


# S1C62440/624A0/624C0/62480 Technical Manual

S1C62440/624A0/624C0/62480 Technical Hardware S1C62440/624A0/624C0/62480 Technical Software





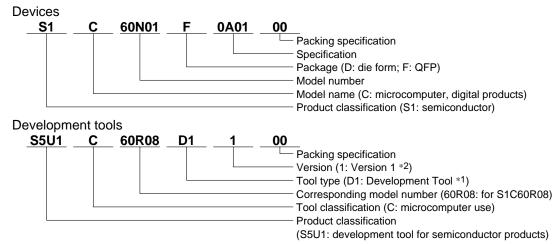


### **PREFACE**

This manual is individualy described about the hardware and the software of the \$1C62440/624A0/624C0/62480.

# I. S1C62440/624A0/624C0/62480 Technical Hardware

This part explains the function of the S1C62440/624A0/624C0/62480, the circuit configurations, and details the controlling method.


# II. S1C62440/624A0/624C0/62480 Technical Software

This part explains the programming method of the S1C62440/624A0/624C0/62480.

### The information of the product number change

Starting April 1, 2001, the product number will be changed as listed below. To order from April 1, 2001 please use the new product number. For further information, please contact Epson sales representative.

### Configuration of product number



<sup>\*1:</sup> For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.)

### Comparison table between new and previous number

S1C60 Family processors

| <u> </u>     | ·        |
|--------------|----------|
| Previous No. | New No.  |
| E0C6001      | S1C60N01 |
| E0C6002      | S1C60N02 |
| E0C6003      | S1C60N03 |
| E0C6004      | S1C60N04 |
| E0C6005      | S1C60N05 |
| E0C6006      | S1C60N06 |
| E0C6007      | S1C60N07 |
| E0C6008      | S1C60N08 |
| E0C6009      | S1C60N09 |
| E0C6011      | S1C60N11 |
| E0C6013      | S1C60N13 |
| E0C6014      | S1C60140 |
| E0C60R08     | S1C60R08 |

### S1C62 Family processors

| Previous No. | New No.  | Previous No. | New No.  |
|--------------|----------|--------------|----------|
| E0C621A      | S1C621A0 | E0C6247      | S1C62470 |
| E0C6215      | S1C62150 | E0C6248      | S1C62480 |
| E0C621C      | S1C621C0 | E0C6S48      | S1C6S480 |
| E0C6S27      | S1C6S2N7 | E0C624C      | S1C624C0 |
| E0C6S37      | S1C6S3N7 | E0C6251      | S1C62N51 |
| E0C623A      | S1C6N3A0 | E0C6256      | S1C62560 |
| E0C623E      | S1C6N3E0 | E0C6292      | S1C62920 |
| E0C6S32      | S1C6S3N2 | E0C6262      | S1C62N62 |
| E0C6233      | S1C62N33 | E0C6266      | S1C62660 |
| E0C6235      | S1C62N35 | E0C6274      | S1C62740 |
| E0C623B      | S1C6N3B0 | E0C6281      | S1C62N81 |
| E0C6244      | S1C62440 | E0C6282      | S1C62N82 |
| E0C624A      | S1C624A0 | E0C62M2      | S1C62M20 |
| E0C6S46      | S1C6S460 | E0C62T3      | S1C62T30 |

# Comparison table between new and previous number of development tools

Development tools for the S1C60/62 Family

| Previous No. | New No.     | Previous No. | New No.      |  |
|--------------|-------------|--------------|--------------|--|
| ASM62        | S5U1C62000A | DEV6262      | S5U1C62620D  |  |
| DEV6001      | S5U1C60N01D | DEV6266      | S5U1C62660D  |  |
| DEV6002      | S5U1C60N02D | DEV6274      | S5U1C62740D  |  |
| DEV6003      | S5U1C60N03D | DEV6292      | S5U1C62920D  |  |
| DEV6004      | S5U1C60N04D | DEV62M2      | S5U1C62M20D  |  |
| DEV6005      | S5U1C60N05D | DEV6233      | S5U1C62N33D  |  |
| DEV6006      | S5U1C60N06D | DEV6235      | S5U1C62N35D  |  |
| DEV6007      | S5U1C60N07D | DEV6251      | S5U1C62N51D  |  |
| DEV6008      | S5U1C60N08D | DEV6256      | S5U1C62560D  |  |
| DEV6009      | S5U1C60N09D | DEV6281      | S5U1C62N81D  |  |
| DEV6011      | S5U1C60N11D | DEV6282      | S5U1C62N82D  |  |
| DEV60R08     | S5U1C60R08D | DEV6S27      | S5U1C6S2N7D  |  |
| DEV621A      | S5U1C621A0D | DEV6S32      | S5U1C6S3N2D  |  |
| DEV621C      | S5U1C621C0D | DEV6S37      | S5U1C6S3N7D  |  |
| DEV623B      | S5U1C623B0D | EVA6008      | S5U1C60N08E  |  |
| DEV6244      | S5U1C62440D | EVA6011      | S5U1C60N11E  |  |
| DEV624A      | S5U1C624A0D | EVA621AR     | S5U1C621A0E2 |  |
| DEV624C      | S5U1C624C0D | EVA621C      | S5U1C621C0E  |  |
| DEV6248      | S5U1C62480D | EVA6237      | S5U1C62N37E  |  |
| DEV6247      | S5U1C62470D | EVA623A      | S5U1C623A0E  |  |

| Previous No.         New No.           EVA623B         S5U1C623B0E           EVA623F         S5U1C623B0E           EVA6247         S5U1C62470E           EVA6248         S5U1C62480E           EVA6256R         S5U1C62N51E1           EVA6256S         S5U1C62N56E           EVA6262S         S5U1C6260E           EVA6274S         S5U1C62740E           EVA6281S         S5U1C62N81E           EVA6282S         S5U1C62N82E           EVA6281S         S5U1C62N82E           EVA6281S         S5U1C62N82E           EVA6281S         S5U1C62N82E           EVA627S         S5U1C62N30E           EVA6S27S         S5U1C63N2E2           EVA6S32RS         S5U1C63N2E2           ICE62RS         S5U1C62000H           KIT6003S         S5U1C60N03K           KIT6004S         S5U1C60N07K |              |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| EVA623E S5U1C623E0E EVA6247 S5U1C62470E EVA6248 S5U1C62480E EVA6251R S5U1C62N51E1 EVA6256 S5U1C62050E EVA6262 S5U1C62600E EVA6274 S5U1C62740E EVA6281 S5U1C62740E EVA6282 S5U1C62N81E EVA6281 S5U1C62N81E EVA6281 S5U1C62N82E EVA62M1 S5U1C62N10E EVA6273 S5U1C62N30E EVA6273 S5U1C63N7E EVA6827 S5U1C6S3N7E EVA6832R S5U1C6S3N2E2 ICE62R S5U1C60N03K KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                    | Previous No. | New No.      |
| EVA6247 S5U1C62470E EVA6248 S5U1C62480E EVA6251R S5U1C62N51E1 EVA6256 S5U1C62N56E EVA6262 S5U1C62600E EVA6264 S5U1C62600E EVA6264 S5U1C62740E EVA6281 S5U1C62N81E EVA6282 S5U1C62N81E EVA6281 S5U1C62N81E EVA6281 S5U1C62N81E EVA6282 S5U1C62N81E EVA6283 S5U1C62N81E EVA62T3 S5U1C62N10E EVA62T3 S5U1C6SN7E EVA6S32R S5U1C6SN2E2 ICE62R S5U1C60N03K KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                     | EVA623B      | S5U1C623B0E  |
| EVA6248 S5U1C62480E EVA6251R S5U1C62N51E1 EVA6256 S5U1C62N56E EVA6262 S5U1C62600E EVA6266 S5U1C62600E EVA6274 S5U1C62740E EVA6281 S5U1C62N81E EVA6282 S5U1C62N81E EVA6281 S5U1C62N81E EVA6287 S5U1C62N80E EVA6273 S5U1C62N10E EVA6273 S5U1C6SN7E EVA6S32R S5U1C6SN7E EVA6S32R S5U1C6SN0E2 KIT6003 S5U1C60N03K KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EVA623E      | S5U1C623E0E  |
| EVA6251R S5U1C62N51E1 EVA6256 S5U1C62N56E EVA6262 S5U1C62620E EVA6266 S5U1C6260E EVA6274 S5U1C62740E EVA6281 S5U1C62N81E EVA6282 S5U1C62N81E EVA6281 S5U1C62N81E EVA6287 S5U1C62N82E EVA62M1 S5U1C62T30E EVA62T3 S5U1C6S2N72 EVA6S32R S5U1C6SN2E2 ICE62R S5U1C60N03K KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EVA6247      | S5U1C62470E  |
| EVA6256 S5U1C62N56E<br>EVA6262 S5U1C62620E<br>EVA6266 S5U1C62660E<br>EVA6274 S5U1C62740E<br>EVA6281 S5U1C62N81E<br>EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C63N2E2<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EVA6248      | S5U1C62480E  |
| EVA6262 S5U1C62620E<br>EVA6266 S5U1C62660E<br>EVA6274 S5U1C62740E<br>EVA6281 S5U1C62N81E<br>EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EVA6251R     | S5U1C62N51E1 |
| EVA6266 S5U1C62660E<br>EVA6274 S5U1C62740E<br>EVA6281 S5U1C62N81E<br>EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EVA6256      | S5U1C62N56E  |
| EVA6274 S5U1C62740E<br>EVA6281 S5U1C62N81E<br>EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C6C900H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EVA6262      | S5U1C62620E  |
| EVA6281 S5U1C62N81E<br>EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S227 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C6C000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EVA6266      | S5U1C62660E  |
| EVA6282 S5U1C62N82E<br>EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S227 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C6C2000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EVA6274      | S5U1C62740E  |
| EVA62M1 S5U1C62M10E<br>EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EVA6281      | S5U1C62N81E  |
| EVA62T3 S5U1C62T30E<br>EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EVA6282      | S5U1C62N82E  |
| EVA6S27 S5U1C6S2N7E<br>EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EVA62M1      | S5U1C62M10E  |
| EVA6S32R S5U1C6S3N2E2<br>ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EVA62T3      | S5U1C62T30E  |
| ICE62R S5U1C62000H<br>KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EVA6S27      | S5U1C6S2N7E  |
| KIT6003 S5U1C60N03K<br>KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EVA6S32R     | S5U1C6S3N2E2 |
| KIT6004 S5U1C60N04K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ICE62R       | S5U1C62000H  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KIT6003      | S5U1C60N03K  |
| KIT6007 S5U1C60N07K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KIT6004      | S5U1C60N04K  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KIT6007      | S5U1C60N07K  |

<sup>\*2:</sup> Actual versions are not written in the manuals.

# **I** \$1C62440/624A0/624C0/62480 **Technical Hardware**

## **CONTENTS**

| CHAPTER 1 | INTR | ODUCTION I-1                                                                                                   |
|-----------|------|----------------------------------------------------------------------------------------------------------------|
|           | 1.1  | Features I-2                                                                                                   |
|           | 1.2  | Block Diagram I-3                                                                                              |
|           | 1.3  | Pin Layout Diagram I-7                                                                                         |
|           | 1.4  | Pin Description I-10                                                                                           |
| CHAPTER 2 | CPU  | AND BUILT-IN MEMORY I-11                                                                                       |
|           | 2.1  | CPU and Instruction Set I-11                                                                                   |
|           | 2.2  | Program Memory (ROM) I-17                                                                                      |
|           | 2.3  | Data Memory (RAM) I-20                                                                                         |
| CHAPTER 3 | POW  | ER SOURCE I-29                                                                                                 |
|           | 3.1  | Power Supply System I-29                                                                                       |
|           | 3.2  | SVD (Supply Voltage Detection) Circuit                                                                         |
|           | 3.3  | Heavy Load Protection Mode I-33  Control of heavy load protection mode I-34  Programming notes I-34            |
|           | 3.4  | CPU Operating Voltage Change I-35                                                                              |
| CHAPTER 4 | WAT  | CHDOG TIMER AND INITIAL RESET 1-36                                                                             |
|           | 4.1  | Watchdog Timer I-36 Configuration of watchdog timer I-36 Control of watchdog timer I-37 Programming notes I-37 |

|           | 4.2  | Initial Reset                                    | I-39<br>I-39<br>I-39 |
|-----------|------|--------------------------------------------------|----------------------|
| CHAPTER 5 | OSCI | ILLATION CIRCUIT                                 | I-41                 |
|           | 5.1  | OSC1 Oscillation Circuit                         | I-41                 |
|           | 5.2  | OSC3 Oscillation Circuit                         | I-43                 |
|           | 5.3  | Operating Voltage Change                         | I-45                 |
|           | 5.4  | Clock Frequency and Instruction Execution Time   | I-46                 |
|           | 5.5  | Control of Oscillation Circuit                   | I-47                 |
|           | 5.6  | Programming Notes                                | I-50                 |
| CHAPTER 6 | INPU | T PORTS (Kxx)                                    | I-51                 |
|           | 6.1  | Configuration of Input Ports                     | I-51                 |
|           | 6.2  | Mask Option                                      | I-52                 |
|           | 6.3  | Interrupt Function Input interrupt (K00-K03) and | I-53                 |
|           |      | input relation registers                         |                      |
|           | 0.4  | Input interrupt (K10-K13)                        |                      |
|           | 6.4  | Control of Input Ports                           | 1-57                 |
|           | 6.5  | Programming Notes                                | I-60                 |

| CHAPTER 7 | OUT | PUT PORTS (Rxx)                                                                                                         | I-63                 |
|-----------|-----|-------------------------------------------------------------------------------------------------------------------------|----------------------|
|           | 7.1 | Configuration of Output Ports                                                                                           | . I-63               |
|           | 7.2 | Mask Option                                                                                                             | . I-64               |
|           | 7.3 | Control of Output Ports  High impedance control  Control registers of output ports  When DC output  When special output | I-70<br>I-70<br>I-72 |
|           | 7.4 | Programming Notes                                                                                                       | . I-74               |
| CHAPTER 8 | I/O | PORTS (Pxx)                                                                                                             | I-75                 |
|           | 8.1 | Configuration of I/O Ports                                                                                              | . I-75               |
|           | 8.2 | Mask Option                                                                                                             | . I-76               |
|           | 8.3 | Control of I/O Ports  I/O control register and input/output mode  Pull up resistor  Control register of I/O ports       | I-77                 |
|           | 8.4 | Programming Notes                                                                                                       | . I-80               |
| CHAPTER 9 | LCD | DRIVER                                                                                                                  | I-81                 |
|           | 9.1 | Drive Duty                                                                                                              | . I-81               |
|           | 9.2 | Mask Option                                                                                                             | . I-84               |
|           | 9.3 | Segment Data Memory                                                                                                     | . I-85               |
|           | 9.4 | Control of LCD Driver                                                                                                   | . I-87               |
|           | 9.5 | Programming Note                                                                                                        | . I- <b>8</b> 9      |

| CHAPTER 10 | TIME BASE COUNTER I-9                                                                                                                                                                                                                                                             | 0                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|            | 10.1 Clock Timer                                                                                                                                                                                                                                                                  | 0<br>1<br>1      |
|            | 10.2 Stopwatch Timer I-9 Configuration of stopwatch timer I-9 Count-up pattern I-9 Interrupt function I-9 Control of stopwatch timer I-9 Programming notes I-10                                                                                                                   | 6<br>7<br>7<br>9 |
|            | 10.3 Programmable Timer                                                                                                                                                                                                                                                           | )3<br>)5<br>)6   |
| CHAPTER 11 | SERIAL INTERFACE (SIN, SOUT, and SCLK) I-11                                                                                                                                                                                                                                       | 2                |
|            | 11.1 Configuration of Serial Interface       I-11         11.2 Mask Option       I-11         11.3 Master Mode and Slave Mode of Serial Interface       I-11         11.4 Data Input/Output and Interrupt Function       I-11         11.5 Control of Serial Interface       I-12 | 13<br>14<br>16   |
|            | 11.6 Programming Notes I-12                                                                                                                                                                                                                                                       | 24               |

| CHAPTER 12 | SOUND GENERATOR I-125                              |
|------------|----------------------------------------------------|
|            | 12.1 Configuration of Sound Generator I-125        |
|            | 12.2 Mask Option I-126                             |
|            | 12.3 Frequency Setting I-126                       |
|            | 12.4 Digital Envelop I-127                         |
|            | 12.5 1-shot Output I-129                           |
|            | 12.6 Control of Sound Generator I-130              |
|            | 12.7 Programming Notes I-134                       |
| CHAPTER 13 | EXTERNAL MEMORY ACCESS (S1C624A0/4C0/480) I-135    |
|            | 13.1 Address Bus I-136                             |
|            | 13.2 Data Bus I-133                                |
|            | 13.3 Write Signal (WR) and Read Signal (RD) I-138  |
|            | 13.4 Chip Select Signal I-139                      |
|            | 13.5 External Memory Read/Write Sequence I-140     |
|            | 13.6 Control of External Memory I-142              |
|            | 13.7 Programming Notes I-148                       |
| CHAPTER 14 | INTERRUPT AND HALT I-149                           |
|            | 14.1 Interrupt Factor Flag and Interrupt Mask I-15 |
|            | 14.2 Interrupt Vector I-153                        |
|            | 14.3 Programming Notes I-154                       |

| CHAPTER 15 | SUMMARY OF NOTES I-15                                     |
|------------|-----------------------------------------------------------|
|            | 15.1 Notes for Low Current Consumption I-15               |
|            | 15.2 Summary of Notes by Function I-15                    |
| CHAPTER 16 | BASIC EXTERNAL CONNECTION DIAGRAM I-16                    |
|            | 16.1 Connection Diagram on S1C62440/4A0/4C0/480 only I-16 |
|            | 16.2 Connection Diagram when External Device is Connected |
|            | 16.3 Recommended Values for External Parts I-16           |
| CHAPTER 17 | ELECTRICAL CHARACTERISTICS I-16                           |
|            | 17.1 Absolute Maximum Rating I-16                         |
|            | 17.2 Recommended Operating Conditions I-16                |
|            | 17.3 DC Characteristics I-16                              |
|            | 17.4 Analog Circuit Characteristics and Consumed Current  |
|            | 17.5 Oscillation Characteristics I-17                     |
| CHAPTER 18 | PACKAGE I-17                                              |
|            | 18.1 Plastic Package I-17                                 |
|            | 18.2 Ceramic Package for Test Samples I-17                |
| CHAPTER 19 | PAD LAYOUT I-18                                           |
|            | 19.1 Diagram of Pad Layout I-18                           |
|            | 19.2 Pad Coordinates I-18                                 |

# CHAPTER 1 INTRODUCTION

The S1C62440/4A0/4C0/480 are a microcomputer with a C-MOS 4-bit core CPU S1C6200 as main component, and ROM, RAM, dot matrix LCD driver, time base counter, clock synchronous serial interface, etc. built-in.

Moreover, in the S1C624A0/4C0/480 external memory device control is possible, and are most suitable for applications with equipment requiring large memory and dot matrix display functions such as a highly functional electronic pocketbook.

Table 1.1 Configuration of the S1C62440/4A0/4C0/480

| Model    | ROM capacity | RAM capacity | Number of segment pins | External memory control |
|----------|--------------|--------------|------------------------|-------------------------|
| S1C62440 | 4,096 words  | 384 words    | 40                     | Not used                |
| S1C624A0 | 6,144 words  | 640 words    | 40                     | Used                    |
| S1C624C0 | 5,120 words  | 1,152 words  | 51                     | Used                    |
| S1C62480 | 8,192 words  | 768 words    | 51                     | Used                    |

### 1.1 Features

Table 1.1.1 Features

|                                                                         |                                    | S1C62480                                     | S1C624C0                                     | S1C624A0                | S1C62440H                                    |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------|----------------------------------------------|--|--|--|--|--|--|--|--|--|
| Power volt                                                              | age                                | 2.2 to 5.5 V (Min. 1.8 V, who                | en OSC3 oscillation circuit is               | not used)               |                                              |  |  |  |  |  |  |  |  |  |
| Built-in                                                                | OSC1                               | Crystal or CR oscillation (*1)               | Crystal or CR oscillation (*1)               | Crystal oscillation     | Crystal or CR oscillation (*1)               |  |  |  |  |  |  |  |  |  |
| oscillation                                                             | oscillation circuit:               | 32,768 Hz (Typ.)                             | 32,768 Hz (Typ.)                             | 32,768 Hz (Typ.)        | 32,768 Hz (Typ.)                             |  |  |  |  |  |  |  |  |  |
| circuit                                                                 | OSC3                               | CR or ceramic oscillation (*1                | )                                            |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         | oscillation circuit:               | 2 MHz (Max.)                                 |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Instruction                                                             | set                                | 108 types                                    |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Program m                                                               | nemory (ROM)                       | $8,192 \text{ words} \times 12 \text{ bits}$ | $5,120 \text{ words} \times 12 \text{ bits}$ | 6,144 words × 12 bits   | $4,096 \text{ words} \times 12 \text{ bits}$ |  |  |  |  |  |  |  |  |  |
| capacity                                                                |                                    |                                              |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Data mem                                                                | ory RAM:                           | 768 words × 4 bits                           | $1,152 \text{ words} \times 4 \text{ bits}$  | 640 words × 4 bits      | 384 words × 4 bits                           |  |  |  |  |  |  |  |  |  |
| (RAM)                                                                   | Segment                            |                                              |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| capacity                                                                | data memory:                       | 204 words × 4 bits                           | 204 words $\times$ 4 bits                    | 160 words × 4 bits      | 160 words × 4 bits                           |  |  |  |  |  |  |  |  |  |
| External m                                                              | emory capacity                     | Read/write capacity: max. 6                  | 4K bits × 4 (*2)                             |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         |                                    | Read-only capacity: max. 1                   | 28K bits × 4 (*2)                            |                         |                                              |  |  |  |  |  |  |  |  |  |
| Input ports                                                             |                                    | 8 bits (pull up resistors may l              | pe supplemented *1)                          |                         |                                              |  |  |  |  |  |  |  |  |  |
| Output por                                                              | ts                                 | Max. 20 bits (*3, *5)                        |                                              |                         | 12 bits (*5)                                 |  |  |  |  |  |  |  |  |  |
| Input/outpu                                                             | ut ports                           | Max. 16 bits (*4)                            |                                              |                         | 12 bits                                      |  |  |  |  |  |  |  |  |  |
| Serial inter                                                            | face                               | 1 port (8 bits serial, synchron              | ous type clock)                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Dot matrix                                                              | LCD driver                         | 51 segments × 16 common of                   | luty (or 8 common duty)                      | 40 segments × 16 common | duty (or 8 common duty)                      |  |  |  |  |  |  |  |  |  |
| Time base                                                               | counter                            | 3 systems (clock timer / stop                | watch timer / programmable ti                | mer)                    |                                              |  |  |  |  |  |  |  |  |  |
| Watchdog                                                                | timer                              | built-in                                     |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Sound gen                                                               | erator                             | 8 programmable sounds (8 ty                  | pes of frequency);                           |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         |                                    | built-in digital envelope                    |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         |                                    | 1-shot output function                       |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| Supply volt                                                             | age detection (SVD)                | -2.2 / -2.5 / -3.1 / -4.2 V, pro             | grammable (VDD reference vo                  | ltage)                  |                                              |  |  |  |  |  |  |  |  |  |
| Interrupt                                                               | External interrupt:                | Input port interrupt 2 systems               | S                                            |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         | Internal interrupt:                | Time base counter interrupt 3                | 3 systems                                    |                         |                                              |  |  |  |  |  |  |  |  |  |
|                                                                         |                                    | Serial interface interrupt 1 sy              | stem                                         |                         |                                              |  |  |  |  |  |  |  |  |  |
| Consumed                                                                | CLK = 32,768 Hz                    | 2.5 μA (Typ.)                                | 2.5 μA (Typ.)                                | 2.5 μA (Typ.)           | 2.5 μA (Typ.)                                |  |  |  |  |  |  |  |  |  |
| current                                                                 | (During HALT)                      |                                              |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |
| (Typ.)                                                                  | CLK = 32,768 Hz (During operation) | 6.5 μA (Typ.)                                | 6.5 μA (Typ.)                                | 6.5 μA (Typ.)           | 6.5 μA (Typ.)                                |  |  |  |  |  |  |  |  |  |
|                                                                         | CLK = 2 MHz (During operation)     | 1 mA (Typ.)                                  | 1 mA (Typ.)                                  | 1 mA (Typ.)             | 1 mA (Typ.)                                  |  |  |  |  |  |  |  |  |  |
| Supply forr                                                             | ,                                  | 144-pin OFP                                  | (plastic) or chip                            | 128-pin OF              | P (plastic) or chip                          |  |  |  |  |  |  |  |  |  |
| Supply form 144-pin QFP (plastic) or chip 128-pin QFP (plastic) or chip |                                    |                                              |                                              |                         |                                              |  |  |  |  |  |  |  |  |  |

- \*1: May be selected with mask option
- \*2: When the output port and input/output port are set through mask option selection as external memory access
- \*3: Maximum number that may be set as output port (when external memory is not used)
- \*4: Maximum number that may be set as input/output port (when external memory is not used)
- \*5: BZ,  $\overline{BZ}$ , FOUT,  $\overline{FOUT}$ ,  $\overline{SRDY}$ , PTCLK, CL, and FR outputs are possible through mask option selections

# 1.2 Block Diagram

The S1C62440/4A0/4C0/480 block diagrams are shown in Figures 1.2.1–1.2.4.

S1C62440

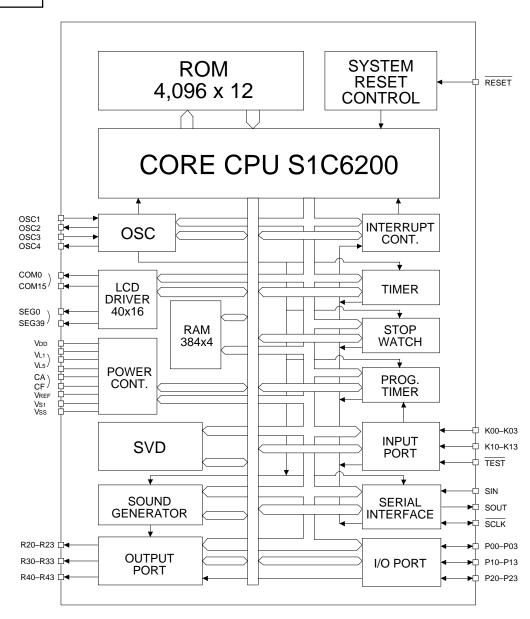



Fig. 1.2.1 S1C62440 block diagram

### S1C624A0

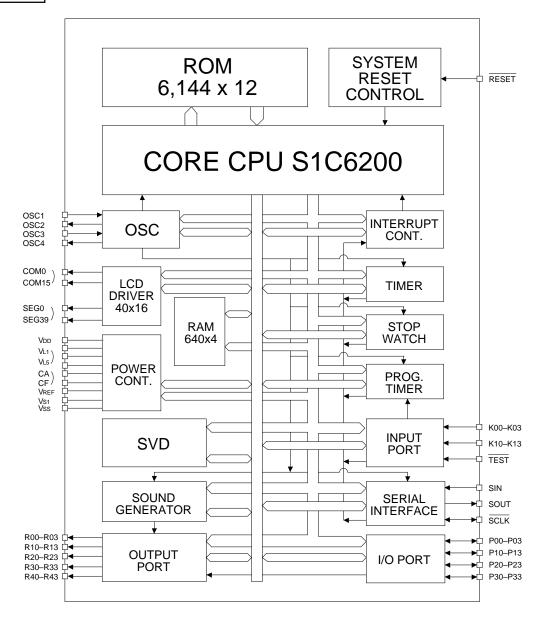



Fig. 1.2.2 S1C624A0 block diagram

### S1C624C0

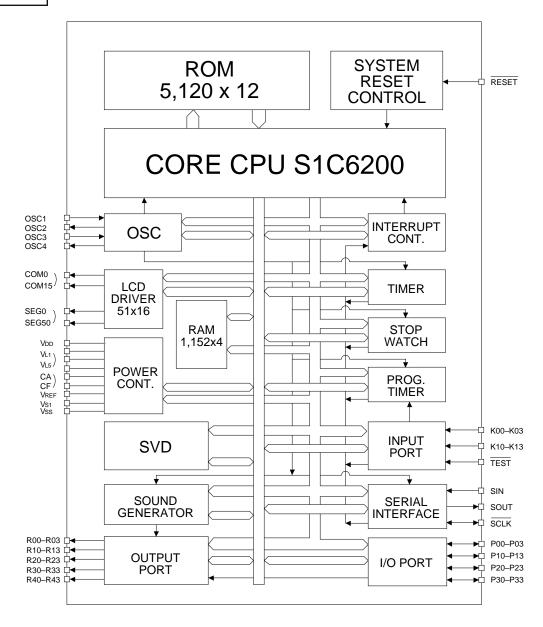



Fig. 1.2.3 S1C624C0 block diagram

### S1C62480

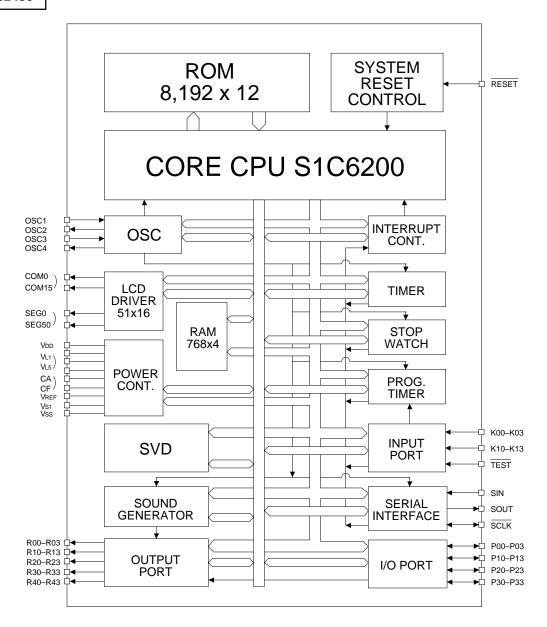
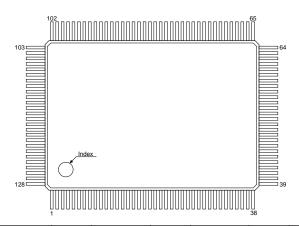
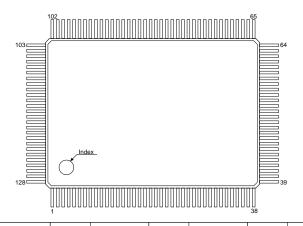




Fig. 1.2.4 S1C62480 block diagram

# 1.3 Pin Layout Diagram

S1C62440

QFP5-128 pin

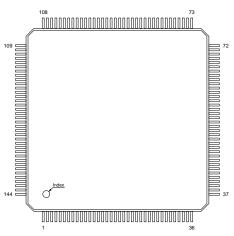



| Pin No | Pin Name        |
|--------|----------|--------|----------|--------|----------|--------|-----------------|
| 1      | N.C.     | 33     | SEG30    | 65     | SEG1     | 97     | R40             |
| 2      | CC       | 34     | SEG29    | 66     | N.C.     | 98     | N.C.            |
| 3      | N.C.     | 35     | N.C.     | 67     | SEG0     | 99     | N.C.            |
| 4      | СВ       | 36     | SEG28    | 68     | N.C.     | 100    | N.C.            |
| 5      | CA       | 37     | N.C.     | 69     | N.C.     | 101    | R33             |
| 6      | N.C.     | 38     | SEG27    | 70     | SCLK     | 102    | R32             |
| 7      | COM0     | 39     | N.C.     | 71     | SOUT     | 103    | R31             |
| 8      | COM1     | 40     | SEG26    | 72     | SIN      | 104    | R30             |
| 9      | COM2     | 41     | SEG25    | 73     | K13      | 105    | R23             |
| 10     | COM3     | 42     | SEG24    | 74     | K12      | 106    | R22             |
| 11     | COM4     | 43     | SEG23    | 75     | K11      | 107    | R21             |
| 12     | COM5     | 44     | SEG22    | 76     | K10      | 108    | R20             |
| 13     | COM6     | 45     | SEG21    | 77     | K03      | 109    | Vss             |
| 14     | COM7     | 46     | SEG20    | 78     | K02      | 110    | RESET           |
| 15     | COM8     | 47     | SEG19    | 79     | K01      | 111    | TEST            |
| 16     | COM9     | 48     | SEG18    | 80     | K00      | 112    | OSC4            |
| 17     | COM10    | 49     | SEG17    | 81     | P23      | 113    | OSC3            |
| 18     | COM11    | 50     | SEG16    | 82     | P22      | 114    | N.C.            |
| 19     | COM12    | 51     | SEG15    | 83     | P21      | 115    | Vs1             |
| 20     | COM13    | 52     | SEG14    | 84     | P20      | 116    | OSC2            |
| 21     | COM14    | 53     | SEG13    | 85     | P13      | 117    | OSC1            |
| 22     | COM15    | 54     | SEG12    | 86     | P12      | 118    | N.C.            |
| 23     | N.C.     | 55     | SEG11    | 87     | P11      | 119    | V <sub>DD</sub> |
| 24     | SEG39    | 56     | SEG10    | 88     | P10      | 120    | Vref            |
| 25     | SEG38    | 57     | SEG9     | 89     | P03      | 121    | VL1             |
| 26     | SEG37    | 58     | SEG8     | 90     | P02      | 122    | VL2             |
| 27     | SEG36    | 59     | SEG7     | 91     | P01      | 123    | VL3             |
| 28     | SEG35    | 60     | SEG6     | 92     | P00      | 124    | VL4             |
| 29     | SEG34    | 61     | SEG5     | 93     | R43      | 125    | VL5             |
| 30     | SEG33    | 62     | SEG4     | 94     | R42      | 126    | CF              |
| 31     | SEG32    | 63     | SEG3     | 95     | N.C.     | 127    | CE              |
| 32     | SEG31    | 64     | SEG2     | 96     | R41      | 128    | CD              |

Fig. 1.3.1 S1C62440 pin assignment

S1C624A0

QFP5-128 pin




| Pin No | Pin Name        |
|--------|----------|--------|----------|--------|----------|--------|-----------------|
| 1      | VL3      | 33     | SEG33    | 65     | SEG2     | 97     | R42             |
| 2      | VL4      | 34     | N.C.     | 66     | SEG1     | 98     | N.C.            |
| 3      | VL5      | 35     | SEG32    | 67     | SEG0     | 99     | R41             |
| 4      | CF       | 36     | SEG31    | 68     | SCLK     | 100    | R40             |
| 5      | N.C.     | 37     | SEG30    | 69     | N.C.     | 101    | R33             |
| 6      | CE       | 38     | SEG29    | 70     | SOUT     | 102    | R32             |
| 7      | CD       | 39     | SEG28    | 71     | SIN      | 103    | R31             |
| 8      | CC       | 40     | SEG27    | 72     | K13      | 104    | R30             |
| 9      | СВ       | 41     | SEG26    | 73     | K12      | 105    | R23             |
| 10     | CA       | 42     | SEG25    | 74     | K11      | 106    | R22             |
| 11     | COM0     | 43     | SEG24    | 75     | K10      | 107    | R21             |
| 12     | COM1     | 44     | SEG23    | 76     | K03      | 108    | R20             |
| 13     | COM2     | 45     | SEG22    | 77     | K02      | 109    | R13             |
| 14     | COM3     | 46     | SEG21    | 78     | K01      | 110    | R12             |
| 15     | COM4     | 47     | SEG20    | 79     | K00      | 111    | R11             |
| 16     | COM5     | 48     | SEG19    | 80     | P33      | 112    | R10             |
| 17     | COM6     | 49     | SEG18    | 81     | P32      | 113    | R03             |
| 18     | COM7     | 50     | SEG17    | 82     | P31      | 114    | R02             |
| 19     | COM8     | 51     | SEG16    | 83     | P30      | 115    | R01             |
| 20     | COM9     | 52     | SEG15    | 84     | P23      | 116    | R00             |
| 21     | COM10    | 53     | SEG14    | 85     | P22      | 117    | Vss             |
| 22     | COM11    | 54     | SEG13    | 86     | P21      | 118    | RESET           |
| 23     | COM12    | 55     | SEG12    | 87     | P20      | 119    | TEST            |
| 24     | COM13    | 56     | SEG11    | 88     | P13      | 120    | OSC4            |
| 25     | COM14    | 57     | SEG10    | 89     | P12      | 121    | OSC3            |
| 26     | COM15    | 58     | SEG9     | 90     | P11      | 122    | Vs1             |
| 27     | SEG39    | 59     | SEG8     | 91     | P10      | 123    | OSC2            |
| 28     | SEG38    | 60     | SEG7     | 92     | P03      | 124    | OSC1            |
| 29     | SEG37    | 61     | SEG6     | 93     | P02      | 125    | V <sub>DD</sub> |
| 30     | SEG36    | 62     | SEG5     | 94     | P01      | 126    | Vref            |
| 31     | SEG35    | 63     | SEG4     | 95     | P00      | 127    | V <sub>L1</sub> |
| 32     | SEG34    | 64     | SEG3     | 96     | R43      | 128    | VL2             |

Fig. 1.3.2 S1C624A0 pin assignment

S1C624C0/480

QFP8-144 pin



| Pin No | Pin Name |
|--------|----------|--------|----------|--------|----------|--------|----------|
| 1      | СВ       | 37     | SEG36    | 73     | SEG1     | 109    | R33      |
| 2      | CA       | 38     | SEG35    | 74     | SEG0     | 110    | R32      |
| 3      | N.C.     | 39     | SEG34    | 75     | N.C.     | 111    | R31      |
| 4      | COM0     | 40     | SEG33    | 76     | SCLK     | 112    | R30      |
| 5      | COM1     | 41     | SEG32    | 77     | SOUT     | 113    | R23      |
| 6      | COM2     | 42     | SEG31    | 78     | SIN      | 114    | R22      |
| 7      | COM3     | 43     | SEG30    | 79     | K13      | 115    | R21      |
| 8      | COM4     | 44     | SEG29    | 80     | K12      | 116    | R20      |
| 9      | COM5     | 45     | SEG28    | 81     | K11      | 117    | R13      |
| 10     | COM6     | 46     | SEG27    | 82     | K10      | 118    | R12      |
| 11     | COM7     | 47     | SEG26    | 83     | K03      | 119    | R11      |
| 12     | COM8     | 48     | SEG25    | 84     | N.C.     | 120    | R10      |
| 13     | COM9     | 49     | SEG24    | 85     | K02      | 121    | R03      |
| 14     | COM10    | 50     | N.C.     | 86     | K01      | 122    | R02      |
| 15     | COM11    | 51     | SEG23    | 87     | K00      | 123    | R01      |
| 16     | COM12    | 52     | SEG22    | 88     | P33      | 124    | R00      |
| 17     | COM13    | 53     | SEG21    | 89     | P32      | 125    | Vss      |
| 18     | COM14    | 54     | SEG20    | 90     | P31      | 126    | RESET    |
| 19     | N.C.     | 55     | SEG19    | 91     | P30      | 127    | TEST     |
| 20     | COM15    | 56     | SEG18    | 92     | P23      | 128    | OSC4     |
| 21     | SEG50    | 57     | SEG17    | 93     | P22      | 129    | OSC3     |
| 22     | SEG49    | 58     | SEG16    | 94     | P21      | 130    | Vsı      |
| 23     | SEG48    | 59     | SEG15    | 95     | P20      | 131    | OSC2     |
| 24     | SEG47    | 60     | SEG14    | 96     | P13      | 132    | OSC1     |
| 25     | SEG46    | 61     | SEG13    | 97     | N.C.     | 133    | N.C.     |
| 26     | SEG45    | 62     | SEG12    | 98     | P12      | 134    | Vdd      |
| 27     | SEG44    | 63     | SEG11    | 99     | P11      | 135    | Vref     |
| 28     | SEG43    | 64     | SEG10    | 100    | P10      | 136    | VL1      |
| 29     | SEG42    | 65     | SEG9     | 101    | P03      | 137    | VL2      |
| 30     | SEG41    | 66     | SEG8     | 102    | P02      | 138    | VL3      |
| 31     | SEG40    | 67     | SEG7     | 103    | P01      | 139    | VL4      |
| 32     | SEG39    | 68     | SEG6     | 104    | P00      | 140    | VL5      |
| 33     | SEG38    | 69     | SEG5     | 105    | R43      | 141    | CF       |
| 34     | SEG37    | 70     | SEG4     | 106    | R42      | 142    | CE       |
| 35     | N.C.     | 71     | SEG3     | 107    | R41      | 143    | CD       |
| 36     | N.C.     | 72     | SEG2     | 108    | R40      | 144    | CC       |

Fig. 1.3.3 S1C624C0/480 pin assignment

# 1.4 Pin Description

Table 1.4.1 Pin description

| Pin Name        | S1C62440       | Pin No          | S1C624C0/480 | In/Out | Function                                                   |
|-----------------|----------------|-----------------|--------------|--------|------------------------------------------------------------|
| V <sub>DD</sub> | 119            | S1C624A0<br>125 | 134          | I      | Power (+)                                                  |
| Vss             | 109            | 117             | 125          | I      | Power (-)                                                  |
| Vs1             | 115            | 122             | 130          |        | Internal logic system/oscillation system regulated voltage |
| VL1 -V L5       | 121–125        | 127, 128        | 136–140      |        | LCD system power 1/4 bias generated internally             |
| VLI -VLS        | 121-123        | 1-3             | 130–140      | _      |                                                            |
|                 |                | 1-3             |              |        | 1/5 bias generated externally                              |
| G + GT          |                | 10.5.4          |              |        | (selected by mask option)                                  |
| CA-CF           | 5, 4, 2        | 10–6, 4         | 2, 1         | _      | LCD system voltage booster condenser                       |
|                 | 128–126        |                 | 144–141      | _      | connecting terminal                                        |
| OSC1            | 117            | 124             | 132          | I      | Crystal or CR (selected by mask option only for            |
|                 |                |                 |              |        | S1C62440/4C0/480) oscillator input terminal                |
| OSC2            | 116            | 123             | 131          | О      | Crystal or CR (selected by mask option only for            |
|                 |                |                 |              |        | S1C62440/4C0/480) oscillator output terminal (CD built-in) |
| OSC3            | 113            | 121             | 129          | I      | CR or ceramic oscillator input terminal                    |
|                 |                |                 |              |        | (selected by mask option)                                  |
| OSC4            | 112            | 120             | 128          | О      | CR or ceramic oscillator output terminal                   |
|                 |                |                 |              |        | (selected by mask option)                                  |
| COM0-15         | 7–22           | 11–26           | 4–18         | О      | LCD common output                                          |
|                 |                |                 | 20           |        | (1/8 duty or 1/16 duty is selected on software)            |
| SEG0-39         | 67, 65–40      | 67–35           | 74–51        | О      | LCD segment output                                         |
|                 | 38, 36         | 33–27           | 49–37        |        |                                                            |
|                 | 34-24          |                 | 34–32        |        |                                                            |
| SEG40-50        | _              | _               | 31–21        |        |                                                            |
| RESET           | 110            | 118             | 126          | I      | Initial reset input terminal                               |
| TEST            | 111            | 119             | 127          | I      | Testing input terminal                                     |
| Vref            | 120            | 126             | 135          | О      | LCD system power test terminal                             |
| K00-K03         | 80–77          | 79–76           | 87–85, 83    | I      | Input ports                                                |
| K10-K13         | 76–73          | 75–72           | 82–79        |        | (Use of pull up resistor is selected with mask option)     |
| P00-P03         | 92–89          | 95–92           | 104–101      | I/O    | Input/Output ports                                         |
| P10-P13         | 88–85          | 91–88           | 100–98, 96   |        | (Complementary output or Nch open drain output,            |
| P20-P23         | 84–81          | 87–84           | 95–92        |        | and DC output or external data bus output are selected     |
| P30-P33         | _              | 83–80           | 91–88        |        | with mask option)                                          |
| R00-R03         | _              | 116–113         | 124–121      | О      | Output ports                                               |
| R10-R13         | _              | 112–109         | 120–117      |        | (Complementary output or Nch open drain output,            |
| R20-R23         | 108–105        | 108–105         | 116–113      |        | and DC output or external address bus output,              |
| R30–R33         | 104–101        | 104–101         | 112–109      |        | buzzer output, FOUT output, SRDY output, CL output,        |
| R40–R43         | 97, 96, 94, 93 | 100, 99, 97, 96 | 108–105      |        | and FR output are selected by mask option)                 |
| SIN             | 72             | 71              | 78           | I      | Serial interface data input terminal                       |
| SOUT            | 71             | 70              | 77           | 0      | Serial interface data output terminal                      |
| SCLK            | 70             | 68              | 76           | I/O    | Serial interface clock input/output terminal               |

<sup>\*</sup> The  $\overline{\text{TEST}}$  (test terminal) is used when the IC load is being detected. During ordinary operation be certain to connect this pin to VDD.

\* Leave the VREF terminal unconnected (N.C.).

# CHAPTER 2 CPU AND BUILT-IN MEMORY

### 2.1 CPU and Instruction Set

S1C62440/4A0/4C0/480 use the 4-bit core CPU S1C6200 for its CPU. It have almost the same register configurations, instructions, and other features as the other family devices which use S1C6200, allowing full use of software assets. The instruction set of S1C62440/4A0/4C0/480 have 108 types of commands, all consisting of one word (12 bits).

For detailed information on the CPU and the instruction set, refer to the "S1C6200/6200A Core CPU Manual". Note, however, that because S1C62440/4A0/4C0/480 do not assume SLEEP operation, SLP command is not available in the S1C6200 instruction set.

The instruction set list is shown in Tables 2.1.1(a)–(c). The list of operands is shown in Table 2.1.2. Common examples of operation are shown in Table 2.1.3.

