HCSN to DS Setup Time (LOW to LOW)	0.5	-	ns
t ₂	DS to HCSN Hold Time (HIGH to HIGH)	0	-	ns
t ₃	DS Pulse Width (LOW to HIGH)	3T	-	ns
t ₄	RD/WRN to DS Setup Time (LOW to LOW)	Т	-	ns
t ₅	DS to RD/WRN Hold Time	0	-	ns
t ₆	Data Delay (LOW to Valid)	-	Т	ns
t ₇	Data Hold Time (HIGH to Invalid)	0	-	ns
t ₈	HOBIB Delay Time (HIGH to HIGH)	-	Т	ns

Specifications

This section describes the electrical and mechanical specifications of the LSI402ZX.

DC Characteristics

Table 19 lists the DC characteristics for the LSI402ZX.

Table 19 Electrical Characteristics

		V _{DD} = 1.8 V V _{DD}	V, PLLVDD = 1.8 V, _{IO33} = 3.3 V
Parameter	Symbol	Min	Мах
Input Voltage Low High (1.8 V Supply) High (3.3 V I/O Supply)	VIL VIH VIH	0 V 1.05 V 2.0 V	0.8 V V _{DD} + 0.3 V V _{DDI033} + 0.3 V
Input Current	I _{IN}	–10 μA	10 μA
Output Low Voltage @ +2 mA (Low)	V _{OL}	-	0.4
Output High Voltage @ -2mA (High)	V _{OH}	2.4	-
Output 3-State Current Low High	I _{OZL} I _{OZH}	–10 μA –	_ –10 μA
Input Capacitance	Cl	-	5.5 pF

Table 20 lists the power dissipation characteristics of the LSI402ZX. LSI Logic recommends an I/O supply current rating of 1 A or greater.

Table 20 LSI402ZX Power Dissipation

Frequency	Voltage	Power Dissipation
120 MHz	1.8 V	650 mW (maximum)
170 MHz	1.8 V	850 mW (maximum)
200 MHz	1.8 V	860 mW (typical) 1 W (maximum)

Table 21 lists the recommended operating conditions for the LSI402ZX.

		V _{DD} = 1.8 V, PLLVDD = 1.8 V, V _{DDI033} = 3.3 V			
Parameter	Symbol	Min	Мах		
Core Operating Voltage	V _{DD}	1.65	1.95		
PLL Operating Voltage	PLLVDD	1.65	1.95		
I/O Operating Voltage	V _{DDIO33}	3.0	3.6		
Output Voltage	Vo	0	V _{DDIO33}		
Junction Temperature (Commercial Operating Conditions)	TJ	0°C	85 °C		
Ambient Temperature (Commercial Operating Conditions)	T _A	O°C	70 °C		

Table 21 Recommended Operating Conditions

Table 22 lists the absolute maximum ratings for the LSI402ZX. Operation beyond the limits specified in this table may cause permanent device damage.

Table 22 Absolute Maximum Ratings¹

Property	Min	Мах
DC Supply Voltage (VDD, PLLVDD) ²	–0.3 V	2.2 V
3.3 V I/O Input Voltage (VDDIO33)	–0.3 V	3.9 V

1. Referenced to VSS

2. Internal cells operate at 1.8 V

Mechanical Specifications

The LSI402ZX is packaged in a 208-ball mini-BGA package (package code HG). Table 23 shows the thermal resistance for the package.

Table 23 Thermal Resistance (Junction-Case)

Maximum Thermal Resistance (θ_{JC} , °C/W)	
4.5	

Table 24 shows the package case-to-ambient thermal resistance.

Table 24 Thermal Resistance (Case-Ambient)

Maximum Thermal Resistance (θ _{CA} , °C/W)	Airflow (LFPM)
30	0
27	200
25.5	400

Figure 13 208 mini-BGA (HG) Mechanical Drawing

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code HG.

Figure 14 shows the 208-pin BGA top view.

View
Top
BGA
208-Pin
igure 14

A1	A2	A3	A4	A5	A6	A7	AB	A9	A10	A11	A12	A13	A14	A15	A16
RSTN	XDMAEN0	IWN	INT1	INT4	VSS	TRSTN	HRDN	VDDIO	HPIDATA2	HPIDATA6	VDDIO	HPIDATA10	HPIDATA13	HPIDATA15	VDD2
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15	B16
MEMTSTN	VDDIO	XDMAEN7	INTO	INT3	VDD2	TMS	TSE	VDD2	HPIDATA3	HPIDATA7	HPIDATA8	HPIDATA12	HPIDATA14	CLKOUT	PLLVSS
C1	C2	c3	C4	C5	C6	C7	ß	C9	C10	C11	C12	C13	C14	C15	C16
IBOOT	HALT	VDD2	INT2	TCK	TDI	HCSN	HSTS	VDDIO	HPIDATA1	HPIDATA5	VDD2	HPIDATA11	HPIDATA11	PLLVDD	CLKIN
51	D2	D3	D4	D5	D6	D7	80	D9	D10	D11	D12	D13	D14	D15	D16
PI07	HOLDA	НОГД	PIO6	GTN	TDO	HWRN	HOBIB	HOBE	HPIDATA 0	HPIDATA4	NSS	HPIDATA9	PLLSEL1	PLLSEL0	VSS
E1	E2	E3	E4									E13	E14	E15	E16
PIO4	PIO5	VDDIO	VDD2									VDD2	RDY	PLLSEL2	PLLSEL3
F1	F2	F3	F4									F13	F14	F15	F16
PI03	VSS	PI02	PI01									WRON	ADSN	MEMCLK	VSS
G1	G2	G3	G4			G7	G8	G9	G10			G13	G14	G15	G16
S1DO	PIO0	S1XFS	S1XCLK			VSS2	VSS2	VSS2	VSS2			VDD2	VSS	WR1N	RDN
H	H2	H3	H4			H7	18	6H	H10			H13	H14	H15	H16
S1IBF	S10BE	S1RCLK	S1RFS			VSS2	VSS2	VSS2	VSS2			PCS2N	PCS1N	VDDIO	PCSON
11	J2	J3	14			77	JB	9F	J10			J13	J14	J15	J16
VSS	SODO	VDDIO	S1DI			VSS2	VSS2	VSS2	VSS2			PCS3N	DCSON	DCS2N	DCS1N
K1	K2	K3	K4			K7	K8	К9	K10			K13	K14	K15	K16
SOOBE	SOIBF	SOXCLK	SOXFS			VSS2	VSS2	VSS2	VSS2			DCS3N	ICSON	ICS2N	ICS1N
L1	12	13	L4		-							L13	L14	L15	L16
SODI	VDDIO	SORFS	SORCLK									ICS3N	VSS	ADDR0	VDDIO
M1	M2	M3	M4									M13	M14	M15	M16
DATA31	DATA30	VSS	VDD2									ADDR1	ADDR2	ADDR4	ADDR3
ź	N2	N3	N4	N5	N6	N7	N8	6N	N10	N11	N12	N13	N14	N15	N16
DATA28	DATA27	DATA29	DATA18	VSS	DATA13	DATA11	DATA7	VDDIO	DATA4	VDD2	ADDR17	VSS	VDDIO	ADDR5	VDD2
P1	P2	P3	P4	P5	P6	P7	P8	6d	P10	P11	P12	P13	P14	P15	P16
VDDIO	VDD2	DATA23	DATA20	VDD2	DATA14	VSS	DATA8	VSS	DATA3	VSS	ADDR16	VSS	ADDR9	ADDR7	ADDR6
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16
DATA26	DATA24	VDDIO	DATA21	DATA17	DATA16	DATA12	DATA10	DATA5	VDDIO	DATA0	VDDIO	ADDR14	ADDR11	VDD2	ADDR8
11	Т2	Т3	T4	T5	T6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16
DATA25	DATA22	VSS	DATA19	VDDIO	DATA15	VDDIO	DATA9	DATA6	DATA2	DATA1	ADDR15	ADDR13	ADDR12	ADDR10	VDDIO

LSI402ZX Digital Signal Processor

Table 25 lists the mapping of LSI402ZX signals to balls on the package. Refer to Figure 14 for the package ball grid.