Table 2.1.1(a) Instruction sets (1)

| 01'''          | Mne-  | 0       |          |   |   |   | Оре      | eratio | on C | ode        | )        |    |            |    | Flag  |   | 011   | 0.0050                                                                                                    |
|----------------|-------|---------|----------|---|---|---|----------|--------|------|------------|----------|----|------------|----|-------|---|-------|-----------------------------------------------------------------------------------------------------------|
| Classification | monic | Operand | В        | Α | 9 | 8 | 7        | 6      | 5    | 4          | 3        | 2  | 1          | 0  | I D Z | С | Clock | Operation                                                                                                 |
| Branch         | PSET  | p       | 1        | 1 | 1 | 0 | 0        | 1      | 0    | p4         | р3       | p2 | p1         | p0 |       |   | 5     | NBP ←p4, NPP ←p3~p0                                                                                       |
| instructions   | JP    | s       | 0        | 0 | 0 | 0 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 5     | $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$                                       |
|                |       | C, s    | 0        | 0 | 1 | 0 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if C=1                                 |
|                |       | NC, s   | 0        | 0 | 1 | 1 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 5     | PCB←NBP, PCP←NPP, PCS←s7~s0 if C=0                                                                        |
|                |       | Z, s    | 0        | 1 | 1 | 0 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 5     | $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } Z=1$                       |
|                |       | NZ, s   | 0        | 1 | 1 | 1 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if Z=0                                 |
|                | JPBA  |         | 1        | 1 | 1 | 1 | 1        | 1      | 1    | 0          | 1        | 0  | 0          | 0  |       |   | 5     | $PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$                            |
|                | CALL  | s       | 0        | 1 | 0 | 0 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 7     | $M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$                              |
|                |       |         |          |   |   |   |          |        |      |            |          |    |            |    |       |   |       | $SP \leftarrow SP-3, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$                                       |
|                | CALZ  | s       | 0        | 1 | 0 | 1 | s7       | s6     | s5   | s4         | s3       | s2 | s1         | s0 |       |   | 7     | $M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$                              |
|                |       |         |          |   |   |   |          |        |      |            |          |    |            |    |       |   |       | $SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7 \sim s0$                                         |
|                | RET   |         | 1        | 1 | 1 | 1 | 1        | 1      | 0    | 1          | 1        | 1  | 1          | 1  |       |   | 7     | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |
|                |       |         |          |   |   |   |          |        |      |            |          |    |            |    |       |   |       | SP←SP+3                                                                                                   |
|                | RETS  |         | 1        | 1 | 1 | 1 | 1        | 1      | 0    | 1          | 1        | 1  | 1          | 0  |       |   | 12    | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |
|                |       |         |          |   |   |   |          |        |      |            |          |    |            |    |       |   |       | $SP \leftarrow SP+3, PC \leftarrow PC+1$                                                                  |
|                | RETD  | l       | 0        | 0 | 0 | 1 | 17       | 16     | 15   | <i>l</i> 4 | 13       | 12 | <i>l</i> 1 | 10 |       |   | 12    | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |
|                |       |         |          |   |   |   |          |        |      |            |          |    |            |    |       |   |       | $SP \leftarrow SP+3$ , $M(X) \leftarrow l3 \sim l0$ , $M(X+1) \leftarrow l7 \sim l4$ , $X \leftarrow X+2$ |
| System         | NOP5  |         | 1        | 1 | 1 | 1 | 1        | 1      | 1    | 1          | 1        | 0  | 1          | 1  |       |   | 5     | No operation (5 clock cycles)                                                                             |
| control        | NOP7  |         |          |   | 1 |   |          | 1      |      |            |          | 1  |            |    |       |   | 7     | No operation (7 clock cycles)                                                                             |
| instructions   | HALT  |         | 1        | 1 | 1 | 1 | 1        | 1      | 1    | 1          | 1        | 0  | 0          | 0  |       |   | 5     | Halt (stop clock)                                                                                         |
|                | SLP * |         | 1        | 1 | 1 | 1 | 1        | 1      | 1    | 1          | 1        | 0  | 0          | 1  |       |   | 5     | SLEEP (stop oscillation)                                                                                  |
| Index          | INC   | X       | 1        | 1 | 1 | 0 | <b>—</b> |        |      |            |          |    |            |    |       |   | 5     | X←X+1                                                                                                     |
| operation      |       | Y       | 1        | 1 | 1 | 0 | 1        | 1      | 1    | 1          | 0        | 0  | 0          | 0  |       |   | 5     | Y←Y+1                                                                                                     |
| instructions   | LD    | X, x    | 1        | 0 | 1 | 1 | x7       | x6     | x5   | x4         | х3       | x2 | x1         | x0 |       |   | 5     | XH←x7~x4, XL←x3~x0                                                                                        |
|                |       | Y, y    | 1        | 0 | 0 | 0 | у7       | у6     | y5   | y4         | у3       | y2 | y1         | y0 |       |   | 5     | YH←y7~y4, YL←y3~y0                                                                                        |
|                |       | XP, r   |          |   |   |   |          |        |      |            |          |    |            | r0 |       |   | 5     | XP←r                                                                                                      |
|                |       | XH, r   | 1        | 1 | 1 | 0 | 1        | 0      | 0    | 0          | 0        | 1  | r1         | r0 |       |   | 5     | XH←r                                                                                                      |
|                |       | XL, r   | 1        | 1 | 1 | 0 | 1        | 0      | 0    | 0          | 1        | 0  | r1         | r0 |       |   | 5     | XL←r                                                                                                      |
|                |       | YP, r   | 1        | 1 | 1 | 0 | 1        | 0      | 0    | 1          | 0        | 0  | r1         | r0 |       |   | 5     | YP←r                                                                                                      |
|                |       | YH, r   | 1        | 1 | 1 | 0 | 1        | 0      | 0    | 1          | 0        | 1  | r1         | r0 |       |   | 5     | YH←r                                                                                                      |
|                |       | YL, r   | 1        | 1 | 1 | 0 | 1        | 0      | 0    | 1          | 1        | 0  | r1         | r0 |       |   | 5     | YL←r                                                                                                      |
|                |       | r, XP   | 1        | 1 | 1 | 0 | 1        | 0      | 1    | 0          | 0        | 0  | r1         | r0 |       |   | 5     | r←XP                                                                                                      |
|                |       | r, XH   | 1        | 1 | 1 | 0 | 1        | 0      | 1    | 0          | 0        | 1  | r1         | r0 |       |   | 5     | r←XH                                                                                                      |
|                |       | r, XL   | 1        | 1 | 1 | 0 | 1        | 0      | 1    | 0          | 1        | 0  | r1         | r0 |       |   | 5     | r←XL                                                                                                      |
|                |       | r, YP   | 1        | 1 | 1 | 0 | 1        | 0      | 1    | 1          | 0        | 0  | r1         | r0 |       |   | 5     | r←YP                                                                                                      |
|                |       | r, YH   |          |   | 1 |   |          | 0      |      |            |          |    |            | r0 |       |   | 5     | r←YH                                                                                                      |
|                |       | r, YL   |          |   | 1 | _ |          | 0      | _    | _          |          | _  |            | r0 |       |   | 5     | r←YL                                                                                                      |
|                | ADC   | XH, i   | $\vdash$ |   |   |   |          |        |      |            | $\vdash$ |    |            | i0 |       | 1 | 7     | XH←XH+i3~i0+C                                                                                             |
|                | -     | XL, i   |          |   |   |   |          |        |      |            | $\vdash$ |    |            | i0 |       | 1 | 7     | XL←XL+i3~i0+C                                                                                             |
|                |       | YH, i   | -        |   |   |   | _        |        |      |            | -        |    |            | i0 |       | 1 | 7     | YH←YH+i3~i0+C                                                                                             |
|                |       | YL, i   |          |   | 1 |   |          | 0      |      |            |          | i2 |            |    |       | 1 | 7     | YL←YL+i3~i0+C                                                                                             |

<sup>\*</sup> Not in S1C62440/4A0/4C0/480

Table 2.1.1(b) Instruction sets (2)

|                | Mne-  |         |   |   |   |   | Оре        | eratio     | n C | ode        |    |            |            |            | Flag                                                     |          |       |                                                                                       |
|----------------|-------|---------|---|---|---|---|------------|------------|-----|------------|----|------------|------------|------------|----------------------------------------------------------|----------|-------|---------------------------------------------------------------------------------------|
| Classification | monic | Operand | В | Α | 9 | 8 | 7          | 6          | 5   | 4          | 3  | 2          | 1          | 0          | IDZC                                                     | ; CI     | Clock | Operation                                                                             |
| Index          | CP    | XH, i   | 1 | 0 | 1 | 0 | 0          | 1          | 0   | 0          | i3 | i2         | i1         | i0         | 1 1                                                      | +-       | 7     | XH-i3~i0                                                                              |
| operation      |       | XL, i   | 1 | 0 | 1 | 0 | 0          | 1          | 0   | 1          | i3 | i2         | i1         | i0         | 1 1                                                      | <u> </u> | 7     | XL-i3~i0                                                                              |
| instructions   |       | YH, i   | 1 | 0 | 1 | 0 | 0          | 1          | 1   | 0          | i3 | i2         | i1         | i0         | 1 1                                                      | <u> </u> | 7     | YH-i3~i0                                                                              |
|                |       | YL, i   | 1 | 0 | 1 | 0 | 0          | 1          | 1   | 1          | i3 | i2         | i1         | i0         | 1 1                                                      |          | 7     | YL-i3~i0                                                                              |
| Data           | LD    | r, i    | 1 | 1 | 1 | 0 | 0          | 0          | r1  | r0         | i3 | i2         | i1         | i0         |                                                          |          | 5     | r ← i3~i0                                                                             |
| transfer       |       | r, q    | 1 | 1 | 1 | 0 | 1          | 1          | 0   | 0          | r1 | r0         | q1         | q0         |                                                          |          | 5     | $r \leftarrow q$                                                                      |
| instructions   |       | A, Mn   | 1 | 1 | 1 | 1 | 1          | 0          | 1   | 0          | n3 | n2         | n1         | n0         |                                                          |          | 5     | $A \leftarrow M(n3 \sim n0)$                                                          |
|                |       | B, Mn   | 1 | 1 | 1 | 1 | 1          | 0          | 1   | 1          | n3 | n2         | n1         | n0         |                                                          |          | 5     | $B \leftarrow M(n3 \sim n0)$                                                          |
|                |       | Mn, A   | 1 | 1 | 1 | 1 | 1          | 0          | 0   | 0          | n3 | n2         | n1         | n0         |                                                          |          | 5     | $M(n3\sim n0) \leftarrow A$                                                           |
|                |       | Mn, B   | 1 | 1 | 1 | 1 | 1          | 0          | 0   | 1          | n3 | n2         | n1         | n0         |                                                          |          | 5     | $M(n3\sim n0) \leftarrow B$                                                           |
|                | LDPX  | MX, i   | 1 | 1 | 1 | 0 | 0          | 1          | 1   | 0          | i3 | i2         | i1         | i0         |                                                          |          | 5     | $M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$                                        |
|                |       | r, q    | 1 | 1 | 1 | 0 | 1          | 1          | 1   | 0          | r1 | r0         | q1         | q0         |                                                          |          | 5     | $r \leftarrow q, X \leftarrow X+1$                                                    |
|                | LDPY  | MY, i   | 1 | 1 | 1 | 0 | 0          | 1          | 1   | 1          | i3 | i2         | i1         | i0         |                                                          |          | 5     | $M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y + 1$                                      |
|                |       | r, q    | 1 | 1 | 1 | 0 | 1          | 1          | 1   | 1          | r1 | r0         | q1         | q0         |                                                          |          | 5     | $r \leftarrow q, Y \leftarrow Y+1$                                                    |
| ı              | LBPX  | MX, l   | 1 | 0 | 0 | 1 | <i>l</i> 7 | <i>l</i> 6 | 15  | <i>l</i> 4 | 13 | <i>l</i> 2 | <i>l</i> 1 | <i>l</i> 0 |                                                          |          | 5     | $M(X) \leftarrow l \ 3 \sim l0, M(X+1) \leftarrow l \ 7 \sim l \ 4, X \leftarrow X+2$ |
| Flag           | SET   | F, i    | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 0          | i3 | i2         | i1         | i0         | $\uparrow \uparrow \uparrow \uparrow$                    | `        | 7     | F←F∀i3~i0                                                                             |
| operation      | RST   | F, i    | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 1          | i3 | i2         | i1         | i0         | $\downarrow \downarrow \downarrow \downarrow \downarrow$ | /        | 7     | F←F^i3~i0                                                                             |
| instructions   | SCF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 0          | 0  | 0          | 0          | 1          | 1                                                        | `        | 7     | C←1                                                                                   |
|                | RCF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 1          | 1  | 1          | 1          | 0          | <b>→</b>                                                 | ,        | 7     | C←0                                                                                   |
|                | SZF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 0          | 0  | 0          | 1          | 0          | 1                                                        |          | 7     | Z←1                                                                                   |
|                | RZF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 1          | 1  | 1          | 0          | 1          | $\downarrow$                                             |          | 7     | Z←0                                                                                   |
|                | SDF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 0          | 0  | 1          | 0          | 0          | 1                                                        |          | 7     | D←1 (Decimal Adjuster ON)                                                             |
| ı              | RDF   |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 1          | 1  | 0          | 1          | 1          | $\downarrow$                                             |          | 7     | D←0 (Decimal Adjuster OFF)                                                            |
|                | EI    |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 0          | 1  | 0          | 0          | 0          | $\uparrow$                                               |          | 7     | $I \leftarrow 1$ (Enables Interrupt)                                                  |
|                | DI    |         | 1 | 1 | 1 | 1 | 0          | 1          | 0   | 1          | 0  | 1          | 1          | 1          | $\downarrow$                                             |          | 7     | $I \leftarrow 0$ (Disables Interrupt)                                                 |
| Stack          | INC   | SP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 1  | 0          | 1          | 1          |                                                          |          | 5     | $SP \leftarrow SP+1$                                                                  |
| operation      | DEC   | SP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 1  | 0          | 1          | 1          |                                                          |          | 5     | SP← SP-1                                                                              |
| instructions   | PUSH  | r       | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 0  | 0          | r1         | r0         |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow r$                                              |
|                |       | XP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 0  | 1          | 0          | 0          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow XP$                                             |
|                |       | XH      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 0  | 1          | 0          | 1          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow XH$                                             |
|                |       | XL      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 0  | 1          | 1          | 0          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow XL$                                             |
|                |       | YP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 0  | 1          | 1          | 1          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow YP$                                             |
|                |       | YH      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 1  | 0          | 0          | 0          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow YH$                                             |
|                |       | YL      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 1  | 0          | 0          | 1          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow YL$                                             |
|                |       | F       | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 0          | 1  | 0          | 1          | 0          |                                                          |          | 5     | $SP \leftarrow SP-1, M(SP) \leftarrow F$                                              |
|                | POP   | r       | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 0  | 0          | r1         | r0         |                                                          |          | 5     | $r \leftarrow M(SP), SP \leftarrow SP+1$                                              |
|                |       | XP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 0  | 1          | 0          | 0          |                                                          |          | 5     | $XP \leftarrow M(SP), SP \leftarrow SP+1$                                             |
|                |       | XH      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 0  | 1          | 0          | 1          |                                                          |          | 5     | $XH \leftarrow M(SP), SP \leftarrow SP+1$                                             |
|                |       | XL      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 0  | 1          | 1          | 0          |                                                          |          | 5     | $XL \leftarrow M(SP), SP \leftarrow SP+1$                                             |
| ı              |       | YP      | 1 | 1 | 1 | 1 | 1          | 1          | 0   | 1          | 0  | 1          | 1          | 1          |                                                          |          | 5     | $YP \leftarrow M(SP), SP \leftarrow SP+1$                                             |

Table 2.1.1(c) Instruction sets (3)

| Classification | Mne-  | Operand |   | Operation Code |   |   |   | ode |    |    |    |    | Flag |    | Clock                                 | Operation |       |                                                                                                      |
|----------------|-------|---------|---|----------------|---|---|---|-----|----|----|----|----|------|----|---------------------------------------|-----------|-------|------------------------------------------------------------------------------------------------------|
| Classification | monic | Operand | В | Α              | 9 | 8 | 7 | 6   | 5  | 4  | 3  | 2  | 1    | 0  | IDZ                                   | S         | CIOCK | Operation                                                                                            |
| Stack          | POP   | YH      | 1 | 1              | 1 | 1 | 1 | 1   | 0  | 1  | 1  | 0  | 0    | 0  |                                       |           | 5     | $YH \leftarrow M(SP), SP \leftarrow SP+1$                                                            |
| operation      |       | YL      | 1 | 1              | 1 | 1 | 1 | 1   | 0  | 1  | 1  | 0  | 0    | 1  |                                       |           | 5     | $YL \leftarrow M(SP), SP \leftarrow SP+1$                                                            |
| instructions   |       | F       | 1 | 1              | 1 | 1 | 1 | 1   | 0  | 1  | 1  | 0  | 1    | 0  | $\uparrow \uparrow \uparrow \uparrow$ | ľ         | 5     | $F \leftarrow M(SP), SP \leftarrow SP+1$                                                             |
|                | LD    | SPH, r  | 1 | 1              | 1 | 1 | 1 | 1   | 1  | 0  | 0  | 0  | r1   | r0 |                                       |           | 5     | SPH← r                                                                                               |
|                |       | SPL, r  | 1 | 1              | 1 | 1 | 1 | 1   | 1  | 1  | 0  | 0  | r1   | r0 |                                       |           | 5     | $SPL \leftarrow r$                                                                                   |
|                |       | r, SPH  | 1 | 1              | 1 | 1 | 1 | 1   | 1  | 0  | 0  | 1  | r1   | r0 |                                       |           | 5     | $r \leftarrow SPH$                                                                                   |
|                |       | r, SPL  | 1 | 1              | 1 | 1 | 1 | 1   | 1  | 1  | 0  | 1  | r1   | r0 |                                       |           | 5     | $r \leftarrow SPL$                                                                                   |
| Arithmetic     | ADD   | r, i    | 1 | 1              | 0 | 0 | 0 | 0   | r1 | r0 | i3 | i2 | i1   | i0 | <b>*</b> \$ \$                        | ľ         | 7     | r←r+i3~i0                                                                                            |
| instructions   |       | r, q    | 1 | 0              | 1 | 0 | 1 | 0   | 0  | 0  | r1 | r0 | q1   | q0 | <b>*</b> \$                           | ľ         | 7     | $r \leftarrow r + q$                                                                                 |
|                | ADC   | r, i    | 1 | 1              | 0 | 0 | 0 | 1   | r1 | r0 | i3 | i2 | i1   | i0 | <b>*</b> \$                           | ľ         | 7     | $r \leftarrow r + i3 \sim i0 + C$                                                                    |
|                |       | r, q    | 1 | 0              | 1 | 0 | 1 | 0   | 0  | 1  | r1 | r0 | q1   | q0 | <b>*</b> \$ \$                        | ľ         | 7     | $r \leftarrow r + q + C$                                                                             |
|                | SUB   | r, q    | 1 | 0              | 1 | 0 | 1 | 0   | 1  | 0  | r1 | r0 | q1   | q0 | <b>*</b> \$                           | ľ         | 7     | r←r-q                                                                                                |
|                | SBC   | r, i    | 1 | 1              | 0 | 1 | 0 | 1   | r1 | r0 | i3 | i2 | i1   | i0 | <b>*</b> \$                           | ľ         | 7     | r←r-i3~i0-C                                                                                          |
|                |       | r, q    | 1 | 0              | 1 | 0 | 1 | 0   | 1  | 1  | r1 | r0 | q1   | q0 | <b>*</b> \$ \$                        | ľ         | 7     | r←r-q-C                                                                                              |
|                | AND   | r, i    | 1 | 1              | 0 | 0 | 1 | 0   | r1 | r0 | i3 | i2 | i1   | i0 | 1                                     |           | 7     | r←r∧i3~i0                                                                                            |
|                |       | r, q    | 1 | 0              | 1 | 0 | 1 | 1   | 0  | 0  | r1 | r0 | q1   | q0 | <b>1</b>                              |           | 7     | $r \leftarrow r \land q$                                                                             |
|                | OR    | r, i    | 1 | 1              | 0 | 0 | 1 | 1   | r1 | r0 | i3 | i2 | i1   | i0 | <b>1</b>                              |           | 7     | r←r∀i3~i0                                                                                            |
|                |       | r, q    | 1 | 0              | 1 | 0 | 1 | 1   | 0  | 1  | r1 | r0 | q1   | q0 | 1                                     |           | 7     | $r \leftarrow r \lor q$                                                                              |
|                | XOR   | r, i    | 1 | 1              | 0 | 1 | 0 | 0   | r1 | r0 | i3 | i2 | i1   | i0 | <b>1</b>                              |           | 7     | r←r∀i3~i0                                                                                            |
|                |       | r, q    | 1 | 0              | 1 | 0 | 1 | 1   | 1  | 0  | r1 | r0 | q1   | q0 | <b>1</b>                              |           | 7     | $r \leftarrow r \forall q$                                                                           |
|                | СР    | r, i    | 1 | 1              | 0 | 1 | 1 | 1   | r1 | r0 | i3 | i2 | i1   | i0 | 1:                                    | ľ         | 7     | r-i3~i0                                                                                              |
|                |       | r, q    | 1 | 1              | 1 | 1 | 0 | 0   | 0  | 0  | r1 | r0 | q1   | q0 | <b>1</b>                              | ľ         | 7     | r-q                                                                                                  |
|                | FAN   | r, i    | 1 | 1              | 0 | 1 | 1 | 0   | r1 | r0 | i3 | i2 | i1   | i0 | <b>1</b>                              |           | 7     | r∧i3~i0                                                                                              |
|                |       | r, q    | 1 | 1              | 1 | 1 | 0 | 0   | 0  | 1  | r1 | r0 | q1   | q0 | <b>1</b>                              |           | 7     | r∧q                                                                                                  |
|                | RLC   | r       | 1 | 0              | 1 | 0 | 1 | 1   | 1  | 1  | r1 | r0 | r1   | r0 | <b>1</b>                              | ľ         | 7     | $d3 \leftarrow d2$ , $d2 \leftarrow d1$ , $d1 \leftarrow d0$ , $d0 \leftarrow C$ , $C \leftarrow d3$ |
|                | RRC   | r       | 1 | 1              | 1 | 0 | 1 | 0   | 0  | 0  | 1  | 1  | r1   | r0 | 1                                     | ľ         | 5     | $d3 \leftarrow C$ , $d2 \leftarrow d3$ , $d1 \leftarrow d2$ , $d0 \leftarrow d1$ , $C \leftarrow d0$ |
|                | INC   | Mn      | 1 | 1              | 1 | 1 | 0 | 1   | 1  | 0  | n3 | n2 | n1   | n0 | 1:                                    | ľ         | 7     | $M(n3\sim n0) \leftarrow M(n3\sim n0)+1$                                                             |
|                | DEC   | Mn      | 1 | 1              | 1 | 1 | 0 | 1   | 1  | 1  | n3 | n2 | n1   | n0 | 1:                                    | ľ         | 7     | $M(n3\sim n0) \leftarrow M(n3\sim n0)-1$                                                             |
|                | ACPX  | MX, r   | 1 | 1              | 1 | 1 | 0 | 0   | 1  | 0  | 1  | 0  | r1   | r0 | <b>*</b> \$                           | ľ         | 7     | $M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$                                                   |
|                | ACPY  | MY, r   | 1 | 1              | 1 | 1 | 0 | 0   | 1  | 0  | 1  | 1  | r1   | r0 | * 1                                   | ľ         | 7     | $M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$                                                   |
|                | SCPX  | MX, r   | 1 | 1              | 1 | 1 | 0 | 0   | 1  | 1  | 1  | 0  | r1   | r0 | <b>*</b> \$                           | ľ         | 7     | $M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$                                                      |
|                | SCPY  | MY, r   | 1 | 1              | 1 | 1 | 0 | 0   | 1  | 1  | 1  | 1  | r1   | r0 | <b>*</b> \$ \$                        | ľ         | 7     | $M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y+1$                                                      |
|                | NOT   | r       | 1 | 1              | 0 | 1 | 0 | 0   | r1 | r0 | 1  | 1  | 1    | 1  | 1                                     | İ         | 7     | $r \leftarrow \overline{r}$                                                                          |

## Table 2.1.2 List of operands

| Signal | Explanation                                                    |
|--------|----------------------------------------------------------------|
| Р      | 5-bit immediate data or label (00H–1FH)                        |
| S      | 8-bit immediate data or label (00H–FFH)                        |
| ı      | 8-bit immediate data (00H–FFH)                                 |
| i      | 4-bit immediate data (0H–FH)                                   |
| r, q   | 2-bit immediate data (showing four kinds of registers)         |
|        | A when $(r1, r0)=(q1, q0)=(0, 0)$                              |
|        | B when $(r1, r0)=(q1, q0)=(0, 1)$                              |
|        | MX when $(r1, r0)=(q1, q0)=(1, 0)$                             |
|        | MY when $(r1, r0)=(q1, q0)=(1, 1)$                             |
| Α      | A register (4 bits)                                            |
| В      | B register (4 bits)                                            |
| Χ      | XHL register (8 low-order bits of index register IX)           |
| Υ      | YHL register (8 low-order bits of index register IY)           |
| XH     | XH register (4 high-order bits of XHL register)                |
| XL     | XL register (4 low-order bits of XHL register)                 |
| YH     | YH register (4 high-order bits of YHL register)                |
| YL     | YL register (4 low-order bits of YHL register)                 |
| XP     | XP register (4 high-order bits of index register IX)           |
| YP     | YP register (4 high-order bits of index register IY)           |
| SP     | Stack pointer (8 bits)                                         |
| SPH    | 4 high-order bits of stack pointer (SP)                        |
| SPL    | 4 low-order bits of stack pointer (SP)                         |
| F      | Flag group (IF, DF, ZF, CF)                                    |
| MX     | Data memory addressable with index register IX (4 bits)        |
| MY     | Data memory addressable with index register IY (4 bits)        |
| Mn     | Data memory addressable with immediate data n (0H-FH) (4 bits) |

Table 2.1.3 Common examples of operation

| Signal       | General explanation                                               |
|--------------|-------------------------------------------------------------------|
| NBP          | New bank pointer                                                  |
| NPP          | New page pointer                                                  |
| PCB          | Program counter bank                                              |
| PCP          | Program counter page                                              |
| PCS          | Program counter step                                              |
| PCSH         | 4 high-order bits of PCS                                          |
| PCSL         | 4 low-order bits of PCS                                           |
| А            | A register                                                        |
| В            | B register                                                        |
| M(X)         | Data memory whose address can be specified with index register IX |
| M(Y)         | Data memory whose address can be specified with index register IY |
| M(SP)        | Data memory whose address can be specified with stack pointer SP  |
| M(n3-0)      | Data memory of address 00nH (nH = n3n2n1n0B)                      |
| r            | A, B, M(X)  or  M(Y)                                              |
| XP           | 4 high-order bits (page portion) of index register IX             |
| Х            | 8 low-order bits of index register IX                             |
| XH           | 4 high-order bits of X                                            |
| XL           | 4 low-order bits of X                                             |
| YP           | 4 high-order bits (page portion) of index register IY             |
| Y            | 8 low-order bits of index register IY                             |
| YH           | 4 high-order bits of Y                                            |
| YL           | 4 low-order bits of Y                                             |
| SP           | Stack pointer                                                     |
| SPH          | 4 high-order bits of SP                                           |
| SPL          | 4 low-order bits of SP                                            |
| +            | Add                                                               |
| -            | Subtract                                                          |
| ٨            | AND                                                               |
| V            | OR                                                                |
| A            | Exclusive-OR                                                      |
| $\downarrow$ | Flag reset                                                        |
| 1            | Flag set                                                          |
| <b>‡</b>     | Flag set/reset                                                    |
| *            | Instruction to add or subtract in decimals when D flag is set     |

# 2.2 Program Memory (ROM)

The S1C62440/4A0/4C0/480 have a built-in mask ROM with the following capacity for program storage.

| Model    | ROM capacity                                 | Configuration                                  |
|----------|----------------------------------------------|------------------------------------------------|
| S1C62440 | $4,096 \text{ steps} \times 12 \text{ bits}$ | 0000H-0FFFH (bank 0: 16 page, bank 1: non)     |
| S1C624A0 | $6,144 \text{ steps} \times 12 \text{ bits}$ | 0000H-17FFH (bank 0: 16 page, bank 1: 8 page)  |
| S1C624C0 | $5,120 \text{ steps} \times 12 \text{ bits}$ | 0000H-13FFH (bank 0: 16 page, bank 1: 4 page)  |
| S1C62480 | $8,192 \text{ steps} \times 12 \text{ bits}$ | 0000H-1FFFH (bank 0: 16 page, bank 1: 16 page) |

<sup>\*</sup> One page is composed of 256 steps.

After initial reset, the program beginning address is bank 0, page 1, step 00H. The interrupt vector is allocated to each page 1, steps 02H–0CH.

The configuration of the ROM is as shown in Figures 2.2.1(a)–(d).

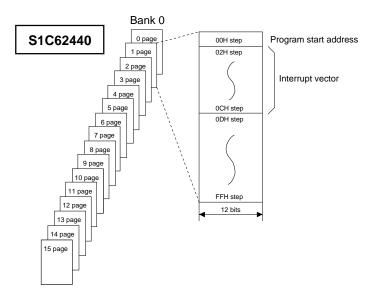
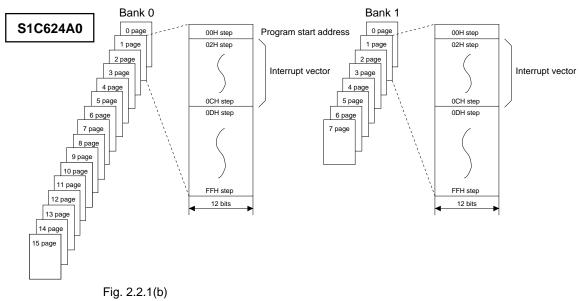




Fig. 2.2.1(a)
Configuration of the built-in ROM (S1C62440)



Configuration of the built-in ROM (S1C624A0)

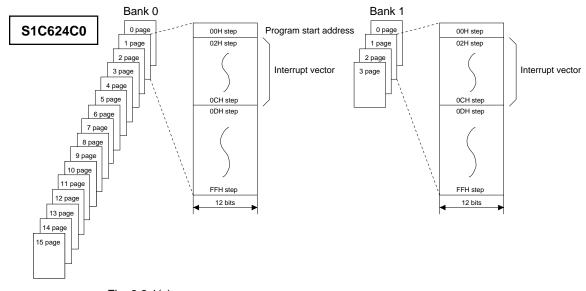
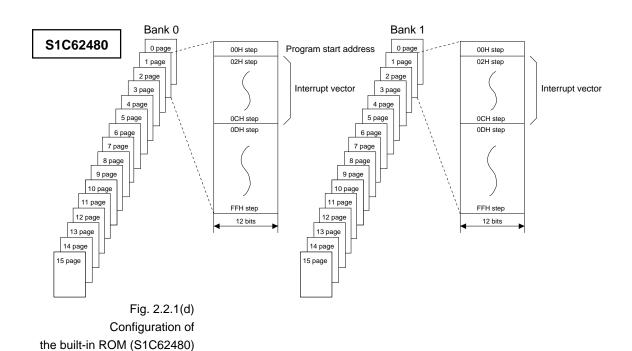




Fig. 2.2.1(c) Configuration of the built-in ROM (S1C624C0)



# 2.3 Data Memory (RAM)

The S1C62440/4A0/4C0/480 built-in data memorys are configured a general-purpose RAM, display data memory of the LCD, and I/O data memory which controls the peripheral circuit.

Table 2.3.1 Data memory capacity

| Model    | RAM capacity                     | Display data memory                       |
|----------|----------------------------------|-------------------------------------------|
| S1C62440 | 384 words × 4 bits (000H–17FH)   | 160 words × 4 bits (E00H–E4FH, E80H–ECFH) |
| S1C624A0 | 640 words × 4 bits (000H–27FH)   | 160 words × 4 bits (E00H–E4FH)            |
| S1C624C0 | 1,152 words × 4 bits (000H–47FH) | 204 words × 4 bits (E00H–E65H, E80H–EF5H) |
| S1C62480 | 768 words × 4 bits (000H–2FFH)   | 204 words × 4 bits (E00H–E65H, E80H–EF5H) |

During programming, take note of the following:

- (1) Since the stack area is taken from the RAM area, take care that destruction of stack data due to data writing does not occur. Sub-routine calls or interrupts consume 3 words of the stack area.
- (2) RAM address 000H–00FH are memory register areas that are addressed with register pointer RP.

Furthermore, when external memory access function is selected by mask option of S1C624A0/4C0/480, maximum 4-RAM of 8K bytes (64K bits SRAM) may be expanded externally. Refer to Chapter 13 for further information on external memory.

The memory map of the built-in data memory (RAM) and details of the I/O data memory map are shown in Figures 2.3.1(a)–(d) and Tables 2.3.2(a)–(f), respectively.

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

|         |                            |                                                 | _   | _ | _ |   | _   |       |      |      |       |        |    |   |   | _ | _ |     |         |      | _           | _               | _    | _    | _    | _          | _   | _     | _   | _    | _     |      | _      | _  |   | _ |
|---------|----------------------------|-------------------------------------------------|-----|---|---|---|-----|-------|------|------|-------|--------|----|---|---|---|---|-----|---------|------|-------------|-----------------|------|------|------|------------|-----|-------|-----|------|-------|------|--------|----|---|---|
| Address | Low                        | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   | Address | Low  |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         |                            | 0                                               | 1   | 2 | 3 | 4 | 5   | 6     | 7    | 8    | 9     | Α      | В  | C | D | E | F | Ш   |         |      | 0           | 1               | 2    | 3    | 4    | 5          | 6   | 7     | 8   | 9    | Α     | В    | С      | D  | Е | F |
| Page    | High                       | _                                               |     | _ | _ |   | _   |       |      |      |       |        |    |   |   |   |   |     | Page    | High |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 0                          | M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF |     |   |   |   |     |       |      |      |       |        |    |   | 0 |   |   |     |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 1                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     | 1       |      |             | _               | ionl | 01/  | doto |            | mar | ., /0 | O   | orde | 1     | hite |        |    |   |   |
|         | 2                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     | 2       |      |             | D               | ispi | ay t | Jala | me         |     |       | U W | orus | ) X 4 | bits | )      |    |   |   |
|         | 3                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | 3    |             |                 |      |      |      |            |     | R/    | W   |      |       |      |        |    |   |   |
|         | 4                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     | 4       |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 5                          |                                                 |     |   |   |   |     | Ш     |      | 5    |       |        |    |   |   |   |   |     |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 6                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | 6    |             |                 |      |      |      |            | Un  | iuse  | d a | rea  |       |      |        |    |   |   |
| 0       | 7 RAM (256 words x 4 bits) |                                                 |     |   |   |   |     | Ш     | Е    | 7    |       |        |    |   |   |   |   |     |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
| •       | 8                          | 1                                               | R/W |   |   |   |     |       |      |      |       |        |    |   |   |   | Ш | =   | 8       |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 9                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | 9    |             |                 | _    |      |      |            |     |       |     | ۸    |       |      | la :40 |    |   |   |
|         | A                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     | Α       |      |             | D               | ispi | ay c | ıaıa | me         |     |       | U W | oras | 5 X 4 | bits | 5)     |    |   |   |
|         | В                          |                                                 |     |   |   |   |     |       |      |      |       |        |    |   |   | i | В | R/W |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | С                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | С   |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | D                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | D   |         |      |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | E                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | E    | Unused area |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | F                          |                                                 |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     |         | F    |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 0                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | 0    | Ι.          | ·/O             | doto |      |      | <b>.</b> , |     |       |     |      |       |      |        |    |   |   |
|         | 1                          |                                                 |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | Ш   |         | 1    | l '         | I/O data memory |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 2                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | П   |         | 2    |             |                 | _    |      |      |            |     |       |     |      |       |      |        |    |   |   |
| 1       | 3                          | 1                                               |     |   |   | R | RAM | 1 (12 | 28 w | ords | s x 4 | l bits | 3) |   |   |   |   |     | F       | 3    |             |                 |      | 1    |      |            |     |       |     |      | Uni   | used | are    | ea |   |   |
| 1 .     | 4                          | 1                                               |     |   |   |   |     |       | R    | /W   |       |        |    |   |   |   |   | П   |         | 4    |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 5                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     |         | 5    |             |                 |      |      | _    | ]          |     |       |     |      |       |      |        |    |   |   |
|         | 6                          |                                                 |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   |     |         | 6    |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |
|         | 7                          | 1                                               |     |   |   |   |     |       |      |      |       |        |    |   |   |   |   | П   |         | 7    |             |                 |      |      |      |            |     |       |     |      |       |      |        |    |   |   |

Fig. 2.3.1(a) Memory map (S1C62440)

| Address  | Low  |    |   | Т    | Т    | Т  |     |     | Т    |      |       |       |    |    |    | Т  | T              | 1 [ | Address  | Low                         |             |     | T   |      | Т    | T        | П   |      | Т          |          |     |      |       |       |     |   |   |
|----------|------|----|---|------|------|----|-----|-----|------|------|-------|-------|----|----|----|----|----------------|-----|----------|-----------------------------|-------------|-----|-----|------|------|----------|-----|------|------------|----------|-----|------|-------|-------|-----|---|---|
| 71441000 | \    | 0  | 1 | 2    | 3    | 4  | 5   | 6   | 7    | 8    | 9     | Α     | В  | С  | D  | Е  | l <sub>F</sub> |     | 71001000 | \                           | 0           | 1   | 2   | 3    | 4    | 5        | 6   | 7    | .          | 8        | 9   | A    | В     | С     | D   | Е | F |
| Page     | High | Ů  |   | -    | "    | '  | "   | ľ   | '    | ľ    | "     | '`    |    | "  | -  | -  | 1.             |     | Page     | High                        | ľ           | Ι.  | -   | ľ    | "    | ľ        | "   | '    |            | ١        | 3   | _^   | ١     | ~     |     | - | 1 |
| - 5      | 0    | MO | M | I Ma | 2 M3 | M4 | M5  | ME  | M7   | M8   | М9    | МА    | MB | МС | МГ | ME | ME             | 1 1 | 9-       | 0                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 1    |    |   |      | 1    | 1  | 1   |     |      | 1    |       |       |    |    |    |    | 1              | 1   |          | 1                           | 1           |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 2    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 2                           | 1           |     | L   | Disp | lay  | data     | m   |      |            |          | ) W | ord  | ls x  | 4 bit | s)  |   |   |
|          | 3    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 3                           | 1           |     |     |      |      |          |     | F    | <b>R/V</b> | ٧        |     |      |       |       |     |   |   |
|          | 4    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 4                           | 1           |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 5    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 5                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 6    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 6                           | 1           |     |     |      |      |          | ι   | Inus | ed         | ar       | a   |      |       |       |     |   |   |
|          | 7    |    |   |      |      |    |     |     |      |      |       | _     | 7  | 1  |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
| 0        | 8    |    |   |      |      | •  |     | (   |      | /W   |       |       | ,  |    |    |    |                |     | E        | 8                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 9    |    |   |      |      |    |     |     | IX   | vv   |       |       |    |    |    |    |                |     |          | 9                           | 1           |     |     | S:   |      | .1 - 4 - |     |      |            |          |     | 1    |       | 4 6 % | - \ |   |   |
|          | А    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | Α                           | 1           |     | L   | JISP | ııay | data     | a m |      |            |          | ) W | ora  | ls x  | 4 DIT | s)  |   |   |
|          | В    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | В                           | 1           |     |     |      |      |          |     | F    | ₹/\        | ٧        |     |      |       |       |     |   |   |
|          | С    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | С                           | 1           |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | D    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | D                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | E    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | E                           |             |     |     |      |      |          | ι   | Inus | ec         | ar       | ea  |      |       |       |     |   |   |
|          | F    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | F                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 0    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 0                           | Ι.          |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 1    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     | 1        | י ן                         | I/O         | dat | a m | em   | ory  |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 2    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                | 2   |          | I/O data memory Unused area |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 3    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                | 3   | ]        |                             |             | _   |     |      |      |          |     |      |            | Un       | use | d ar | a     |       |     |   |   |
|          | 4    |    |   |      |      |    |     |     |      |      |       |       |    |    |    | 4  | ]              |     |          |                             |             | _   |     |      |      |          |     | ٠.   |            | <b>.</b> | -   |      |       |       |     |   |   |
|          |      | 5  |   | 5    |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 6    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    | 6              |     |          |                             |             |     |     |      |      |          |     | ,    |            |          |     |      |       |       |     |   |   |
| 1        | 7    |    |   |      |      | F  | RAM | (2  | 56 w | ords | s x 4 | 1 bit | s) |    |    |    | F              | 7   |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 8    |    |   |      |      |    |     |     | R    | W    |       |       |    |    |    |    |                |     | -        | 8                           | 1           |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 9    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | 9                           |             |     |     |      |      |          | ι   | lnus | ec         | lar      | a   |      |       |       |     |   |   |
|          | А    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | Α                           | Unused area |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | В    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | В                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | С    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | С                           | 1           |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | D    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | D                           | 1           |     |     | 1/0  | ) da | ata n    | ner | nory | (6         | 34 v     | vor | ds : | x 4 t | oits) |     |   |   |
|          | E    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          | E                           | 1           |     |     |      |      |          |     | ,    | ,          |          |     |      |       | ,     |     |   |   |
| -        | F    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                | 4 L |          | F                           |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 0    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 2    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 3    |    |   |      |      | _  |     |     |      |      |       |       | ,  |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
| 2        | 4    |    |   |      |      | F  | ₹AM | (12 | 28 w |      | S X 4 | l bit | S) |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 5    |    |   |      |      |    |     |     | R    | /W   |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 6    | -  |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | 7    |    |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                |     |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |
|          | L '  | _  |   |      |      |    |     |     |      |      |       |       |    |    |    |    |                | ı   |          |                             |             |     |     |      |      |          |     |      |            |          |     |      |       |       |     |   |   |

Fig. 2.3.1(b) Memory map (S1C624A0)

| Address | Low      | 0 1 2 3 4 5 6 7 8 9 A B C D E F                 | Address  | Low    |                                          |
|---------|----------|-------------------------------------------------|----------|--------|------------------------------------------|
| Page    | High     |                                                 | Page     | High   | 0 1 2 3 4 5 6 7 8 9 A B C D E F          |
|         | 1        | M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF | -        | 0      | -                                        |
|         | 2        |                                                 |          | 2      | Display data memory (102 words x 4 bits) |
|         | 4        |                                                 |          | 3<br>4 | R/W                                      |
|         | 5<br>6   |                                                 |          | 5<br>6 |                                          |
| 0       | 7        | RAM (256 words x 4 bits)                        | E        | 7      | Unused area                              |
|         | 8 9      | R/W                                             | -        | 8      |                                          |
|         | Α        |                                                 |          | Α      | Display data memory (102 words x 4 bits) |
|         | B<br>C   |                                                 |          | B<br>C | R/W                                      |
|         | D        |                                                 |          | D      |                                          |
|         | E<br>F   |                                                 |          | E<br>F | Unused area                              |
|         | 0        |                                                 |          | 0      | I/O data memory                          |
|         | 2        |                                                 |          | 2      |                                          |
|         | 3 4      |                                                 |          | 3<br>4 | Unused area                              |
|         | 5        |                                                 |          | 5      |                                          |
|         | 6<br>7   | RAM (256 words x 4 bits)                        |          | 6<br>7 |                                          |
| 1       | 8        | R/W                                             | F        | 8      |                                          |
|         | 9<br>A   |                                                 |          | 9<br>A | - Unused area                            |
|         | В        |                                                 |          | В      |                                          |
|         | C<br>D   |                                                 |          | C<br>D | I/O data memory (64 words x 4 bits)      |
|         | E<br>F   |                                                 |          | E<br>F | 1/O data memory (04 words x 4 bits)      |
|         | 0        |                                                 | <b>-</b> |        |                                          |
|         | 1 2      |                                                 |          |        |                                          |
|         | 3        |                                                 |          |        |                                          |
|         | 4<br>5   |                                                 |          |        |                                          |
|         | 6        | DAM (OFO wards or A hits)                       |          |        |                                          |
| 2       | 7 8      | RAM (256 words x 4 bits)<br>R/W                 |          |        |                                          |
|         | 9<br>A   |                                                 |          |        |                                          |
|         | В        |                                                 |          |        |                                          |
|         | C<br>D   |                                                 |          |        |                                          |
|         | E        |                                                 |          |        |                                          |
|         | <b>F</b> |                                                 |          |        |                                          |
|         | 1        |                                                 |          |        |                                          |
|         | 3        |                                                 |          |        |                                          |
|         | 4<br>5   |                                                 |          |        |                                          |
|         | 6        |                                                 |          |        |                                          |
| 3       | 7 8      | RAM (256 words x 4 bits)<br>R/W                 |          |        |                                          |
|         | 9        | 17/ 44                                          |          |        |                                          |
|         | A<br>B   |                                                 |          |        |                                          |
|         | С        |                                                 |          |        |                                          |
|         | D<br>E   |                                                 |          |        |                                          |
|         | <b>F</b> |                                                 |          |        |                                          |
|         | 1        |                                                 |          |        |                                          |
|         | 3        | RAM (128 words x 4 bits)                        |          |        |                                          |
| 4       | 4        | R/W                                             |          |        |                                          |
|         | 5<br>6   |                                                 |          |        |                                          |
|         | 7        |                                                 |          |        |                                          |

Fig. 2.3.1(c) Memory map (S1C624C0)

| Address | Low                        |      |         | _     | $\overline{}$   |        | $\overline{}$ |       | $\overline{}$      |       | _                 | _        | _        | т       | $\overline{}$ | -   | $\neg$   | Address  | 1.00 |          |        |       | $\overline{}$ |      | _      | -1  | - 1   |      | _   | _     | _   |        |            | _    | _     | _ | - |
|---------|----------------------------|------|---------|-------|-----------------|--------|---------------|-------|--------------------|-------|-------------------|----------|----------|---------|---------------|-----|----------|----------|------|----------|--------|-------|---------------|------|--------|-----|-------|------|-----|-------|-----|--------|------------|------|-------|---|---|
| Address | Low                        | 0    | 1 2     | 2 3   |                 | 4 5    | 1.            | 6 7   |                    | 8 9   | A                 | В        | c        | ١.      | .             | E   | F        | Address  | Low  | 0        | 1      | 2     |               | 3    | 4      | 5   | 6     | 7    | 8   | 3 9   |     | A      |            | С    | .   E | . | F |
| Page    | High                       | "    | ' '     | د ا ع | <b>'</b>        | 7   5  | Ι'            | ۱ ا   |                    | ه ۱ ۹ | ^                 | "        |          | '       | 1             | -   | "        | Page     | High | ١        | 1      | 2     |               | 3    | 4      | 5   | ь     | ′    | 8   | ,   a |     | ^   5  | 1          | ١ '  | ا ا   | - | г |
| 1 age   | 0                          | MO   | M1 N    | 12 M  | 13 1            | ма м   | 5 1           | 46 M  | 7 1                | M8 M  | 9 M               | М        | в мс     | : M     | וחו           | ΛΕ. | ME       | raye     | O O  | $\vdash$ | 1      |       | _             |      |        |     |       |      | _   |       | _   |        |            |      |       |   | _ |
|         | 1                          | 1410 | .211 IV | IVI   | .5 <sub> </sub> |        | -  "          |       | . <sub> </sub>   ' | 101   | -   IVI/          | ·   Ivii | -   IV/C | - 1 141 | ۱۱۱۱۰         |     |          |          | 1    |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 2                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 2    | 1        |        | г     | ۱ic           | nlav | dat    | -   | nar   | or   | , ( | 102 4 | MC  | ords : | <i>,</i> 1 | hite |       |   |   |
|         | 3                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 3    | 1        |        | L     | /10           | piay | uai    | aı  | IICII | R/   |     |       | vvC | nus i  | ^ +        | טונס | ,     |   |   |
|         | 4                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 4    | 1        |        |       |               |      |        |     |       | K/   | ٧V  |       |     |        |            |      |       |   |   |
|         | 5                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 5    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 6                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 6    | 1        |        |       |               |      |        | Г   |       |      | _   |       | _   |        |            |      |       |   | _ |
|         | 7                          |      |         |       |                 | RΔN    | A (*          | 256 \ | MO                 | rds x | 4 hi              | te)      |          |         |               |     |          |          | 7    | $\vdash$ |        |       |               |      |        |     |       |      |     |       | ι   | Jnus   | ed         | area | ı     |   |   |
| 0       | 8                          |      |         |       |                 | i veti | (4            |       | R/V                |       | - <del>1</del> DI | .3)      |          |         |               |     |          | E        | 8    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   | _ |
|         | 9                          |      |         |       |                 |        |               | r     | <b>1/V</b>         | v     |                   |          |          |         |               |     |          |          | 9    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | A                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | A    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | В                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | B    | 1        |        |       | Dis           | play | dat    | a r | nem   |      |     |       | wc  | ords : | x 4        | bits | )     |   |   |
|         | C                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | С    | 1        |        |       |               |      |        |     |       | R/   | W   |       |     |        |            |      |       |   |   |
|         | D                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | D    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | E                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | E    | 1        |        |       |               |      |        | Г   |       |      |     |       |     |        |            |      |       |   | - |
|         | F                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | F    | -        |        |       |               |      |        |     |       |      |     |       | ι   | Jnus   | ed         | area | ı     |   |   |
|         | 0                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     | $\dashv$ | <u> </u> | 0    | -        |        |       |               |      |        | -1  |       |      |     |       |     |        |            |      |       |   | _ |
|         | 1                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | 1        | 1    | -        | I/C    | ) dat | a ı           | men  | norv   | ,   |       |      |     |       |     |        |            |      |       |   |   |
|         | 2                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | 1        | 2    | 1        |        |       |               |      | ,      | L   |       |      | 1   |       |     |        |            |      |       |   |   |
|         | 3                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 3    | 1        |        |       |               |      |        |     |       |      | J   |       |     |        |            |      |       |   |   |
|         | 4                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | 4    | 1        |        |       | 7             |      |        |     |       |      |     |       | ι   | Jnus   | ed         | area | ı     |   |   |
|         | 5                          | l    |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | I        | 5    | 1        |        |       | L             |      | $\neg$ |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 6                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | l        | 6    | 1        |        |       |               | Г    |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 7 RAM (256 words x 4 bits) |      | l       | 7     | 1               |        |               |       | ┖                  |       |                   |          |          |         |               |     |          |          |      |          | $\neg$ |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
| 1       | 8                          |      |         |       |                 | i veti | (4            |       | R/V                |       | - <del>1</del> DI | .3)      |          |         |               |     |          | F        | 8    |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 9                          |      |         |       |                 |        |               | г     | \/ V               | v     |                   |          |          |         |               |     |          | 1        | 9    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | A                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | 1        | A    | 1        |        |       |               |      |        |     | Uni   | ıse  | d a | area  |     |        |            |      |       |   |   |
|         | В                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          | 1        | В    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | С                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | C    |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   | _ |
|         | D                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | D    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | E                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | E    | 1        |        |       | I             | /O c | lata   | me  | emo   | ry ( | (64 | 4 wo  | rds | s x 4  | bit        | s)   |       |   |   |
|         | F                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          | F    | 1        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 0                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     | $\dashv$ |          |      | _        |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   | _ |
|         | 1                          | ĺ    |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 2                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 3                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 4                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 5                          | l    |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 6                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 7                          |      |         |       |                 | RAN    | Λ (2          | 256 ر | wo                 | rds x | 4 bi              | ts)      |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
| 2       | 8                          |      |         |       |                 |        | `             |       | R/V                |       |                   | ,        |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | 9                          |      |         |       |                 |        |               | •     | ., .               | •     |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | A                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | В                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | С                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | D                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | Е                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         | F                          |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |
|         |                            |      |         |       |                 |        |               |       |                    |       |                   |          |          |         |               |     |          |          |      |          |        |       |               |      |        |     |       |      |     |       |     |        |            |      |       |   |   |

Fig. 2.3.1(d) Memory map (S1C62480)

Table 2.3.2(a) I/O data memory map (F00H–F05H, F10H–F15H)

|         | Register           D3         D2         D1         D0 |       |         |         |                |              |        |      | Comment                                     |
|---------|--------------------------------------------------------|-------|---------|---------|----------------|--------------|--------|------|---------------------------------------------|
| Address | D3                                                     |       |         | D0      | Name           | Init *1      | 1      | 0    | Comment                                     |
|         | IT1                                                    | IT2   | IT8     | IT32    | IT1 *3         | 0            | Yes    | No   | Interrupt factor flag (clock timer 1 Hz)    |
| F00H    | 1111                                                   | 112   | 110     | 1132    | IT2 *3         | 0            | Yes    | No   | Interrupt factor flag (clock timer 2 Hz)    |
| гиип    |                                                        |       | R       |         | IT8 *3         | 0            | Yes    | No   | Interrupt factor flag (clock timer 8 Hz)    |
|         |                                                        |       |         |         | IT32*3         | 0            | Yes    | No   | Interrupt factor flag (clock timer 32 Hz)   |
|         | 0                                                      | 0     | ISW1    | ISW0    | 0 *4           | - *2         |        |      |                                             |
| F01H    |                                                        | Ů     | 10111   | 10110   | 0 *4           | - *2         |        |      |                                             |
|         |                                                        |       | R       |         | ISW1*3         | 0            | Yes    | No   | Interrupt factor flag (stopwatch 1 Hz)      |
|         |                                                        |       |         |         | ISW0*3         | 0            | Yes    | No   | Interrupt factor flag (stopwatch 10 Hz)     |
|         | 0                                                      | 0     | 0       | IPT     | 0 *4           | - *2         |        |      |                                             |
| F02H    |                                                        |       |         |         | 0 *4           | - *2         |        |      |                                             |
|         |                                                        |       | R       |         | 0 *4           | - *2         |        |      |                                             |
|         |                                                        | 1     | 1       | ı       | IPT *3         | 0            | Yes    | No   | Interrupt factor flag (programmable timer)  |
|         | 0                                                      | 0     | 0       | ISIO    | 0 *4           | - *2         |        |      |                                             |
| F03H    |                                                        |       |         |         | 0 *4           | - *2         |        |      |                                             |
|         |                                                        |       | R       |         | 0 *4           | - *2         | V      | NI-  | Interest forton floor (conict interfere)    |
|         |                                                        |       | 1       |         | ISIO*3         | 0            | Yes    | No   | Interrupt factor flag (serial interface)    |
|         | 0                                                      | 0     | 0       | IK0     | 0 *4           | - *2         |        |      |                                             |
| F04H    |                                                        |       |         |         | 1 1            | - *2         |        |      |                                             |
|         |                                                        |       | R       |         | 0 *4<br>IK0 *3 | - *2<br>0    | Yes    | No   | Interrupt factor flag (K00–K03)             |
|         |                                                        |       |         |         | 0 *3           | - *2         | 162    | INO  | Interrupt factor flag (K00–K03)             |
|         | 0                                                      | 0     | 0       | IK1     | 0 *3           | - *2<br>- *2 |        |      |                                             |
| F05H    |                                                        |       |         |         | 0 *3           | - *2<br>- *2 |        |      |                                             |
|         |                                                        |       | R       |         | IK1 *4         | 0            | Yes    | No   | Interrupt factor flag (K10–K13)             |
|         |                                                        |       |         |         | EIT1           | 0            | Enable | Mask | Interrupt mask register (clock timer 1 Hz)  |
|         | EIT1                                                   | EIT2  | EIT8    | EIT32   | EIT2           | 0            | Enable | Mask | Interrupt mask register (clock timer 2 Hz)  |
| F10H    |                                                        | _     |         | l       | EIT8           | 0            | Enable | Mask | Interrupt mask register (clock timer 8 Hz)  |
|         |                                                        | R     | /W      |         | EIT32          | 0            | Enable | Mask | Interrupt mask register (clock timer 32 Hz) |
|         |                                                        |       | F1014/4 | E1014/0 | 0 *3           | - *2         |        |      |                                             |
|         | 0                                                      | 0     | EISW1   | EISW0   | 0 *3           | - *2         |        |      |                                             |
| F11H    |                                                        |       |         | 0.47    | EISW1          | 0            | Enable | Mask | Interrupt mask register (stopwatch 1 Hz)    |
|         |                                                        | R     | K       | /W      | EISW0          | 0            | Enable | Mask | Interrupt mask register (stopwatch 10 Hz)   |
|         | 0                                                      | 0     | 0       | EIPT    | 0 *3           | - *2         |        |      |                                             |
| E1011   | U                                                      |       |         | EIP I   | 0 *3           | - *2         |        |      |                                             |
| F12H    |                                                        | R     |         | R/W     | 0 *3           | - *2         |        |      |                                             |
|         |                                                        |       |         | 17/44   | EIPT           | 0            | Enable | Mask | Interrupt mask register (programmble timer) |
|         | 0                                                      | 0     | 0       | EISIO   | 0 *3           | - *2         |        |      |                                             |
| F13H    |                                                        | Ů     |         | Lioio   | 0 *3           | - *2         |        |      |                                             |
| 1 1011  |                                                        | R     |         | R/W     | 0 *3           | - *2         |        |      |                                             |
|         |                                                        |       |         |         | EISIO          | 0            | Enable | Mask | Interrupt mask register (serial interface)  |
|         | EIK03                                                  | EIK02 | EIK01   | EIK00   | EIK03          | 0            | Enable | Mask | Interrupt mask register (K03)               |
| F14H    |                                                        |       |         |         | EIK02          | 0            | Enable | Mask | Interrupt mask register (K02)               |
|         |                                                        | R     | /W      |         | EIK01          | 0            | Enable | Mask | Interrupt mask register (K01)               |
|         |                                                        |       |         | ı       | EIK00          | 0            | Enable | Mask | Interrupt mask register (K00)               |
|         | EIK13                                                  | EIK12 | EIK11   | EIK10   | EIK13          | 0            | Enable | Mask | Interrupt mask register (K13)               |
| F15H    | -                                                      |       |         |         | EIK12          | 0            | Enable | Mask | Interrupt mask register (K12)               |
|         |                                                        | R     | /W      |         | EIK11          | 0            | Enable | Mask | Interrupt mask register (K11)               |
|         |                                                        | -     |         |         | EIK10          | 0            | Enable | Mask | Interrupt mask register (K10)               |

<sup>\*1</sup> Initial value following initial reset\*2 Not set in the circuit

<sup>\*3</sup> Reset (0) immediately after being read \*4 Always "0" when being read

Table 2.3.2(b) I/O data memory map (F20H-F27H, F30H, F31H, F40H-F42H)

| ۸ ما ما د · |        | Reg      | ister |         |                |              |                   |          | Comment                                |
|-------------|--------|----------|-------|---------|----------------|--------------|-------------------|----------|----------------------------------------|
| Address     | D3     | D2       | D1    | D0      | Name           | Init *1      | 1                 | 0        | Comment                                |
|             | TM3    | TM2      | TM1   | TM0     | TM3            | 0            |                   |          | Clock timer data (16 Hz)               |
| F20H        | TIVIS  | IIVIZ    | IIVII | TIVIO   | TM2            | 0            |                   |          | Clock timer data (32 Hz)               |
| Г20П        |        |          | R     |         | TM1            | 0            |                   |          | Clock timer data (64 Hz)               |
|             |        |          |       |         | TM0            | 0            |                   |          | Clock timer data (128 Hz)              |
|             | TM7    | TM6      | TM5   | TM4     | TM7            | 0            |                   |          | Clock timer data (1 Hz)                |
| F21H        | 1 1017 | TIVIO    | TIVIO | 1 101-4 | TM6            | 0            |                   |          | Clock timer data (2 Hz)                |
| 12111       |        |          | R     |         | TM5            | 0            |                   |          | Clock timer data (4 Hz)                |
|             |        |          |       |         | TM4            | 0            |                   |          | Clock timer data (8 Hz)                |
|             | SWL3   | SWL2     | SWL1  | SWL0    | SWL3           | 0            |                   |          | ☐ MSB                                  |
| F22H        | 01120  | OWE      | OWE   | 01120   | SWL2           | 0            |                   |          | Stopwatch timer                        |
| 1 2211      |        |          | R     |         | SWL1           | 0            |                   |          | 1/100 sec data (BCD)                   |
|             |        |          |       |         | SWL0           | 0            |                   |          | ☐ LSB                                  |
|             | SWH3   | SWH2     | SWH1  | SWH0    | SWH3           | 0            |                   |          | ☐ MSB                                  |
| F23H        | 011110 | 011112   |       | 011110  | SWH2           | 0            |                   |          | Stopwatch timer                        |
| 1 2011      |        |          | R     |         | SWH1           | 0            |                   |          | 1/10 sec data (BCD)                    |
|             |        |          |       |         | SWH0           | 0            |                   |          | ☐ LSB                                  |
|             | PT3    | PT2      | PT1   | PT0     | PT3            | X *3         |                   |          | ☐ MSB                                  |
| F24H        | . 10   |          |       | 1.10    | PT2            | X *3         |                   |          | Programmable timer data (low-order)    |
| 1 2711      | R      |          |       |         | PT1            | X *3         |                   |          | 1 Togrammable timer data (low-order)   |
|             |        |          |       |         | PT0            | X *3         |                   |          | ☐ LSB                                  |
|             | PT7    | PT6      | PT5   | PT4     | PT7            | X *3         |                   |          | ☐ MSB                                  |
| F25H        |        | 1.10     | 1 10  |         | PT6            | X *3         |                   |          | Programmable timer data (high-order)   |
| 1 2011      |        |          | R     |         | PT5            | X *3         |                   |          | Trogrammatore timer data (ingir order) |
|             |        |          |       |         | PT4            | X *3         |                   |          | ☐ LSB                                  |
|             | RD3    | RD2      | RD1   | RD0     | RD3            | X *3         |                   |          | ☐ MSB                                  |
| F26H        |        |          |       |         | RD2            | X *3         |                   |          | Programmable timer                     |
| . 2011      |        | R        | /W    |         | RD1            | X *3         |                   |          | reload data (low-order)                |
|             |        |          |       |         | RD0            | X *3         |                   |          | □ LSB                                  |
|             | RD7    | RD6      | RD5   | RD4     | RD7            | X *3         |                   |          | ☐ MSB                                  |
| F27H        |        |          |       |         | RD6            | X *3         |                   |          | Programmable timer                     |
|             |        | R        | /W    |         | RD5            | X *3         |                   |          | reload data (high-order)               |
|             |        |          | ı     |         | RD4            | X *3         |                   |          | ☐ LSB                                  |
|             | SD3    | SD2      | SD1   | SD0     | SD3            | X *3         |                   |          | ☐ MSB                                  |
| F30H        |        |          |       |         | SD2            | X *3         |                   |          | Serial interface                       |
|             |        | R        | /W    |         | SD1            | X *3         |                   |          | data register (low-order)              |
|             |        | I        | I     |         | SD0            | X *3         |                   |          | ☐ LSB                                  |
|             | SD7    | SD6      | SD5   | SD4     | SD7            | X *3         |                   |          | MSB                                    |
| F31H        |        |          |       |         | SD6            | X *3         |                   |          | Serial interface                       |
|             |        | R        | /W    |         | SD5            | X *3         |                   |          | data register (high-order)             |
|             |        | 1        |       |         | SD4            | X *3         | 16-5              | 1        | _ LSB                                  |
|             | K03    | K02      | K01   | K00     | K03            | - *2         | High              | Low      | [7]                                    |
| F40H        |        |          |       |         | K02            | - *2<br>*2   | High              | Low      | Input port (K00–K03)                   |
|             |        | 1        | R     |         | K01            | - *2         | High              | Low      |                                        |
|             |        |          |       |         | K00            | - *2         | High              | Low      |                                        |
|             | DFK03  | DFK02    | DFK01 | DFK00   | DFK03          | 1 1          |                   | <u> </u> |                                        |
| F41H        |        |          |       |         | DFK02<br>DFK01 | 1 1          | 7                 | <u> </u> | Input relation register (DFK00–DFK03)  |
|             |        | R        | /W    |         | DFK01          | 1 1          | Ţ.                |          |                                        |
|             |        |          |       |         | K13            | - *2         | <u>t_</u><br>High | Low      |                                        |
|             | K13    | K12      | K11   | K10     | K13            |              | High              | Low      |                                        |
| F42H        |        |          | l     |         | K12            | - *2<br>- *2 | High              | Low      | Input port (K10–K13)                   |
|             |        | - 1      | R     |         |                | - *2<br>- *2 | •                 | Low      |                                        |
| *1 Ini      |        | lua fall |       |         | K10            | 2            | High              | LOW      |                                        |

<sup>\*1</sup> Initial value following initial reset\*2 Not set in the circuit

<sup>\*3</sup> Undefined

Table 2.3.2(c) I/O data memory map (F50H-F54H, F60H-F63H)

|           | Register |       |      |          |      |         |      |     | 0                                                   |
|-----------|----------|-------|------|----------|------|---------|------|-----|-----------------------------------------------------|
| Address - | D3       | D2    | D1   | D0       | Name | Init *1 | 1    | 0   | Comment                                             |
|           | R03      | R02   | R01  | R00      | R03  | X *2    | High | Low | Output port (R03) / External memory address (A3)    |
| F50H      | 1100     | 1102  | IX01 | 1100     | R02  | X *2    | High | Low | Output port (R02) / External memory address (A2)    |
|           |          | R     | /W   |          | R01  | X *2    | High | Low | Output port (R01) / External memory address (A1)    |
| *6        |          |       |      |          | R00  | X *2    | High | Low | Output port (R00) / External memory address (A0)    |
|           | R13      | R12   | R11  | R10      | R13  | X *2    | High | Low | Output port (R13) / External memory address (A7)    |
| F51H      | 1010     | 1112  | IXII | 1110     | R12  | X *2    | High | Low | Output port (R12) / External memory address (A6)    |
| *6        |          | R     | /W   |          | R11  | X *2    | High | Low | Output port (R11) / External memory address (A5)    |
| *0        |          |       |      | ı        | R10  | X *2    | High | Low | Output port (R10) / External memory address (A4)    |
|           | R23      | R22   | R21  | R20      | R23  | X *2    | High | Low | Output port (R23) / External memory address (A11)*4 |
| F52H      |          |       |      |          | R22  | X *2    | High | Low | Output port (R22) / External memory address (A10)*4 |
| 1 0211    |          | R     | /W   |          | R21  | X *2    | High | Low | Output port (R21) / External memory address (A9) *4 |
|           |          |       |      |          | R20  | X *2    | High | Low | Output port (R20) / External memory address (A8) *4 |
|           | R33      | R32   | R31  | R30      | R33  | X *2    | High | Low | Output port (R33)                                   |
|           |          |       |      |          |      |         | Off  | On  | PTCLK output                                        |
|           |          | R     | /W   |          |      |         | *3   | *3  | [SRDY (SIO READY)]                                  |
| F53H      |          |       |      |          | R32  | X *2    | High | Low | Output port (R32)                                   |
| 1 0011    |          |       |      |          |      |         | *3   | *3  | [External memory read (RD)] *4                      |
|           |          |       |      |          | R31  | X *2    | High | Low | Output port (R31) / External memory address (A13)*4 |
|           |          |       |      |          |      |         | *3   | *3  | [External memory write (WR)] *4                     |
|           |          |       |      |          | R30  | X *2    | High | Low | Output port (R30) / External memory address (A12)*4 |
|           | R43      | R42   | R41  | R40      | R43  | 1       | High | Low | Output port (R43)                                   |
|           |          |       |      |          | ļ    |         | Off  | On  | Buzzer output (BZ)                                  |
|           |          | R     | /W   |          | R42  | 1       | High | Low | Output port (R42)                                   |
|           |          |       |      |          |      |         | Off  | On  | Clock output (FOUT)                                 |
| F54H      |          |       |      |          |      |         | *3   | *3  | [Buzzer inverted output (BZ)]                       |
|           |          |       |      |          | R41  | 1       | High | Low | Output port (R41)                                   |
|           |          |       |      |          |      |         | Off  | On  | LCD frame signal (FR)                               |
|           |          |       |      |          | R40  | 1       | High | Low | Output port (R40)                                   |
|           |          |       |      |          |      |         | Off  | On  | Clock inverted output (FOUT)                        |
|           |          | ı     | Γ    |          |      |         | Off  | On  | LCD synchronous signal (CL)                         |
|           | P03      | P02   | P01  | P00      | P03  | X *2    | High | Low | I/O port (P03) / External memory data (D3) *5       |
| F60H      |          |       |      |          | P02  | X *2    | High | Low | I/O port (P02) / External memory data (D2) *5       |
|           |          | R     | /W   |          | P01  | X *2    | High | Low | I/O port (P01) / External memory data (D1) *5       |
|           |          | I     | I    | I        | P00  | X *2    | High | Low | I/O port (P00) / External memory data (D0) *5       |
|           | P13      | P12   | P11  | P10      | P13  | X *2    | High | Low | I/O port (P13) / External memory data (D7) *5       |
| F61H      |          |       |      |          | P12  | X *2    | High | Low | I/O port (P12) / External memory data (D6) *5       |
|           |          | R     | /W   |          | P11  | X *2    | High | Low | I/O port (P11) / External memory data (D5) *5       |
|           |          | I     | I    | I        | P10  | X *2    | High | Low | I/O port (P10) / External memory data (D4) *5       |
|           | P23      | P22   | P21  | P20      | P23  | X *2    | High | Low | I/O port (P23) / External memory CS (CS3) *5        |
| F62H      |          |       |      |          | P22  | X *2    | High | Low | I/O port (P22) / External memory CS (CS2) *5        |
| -         |          |       | /W   |          | P21  | X *2    | High | Low | I/O port (P21) / External memory CS (CS1) *5        |
|           |          | \<br> | N    | 1        | P20  | X *2    | High | Low | I/O port (P20) / External memory CS (CS0) *5        |
|           | P33      | P32   | P31  | P30      | P33  | X *2    | High | Low | I/O port / Dedicated output port (P33)              |
| F63H      |          |       |      | <b>I</b> | P32  | X *2    | High | Low | I/O port / Dedicated output port (P32)              |
| *6        |          | R     | /W   |          | P31  | X *2    | High | Low | I/O port / Dedicated output port (P31)              |
|           |          |       |      |          | P30  | X *2    | High | Low | I/O port / Dedicated output port (P30)              |

<sup>\*1</sup> Initial value following initial reset

<sup>\*2</sup> Undefined

<sup>\*3</sup> When selecting options enclosed in brackets [] as output option, the output register will function as register only and will not affect the individual outputs

<sup>\*4</sup> In the S1C62440, it can be used only as a port for output

<sup>\*5</sup> In the S1C62440, it can be used only as a port for I/O port

<sup>\*6</sup> In the S1C62440, the F50H, F51H and F63H cannot be used

Table 2.3.2(d) I/O data memory map (F70H–F79H)

| Address |          | Reg    | ister |       |                     |              |                   |                  | Comment                                                      |
|---------|----------|--------|-------|-------|---------------------|--------------|-------------------|------------------|--------------------------------------------------------------|
| Address | D3       | D2     | D1    | D0    | Name                | Init *1      | 1                 | 0                | Coniment                                                     |
|         | CLKCHG   | OSCC   | VSC1  | VSC0  | CLKCHG              | 0            | OSC3              | OSC1             | CPU system clock switch                                      |
| F70H    |          |        |       |       | oscc                | 0            | On                | Off              | OSC3 oscillation On/Off                                      |
|         |          | R      | /W    |       | VSC1                | 0            |                   |                  | CPU operating voltage switch                                 |
|         |          |        | I     | 1     | VSC0                | 0            | All off           | Normal           | 1 0 0                                                        |
|         | ALOFF    | ALON   | LDUTY | HLMOD | ALOFF               | 1            | All off<br>All on | Normal<br>Normal | All LCD dots fade out control All LCD dots displayed control |
| F71H    |          |        |       |       | ALON<br>LDUTY       | 0            | 1/8               | 1/16             | LCD drive duty switch                                        |
|         |          | R      | /W    |       | HLMOD               | 0            | HLMOD             | Normal           | Heavy load protection mode                                   |
|         |          |        |       |       | LC3                 | X *4         | TILWOD            | Normal           | •                                                            |
|         | LC3      | LC2    | LC1   | LC0   | LC2                 | X *4         |                   |                  | LCD contrast adjustment<br>LC3-LC0 = 0 light                 |
| F72H    | <b>'</b> |        |       |       | LC1                 | X *4         |                   |                  | :                                                            |
|         |          | R      | /W    |       | LC0                 | X *4         |                   |                  | LC3–LC0 = 15 dark                                            |
|         | SVDDT    | SVDON  | SVC1  | SVC0  | SVDDT               | 1 *5         | Low               | Normal           | SVD evaluation data                                          |
| F73H    | 30001    | SVDON  | 3001  | 3700  | SVDON               | 0            | On                | Off              | SVD circuit On/Off                                           |
| 17311   | R        |        | R/W   |       | SVC1                | X *4         |                   |                  | SVD criteria voltage setting                                 |
|         |          |        |       | T     | SVC0                | X *4         |                   |                  | ٦                                                            |
|         | SHOTPW   | BZFQ2  | BZFQ1 | BZFQ0 | SHOTPW              | 0            | 62.5 ms           | 31.25 ms         | 1-shot buzzer pulse width                                    |
| F74H    |          |        |       |       | BZFQ2               | 0            |                   |                  |                                                              |
|         | F        |        | R/W   |       | BZFQ1               | 0            |                   |                  | Buzzer frequency selection                                   |
|         |          |        |       |       | BZFQ0               | 0            | Trigger           |                  | 1-shot buzzer trigger (W)                                    |
|         | BZSHOT   | ENVRST | ENVRT | ENVON | BZSHOT              | 0            | BUSY              | READY            | Status (R)                                                   |
| F75H    |          |        |       |       | ENVRST              | RESET        | Reset             | -                | Envelope reset                                               |
| 1 7 011 | W        | W      | D.    | W     | ENVRT               | 0            | 1.0 sec           | 0.5 sec          | Envelope cycle selection                                     |
|         | R        | VV     | "     | VV    | ENVON               | 0            | On                | Off              | Envelope On/Off                                              |
|         | 0        | 0      | TMDOT | WDDCT | 0 *3                | - *2         |                   |                  | •                                                            |
| F76H    | U        | U      | TMRST | WDRST | 0 *3                | - *2         |                   |                  |                                                              |
| F/0H    |          | ₹      | ,     | N     | TMRST*3             | Reset        | Reset             | -                | Clock timer reset                                            |
|         | '        | `      | '     | /V    | WDRST               | Reset        | Reset             | -                | Watchdog timer reset                                         |
|         | 0        | 0      | SWRST | SWRUN | 0 *3                | - *2         |                   |                  |                                                              |
| F77H    |          |        |       |       |                     | - *2         |                   |                  |                                                              |
|         | F        | ₹      | w     | R/W   | SWRST <sup>3</sup>  | Reset        | Reset             |                  | Stopwatch timer reset                                        |
| -       |          |        |       |       | SWRUN<br>0 *3       | 0 *2         | Run               | Stop             | Stopwatch timer Run/Stop                                     |
|         | 0        | 0      | PTRST | PTRUN | 0 *3<br>0 *3        | - *2<br>- *2 |                   |                  |                                                              |
| F78H    |          |        |       |       | PTRST <sup>*3</sup> | Reset        | Reset             | _                | Programmable timer reset                                     |
|         | F        | ₹      | W     | R/W   | PTRUN               | 0            | Run               | Stop             | Programmable timer Run/Stop                                  |
|         | DECCU-   | DTOO   | DT0.  | DTO   | PTCOUT              | 0            | On                | Off              | Programmable timer clock output                              |
| F701:   | PTCOUT   | PTC2   | PTC1  | PTC0  | PTC2                | 0            |                   |                  |                                                              |
| F79H    |          | DAM    |       |       | PTC1                | 0            |                   |                  | Programmable timer input clock selection                     |
|         |          | R/W    |       |       |                     | 0            |                   |                  |                                                              |

<sup>\*1</sup> Initial value following initial reset \*2 Not set in the circuit \*3 Always "0" when being read \*4 Undefined \*5 When SVD is off, "1" is read out

Table 2.3.2(e) I/O data memory map (F7AH-F7EH)

| Address |        | Reg     | ister  |         |               |         |                                       |        | Comment                                     |
|---------|--------|---------|--------|---------|---------------|---------|---------------------------------------|--------|---------------------------------------------|
| Address | D3     | D2      | D1     | D0      | Name          | Init *1 | 1                                     | 0      | Comment                                     |
|         | SCTRG  | SEN     | SCS1   | SCS0    | SCTRG*3       | -       | Trigger                               | -      | Serial interface clock trigger              |
| F7AH    | SCIRG  | SEIN    | 3031   | 3030    | SEN           | 0       | 7                                     |        | Serial interface clock edge selection       |
| Г/АП    | w      |         | R/W    |         | SCS1          | 0       |                                       |        | 7                                           |
|         | VV     |         | 10,44  |         | SCS0          | 0       |                                       |        | Serial interface clock mode selection       |
|         | HZR3   | HZR2    | HZR1   | HZR0    | HZR3*3        | 0       | Output                                | High-Z | R30–R33 output high-impedance control       |
| F7BH    | 112110 | 112112  | 1121(1 | 112110  | HZR2          | 0       | Output                                | High-Z | R20–R23 output high-impedance control       |
| 1 / 111 |        | P       | W      |         | HZR1*6        | 0       | Output                                | High-Z | R10–R13 output high-impedance control       |
|         |        |         |        |         | HZR0*6        | 0       | Output                                | High-Z | R00-R03 output high-impedance control       |
|         | 0      | HZCS    | ADINC  | PICON   | 0 *3<br>*5, 7 | - *2    |                                       |        |                                             |
| F7CH    | 0      | 11200   | ADIIVO | 110011  | HZCS          | 0       | Output                                | High-Z | CS0-CS3 output high-impedance control       |
| 17011   | R      | R/W     | w      | R/W     | ADINC 24, 6   | - *2    | Increment                             | _      | External memory address increment (A0-A13)  |
|         | iX.    | 10,44   | **     | 17/17   | PICON *4, 7   | 0       | Auto Inc.                             | Normal | External memory address auto increment mode |
|         | IOC3   | IOC2    | IOC1   | IOC0    | IOC3 *6       | 0       | Output                                | Input  | I/O control (P30–P33)                       |
| F7DH    | 1003   | 1002    | 1001   | 1000    | IOC2          | 0       | Output                                | Input  | I/O control (P20–P23)                       |
| FIDIT   |        | D       | W      |         | IOC1          | 0       | Output                                | Input  | I/O control (P10–P13)                       |
|         |        |         | / V V  |         | IOC0          | 0       | Output                                | Input  | I/O control (P00–P03)                       |
|         | PUP3   | PUP2    | PUP1   | PUP0    | PUP3*6        | 0       | Off                                   | On     | I/O pull up resistor On/Off (P30–P33)       |
| F7EH    | 1 0 5  | 1 0 7 2 | 1 0 1  | 1 0 0 0 | PUP2          | 0       | Off                                   | On     | I/O pull up resistor On/Off (P20–P23)       |
| F/EN    | R/W    |         | PUP1   | 0       | Off           | On      | I/O pull up resistor On/Off (P10–P13) |        |                                             |
|         | R/W    |         | PUP0   | 0       | Off           | On      | I/O pull up resistor On/Off (P00–P03) |        |                                             |

- \*1 Initial value following initial reset
- \*2 Not set in the circuit
- \*3 Always "0" when being read
- \*4 These control bits are only valid during selection of external memory/address output as output port option
- \*5 These control bits are only valid during selection of external memory/chip select output as I/O port option
- \*6 In the S1C62440, it is a register that becomes invalid and during reading it is always "0"
- \*7 In the S1C62440, it is used as a general purpose register that does not have a function

Table 2.3.2(f) I/O data memory map (FC0H–FFFH)

| Address  |     | Reg  | ister        |     |      |         |      |     | n Comment                                      |
|----------|-----|------|--------------|-----|------|---------|------|-----|------------------------------------------------|
| Address  | D3  | D2   | D1           | D0  | Name | Init *1 | 1    | 0   | Comment                                        |
| FC0H     | P03 | P02  | P01          | P00 | P03  | X *2    | High | Low | I/O port (P03) / External memory data bus (D3) |
|          | F03 | FUZ  | FUI          | FUU | P02  | X *2    | High | Low | I/O port (P02) / External memory data bus (D2) |
| FFEH     |     | D    | W            |     | P01  | X *2    | High | Low | I/O port (P01) / External memory data bus (D1) |
| (even)*3 |     | I.   | / <b>V V</b> |     | P00  | X *2    | High | Low | I/O port (P00) / External memory data bus (D0) |
| FC1H     | P13 | P12  | P11          | P10 | P13  | X *2    | High | Low | I/O port (P13) / External memory data bus (D7) |
|          | FIS | F 12 | FII          | FIU | P12  | X *2    | High | Low | I/O port (P12) / External memory data bus (D6) |
| FFFH     |     | D    | W            |     | P11  | X *2    | High | Low | I/O port (P11) / External memory data bus (D5) |
| (odd)*3  |     | Γ.   | / V V        |     | P10  | X *2    | High | Low | I/O port (P10) / External memory data bus (D4) |

- \*1 Initial value following initial reset
- \*2 Undefined
- \*3 Image area of I/O ports (P00-P03, P10-P13) .... S1C624A0/4C0/480 only See Chapter 13, "EXTERNAL MEMORY ACCESS (S1C624A0/4C0/480)"

#### CHAPTER 3 POWER SOURCE

#### 3.1 Power Supply System

The S1C62440/4A0/4C0/480 operating power voltage is as follows:

2.2 V-5.5 V (Min. 1.8 V, when OSC3 oscillation circuit is not used)

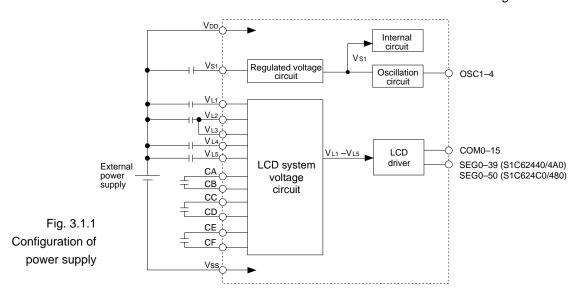

The S1C62440/4A0/4C0/480 operates when a single power supply within the above range is applied between VDD and Vss. Even if the voltage is not within the above range necessary for the internal circuits, the IC itself can generate the following built-in power circuits.

Table 3.1.1 Power supply circuits

| Circuit              | Power supply circuit | Output voltage |
|----------------------|----------------------|----------------|
| Oscillation circuit  | Regulated            | Vs1            |
| and internal circuit | voltage circuit      |                |
| LCD driver           | LCD system           | VL1-VL5        |
|                      | voltage circuit      |                |

- Note VL3 is used only when the driving voltage of the LCD system will be supplied externally (1/5 bias); when using the internal LCD system voltage circuit (1/4 bias), it is shorted with VL2.

  VL1, VL2, VL4 and VL5 can only supply voltage for external LCD driver expansion.
  - See "17 ELECTRICAL CHARACTERISTICS" for voltage values.



#### 3.2 SVD (Supply Voltage Detection) Circuit

## Configuration of SVD circuit

The S1C62440/4A0/4C0/480 have a built-in SVD (supply voltage detection) circuit which allows detection of power voltage drop through software.

Turning the SVD operation on and off can be controlled through the software. Because the IC consumes a large amount of current during SVD operation, it is recommended that the SVD operation be kept OFF unless it is otherwise necessary.

Also, the SVD criteria voltage can be set by software. The criteria voltage can be set by matching to one of the 4 types of batteries below that can be used.

-2.2 / -2.5 / -3.1 / -4.2V (VDD reference voltage)

See "17 ELECTRICAL CHARACTERISTICS" for the precision of the criteria voltage.

Figure 3.2.1 shows the configuration of the SVD circuit.

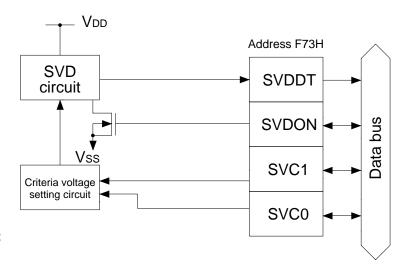



Fig. 3.2.1 Configuration of SVD circuit

#### Control of SVD circuit The SVD operation control registers are explained below.

Table 3.2.1 Control registers of SVD circuit

| Address |       | Regi  | ister |      |       |    |     |        | . Comment                    |
|---------|-------|-------|-------|------|-------|----|-----|--------|------------------------------|
| Addiess | D3    | D2    | D1    | D0   | Name  | SR | 1   | 0      | Comment                      |
|         | SVDDT | SVDON | SVC1  | SVC0 | SVDDT | 1  | Low | Normal | SVD evaluation data          |
| F73H    | R     |       | R/W   |      | SVDON | 0  | On  | Off    | SVD circuit On/Off           |
| ГТЗП    |       |       |       |      | SVC1  | Χ  |     |        | SVD criteria voltage setting |
|         |       |       |       |      | SVC0  | Х  |     |        | SVD enteria voltage setting  |

SVC0 and SVC1 Criteria voltage for supply voltage detection is set as shown (F73H [D0 and D1], R/W) in Table 3.2.2.

Table 3.2.2 Criteria voltage for SVD circuit

| SVC1 | SVC0 | Criteria voltage |
|------|------|------------------|
| 0    | 0    | -2.2 V           |
| 0    | 1    | -2.5 V           |
| 1    | 0    | -3.1 V           |
| 1    | 1    | -4.2 V           |

The VDD reference voltage is used as the criteria voltage. At initial reset, this register becomes undefined.

SVDON Turns the SVD circuit ON and OFF.

(F73H [D2], R/W)

When "1" is written: SVD circuit ON When "0" is written: SVD circuit OFF

Reading: Valid

By writing "1" to the SVDON, the SVD circuit is turned ON, and determination of supply voltage is initiated. Likewise, by writing "0", it is turned OFF.

At initial reset, it is set to "0" (OFF).

Note The SVD circuit should normally be turned OFF as the consumption current of the IC becomes large when it is ON.

SVDDT This is the result of supply voltage determination.

(F73H [D3], R)

When "0" is read: Criteria voltage ≤ Source voltage (VDD-VSS)
When "1" is read: Criteria voltage > Source voltage (VDD-VSS)
Writing: Invalid

If the SVD circuit is ON, when the voltage of the battery is detected to be lower than the criteria voltage set at SVC0 and SVC1, SVDDT is "1". If it is more than the criteria

voltage, it is "0".

The SVDDT reading is valid when SVDON is "1" and is always "1" when SVDON is "0".

Note To obtain a stable detection result, after setting SVDON to "1", provide at least 100 μs waiting time before performing SVDDT reading.

#### **Programming notes**

- (1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
- (2) To obtain a stable detection result, after setting SVDON to "1", provide at least 100  $\mu s$  waiting time before performing SVDDT reading.

#### 3.3 Heavy Load Protection Mode

Because the load of the battery in the S1C62440/4A0/4C0/480 becomes heavy due to the buzzer, lamp, and other features, it has been equipped with heavy load protection function in case of power voltage drop. This functions works in the heavy load protection mode.

Based on the workings of the heavy load protection function, the S1C62440/4A0/4C0/480 realizes operation at 2.2 V (Min. 1.8 V, when OSC3 oscillation circuit is not used) source voltage.

During heavy load or when 2.2 V or below is detected by SVD, set it to heavy load protection mode.

At the normal mode, the LCD system regulated voltage is created with VL2; VL1 is 1/2 reduced VL2 voltage while VL4 and VL5 are created by boosting to 1.5 and 2 times voltages, respectively. On the other hand, at the heavy load protection mode, the regulated voltage is VL1; VL2, VL4, and VL5 are created by boosting to 2, 3 and 4 times voltages. Because of this, the consumed current becomes greater than that in the normal mode, be careful not to set the heavy load protection unless necessary.

The LCD system voltage modes are shown in Table 3.3.1.

Table 3.3.1 LCD system voltage for SVD circuit mode

| Terminal | Opera                 | tion mode                  |
|----------|-----------------------|----------------------------|
| Terminal | Normal mode           | Heavy load protection mode |
| VL1      | 1/2 VL2               | VL1 regulated voltage      |
| VL2      | VL2 regulated voltage | 2VL1                       |
| VL4      | 3/2 VL2               | 3VL1                       |
| VL5      | 4/2 VL2               | 4VL1                       |

# Control of heavy load protection mode

The control register for the heavy load protection mode are explained below.

Table 3.3.2 Control register for heavy load protection mode

| Address |       | Reg  | ister |       |       |    |         |        | Comment                        |
|---------|-------|------|-------|-------|-------|----|---------|--------|--------------------------------|
| Addiess | D3    | D2   | D1    | D0    | Name  | SR | 1       | 0      | Comment                        |
|         | ALOFF | ALON | LDUTY | HLMOD | ALOFF | 1  | All off | Normal | All LCD dots fade out control  |
| F71H    |       | R    | W     |       | ALON  | 0  | All on  | Normal | All LCD dots displayed control |
| F/III   |       |      |       |       | LDUTY | 0  | 1/8     | 1/16   | LCD drive duty switch          |
|         |       |      |       |       | HLMOD | 0  | HLMOD   | Normal | Heavy load protection mode     |

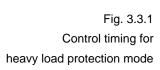
HLMOD

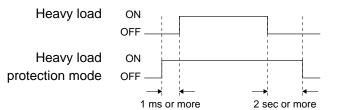
HLMOD Controls the heavy load protection mode.

(F71H [D0], R/W)

When "1" is written: Heavy load protection mode is set

When "0" is written: Heavy load protection mode is released


Reading: Valid


Conversion to heavy load protection mode is done by writing "1" to HLMOD while cancellation of this mode is done by writing "0".

During initial reset, the mode is set at "0" (heavy load protection mode cancellation).

#### **Programming notes**

- (1) During heavy load or when 2.2 V or below is detected by SVD, set it to heavy load protection mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.
- (2) Perform heavy load driving only after setting up at least 1 ms wait time through the software, after switching to the heavy load protection mode. (See Figure 3.3.1.)
- (3) When the heavy load protection mode is to canceled after completion of heavy load driving, set up at least 2 seconds wait time through the software. (See Figure 3.3.1.)

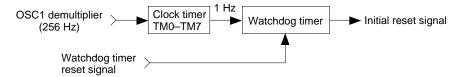




#### 3.4 CPU Operating Voltage Change

During operation, S1C62440/4A0/4C0/480 can change OSC1 and OSC3 system clocks through the software, and operation at clock mode or high-speed mode is then possible. In this case, to obtain stable operating, operating voltage Vs1 of the internal circuit is changed through the software. For details, see Chapter 5, "OSCILLATION CIRCUIT".

# CHAPTER 4 WATCHDOG TIMER AND INITIAL RESET


#### 4.1 Watchdog Timer

#### Configuration of watchdog timer

S1C62440/4A0/4C0/480 have a built-in watchdog timer with OSC1 (clock timer 1 Hz signal) basic oscillation. The watchdog timer needs to be reset periodically through the software, and if not reset within 3–4 seconds, it automatically generates initial reset signal to the CPU.

Figure 4.1.1 shows the configuration of the watchdog timer.

Fig. 4.1.1 Configuration of watchdog timer



By resetting the watchdog timer during the program's main routine, program runaways which do not pass the watchdog timer processing during main routine can be detected. Note, however, that the watchdog timer operates even during HALT such that if the HALT condition continues for 3–4 seconds, it is re-initiated through initial resetting.

### Control of watchdog timer

The control register of the watchdog timer is explained below.

Table 4.1.1 Control register of watchdog timer

| Address |    | Reg | ister |       |       |       |                   |   | Comment              |
|---------|----|-----|-------|-------|-------|-------|-------------------|---|----------------------|
| Address | D3 | D2  | D1    | D0    | Name  | SR    | 1                 | 0 | Comment              |
|         | 0  | 0   | TMRST | WDRST | 0     | -     |                   |   |                      |
| FZCLI   | R  |     | R W   |       | 0     | _     |                   | _ |                      |
| F76H    | ,  |     | TMRST | Reset | Reset | _     | Clock timer reset |   |                      |
|         |    |     |       |       | WDRST | Reset | Reset             | - | Watchdog timer reset |

WDRST This bit resets the watchdog timer.

(F76H [D0], W)

When "1" is written: Watchdog timer reset

When "0" is written: No operation Reading: Always "0"

By writing "1" on WDRST, the watchdog timer is reset, after which it is immediately restarted. Writing "0" will mean no operation.

Because this bit is only for writing, it is always set to "0" during reading.

#### **Programming notes**

- (1) The watchdog timer must reset within 3-second cycles by the software.
- (2) When clock timer resetting (TMRST←"1") is performed, the watchdog timer is counted up; reset the watchdog immediately after if necessary.

#### 4.2 Initial Reset

S1C62440/4A0/4C0/480 require initial reset function to initialize the circuits.

There are four types of initial reset factors:

- (1) External reset through LOW level input to the  $\overline{RESET}$  terminal
- (2) External initial reset by simultaneous L level input of K00-K03 terminals (mask option)
- (3) Initial reset by oscillation detector
- (4) Initial reset by watchdog timer

Figure 4.2.1 shows the configuration of the initial reset circuit.

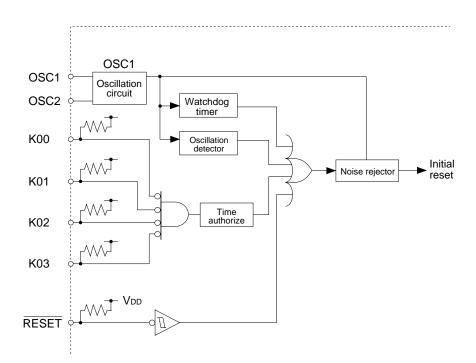



Fig. 4.2.1 Configuration of initial reset circuit

# External initial reset by the RESET terminal

Initial resetting can be done externally by placing the reset terminal at Low level. Because the initial reset circuit has noise rejector built-in, keep it at Low level for at least 2 ms (in case oscillation frequency fosc1 = 32,768 Hz). When the reset terminal goes High, the CPU will start operating.

### External initial reset by simultaneous L level input of K00-K03 terminals (mask option)

Initial reset may be done by simultaneously providing Low level input externally to the input port (K00–K03) selected by mask option. Because the initial reset circuit has time authorize circuit built-in, keep the specified input port terminal at Low level for at least 2 seconds (in case oscillation frequency fOSC1 = 32,768 Hz). The input port combination which can be selected from the mask option are as follows:

- Not use
- K00\*K01
- K00\*K01\*K02
- K00\*K01\*K02\*K03

#### Initial reset by oscillation detector

The oscillation detector generates initial reset frequency until the crystal oscillation circuit (OSC1) starts oscillation during power charge.

However, depending on the power-on sequence (voltage rise timing), the circuit may not work properly. Therefore, use the reset terminal or reset by simultaneous low input to the input port (K00–K03) for initial reset after turning power on.

## Initial reset by watchdog timer

If the CPU runs away for some reason, the watchdog timer will detect this situation and output an initial reset signal. See "4.1 Watchdog Timer" for details.

## Internal register at initial resetting

The CPU is initialized by initial resetting as follows:

Table 4.2.1 Initial values

| CPU core                 |        |            |               |  |  |  |  |  |  |
|--------------------------|--------|------------|---------------|--|--|--|--|--|--|
| Name                     | Symbol | Bit length | Setting value |  |  |  |  |  |  |
| Program counter, step    | PCS    | 8          | 00H           |  |  |  |  |  |  |
| Program counter, page    | PCP    | 4          | 1H            |  |  |  |  |  |  |
| Program counter, bank    | PCB    | 1          | 0             |  |  |  |  |  |  |
| New page pointer         | NPP    | 4          | 1H            |  |  |  |  |  |  |
| New bank pointer         | NBP    | 1          | 0             |  |  |  |  |  |  |
| Stack pointer            | SP     | 8          | Undefined     |  |  |  |  |  |  |
| Index register • IX      | IX     | 12         | Undefined     |  |  |  |  |  |  |
| Index register • IY      | IY     | 12         | Undefined     |  |  |  |  |  |  |
| Register pointer         | RP     | 4          | Undefined     |  |  |  |  |  |  |
| General-purpose register | Α      | 4          | Undefined     |  |  |  |  |  |  |
| General-purpose register | В      | 4          | Undefined     |  |  |  |  |  |  |
| Interrupt flag           | I      | 1          | 0             |  |  |  |  |  |  |
| Decimal flag             | D      | 1          | Undefined     |  |  |  |  |  |  |
| Zero flag                | Z      | 1          | Undefined     |  |  |  |  |  |  |
| Carry flag               | С      | 1          | Undefined     |  |  |  |  |  |  |

| Peripheral circuit        |            |               |  |  |  |  |  |  |
|---------------------------|------------|---------------|--|--|--|--|--|--|
| Name                      | Bit length | Setting value |  |  |  |  |  |  |
| RAM                       | 4          | Undefined     |  |  |  |  |  |  |
| Segment data memory       | 4          | Undefined     |  |  |  |  |  |  |
| Other peripheral circuits | 4          | *             |  |  |  |  |  |  |

<sup>\*</sup> See Tables 2.3.2(a)-(f).

### CHAPTER 5 OSCILLATION CIRCUIT

#### 5.1 OSC1 Oscillation Circuit

S1C62440/4A0/4C0/480 have a built-in crystal oscillation circuit (OSC1 oscillation circuit).

Figure 5.1.1 shows the configuration of the OSC1 crystal oscillation circuit.



Fig. 5.1.1
Configuration of
OSC1 crystal oscillation circuit

As Figure 5.1.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal X'tal (Typ. 32,768 Hz) and feedback resistor Rfx (10 M $\Omega$ ) between pins OSC1 and OSC2 to the trimmer capacitor Cgx (5–25 pF) between pins OSC1 and VDD.

For the S1C62440/4C0/480, CR oscillation circuit may also be selected by a mask option. Figure 5.1.2 is the configuration of the OSC1 CR oscillation circuit.

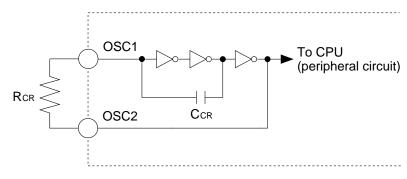
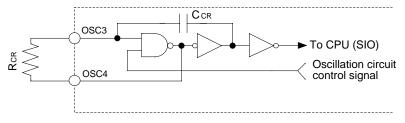



Fig. 5.1.2 Configuration of OSC1 CR oscillation circuit (S1C62440/4C0/480)

As indicated in Figure 5.1.2, the CR oscillation circuit can be configured simply by connecting the resistor (RCR) between terminals OSC1 and OSC2 when CR oscillation is selected.

When 1.6 M $\Omega$  is used for RCR, the oscillation frequency is about 32 kHz (Vs1 = -2.1 V) / about 34 kHz (Vs1 = -3.0 V).


- Note CR oscillation increases current consumption more than the crystal oscillation.
  - Be aware that the frequency of the CR oscillation is uneven. In particular, pay attention to the time base counter (time lag), the LCD frame frequency (change of the display quality, flicker in low frequency, etc.) and the sound generator (change of sound quality).

#### 5.2 OSC3 Oscillation Circuit

The S1C62440/4A0/4C0/480 have a built-in OSC3 oscillation circuit that enables the high-speed operation of 2 MHz oscillation frequency.

Either the CR oscillation circuit or the ceramic oscillation circuit can be selected by a mask option.

Figure 5.2.1 shows the configuration of the OSC3 oscillation circuit.



(a) OSC3 CR oscillation circuit

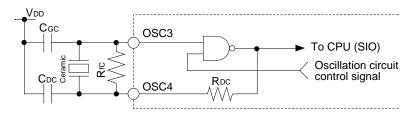
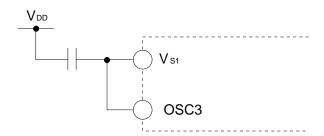



Fig. 5.2.1
Configuration of OSC3 oscillation circuit

(b) OSC3 ceramic oscillation circuit

When CR oscillation circuit is selected by mask option, resistor RCR is connected between OSC3 and OSC4 terminals. When almost 20 k $\Omega$  is used for RCR, the oscillation frequency will be about 1.7 MHz (Vs1 = -3.0 V). When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic and feedback resistor Rfc ( $\approx$  1 M $\Omega$ ) between pins OSC3 and OSC4 to the capacitors CGc and CDc located between pins OSC3 and VDD, OSC4 and VDD. For both CGc and CDc, connect capacitors that are about 100 pF.


Either the OSC3 oscillation circuit or the OSC1 crystal oscillation circuit output clock can be selected with the software for use as the CPU system clock.

When OSC1 is selected as the system clock, OSC3 oscillation can be halted with the software so as to lower the current consumption.

When the OSC3 oscillation circuit is not used, connect the OSC3 terminal to Vs1.

The connection diagram in this case is shown in Figure 5.2.2.

Fig. 5.2.2 Connection diagram when the OSC3 oscillation circuit is unused



#### 5.3 Operating Voltage Change

S1C62440/4A0/4C0/480 can change OSC1 and OSC3 system clocks through the software. In this case, to obtain stable operation, operating voltage Vs1 of the internal circuit is changed through the software.

Likewise, when selecting OSC1 as the system clock, there is need to change operating voltage Vs<sub>1</sub> according to the value of the power voltage (VDD-Vss).

Oscillation frequency and the corresponding operating voltage Vs1 are shown in Table 5.3.1.

Table 5.3.1
Oscillation frequency and operating voltage

| Oscillation frequency | Oscillation circuit | Operating voltage Vs1 |
|-----------------------|---------------------|-----------------------|
| 32,768 Hz             | OSC1                | -1.2 V or -2.1 V      |
| 1 MHz                 | OSC3                | -2.1 V                |
| 2 MHz                 | OSC3                | -3.0 V                |

The VDD reference voltage is used as the operating voltage Vs1.

When OSC3 is to be used as the CPU system clock, change the operating voltage Vs1 accordingly through the software and then turn the OSC3 oscillation ON and switch the clock frequency.

If the OSC3 oscillation frequency is to be fixed around 1 MHz, set the operating voltage to -2.1 V; at 2 MHz, set the operating voltage to -3.0 V.

Moreover, when the CPU is to be operated with OSC1, set the operating voltage to -1.2 V if the power voltage detected with the SVD circuit were less than 3.1 V (VDD-VSS < 3.1 V); set the operating voltage to -2.1 V if the detected voltage were 3.1 V or more (VDD-VSS  $\geq$  3.1 V). However, it can be used fixed at -1.2 V (at OSC1 operation) for power whose initial value is 3.6 V or less as in lithium batteries.

Note Switching Vs1 when the power source voltage is lower than the set voltage may cause misoperation. Perform the operating voltage only after making sure that power voltage by SVD is more than the Vs1 setting voltage (absolute value).