Table 25208 Signal to Balls on the Package List

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
ADDR0	L15	DATA21	R4	ICS0N	K14	S1DI	J4	VDDIO	R3
ADDR1	M13	DATA22	T2	ICS1N	K16	S1DO	G1	VDDIO	T16
ADDR2	M14	DATA23	P3	ICS2N	K15	S1IBF	H1	VDDIO	T5
ADDR3	M16	DATA24	R2	ICS3N	L13	S1OBE	H2	VDDIO	T7
ADDR4	M15	DATA25	T1	INT0	B4	S1RCLK	H3	VSS	A6
ADDR5	N15	DATA26	R1	INT1	A4	S1RFS	H4	VSS	D12
ADDR6	P16	DATA27	N2	INT2	C4	S1XCLK	G4	VSS	D16
ADDR7	P15	DATA28	N1	INT3	B5	S1XFS	G3	VSS	F16
ADDR8	R16	DATA29	N3	INT4	A5	TCK	C5	VSS	F2
ADDR9	P14	DATA30	M2	MEMCLK	F15	TDI	C6	VSS	G14
ADDR10	T15	DATA31	M1	MEMTSTN	B1	TDO	D6	VSS	J1
ADDR11	R14	DCS0N	J14	NMI	A3	TMS	B7	VSS	L14
ADDR12	T14	DCS1N	J16	PCS0N	H16	TRSTN	A7	VSS	M3
ADDR13	T13	DCS2N	J15	PCS1N	H14	TSE	B8	VSS	N13
ADDR14	R13	DCS3N	K13	PCS2N	H13	VDD2	A16	VSS	N5
ADDR15	T12	GTN	D5	PCS3N	J13	VDD2	B6	VSS	P11
ADDR16	P12	HALT	C2	PIO0	G2	VDD2	B9	VSS	P13
ADDR17	N12	HCSN	C7	PIO1	F4	VDD2	C12	VSS	P7
ADSN	F14	HOBE	D9	PIO2	F3	VDD2	C3	VSS	P9
CLKIN	C16	HOBIB	D8	PIO3	F1	VDD2	E13	VSS	Т3
CLKOUT	B15	HOLD	D3	PIO4	E1	VDD2	E4	VSS2	G10
DATA0	R11	HOLDA	D2	PIO5	E2	VDD2	G13	VSS2	G7
DATA1	T11	HPIDATA0	D10	PIO6	D4	VDD2	M4	VSS2	G8
DATA2	T10	HPIDATA1	C10	PIO7	D1	VDD2	N11	VSS2	G9
DATA3	P10	HPIDATA2	A10	PLLBYPASS	C14	VDD2	N16	VSS2	H10
DATA4	N10	HPIDATA3	B10	PLLSEL0	D15	VDD2	P2	VSS2	H7
DATA5	R9	HPIDATA4	D11	PLLSEL1	D14	VDD2	P5	VSS2	H8
DATA6	Т9	HPIDATA5	C11	PLLSEL2	E15	VDD2	R15	VSS2	H9
DATA7	N8	HPIDATA6	A11	PLLSEL3	E16	VDDIO	A12	VSS2	J10
DATA8	P8	HPIDATA7	B11	PLLVDD	C15	VDDIO	A9	VSS2	J7
DATA9	Т8	HPIDATA8	B12	PLLVSS	B16	VDDIO	B2	VSS2	J8
DATA10	R8	HPIDATA9	D13	RDN	G16	VDDIO	C9	VSS2	J9
DATA11	N7	HPIDATA10	A13	RDY	E14	VDDIO	E3	VSS2	K10
DATA12	R7	HPIDATA11	C13	RSTN	A1	VDDIO	H15	VSS2	K7
DATA13	N6	HPIDATA12	B13	SODI	L1	VDDIO	J3	VSS2	K8
DATA14	P6	HPIDATA13	A14	SODO	J2	VDDIO	L16	VSS2	K9
DATA15	Т6	HPIDATA14	B14	SOIBF	K2	VDDIO	L2	WR0N	F13
DATA16	R6	HPIDATA15	A15	SOOBE	K1	VDDIO	N14	WR1N	G15
DATA17	R5	HRDN	A8	SORCLK	L4	VDDIO	N9	XDMAEN0	A2
DATA18	N4	HSTS	C8	SORFS	L3	VDDIO	P1	XDMAEN7	B3
DATA19	Τ4	HWRN	D7	SOXCLK	K3	VDDIO	R10		
DATA20	P4	IBOOT	C1	SOXFS	K4	VDDIO	R12		