# 5.4 Clock Frequency and Instruction Execution Time

Table 5.4.1 shows the instruction execution time according to each frequency of the system clock.

Table 5.4.1 Clock frequency and instruction execution time

|                 | Instruction execution time (µs) |             |             |  |  |  |  |  |
|-----------------|---------------------------------|-------------|-------------|--|--|--|--|--|
| Clock frequency | 5-clock                         | 7-clock     | 12-clock    |  |  |  |  |  |
|                 | instruction                     | instruction | instruction |  |  |  |  |  |
| 32,768 Hz       | 152.6                           | 213.6       | 366.2       |  |  |  |  |  |
| 1 MHz           | 5.0                             | 7.0         | 12.0        |  |  |  |  |  |
| 2 MHz           | 2.5                             | 3.5         | 6.0         |  |  |  |  |  |

#### 5.5 Control of Oscillation Circuit

The control registers for the oscillation circuit are explained below.

Table 5.5.1 Control registers of oscillation circuit

| Address |                       | Reg | ister |    |        | Comment |      |      |                               |  |
|---------|-----------------------|-----|-------|----|--------|---------|------|------|-------------------------------|--|
| Address | D3                    | D2  | D1    | D0 | Name   | SR      | 1    | 0    | Comment                       |  |
|         | CLKCHG OSCC VSC1 VSC0 |     |       |    | CLKCHG | 0       | OSC3 | OSC1 | CPU system clock change       |  |
| F7011   | R/W                   |     |       |    |        | 0       | On   | Off  | OSC3 oscillation On/Off       |  |
| F70H    |                       |     |       |    | VSC1   | 0       |      |      | CDI anarotina valtasa avritah |  |
|         |                       |     |       |    | VSC0   | 0       |      |      | CPU operating voltage switch  |  |

VSC0 and VSC1 Switches the operating voltage of the internal circuit in (F70H [D0 and D1], R/W) accordance to the oscillation frequency and power source voltage.

> The corresponding setting description is shown in Table 5.5.2.

Table 5.5.2 Corresponding between oscillation frequency, power source voltage, and operating voltage (Vs1)

| VSC1 | VSC0 | Vs1    | Oscillation | Oscillation | Power source      |
|------|------|--------|-------------|-------------|-------------------|
|      |      |        | circuit     | frequency   | voltage (VDD-Vss) |
| 0    | 0    | -1.2 V | OSC1        | 32,768 Hz   | Under 3.1 V       |
| 0    | 1    | -2.1 V | OSC1        | 32,768 Hz   | 3.1 V or more (*) |
| 0    | 1    | -2.1 V | OSC3        | 1 MHz       | 2.2 V or more     |
| 1    | ×    | -3.0 V | OSC3        | 2 MHz       | 3.1 V or more     |

The VDD reference voltage is used as the operating voltage Vs1.

There is no need to set the (\*) state with regards to power whose initial value is 3.6 V or less as in lithium batteries. VSC1 and VSC0 are set to "0" at initial reset.

Note – When switching Vs1 from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

$$(VSC1, VSC0) = (0, 0) \rightarrow (0, 1) \rightarrow 5 \text{ ms WAIT} \rightarrow (1, \times)$$

$$= (1, \times) \rightarrow (0, 1) \rightarrow 5 \text{ ms WAIT} \rightarrow (0, 0)$$

$$= (0, 0) \rightarrow (1, \times) \text{ is prohibited}$$

$$= (1, \times) \rightarrow (0, 0) \text{ is prohibited}$$

Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.

- In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option as OSC1, Vs1 becomes -2.1 V even when VSC1 = VSC0 = 0 and will never become -1.2 V. In addition, since the current consumption is great for CR oscillation compared with the quartz crystal oscillation, when low power consumption is required, you should select quartz crystal oscillation as OSC1.

OSCC Controls the oscillation of the OSC3 oscillation circuit.

(F70H [D2], R/W)

When "1" is written: OSC3 oscillation ON
When "0" is written: OSC3 oscillation OFF

Reading: Valid

When high-speed operation of the CPU is required, OSCC is set to "1"; otherwise, set it to "0" to minimize power current consumption.

At initial reset, OSCC is set to "0".

Note It takes 5 ms for the OSC3 oscillation circuit to stabilize after oscillation turns ON. Since oscillation stabilization time differs according to external oscillation terminal and usage conditions, set the stand-by time with enough allowance when switching the clock frequency.

CLKCHG Selects the CPU operating clock.

(F70H [D3], R/W)

When "1" is written: OSC3 clock is selected When "0" is written: OSC1 clock is selected

Reading: Valid

When assigning OSC3 as the CPU operating clock, set CLKCHG to "1"; when assigning OSC1, set it to "0". At initial reset, CLKCHG is set to "0".

Note When switching the CPU operating clock from OSC1 to OSC3, follow the flow chart shown in Figure 5.5.1 and then proceed with software processing.

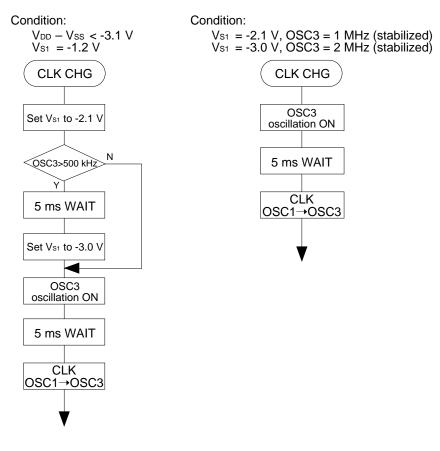



Fig. 5.5.1 CPU operating clock control flow

#### 5.6 Programming Notes

(1) When high-speed operation of the CPU is not required, observe the following reminders to minimize power current consumption.

Set the CPU operating clock to OSC1.

Turn the OSC3 oscillation OFF.

Set the internal operating voltage (Vs1) to -1.2 V or -2.1 V.

- (2) When the CPU is to be operated with OSC1, set the operating voltage to -1.2 V if the power voltage detected with the SVD circuit were less than 3.1 V (VDD-VSS < 3.1 V); set the operating voltage to -2.1 V if the detected voltage were 3.1 V or more (VDD-VSS  $\geq$  3.1 V). Moreover, because -1.2 V will be set during initial reset, be sure to execute the previous process at the beginning of the initial routine. Note, however, that it can be used fixed at 1.2 V (at OSC1 operation) for power whose initial value is 3.6 V or less as in lithium batteries.
- (3) When switching Vs1 from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

(VSC1, VSC0) = 
$$(0, 0) \rightarrow (0, 1) \rightarrow 5$$
 ms WAIT  $\rightarrow (1, \times)$   
=  $(1, \times) \rightarrow (0, 1) \rightarrow 5$  ms WAIT  $\rightarrow (0, 0)$   
=  $(0, 0) \rightarrow (1, \times)$  is prohibited  
=  $(1, \times) \rightarrow (0, 0)$  is prohibited

Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.

- (4) When switching the CPU operating clock from OSC1 to OSC3, follow the flow chart shown in Figure 5.5.1 and then proceed with software processing.
- (5) Use separate instructions to switch the clock from OSC3 to OSC1 and turn the OSC3 oscillation OFF. Simultaneous processing with a single instruction may cause malfunction of the CPU.

### CHAPTER 6 INPUT PORTS (Kxx)

#### 6.1 Configuration of Input Ports

The S1C62440/4A0/4C0/480 have 8 bits (4 bits  $\times$  2, K00–K03, K10–K13) general input ports built-in.

Figure 6.1.1 shows the configuration of the input port.

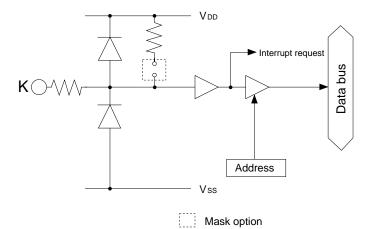



Fig. 6.1.1 Configuration of input port

The input port pin K03 is used as the clock input pins for the programmable timer. See "10.3 Programmable Timer" for details.

#### 6.2 Mask Option

The input ports (K00–K03 and K10–K13) are provided with built-in pull up resistor the use of which may be selected for every bit with the mask option.

Selection of "Pull up resistor enable" with the mask option suits input from the push switch, key matrix, and so forth. When changing the input port from Low level to High level with a pull up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull up resistor and input gate capacity. Hence, when reading data from the input port, set an appropriate waiting time. Care is particularly required for key matrix configuration scanning. For reference, approximately 500 µs waiting time is required.

When "Pull up resistor disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs. In this case, take care that floating state does not occur.

#### 6.3 Interrupt Function

All eight bits of the input ports K00-K03 and K10-K13 provide the interrupt function.

Whether to mask the interrupt function can be selected individually for all eight bits by the software.

Input interrupt (K00–K03) and input relation registers

The input ports K00–K03 are equipped with input relation registers. The condition for issuing an interrupt can be set by the software.

Figure 6.3.1 shows the configuration of the input (K00–K03) interrupt circuit.

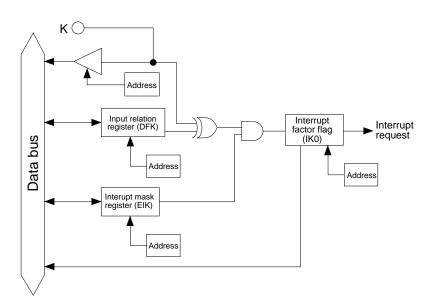



Fig. 6.3.1 Configuration of input (K00–K03) interrupt circuit

The input interrupt timing of K00–K03 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input relation registers DFK00–DFK03. Moreover, masking can be set individually to the interrupt of K00–K03. However, if the interrupt of any one of K00–K03 is enabled, interrupt will be generated when the content change from matched to no matched with the input relation register. When interrupt is generated, the interrupt factor flag IK0 is set to "1".

Figure 6.3.2 shows an example of an interrupt for K00-K03.

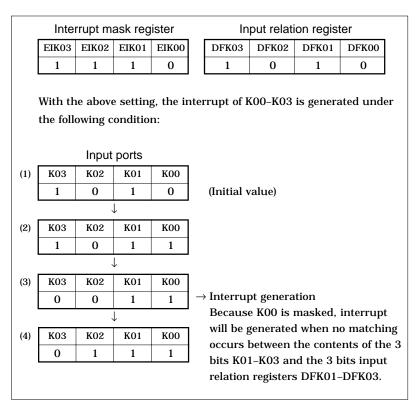



Fig. 6.3.2 Example of an interrupt for K00–K03

Because K00 is masked by an interrupt mask register (EIK00), interrupt will not be generated at the above step (2). Next, since K03 becomes "0" at step (3), interrupt is generated due to the no matching of the data of the terminal whose interrupt is enabled and the data of the input relation registers. No interrupt is generated from a no matched state to another no matched state as in step (4) because the condition for interrupt generation, as has been previously stated, is that the port data and the contents of the input relation registers must change from a matched state to a no matched one. Moreover, a terminal whose interrupt is masked will not affect the condition for interrupt generation.

## Input interrupt (K10–K13)

Figure 6.3.3 shows the configuration of the input (K10–K13) interrupt circuit.

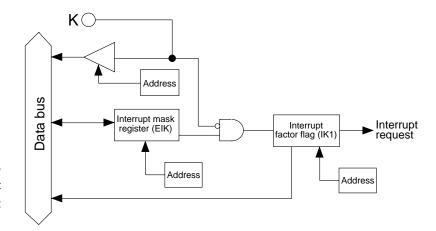



Fig. 6.3.3 Configuration of the input (K10–K13) interrupt circuit

There is no input relation registers for K10–K13, and interrupt is fixed to occur at the falling edge of input. The interrupt mask can be selected for each of the four pins with the interrupt mask register EIK10–EIK13. When all the enabled pins are "1", interrupt occurs when one or more of the pins changes to "0".

When interrupt is generated, the interrupt factor flag IK1 is set to "1".

Figure 6.3.4 shows an example of an interrupt for K10-K13.

|     | Inte                                                                | rupt ma | ask reg | ister |                                    |  |  |  |  |  |
|-----|---------------------------------------------------------------------|---------|---------|-------|------------------------------------|--|--|--|--|--|
|     | EIK13                                                               | EIK12   | EIK11   | EIK10 |                                    |  |  |  |  |  |
|     | 0                                                                   | 1       | 1       | 1     |                                    |  |  |  |  |  |
| '   |                                                                     |         |         |       |                                    |  |  |  |  |  |
|     | With the above setting, the interrupt of K10-K13 is generated under |         |         |       |                                    |  |  |  |  |  |
|     | the foll                                                            | owing c | onditio | n:    |                                    |  |  |  |  |  |
|     |                                                                     |         |         |       |                                    |  |  |  |  |  |
|     |                                                                     | Input   | ports   |       |                                    |  |  |  |  |  |
| (1) | K13                                                                 | K12     | K11     | K10   |                                    |  |  |  |  |  |
|     | 1                                                                   | 1       | 1       | 1     | (Initial value)                    |  |  |  |  |  |
|     |                                                                     |         | l       |       |                                    |  |  |  |  |  |
| (2) | K13                                                                 | K12     | K11     | K10   |                                    |  |  |  |  |  |
|     | 0                                                                   | 1       | 1       | 1     |                                    |  |  |  |  |  |
|     |                                                                     | `       | l       |       |                                    |  |  |  |  |  |
| (3) | K13                                                                 | K12     | K11     | K10   |                                    |  |  |  |  |  |
|     | 0                                                                   | 1       | 0       | 1     | ightarrow Interrupt generation     |  |  |  |  |  |
|     |                                                                     | `       | l       |       | Because K13 is masked, interrupt   |  |  |  |  |  |
| (4) | K13                                                                 | K12     | K11     | K10   | will be generated when one or more |  |  |  |  |  |
|     | 0                                                                   | 1       | 0       | 0     | terminals among the 3 bits K10-K12 |  |  |  |  |  |
|     |                                                                     |         |         |       | become "0" from a state where all  |  |  |  |  |  |
|     |                                                                     |         |         |       | terminals were "1".                |  |  |  |  |  |

Fig. 6.3.4 Example of an interrupt for K10–K13

The mask register (EIK13) masks the interrupt of K13, so an interrupt does not occur at (2). At (3), K11 becomes "0", so that an interrupt occurs if the interrupt enabled pins were all "1" and at least one pin then changes to "0". At (4), the conditions for interrupt are not established, so an interrupt does not occur. Further, pins that have been masked for interrupt do not affect the conditions for interrupt generation.

### 6.4 Control of Input Ports

The control registers for the input ports are explained below.

Table 6.4.1(a) Control registers of input ports (1)

| Address  |       | ister |       | Comment |       |    |        |      |                                 |
|----------|-------|-------|-------|---------|-------|----|--------|------|---------------------------------|
| 7.001635 | D3    | D2    | D1    | D0      | Name  | SR | 1      | 0    | Comment                         |
|          | 0     | 0     | 0     | IK0     | 0     | -  |        |      |                                 |
| F04H     |       |       | R     |         | 0     | _  |        |      |                                 |
| F04F1    |       |       |       |         | 0     | -  |        |      |                                 |
|          |       |       |       |         | IK0   | 0  | Yes    | No   | Interrupt factor flag (K00–K03) |
|          | 0     | 0     | 0     | IK1     | 0     | -  |        |      |                                 |
| F05H     |       |       | R     |         | 0     | _  |        |      |                                 |
| 10311    | FUSH  |       |       |         | 0     | _  |        |      |                                 |
|          |       |       |       |         | IK1   | 0  | Yes    | No   | Interrupt factor flag (K10–K13) |
|          | EIK03 | EIK02 | EIK01 | EIK00   | EIK03 | 0  | Enable | Mask | Interrupt mask register (K03)   |
| F14H     |       | R     | W     |         | EIK02 | 0  | Enable | Mask | Interrupt mask register (K02)   |
| F14F1    |       |       |       |         | EIK01 | 0  | Enable | Mask | Interrupt mask register (K01)   |
|          |       |       |       |         | EIK00 | 0  | Enable | Mask | Interrupt mask register (K00)   |
|          | EIK13 | EIK12 | EIK11 | EIK10   | EIK13 | 0  | Enable | Mask | Interrupt mask register (K13)   |
| F15H     | R/W   |       |       |         | EIK12 | 0  | Enable | Mask | Interrupt mask register (K12)   |
| FION     |       |       |       |         | EIK11 | 0  | Enable | Mask | Interrupt mask register (K11)   |
|          |       |       |       |         | EIK10 | 0  | Enable | Mask | Interrupt mask register (K10)   |

Table 6.4.1(b) Control registers of input ports (2)

| Address |       | Reg   | ister |       |       |    |      |     | Comment                               |
|---------|-------|-------|-------|-------|-------|----|------|-----|---------------------------------------|
| Address | D3    | D2    | D1    | D0    | Name  | SR | 1    | 0   | Comment                               |
|         | K03   | K02   | K01   | K00   | K03   | _  | High | Low |                                       |
| F40H    | R     |       |       |       |       | _  | High | Low | Input port (K00–K03)                  |
| 14011   |       |       |       |       | K01   | _  | High | Low | input port (Koo-Koo)                  |
|         |       |       |       |       | K00   | -  | High | Low |                                       |
|         | DFK03 | DFK02 | DFK01 | DFK00 | DFK03 | 1  |      |     |                                       |
| F41H    | R/W   |       |       |       |       | 1  | ¬    |     | Input relation register (DFK00–DFK03) |
| [4]     | F41H  |       |       |       | DFK01 | 1  | ¬    |     | input retation register (DFR00-DFR03) |
|         |       |       |       |       | DFK00 | 1  |      |     |                                       |
|         | K13   | K12   | K11   | K10   | K13   | -  | High | Low |                                       |
| F42H    | R     |       |       |       |       | _  | High | Low | Input port (K10–K13)                  |
| 14211   |       |       |       |       | K11   | _  | High | Low | input port (K10-K13)                  |
|         |       |       |       |       |       | -  | High | Low |                                       |

K00–K03, K10–K13 Input data of the input port terminal may be read out with (F04H, F42H, R) these registers.

When "1" is read: High level
When "0" is read: Low level
Writing: Invalid

The terminal voltage of 8 bits input ports (K00-K03 and K10-K13) are each reading as "1" and "0" at high (VDD) level and low (VSS) level, respectively.

When these bits are used for reading only, writing operation becomes invalid.

DFK00-DFK03 These input relation registers which set the interrupt gener-(F41H, R/W) ating conditions of K00-K03.

> When "1" is written: Falling edge When "0" is written: Rising edge

Valid Reading:

When DFK0x is set to "1", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to "0". DFK0x respectively correspond to input ports K0x and may be set in units of 1 bit. At initial reset, these registers are all set to "1".

EIK00-EIK03,EIK10-EIK13 These are interrupt mask registers of the input ports.

(F14H, F15H, R/W)

When "1" is written: Enable When "0" is written: Mask Reading: Valid

EIK0x corresponds to input port K0x, and EIK1x corresponds to input port K1x. Whether to mask the interrupt function can be set in units of 1 bit.

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, these registers are all set to "0" (mask).

IK0. IK1 These are interrupt factor flags of the input ports.

(F04H [D0], F05H [D0], R)

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

Writing: Invalid

The interrupt factor flags IKO and IK1 are associated with K00-K03 and K10-K13, respectivery. From the status of these flags, the software can decide whether an input interrupt has occurred.

These flags will not be set even if the input conditions are established if, for every terminal series, the interrupt mask registers (EIKxx) are all set to "0" (i.e., EIK00–EIK03, or EIK10–EIK13 are all set to "0", or all are individually set to "0").

Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

At initial reset, these flags are set to "0".

### 6.5 Programming Notes

- (1) When changing the input port from Low level to High level with a pull up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull up resistor and input gate capacity. Hence, when reading data from the input port, set an appropriate waiting time. Care is particularly required for key matrix configuration scanning. For reference, approximately 500 μs waiting time is required.
- (2) Input interrupt programing related precautions

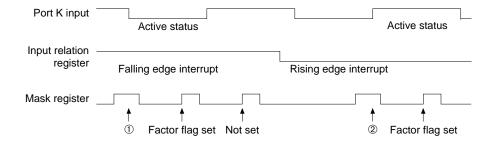



Fig. 6.5.1 Input interrupt timing

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at 1 and 2, 1 being the interrupt due to the falling edge and 2 the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = Low status, when the falling edge interrupt is effected and

input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 6.5.1. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of @ shown in Figure 6.5.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the input relation register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input relation register in the mask register = "0" status.

- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

# CHAPTER 7 OUTPUT PORTS (Rxx)

# 7.1 Configuration of Output Ports

The S1C624A0/4C0/480 have 20 bits (4 bits  $\times$  5, R00–R03, R10–R13, R20–R23, R30–R33, and R40–R43), and S1C62440 has 12 bits (4 bits  $\times$  3, R20–R23, R30–R33, and R40–R43) general output ports built-in.

Figure 7.1.1 shows the configuration of the output port.

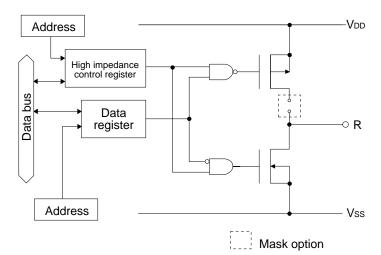



Fig. 7.1.1 Configuration of output port

## 7.2 Mask Option

The output ports may be selected for the following by mask option.

(1) Output specification of output ports

The output specification of the output ports may be selected as listed below. Two types of output specification may be selected: complementary output and N channel (Nch) open drain output. However, even if Nch open drain is selected, application on the terminal of voltage exceeding the power current voltage is not permitted.

| R00-R03: | Complementary or Nch open drain     |
|----------|-------------------------------------|
|          | (selected with the 4 bits group) *1 |
| R10-R13: | Complementary or Nch open drain     |
|          | (selected with the 4 bits group) *1 |
| R20-R22: | Complementary or Nch open drain     |
|          | (selected with the 3 bits group) *2 |
| R23:     | Complementary or Nch open drain *2  |
| R30-R33: | Complementary or Nch open drain     |
|          | (select in units of 1 bit)          |
| R40-R43: | Complementary or Nch open drain     |
|          | (select in units of 1 bit)          |

<sup>\*1</sup> R00-R03 and R10-R13 are not set for the S1C62440.

<sup>\*2</sup> In the S1C62440 it selects as a four bit group of R20-R23.

### (2) External memory access

In the S1C624A0/4C0/480 aside from DC output, output ports R00-R03, R10-R13, R20-R23, and R30-R32 may also be set with the mask option as external memory access port as follows:

| R00-R03: | External memory address (A0-A3)            |
|----------|--------------------------------------------|
|          | (selected with the 4 bits group)           |
| R10-R13: | External memory address (A4-A7)            |
|          | (selected with the 4 bits group)           |
| R20-R22: | External memory address (A8-A10)           |
|          | (selected with the 3 bits group)           |
| R23:     | External memory address (A11)              |
| R30:     | External memory address (A12)              |
| R31:     | External memory address (A13)              |
|          | or external memory write $(\overline{WR})$ |
| R32:     | External memory read ( $\overline{RD}$ )   |

The control of external memory access is explained in Chapter 13.

### (3) Special output

Output ports R33 and R40-R43 may be selected, in addition to DC output, as special output port as follows:

| R33: | SIO Ready (SRDY) or programmable timer |
|------|----------------------------------------|
|      | operating clock output (PTCLK)         |
| R40: | Clock inverted output (FOUT)           |
|      | or LCD synchronous signal (CL)         |
| R41: | LCD frame signal (FR)                  |
|      |                                        |

R42: Buzzer inverted output  $(\overline{BZ})$  or clock output (FOUT)

R43: Buzzer output (BZ)

Buzzer outputs BZ (R43) and  $\overline{BZ}$  (R42)

Through mask option selection, R43 and R42 may be assigned as buzzer outputs. BZ and  $\overline{\text{BZ}}$  are buzzer signal outputs for driving piezo-electric buzzers, the buzzer signal being created by the division of fosc1. Moreover, digital envelope may be added to the buzzer signal. See Chapter 12, "SOUND GENERATOR" for details.

Buzzer output BZ and  $\overline{BZ}$  can be controlled simultaneously by register R43. Note, however, that register R42 at  $\overline{BZ}$  output selection may be used as a 1-bit general register in which Read/Write operation is possible, and the data of said register will not affect  $\overline{BZ}$  (output from the R42 terminal).

- Note The BZ and  $\overline{BZ}$  output signals could generate hazards during ON/OFF switching.
  - When output port R43 is set to DC output, output port R42 may not be set to  $\overline{BZ}$  output.

Figure 7.2.1 shows the output waveform of BZ and BZ.

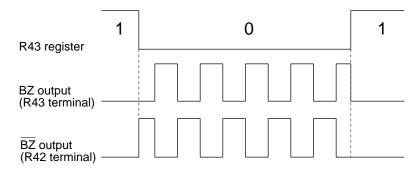



Fig. 7.2.1 Output waveform of BZ and  $\overline{\text{BZ}}$ 

SIO Ready SRDY (R33) When output port R33 is selected as SRDY output, it will generate a Ready signal which will indicate whether the serial interface is available to transmit or receive signals.

See Chapter 11, "SERIAL INTERFACE" for details.

PTCLK (R33) The operating clock for the programmable timer is outputed externally from this port. In this case, the clock output ON or OFF may be controlled from the R33 register by setting PTCOUT (F79H [D3]) to "1". The clock frequency is selected by the 3 bits register of PTC0-PTC2.

> Moreover, when PTCOUT is set to "0", output port R33 becomes DC output.

Because of the above functions, PTCLK output and DC output belong to a common option selection item. Refer to "10.3 Programmable Timer" regarding selection of clock frequency.

Control of R33 output 3 states output or 2 states output for output port R33 may be selected with the mask option.

> When SRDY is selected for R33, 2 states output is ordinarily selected in compliance with it.

> Moreover, although 2 states output may be selected even during the selection of DC output and PTCLK output, caution is required as output becomes undefined (i.e., it will not be initially reset) when power is supplied.

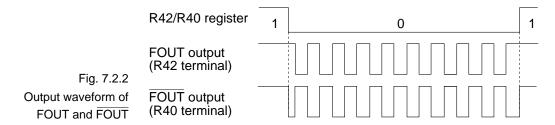

Clock outputs FOUT (R42) When R40 and R42 are selected to clock output, it outputs FOUT (R40) the clock of fosc3, fosc1 or the demultiplied fosc1. The clock frequency is selectable with the mask options, from the frequencies listed in Table 7.2.1.

Table 7.2.1 FOUT clock frequency

| Setting   | Clock frequency (Hz)       |
|-----------|----------------------------|
| fosc3     | OSC3 oscillation frequency |
| fosc1/ 1  | 32,768                     |
| fosc1/ 2  | 16,384                     |
| fosc1/ 4  | 8,192                      |
| fosc1/ 8  | 4,096                      |
| fosc1/ 16 | 2,048                      |
| fosc1/32  | 1,024                      |
| fosc1/ 64 | 512                        |
| fosc1/128 | 256                        |

R40 (FOUT) output generates an antiphase clock in relation to R42 (FOUT).

Figure 7.2.2 shows the output waveform of FOUT and  $\overline{\text{FOUT}}$ .



Note Clock output signal could generate hazards during ON/OFF switching.

CL (R40) and LCD frame signal FR (R41)

S1C62440/4A0/4C0/480 are able to generate LCD synchronous signal and LCD frame signal to provide for cases when expansion LCD driver (S1D15201F10A\*) is externally connected.

By setting the R40 and R41 registers individually to "0", CL signal and FR signal are generated from the R40 and R41 terminals, respectively.

The CL signal can select from one of two types, the CL-16 for 1/16 duty or the CL-8 for 1/8 duty.

The respective frequency of CL-16 signal, CL-8 signal and FR signal are 1,024 Hz, 512 Hz and 32 Hz; FR signal synchronizes with the rising edge of CL signal and changes. The output waveforms of CL and FR signals are shown in Figures 7.2.3(a) and (b).

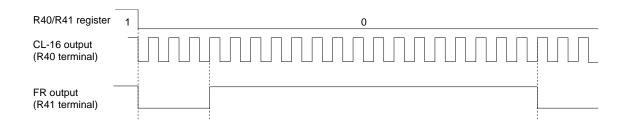



Fig. 7.2.3(a) Output waveform of CL-16, FR

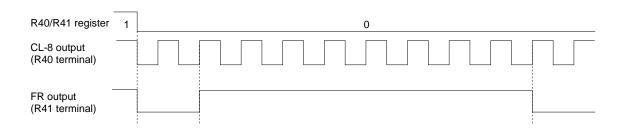



Fig. 7.2.3(b) Output waveform of CL-8, FR

Note Do not use the CL and FR signals for purposes other than to supply signal to the expansion LCD driver (S1D15201F10A\*).

# 7.3 Control of Output Ports

# High impedance control

The terminal output state of output ports R00–R03, R10–R13, R20–R23, and R30–R33, may be selected for high impedance state through the software in 4 bits groups. Control is done with the high impedance control registers (HZR0–HZR3).

In the case of the S1C62440, the output ports R20–R23 and R30–R33 can effect high impedance control by HZR2 and HZR3.

# Control registers of output ports

The control registers for the output ports are explained below.

Table 7.3.1(a) Control registers of output ports (1)

| Address | Register |     |       |     |         |     |                                              |        | . Comment                        |
|---------|----------|-----|-------|-----|---------|-----|----------------------------------------------|--------|----------------------------------|
| Addicss | D3       | D2  | D1    | D0  | Name SR |     | 1                                            | 0      | Comment                          |
|         | R03      | R02 | R01   | R00 | R03     | X   | High                                         | Low    | Output port (R03)                |
|         | RUS      | RU2 | KUI   | RUU | K03     | _ ^ | High                                         | Low    | External memory address (A3)     |
| [       |          |     | W     |     | R02     | Х   | High                                         | Low    | Output port (R02)                |
| F50H    |          | K.  | / V V |     | RU2     | ^   | High                                         | Low    | External memory address (A2)     |
|         |          |     |       |     | R01     | Х   | High                                         | Low    | Output port (R01)                |
| *2      |          |     |       |     | KUI     | _ ^ | High                                         | Low    | External memory address (A1)     |
|         |          |     |       |     | DOO     | Х   | High                                         | Low    | Output port (R00)                |
|         |          |     |       |     | R00     | ^   | High                                         | Low    | External memory address (A0)     |
|         | R13      | R12 | R11   | R10 | R13     | Х   | _ High_                                      | Low    | Output port (R13)                |
|         | KIS      | KIZ | KII   | KIU | KIS     | _ ^ | High                                         | Low    | External memory address (A7)     |
|         |          | ь   | W     |     | R12     | X   | High                                         | Low    | Output port (R12)                |
| F51H    |          | K   | / V V |     | NIZ     | ^   | High                                         | Low    | External memory address (A6)     |
| *2      |          |     |       |     | R11     | ×   | High                                         | _ Low_ | Output port (R11)                |
| *2      |          |     |       |     | KII     | ^   | High                                         | Low    | External memory address (A5)     |
|         |          |     | R10   | l x | High    | Low | Output port (R10)                            |        |                                  |
|         |          |     |       |     | ICIO    | _ ^ | High                                         | Low    | External memory address (A4)     |
|         | R23      | R22 | R21   | R20 | R23     | X   | _ High                                       | Low    | Output port (R23)                |
|         | NZJ      | NZZ | NZ I  | NZU | 1120    | ^   | High                                         | Low    | External memory address (A11) *1 |
|         |          | R/W |       |     | R22     | Χ   | High                                         | _ Low_ | Output port (R22)                |
| F52H    |          | K.  | / V V |     | 1122    |     | High                                         | Low    | External memory address (A10) *1 |
| 1 3211  |          |     |       |     | R21     | X   | High                                         | _ Low  | Output port (R21)                |
|         |          |     |       |     | 1\Z1    | _ ^ | High                                         | Low    | External memory address (A9) *1  |
|         |          |     |       |     | R20     | X   | _ High                                       | Low    | Output port (R20)                |
|         |          |     |       |     | 1120    | ^   | High                                         | Low    | External memory address (A8) *1  |
|         | R33      | R32 | R31   | R30 | R33     | χ   | High                                         | Low    | Output port (R33)                |
|         | KSS      | N32 | Kol   | KOU | 133     | ^   | Off                                          | On     | PTCLK output                     |
|         |          | D   | W     |     |         |     |                                              |        | [SRDY (SIO READY)]               |
|         |          | I.  | / V V |     | R32     | Х   | High                                         | Low    | Output port (R32)                |
| F53H    | 201      |     | K32   | ^   |         |     | [External memory read $(\overline{RD})$ ] *1 |        |                                  |
| 1 3311  |          |     |       |     | R31     |     | High                                         | Low    | Output port (R31)                |
|         |          |     |       |     | KSI     | X   | High                                         | Low    | External memory address (A13) *1 |
|         |          |     |       |     |         |     |                                              |        | [External memory write (WR)] *1  |
|         |          |     |       |     | Doo     | V   | High                                         | Low    | Output port (R30)                |
|         |          |     |       |     | R30     | Х   | High                                         | Low    | External memory address (A12) *1 |

| Table 7.3.1(b) | ) Control | registers of | output | ports ( | 2) | ) |
|----------------|-----------|--------------|--------|---------|----|---|
|                |           |              |        |         |    |   |

| Address |      | Reg  | ister |      |      |        |        |                                       | Comment                                  |
|---------|------|------|-------|------|------|--------|--------|---------------------------------------|------------------------------------------|
| Address | D3   | D2   | D1    | D0   | Name | SR     | 1      | 0                                     | Comment                                  |
|         | R43  | R42  | R41   | R40  | R43  | 1      | High_  | Low                                   | Output port (R43)                        |
|         | 1143 | 1142 | 1141  | 1140 | 1145 | '      | Off    | On                                    | Buzzer output (BZ)                       |
|         |      | D    | w     |      | R42  | 1      | High_  | Low                                   | Output port (R42)                        |
|         |      | IV.  | V V   |      | 1142 | '      | Off    | On                                    | Clock output (FOUT)                      |
| F54H    |      |      |       |      |      |        |        |                                       | [Buzzer inverted output (BZ)]            |
| 1 3411  |      |      |       |      | R41  | 1      | High_  | Low                                   | Output port (R41)                        |
|         |      |      |       |      | 1141 | '      | Off    | On                                    | LCD frame signal (FR)                    |
|         |      |      |       |      | R40  | 1      | _ High | _ Low_                                | Output port (R40)                        |
|         |      |      |       |      |      | '      | _ Off  | On                                    | Clock inverted output (FOUT)             |
|         |      |      |       |      |      |        | Off    | On                                    | LCD synchronous signal (CL)              |
|         | HZR3 | HZR2 | HZR1  | HZR0 | HZR3 | 0      | Output | High-Z                                | R30–R33 output high-impedance control    |
| F7BH    | R/W  |      |       | HZR2 | 0    | Output | High-Z | R20-R23 output high-impedance control |                                          |
| 17611   |      |      |       |      | HZR1 | 0      | Output | High-Z                                | R10–R13 output high-impedance control *3 |
|         |      |      |       |      | HZR0 | 0      | Output | High-Z                                | R00–R03 output high-impedance control *3 |

<sup>\*1</sup> In the S1C62440, it can be used only as a port for output

HZR0-HZR3 Controls high impedance loading to output ports R00-R03, (F7BH, R/W) R10-13, R20-R23 and R30-R33 in units of 4 bits groups.

When "1" is written: Data output
When "0" is written: High impedance

Reading: Valid

By writing "1" in the control registers (HZR0–HZR3) corresponding to the groups, the output register data is generated in the terminal; writing "0" will generate high impednce state.

During initial reset, these registers are set to "0" and the ports acquire high impedance state.

In the S1C62440 HZR0 and HZR1 become invalid and always become "0" during reading.

<sup>\*2</sup> In the S1C62440, the F50H and F51H cannot be used

<sup>\*3</sup> In the S1C62440, it is a register that becomes invalid and during reading it is always "0"

### When DC output

R00–R03, R10–R13, R20–R23, R30–R33,

R00-R03, R10-R13, When DC output is selected

R40–R43

Sets the output data for the output ports.

(F50H, F51H, F52H, F53H,

When "1" is written: High level When "0" is written: Low level

F54H, R/W) When "0" is written: Low le Reading: Valid

Output port terminals will generate the data written into the corresponding registers (R00–R03, .. R40–R43) as it is. The output port terminal goes high (VDD) when "1" is written to the register, and goes low (Vss) when "0" is written. At initial reset, only R40–R43 are set to "1" and the other output registers become undefined.

The output ports R00-R03 and R10-R13 are not set for the S1C62440.

### When special output

R43 When BZ and  $\overline{BZ}$  output is selected

(F54H [D3], R/W)

Performs the output control of buzzer signal (BZ,  $\overline{BZ}$ ).

When "0" is written: Buzzer signal output

When "1" is written: Low level (DC)

Reading: Valid

When "0" is set on R43, BZ signal is generated from R43 terminal; at the same time,  $\overline{BZ}$  signal (BZ inverted signal) is generated from R42 terminal if R42 is set to  $\overline{BZ}$  output. When "1" is set on R43, R43 terminal (and R42 terminal too, when  $\overline{BZ}$  output is selected) output goes low (Vss). Note, however, that R42 at  $\overline{BZ}$  output selection may be used as a 1-bit general register in which Read/Write operation is possible, and the data of said register will not affect  $\overline{BZ}$  (R42 terminal output).

At initial reset, R43 and R42 are set to "1".

R33 When PTCLK (DC) output is selected

(F53H [D3], R/W)

Controls the output of the programmable timer operating clock (PTCLK).

When "0" is written: Clock output
When "1" is written: High level (DC)

Reading: Valid

With "1" written on PTCOUT (F79H [D3]), the operating clock of the programmable timer may be generated externally by writing "0" on R33 register. Moreover, the output will go high (VDD) by writing "1".

However, when PTCOUT is "0", the output becomes regular DC output.

Because this register is not initialized during initial reset, R33 terminal becomes undefined when 2 states output is selected with mask option.

R40, R42 When FOUT and FOUT output is selected

(F54H [D0, D2], R/W)

Controls the FOUT and FOUT (clock) output.

When "0" is written: Clock output
When "1" is written: High level (DC)

Reading: Valid

When R42 is set to FOUT output, clock with the specified frequency is generated from R42 terminal by writing "0" on R42 register.

By writing "1", the R42 terminal will go high ( $V_{DD}$ ). The same applies to R40. The clock phase when  $\overline{FOUT}$  signal is output from R40 is antiphase to that of R42. At initial reset, R40 and R42 are set to "1".

(F54H [D0, D1], R/W)

R40, R41 When CL and FR output is selected

Controls the output of the LCD synchronous signal and frame signal.

When "0" is written: Synchronous signal and

frame signal output

When "1" is written: High level (DC)

Reading: Valid

By setting R40 and R41 registers to "0", LCD synchronous signal (CL) and LCD frame signal (FR) can be generated from R40 and R41 terminals, respectively, making it possible to drive the expansion LCD driver (S1D15201F10A\*) externally. At initial reset, R40 and R41 registers are set to "1".

## 7.4 Programming Notes

- (1) When BZ, BZ, FOUT, FOUT, and PTCLK (DC) are selected by mask option, a hazard may be observed in the output waveform when the data of the output register changes.
- (2) Because the R00-R03, R10-R13, R20-R23, and R30-R32 (R33) ports gain high impedance during initial reset, be careful when using them as interface with external devices and the like.
- (3) When R33 port is selected for 2 states and DC (PTCLK) output by mask option, R33 terminal becomes undefined at initial reset.

# CHAPTER 8 I/O PORTS (Pxx)

# 8.1 Configuration of I/O Ports

The S1C624A0/4C0/480 have 16 bits (4 bits  $\times$  4, P00–P03, P10–P13, P20–P23, and P30–P33), and S1C62440 has 12 bits (4 bits  $\times$  3, P00–P03, P10–P13 and P20–P23) general I/O ports built-in.

Figure 8.1.1 shows the configuration of the I/O port.

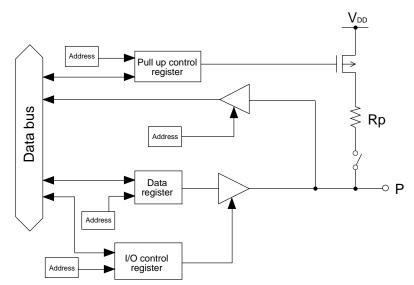



Fig. 8.1.1 Configuration of I/O port

## 8.2 Mask Option

The I/O ports P00-P33 may be selected for the following by mask option.

(1) Output specification during output mode

Output specification (during output) for each I/O port may be selected as listed below. Two types of output specification may be selected: complementary output and N channel (Nch) open drain output. However, even if Nch open drain is selected, application on the terminal of voltage exceeding the power current voltage is not permitted.

P00-P03: Complementary or Nch open drain

(selected with the 4 bits group)

P10-P13: Complementary or Nch open drain

(selected with the 4 bits group)

P20-P22: Complementary or Nch open drain

(select in units of 1 bit)

P30-P33: Complementary or Nch open drain

(select in units of 1 bit) \*

### (2) External memory access

In the S1C624A0/4C0/480 I/O ports P00-P03, P10-P13, and P20-P23 may be set with the mask option as external memory access as follows:

P00-P03: External memory data (D0-D3)

P10-P13: External memory data (D4-D7)

(selected with the 8 bits group P00-P13)

P20-P23: External memory chip select  $(\overline{CS0}-\overline{CS3})$ 

(select in units of 1 bit)

The control of memory access is explained in Chapter 13.

### (3) Dedicated output port

I/O ports P30-P33 of S1C624A0/4C0/480 may be set with the mask option as dedicated output ports. This selection may be conducted by 1 bit.

<sup>\*</sup> Only for S1C624A0/4C0/480.

### 8.3 Control of I/O Ports

# I/O control register and input/output mode

When using an I/O port as Pxx (x = 0 to 3), input/output direction may be set by group, with 4 bits each of Px0 to Px3 (x = 0 to 3) considered as one group. Modes can be set by writing input/output direction data to the I/O control register corresponding I/O port group.

To set the input mode, "0" is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance state and works as an input port.

The output mode is set when "1" is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high level (VDD) when the data of output register is "1", and a low level (Vss) when the data of output register is "0".

Setting of the I/O control register is not effective for external memory access through the mask option or for ports set as dedicated output.

### Pull up resistor

The common input/output ports can be selected through the software to apply pull up resistor in 4 bits groups. Selection of pull up resistor application is done by writing data to the pull up resistor control registers (PUPO-PUP3).

# Control register of I/O ports

The control registers for the I/O ports are explained below.

### Table 8.3.1 Control register of I/O ports

| Address | Register |      |                                         |          |        |       | Comment               |        |                                                     |
|---------|----------|------|-----------------------------------------|----------|--------|-------|-----------------------|--------|-----------------------------------------------------|
| Address | D3       | D2   | D1                                      | D0       | Name   | SR    | 1                     | 0      | Comment                                             |
|         | P03      | P02  | P01                                     | P00      | P03    | Χ     | _ High                | Low    | I/O port (P03)                                      |
| l       | 1 00     | 1 02 | 101                                     | 1 00     | 1 00   | ^     | High                  | Low    | External memory data (D3) *1                        |
|         |          | R/W  |                                         |          |        | Χ     | _ High                | _ Low_ | I/O port (P02)                                      |
| F60H    |          | 17,  | • • • • • • • • • • • • • • • • • • • • |          | P02    |       | High                  | Low    | External memory data (D2) *1                        |
| 1 0011  |          |      |                                         |          | P01    | Х     | _ High                | _ Low_ | I/O port (P01)                                      |
|         |          |      |                                         |          | 101    | ^     | High                  | Low    | External memory data (D1) *1                        |
|         |          |      |                                         |          | P00    | Х     | _ High                | Low    | I/O port (P00)                                      |
|         |          |      |                                         |          | 1 00   | ^     | High                  | Low    | External memory data (D0) *1                        |
|         | P13      | P12  | P11                                     | P10      | P13    | Х     | High _                | _ Low  | I/O port (P13)                                      |
| ļ       | 1 10     | 1 12 |                                         | 1.10     |        |       | High                  | Low    | External memory data (D7) *1                        |
|         |          | D    | w                                       |          | P12    | Х     | High                  | _ Low  | I/O port (P12)                                      |
| F61H    |          | 17.  | • • • • • • • • • • • • • • • • • • • • |          |        |       | High                  | Low    | External memory data (D6) *1                        |
|         |          |      |                                         |          | P11    | Х     | High                  | _ Low_ | I/O port (P11)                                      |
|         |          |      |                                         |          |        |       | High                  | Low    | External memory data (D5) *1                        |
|         |          |      |                                         |          | P10    | Х     | High                  | Low    | I/O port (P10)                                      |
|         |          |      |                                         |          | 1 10   |       | High                  | Low    | External memory data (D4) *1                        |
|         | P23      | P22  | P21                                     | P20      | P23    | Х     | High _                | _ Low_ | I/O port (P23)                                      |
| Į.      | 1 23     | 1 22 | 121                                     | 1 20     | 120    |       | High                  | Low    | External memory chip select (CS3) *1                |
|         |          | R    | W                                       |          | P22    | Х     | _ High                | _ Low_ | I/O port (P22)                                      |
| F62H    |          | ١    | V                                       |          | 1 22   |       | High                  | Low    | External memory chip select $(\overline{CS2})$ *1   |
| 1 0211  |          |      |                                         |          | P21    | X     | _ High                | _ Low_ | I/O port (P21)                                      |
|         |          |      |                                         |          | 121    | ^     | High                  | Low    | External memory chip select $(\overline{CS1})$ *1   |
|         |          |      |                                         |          | P20    | Х     | _ High                | Low    | I/O port (P20)                                      |
|         |          |      |                                         |          |        | ^     | High                  | Low    | External memory chip select ( $\overline{CS0}$ ) *1 |
|         | P33      | P32  | P31                                     | P30      | P33    | Χ     | _ High                | _ Low_ | I/O port (P33)                                      |
|         | FSS      | F32  | PSI                                     | F30      | 1 33   | ^     | High                  | Low    | Dedicated output port (P33)                         |
|         |          | р    | W                                       |          | P32    | Χ     | _ High                | _ Low_ | I/O port (P32)                                      |
| F63H    |          | K.   | 'VV                                     |          | F 32   | ^     | High                  | Low    | Dedicated output port (P32)                         |
| *2      |          |      |                                         |          | P31    | Х     | _ High                | _ Low_ | I/O port (P31)                                      |
| *2      |          |      |                                         |          | 131    |       | High                  | Low    | Dedicated output port (P31)                         |
|         |          |      |                                         |          | P30    | Χ     | _ High                | Low    | I/O port (P30)                                      |
|         |          |      |                                         |          | F30    | ^     | High                  | Low    | Dedicated output port (P30)                         |
|         | IOC3     | IOC2 | IOC1                                    | IOC0     | IOC3   | 0     | Output                | Input  | I/O control (P30–P33) *3                            |
|         |          | R    | /W                                      | •        | IOC2   | 0     | Output                | Input  | I/O control (P20–P23)                               |
| F7DH    |          |      |                                         |          | IOC1   | 0     | Output                | Input  | I/O control (P10–P13)                               |
|         |          |      | IOC0                                    | 0        | Output | Input | I/O control (P00–P03) |        |                                                     |
|         | PUP3     | PUP2 | PUP1                                    | PUP0     | PUP3   | 0     | Off                   | On     | I/O pull up resistor On/Off (P30–P33) *3            |
|         |          | l R  | /W                                      | <u> </u> | PUP2   | 0     | Off                   | On     | I/O pull up resistor On/Off (P20–P23)               |
| F7EH    |          |      |                                         |          | -      |       |                       |        |                                                     |
|         |          |      |                                         |          | PUP1   | 0     | Off                   | On     | I/O pull up resistor On/Off (P10–P13)               |
|         |          |      |                                         |          | PUP0   | 0     | Off                   | On     | I/O pull up resistor On/Off (P00–P03)               |

<sup>\*1</sup> In the S1C62440, it can be used only as a port for I/O port

<sup>\*2</sup> In the S1C62440, the F63H cannot be used

<sup>\*3</sup> In the S1C62440 it is a register that becomes invalid and during reading it is always "0"

IOC0, IOC1, IOC2, IOC3 Input/output direction of I/O ports are set in units of 4 bits (F7DH, R/W) groups.

When "1" is written: Output mode When "0" is written: Input mode

Reading: Valid

IOCx (I/O control register) and port group correspondence are as follows:

IOC0: P00-P03 IOC1: P10-P13 IOC2: P20-P23 IOC3: P30-P33

By writing "1" to IOCx (x = 0 to 3), the I/O ports in the corresponding group are placed in the output mode, while writing "0" place them in the input mode.

At initial reset, IOCx are set to "0" and the I/O ports are all in the input mode.

In the S1C62440 IOC3 become invalid and always become "0" during reading.

PUP0, PUP1, PUP2, PUP3 Whether the I/O ports will be pulled up or not is set in units (F7EH, R/W) of 4 bits groups.

When "0" is written: Pull up ON
When "1" is written: Pull up OFF

Reading: Valid

PUPx and port group correspondence are the same as that of the IOCx.

By writing "0" to PUPx (x = 0 to 3), the I/O ports in the corresponding group are pulled up, while writing "1" turns the pull up function OFF.

At initial reset, PUPx are set at "0", and all I/O ports are pulled up.

In the S1C62440 PUP3 become invalid and always become "0" during reading.

P00–P03, P10–P13, P20–P23, P30–P33 (F60H, F61H, F62H, F63H, R/W)

P00-P03, P10-P13, • During writing operation

When "1" is written: High level When "0" is written: Low level

When the I/O port is set at output port, the data written is generated on the I/O port terminal as it is. When "1" is written as port data, the port terminal goes high (VDD) and goes low (Vss) when "0" is written.