Notes

Notes

Sales Offices and Design Resource Centers

LSI Logic Corporation Corporate Headquarters Tel: 408.433.8000 Fax: 408.433.8989

NORTH AMERICA

California Irvine ♦ Tel: 949.809.4600 Fax: 949.809.4444

> Pleasanton Design Center Tel: 925.730.8800 Fax: 925.730.8700

San Diego Tel: 858.467.6981 Fax: 858.496.0548

Silicon Valley ◆ Tel: 408.433.8000 Fax: 408.954.3353

Wireless Design Center Tel: 858.350.5560 Fax: 858.350.0171

Colorado Boulder ♦ Tel: 303.447.3800 Fax: 303.541.0641

Colorado Springs Tel: 719.533.7000 Fax: 719.533.7020

Fort Collins Tel: 970.223.5100 Fax: 970.206.5549

Florida Boca Raton

Tel: 561.989.3236 Fax: 561.989.3237

Georgia

Alpharetta Tel: 770.753.6146 Fax: 770.753.6147 Illinois Oakbrook Terrace Tel: 630.954.2234 Fax: 630.954.2235

Kentucky Bowling Green Tel: 270.793.0010 Fax: 270.793.0040

Maryland Bethesda Tel: 301.897.5800 Fax: 301.897.8389

Massachusetts Waltham ► Tel: 781.890.0180 Fax: 781.890.6158

Burlington - Mint Technology Tel: 781.685.3800 Fax: 781.685.3801

Minneapolis ♦ Tel: 612.921.8300 Fax: 612.921.8399

New Jersey Red Bank Tel: 732.933.2656 Fax: 732.933.2643

Cherry Hill - Mint Technology Tel: 856.489.5530 Fax: 856.489.5531

New York Fairport Tel: 716.218.0020 Fax: 716.218.9010

North Carolina Raleigh Tel: 919.785.4520 Fax: 919.783.8909

Oregon Beaverton Tel: 503.645.0589 Fax: 503.645.6612 **Texas** Austin Tel: 512.388.7294 Fax: 512.388.4171

Plano ◆ Tel: 972.244.5000 Fax: 972.244.5001

> Houston Tel: 281.379.7800 Fax: 281.379.7818

Canada Ontario Ottawa ♦ Tel: 613.592.1263 Fax: 613.592.3253

INTERNATIONAL

France Paris LSI Logic S.A. Immeuble Europa ♦ Tel: 33.1.34.63.13.13

Fax: 33.1.34.63.13.19

Germany Munich LSI Logic GmbH ♦ Tel: 49.89.4.58.33.0

Fax: 49.89.4.58.33.10

Stuttgart ♦ Tel: 49.711.13.96.90 Fax: 49.711.86.61.428

Italy Milan LSI Logic S.P.A.

♦ Tel: 39.039.687371 Fax: 39.039.6057867

Japan Tokyo LSI Logic K.K. ♦ Tel: 81.3.5463.7821 Fax: 81.3.5463.7820

Osaka ♦ Tel: 81.6.947.5281 Fax: 81.6.947.5287 Korea Seoul LSI Logic Corporation of Korea Ltd Tel: 82.2.528.3400 Fax: 82.2.528.2250

The Netherlands Eindhoven LSI Logic Europe Ltd Tel: 31.40.265.3580 Fax: 31.40.296.2109

Singapore Singapore LSI Logic Pte Ltd Tel: 65.334.9061 Fax: 65.334.4749

Sweden Stockholm LSI Logic AB ♦ Tel: 46.8.444.15.00 Fax: 46.8.750.66.47

Taiwan Taipei LSI Logic Asia, Inc. Taiwan Branch Tel: 886.2.2718.7828 Fax: 886.2.2718.8869

United Kingdom Bracknell LSI Logic Europe Ltd ◆ Tel: 44.1344.426544

► Tel: 44.1344.426544 Fax: 44.1344.481039

 Sales Offices with Design Resource Centers

To receive product literature, visit us at http://www.lsilogic.com

ISO 9000 Certified

This document is preliminary. As such, it contains data derived from functional simulations and performance estimates. LSI Logic has not verified the functional descriptions or electrical and mechanical specifications using production parts.

GT Printed in USA Order No. R15010 Doc. No. DB08-000151-00 The LSI Logic logo design is a registered trademark, and ZSP and G12 are trademarks of LSI Logic Corporation. All other brand and product names may be trademarks of their respective companies. LSI Logic Corporation reserves the right to make changes to any products and services herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase, lease, or use of a product or service from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or of third parties.