This is the same when P30-P33 are set as dedicated output ports through the mask option.

Note, however, that even at input mode, port data writing is also possible.

· During reading operation

When "1" is read: High level When "0" is read: Low level

Reading the I/O port terminal voltage level. When the I/O port is at input mode, voltage level input of the port terminal is read; when set at output mode, output voltage level is read. When the terminal voltage is at High (VDD) level, port data reading is "1"; at Low (Vss) level, it is "0".

P30-P33 are not set for the S1C62440.

### 8.4 Programming Notes

- (1) When the I/O port is set at output mode, and low impedance load is connected to the port terminal, the data written and read may differ.
- (2) If the state of the I/O port meets all of the following 4 conditions, the reading data will be undefined:
  - The input/output mode is set at output mode
  - Output specification is set at Nch open drain
  - The content of the data register is "1"
  - The pull up resistor turned is OFF
- (3) When P30-P33 has been set as the output exclusive in the mask option, a pull up resistor cannot be added even if the pull up resistor control register PUP3 has been made "0".

### CHAPTER 9 LCD DRIVER

The S1C62440/4A0 have 16 common terminals and 40 segment terminals and can drive a maximum of 640 (40  $\times$  16) dots (8 characters  $\times$  2 lines) LCD.

The S1C624C0/480 can be expanded to 51 segment terminals and can drive a maximum 816 (51  $\times$  16) dots (10 characters  $\times$  2 lines) LCD.

This LCD driver performs the following control through the software.

- Drive duty can be set to 1/16 or 1/8 duty.
- LCD contrast can be adjusted through a 16 steps range.
- All dots of the LCD panel can be switched ON and OFF.

### 9.1 Drive Duty

Because the power for LCD driving is generated by the internal circuit of the CPU, there is no need to provide for it externally. Driving is done by 1/16 duty or 1/8 duty dynamic drive through 4 electric potentials (1/4 bias):  $V_{L1}$ ,  $V_{L2}$ ,  $V_{L4}$ , and  $V_{L5}$ . The 5 electric potentials are entered in  $V_{L1}$ ,  $V_{L2}$ ,  $V_{L3}$ ,  $V_{L4}$  and  $V_{L5}$  terminals and 1/5 bias driving may then be set.

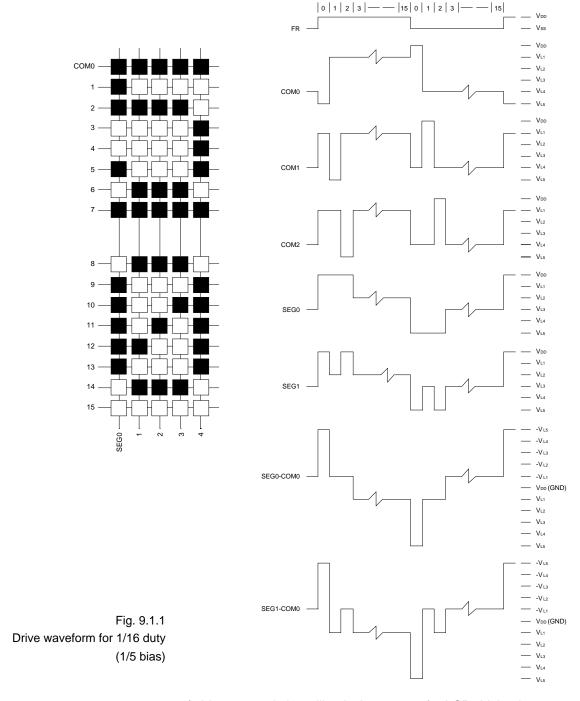
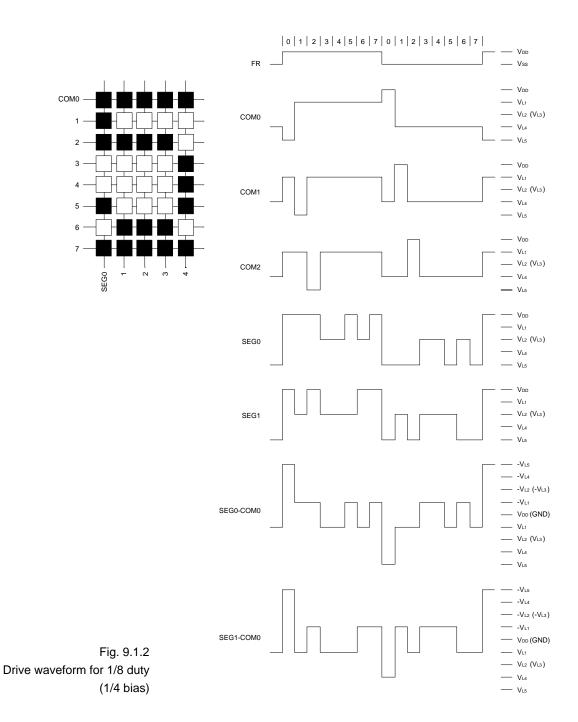

Drive duty may be selected from the software. Dot number differences due to the selected duty are shown in Table 9.1.1.

Table 9.1.1 Differences due to selected duty


| Duty | Common terminal in use | Maximum dot number             | Frame frequency * |  |  |
|------|------------------------|--------------------------------|-------------------|--|--|
| 1/16 | COM0-15                | 640 dots (S1C62440/4A0)        | 20 11-            |  |  |
| 1/16 | COMO-15                | 816 dots (S1C624C0/480)        | 32 Hz             |  |  |
| 1/8  | COMO 7                 | 320 dots (S1C62440/4A0)        | 32 Hz             |  |  |
| 1/8  | COMO-7                 | COM0-7 408 dots (S1C624C0/480) |                   |  |  |

\* Frame frequency = fosc1/1,024

Figure 9.1.1 shows the drive waveform for 1/16 duty (1/5 bias), and Figure 9.1.2 shows the drive waveform for 1/8 duty (1/4 bias).



Note 1/5 bias may only be utilized when power for LCD driving is supplied externally; when internal power circuit is used, 1/4 bias is utilized.



### 9.2 Mask Option

Disconnecting the internal power for LCD driving will enable electric potentials to be supplied externally. In such case, the 5 electric potentials are entered in VL1, VL2, VL3, VL4 and VL5 terminals and 1/5 bias driving may then be set. Since 1/5 bias driving provides better display quality, when low power current consumption is not required (i.e., when power is supplied from AC outlet), select external power mode. However, note that in order to maintain a stable display, power source must be one which will remain stable even when heavy load such as buzzer, etc. is driven. Moreover, in the external power mode, the contrast adjustment function cannot be used. Accommodate this limitation by utilizing the external circuit as necessary.

A sample circuit of external power for LCD driving when power is supplied externally is shown in Figure 9.2.1.

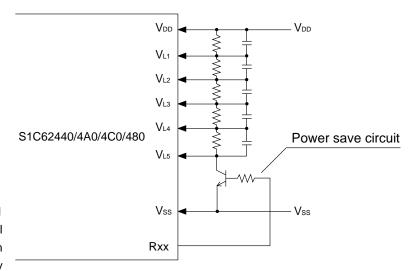



Fig. 9.2.1
A sample circuit of external power for LCD driving when power is supplied externally

### 9.3 Segment Data Memory

The segment data memory of S1C62440/4A0 is allocated to the built-in RAM addresses E00H-E4FH and E80H-ECFH, and S1C624C0/480 is allocated to the built-in RAM addresses E00H-E65H and E80H-EF5H.

Figures 9.3.1(a) and (b) show the correspondence between the segment data memory and the LCD dot matrix.

### S1C62440/4A0

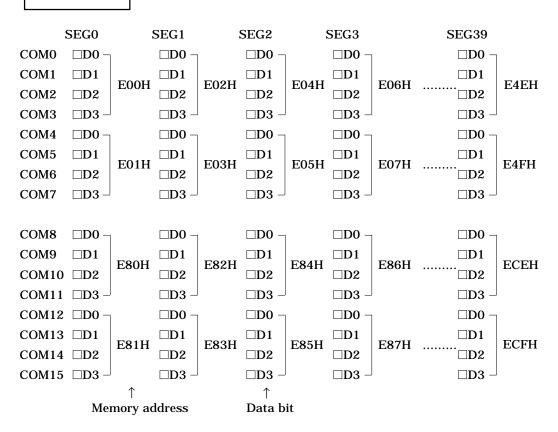



Fig. 9.3.1(a) LCD dot matrix and segment memory correspondence (S1C62440/4A0)

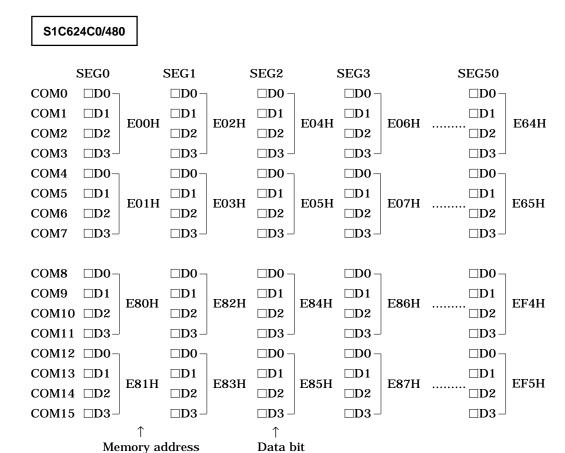



Fig. 9.3.1(b) LCD dot matrix and segment memory correspondence (S1C624C0/480)

When the segment memory bit is assigned as "1", the corresponding LCD dot lights up, and when assigned as "0", the dot dies out.

At 1/16 duty drive and 1/8 duty drive, COM0 to COM15 lines and COM0 to COM7 lines light up, respectively. At initial reset, the segment data memory content becomes undefined and hence, there is need to initialize by software.

### 9.4 Control of LCD Driver

The control registers for the LCD driver are explained below.

Table 9.4.1 Control registers of LCD driver

| Address |       | Reg  | ister |       | Comment |    |         |        |                                             |  |  |
|---------|-------|------|-------|-------|---------|----|---------|--------|---------------------------------------------|--|--|
| Address | D3    | D2   | D1    | D0    | Name    | SR | 1       | 0      | Confinent                                   |  |  |
|         | ALOFF | ALON | LDUTY | HLMOD | ALOFF   | 1  | All off | Normal | All LCD dots fade out control               |  |  |
| F71H    | R/W   |      |       |       | ALON    | 0  | All on  | Normal | All LCD dots displayed control              |  |  |
|         |       |      |       |       | LDUTY   | 0  | 1/8     | 1/16   | LCD drive duty switch                       |  |  |
|         |       |      |       |       | HLMOD   | 0  | HLMOD   | Normal | Heavy load protection mode                  |  |  |
|         | LC3   | LC2  | LC1   | LC0   | LC3     | Х  |         |        |                                             |  |  |
| F7011   |       | R/W  |       |       | LC2     | Х  |         |        | LCD contrast adjustment                     |  |  |
| F72H    |       |      |       |       | LC1     | Х  |         |        | LC3-LC0 = 0 light<br>:<br>LC3-LC0 = 15 dark |  |  |
|         |       |      |       |       | LC0     | Х  |         |        |                                             |  |  |

LDUTY Sets the LCD drive duty.

(F71H [D1], R/W)

When "1" is written: 1/8 duty
When "0" is written: 1/16 duty

Reading: Valid

Writing "1" or "0" on LDUTY will set is to  $1/8\ duty$  or 1/16

duty, respectively.

At initial reset, LDUTY is set at "0".

ALON Displays the all LCD dots on.

(F71H [D2], R/W)

When "1" is written: All LCD dots displayed

When "0" is written: Normal operation

Reading: Valid

Writing "1" to ALON will display all the LCD dots on; writing "0" will set the LCD display back to normal. LCD panel testing may be conducted with this function.

Total LCD displaying at ALON = "1" is a static operation and does not affect the content of the segment data memory. ALON precedes ALOFF.

At initial reset, ALON is set at "0".

ALOFF Fade outs the all LCD dots.

(F71H [D3], R/W)

When "1" is written: All LCD dots fade out

When "0" is written: Normal operation

Reading: Valid

When "1" is written on ALOFF, all LCD dots will fade out; writing "0" will set it back to normal.

All fading out of LCD at ALOFF = "1" is due to light out signals and does not affect the content of the segment data memory.

Flashing of the entire LCD panel is performed by this func-

At initial reset, ALOFF is set to "1".

LC0, LC1, LC2, LC3 Will adjust the LCD contrast.

(F72H, R/W) Contrast may be adjusted to 16 levels as shown in Table 9.4.2.

Table 9.4.2 LCD contrast

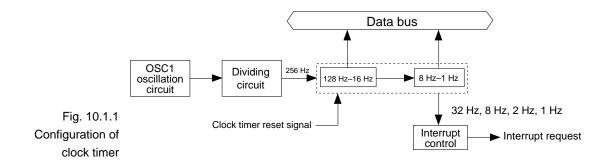
|   | LC3 | LC2 | LC1 | LC0 | Contrast |
|---|-----|-----|-----|-----|----------|
| 0 | 0   | 0   | 0   | 0   | light    |
| 1 | 0   | 0   | 0   | 1   | <b>↑</b> |
| 2 | 0   | 0   | 1   | 0   |          |
| 3 | 0   | 0   | 1   | 1   |          |
| 4 | 0   | 1   | 0   | 0   |          |
| 5 | 0   | 1   | 0   | 1   |          |
| 6 | 0   | 1   | 1   | 0   |          |
| 7 | 0   | 1   | 1   | 1   |          |
| 8 | 1   | 0   | 0   | 0   |          |
| 9 | 1   | 0   | 0   | 1   |          |
| Α | 1   | 0   | 1   | 0   |          |
| В | 1   | 0   | 1   | 1   |          |
| С | 1   | 1   | 0   | 0   |          |
| D | 1   | 1   | 0   | 1   |          |
| E | 1   | 1   | 1   | 0   | ↓ ↓      |
| F | 1   | 1   | 1   | 1   | dark     |

At room temperature, use setting number 7 or 8 as standard. Moreover, because the voltage of the LCD system power terminals VL1, VL2, VL4 and VL5 changes through this function, the contrast of the external expansion LCD driver may be adjusted in the same manner.

Because at initial reset, the contents of LCO-LC3 are undefined, initialize it by the software.

## 9.5 Programming Note

Because at initial reset, the contents of segment data memory and LC0–LC3 are undefined, there is need to initialize by software.


### CHAPTER 10 TIME BASE COUNTER

### 10.1 Clock Timer

# Configuration of clock timer

The S1C62440/4A0/4C0/480 have a clock timer with OSC1 (crystal oscillation) as basic oscillation built-in. The clock timer is configured with an 8 bits binary counter with 256 Hz signal divided from OSC1 as input clock, allowing 128 Hz-1 Hz of data to be read by the software.

Figure 10.1.1 shows the configuration of the clock timer.



### Interrupt function

The clock timer has interrupt capability, and interrupt is generated by the falling edge of 32 Hz, 8 Hz, 2 Hz, and 1 Hz signals.

Figure 10.1.2 shows the timing chart of the clock timer.

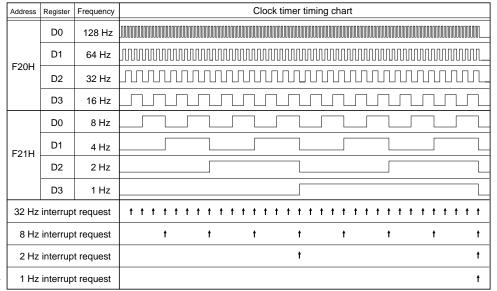



Fig. 10.1.2 Timing chart of clock timer

The clock timer interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz, and 1 Hz). At this time, the corresponding interrupt factor flag (IT32, IT8, IT2, and IT1) is set to "1".

Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT8, EIT2, and EIT1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Control of clock The control registers for the clock timer are explained below. timer

Table 10.1.1 Control registers of clock timer

| Address   | Register        |      |       |       |       |       |                          |      | Comment                                      |
|-----------|-----------------|------|-------|-------|-------|-------|--------------------------|------|----------------------------------------------|
| / luure35 | D3              | D2   | D1    | D0    | Name  | SR    | 1                        | 0    | Comment                                      |
|           | IT1             | IT2  | IT8   | IT32  | IT1   | 0     | Yes                      | No   | Interrupt factor flag<br>(clock timer 1 Hz)  |
| FOOL      |                 |      | R     |       | IT2   | 0     | Yes                      | No   | Interrupt factor flag<br>(clock timer 2 Hz)  |
| F00H      |                 |      |       |       | IT8   | 0     | Yes                      | No   | Interrupt factor flag<br>(clock timer 8 Hz)  |
|           |                 |      |       |       | IT32  | 0     | Yes                      | No   | Interrupt factor flag<br>(clock timer 32 Hz) |
|           | EIT1            | EIT2 | EIT8  | EIT32 | EIT1  | 0     | Enable                   | Mask | Interrupt mask register (clock timer 1 Hz)   |
| F10H      |                 | R    | /W    |       | EIT2  | 0     | Enable                   | Mask | Interrupt mask register (clock timer 2 Hz)   |
| FIUH      |                 |      |       |       | EIT8  | 0     | Enable                   | Mask | Interrupt mask register (clock timer 8 Hz)   |
|           |                 |      |       |       | EIT32 | 0     | Enable                   | Mask | Interrupt mask register (clock timer 32 Hz)  |
|           | TM3 TM2 TM1 TM0 |      | TM3   | 0     |       |       | Clock timer data (16 Hz) |      |                                              |
| F20H      | R               |      |       |       | TM2   | 0     |                          |      | Clock timer data (32 Hz)                     |
| 1 2011    |                 |      |       |       | TM1   | 0     |                          |      | Clock timer data (64 Hz)                     |
|           |                 |      |       |       | TM0   | 0     |                          |      | Clock timer data (128 Hz)                    |
|           | TM7             | TM6  | TM5   | TM4   | TM7   | 0     |                          |      | Clock timer data (1 Hz)                      |
| F21H      |                 | l    | R     |       | TM6   | 0     |                          |      | Clock timer data (2 Hz)                      |
|           |                 |      |       |       | TM5   | 0     |                          |      | Clock timer data (4 Hz)                      |
|           |                 |      |       |       | TM4   | 0     |                          |      | Clock timer data (8 Hz)                      |
|           | 0               | 0    | TMRST | WDRST | 0     | -     |                          |      |                                              |
| F76H      | I               | ₹    | \     | N     | 0     | -     |                          |      |                                              |
| '''       |                 |      |       |       | TMRST | Reset | Reset                    | -    | Clock timer reset                            |
|           |                 |      |       |       | WDRST | Reset | Reset                    | -    | Watchdog timer reset                         |

TMRST This bit resets the clock timer.

(F76H [D1], W)

When "1" is written: Clock timer reset
When "0" is written: No operation
Reading: Always "0"

By writing "1" on TMRST, the clock timer is reset and all timer data are set to "0".

Because this bit is only for writing, it is always "0" during reading.

TM0-TM7 Will read the data of the clock timer.

(F20H, F21H, R) TMx (x = 0-7) and frequency correspondence are as follows:

| F20H |        | F21H |      |
|------|--------|------|------|
| TM0: | 128 Hz | TM4: | 8 Hz |
| TM1: | 64 Hz  | TM5: | 4 Hz |
| TM2: | 32 Hz  | TM6: | 2 Hz |
| TM3: | 16 Hz  | TM7: | 1 Hz |

The above 8 bits are only for reading and render writing operation invalid.

At initial reset, timer data is initialized to "0".

EIT32, EIT8, EIT2, EIT1

(F10H, R/W)

There are the interrupt mask registers of the clock timer.

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

EIT32, EIT8, EIT2, and EIT1 correspond to 32 Hz, 8 Hz, 2 Hz, and 1 Hz timer interrupts, respectively.

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, these registers are all set to "0" (mask).

IT32, IT8, IT2, IT1  $\,$  There are the interrupt factor flags of the clock timer. (F00H, R)

When "1" is read: Interrupt has occurred
When "0" is read: Interrupt has not occurred

Writing: Invalid

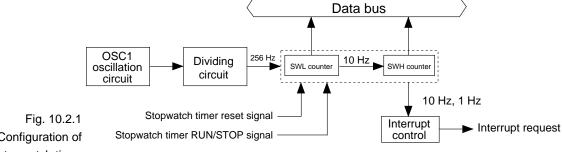
IT32, IT8, IT2, and IT1 correspond to 32 Hz, 8 Hz, 2 Hz, and 1 Hz timer interrupts, respectively.

The occurence of clock timer interrupt can be determined by the software through these flags. However, regardless of interrupt masking, these flags are set to "1" due to the falling edge of the corresponding signal.

Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

At initial reset, these flags are set to "0".

#### **Programming notes**


- (1) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.
- (2) Because the watchdog timer counts up during reset as in the above (1), reset the watchdog timer as necessary.
- (3) When the low-order digits (TM0-TM3) and high-order digits (TM4-TM7) are consecutively read, proper reading may not be obtained due to the carry from the low-order digits into the high-order digits (when the reading of the low-order digits and high-order digits span the timing of the carry). For this reason, perform multiple reading of timer data, make comparisons and use matching data as result.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

## 10.2 Stopwatch Timer

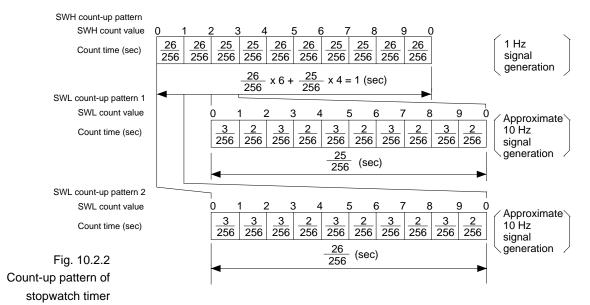
## Configuration of stopwatch timer

The S1C62440/4A0/4C0/480 have 1/100 sec unit (SWL) and 1/10 sec unit (SWH) stopwatch timer built-in. The stopwatch timer is configured with a 2 levels 4 bits BCD counter which has an input clock approximating 100 Hz signal (signal divided from OSC1 to the closest 100 Hz) and data can be read in units of 4 bits by software.

Figure 10.2.1 shows the configuration of the stopwatch timer.



Configuration of stopwatch timer


> The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.

#### Count-up pattern

The stopwatch timer is configured of 4 bits BCD counters SWL and SWH.

The counter SWL, at the stage preceding the stopwatch timer, has an approximated 100 Hz signal for the input clock. It counts up every 1/100 sec, and generates an approximated 10 Hz signal. The counter SWH has an approximated 10 Hz signal generated by the counter SWL for the input clock. In count-up every 1/10 sec, and generated 1 Hz signal.

Figure 10.2.2 shows the count-up pattern of the stopwatch timer.



SWL generates an approximated 10 Hz signal from the basic 256 Hz signal. The count-up intervals are 2/256 sec and 3/256 sec, so that finally two patterns are generated: 25/256 sec and 26/256 sec intervals. Consequently, these patterns do not amount to an accurate 1/100 sec. SWH counts the approximated 10 Hz signals generated by the 25/256 sec and 26/256 sec intervals in the ratio of 4:6, to generate a 1 Hz signal. The count-up intervals are 25/256 sec and 26/256 sec, which do not amount to an accurate 1/10 sec.

#### Interrupt function

Stopwatch timers SWL and SWH, through their respective overflows, can generate 10 Hz (approximate 10 Hz) and 1 Hz interrupts.

Figure 10.2.3 shows the timing chart for the stopwatch timer.

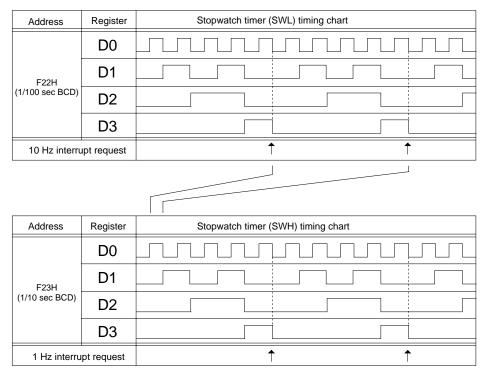



Fig. 10.2.3 Timing chart for stopwatch timer

The stopwatch interrupts are generated by the overflow of their respective counters SWL and SWH (changing "9" to "0"). At this time, the corresponding interrupt factor flags (ISW0 and ISW1) are set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EISW0 and EISW1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

# timer

Control of stopwatch The control registers for the stopwatch timer are explained below.

Table 10.2.1 Control registers of stopwatch timer

| Address    | Register |      |       |       |       |       |        |      | Comment                                      |
|------------|----------|------|-------|-------|-------|-------|--------|------|----------------------------------------------|
| Addicoo    | D3       | D2   | D1    | D0    | Name  | SR    | 1      | 0    | Comment                                      |
|            | 0        | 0    | ISW1  | ISW0  | 0     | -     |        |      |                                              |
| F01H       |          | ı    | R     |       | 0     | -     |        |      |                                              |
| FUTH       |          |      |       |       | ISW1  | 0     | Yes    | No   | Interrupt factor flag<br>(stopwatch 1 Hz)    |
|            |          |      |       |       | ISW0  | 0     | Yes    | No   | Interrupt factor flag<br>(stopwatch 10 Hz)   |
|            | 0        | 0    | EISW1 | EISW0 | 0     | -     |        |      |                                              |
| F11H       | ı        | R    | R     | W     | 0     | -     |        |      |                                              |
| -          |          |      |       |       | EISW1 | 0     | Enable | Mask | Interrupt mask register<br>(stopwatch 1 Hz)  |
|            |          |      |       |       | EISW0 | 0     | Enable | Mask | Interrupt mask register<br>(stopwatch 10 Hz) |
|            | SWL3     | SWL2 | SWL1  | SWL0  | SWL3  | 0     |        |      | MSB                                          |
| F22H       |          |      | R     |       | SWL2  | 0     |        |      | Stopwatch timer 1/100 sec data (BCD)         |
| 1 2211     |          |      |       |       | SWL1  | 0     |        |      | 1/100 sec data (BCD)                         |
|            |          |      |       |       | SWL0  | 0     |        |      | LSB                                          |
|            | SWH3     | SWH2 | SWH1  | SWH0  | SWH3  | 0     |        |      | MSB                                          |
| F23H       |          |      | R     |       | SWH2  | 0     |        |      | Stopwatch timer 1/10 sec data (BCD)          |
| 1 2011     |          |      |       |       | SWH1  | 0     |        |      | 1/10 see data (BCB)                          |
|            |          |      |       |       |       | 0     |        |      | LSB                                          |
|            | 0        | 0    | SWRST | SWRUN | 0     | -     |        |      |                                              |
| <br>  F77H |          | R    | W     | R/W   | 0     | -     |        |      |                                              |
|            |          |      |       |       | SWRST | Reset | Reset  | -    | Stopwatch timer reset                        |
|            |          |      |       |       | SWRUN | 0     | Run    | Stop | Stopwatch timer Run/Stop                     |

SWRST This bit resets the stopwatch timer.

(F77H [D1], W)

When "1" is written: Stopwatch timer reset

When "0" is written: No operation Reading: Always "0"

By writing "1" on SWRST, the stopwatch timer is reset. All timer data is set to "0".

When the stopwatch timer is reset in the RUN mode, it will re-start counting immediately after the reset and at STOP mode, the reset data is maintained.

Because this bit is for writing only, it is always "0" during reading.

SWRUN This register controls RUN/STOP of the stopwatch timer.

(F77H [D0], R/W)

When "1" is written: RUN
When "0" is written: STOP
Reading: Valid

By writing "1" on SWRUN, the stopwatch timer performs counting operation. Writing "0" will make the stopwatch stop counting.

Even if the stopwatch is stopped, the timer data at that point is kept.

When data of the counter is read at run mode, proper reading may not be obtained due to the carry from low-order digits (SWL) into high-order digits (SWH) (i.e., in case SWL and SWH reading span the timing of the carry). To avoid this occurrence, perform the reading after suspending the counter once and then set the SWRUN to "1" again. Moreover, it is required that the suspension period not exceed 976  $\mu$ s (1/4 cycle of 256 Hz).

At initial reset, SWRUN is set to "0".

SWL0-SWL3 Will read the stopwatch timer data to the 1/100 sec digits (F22H, R) (BCD).

Since these bits are for reading only, writing operation is invalidated.

At initial reset, timer data is set to "0".

SWH0-SWH3 Will read the stopwatch timer data to the 1/10 sec digits (F23H, R) (BCD).

Since these bits are for reading only, writing operation is invalidated.

At initial reset, timer data is set to "0".

EISW0, EISW1 There are the interrupt mask registers of the stopwatch (F11H [D0, D1], R/W) timer.

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

EISW0 and EISW1 correspond to 10 Hz and 1 Hz stopwatch timer interrupts, respectively.

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, these registers are all set to "0" (mask).

ISW0, ISW1 (F01H [D0, D1], R) There are the interrupt factor flags of the stopwatch timer.

When "1" is read:

Interrupt has occurred

When "0" is read:

Interrupt has not occurred

Writing:

Invalid

ISW0 and ISW1 correspond to 10 Hz and 1 Hz stopwatch timer interrupts, respectively.

The occurence of stopwatch timer interrupt can be determined by the software through these flags. However, regardless of interrupt masking, these flags are set to "1" by the overflow of the corresponding counters.

Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

At initial reset, these flags are set to "0".

#### **Programming notes**

- (1) When data of the counter is read at run mode, perform the reading after suspending the counter once and then set SWRUN to "1" again. Moreover, it is required that the suspension period not exceed 976  $\mu$ s (1/4 cycle of 256 Hz).
- (2) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

#### 10.3 Programmable Timer

# Configuration of programmable timer

The S1C62440/4A0/4C0/480 have a programmable timer with OSC1 (crystal oscillation) as basic oscillation built-in. The programmable timer is configured with an 8 bits presettable down counter and it has been down-count at initial value by 256 Hz–8,192 Hz signal or by the input signal of input port K03.

The initial value of count data can be set by software to the reload register; at the point where the down-counter value is "0", the programmable timer reloads the initial value and continues to down-count.

The down-counter data may be read through the software. Moreover, the input clock being selected may be generated to output port R33.

Figure 10.3.1 shows the configuration of the programmable timer.

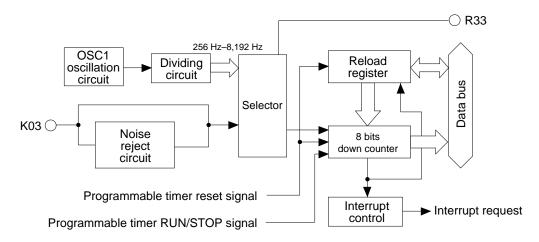
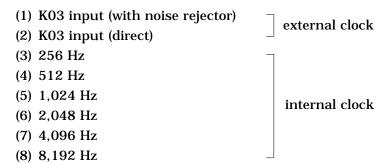




Fig. 10.3.1 Configuration of programmable timer

One input clock may be selected by software from any of the following 8 types:



Note, however, that down-count is done at falling edges of the input signal as shown in Figure 10.3.2.

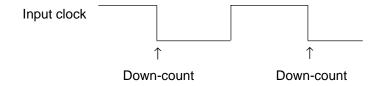
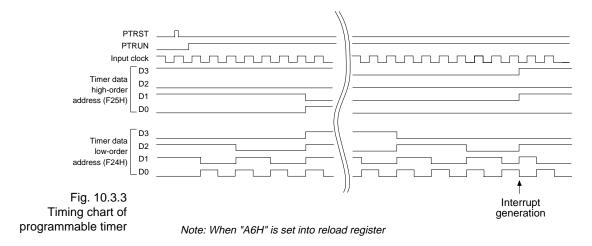



Fig. 10.3.2 Timing of down-counts


Type (1) K03 input (with noise rejector) is for counting by key entry, the input signal from which passes the 256 Hz sampling noise reject circuit. With this, no more than 2 ms of chattering is purged, and at least 4 ms signal is received.

#### Interrupt function

The programmable timer generates interrupt after the down-count from the initial setting is completed and the content of the down-counter indicates 00H.

After interrupt generation, the programmable timer reloads the initial count value into the down-counter and resumes counting.

Figure 10.3.3 shows the timing chart of the programmable timer.



When the down-counter values PTO-PT7 have become 00H the interrupt factor flag IPT is set to "1" and an interrupt is generated. The interrupt can be masked through the interrupt mask register EIPT. However, regardless of the setting of the interrupt mask register, the interrupt factor flag is set to "1" when the down-counter equals 00H.

# Control of programmable timer

The control registers for the programmable timer are explained below.

Table 10.3.1(a) Control registers of programmable timer (1)

| Address  | Register |     |     |      |      |    |        |      | . Comment                                      |
|----------|----------|-----|-----|------|------|----|--------|------|------------------------------------------------|
| 7.001033 | D3       | D2  | D1  | D0   | Name | SR | 1      | 0    | Common                                         |
|          | 0        | 0   | 0   | IPT  | 0    | -  |        |      |                                                |
| F02H     |          | - 1 | R   |      | 0    | -  |        |      |                                                |
| 1 0211   |          |     |     |      | 0    | -  |        |      |                                                |
|          |          |     |     |      | IPT  | 0  | Yes    | No   | Interrupt factor flag<br>(programmable timer)  |
|          | 0        | 0   | 0   | EIPT | 0    | -  |        |      |                                                |
| F12H     |          | R   |     | R/W  | 0    | -  |        |      |                                                |
| 1 1211   |          |     |     |      | 0    | -  |        |      |                                                |
|          |          |     |     |      | EIPT | 0  | Enable | Mask | Interrupt mask register (programmable timer)   |
|          | PT3      | PT2 | PT1 | PT0  | PT3  | Χ  |        |      | MSB                                            |
| F24H     |          | ſ   | R   |      | PT2  | Х  |        |      | Programmable timer data (low-order)            |
| 1 2411   |          |     |     |      | PT1  | Х  |        |      | Frogrammable timer data (tow-order)            |
|          |          |     |     |      | PT0  | Х  |        |      | LSB                                            |
|          | PT7      | PT6 | PT5 | PT4  | PT7  | Χ  |        |      | MSB                                            |
| F25H     |          | i   | R   |      | PT6  | Х  |        |      | Programmable timer data (high-order)           |
| 1 2311   |          |     |     |      | PT5  | Х  |        |      | 110grammable timer data (figh-order)           |
|          |          |     |     |      | PT4  | Х  |        |      | LSB                                            |
|          | RD3      | RD2 | RD1 | RD0  | RD3  | Х  |        |      | MSB                                            |
| F26H     |          | R   | W   |      | RD2  | Х  |        |      | Programmable timer<br>reload data (low-order)  |
| 1 2011   |          |     |     |      | RD1  | Х  |        |      | resolution (15w order)                         |
|          |          |     |     | RD0  | Х    |    |        | LSB  |                                                |
|          | RD7      | RD6 | RD5 | RD4  | RD7  | Х  |        |      | MSB                                            |
| F27H     |          | R   | /W  |      | RD6  | Х  |        |      | Programmable timer<br>reload data (high-order) |
| F4/N     |          |     |     |      | RD5  | Х  |        |      | Total data (Ingirotuci)                        |
|          |          |     |     |      | RD4  | Х  |        |      | LSB                                            |

Table 10.3.1(b) Control registers of programmable timer (2)

| Address | Register |      |       |       |        |       |     | . Comment                |                                          |
|---------|----------|------|-------|-------|--------|-------|-----|--------------------------|------------------------------------------|
| Address | D3       | D2   | D1    | D0    | Name   | SR    | 1   | 0                        | Comment                                  |
|         | 0        | 0    | PTRST | PTRUN | 0      | -     |     |                          |                                          |
| F78H    | R W R/W  |      | 0     | -     |        |       |     |                          |                                          |
| 17011   |          |      |       | PTRST | Reset  | Reset | -   | Programmable timer reset |                                          |
|         |          |      |       |       | PTRUN  | 0     | Run | Stop                     | Programmable timer Run/Stop              |
|         | PTCOUT   | PTC2 | PTC1  | PTC0  | PTCOUT | 0     |     |                          | Programmable timer clock output          |
| F79H    | R/W      |      |       |       | PTC2   | 0     |     |                          |                                          |
| F79H    |          |      |       |       | PTC1   | 0     |     |                          | Programmable timer input clock selection |
|         |          |      |       |       | PTC0   | 0     |     |                          |                                          |

PTC0, PTC1, PTC2 Selects the input clock.

(F79H [D0–D2], R/W) The PTC0–PTC2 setting and input clock correspondence is shown in Table 10.3.2.

Table 10.3.2 Input clock setting

| PTC2 | PTC1 | PTC0 | Input Clock                     |
|------|------|------|---------------------------------|
| 0    | 0    | 0    | K03 input (with noise rejector) |
| 0    | 0    | 1    | K03 input (direct)              |
| 0    | 1    | 0    | 256 Hz                          |
| 0    | 1    | 1    | 512 Hz                          |
| 1    | 0    | 0    | 1,024 Hz                        |
| 1    | 0    | 1    | 2,048 Hz                        |
| 1    | 1    | 0    | 4,096 Hz                        |
| 1    | 1    | 1    | 8,192 Hz                        |

PTCOUT Generates the input clock being selected to output port R33. (F79H [D3], R/W) Refer to Chapter 7, "OUTPUT PORTS" regarding control methods.

(F26H, F27H, R/W) timer.

RD0-RD3, RD4-RD7 These are reload registers for setting the initial value of the

Sets the low-order 4 bits of the 8 bits timer data to RD0-RD3, and the high-order 4 bits to RD4-RD7.

The set timer data is loaded to the down-counter when the programmable timer is reset or when the content of the down-counter is 00H.

When data of reload registers is set at "00H", the downcounter becomes a 256-value counter.

At initial reset, this register will be undefined.

PTRST This bit resets the programmable timer.

(F78H [D1], W)

When "1" is written: Programmable timer reset

When "0" is written: No operation Reading: Always "0"

By writing "1" on PTRST, the programmable timer is reset. The contents set in RD0-RD7 are loaded into the downcounter.

When the programmable timer is reset in the RUN mode, it will re-start counting immediately after loading and at STOP mode, the load data is maintained.

Because this bit is only for writing, it is always "0" during reading.

PTRUN This register controls RUN/STOP of the programmable (F78H [D0], R/W)  $\,$  timer.

When "1" is written: RUN
When "0" is written: STOP
Reading: Valid

By writing "1" on PTRUN, the programmable timer performs counting operation. Writing "0" will make the programmable timer stop counting.

Even if the programmable timer is stopped, the timer data at that point is kept.

When data of the counter is read at the RUN mode, proper reading may not be obtained due to the carry from the low-order digits (PT0-PT3) into the high-order digits (PT4-PT7) (when the reading of the low-order digits and high-order digits span the timing of the carry). To avoid this occurence, perform the reading after suspending the programmable timer once, and set the PTRUN to "1" again. Moreover, it is required that the suspension period be within 1/4 cycle of the input clock (in case of 1/2 duty).

At initial reset, PTRUN is set to "0".

PT0-PT3, PT4-PT7 Will read the data from the down-counter of the program-(F24H, F25H, R) mable timer.

Will read the low-order 4 bits of the 8 bits counter data PT0-PT3, and the high-order 4 bits PT4-PT7.

Because these 8 bits are only for reading, writing operation is rendered invalid.

At initial reset, timer data will be undefined.

 $\mbox{EIPT}$   $\mbox{This}$  is the interrupt mask register of the programmable (F12H [D0], R/W)  $\mbox{timer}.$ 

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, this register is set to "0" (mask).

IPT This is the interrupt factor flag of the programmable timer.

(F02H [D0], R)

When "1" is read: Interrupt has occurred
When "0" is read: Interrupt has not occurred

Writing: Invalid

From the status of this flag, the software can decide whether the programmable timer interrupt. Note, however, that even if the interrupt is masked, this flag will be set to "1" by the counter value will become "00H".

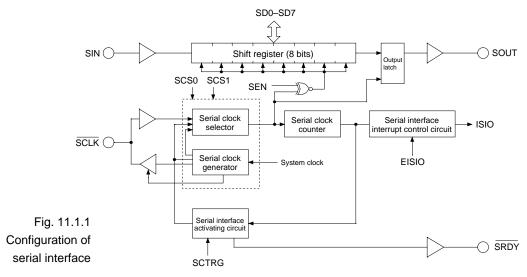
Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

At initial reset, this flag is set to "0".

#### **Programming notes**

- (1) When initiating programmable timer count, perform programming by the following steps:
  - 1. Set the initial data to RD0-RD7.
  - 2. Reset the programmable timer by writing "1" to PTRST.
  - 3. Start the down-count by writing "1" to PTRUN.
- (2) When the reload register (RD0-RD7) value is set at "00H", the down-counter becomes a 256-value counter.
- (3) When data of the timer is read consecutively in 8 bits in the RUN mode, perform the reading after suspending the timer once and then set the PTRUN to "1" again. Moreover, it is required that the suspension period be within 1/4 cycle of the input clock (in case of 1/2 duty). Accordingly, when the input clock is a fast clock faster than a 256 Hz, high speed processing by OSC3 is required.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

# CHAPTER 11 SERIAL INTERFACE (SIN, SOUT, and SCLK)


## 11.1 Configuration of Serial Interface

The S1C62440/4A0/4C0/480 have a synchronous clock type 8 bits serial interface built-in.

The configuration of the serial interface is shown in Figure 11.1.1.

The CPU, via the 8 bits shift register, can read the serial input data from the SIN terminal. Moreover, via the same 8 bits shift register, it can convert parallel data to serial data and output it to the SOUT terminal.

The synchronous clock for serial data input/output may be set by selecting by software any one of 3 types of master mode (internal clock mode: when the S1C62440/4A0/4C0/480 are to be the master for serial input/output) and a type of slave mode (external clock mode: when the S1C62440/4A0/4C0/480 are to be the slave for serial input/output). Also, when the serial interface is used at slave mode,  $\overline{\text{SRDY}}$  (SIO READY) signal which indicates whether or not the serial interface is available to transmit or receive can be output to output port R33 by mask option.



#### 11.2 Mask Option

The serial interface may be selected for the following by mask option.

- (1) Whether or not the SIN terminal will use built-in pull up resistor may be selected.
  - If the use of no pull up resistor is selected, take care that floating state does not occur at the SIN terminal.
- (2) Either complementary output or N channel (Nch) open drain as output specification for the SOUT terminal may be selected.
  - However, even if Nch open drain has been selected, application of voltage exceeding power source voltage to the SOUT terminal will be prohibited.
- (3) Whether or not the SCLK terminal will use pull up resistor which is turned ON during input mode (external clock) may be selected.
  - If the use of no pull up resistor is selected, take care that floating state does not occur at the  $\overline{SCLK}$  terminal during input mode.
  - Normally, the use of pull up resistor should be selected.
- (4) As output specification during output mode, either complementary output or N channel (Nch) open drain output may be selected for the SCLK terminal. However, even if the same Nch open drain as that of the SOUT terminal is selected, application of voltage exceeding the power current voltage is not permitted.
- (5) LSB first or MSB first as input/output permutation of serial data may be selected.
- (6) Output port R33 may be assigned as SRDY output terminal which will indicate whether the serial interface is available to transmit or receive signals.

# 11.3 Master Mode and Slave Mode of Serial Interface

The serial interface of the S1C62440/4A0/4C0/480 have two types of operation mode: master mode and slave mode. In the master mode, it uses an internal clock as synchronous clock of the built-in shift register, generates this internal clock at the SCLK terminal and controls the external (slave side) serial interface.

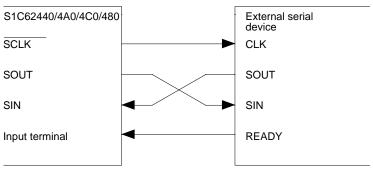
In the slave mode, the synchronous clock output from the external (master side) serial device is input from the  $\overline{SCLK}$  terminal and uses it as the synchronous clock to the built-in shift register.

The master mode and slave mode are selected through registers SCS0 and SCS1; when the master mode is selected, a synchronous clock may be selected from among 3 types as shown in Table 11.3.1.

Table 11.3.1 Synchronous clock selection

| SCS1 | SCS0 | Mode        | Synchronous clock |
|------|------|-------------|-------------------|
| 1    | 1    |             | CLK               |
| 1    | 0    | Master mode | CLK/2             |
| 0    | 1    |             | CLK/4             |
| 0    | 0    | Slave mode  | External clock    |

CLK: CPU system clock


At initial reset, the slave mode (external clock mode) is selected.

Moreover, the synchronous clock, along with the input /output of the 8 bits serial data, is controlled as follows:

- At master mode, after output of 8 clocks from the SCLK terminal, clock output is automatically suspended and SCLK terminal is fixed at high level.
- At slave mode, after input of 8 clocks to the SCLK terminal, subsequent clock inputs are masked.

Note When using the serial interface in the master mode, CPU system clock is used as the synchronous clock. Accordingly, when the serial interface is operating, system clock switching (fosc₁ ↔ fosc₃) should not be performed.

A sample basic serial input/output portion connection is shown in Figure 11.3.1.



#### a. Master mode

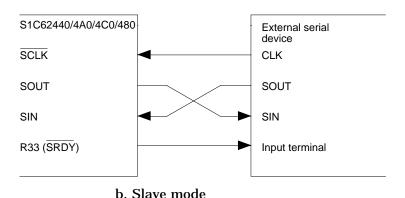



Fig. 11.3.1 Sample basic connection of serial input/output section

#### 11.4 Data Input/Output and Interrupt Function

The serial interface of S1C62440/4A0/4C0/480 can input/output data via the internal 8 bits shift register. The shift register operates by synchronizing with either the synchronous clock output from  $\overline{SCLK}$  terminal (master mode), or the synchronous clock input to  $\overline{SCLK}$  (slave mode).

The serial interface generates interrupt on completion of the 8 bits serial data input/output. Detection of serial data input/output is done by the counting of the synchronous clock (SCLK); the clock completes input/output operation when 8 counts (equivalent to 8 cycles) have been made and then generates interrupt.

The serial data input/output procedure data is explained below:

#### (1) Serial data output procedure

The S1C62440/4A0/4C0/480 serial interface is capable of outputting parallel data as serial data, in units of 8 bits.

By setting the parallel data to data registers SD0–SD3 and SD4–SD7 individually and writing "1" to SCTRG (F7AH[D3]), it synchronizes with the synchronous clock and serial data is output at the SOUT terminal. The synchronous clock used here is as follows: in the master mode, internal clock which is output to the  $\overline{SCLK}$  terminal while in the slave mode, external clock which is input from the  $\overline{SCLK}$  terminal. The serial output of the SOUT terminal changes with the falling edge of the clock that is input or output from the  $\overline{SCLK}$  terminal.

When the output of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO is set to "1" and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to "1" after output of the 8 bits data.

#### (2) Serial data input procedure

The S1C62440/4A0/4C0/480 serial interface is capable of inputting serial data as parallel data, in units of 8 bits. By writing "1" to SCTRG, the serial data is input from the SIN terminal, synchronizes with the synchronous clock, and is sequentially read in the 8 bits shift register. As in the above item (1), the synchronous clock used here is as follows: in the master mode, internal clock which is output to the  $\overline{SCLK}$  terminal while in the slave mode, external clock which is input from the  $\overline{SCLK}$  terminal. The serial data to the built-in shift register is read with the falling edge of the  $\overline{SCLK}$  signal when SEN bit is "1" and is read with the rising edge of the  $\overline{SCLK}$  signal when SEN bit is "0". Moreover, the shift register is sequentially shifted as the data is fetched.

When the input of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO is set to "1" and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to "1" after input of the 8 bits data.

Also, the data input in the shift register can be read from data registers SD0–SD7 by software.

#### (3) Serial data input/output permutation

The S1C62440/4A0/4C0/480 allow the input/output permutation of serial data to be selected by mask option as to either LSB first or MSB first. The block diagram showing input/output permutation in case of LSB first and MSB first is provided in Figure 11.4.1.

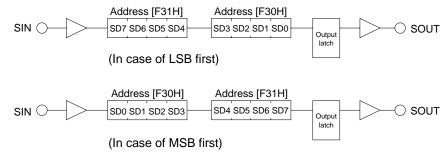
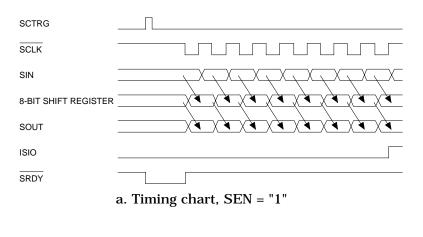



Fig. 11.4.1 Serial data input/output permutation

#### (4) SRDY signal

When the S1C62440/4A0/4C0/480 serial interface are used in the slave mode (external clock mode),  $\overline{SRDY}$  is used to indicate whether the internal serial interface is available to transmit or receive data for the master side (external) serial device.  $\overline{SRDY}$  signal is generated from output port R33 by mask option.

SRDY signal becomes "0" (low) when the S1C62440/4A0/4C0/480 serial interface become available to transmit or receive data; normally, it is at "1" (high).


 $\overline{SRDY}$  signal changes from "1" to "0" immediately after "1" is written to SCTRG and returns from "0" to "1" when "0" is input to  $\overline{SCLK}$  terminal (i.e., when the serial input/output begins transmitting or receiving data).

Moreover, when data is read from or written to SD4–SD7, the  $\overline{SRDY}$  signal returns to "1".

Moreover, the operating state (wait state or transmitting/receiving state) of the serial interface may be checked by connecting output port R33 (\$\overline{SRDY}\$) to input port (Kxx) or I/O port (Pxx) and performing reading.

#### (5) Timing chart

The S1C62440/4A0/4C0/480 serial interface timing chart is shown in Figure 11.4.2.



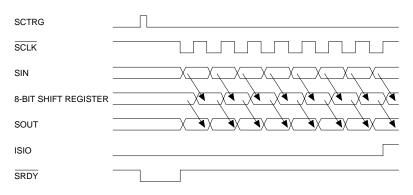



Fig. 11.4.2 Serial interface timing chart

b. Timing chart, SEN = "0"

#### 11.5 Control of Serial Interface

The control registers for the serial interface are explained below.

Table 11.5.1 Control registers of serial interface

| Address    | Register |     |      |       |       |    | 1       | ı    | Comment                                        |  |
|------------|----------|-----|------|-------|-------|----|---------|------|------------------------------------------------|--|
| , (dd) 033 | D3       | D2  | D1   | D0    | Name  | SR | 1       | 0    | Common                                         |  |
|            | 0        | 0   | 0    | ISIO  | 0     | -  |         |      |                                                |  |
| F03H       |          | I   | ₹    |       | 0     | -  |         |      |                                                |  |
| 1 0011     |          |     |      |       | 0     | -  |         |      |                                                |  |
|            |          |     |      |       | ISIO  | 0  | Yes     | No   | Interrupt factor flag<br>(serial interface)    |  |
|            | 0        | 0   | 0    | EISIO | 0     | -  |         |      |                                                |  |
| F13H       |          | R   |      | R/W   | 0     | -  |         |      |                                                |  |
| 1 1311     |          |     |      |       | 0     | -  |         |      |                                                |  |
|            |          |     |      |       | EISIO | 0  | Enable  | Mask | Interrupt mask register (serial interface)     |  |
|            | SD3      | SD2 | SD1  | SD0   | SD3   | Х  |         |      | MSB                                            |  |
| F30H       |          | R   | W    |       | SD2   | Х  |         |      | Serial interface<br>data register (low-order)  |  |
| 13011      |          |     |      |       | SD1   | Х  |         |      | data register (row-order)                      |  |
|            |          |     |      |       | SD0   | Х  |         |      | LSB                                            |  |
|            | SD7      | SD6 | SD5  | SD4   | SD7   | Χ  |         |      | MSB                                            |  |
| F31H       |          | R   | W    |       | SD6   | Χ  |         |      | Serial interface<br>data register (high-order) |  |
|            |          |     |      |       | SD5   | Х  |         |      | data register (ingir-order)                    |  |
|            |          |     | ı    |       | SD4   | Х  |         |      | LSB                                            |  |
|            | SCTRG    | SEN | SCS1 | SCS0  | SCTRG | -  | Trigger |      | Serial interface<br>clock trigger              |  |
| F7AH       | W        |     | R/W  |       | SEN   | 0  |         |      | Serial interface<br>clock edge selection       |  |
|            |          |     |      |       | SCS1  | 0  |         |      | Serial interface                               |  |
|            |          |     |      |       | SCS0  | 0  |         |      | clock mode selection                           |  |

(F30H, F31H, R/W)

SD0–SD3, SD4–SD7 This is the data register of the serial interface.

• During writing operation

When "1" is written: High level When "0" is written: Low level

Writes serial data will be output to SOUT terminal. From the SOUT terminal, the data converted to serial data as high (VDD) level bit for bits set at "1" and as low (Vss) level bit for bits set at "0".

Perform data writing only while the serial interface is halted (i.e., the synchronous clock is neither being input or output). At initial reset, these registers will be undefined.

During reading operation

When "1" is read: High level When "0" is read: Low level

The serial data input from the SIN terminal can be read by this register.

The data converted to parallel data, as high (VDD) level bit "1" and as low (Vss) level bit "0" input from SIN terminal. Perform data reading only while the serial interface is halted (i.e., the synchronous clock is neither being input or output). At initial reset, these registers will be undefined.

(F7AH [D1, D0], R/W) (SCLK).

SCS1, SCS0 Selects the synchronous clock for the serial interface

Table 11.5.2 Synchronous clock selection

| SCS1 | SCS0 | Mode        | Synchronous Clock |
|------|------|-------------|-------------------|
| 1    | 1    |             | CLK               |
| 1    | 0    | Master mode | CLK/2             |
| 0    | 1    |             | CLK/4             |
| 0    | 0    | Slave mode  | External clock    |

CLK: CPU system clock

Synchronous clock (SCLK) is selected from among the above 4 types: 3 types of internal clock and external clock. At initial reset, external clock is selected.

SEN Selects the timing for reading in the serial data input.

(F7AH [D2], R/W)

When "1" is written: Falling edge of SCLK When "0" is written: Rising edge of  $\overline{SCLK}$ 

Reading: Valid

Selects whether the fetching for the serial input data to registers (SD0–SD7) at the falling edge (at "1" writing) or rising edge (at "0" writing) of the  $\overline{SCLK}$  signal.

The input data fetching timing may be selected but output timing for output data is fixed at SCLK falling edge.

At initial reset, rising edge of  $\overline{SCLK}$  (SEN = "0") is selected.

SCTRG This is a trigger to start input/output of synchronous clock.

(F7AH [D3], W)

When "1" is written: Trigger

When "0" is written: No operation Reading: Always "0"

When this trigger is supplied to the serial interface activating circuit, the synchronous clock  $(\overline{SCLK})$  input/output is started.

As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.)

Supply trigger only once every time the serial interface is placed in the RUN state.

Moreover, when the synchronous clock  $\overline{SCLK}$  is external clock, start to input the external clock after the trigger.

EISIO This is the interrupt mask register of the serial interface.

(F13H [D0], R/W)

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, this register is set to "0" (mask).

ISIO This is the interrupt factor flag of the serial interface.

(F03H [D0], R)

When "1" is read: Interrupt has occurred
When "0" is read: Interrupt has not occurred

Writing: Invalid

From the status of this flag, the software can decide whether the serial interface interrupt. Note, however, that even if the interrupt is masked, this flag will be set to "1" after the 8 bits data input/output.

Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

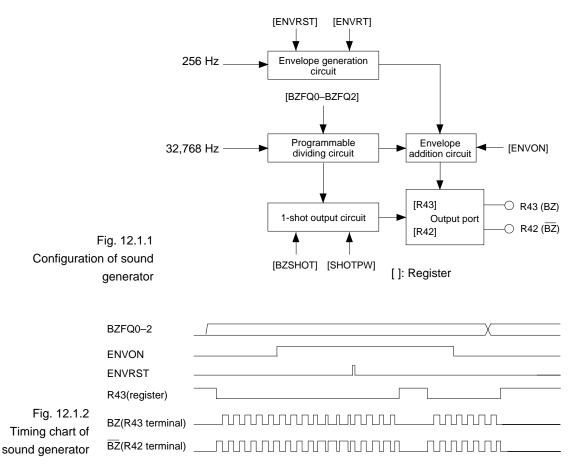
At initial reset, this flag is set to "0".

#### 11.6 Programming Notes

- (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc1  $\leftrightarrow$  fosc3) while the serial interface is operating.
- (2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
- (3) As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state.

  Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

#### CHAPTER 12 SOUND GENERATOR


## 12.1 Configuration of Sound Generator

The S1C62440/4A0/4C0/480 are capable of generating buzzer signals ( $\overline{BZ}$  and BZ) to drive a piezo-electric buzzer. The buzzer signal frequency may be selected by software from 8 types of signal divided from fosc1 (32,768 Hz). Also, digital envelope which is duty ratio controlled may be added to the buzzer signal.

In addition, 1-shot output circuit is built-in to output key operation check sound, and the like.

Figure 12.1.1 shows the sound generator configuration.

Figure 12.1.2 shows the sound generator timing chart.



#### 12.2 Mask Option

- (1) Selection can be made whether to output the BZ signal from the R43 terminal.
- (2) Selection can be made whether to output the  $\overline{BZ}$  signal from the R42 terminal.

However, if the BZ signal is not output the  $\overline{\text{BZ}}$  signal cannot be output.

See Chapter 7, "OUTPUT PORTS" for details of the above mask option.

## 12.3 Frequency Setting

The frequencies of the buzzer signals (BZ,  $\overline{BZ}$ ) are set by writing data to registers BZFQ0-BZFQ2.

Table 12.3.1 lists the register setting values and the frequencies that can be set.

Table 12.3.1 Setting of frequencies of buzzer signals

| BZFQ2 | BZFQ1 | BZFQ0 | Buzzer frequency (Hz) |
|-------|-------|-------|-----------------------|
| 0     | 0     | 0     | 4,096.0               |
| 0     | 0     | 1     | 3,276.8               |
| 0     | 1     | 0     | 2,730.7               |
| 0     | 1     | 1     | 2,340.6               |
| 1     | 0     | 0     | 2,048.0               |
| 1     | 0     | 1     | 1,638.4               |
| 1     | 1     | 0     | 1,365.3               |
| 1     | 1     | 1     | 1,170.3               |

Note A hazard may be observed in the output waveform of the BZ and  $\overline{BZ}$  signals when switchs the buzzer frequency while the BZ and  $\overline{BZ}$  signals being output.

#### 12.4 Digital Envelope

A duty ratio control data envelope (with duty ratio change in 8 steps) can be added to the buzzer signal (BZ,  $\overline{BZ}$ ). Duty ratio refers to the ratio of pulse width to the pulse cycle; given that high level output time is TH, and low level output time is TL, BZ output becomes TH/(TH+TL).  $\overline{BZ}$  output becomes TL/(TH+TL) owing to the inverted output of the BZ output. Moreover, care is necessary as the duty ratio differs according to the buzzer frequency. Envelope addition is performed by writing "1" to ENVON; when "0" is written, the duty ratio is fixed at the maximum (1/2 duty). Moreover, when envelope is added, writing "1" to ENVRST will cause the BZ signal duty ratio to be returned to maximum.

The decay time of the envelope (time for the duty ratio to change) can be selected with the register ENVRT. This time is 62.5 ms (16 Hz) when "0" is written, and 125 ms (8 Hz) when "1" is written. However, a maximum difference of 4 ms is taken from envelope-ON until the first change. Table 12.4.1 lists the duty ratio and buzzer frequencies. Figure 12.4.1 shows the digital envelope timing chart.

Table 12.4.1 Duty ratio and buzzer frequencies

|                   | Buzzer frequencies |         |         |         |  |  |  |
|-------------------|--------------------|---------|---------|---------|--|--|--|
| Duty ratio        | 4,096.6            | 3,276.8 | 2,730.7 | 2,340.6 |  |  |  |
|                   | 2,048.0            | 1,638.4 | 1,365.3 | 1,170.3 |  |  |  |
| Level 1 (maximum) | 8/16               | 8/20    | 12/24   | 12/28   |  |  |  |
| Level 2           | 7/16               | 7/20    | 11/24   | 11/28   |  |  |  |
| Level 3           | 6/16               | 6/20    | 10/24   | 10/28   |  |  |  |
| Level 4           | 5/16               | 5/20    | 9/24    | 9/28    |  |  |  |
| Level 5           | 4/16               | 4/20    | 8/24    | 8/28    |  |  |  |
| Level 6           | 3/16               | 3/20    | 7/24    | 7/28    |  |  |  |
| Level 7           | 2/16               | 2/20    | 6/24    | 6/28    |  |  |  |
| Level 8 (minimum) | 1/16               | 1/20    | 5/24    | 5/28    |  |  |  |

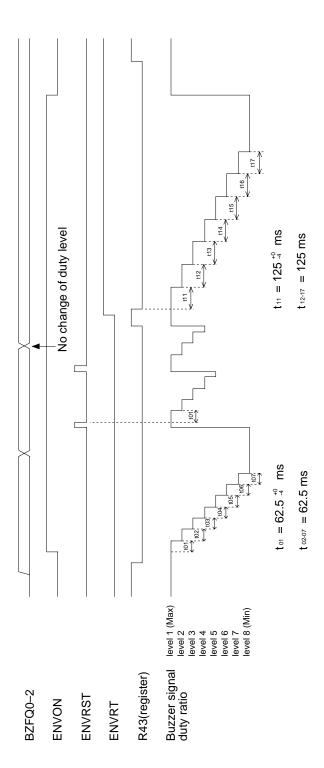



Fig. 12.4.1 Digital envelop timing chart

I-128

#### 12.5 1-shot Output

In order to cause the buzzer to ring in a short period of time as in the case of key operation check sound, 1-shot output function is built-in. The time duration for buzzer signal to be output (BZ and  $\overline{BZ}$ ) may be selected by SHOTPW; when "0" is written on SHOTPW, it is set to 31.25 ms and to 62.5 ms when "1" written.

Actual output operation is performed by writing "1" on BZSHOT; after performing the previously described writing operation, it synchronizes with the internal 256 Hz signal and buzzer signal is output in output port R43 (R42). Moreover, after the set time has lapsed, it synchronizes with the same 256 Hz previously described and the buzzer signal is automatically turned off. Also, by reading BZSHOT, whether the 1-shot circuit is in operation or not may be determined with the software.

Figure 12.5.1 shows the timing chart of the 1-shot output.

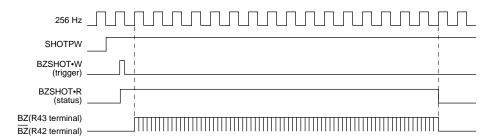



Fig. 12.5.1 Timing chart of 1-shot output

# 12.6 Control of Sound Generator

The control registers for the sound generator are explained below.

Table 12.6.1 Control registers of sound generator

| Address    |                                       | Regi   | ister  |       |               |    |                |          | Comment                       |
|------------|---------------------------------------|--------|--------|-------|---------------|----|----------------|----------|-------------------------------|
| Address    | D3                                    | D2     | D1     | D0    | Name          | SR | 1              | 0        | Comment                       |
|            | R43                                   | R42    | R41    | R40   | R43           | 1  | High           | Low      | Output port (R43)             |
|            | K43                                   | K42    | K41    | K40   | K43           | ı  | Off            | On       | Buzzer output (BZ)            |
|            |                                       | D      | W      |       | R42           | 1  | High           | Low      | Output port (R42)             |
|            |                                       | N/     | vv     |       | 1142          | ı  | Off            | On       | Clock output (FOUT)           |
| F54H       |                                       |        |        |       |               |    |                |          | [Buzzer inverted output (BZ)] |
|            |                                       |        |        |       | R41           | 1  | High_          | _ Low    | Output port (R41)             |
|            |                                       |        |        |       | 1041          | '  | Off            | On       | LCD frame signal (FR)         |
|            |                                       |        |        |       | R40           | 1  | High           | _ Low    | Output port (R40)             |
|            |                                       |        |        |       | 1110          |    | Off            | On       | Clock inverted output (FOUT)  |
|            |                                       |        |        |       |               |    | Off            | On       | LCD synchronous signal(CL)    |
|            | SHOTPW                                | BZFQ2  | BZFQ1  | BZFQ0 | SHOTPW        | 0  | 62.5 ms        | 31.25 ms | 1-shot buzzer pulse width     |
| F74H       |                                       | R/     | W      |       | BZFQ2         | 0  |                |          |                               |
| ', ', ', ' |                                       |        |        |       | BZFQ1         | 0  |                |          | Buzzer frequency selection    |
|            |                                       |        |        |       | BZFQ0         | 0  |                |          |                               |
|            | BZSHOT                                | ENVRST | ENVRT  | ENVON | BZSHOT        | 0  | Trigger        |          | 1-shot buzzer trigger         |
|            |                                       |        |        |       | J D Z G H G H | Ü  | BUSY           | READY    | Status                        |
| F75H       | $\left[ -\frac{W}{R} - \right]$ W R/W |        | ENVRST | Reset | Reset         | -  | Envelope reset |          |                               |
| 17311      |                                       |        |        |       | ENVRT         | 0  | 1.0 sec        | 0.5 sec  | Envelope cycle selection      |
|            |                                       |        |        |       |               | 0  | On             | Off      | Envelope On/Off               |

BZFQ0-BZFQ2 Will select the buzzer signal frequency. (F74H [D0, D1, D2], R/W)

Table 12.6.2 Setting of frequencies of buzzer signals

| BZFQ2 | BZFQ1 | BZFQ0 | Buzzer frequency (Hz) |
|-------|-------|-------|-----------------------|
| 0     | 0     | 0     | 4096.0                |
| 0     | 0     | 1     | 3276.8                |
| 0     | 1     | 0     | 2730.7                |
| 0     | 1     | 1     | 2340.6                |
| 1     | 0     | 0     | 2048.0                |
| 1     | 0     | 1     | 1638.4                |
| 1     | 1     | 0     | 1365.3                |
| 1     | 1     | 1     | 1170.3                |

At initial reset, 4,096 Hz is selected.

ENVRST This is the reset input to make the duty ratio of the buzzer (F75H [D2], W) signal the maximum.

When "1" is written: Reset input
When "0" is written: No operation
Reading: Always "0"

When envelope is added to the buzzer signal, by writing "1" on ENVRST, the envelope is reset and duty ratio becomes maximum. When envelope is not added, or when buzzer signal is not being output, reset operation is ineffective.

ENVON This controls adding the envelope to the buzzer signal.

(F75H [D0], R/W)

When "1" is written: Envelope added (ON)
When "0" is written: No envelope (OFF)

Reading: Valid

By writing "1" on ENVON, envelope is added to the buzzer signal. Writing "0" means envelope will not be added. At initial reset, ENVON is set to "0" and envelope OFF will be selected.

ENVRT Selects the attenuation time of the envelope added to the  $(F75H\ [D1],\ R/W)$  buzzer signal.

When "1" is written:  $1.0 \sec (125 \text{ ms} \times 7 = 875 \text{ ms})$ When "0" is written:  $0.5 \sec (62.5 \text{ ms} \times 7 = 437.5 \text{ ms})$ 

Reading: Valid

The attenuation time of digital envelopes is determined by the time change for duty ratio. When "1" is written on ENVRT, attenuation time is set in 125 ms (8 Hz) units (125 ms  $\times$  7 = 875 ms), and in 62.5 ms (16 Hz) unit (62.5 ms  $\times$  7 = 437.5 ms) when "0" is written.

However, there is a maximum error of 4 ms from envelope ON to the first change in both cases.

R43, R42 R43 Controls the output of the buzzer signals (BZ,  $\overline{BZ}$ ).

(F54H [D3, D2], R/W)

When "0" is written: Buzzer signal output

When "1" is written: Low level (DC)

Reading: Valid

When "0" is set on R43, BZ signal is generated from R43 terminal, and if R42 is set to  $\overline{BZ}$  output,  $\overline{BZ}$  signal (inverted signal of BZ) is generated at the same time.

When "1" is set on R43, R43 terminal (R42 to, if  $\overline{BZ}$  output is selected) becomes of low (Vss) level output.

However, R42 with  $\overline{BZ}$  output selected, may be used as a 1-bit general register capable of read/write function, the data of which register does not affect  $\overline{BZ}$  (R42 terminal output). At initial reset, both R43 and R42 are set to "1".

Note BZ and  $\overline{BZ}$  output signals may produce hazards during ON/OFF switching.

SHOTPW Sets the output time duration of the 1-shot buzzer.

(F74H [D3], R/W)

When "1" is written: 62.5 ms
When "0" is written: 31.25 ms
Reading: Valid

Output time duration is set to 62.5 ms or 31.25 ms by writing "1" or "0", respectively, on SHOTPW. At initial reset, SHOTPW is set to "0".

BZSHOT Controls the output of the 1-shot buzzer.

(F75H [D3], W, R)

During writing operation

When "1" is written: Trigger

When "0" is written: No operation

When "1" is written on BZSHOT, the 1-shot circuit operates and the buzzer signal (BZ and  $\overline{BZ}$ ) is output.

The 1-shot buzzer operates only when the regular buzzer output is in the OFF (R43 = "1") state and writing to BZSHOT becomes invalid in the ON (R43 = "0") state.

· During reading operation

When "1" is read: Busy
When "0" is read: Ready

The BZSHOT reads "1" when the 1-shot buzzer is ringing and "0" when it is not ringing. The period of "1" is from the time of the trigger until the buzzer output is turned OFF. At initial reset, "0" is read.

#### 12.7 Programming Notes

- (1) The BZ and  $\overline{\text{BZ}}$  signals may generate hazards in the following cases:
  - When the content of R43 register is changed, BZ and BZ signals are switched ON or OFF.
  - When the contents of buzzer frequency selection registers (BZFQ0–BZFQ2) while the buzzer signal (BZ and  $\overline{BZ}$ ) is being output.
- (2) The 1-shot buzzer operates only when the regular buzzer output is in the OFF (R43 = "1") state and writing to BZSHOT becomes invalid in the ON (R43 = "0") state.

# CHAPTER 13 EXTERNAL MEMORY ACCESS (S1C624A0/4C0/480)

To control external devices such as expansion LCD driver (S1D15201F10A\*) and static RAM, the S1C624A0/4C0/480 can be set by mask option using output port and I/O port as external memory access ports.

Figure 13.1 shows the External memory block diagram.

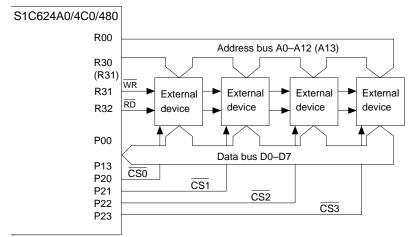



Fig. 13.1 External memory block diagram

Note The S1C62440 does not have an external memory access function.

#### 13.1 Address Bus

The address bus may be set to a maximum of 14 bits (A0–A13) in case of read-only devices, and to a maximum of 13 bits (A0–A12) in case of read/write devices.

Address buses are allocated to the following ports and by writing address data to each register, external memory address may be set.

Table 13.1.1 Output ports and address bus

| Output port |        | Address bus                 |
|-------------|--------|-----------------------------|
| R00-R03     | A0-A3  | (select in units of 4 bits) |
| R10-R13     | A4-A7  | (select in units of 4 bits) |
| R20-R22     | A8-A10 | (select in units of 3 bits) |
| R23         | A11    | (select in units of 1bit)   |
| R30         | A12    | (select in units of 1 bit)  |
| R31         | A13    | (read-only device only)     |

The above address signals may be selected by mask option as shown in the table and therefore, unneeded address lines may used as regular output ports.

Moreover, address bus perform the following control functions by software:

- Can perform high impedance control.
- Address incrementing may be automatically accomplished through software and data read/write.

#### 13.2 Data Bus

The data bus consists of 8 bits (D0-D7) and are allocated to the input/output ports indicated in Table 13.2.1.

Table 13.2.1 I/O ports and data bus

| I/O port | Data bus |
|----------|----------|
| P00-P03  | D0-D3    |
| P10-P13  | D4-D7    |

Data is written and read in the order of low-order bits (D0–D3) then high-order bits (D4–D7). Through writing/read operation to this register, the write signal  $(\overline{WR})$  and read signal  $(\overline{RD})$  to the external memory are automatically output.

· Consecutive access of data and virtual data register

Output or input of external memory data to the external data bus is done by accessing registers P00–P03 and P10–P13. It requires access of low order data and high order data, and is related to the increase of program steps. Hence, the S1C624A0/4C0/480 allows even and odd number addresses in the RAM addresses (FC0H–FFFH) to be logically allocated to P00–P03 and P10–P13, respectively, as virtual data; S1C624A0/4C0/480 also makes consecutive access by LBPX and RETD instructions possible. The memory map of this logical space is shown on Figure 13.2.1.

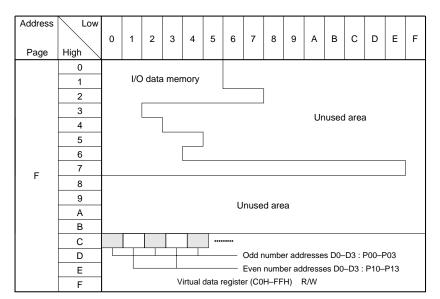



Fig. 13.2.1 Memory map (virtual data registers)

Note The virtual data register is a logical space and no memory is physically allocated. The actual writing/reading through access of this space is done for registers P00–P03, and P10–P13.

#### 13.3 Write Signal (WR) and Read Signal (RD)

Write signal  $(\overline{WR})$  and read signal  $(\overline{RD})$  for the external memory are automatically generated according to data writing/reading from R31 terminal and R32 terminal, respectively.

 $\overline{WR}$  and  $\overline{RD}$  signals can perform high impedance control by software.

Refer to "13.5 External Memory Read/Write Sequence" for the data writing/reading timing.

### 13.4 Chip Select Signal

External device selection requires no external address (S1C624A0/4C0/480) decoder, and maximum 4 chips select signal may be generated.

Chip select signals are allocated to the following I/O ports:

Table 13.4.1 I/O ports and chip selector signal

| I/O port | Chip selector signal    |
|----------|-------------------------|
| P20      | CS0                     |
| P21      | CS1                     |
| P22      | $\overline{\text{CS2}}$ |
| P23      | $\overline{\text{CS3}}$ |

By writing "0" on P2x, the  $\overline{CSx}$  signal becomes active (low level setting); writing "1" will make it normal (high level setting).

By setting the chip select register (P20–P23) corresponding to the device desired to be accessed to "0" and then performing data reading/writing, the  $\overline{CSx}$  terminal which selects the active signal will be automatically set to low level, in the same manner as  $\overline{RD}$  and  $\overline{WR}$  signals. Moreover, after the access, it is automatically set to high level.

Because of the write-only (W/O) function, the chip select register may not be re-written by logical arithmetic instructions.

 $\overline{\text{CS}}$  signal can perform high impedance control by software. Note, however, that the pull up resistor is turned on to prevent misoperation of external devices.

#### 13.5 External Memory Read/Write Sequence

Reading and writing of external memory data is done by the following steps:

- (1) Write the address data to R00-R30 (R31).
- (2) Write "0" on the chip select register corresponding to the external device which will be read or written.

Note: Do not generate multiple  $\overline{CS}$  signals at one time.

(3) Perform data reading/writing.

When address auto increment function is set to valid, the address is incremented (+1) after completion of reading/writing operation.

Data reading

Data register is read in the order of: low order 4 bits first, then high order 4 bits.

 $\overline{RD}$  signal and  $\overline{CS}$  signal are automatically generated at the point where the low order 4 bits are read.

Data can be read from P00–P03 (low order) and P10–P13 (high order) addresses, or from the even address (low order) and odd address (high order) of the FC0H–FFFH addresses.

Data writing

Data register is written in the order of: low order 4 bits first, then high order 4 bits.

WR signal and CS signal are automatically generated at the point where the high order 4 bits are written. Data can be written to P00–P03 (low order) and P10–P13 (high order) addresses, or to the even address (low order) and odd address (high order) of the FC0H–FFFH addresses.

When address auto increment function is set to be valid, consecutive writing is possible from FC0H-FFFH addresses through the LBPX and RETD instructions.

(4) Write "1" on the chip select register.

With register to high impedance control, follow the requirements of the external circuit.

Figure 13.5.1 shows the timing chart of external memory access.

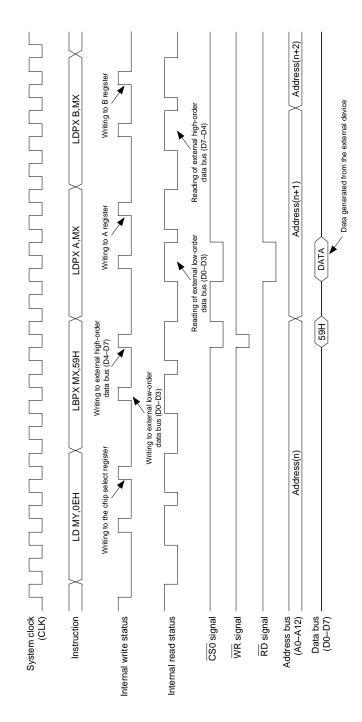



Fig. 13.5.1 Timing chart of external memory access

## 13.6 Control of External Memory

The control registers for external memory are explained below.

Table 13.6.1(a) Control registers of external memory (1)

| Address  |      | Reg  | ister |      |      |                                        |         |                               | Comment                       |
|----------|------|------|-------|------|------|----------------------------------------|---------|-------------------------------|-------------------------------|
| 71001033 | D3   | D2   | D1    | D0   | Name | SR                                     | 1       | 0                             | Comment                       |
|          | R03  | R02  | R01   | R00  | R03  | X                                      | _ High_ | Low                           | Output port (R03)             |
|          | KUS  | NUZ  | KUI   | Nuu  | KUS  | ^                                      | High    | Low                           | External memory address (A3)  |
|          |      | D    | /W    |      | R02  | X                                      | High    | Low                           | Output port (R02)             |
| F50H     |      | Γ.   | / V V |      | RUZ  | ^                                      | High    | Low                           | External memory address (A2)  |
| 13011    |      |      |       |      | R01  | X                                      | _ High  | _ Low_                        | Output port (R01)             |
|          |      |      |       |      | KUT  | ^                                      | High    | Low                           | External memory address (A1)  |
|          |      |      |       |      | R00  | X                                      | _ High  | _ Low_                        | Output port (R00)             |
|          |      |      |       |      | NOU  | ^                                      | High    | Low                           | External memory address (A0)  |
|          | R13  | R12  | R11   | R10  | R13  | x                                      | High    | _ Low_                        | Output port (R13)             |
|          | 1110 | 1112 | IXII  | 1010 | ICIO |                                        | High    | Low                           | External memory address (A7)  |
|          |      | D    | /W    |      | R12  | X                                      | High    | Low                           | Output port (R12)             |
| F51H     |      | I.   | / V V |      | IXIZ | ^                                      | High    | Low                           | External memory address (A6)  |
| 13111    |      |      |       |      | R11  | X                                      | High    | _ Low_                        | Output port (R11)             |
|          |      |      |       |      | IXII | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | High    | Low                           | External memory address (A5)  |
|          |      |      |       | R10  | Х    | _ High                                 | Low     | Output port (R10)             |                               |
|          |      |      |       |      |      | High                                   | Low     | External memory address (A4)  |                               |
|          | R23  | R22  | R21   | R20  | R23  | X                                      | High    | _ Low_                        | Output port (R23)             |
|          | NZJ  | INZZ | INZI  | NZU  | 1125 | Λ                                      | High    | Low                           | External memory address (A11) |
|          |      | В    | /W    |      | R22  | R22 X                                  | _ High_ | Low                           | Output port (R22)             |
| F52H     |      | , K  | / V V |      |      |                                        | High    | Low                           | External memory address (A10) |
| 1 3211   |      |      |       |      | R21  | X                                      | _ High_ | _ Low_                        | Output port (R21)             |
|          |      |      |       |      | 1\Z1 | ^                                      | High    | Low                           | External memory address (A9)  |
|          |      |      |       |      | R20  | X                                      | High    | Low                           | Output port (R20)             |
|          |      |      |       |      | N20  | ^                                      | High    | Low                           | External memory address (A8)  |
|          | R33  | R32  | R31   | R30  | R33  | Х                                      | _ High_ | Low                           | Output port (R33)             |
|          | KSS  | N32  | Kai   | KSU  | 133  | ^                                      | Off     | On                            | PTCLK output                  |
|          |      | D    | /W    |      |      |                                        | BUSY    | READY                         | [SRDY (SIO READY)]            |
|          |      | Γ.   | / V V |      | R32  | Х                                      | High    | Low                           | Output port (R32)             |
| F53H     |      |      |       | K32  | ^    |                                        |         | [External memory read (RD)]   |                               |
| 1 0011   |      |      |       | R31  |      | High                                   | Low     | Output port (R31)             |                               |
|          |      |      |       | KOI  | X    | High                                   | Low     | External memory address (A13) |                               |
|          |      |      |       |      |      |                                        |         |                               | [External memory write (WR)]  |
|          |      |      |       |      | R30  | Х                                      | High    | _ Low_                        | Output port (R30)             |
|          |      |      |       |      | KJU  |                                        | High    | Low                           | External memory address (A12) |

Table 13.6.1(b) Control registers of external memory (2)

| Address | Register  |      |       |       |       |           | . Comment |                                             |                                            |
|---------|-----------|------|-------|-------|-------|-----------|-----------|---------------------------------------------|--------------------------------------------|
| Address | D3        | D2   | D1    | D0    | Name  | SR        | 1         | 0                                           | Comment                                    |
|         | Doo       | Doo  | P01   | P00   | P03   | V         | High      | Low                                         | I/O port (P03)                             |
|         | P03       | P02  | P01   | P00   | P03   | Χ         | High      | Low                                         | External memory data (D3)                  |
|         |           | R/W  |       |       | P02   | V         | High      | Low                                         | I/O port (P02)                             |
| F60H    |           | ĸ    | / V V |       | P02   | Х         | High      | Low                                         | External memory data (D2)                  |
| гооп    |           |      |       |       | P01   | Х         | High      | Low                                         | I/O port (P01)                             |
|         |           |      |       |       | PUI   | Χ         | High      | Low                                         | External memory data (D1)                  |
|         |           |      |       |       | P00   | Х         | High      | Low                                         | I/O port (P00)                             |
|         |           |      |       |       | F00   | ^         | High      | Low                                         | External memory data (D0)                  |
|         | P13       | P12  | P11   | P10   | P13   | Χ         | High      | Low                                         | I/O port (P13)                             |
|         | FIJ       | FIZ  | FII   | FIU   | FIS   | ^         | High      | Low                                         | External memory data (D7)                  |
|         |           | п    | W     |       | P12   | Χ         | High      | Low                                         | I/O port (P12)                             |
| F61H    |           | K    | /VV   |       | FIZ   | ^         | High      | Low                                         | External memory data (D6)                  |
| 10111   |           |      |       |       | P11   | Χ         | High_     | _ Low_                                      | I/O port (P11)                             |
|         |           |      |       |       | FII   | ^         | High      | Low                                         | External memory data (D5)                  |
|         |           |      |       |       | P10   | Χ         | High      | Low                                         | I/O port (P10)                             |
|         |           |      |       |       | FIU   | ^         | High      | Low                                         | External memory data (D4)                  |
|         | P23       | P22  | P21   | P20   | P23   | Χ         | High      | Low                                         | I/O port (P23)                             |
|         | FZS       | FZZ  | FZI   | F20   | 1 23  |           | High      | Low                                         | External memory chip select (CS3)          |
|         | <u>RW</u> |      |       | P22   | Х     | High      | Low       | I/O port (P22)                              |                                            |
| F62H    |           |      |       | F 22  |       | High      | Low       | External memory chip select (CS2)           |                                            |
| 10211   |           |      |       |       | P21   | Х         | High_     | Low                                         | I/O port (P21)                             |
|         |           |      |       |       | 121   |           | High      | Low                                         | External memory chip select (CS1)          |
|         |           |      |       |       | P20   | P20 X     | High _    | Low                                         | I/O port (P20)                             |
|         |           |      |       |       |       |           | High      | Low                                         | External memory chip select (CSO)          |
|         | HZR3      | HZR2 | HZR1  | HZR0  | HZR3  | 0         | Output    | High-Z                                      | R30-R33 output high-impedance control      |
| F7BH    |           | R    | /W    |       | HZR2  | 0         | Output    | High-Z                                      | R20-R23 output high-impedance control      |
| 17611   |           |      |       |       | HZR1  | 0         | Output    | High-Z                                      | R10-R13 output high-impedance control      |
|         |           |      |       |       | HZR0  | 0         | Output    | High-Z                                      | R00-R03 output high-impedance control      |
|         | 0         | HZCS | ADINC | PICON | 0     | -         |           |                                             |                                            |
| FZOLL   | R         | R/W  | W     | R/W   | HZCS  | 0         | Output    | High-Z                                      | CS0-CS3 output high-impedance control      |
| F7CH    |           |      |       |       | ADINC | -         | Increment | -                                           | External memory address increment (A0-A13) |
|         |           |      |       | PICON | 0     | Auto Inc. | Normal    | External memory address auto increment mode |                                            |

R20-R23, R30, R31 (F50H, F51H, F52H, F53H [D0, D1], R/W)

R00-R03, R10-R13, These registers set the external memory address.

When "1" is written: Address bit high level When "0" is written: Address bit low level

Valid Reading:

By writing "1" on Rxx register, the corresponding address bit is generated as high level on the address bus; by writing "0", it is generated as low level on the address bus.

Table 13.6.2 Relationships of Rxx registers and address bits

| Address  | A13 | A12 | A11 | A10 | A9  | A8  | A7  | A6  | A5  | A4  | A3  | A2  | A1  | A0  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Register | R31 | R30 | R23 | R22 | R21 | R20 | R13 | R12 | R11 | R10 | R03 | R02 | R01 | R00 |

Note When a read-write device is connected to external memory, R31 become the WR output, and the A13 signal cannot be output.

At initial reset, the above registers will be undefined.

(F60H,F61H, data.

P00-P03, P10-P13 These registers perform reading/writing for external memory

ODD, EVEN address of FC0H-FFFH, R/W)

When "1" is written: Data bit high level When "0" is written: Data bit low level When "1" is read: Data bit high level When "0" is read: Data bit low level

#### • During writing operation

By writing "1" on Pxx register, the corresponding data bit is generated as high level on the data bus; by writing "0", it is generated as low level on the data bus.

WR signal is automatically generated from R31 terminal, and from the  $\overline{CSx}$  terminal if  $\overline{CSx}$  signal were set active.

#### During readting operation

The data of the data bus is read from the corresponding register Pxx with the high level as "1" and the low level as "O".

RD signal is automatically generated from R32 terminal, and from the  $\overline{CSx}$  terminal if  $\overline{CSx}$  signal were set active.

Table 13.6.3 Relationships of registers Pxx and data bits

| Data     | D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| Register | P13 | P12 | P11 | P10 | P03 | P02 | P01 | P00 |

Note The data is written and read in the order of low-order bits (D0–D3) then high-order bits (D4-D7).

At initial reset, the above registers will be undefined.

P20-P23 Output the chip select signal.

(F62H, W)

When "0" is written: Active standby
When "1" is written: Normal (high level)

Reading: Always "1"

By writing "0" on P2x,  $\overline{CSx}$  signal becomes valid; during read/write operation of the external memory device, it goes low.

The  $\overline{CSx}$  signal is fixed at high level by writing "1". Because of the write-only (W/O) function, these registers may not be re-written by logical arithmetic instruction. Correspondence between P2x and  $\overline{CSx}$  is as follows:

P20: CS0
P21: CS1
P22: CS2
P23: CS3

R31 When R31 is selected to  $\overline{WR}$  output, the  $\overline{WR}$  output control (F53H [D1], R/W) is performed through the hardware, and register R31 can be used as a 1 bit read/write general register.

When a read-only device is only connected, R31 can be used as address A13.

R32 The read signal  $\overline{RD}$  is output from the output R32. Output (F53H [D2], R/W) control is performed through the hardware, and register R32 can be used as a 1 bit read/write general register.

ADINC Increment the address.

(F7CH [D1], W)

When "1" is written: Address incremented (+1)

When "0" is written: No operation Reading: Always "0"

When "1" is written to ADINC the external memory address A0–A12 (A13) will be incremented (+1).

PICON Sets the address auto increment function.

(F7CH [D0], R/W)

When "1" is written: Auto increment ON When "0" is written: Auto increment OFF

Reading: Valid

When "1" is written to PICON, the auto increment function of the external memory address A0–A12 (A13) becomes effective. In auto increment mode the address is automatically incremented (+1) after high-order data (D4–D7) is written or read. For timing of writing/reading and address increment, see Figure 13.5.1.

When "0" is written to PICON, auto increment is not possible.

At initial reset, PICON is set to "0", and the auto increment function is invalidated.

HZR0-HZR3 Performs the high-impedance control of the Rxx (x = 0-3) (F7BH, R/W) terminals.

When "0" is written: High impedance When "1" is written: Signal output

Reading: Valid

Controls the output of Rxx (x = 0-3) in units of 4 bits. When "1" is written to HZRx, the specified signal is output from the corresponding terminals Rx0–Rx3. When "0" is written the output becomes high impedance.

HZRx and Rxx correspondence are as follows:

HZR0: R00-R03 HZR1: R10-R13 HZR2: R20-R23 HZR3: R30-R33

At initial reset, all HZRx are set to "0" and output becomes high impedance.

With this function, the external device may be communally used with other CPUs through a common bus line.

HZCS Controls the high impedance of the  $\overline{CSx}$  (x = 0-3) terminals.

(F7CH [D2], R/W)

When "0" is written: High impedance When "1" is written: Signal output

Reading: Valid

When "1" is written to HZCS,  $\overline{CSx}$  signals are output from pins P20-P23. When "0" is written, the output becomes high impedance (pulled up).

At initial reset, HZCS is set to "0" and the output becomes high impedance (pulled up).

Moreover, P2x port which will not be used as  $\overline{CS}$  will not gain high impedance even if HZCS is set to "0".

With this function, the external device may be communally used with other CPUs through a common bus line.

### 13.7 Programming Notes

- (1) Be sure to data writing/reading for external memory in the order of low-order bits (D0-D3) then high-order bits (D4-D7).
- (2) Because of the write-only (W/O) function, the chip select register (P20-P23) may not be re-written by logical arithmetic instruction.

#### CHAPTER 14 INTERRUPT AND HALT

The S1C62440/4A0/4C0/480 have the following interrupt functions built-in, and masking is possible for each one.

External interrupt - Input interrupt

(2 systems)

Internal interrupt - Clock timer interrupt

(3 systems)

- Stopwatch timer interrupt

(2 systems)

- Programmable timer interrupt

(1 system)

- Serial interface interrupt

(1 system)

To allow the interrupt to function, it is necessary that the interrupt mask register of the required system be set to "1" (enable) and, at the same time, the interrupt flag be set to "1" (EI).

When interrupt occurs, the interrupt flag is automatically reset to "0" (DI), prohibiting the any consequent interrupts.

The CPU stops the operating clock when a HALT instruction is executed and then enters the HALT state.

Re-running the CPU from the HALT state requires issuance of interrupt request.

If return through interrupt request is not effective, return is effected from initial reset by the watchdog timer.

Figure 14.1 shows the configuration of the interrupt circuit.

See the explanations of the relevant circuits for interrupt details.

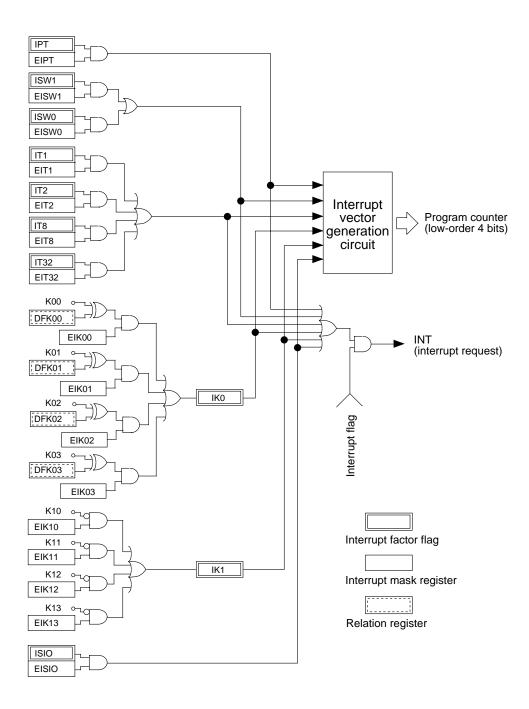



Fig. 14.1 Configuration of interrupt circuit

### 14.1 Interrupt Factor Flag and Interrupt Mask

The corresponding interrupt factor flag is set to "1" with the individual interrupt element.

If the following conditions exist, interrupt for the CPU occurs when the interrupt factor flag is set to "1".

- The corresponding interrupt mask register is set at "1" (enable).
- The interrupt flag is set at "1" (EI).

The interrupt factor flag is reset to "0" at the read-only register by reading the data.

Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

At initial reset, the interrupt factor flag is reset to "0".

The interrupt can be masked by the corresponding interrupt mask register.

The interrupt mask register is a register capable of read/write operation; by writing "1", it is enabled (interrupt is allowed) and by writing "0", it is masked (interrupt is prohibited).

Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.

At initial reset, the interrupt mask register is set to "0".

The interrupt factor flag is set to "1" by interrupt factor even if the interrupt is masked. (The input interrupt factor flags IKO and IK1 will be eliminated.)

Table 14.1.1 shows the correspondence between interrupt factor flags and interrupt mask registers.

Table 14.1.1 Interrupt factor flags and interrupt mask registers

| Interrupt factor                          | Interrupt factor flag | Interrupt mask register |
|-------------------------------------------|-----------------------|-------------------------|
| Falling edge of clock timer (1 Hz)        | IT1 (F00H [D3])       | EIT1 (F10H [D3])        |
| Falling edge of clock timer (2 Hz)        | IT2 (F00H [D2])       | EIT2 (F10H [D2])        |
| Falling edge of clock timer (8 Hz)        | IT8 (F00H [D1])       | EIT8 (F10H [D1])        |
| Falling edge of clock timer (32 Hz)       | IT32 (F00H [D0])      | EIT32 (F10H [D0])       |
| Overflow of stopwatch timer (SWH) (1 Hz)  | ISW1 (F01H [D1])      | EISW1 (F11H [D1])       |
| Overflow of stopwatch timer (SWL) (10 Hz) | ISW0 (F01H [D0])      | EISW0 (F11H [D0])       |
| No matching between input ports           | IK0 (F04H [D0])       | EIK03 (F14H [D3])       |
| (K00-K03)                                 |                       | EIK02 (F14H [D2])       |
| and input relation registers              |                       | EIK01 (F14H [D1])       |
| (DFK00-DFK03)                             |                       | EIK00 (F14H [D0])       |
| Falling edge of input ports (K10-K13)     | IK1 (F05H [D0])       | EIK13 (F15H [D3])       |
|                                           |                       | EIK12 (F15H [D2])       |
|                                           |                       | EIK11 (F15H [D1])       |
|                                           |                       | EIK10 (F15H [D0])       |
| Data (8 bits) input/output of serial      | ISIO (F03H [D0])      | EISIO (F13H [D0])       |
| interface has completed                   |                       |                         |
|                                           |                       |                         |
| Counter value of programmable             | IPT (F02H [D0])       | EIPT (F12H [D0])        |
| timer = 00H                               |                       |                         |

#### 14.2 Interrupt Vector

When an interrupt request is issued to the CPU, the CPU starts interrupt processing.

Interrupt processing is accomplished by the following steps after the instruction being executed is completed.

- ① The address (value of the program counter) of the program which should be run next is saved in the stack area (RAM).
- ② The vector address (1 page 02H–0CH) for each interrupt request is set to the program counter.
- ③ Branch instruction written to the vector is effected (branch to software interrupt processing routine).

Note Time equivalent to 12 cycles of CPU system clock is required for steps ① and ②.

The interrupt request and interrupt vector correspondence is shown in Table 14.2.1.

Table 14.2.1 Interrupt request and interrupt vectors

| Interrupt vector | Interrupt request            | Priority |
|------------------|------------------------------|----------|
| (PCS and PCS)    | interrupt request            | Filolity |
| 102H             | Clock timer interrupt        | Low      |
| 104H             | Stopwatch timer interrupt    | <b>↑</b> |
| 106H             | Input (K00-K03) interrupt    |          |
| 108H             | Input (K10-K13) interrupt    |          |
| 10AH             | Serial interface interrupt   | ↓ ↓      |
| 10CH             | Programmable timer interrupt | High     |

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

#### 14.3 Programming Notes

- (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register. Note, however, that the input interrupt factor flags (IKO and IK1) will be eliminated.
- (2) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.
- (5) If an interrupt occurs while the CPU is processing some other interrupt request of which the priority is lower than the new one but the CPU has not fetched the interrupt vector, the CPU may shift to a vector address (one of among 102H, 104H, 106H, 10AH and 10EH) that is different from the new interrupt.

Therefore, make sure the interrupt factor flag has been set immediately after the branch instruction stored in the vector address is executed and quit the interrupt processing if it has not been set.

Furthermore, place a branch instruction for executing the interrupt processing routine in the vector address 10EH because the CPU may shift to that address. By setting the start address of the programmable timer interrupt processing routine as the branch destination, the priority level by hardware can be maintained.

If the program does not have the individual processing routine for each interrupt (for example, in the case of all interrupts using the same processing routine in which the type of interrupt is judged by reading the interrupt flags, or in the case of the main routine checking all the interrupt flags by branching the flow the RET instruction stored in all the vector address), place the instruction the same as the other interrupt vectors in address 10EH. When the interrupt function is not used, it is not necessary to pay attention to the above mentioned precautions.

#### CHAPTER 15 SUMMARY OF NOTES

### 15.1 Notes for Low Current Consumption

The S1C62440/4A0/4C0/480 contain control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 15.1.1 Circuits and control registers.

| Circuits (and Items)       | Control registers | Order of consumed current                   |
|----------------------------|-------------------|---------------------------------------------|
| CPU                        | HALT instruction  | See electrical characteristics (Chapter 17) |
| CPU operation frequency    | CLKCHG, OSCC      | See electrical characteristics (Chapter 17) |
| Internal regulated voltage | VSC0, VSC1        | See electrical characteristics (Chapter 17) |
| Heavy load protection mode | HLMOD             | See electrical characteristics (Chapter 17) |
| SVD circuit                | SVDON             | Several tens µA                             |

Below are the circuit statuses at initial reset.

CPU: Operating

CPU operating frequency: OSC1 side (CLKCHG = "0"),

OSC3 oscillation circuit stoped

(OSCC = "0")

Internal regulated voltage: -1.2 V (VSC0, VSC1 = "0")

> In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option, internal regulated voltage becomes -2.1 V.

Heavy load protection mode: Normal operating mode

(HLMOD = "0")

SVD circuit: **OFF** 

(SVDON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several µA on account of the LCD panel characteristics.

#### 15.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mined when programming.

#### Memory

Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

#### SVD (Supply voltage detection) circuit

- (1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
- (2) To obtain a stable detection result, after setting SVDON to "1", provide at least 100 µs waiting time before performing SVDDT reading.

#### Heavy load protection mode

- (1) During heavy load or when 2.2 V or below is detected by SVD, set it to heavy load protection mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.
- (2) Perform heavy load driving only after setting up at least 1 ms wait time through the software, after switching to the heavy load protection mode. (See Figure 3.3.1.)
- (3) When the heavy load protection mode is to canceled after completion of heavy load driving, set up at least 2 seconds wait time through the software. (See Figure 3.3.1.)

- Watchdog timer (1) The watchdog timer must reset within 3-second cycles by the software.
  - (2) When clock timer resetting (TMRST←"1") is performed, the watchdog timer is counted up; reset the watchdog immediately after if necessary.

Oscillation circuit (1) When high-speed operation of the CPU is not required, observe the following reminders to minimize power current consumption.

Set the CPU operating clock to OSC1. Turn the OSC3 oscillation OFF. Set the internal operating voltage (Vs1) to -1.2 V or -2.1 V.

- (2) When the CPU is to be operated with OSC1, set the operating voltage to -1.2 V if the power voltage detected with the SVD circuit were less than 3.1 V (VDD-Vss < 3.1 V); set the operating voltage to -2.1 V if the detected voltage were 3.1 V or more (VDD-Vss ≥ 3.1 V). Moreover, because -1.2 V will be set during initial reset, be sure to execute the previous process at the beginning of the initial routine. Note, however, that it can be used fixed at 1.2 V (at OSC1 operation) for power whose initial value is 3.6 V or less as in lithium batteries.
- (3) When switching Vs<sub>1</sub> from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

```
(VSC1, VSC0) = (0, 0) \rightarrow (0, 1) \rightarrow 5 ms WAIT \rightarrow (1, \times)
= (1, \times) \rightarrow (0, 1) \rightarrow 5 ms WAIT \rightarrow (0, 0)
= (0, 0) \rightarrow (1, \times) is prohibited
= (1, \times) \rightarrow (0, 0) is prohibited
```

Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.

- (4) When switching the CPU operating clock from OSC1 to OSC3, follow the flow chart shown in Figure 5.5.1 and then proceed with software processing.
- (5) Use separate instructions to switch the clock from OSC3 to OSC1 and turn the OSC3 oscillation OFF. Simultaneous processing with a single instruction may cause malfunction of the CPU.
- (6) In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option, internal regulated voltage becomes -2.1 V and will never become -1.2 V.

Input port (1) When changing the input port from Low level to High

(Kxx) level with a pull up resistor, a delay in the waveform rise

time will occur depending on the time constant of the pull

up resistor and input gate capacity. Hence, when reading
data from the input port, set an appropriate waiting time.

Care is particularly required for key matrix configuration

scanning. For reference, approximately 500 µs waiting
time is required.

#### (2) Input interrupt programing related precautions

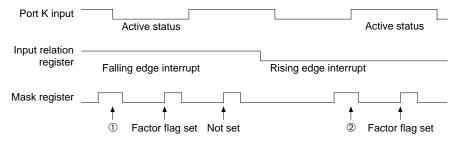



Fig. 15.2.1 Input interrupt timing

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at 1 and 2, 1 being the interrupt due to the falling edge and 2 the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = Low status, when the falling edge interrupt is effected and

input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 15.2.1. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case.

When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ② shown in Figure 15.2.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the input relation register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input relation register in the mask register = "0" status.

- (Rxx)
- Output port (1) When BZ, BZ, FOUT, FOUT, and PTCLK (DC) are selected by mask option, a hazard may be observed in the output waveform when the data of the output register changes.
  - (2) Because the R00-R03, R10-R13, R20-R23, and R30-R32 (R33) ports gain high impedance during initial reset, be careful when using them as interface with external devices and the like.
  - (3) When R33 port is selected for 2 states and DC (PTCLK) output by mask option, R33 terminal becomes undefined at initial reset.
  - I/O port (1) When the I/O port is set at output mode, and low imped-(Pxx) ance load is connected to the port terminal, the data written and read may differ.
    - (2) If the state of the I/O port meets all of the following 4 conditions, the reading data will be undefined:
      - The input/output mode is set at output mode
      - Output specification is set at Nch open drain
      - The content of the data register is "1"
      - The pull up resistor turned is OFF
    - (3) When P30-P33 has been set as the output exclusive in the mask option, a pull up resistor cannot be added even if the pull up resistor control register PUP3 has been made "0".

LCD driver Because at initial reset, the contents of segment data memory and LCO-LC3 are undefined, there is need to initialize by software.

- Clock timer (1) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.
  - (2) Because the watchdog timer counts up during reset as in the above (1), reset the watchdog timer as necessary.
  - (3) When the low-order digits (TM0-TM3) and high-order digits (TM4-TM7) are consecutively read, proper reading may not be obtained due to the carry from the low-order digits into the high-order digits (when the reading of the low-order digits and high-order digits span the timing of the carry). For this reason, perform multiple reading of timer data, make comparisons and use matching data as result.

Stopwatch timer When data of the counter is read at run mode, perform the reading after suspending the counter once and then set SWRUN to "1" again. Moreover, it is required that the suspension period not exceed 976 µs (1/4 cycle of 256 Hz).

- Programmable timer (1) When initiating programmable timer count, perform programming by the following steps:
  - 1. Set the initial data to RD0-RD7.
  - 2. Reset the programmable timer by writing "1" to PTRST.
  - 3. Start the down-count by writing "1" to PTRUN.
  - (2) When the reload register (RD0-RD7) value is set at "00H", the down-counter becomes a 256-value counter.
  - (3) When data of the timer is read consecutively in 8 bits in the RUN mode, perform the reading after suspending the timer once and then set the PTRUN to "1" again. Moreover, it is required that the suspension period be within 1/4 cycle of the input clock (in case of 1/2 duty). Accordingly, when the input clock is a fast clock faster than 256 Hz, high speed processing by OSC3 is required.

(SIN, SOUT, and SCLK)

- Serial interface (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc1  $\leftrightarrow$  fosc3) while the serial interface is operating.
  - (2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
  - (3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

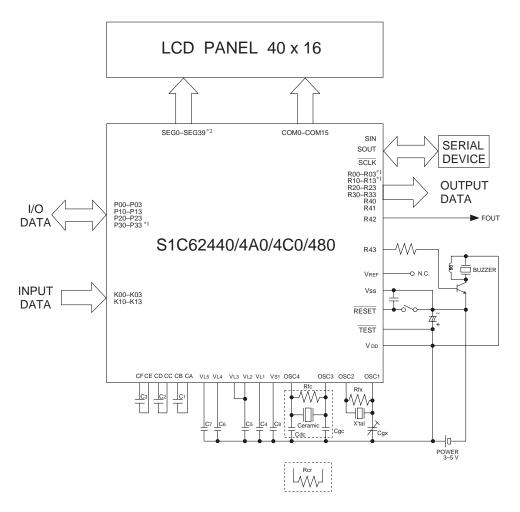
- Sound generator (1) The BZ and BZ signals may generate hazards in the following cases:
  - When the content of R43 register is changed, BZ and BZ signals are switched ON or OFF.
  - When the contents of buzzer frequency selection registers (BZFQ0-BZFQ2) while the buzzer signal (BZ and BZ) is being output.
  - (2) The 1-shot buzzer operates only when the regular buzzer output is in the OFF (R43 = "0") state and writing to BZSHOT becomes invalid in the ON (R43 = "1") state.

External memory access

- (1) Be sure to data writing/reading for external memory in the order of low-order bits (D0-D3) then high-order bits (D4-D7).
- (2) Because of the write-only (W/O) function, the chip select register (P20-P23) may not be re-written by logical arithmetic instruction.

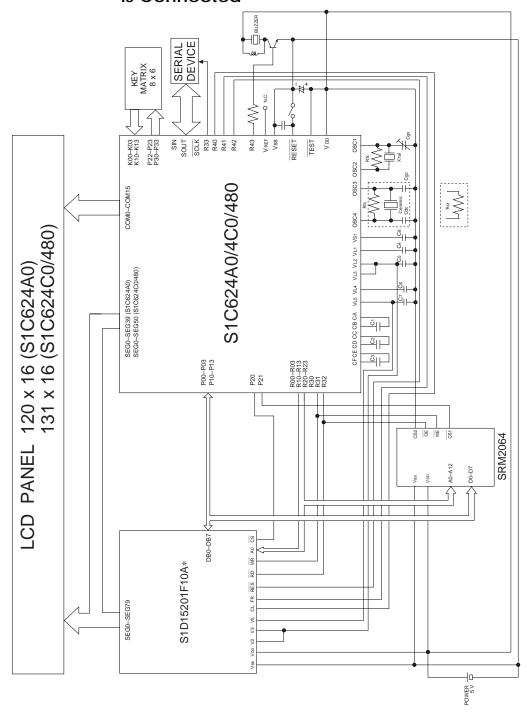
Interrupt (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register. Note, however, that the input interrupt factor flags (IKO and IK1) will be eliminated.

- (2) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.
- (5) If an interrupt occurs while the CPU is processing some other interrupt request of which the priority is lower than the new one but the CPU has not fetched the interrupt vector, the CPU may shift to a vector address (one of among 102H, 104H, 106H, 10AH and 10EH) that is different from the new interrupt.


Therefore, make sure the interrupt factor flag has been set immediately after the branch instruction stored in the vector address is executed and quit the interrupt processing if it has not been set.

Furthermore, place a branch instruction for executing the interrupt processing routine in the vector address 10EH because the CPU may shift to that address. By setting the start address of the programmable timer interrupt processing routine as the branch destination, the priority level by hardware can be maintained.

If the program does not have the individual processing routine for each interrupt (for example, in the case of all interrupts using the same processing routine in which the type of interrupt is judged by reading the interrupt flags, or in the case of the main routine checking all the interrupt flags by branching the flow the RET instruction stored in all the vector address), place the instruction the same as the other interrupt vectors in address 10EH. When the interrupt function is not used, it is not necessary to pay attention to the above mentioned precautions.


# CHAPTER 16 BASIC EXTERNAL CONNECTION DIAGRAM

# 16.1 Connection Diagram on \$1C62440/4A0/4C0/480 only



- \*1 S1C624A0/4C0/480 only
- \*2 The S1C624C0/480 can be used up to SEG50

## 16.2 Connection Diagram when External Device is Connected



#### 16.3 Recommended Values for External Parts

Table 16.3.1 Recommended values for external parts

| X'tal   | Crystal oscillator            | 32,768 Hz, CI (MAX)=35 kΩ |
|---------|-------------------------------|---------------------------|
| Rfx     | Feedback resistor             | 10 ΜΩ                     |
| Cgx     | Trimmer capacitor             | 5-25 pF                   |
| Ceramic | Ceramic oscillator            | 500 kHz-2 MHz             |
| Rfc     | Feedback resistor             | 1 ΜΩ                      |
| Cgc     | Gate capacitance              | 100 pF                    |
| Cdc     | Drain capacitance             | 100 pF                    |
| Rcr     | Resistance for CR oscillation | 20 kΩ-100 kΩ              |
| Cı      | Voltage booster capacitor (1) | 0.1 μF *1                 |
| C2      | Voltage booster capacitor (2) | 0.1 μF *1                 |
| Сз      | Voltage booster capacitor (3) | 0.1 μF *1                 |
| C4      | Capacitor between VDD and VL1 | 0.1 μF *1                 |
| C5      | Capacitor between VDD and VL2 | 0.1 μF *1                 |
| C6      | Capacitor between VDD and VL4 | 0.1 μF *1                 |
| C7      | Capacitor between VDD and VL5 | 0.1 μF *1                 |
| C8      | Capacitor between VDD and VS1 | 0.1 μF                    |

<sup>\*1</sup> When the load on the liquid crystal system is large, increase the capacitance of the voltage booster capacitors (C1–C3) and the capacitors between VDD and liquid crystal system power (C4–C7).

### CHAPTER 17 ELECTRICAL CHARACTERISTICS

## 17.1 Absolute Maximum Rating

(VDD = 0V)

| Item                       | Code              | Rated Value                  | Unit |
|----------------------------|-------------------|------------------------------|------|
| Supply voltage             | Vss               | -7.0 to 0.5                  | V    |
| Input voltage (1)          | VI Vss-0.3 to 0.5 |                              | V    |
| Input voltage (2)          | Viosc             | Vs1-0.3 to 0.5               | V    |
| Operating temperature      | Topr              | -20 to 70                    | °C   |
| Storage temperature        | Tstg              | -65 to 150                   | °C   |
| Soldered temperature, time | Tsol              | 260°C, 10 sec (lead section) | _    |
| Permitted loss *1          | PD                | 250                          | mW   |

<sup>\*1</sup> For 128-pin and 144-pin plastic package

## 17.2 Recommended Operating Conditions

 $(Ta = -20 \text{ to } 70^{\circ}C)$ 

| Item                          | Code       | Condition |           | Min. | Тур.   | Max.  | Unit |
|-------------------------------|------------|-----------|-----------|------|--------|-------|------|
| Supply voltage                | Vss        | VDD = 0V  | VSC = "0" | -3.8 | -3.0   | -1.8  | V    |
|                               |            |           | VSC = "1" | -5.5 | -3.0   | -2.2  | V    |
|                               |            |           | VSC = "2" | -5.5 | -5.0   | -3.5  | V    |
| Oscillation frequency (1)     | fosc1      |           |           | 20   | 32.768 | 50    | kHz  |
| Oscillation frequency (2)     | fosc3      | VSC = "1" |           | 50   | 1,000  | 1,200 | kHz  |
| Oscillation frequency (3)     | fosc3      | VSC = "2" |           | 50   | 2,000  | 2,300 | kHz  |
| Voltage booster capacitor (1) | C1         |           |           |      | 0.1    |       | μF   |
| Voltage booster capacitor (2) | C2         |           |           |      | 0.1    |       | μF   |
| Voltage booster capacitor (3) | Сз         |           |           |      | 0.1    |       | μF   |
| Capacitor between VDD and VL1 | C4         |           |           |      | 0.1    |       | μF   |
| Capacitor between VDD and VL2 | C5         |           |           |      | 0.1    |       | μF   |
| Capacitor between VDD and VL4 | C6         |           |           |      | 0.1    |       | μF   |
| Capacitor between VDD and VL5 | <b>C</b> 7 |           |           |      | 0.1    |       | μF   |
| Capacitor between VDD and VS1 | C8         |           |           |      | 0.1    |       | μF   |

## 17.3 DC Characteristics

## S1C62440

Unless otherwise specified, the values listed below are standard values under the following conditions:

 $(VDD=0V,\ VSS=-3.0V,\ VL1=-1.0V,\ VL2=-2.0V,\ VL4=-3.0V,\ VL5=-4.0V,\ fosc1=32,768Hz,\ fosc3=1MHz,\ Ta=25^{\circ}C,\ C1=C2=C3=C4=C5=C6=C7=C8=0.047\mu F)$ 

| Item                     | Code | Condition              |                  | Min. | Тур. | Max. | Unit |
|--------------------------|------|------------------------|------------------|------|------|------|------|
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | K00-03·10-13     | 0.2  |      | 0    | V    |
|                          |      | Ta=25°C                | P00-03·10-13     | Vss  |      |      |      |
| Low-level input voltage  | VLIN |                        | P20-23           | Vss  |      | 0.8  | V    |
|                          |      |                        | SIN, SCLK        |      |      | Vss  |      |
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | RESET            | -0.2 |      | 0    | V    |
| Low-level input voltage  | VLIN | Ta=25°C                |                  | Vss  |      | Vss  | V    |
|                          |      |                        |                  |      |      | +0.2 |      |
| High-level input current | IIH  | Vss=-3.0V              | K00-03·10-13     | 0    |      | 0.5  | μA   |
|                          |      | VIH=0V                 | P00-03·10-13     |      |      |      |      |
|                          |      |                        | P20-23           |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL1 | Vss=-3.0V              | K00-03·10-13     | -45  |      | -15  | μA   |
| input current (1)        |      | VIL1=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | Has pull-up resistance | P20-23           |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL2 | Vss=-3.0V              | K00-03·10-13     | -0.5 |      | 0    | μA   |
| input current (2)        |      | VIL2=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | No pull-up resistance  | P20-23           |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| High-level               | IOH1 | Vss=-2.2V              | P00-03·10-13     |      |      | -1.0 | mA   |
| output current (1)       |      | VoH1=-0.5V             | P20-23           |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| Low-level                | IOL1 | Vss=-2.2V              | P00-03·10-13     | 4.0  |      |      | mA   |
| output current (1)       |      | Vol1=Vss+0.5V          | P20-23           |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| High-level               | Іон2 | Vss=-2.2V              | R42·43           |      |      | -2.0 | mA   |
| output current (2)       | _    | VOH2=-0.5V             |                  |      |      |      |      |
| Low-level                | IOL2 | Vss=-2.2V              | R42·43           | 8.0  |      |      | mA   |
| output current (2)       |      | VOL2=VSS+0.5V          | 00150 15         |      |      |      |      |
| Common output current    |      | Vонз=-0.05V            | COM0-15          |      |      | -30  | μA   |
|                          | IOL3 | Vol3=Vl5+0.05V         |                  | 30   |      |      | μA   |
| Segment output current   |      | VOH4=-0.05V            | SEG0-39          |      |      | -10  | μA   |
|                          | IOL4 | VOL4=VL5+0.05V         |                  | 10   |      |      | μA   |

#### S1C624A0

Unless otherwise specified, the values listed below are standard values under the following conditions:

 $(\mbox{Vdd=0V, Vss=-3.0V, Vl1=-1.0V, Vl2=-2.0V, Vl4=-3.0V, Vl5=-4.0V, fosc1=32,768Hz, fosc3=1MHz, Ta=25°C, C1=C2=C3=C4=C5=C6=C7=C8=0.047\mu\mbox{F})}$ 

| Item                     | Code | Condition              | ·                | Min. | Тур. | Max. | Unit |
|--------------------------|------|------------------------|------------------|------|------|------|------|
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | K00-03·10-13     | 0.2  |      | 0    | V    |
|                          |      | Ta=25°C                | P00-03·10-13     | Vss  |      |      |      |
| Low-level input voltage  | VLIN |                        | P20-23·30-33     | Vss  |      | 0.8  | V    |
|                          |      |                        | SIN, SCLK        |      |      | Vss  |      |
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | RESET            | -0.2 |      | 0    | V    |
| Low-level input voltage  | VLIN | Ta=25°C                |                  | Vss  |      | Vss  | V    |
|                          |      |                        |                  |      |      | +0.2 |      |
| High-level input current | IIH  | Vss=-3.0V              | K00-03·10-13     | 0    |      | 0.5  | μA   |
|                          |      | VIH=0V                 | P00-03·10-13     |      |      |      |      |
|                          |      |                        | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL1 | Vss=-3.0V              | K00-03·10-13     | -45  |      | -15  | μA   |
| input current (1)        |      | VIL1=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | Has pull-up resistance | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL2 | Vss=-3.0V              | K00-03·10-13     | -0.5 |      | 0    | μA   |
| input current (2)        |      | VIL2=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | No pull-up resistance  | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| High-level               | Іон1 | Vss=-2.2V              | P00-03·10-13     |      |      | -1.0 | mA   |
| output current (1)       |      | VOH1=-0.5V             | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| Low-level                | IOL1 | Vss=-2.2V              | P00-03·10-13     | 4.0  |      |      | mA   |
| output current (1)       |      | VOL1=VSS+0.5V          | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| High-level               | Іон2 | Vss=-2.2V              | R42·43           |      |      | -2.0 | mA   |
| output current (2)       |      | VOH2=-0.5V             |                  |      |      |      |      |
| Low-level                | IOL2 | Vss=-2.2V              | R42·43           | 8.0  |      |      | mA   |
| output current (2)       |      | Vol2=Vss+0.5V          |                  |      |      |      |      |
| Common output current    | Іонз | VOH3=-0.05V            | COM0-15          |      |      | -30  | μA   |
|                          | IOL3 | VOL3=VL5+0.05V         |                  | 30   |      |      | μA   |
| Segment output current   | Іон4 | VOH4=-0.05V            | SEG0-39          |      |      | -10  | μA   |
|                          | IOL4 | VOL4=VL5+0.05V         |                  | 10   |      |      | μA   |

#### S1C624C0

Unless otherwise specified, the values listed below are standard values under the following conditions:

 $(V_{DD}=0V,\ V_{SS}=-3.0V,\ V_{L1}=-1.0V,\ V_{L2}=-2.0V,\ V_{L4}=-3.0V,\ V_{L5}=-4.0V,\ fosc1=32,768Hz,\ fosc3=1MHz,\ Ta=25^{\circ}C,\ C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=C_{6}=C_{7}=C_{8}=0.047\mu F)$ 

| Item                     | Code | Condition              |                  | Min. | Тур. | Max. | Unit |
|--------------------------|------|------------------------|------------------|------|------|------|------|
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | K00-03·10-13     | 0.2  |      | 0    | V    |
|                          |      | Ta=25°C                | P00-03·10-13     | Vss  |      |      |      |
| Low-level input voltage  | VLIN |                        | P20-23·30-33     | Vss  |      | 0.8  | V    |
|                          |      |                        | SIN, SCLK        |      |      | Vss  |      |
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | RESET            | -0.2 |      | 0    | V    |
| Low-level input voltage  | VLIN | Ta=25°C                |                  | Vss  |      | Vss  | V    |
|                          |      |                        |                  |      |      | +0.2 |      |
| High-level input current | IIH  | Vss=-3.0V              | K00-03·10-13     | 0    |      | 0.5  | μA   |
|                          |      | VIH=0V                 | P00-03·10-13     |      |      |      |      |
|                          |      |                        | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL1 | Vss=-3.0V              | K00-03·10-13     | -45  |      | -15  | μA   |
| input current (1)        |      | VIL1=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | Has pull-up resistance | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL2 | Vss=-3.0V              | K00-03·10-13     | -0.5 |      | 0    | μA   |
| input current (2)        |      | VIL2=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | No pull-up resistance  | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| High-level               | Іон1 | Vss=-2.2V              | P00-03·10-13     |      |      | -1.0 | mA   |
| output current (1)       |      | VOH1=-0.5V             | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| Low-level                | IOL1 | Vss=-2.2V              | P00-03·10-13     | 4.0  |      |      | mA   |
| output current (1)       |      | VOL1=VSS+0.5V          | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40·41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| High-level               | Іон2 | Vss=-2.2V              | R42·43           |      |      | -2.0 | mA   |
| output current (2)       |      | VOH2=-0.5V             |                  |      |      |      |      |
| Low-level                | IOL2 | Vss=-2.2V              | R42·43           | 8.0  |      |      | mA   |
| output current (2)       |      | Vol2=Vss+0.5V          |                  |      |      |      |      |
| Common output current    |      | V0H3=-0.05V            | COM0-15          |      |      | -30  | μA   |
|                          | IOL3 | VOL3=VL5+0.05V         |                  | 30   |      |      | μA   |
| Segment output current   | Іон4 | VOH4=-0.05V            | SEG0-50          |      |      | -10  | μA   |
|                          | IOL4 | VOL4=VL5+0.05V         |                  | 10   |      |      | μA   |

#### S1C62480

Unless otherwise specified, the values listed below are standard values under the following conditions:

 $(\mbox{Vdd=0V, Vss=-3.0V, Vl1=-1.0V, Vl2=-2.0V, Vl4=-3.0V, Vl5=-4.0V, fosc1=32,768Hz, fosc3=1MHz, Ta=25°C, C1=C2=C3=C4=C5=C6=C7=C8=0.047\mu\mbox{F})}$ 

| Item                     | Code | Condition              |                  | Min. | Тур. | Max. | Unit |
|--------------------------|------|------------------------|------------------|------|------|------|------|
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | K00-03·10-13     | 0.2  |      | 0    | V    |
|                          |      | Ta=25°C                | P00-03·10-13     | Vss  |      |      |      |
| Low-level input voltage  | VLIN |                        | P20-23·30-33     | Vss  |      | 0.8  | V    |
|                          |      |                        | SIN, SCLK        |      |      | Vss  |      |
| High-level input voltage | VHIN | Vss=-2.2 to -5.5V      | RESET            | -0.2 |      | 0    | V    |
| Low-level input voltage  | VLIN | Ta=25°C                |                  | Vss  |      | Vss  | V    |
|                          |      |                        |                  |      |      | +0.2 |      |
| High-level input current | IIH  | Vss=-3.0V              | K00-03·10-13     | 0    |      | 0.5  | μA   |
|                          |      | VIH=0V                 | P00-03·10-13     |      |      |      |      |
|                          |      |                        | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL1 | Vss=-3.0V              | K00-03·10-13     | -45  |      | -15  | μA   |
| input current (1)        |      | VIL1=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | Has pull-up resistance | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| Low-level                | IIL2 | Vss=-3.0V              | K00-03·10-13     | -0.5 |      | 0    | μA   |
| input current (2)        |      | VIL2=VSS               | P00-03·10-13     |      |      |      |      |
|                          |      | No pull-up resistance  | P20-23·30-33     |      |      |      |      |
|                          |      |                        | SIN, SCLK, RESET |      |      |      |      |
| High-level               | Іон1 | Vss=-2.2V              | P00-03·10-13     |      |      | -1.0 | mA   |
| output current (1)       |      | Vон1=-0.5V             | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40-41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| Low-level                | IOL1 | Vss=-2.2V              | P00-03·10-13     | 4.0  |      |      | mA   |
| output current (1)       |      | VOL1=VSS+0.5V          | P20-23·30-33     |      |      |      |      |
|                          |      |                        | R00-03·10-13     |      |      |      |      |
|                          |      |                        | R20-23·30-33     |      |      |      |      |
|                          |      |                        | R40-41           |      |      |      |      |
|                          |      |                        | SOUT, SCLK       |      |      |      |      |
| High-level               | Іон2 | Vss=-2.2V              | R42-43           |      |      | -2.0 | mA   |
| output current (2)       |      | VOH2=-0.5V             |                  |      |      |      |      |
| Low-level                | IOL2 | Vss=-2.2V              | R42-43           | 8.0  |      |      | mA   |
| output current (2)       |      | VOL2=VSS+0.5V          |                  |      |      |      |      |
| Common output current    | Іонз | V0H3=-0.05V            | COM0-15          |      |      | -30  | μA   |
| _                        | IOL3 | VOL3=VL5+0.05V         | 1                | 30   |      |      | μA   |
| Segment output current   | Іон4 | VOH4=-0.05V            | SEG0-50          |      |      | -10  | μA   |
|                          | IOL4 | VOL4=VL5+0.05V         | 1                | 10   |      |      | μA   |

# 17.4 Analog Circuit Characteristics and Consumed Current

Unless otherwise specified, the values listed below are standard values under the following conditions:

 $(V_{DD}=0V,\ V_{SS}=-3.0V,\ V_{L1}=-1.0V,\ V_{L2}=-2.0V,\ V_{L4}=-3.0V,\ V_{L5}=-4.0V,\ fosc1=32,768Hz,\ fosc3=1MHz,\ Ta=25^{\circ}C,\ C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=C_{6}=C_{7}=C_{8}=0.047\mu F)$ 

| Item             | Code     | Condition                                 | •                | Min.     | Тур.           | Max.     | Unit       |
|------------------|----------|-------------------------------------------|------------------|----------|----------------|----------|------------|
| Liquid crystal   | VL1      | Connects a $1M\Omega$ load resist         | ance             | 1/2·VL2  |                | 1/2·VL2  | V          |
| drive voltage    |          | between VDD and VL1 (No pa                | anel load)       | -0.1     |                | ×0.95    |            |
| (Normal mode)    | VL2      | Connects a 1MΩ load                       | LC="0"           |          | -1.80          |          |            |
|                  |          | resistance between                        | LC="1"           |          | -1.85          |          |            |
|                  |          | VDD and VL2                               | LC="2"           |          | -1.90          |          |            |
|                  |          | (No panel load)                           | LC="3"           |          | -1.95          |          |            |
|                  |          | (140 parier load)                         | LC="4"           |          | -2.01          |          |            |
|                  |          |                                           | LC="5"<br>LC="6" |          | -2.06<br>-2.11 |          |            |
|                  |          |                                           | LC= 6<br>LC="7"  |          | -2.11          |          |            |
|                  |          |                                           | LC= 7<br>LC="8"  | TYP×1.12 | -2.17          | TYP×0.88 | V          |
|                  |          |                                           | LC= 8<br>LC="9"  |          | -2.27          |          |            |
|                  |          |                                           | LC="10"          |          | -2.32          |          |            |
|                  |          |                                           | LC="11"          | -        | -2.38          |          |            |
|                  |          |                                           | LC="12"          | -        | -2.43          |          |            |
|                  |          |                                           | LC="13"          | -        | -2.48          |          |            |
|                  |          |                                           | LC="14"          |          | -2.53          |          |            |
|                  |          |                                           | LC="15"          |          | -2.59          |          |            |
|                  | VL4      | Connects a $1 \text{M}\Omega$ load resist |                  | 3/2·VL2  |                | 3/2·VL2  | V          |
|                  |          | between VDD and VL4 (No pa                |                  |          | ×0.95          |          |            |
|                  | $V_{L5}$ | Connects a $1M\Omega$ load resist         | ance             | 2·VL2    |                | 2·VL2    | V          |
|                  |          | between VDD and VL5 (No pa                | anel load)       |          |                | ×0.95    |            |
| Liquid crystal   | VL1      | Connects a 1MΩ load                       | LC="0"           |          | -0.92          |          |            |
| drive voltage    |          | resistance between                        | LC="1"           |          | -0.95          |          |            |
| (Heavy load      |          | VDD and VL1                               | LC="2"           |          | -0.97          |          |            |
| protection mode) |          | (No panel load)                           | LC="3"           |          | -1.00          |          |            |
| protection mode) |          | (ito parier load)                         | LC="4"<br>LC="5" |          | -1.03<br>-1.05 |          |            |
|                  |          |                                           | LC= 5<br>LC="6"  | -        | -1.03          |          |            |
|                  |          |                                           | LC="7"           |          | -1.11          |          | <b>T</b> 7 |
|                  |          |                                           | LC="8"           | TYP×1.12 | -1.13          | TYP×0.88 | V          |
|                  |          |                                           | LC="9"           |          | -1.16          |          |            |
|                  |          |                                           | LC="10"          |          | -1.18          |          |            |
|                  |          |                                           | LC="11"          |          | -1.21          |          |            |
|                  |          |                                           | LC="12"          |          | -1.24          |          |            |
|                  |          |                                           | LC="13"          |          | -1.26          |          |            |
|                  |          |                                           | LC="14"          |          | -1.29          |          |            |
|                  |          |                                           | LC="15"          |          | -1.32          |          |            |
|                  | VL2      | Connects a $1M\Omega$ load resist         |                  | 2·VL1    |                | 2·VL1    | V          |
|                  |          | between VDD and VL2 (No pa                |                  |          | ×0.90          |          |            |
|                  | VL4      | Connects a $1M\Omega$ load resist         |                  | 3·Vl1    |                | 3·VL1    | V          |
|                  |          | between VDD and VL4 (No pa                |                  |          |                | ×0.90    |            |
|                  | VL5      | Connects a $1M\Omega$ load resist         |                  | 4·VL1    |                | 4·VL1    | V          |
|                  |          | between VDD and VL5 (No pa                | anel load)       |          |                | ×0.90    |            |

| Item                      | Code  | Condition                   |                 | Min.  | Тур.  | Max.  | Unit |
|---------------------------|-------|-----------------------------|-----------------|-------|-------|-------|------|
| SVD voltage               | VSVD0 | SVC = "0"                   |                 | -2.35 | -2.20 | -2.05 | V    |
|                           | VSVD1 | SVC = "1"                   |                 | -2.70 | -2.50 | -2.30 | V    |
|                           | VSVD2 | SVC = "2"                   |                 | -3.30 | -3.10 | -2.90 | V    |
|                           | VSVD3 | SVC = "3"                   |                 | -4.50 | -4.20 | -3.90 | V    |
| SVD circuit response time | tsvd  |                             |                 |       | 100   | μs    |      |
| Consumed current          | Ihlt  | During HALT No panel load*1 |                 |       | 2.5   | 5.0   | μA   |
|                           | IEX1  | During operation at 32kHz   |                 |       | 6.5   | 9.0   | μA   |
|                           | IEX2  | During operation at 1MHz    |                 |       | 400   | 600   | μA   |
|                           | IEX3  | During operation at 2MHz    | No panel load*3 |       | 1,000 | 1,500 | μA   |
| Consumed current*4        | Ihlt  | During HALT                 | No panel load*5 |       | 20    | 70    | μA   |
| (OSC1•CR oscillation)     | IEX1  | During operation at fosc1   |                 |       | 25    | 80    | μA   |
|                           | IEX2  | During operation at 1MHz    |                 |       | 420   | 600   | μA   |
|                           | IEX3  | During operation at 2MHz    | No panel load*6 |       | 1,000 | 1,500 | μA   |

<sup>\*1</sup> The SVD circuit is in the OFF status. OSC1 is crystal oscillation circuit. VSC = "0", OSCC = "0"

<sup>\*2</sup> The SVD circuit is in the OFF status. OSC1 is crystal oscillation circuit. VSC = "1"

<sup>\*3</sup> The SVD circuit is in the OFF status. OSC1 is crystal oscillation circuit. VSC = "2", Vss = -5.0 V

<sup>\*4</sup> Applies for S1C62440/4C0/480.

<sup>\*5</sup> The SVD circuit is in the OFF status. OSC1 is CR oscillation circuit. VSC = "0" or "1", OSCC = "0", Rosc for OSC1 = 1.6 M $\Omega$ 

<sup>\*6</sup> The SVD circuit is in the OFF status. OSC1 is CR oscillation circuit. VSC = "2", OSCC = "0", Rosc for OSC1 = 1.6  $M\Omega$ 

## 17.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

## - OSC1 crystal oscillation characteristics

If no special requirement

VDD=0V, VSS=-3.0V, Crystal: Q13MC146, Ta=25°C,

CGX=25pF, CDX=built-in, Rfx=10MΩ, VSC="0"

| Item                        | Code   | Condition                | Min. | Тур. | Max. | Unit |
|-----------------------------|--------|--------------------------|------|------|------|------|
| Oscillation start time      | tsta   | Vss=-2.2 to -5.5V        |      |      | 5    | sec  |
| Built-in drain capacitance  | CD     | Package as assembled     |      | 22   |      | pF   |
|                             |        | Bare chip                |      | 21   |      | pF   |
| Frequency/voltage deviation | ∂f/∂V  | Vss=-2.2 to -5.5V        |      |      | 5    | ppm  |
| Frequency/IC deviation      | ∂f/∂IC |                          | -10  |      | +10  | ppm  |
| Frequency adjustment        | ∂f/∂CG | CG=5 to 25pF             | 35   | 45   |      | ppm  |
| Harmonic oscillation        | Vhho   | CG=5pF                   |      |      | -5.5 | V    |
| Permitted leak resistance   | Rleak  | Between OSC1and VDD, VS1 | 200  |      |      | ΜΩ   |

#### - OSC1 CR oscillation characteristics ........... S1C62440/4C0/480 only

If no special requirement

VDD=0V, VSS=-3.0V, Ta=25°C, VSC="0" or "1"

| 122 01, 122 0101            | ,     | 0, 100 0 01 1      |        |      |         |      |
|-----------------------------|-------|--------------------|--------|------|---------|------|
| Item                        | Code  | Condition          | Min.   | Тур. | Max.    | Unit |
| Oscillation start time      | tsta  | Vss=-2.2 to -5.5V  |        |      | 3       | ms   |
| Frequency/voltage deviation | ∂f/∂V | Vss=-2.2 to -5.5V  | -5     |      | +5      | %    |
| Oscillation frequency       | fcr   | Rosc= $1.6M\Omega$ | 32×70% | 32   | 32×130% | kHz  |

#### - OSC3 CR oscillation characteristics 1

If no special requirement

VDD=0V, VSS=-3.0V, Ta=25°C, VSC="1"

| Item                        | Code  | Condition         | Min.    | Тур. | Max.     | Unit |
|-----------------------------|-------|-------------------|---------|------|----------|------|
| Oscillation start time      | tsta  | Vss=-2.2 to -5.5V |         |      | 3        | ms   |
| Frequency/voltage deviation | ∂f/∂V | Vss=-2.2 to -5.5V | -5      |      | +5       | %    |
| Oscillation frequency       | fcr   | Rosc=40kΩ         | 860×70% | 860  | 860×130% | kHz  |

#### - OSC3 CR oscillation characteristics 2

If no special requirement

VDD=0V, VSS=-5.0V, Ta=25°C, VSC="2"

| Item                        | Code  | Condition         | Min.    | Тур. | Max.     | Unit |
|-----------------------------|-------|-------------------|---------|------|----------|------|
| Oscillation start time      | tsta  | Vss=-3.5 to -5.5V |         |      | 3        | ms   |
| Frequency/voltage deviation | ∂f/∂V | Vss=-3.5 to -5.5V | -5      |      | +5       | %    |
| Oscillation frequency       | fcr   | $Rosc=20k\Omega$  | 1.7×70% | 1.7  | 1.7×130% | MHz  |

#### - OSC3 ceramic oscillation characteristics 1

If no special requirement

VDD=0V, VSS=-3.0V, Ta=25°C, VSC="1"

Ceramic oscillator: CSB 1000J (Murata Mfg. Co.)

 $C_{GC}=C_{DC}=100pF$ ,  $R_{fC}=1M\Omega$ 

| Item                        | Code  | Condition         | Min. | Тур. | Max. | Unit |
|-----------------------------|-------|-------------------|------|------|------|------|
| Oscillation start time      | tsta  | Vss=-2.2 to -5.5V |      |      | 3    | ms   |
| Frequency/voltage deviation | ∂f/∂V | Vss=-2.2 to -5.5V | -3   |      | +3   | %    |

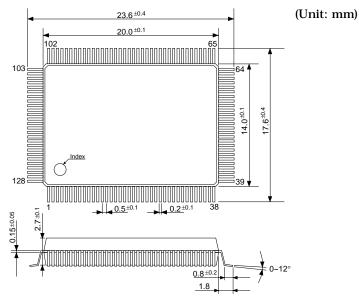
#### - OSC3 ceramic oscillation characteristics 2

If no special requirement

VDD=0V, VSS=-5.0V, Ta=25°C, VSC="2"

Ceramic oscillator: CSA 2.00MG (Murata Mfg. Co.)

 $C_{GC=CDC=100pF},\ R_{fc=1M\Omega}$ 


| Item                        | Code  | Condition         | Min. | Тур. | Max. | Unit |
|-----------------------------|-------|-------------------|------|------|------|------|
| Oscillation start time      | tsta  | Vss=-3.5 to -5.5V |      |      | 3    | ms   |
| Frequency/voltage deviation | ∂f/∂V | Vss=-3.5 to -5.5V | -3   |      | +3   | %    |

# CHAPTER 18 PACKAGE

# 18.1 Plastic Package

QFP5-128 pin

S1C62440/4A0



QFP8-144 pin

S1C624C0/480

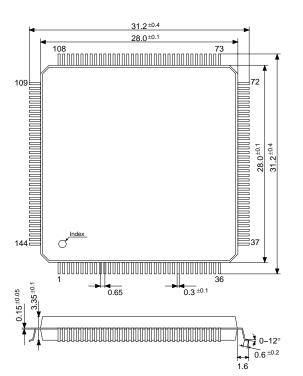



Fig. 18.1.1 Plastic packages

## 18.2 Ceramic Package for Test Samples (Unit: mm) Ceramic PGA-132 pin S1C62440/4A0 Index Ø1.0 1 20+0 20 4.60±0.30 13 12 $\bigoplus \bigoplus \bigoplus$ $\bigoplus \bigoplus \bigoplus$ 11 $\oplus \oplus \oplus$ $\bigoplus \bigoplus \bigoplus$ 10 132- \$\phi\_{1.80\pm 0.15} $\bigoplus \bigoplus \bigoplus$ 9 $\bigoplus \bigoplus \bigoplus$ $\bigoplus \bigoplus \bigoplus$ **BOTTOM VIEW** $\oplus \oplus \oplus$ $\oplus \oplus \oplus$ 7 $\bigoplus \bigoplus \bigoplus$ $\bigoplus \bigoplus \bigoplus$ 6 $\bigoplus \bigoplus \bigoplus$ $\bigoplus \bigoplus \bigoplus$ 5 $\bigoplus \bigoplus \bigoplus$ $\bigoplus \bigoplus \bigoplus$ 3 P N M L K J H G F E D C B A

Fig. 18.2.1 Ceramic package for test samples (S1C62440/4A0)

## Ceramic QFP8-144 pin

## S1C624C0/480

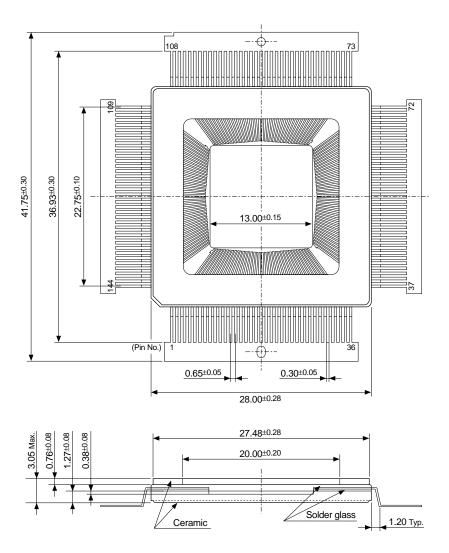



Fig. 18.2.2 Ceramic package for test sample (S1C624C0/480)

Table 18.2.1 Pin coordinates (S1C62440)

| Pin No. | Coordinate | Name  | Pin No. | Coordinate | Name  | Pin No. | Coordinate | Name | Pin No. | Coordinate | Name                        |
|---------|------------|-------|---------|------------|-------|---------|------------|------|---------|------------|-----------------------------|
| 1       | СЗ         | VL5   | 34      | М3         | SEG32 | 67      | M12        | N.C. | 100     | C12        | N.C.                        |
| 2       | A1         | CF    | 35      | P1         | SEG31 | 68      | P14        | N.C. | 101     | A14        | R41                         |
| 3       | D3         | CE    | 36      | M4         | SEG30 | 69      | L12        | SCLK | 102     | C11        | R40                         |
| 4       | C2         | CD    | 37      | N3         | SEG29 | 70      | M13        | SOUT | 103     | B12        | R33                         |
| 5       | B1         | CC    | 38      | P2         | SEG28 | 71      | N14        | SIN  | 104     | A13        | R32                         |
| 6       | C1         | СВ    | 39      | Р3         | SEG27 | 72      | M14        | K13  | 105     | A12        | R31                         |
| 7       | E3         | CA    | 40      | M5         | SEG26 | 73      | K12        | K12  | 106     | C10        | R30                         |
| 8       | D2         | COM0  | 41      | N4         | SEG25 | 74      | L13        | K11  | 107     | B11        | R23                         |
| 9       | D1         | COM1  | 42      | P4         | SEG24 | 75      | L14        | K10  | 108     | A11        | R22                         |
| 10      | E2         | COM2  | 43      | N5         | SEG23 | 76      | K13        | K03  | 109     | B10        | R21                         |
| 11      | F3         | COM3  | 44      | M6         | SEG22 | 77      | J12        | K02  | 110     | C9         | R20                         |
| 12      | E1         | COM4  | 45      | P5         | SEG21 | 78      | K14        | K01  | 111     | A10        | N.C.                        |
| 13      | F2         | COM5  | 46      | N6         | SEG20 | 79      | J13        | K00  | 112     | В9         | N.C.                        |
| 14      | F1         | COM6  | 47      | P6         | SEG19 | 80      | J14        | N.C. | 113     | A9         | N.C.                        |
| 15      | G3         | COM7  | 48      | M7         | SEG18 | 81      | H12        | N.C. | 114     | C8         | N.C.                        |
| 16      | G2         | COM8  | 49      | N7         | SEG17 | 82      | H13        | N.C. | 115     | В8         | N.C.                        |
| 17      | G1         | СОМ9  | 50      | P7         | SEG16 | 83      | H14        | N.C. | 116     | A8         | N.C.                        |
| 18      | H1         | COM10 | 51      | P8         | SEG15 | 84      | G14        | P23  | 117     | A7         | N.C.                        |
| 19      | H2         | COM11 | 52      | N8         | SEG14 | 85      | G13        | P22  | 118     | В7         | N.C.                        |
| 20      | НЗ         | COM12 | 53      | M8         | SEG13 | 86      | G12        | P21  | 119     | C7         | Vss                         |
| 21      | J1         | COM13 | 54      | P9         | SEG12 | 87      | F14        | P20  | 120     | A6         | RESET                       |
| 22      | J2         | COM14 | 55      | N9         | SEG11 | 88      | F13        | P13  | 121     | В6         | TEST                        |
| 23      | K1         | COM15 | 56      | P10        | SEG10 | 89      | E14        | P12  | 122     | A5         | OSC4                        |
| 24      | Ј3         | SEG39 | 57      | М9         | SEG9  | 90      | F12        | P11  | 123     | C6         | OSC3                        |
| 25      | K2         | SEG38 | 58      | N10        | SEG8  | 91      | E13        | P10  | 124     | B5         | Vs1                         |
| 26      | L1         | SEG37 | 59      | P11        | SEG7  | 92      | D14        | P03  | 125     | A4         | OSC2                        |
| 27      | L2         | SEG36 | 60      | N11        | SEG6  | 93      | D13        | P02  | 126     | B4         | OSC1                        |
| 28      | К3         | SEG35 | 61      | M10        | SEG5  | 94      | E12        | P01  | 127     | C5         | $\mathbf{V}_{\mathrm{DD}}$  |
| 29      | M1         | SEG34 | 62      | P12        | SEG4  | 95      | C14        | P00  | 128     | A3         | $\mathbf{V}_{\mathrm{REF}}$ |
| 30      | N1         | SEG33 | 63      | P13        | SEG3  | 96      | B14        | R43  | 129     | A2         | VL1                         |
| 31      | M2         | N.C.  | 64      | N12        | SEG2  | 97      | C13        | R42  | 130     | В3         | VL2                         |
| 32      | L3         | N.C.  | 65      | M11        | SEG1  | 98      | D12        | N.C. | 131     | C4         | Vl3                         |
| 33      | N2         | N.C.  | 66      | N13        | SEG0  | 99      | B13        | N.C. | 132     | B2         | VL4                         |

Table 18.2.2 Pin coordinates (S1C624A0)

| Pin No. | Coordinate | Name     | Pin No. | Coordinate | Name  | Pin No. | Coordinate | Name | Pin No. | Coordinate | Name  |
|---------|------------|----------|---------|------------|-------|---------|------------|------|---------|------------|-------|
| 1       | C3         | $V_{L5}$ | 34      | М3         | SEG32 | 67      | M12        | N.C. | 100     | C12        | N.C.  |
| 2       | A1         | CF       | 35      | P1         | SEG31 | 68      | P14        | N.C. | 101     | A14        | R41   |
| 3       | D3         | CE       | 36      | M4         | SEG30 | 69      | L12        | SCLK | 102     | C11        | R40   |
| 4       | C2         | CD       | 37      | N3         | SEG29 | 70      | M13        | SOUT | 103     | B12        | R33   |
| 5       | B1         | CC       | 38      | P2         | SEG28 | 71      | N14        | SIN  | 104     | A13        | R32   |
| 6       | C1         | CB       | 39      | Р3         | SEG27 | 72      | M14        | K13  | 105     | A12        | R31   |
| 7       | E3         | CA       | 40      | M5         | SEG26 | 73      | K12        | K12  | 106     | C10        | R30   |
| 8       | D2         | COM0     | 41      | N4         | SEG25 | 74      | L13        | K11  | 107     | B11        | R23   |
| 9       | D1         | COM1     | 42      | P4         | SEG24 | 75      | L14        | K10  | 108     | A11        | R22   |
| 10      | E2         | COM2     | 43      | N5         | SEG23 | 76      | K13        | K03  | 109     | B10        | R21   |
| 11      | F3         | COM3     | 44      | M6         | SEG22 | 77      | J12        | K02  | 110     | С9         | R20   |
| 12      | E1         | COM4     | 45      | P5         | SEG21 | 78      | K14        | K01  | 111     | A10        | R13   |
| 13      | F2         | COM5     | 46      | N6         | SEG20 | 79      | J13        | K00  | 112     | В9         | R12   |
| 14      | F1         | COM6     | 47      | P6         | SEG19 | 80      | J14        | P33  | 113     | A9         | R11   |
| 15      | G3         | COM7     | 48      | M7         | SEG18 | 81      | H12        | P32  | 114     | C8         | R10   |
| 16      | G2         | COM8     | 49      | N7         | SEG17 | 82      | H13        | P31  | 115     | В8         | R03   |
| 17      | G1         | COM9     | 50      | P7         | SEG16 | 83      | H14        | P30  | 116     | A8         | R02   |
| 18      | H1         | COM10    | 51      | P8         | SEG15 | 84      | G14        | P23  | 117     | A7         | R01   |
| 19      | H2         | COM11    | 52      | N8         | SEG14 | 85      | G13        | P22  | 118     | В7         | R00   |
| 20      | НЗ         | COM12    | 53      | M8         | SEG13 | 86      | G12        | P21  | 119     | C7         | Vss   |
| 21      | J1         | COM13    | 54      | P9         | SEG12 | 87      | F14        | P20  | 120     | A6         | RESET |
| 22      | J2         | COM14    | 55      | N9         | SEG11 | 88      | F13        | P13  | 121     | В6         | TEST  |
| 23      | K1         | COM15    | 56      | P10        | SEG10 | 89      | E14        | P12  | 122     | A5         | OSC4  |
| 24      | J3         | SEG39    | 57      | М9         | SEG9  | 90      | F12        | P11  | 123     | C6         | OSC3  |
| 25      | K2         | SEG38    | 58      | N10        | SEG8  | 91      | E13        | P10  | 124     | B5         | Vs1   |
| 26      | L1         | SEG37    | 59      | P11        | SEG7  | 92      | D14        | P03  | 125     | A4         | OSC2  |
| 27      | L2         | SEG36    | 60      | N11        | SEG6  | 93      | D13        | P02  | 126     | B4         | OSC1  |
| 28      | К3         | SEG35    | 61      | M10        | SEG5  | 94      | E12        | P01  | 127     | C5         | Vdd   |
| 29      | M1         | SEG34    | 62      | P12        | SEG4  | 95      | C14        | P00  | 128     | А3         | VREF  |
| 30      | N1         | SEG33    | 63      | P13        | SEG3  | 96      | B14        | R43  | 129     | A2         | VL1   |
| 31      | M2         | N.C.     | 64      | N12        | SEG2  | 97      | C13        | R42  | 130     | В3         | VL2   |
| 32      | L3         | N.C.     | 65      | M11        | SEG1  | 98      | D12        | N.C. | 131     | C4         | VL3   |
| 33      | N2         | N.C.     | 66      | N13        | SEG0  | 99      | B13        | N.C. | 132     | B2         | VL4   |

Table 18.2.3 Pin coordinates (S1C624C0/480)

| Pin No. | Name  | Pin No. | Name  | Pin No. | Name | Pin No. | Name            |
|---------|-------|---------|-------|---------|------|---------|-----------------|
| 1       | СВ    | 37      | SEG36 | 73      | SEG1 | 109     | R33             |
| 2       | CA    | 38      | SEG35 | 74      | SEG0 | 110     | R32             |
| 3       | N.C.  | 39      | SEG34 | 75      | N.C. | 111     | R31             |
| 4       | COM0  | 40      | SEG33 | 76      | SCLK | 112     | R30             |
| 5       | COM1  | 41      | SEG32 | 77      | SOUT | 113     | R23             |
| 6       | COM2  | 42      | SEG31 | 78      | SIN  | 114     | R22             |
| 7       | COM3  | 43      | SEG30 | 79      | K13  | 115     | R21             |
| 8       | COM4  | 44      | SEG29 | 80      | K12  | 116     | R20             |
| 9       | COM5  | 45      | SEG28 | 81      | K11  | 117     | R13             |
| 10      | COM6  | 46      | SEG27 | 82      | K10  | 118     | R12             |
| 11      | COM7  | 47      | SEG26 | 83      | K03  | 119     | R11             |
| 12      | COM8  | 48      | SEG25 | 84      | N.C. | 120     | R10             |
| 13      | COM9  | 49      | SEG24 | 85      | K02  | 121     | R03             |
| 14      | COM10 | 50      | N.C.  | 86      | K01  | 122     | R02             |
| 15      | COM11 | 51      | SEG23 | 87      | K00  | 123     | R01             |
| 16      | COM12 | 52      | SEG22 | 88      | P33  | 124     | R00             |
| 17      | COM13 | 53      | SEG21 | 89      | P32  | 125     | Vss             |
| 18      | COM14 | 54      | SEG20 | 90      | P31  | 126     | RESET           |
| 19      | N.C.  | 55      | SEG19 | 91      | P30  | 127     | TEST            |
| 20      | COM15 | 56      | SEG18 | 92      | P23  | 128     | OSC4            |
| 21      | SEG50 | 57      | SEG17 | 93      | P22  | 129     | OSC3            |
| 22      | SEG49 | 58      | SEG16 | 94      | P21  | 130     | Vs1             |
| 23      | SEG48 | 59      | SEG15 | 95      | P20  | 131     | OSC2            |
| 24      | SEG47 | 60      | SEG14 | 96      | P13  | 132     | OSC1            |
| 25      | SEG46 | 61      | SEG13 | 97      | N.C. | 133     | N.C.            |
| 26      | SEG45 | 62      | SEG12 | 98      | P12  | 134     | Vdd             |
| 27      | SEG44 | 63      | SEG11 | 99      | P11  | 135     | Vref            |
| 28      | SEG43 | 64      | SEG10 | 100     | P10  | 136     | V <sub>L1</sub> |
| 29      | SEG42 | 65      | SEG9  | 101     | P03  | 137     | VL2             |
| 30      | SEG41 | 66      | SEG8  | 102     | P02  | 138     | VL3             |
| 31      | SEG40 | 67      | SEG7  | 103     | P01  | 139     | VL4             |
| 32      | SEG39 | 68      | SEG6  | 104     | P00  | 140     | VL5             |
| 33      | SEG38 | 69      | SEG5  | 105     | R43  | 141     | CF              |
| 34      | SEG37 | 70      | SEG4  | 106     | R42  | 142     | CE              |
| 35      | N.C.  | 71      | SEG3  | 107     | R41  | 143     | CD              |
| 36      | N.C.  | 72      | SEG2  | 108     | R40  | 144     | CC              |

# CHAPTER 19 PAD LAYOUT

# 19.1 Diagram of Pad Layout

S1C62440

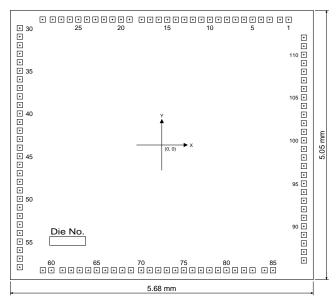



Fig. 19.1.1 Pad layout diagram (S1C62440)

Chip size:  $5.68 \text{ mm} \times 5.05 \text{ mm}$ 

S1C624A0



Fig. 19.1.2 Pad layout diagram (S1C624A0)

Chip size:  $5.68 \text{ mm} \times 5.69 \text{ mm}$ 

## S1C624C0/480

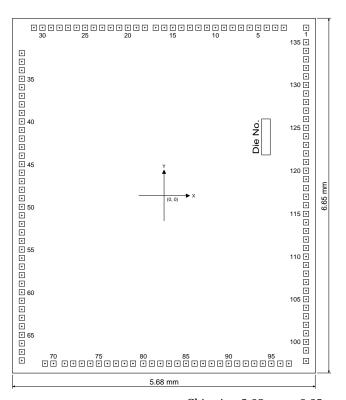



Fig. 19.1.3 Pad layout diagram (S1C624C0/480)

Chip size:  $5.68 \text{ mm} \times 6.65 \text{ mm}$ 

## 19.2 Pad Coordinates

Table 19.2.1 Pad coordinates (S1C62440)

| Pad No | Name  | X [mm] | Y [mm] | Pad No | Name  | X [mm] | Y [mm] | Pad No | Name            | X [mm] | Y [mm] |
|--------|-------|--------|--------|--------|-------|--------|--------|--------|-----------------|--------|--------|
| 1      | СВ    | 2.378  | 2.348  | 39     | SEG19 | -2.664 | 0.750  | 77     | P10             | 0.733  | -2.348 |
| 2      | CA    | 2.218  | 2.348  | 40     | SEG18 | -2.664 | 0.590  | 78     | P03             | 0.893  | -2.348 |
| 3      | COM0  | 2.022  | 2.348  | 41     | SEG17 | -2.664 | 0.430  | 79     | P02             | 1.053  | -2.348 |
| 4      | COM1  | 1.862  | 2.348  | 42     | SEG16 | -2.664 | 0.270  | 80     | P01             | 1.213  | -2.348 |
| 5      | COM2  | 1.702  | 2.348  | 43     | SEG15 | -2.664 | 0.110  | 81     | P00             | 1.373  | -2.348 |
| 6      | COM3  | 1.542  | 2.348  | 44     | SEG14 | -2.664 | -0.050 | 82     | R43             | 1.541  | -2.348 |
| 7      | COM4  | 1.382  | 2.348  | 45     | SEG13 | -2.664 | -0.210 | 83     | R42             | 1.701  | -2.348 |
| 8      | COM5  | 1.222  | 2.348  | 46     | SEG12 | -2.664 | -0.370 | 84     | R41             | 1.926  | -2.348 |
| 9      | COM6  | 1.062  | 2.348  | 47     | SEG11 | -2.664 | -0.530 | 85     | R40             | 2.086  | -2.348 |
| 10     | COM7  | 0.902  | 2.348  | 48     | SEG10 | -2.664 | -0.690 | 86     | R33             | 2.664  | -2.164 |
| 11     | COM8  | 0.742  | 2.348  | 49     | SEG9  | -2.664 | -0.850 | 87     | R32             | 2.664  | -2.004 |
| 12     | COM9  | 0.582  | 2.348  | 50     | SEG8  | -2.664 | -1.010 | 88     | R31             | 2.664  | -1.844 |
| 13     | COM10 | 0.422  | 2.348  | 51     | SEG7  | -2.664 | -1.170 | 89     | R30             | 2.664  | -1.684 |
| 14     | COM11 | 0.262  | 2.348  | 52     | SEG6  | -2.664 | -1.330 | 90     | R23             | 2.664  | -1.524 |
| 15     | COM12 | 0.102  | 2.348  | 53     | SEG5  | -2.664 | -1.490 | 91     | R22             | 2.664  | -1.364 |
| 16     | COM13 | -0.058 | 2.348  | 54     | SEG4  | -2.664 | -1.650 | 92     | R21             | 2.664  | -1.204 |
| 17     | COM14 | -0.218 | 2.348  | 55     | SEG3  | -2.664 | -1.810 | 93     | R20             | 2.664  | -1.044 |
| 18     | COM15 | -0.378 | 2.348  | 56     | SEG2  | -2.664 | -1.970 | 94     | Vss             | 2.664  | -0.882 |
| 19     | SEG39 | -0.582 | 2.348  | 57     | SEG1  | -2.664 | -2.130 | 95     | RESET           | 2.664  | -0.722 |
| 20     | SEG38 | -0.742 | 2.348  | 58     | SEG0  | -2.664 | -2.290 | 96     | TEST            | 2.664  | -0.562 |
| 21     | SEG37 | -0.902 | 2.348  | 59     | SCLK  | -2.232 | -2.348 | 97     | OSC4            | 2.664  | -0.394 |
| 22     | SEG36 | -1.062 | 2.348  | 60     | SOUT  | -2.072 | -2.348 | 98     | OSC3            | 2.664  | -0.234 |
| 23     | SEG35 | -1.222 | 2.348  | 61     | SIN   | -1.861 | -2.348 | 99     | Vs1             | 2.664  | -0.073 |
| 24     | SEG34 | -1.382 | 2.348  | 62     | K13   | -1.701 | -2.348 | 100    | OSC2            | 2.664  | 0.087  |
| 25     | SEG33 | -1.542 | 2.348  | 63     | K12   | -1.541 | -2.348 | 101    | OSC1            | 2.664  | 0.247  |
| 26     | SEG32 | -1.702 | 2.348  | 64     | K11   | -1.381 | -2.348 | 102    | Vdd             | 2.664  | 0.408  |
| 27     | SEG31 | -1.862 | 2.348  | 65     | K10   | -1.221 | -2.348 | 103    | Vref            | 2.664  | 0.569  |
| 28     | SEG30 | -2.022 | 2.348  | 66     | K03   | -1.061 | -2.348 | 104    | V <sub>L1</sub> | 2.664  | 0.732  |
| 29     | SEG29 | -2.182 | 2.348  | 67     | K02   | -0.901 | -2.348 | 105    | VL2             | 2.664  | 0.892  |
| 30     | SEG28 | -2.664 | 2.190  | 68     | K01   | -0.741 | -2.348 | 106    | VL3             | 2.664  | 1.052  |
| 31     | SEG27 | -2.664 | 2.030  | 69     | K00   | -0.581 | -2.348 | 107    | VL4             | 2.664  | 1.212  |
| 32     | SEG26 | -2.664 | 1.870  | 70     | P23   | -0.387 | -2.348 | 108    | VL5             | 2.664  | 1.374  |
| 33     | SEG25 | -2.664 | 1.710  | 71     | P22   | -0.227 | -2.348 | 109    | CF              | 2.664  | 1.532  |
| 34     | SEG24 | -2.664 | 1.550  | 72     | P21   | -0.067 | -2.348 | 110    | CE              | 2.664  | 1.692  |
| 35     | SEG23 | -2.664 | 1.390  | 73     | P20   | 0.093  | -2.348 | 111    | CD              | 2.664  | 1.852  |
| 36     | SEG22 | -2.664 | 1.230  | 74     | P13   | 0.253  | -2.348 | 112    | CC              | 2.664  | 2.012  |
| 37     | SEG21 | -2.664 | 1.070  | 75     | P12   | 0.413  | -2.348 |        |                 |        |        |
| 38     | SEG20 | -2.664 | 0.910  | 76     | P11   | 0.573  | -2.348 |        |                 |        |        |

Table 19.2.2 Pad coordinates (S1C624A0)

|        |       |        |        | C024A0 | ,     |        |        |        |                 |        |        |
|--------|-------|--------|--------|--------|-------|--------|--------|--------|-----------------|--------|--------|
| Pad No | Name  | X [mm] | Y [mm] | Pad No | Name  | X [mm] | Y [mm] | Pad No | Name            | X [mm] | Y [mm] |
| 1      | VL5   | 2.664  | 2.668  | 43     | SEG20 | -2.664 | 0.590  | 85     | P11             | 1.213  | -2.668 |
| 2      | CF    | 2.378  | 2.668  | 44     | SEG19 | -2.664 | 0.430  | 86     | P10             | 1.373  | -2.668 |
| 3      | CE    | 2.218  | 2.668  | 45     | SEG18 | -2.664 | 0.270  | 87     | P03             | 1.533  | -2.668 |
| 4      | CD    | 2.058  | 2.668  | 46     | SEG17 | -2.664 | 0.110  | 88     | P02             | 1.693  | -2.668 |
| 5      | CC    | 1.898  | 2.668  | 47     | SEG16 | -2.664 | -0.050 | 89     | P01             | 1.853  | -2.668 |
| 6      | СВ    | 1.738  | 2.668  | 48     | SEG15 | -2.664 | -0.210 | 90     | P00             | 2.013  | -2.668 |
| 7      | CA    | 1.578  | 2.668  | 49     | SEG14 | -2.664 | -0.370 | 91     | R43             | 2.181  | 2.668  |
| 8      | COM0  | 1.382  | 2.668  | 50     | SEG13 | -2.664 | -0.530 | 92     | R42             | 2.341  | -2.668 |
| 9      | COM1  | 1.222  | 2.668  | 51     | SEG12 | -2.664 | -0.690 | 93     | R41             | 2.664  | -2.620 |
| 10     | COM2  | 1.062  | 2.668  | 52     | SEG11 | -2.664 | -0.850 | 94     | R40             | 2.664  | -2.422 |
| 11     | COM3  | 0.902  | 2.668  | 53     | SEG10 | -2.664 | -1.010 | 95     | R33             | 2.664  | -2.262 |
| 12     | COM4  | 0.742  | 2.668  | 54     | SEG9  | -2.664 | -1.170 | 96     | R32             | 2.664  | -2.102 |
| 13     | COM5  | 0.582  | 2.668  | 55     | SEG8  | -2.664 | -1.330 | 97     | R31             | 2.664  | -1.942 |
| 14     | COM6  | 0.422  | 2.668  | 56     | SEG7  | -2.664 | -1.490 | 98     | R30             | 2.664  | -1.782 |
| 15     | COM7  | 0.262  | 2.668  | 57     | SEG6  | -2.664 | -1.650 | 99     | R23             | 2.664  | -1.622 |
| 16     | COM8  | 0.102  | 2.668  | 58     | SEG5  | -2.664 | -1.810 | 100    | R22             | 2.664  | -1.462 |
| 17     | COM9  | -0.058 | 2.668  | 59     | SEG4  | -2.664 | -1.970 | 101    | R21             | 2.664  | -1.302 |
| 18     | COM10 | -0.218 | 2.668  | 60     | SEG3  | -2.664 | -2.130 | 102    | R20             | 2.664  | -1.142 |
| 19     | COM11 | -0.378 | 2.668  | 61     | SEG2  | -2.664 | -2.290 | 103    | R13             | 2.664  | -0.982 |
| 20     | COM12 | -0.538 | 2.668  | 62     | SEG1  | -2.664 | -2.450 | 104    | R12             | 2.664  | -0.822 |
| 21     | COM13 | -0.698 | 2.668  | 63     | SEG0  | -2.664 | -2.610 | 105    | R11             | 2.664  | -0.662 |
| 22     | COM14 | -0.858 | 2.668  | 64     | SCLK  | -2.232 | -2.668 | 106    | R10             | 2.664  | -0.502 |
| 23     | COM15 | -1.018 | 2.668  | 65     | SOUT  | -2.072 | -2.668 | 107    | R03             | 2.664  | -0.342 |
| 24     | SEG39 | -1.222 | 2.668  | 66     | SIN   | -1.861 | -2.668 | 108    | R02             | 2.664  | -0.182 |
| 25     | SEG38 | -1.382 | 2.668  | 67     | K13   | -1.701 | -2.668 | 109    | R01             | 2.664  | -0.022 |
| 26     | SEG37 | -1.542 | 2.668  | 68     | K12   | -1.541 | -2.668 | 110    | R00             | 2.664  | 0.138  |
| 27     | SEG36 | -1.702 | 2.668  | 69     | K11   | -1.381 | -2.668 | 111    | Vss             | 2.664  | 0.300  |
| 28     | SEG35 | -1.862 | 2.668  | 70     | K10   | -1.221 | -2.668 | 112    | RESET           | 2.664  | 0.460  |
| 29     | SEG34 | -2.022 | 2.668  | 71     | K03   | -1.061 | -2.668 | 113    | TEST            | 2.664  | 0.620  |
| 30     | SEG33 | -2.182 | 2.668  | 72     | K02   | -0.901 | -2.668 | 114    | OSC4            | 2.664  | 0.788  |
| 31     | SEG32 | -2.664 | 2.510  | 73     | K01   | -0.741 | -2.668 | 115    | OSC3            | 2.664  | 0.948  |
| 32     | SEG31 | -2.664 | 2.350  | 74     | K00   | -0.581 | -2.668 | 116    | Vs1             | 2.664  | 1.109  |
| 33     | SEG30 | -2.664 | 2.190  | 75     | P33   | -0.387 | -2.668 | 117    | OSC2            | 2.664  | 1.270  |
| 34     | SEG29 | -2.664 | 2.030  | 76     | P32   | -0.227 | -2.668 | 118    | OSC1            | 2.664  | 1.430  |
| 35     | SEG28 | -2.664 | 1.870  | 77     | P31   | -0.067 | -2.668 | 119    | Vdd             | 2.664  | 1.590  |
| 36     | SEG27 | -2.664 | 1.710  | 78     | P30   | 0.093  | -2.668 | 120    | VREF            | 2.664  | 1.751  |
| 37     | SEG26 | -2.664 | 1.550  | 79     | P23   | 0.253  | -2.668 | 121    | V <sub>L1</sub> | 2.664  | 1.914  |
| 38     | SEG25 | -2.664 | 1.390  | 80     | P22   | 0.413  | -2.668 | 122    | VL2             | 2.664  | 2.074  |
| 39     | SEG24 | -2.664 | 1.230  | 81     | P21   | 0.573  | -2.668 | 123    | VL3             | 2.664  | 2.234  |
| 40     | SEG23 | -2.664 | 1.070  | 82     | P20   | 0.733  | -2.668 | 124    | VL4             | 2.664  | 2.394  |
| 41     | SEG22 | -2.664 | 0.910  | 83     | P13   | 0.893  | -2.668 |        |                 |        |        |
| 42     | SEG21 | -2.664 | 0.750  | 84     | P12   | 1.053  | -2.668 |        |                 |        |        |

Table 19.2.3 Pad coordinates (S1C624C0/480)

|        | J.2.0 . ac |        | latoo (O ! |        | ,,    |        |        |        |       |        |        |
|--------|------------|--------|------------|--------|-------|--------|--------|--------|-------|--------|--------|
| Pad No | Name       | X [mm] | Y [mm]     | Pad No | Name  | X [mm] | Y [mm] | Pad No | Name  | X [mm] | Y [mm] |
| 1      | CA         | 2.664  | 3.148      | 46     | SEG22 | -2.664 | 0.430  | 91     | P10   | 1.373  | -3.148 |
| 2      | COM0       | 2.244  | 3.148      | 47     | SEG21 | -2.664 | 0.270  | 92     | P03   | 1.533  | -3.148 |
| 3      | COM1       | 2.084  | 3.148      | 48     | SEG20 | -2.664 | 0.110  | 93     | P02   | 1.693  | -3.148 |
| 4      | COM2       | 1.924  | 3.148      | 49     | SEG19 | -2.664 | -0.050 | 94     | P01   | 1.853  | -3.148 |
| 5      | COM3       | 1.764  | 3.148      | 50     | SEG18 | -2.664 | -0.210 | 95     | P00   | 2.013  | -3.148 |
| 6      | COM4       | 1.604  | 3.148      | 51     | SEG17 | -2.664 | -0.370 | 96     | R43   | 2.181  | -3.148 |
| 7      | COM5       | 1.444  | 3.148      | 52     | SEG16 | -2.664 | -0.530 | 97     | R42   | 2.341  | -3.148 |
| 8      | COM6       | 1.284  | 3.148      | 53     | SEG15 | -2.664 | -0.690 | 98     | R41   | 2.664  | -3.100 |
| 9      | COM7       | 1.124  | 3.148      | 54     | SEG14 | -2.664 | -0.850 | 99     | R40   | 2.664  | -2.902 |
| 10     | COM8       | 0.964  | 3.148      | 55     | SEG13 | -2.664 | -1.010 | 100    | R33   | 2.664  | -2.742 |
| 11     | COM9       | 0.804  | 3.148      | 56     | SEG12 | -2.664 | -1.170 | 101    | R32   | 2.664  | -2.582 |
| 12     | COM10      | 0.644  | 3.148      | 57     | SEG11 | -2.664 | -1.330 | 102    | R31   | 2.664  | -2.422 |
| 13     | COM11      | 0.484  | 3.148      | 58     | SEG10 | -2.664 | -1.490 | 103    | R30   | 2.664  | -2.262 |
| 14     | COM12      | 0.324  | 3.148      | 59     | SEG9  | -2.664 | -1.650 | 104    | R23   | 2.664  | -2.102 |
| 15     | COM13      | 0.164  | 3.148      | 60     | SEG8  | -2.664 | -1.810 | 105    | R22   | 2.664  | -1.942 |
| 16     | COM14      | 0.004  | 3.148      | 61     | SEG7  | -2.664 | -1.970 | 106    | R21   | 2.664  | -1.782 |
| 17     | COM15      | -0.156 | 3.148      | 62     | SEG6  | -2.664 | -2.130 | 107    | R20   | 2.664  | -1.622 |
| 18     | SEG50      | -0.360 | 3.148      | 63     | SEG5  | -2.664 | -2.290 | 108    | R13   | 2.664  | -1.462 |
| 19     | SEG49      | -0.520 | 3.148      | 64     | SEG4  | -2.664 | -2.450 | 109    | R12   | 2.664  | -1.302 |
| 20     | SEG48      | -0.680 | 3.148      | 65     | SEG3  | -2.664 | -2.610 | 110    | R11   | 2.664  | -1.142 |
| 21     | SEG47      | -0.840 | 3.148      | 66     | SEG2  | -2.664 | -2.770 | 111    | R10   | 2.664  | -0.982 |
| 22     | SEG46      | -1.000 | 3.148      | 67     | SEG1  | -2.664 | -2.930 | 112    | R03   | 2.664  | -0.822 |
| 23     | SEG45      | -1.160 | 3.148      | 68     | SEG0  | -2.664 | -3.090 | 113    | R02   | 2.664  | -0.662 |
| 24     | SEG44      | -1.320 | 3.148      | 69     | SCLK  | -2.232 | -3.148 | 114    | R01   | 2.664  | -0.502 |
| 25     | SEG43      | -1.480 | 3.148      | 70     | SOUT  | -2.072 | -3.148 | 115    | R00   | 2.664  |        |
| 26     |            |        |            | 71     | SIN   |        |        |        |       |        | -0.342 |
|        | SEG42      | -1.640 | 3.148      |        |       | -1.861 | -3.148 | 116    | Vss   | 2.664  | -0.180 |
| 27     | SEG41      | -1.800 | 3.148      | 72     | K13   | -1.701 | -3.148 | 117    | RESET | 2.664  | -0.020 |
| 28     | SEG40      | -1.960 | 3.148      | 73     | K12   | -1.541 | -3.148 | 118    | TEST  | 2.664  | 0.140  |
| 29     | SEG39      | -2.120 | 3.148      | 74     | K11   | -1.381 | -3.148 | 119    | OSC4  | 2.664  | 0.308  |
| 30     | SEG38      | -2.280 | 3.148      | 75     | K10   | -1.221 | -3.148 | 120    | OSC3  | 2.664  | 0.468  |
| 31     | SEG37      | -2.440 | 3.148      | 76     | K03   | -1.061 | -3.148 | 121    | Vs1   | 2.664  | 0.629  |
| 32     | SEG36      | -2.664 | 2.670      | 77     | K02   | -0.901 | -3.148 | 122    | OSC2  | 2.664  | 0.790  |
| 33     | SEG35      | -2.664 | 2.510      | 78     | K01   | -0.741 | -3.148 | 123    | OSC1  | 2.664  | 0.950  |
| 34     | SEG34      | -2.664 | 2.350      | 79     | K00   | -0.581 | -3.148 | 124    | Vdd   | 2.664  | 1.111  |
| 35     | SEG33      | -2.664 | 2.190      | 80     | P33   | -0.387 | -3.148 | 125    | VREF  | 2.664  | 1.271  |
| 36     | SEG32      | -2.664 | 2.030      | 81     | P32   | -0.227 | -3.148 | 126    | VL1   | 2.664  | 1.434  |
| 37     | SEG31      | -2.664 | 1.870      | 82     | P31   | -0.067 | -3.148 | 127    | VL2   | 2.664  | 1.594  |
| 38     | SEG30      | -2.664 | 1.710      | 83     | P30   | 0.093  | -3.148 | 128    | VL3   | 2.664  | 1.754  |
| 39     | SEG29      | -2.664 | 1.550      | 84     | P23   | 0.253  | -3.148 | 129    | VL4   | 2.664  | 1.914  |
| 40     | SEG28      | -2.664 | 1.390      | 85     | P22   | 0.413  | -3.148 | 130    | VL5   | 2.664  | 2.074  |
| 41     | SEG27      | -2.664 | 1.230      | 86     | P21   | 0.573  | -3.148 | 131    | CF    | 2.664  | 2.234  |
| 42     | SEG26      | -2.664 | 1.070      | 87     | P20   | 0.733  | -3.148 | 132    | CE    | 2.664  | 2.394  |
| 43     | SEG25      | -2.664 | 0.910      | 88     | P13   | 0.893  | -3.148 | 133    | CD    | 2.664  | 2.554  |
| 44     | SEG24      | -2.664 | 0.750      | 89     | P12   | 1.053  | -3.148 | 134    | CC    | 2.664  | 2.714  |
| 45     | SEG23      | -2.664 | 0.590      | 90     | P11   | 1.213  | -3.148 | 135    | СВ    | 2.664  | 2.874  |
|        |            |        |            |        |       |        |        |        |       |        |        |

# S1C62440/624A0/624C0/62480 Technical Software

## **CONTENTS**

| CHAPTER 1 | INTRODUCTION II-1                                        |
|-----------|----------------------------------------------------------|
| CHAPTER 2 | BLOCK DIAGRAM II-2                                       |
| CHAPTER 3 | PROGRAM MEMORY (ROM) II-6                                |
|           | 3.1 Configuration of the ROM II-6                        |
|           | 3.2 Interrupt Vector II-9                                |
| CHAPTER 4 | DATA MEMORY II-10                                        |
|           | 4.1 Configuration of the Data Memory II-10               |
|           | 4.2 Detail Map of the I/O Data Memory II-14              |
| CHAPTER 5 | INITIAL RESET II-19                                      |
|           | 5.1 Initialized Status II-19                             |
|           | 5.2 Example Program for the System Initialization II-20  |
|           | 5.3 Programming Note for the System Initialization II-23 |
| CHAPTER 6 | PERIPHERAL CIRCUITS II-24                                |
|           | 6.1 Watchdog Timer                                       |
|           | 6.2 Oscillation Circuit                                  |

| 6.3 | Input Ports (Kxx) II-3                          | 2 |
|-----|-------------------------------------------------|---|
|     | I/O data memory of the input ports II-3         | 2 |
|     | Example program for the input ports II-3        | 4 |
|     | Programming notes II-3                          | 8 |
| 6.4 | Output Ports (Rxx) II-4                         | 1 |
|     | I/O data memory of the output ports II-4        | 1 |
|     | Example program for the output ports II-4       | 2 |
|     | Programming notes II-4                          | 3 |
| 6.5 | I/O Ports (Pxx) II-4                            | 4 |
|     | I/O data memory of the I/O ports II-4           | 4 |
|     | Example program for the I/O ports II-4          | 5 |
|     | Programming notes II-4                          | 6 |
| 6.6 | LCD Driver II-4                                 | 7 |
|     | I/O data memory of the LCD driver II-4          | 7 |
|     | Segment data memory II-4                        | 8 |
|     | Example program for the LCD driver II-5         | 0 |
|     | Programming note II-5                           | 3 |
| 6.7 | Clock Timer II-5                                | 4 |
|     | I/O data memory of the clock timer II-5         | 4 |
|     | Example program for the clock timer II-5        | 5 |
|     | Programming notes II-5                          | 7 |
| 6.8 | Stopwatch Timer II-5                            | 8 |
|     | I/O data memory of the stopwatch timer II-5     | 8 |
|     | Example program for the stopwatch timer II-5    | 9 |
|     | Programming notes II-6                          | 2 |
| 6.9 | Programmable Timer II-6                         | 3 |
|     | I/O data memory of the programmable timer II-6  | 3 |
|     | Example program for the programmable timer II-6 | 5 |
|     | Programming notes II-6                          | 8 |

| 6.10 | SVD (Supply Voltage Detection) Circuit           | II-69           |
|------|--------------------------------------------------|-----------------|
|      | I/O data memory of the SVD circuit               | II-69           |
|      | Example program for the SVD circuit              | II-70           |
|      | Programming notes                                | . II-71         |
| 6.11 | Heavy Load Protection Circuit                    | II-72           |
|      | I/O data memory of                               | 11 70           |
|      | the heavy load protection circuit                | . II- <i>12</i> |
|      | Example program for                              | 11 79           |
|      | the heavy load protection circuit                |                 |
|      | Programming notes                                | . 11-74         |
| 6.12 | Serial Interface Circuit                         | II-75           |
|      | I/O data memory of the serial interface circuit  | II-75           |
|      | Example program for the serial interface circuit | II-76           |
|      | Programming notes                                |                 |
| 6.13 | Sound Generator                                  | II-81           |
|      | I/O data memory of the sound generator           |                 |
|      | Example program for the sound generator          |                 |
|      | Programming notes                                |                 |
| 6.14 | External Memory Access (S1C624A0/4C0/48)         | II-87           |
|      | I/O data memory of the external memory           |                 |
|      | access control                                   | II-87           |
|      | Example program for the external memory          |                 |
|      | access control                                   | II-89           |
|      | Programming notes                                | II-95           |
| 6.15 | Interrupt                                        | II-96           |
| -    | Interrupt vector, factor flag, and mask register |                 |
|      | Example program for the interrupt                |                 |
|      | Programming notes                                |                 |

#### **CONTENTS**

| CHAPTER 7 | SUMMARY OF NOTES |                                                     |      |  |  |  |  |  |
|-----------|------------------|-----------------------------------------------------|------|--|--|--|--|--|
|           | 7.1              | Notes for Low Current Consumption II-               | 107  |  |  |  |  |  |
|           | 7.2              | Summary of Notes by Function II-                    | 108  |  |  |  |  |  |
| APPENDIX  | Α                | S1C62440/4A0/4C0/480 DATA MEMORY (RAM) MAP II-      | -115 |  |  |  |  |  |
|           | В                | S1C62440/4A0/4C0/480 INSTRUCTION SET II-            | 129  |  |  |  |  |  |
|           | С                | PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER II- | 134  |  |  |  |  |  |
|           | D                | COMMAND TABLE OF ICE II-                            | 135  |  |  |  |  |  |

# CHAPTER 1 INTRODUCTION

The S1C62440/4A0/4C0/480 are a microcomputer with a C-MOS 4-bit core CPU S1C6200 as main component, and ROM, RAM, dot matrix LCD driver, time base counter, clock synchronous serial interface, etc. built-in.

Moreover, the S1C624A0/4C0/480 external memory device control is possible, and are most suitable for applications with equipment requiring large memory and dot matrix display functions such as a highly functional electronic pocketbook.

Table 1.1 Configuration of the S1C62440/4A0/4C0/480

| Model    | ROM capacity | RAM capacity | Number of segment pins | External memory control |
|----------|--------------|--------------|------------------------|-------------------------|
| S1C62440 | 4,096 words  | 384 words    | 40                     | Not used                |
| S1C624A0 | 6,144 words  | 640 words    | 40                     | Used                    |
| S1C624C0 | 5,120 words  | 1,152 words  | 51                     | Used                    |
| S1C62480 | 8,192 words  | 768 words    | 51                     | Used                    |

## CHAPTER 2 BLOCK DIAGRAM

S1C62440

The S1C62440/4A0/4C0/480 block diagrams are shown in Figures 2.1–2.4.

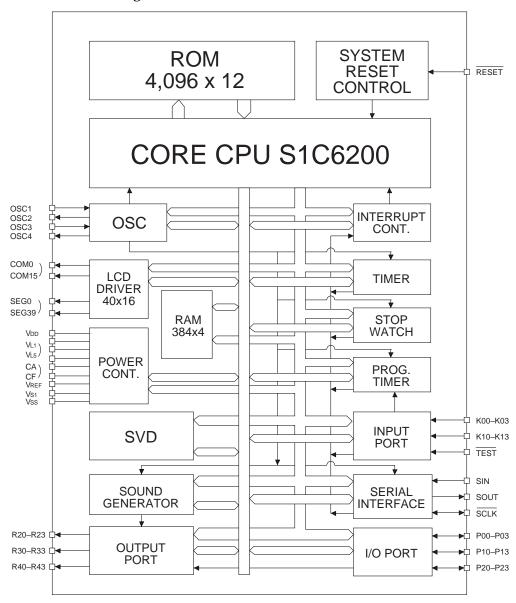



Fig. 2.1 S1C62440 block diagram

## S1C624A0

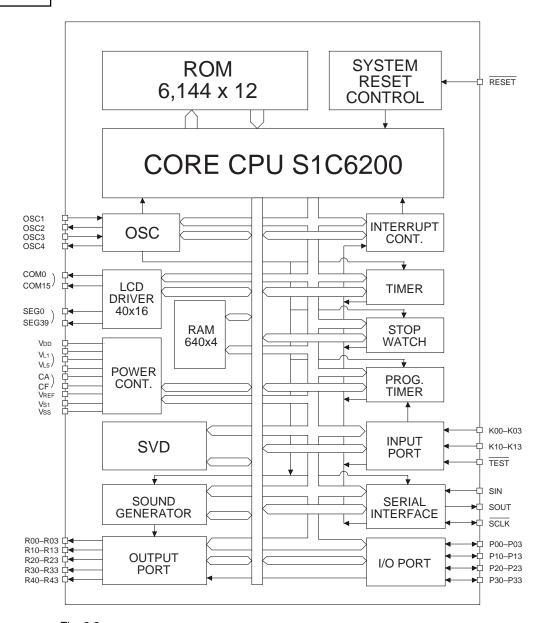



Fig. 2.2 S1C624A0 block diagram

#### S1C624C0

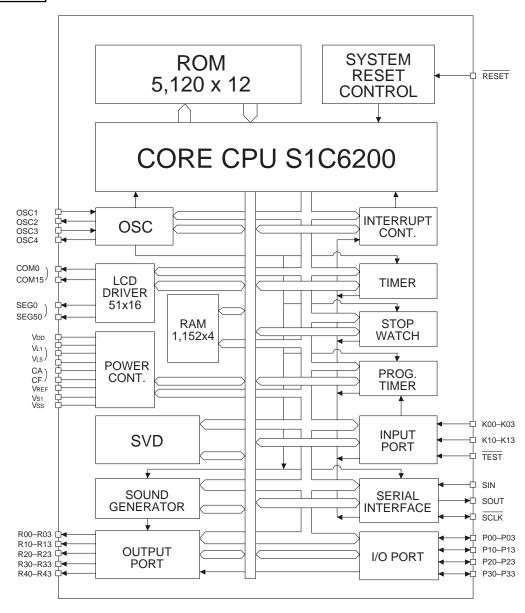



Fig. 2.3 S1C624C0 block diagram

S1C62480

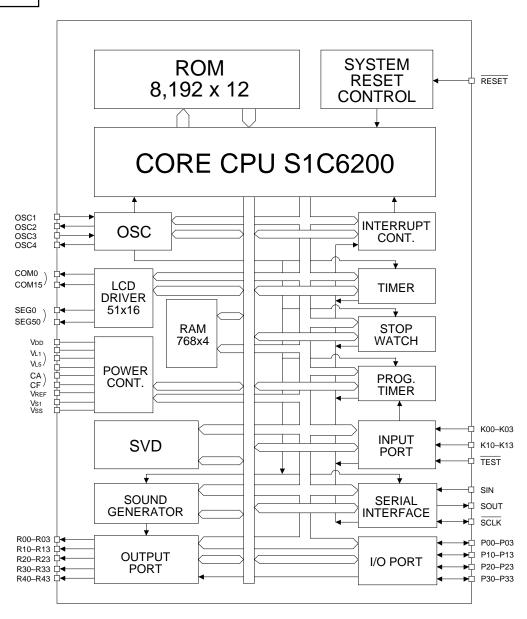



Fig. 2.4 S1C62480 block diagram

# CHAPTER 3 PROGRAM MEMORY (ROM)

# 3.1 Configuration of the ROM

The S1C62440/4A0/4C0/480 have a built-in mask ROM with the following capacity for program storage.

| Model    | ROM capacity                                 | Configuration                                  |
|----------|----------------------------------------------|------------------------------------------------|
| S1C62440 | $4,096 \text{ steps} \times 12 \text{ bits}$ | 0000H-0FFFH (bank 0: 16 page, bank 1: non)     |
| S1C624A0 | $6,144 \text{ steps} \times 12 \text{ bits}$ | 0000H-17FFH (bank 0: 16 page, bank 1: 8 page)  |
| S1C624C0 | $5,120 \text{ steps} \times 12 \text{ bits}$ | 0000H-13FFH (bank 0: 16 page, bank 1: 4 page)  |
| S1C62480 | $8,192 \text{ steps} \times 12 \text{ bits}$ | 0000H-1FFFH (bank 0: 16 page, bank 1: 16 page) |

<sup>\*</sup> One page is composed of 256 steps.

After initial reset, the program beginning address is bank 0, page 1, step 00H. The interrupt vector is allocated to each page 1, steps 02H–0CH.

The configuration of the ROM is as shown in Figures 3.1.1(a)-(d).

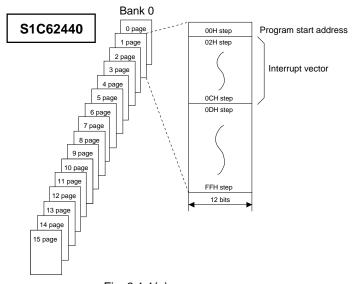
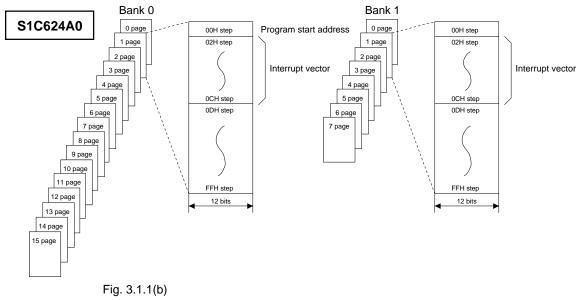




Fig. 3.1.1(a)
Configuration of the built-in ROM (S1C62440)



Configuration of the built-in ROM (S1C624A0)

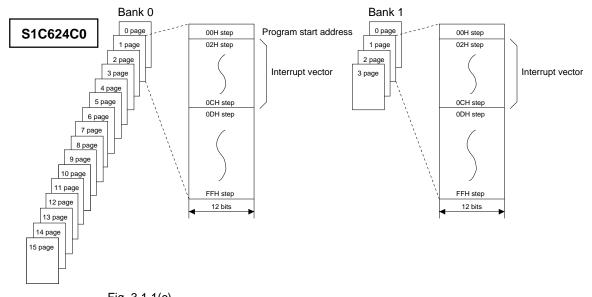
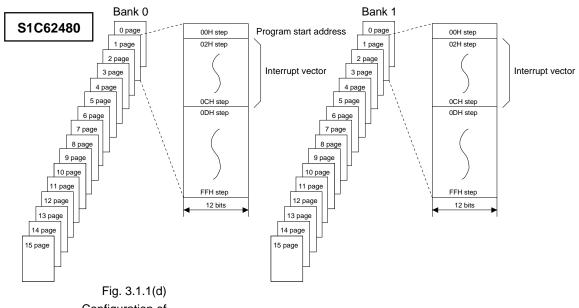




Fig. 3.1.1(c)
Configuration of the built-in ROM (S1C624C0)



Configuration of the built-in ROM (S1C62480)

# 3.2 Interrupt Vector

The interrupt vector and interrupt request correspondence is shown in Table 3.2.1.

Table 3.2.1 Interrupt request and interrupt vectors

| Interrupt vector | Interrupt request            | Priority |
|------------------|------------------------------|----------|
| (PCS and PCS)    | interrupt request            | Filolity |
| 102H             | Clock timer interrupt        | Low      |
| 104H             | Stopwatch timer interrupt    | 1        |
| 106H             | Input (K00-K03) interrupt    |          |
| 108H             | Input (K10–K13) interrupt    |          |
| 10AH             | Serial interface interrupt   | ↓        |
| 10CH             | Programmable timer interrupt | High     |

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

## CHAPTER 4 DATA MEMORY

## 4.1 Configuration of the Data Memory

The S1C62440/4A0/4C0/480 built-in data memorys are configured a general-purpose RAM, display data memory of the LCD, and I/O data memory which controls the peripheral circuit.

Table 4.1.1 Data memory capacity

| Model    | RAM capacity                          | Display data memory                       |  |
|----------|---------------------------------------|-------------------------------------------|--|
| S1C62440 | 384 words $\times$ 4 bits (000H–17FH) | 160 words × 4 bits (E00H–E4FH, E80H–ECFH) |  |
| S1C624A0 | 640 words × 4 bits (000H–27FH)        | 160 words × 4 bits (E00H–E4FH)            |  |
| S1C624C0 | 1,152 words × 4 bits (000H–47FH)      | 204 words × 4 bits (E00H–E65H, E80H–EF5H) |  |
| S1C62480 | 768 words × 4 bits (000H–2FFH)        | 204 words × 4 bits (E00H–E65H, E80H–EF5H) |  |

During programming, take note of the following:

- (1) Since the stack area is taken from the RAM area, take care that destruction of stack data due to data writing does not occur. Sub-routine calls or interrupts consume 3 words of the stack area.
- (2) RAM address 000H–00FH are memory register areas that are addressed with register pointer RP.

The memory map of the built-in data memory (RAM) and details of the I/O data memory map are shown in Figures 4.1.1(a)–(d) and Tables 4.2.1(a)–(f), respectively.

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

| Address  | Low  | Г  |     | П  |    |    |     |     |     |      |       |      |    |    |    |    |    | Г | Address  | Low  |                                          |     |       |     |      |      |    |      |      |      | Г   | T     |       |    |   |   |
|----------|------|----|-----|----|----|----|-----|-----|-----|------|-------|------|----|----|----|----|----|---|----------|------|------------------------------------------|-----|-------|-----|------|------|----|------|------|------|-----|-------|-------|----|---|---|
| 71001000 | \    | 0  | 1   | 2  | 3  | 4  | 5   | 6   | 7   | 8    | 9     | A    | В  | С  | D  | Е  | F  |   | 71001000 | \    | 0                                        | 1   | 2     | 3   | 4    | 5    | 6  | 7    | 8    | 9    | Α   | В     | С     | D  | E | F |
| Page     | High | ľ  | ļ ' | -  | ١  | -  | ١   | ľ   | ′   | ľ    | ľ     | ^    |    | Ŭ  |    | -  |    |   | Page     | High | ľ                                        | ١.  | -     | ਁ   | ~    | ľ    | ľ  | l ′  | ľ    | 3    | ^   | "     | ľ     |    | - |   |
|          | 0    | MO | М1  | M2 | МЗ | M4 | M5  | M6  | М7  | M8   | М9    | MA   | МВ | МС | MD | ME | MF | Ī |          | 0    |                                          | •   |       |     |      |      |    |      |      | •    |     |       |       |    |   |   |
|          | 1    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 1    |                                          |     | _     |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 2    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 2    |                                          |     | D     | isp | ay c | data | me |      |      | 30 w | ord | s x 4 | bit   | s) |   |   |
|          | 3    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 3    |                                          |     |       |     |      |      |    | R/   | W    |      |     |       |       |    |   |   |
|          | 4    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 4    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 5    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 5    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 6    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 6    | ]                                        |     |       |     |      |      | Un | nuse | ed a | rea  |     |       |       |    |   |   |
| 0        | 7    |    |     |    |    | R  | RAM | (25 | 6 w | ords | s x 4 | bits | s) |    |    |    |    |   | Е        | 7    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
| 1 "      | 8    |    |     |    |    |    |     |     | R   | /W   |       |      |    |    |    |    |    |   | _        | 8    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 9    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 9    | Display data manage (00 yeards y 4 hits) |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | A    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | Α    | Display data memory (80 words x 4 bits)  |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | В    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | В    | ]                                        |     |       |     |      |      |    | R/   | W    |      |     |       |       |    |   |   |
|          | С    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | С    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | D    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | D    | ]                                        |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | E    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | E    |                                          |     |       |     |      |      | Un | nuse | ed a | rea  |     |       |       |    |   |   |
|          | F    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    | L |          | F    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 0    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 0    |                                          | 1/0 | -1-4- |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 1    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 1    | · -                                      |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
|          | 2    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 2    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
| 1        | 3    |    |     |    |    | R  | RAM | (12 | 8 w | ords | s x 4 | bit  | s) |    |    |    |    |   | F        | 3    |                                          |     |       | 1   |      |      |    |      |      |      | Un  | use   | d are | ea |   |   |
| 1        | 4    | l  |     |    |    |    |     |     | R   | /W   |       |      |    |    |    |    |    |   |          | 4    |                                          |     |       |     |      | ,    |    |      |      |      |     |       |       |    |   |   |
|          | 5    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 5    |                                          |     |       |     | _    |      |    |      |      |      |     |       |       |    |   |   |
|          | 6    |    |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 6    |                                          |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |
| 1        | 7    | l  |     |    |    |    |     |     |     |      |       |      |    |    |    |    |    |   |          | 7    | l                                        |     |       |     |      |      |    |      |      |      |     |       |       |    |   |   |

Fig. 4.1.1(a) Memory map (S1C62440)

| Address | Low     | /  | П | Т    | Т   | Т    | Т    | Т          |         |    |    |       | Г   | Т     | Т  | Т | Т    |      |    | Г | Address | Low    |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|---------|---------|----|---|------|-----|------|------|------------|---------|----|----|-------|-----|-------|----|---|------|------|----|---|---------|--------|-----|-----|------|------|-------|-------|-------|------|-------|------|------|-------|------|----|---|----|
|         |         | 0  | 1 | 2    |     | 3 .  | 4    | 5          | 6       | 7  | 8  | 9     | 1   | ιВ    | c  |   | ь    | E    | F  |   |         |        | 0   | 1   | 2    | 3    | 4     | 5     | 6     | 7    | 8     | 9    | Α    | В     | c    | ь  | Е | F  |
| Page    | High    |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   | Page    | High   |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 0       | MO | M | 1 M2 | 2 N | /3 N | И4 N | <b>И</b> 5 | M6      | M7 | M8 | М9    | N   | IA ME | МС | М | 1D [ | ME I | ЛF | Г |         | 0      |     |     |      |      |       |       |       |      |       | •    |      |       |      |    |   |    |
|         | 1       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 1      | ]   |     | г    | ien  | lav i | teh   | me    | mai  | N (8  | 30 w | orde | · v 1 | hite | ٠. |   |    |
|         | 2       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 2      |     |     |      | ıσρ  | iay ( | Jaco  | 11110 |      | /W    | JO W | orus | , , ¬ | Ditt | "  |   |    |
|         | 3       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 3      | 1   |     |      |      |       |       |       | Κ.   | / V V |      |      |       |      |    |   |    |
|         | 4       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 4      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 5       | 4  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 5      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 6       | +  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 6      | ł   |     |      |      |       |       | Ur    | nuse | ed a  | rea  |      |       |      |    |   |    |
| 0       | 7 8     |    |   |      |     |      | RA   | M          | (25)    |    |    | S X 4 | 4 b | oits) |    |   |      |      |    |   | E       | 7<br>8 |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 9       | +  |   |      |     |      |      |            |         | R/ | W  |       |     |       |    |   |      |      |    |   |         | 9      | ł   |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | A       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | A      | ł   |     | D    | isp  | lay ( | data  | me    |      |       | 30 w | ords | s x 4 | bits | ;) |   |    |
|         | В       | +  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | В      | 1   |     |      |      |       |       |       | R.   | /W    |      |      |       |      |    |   |    |
|         | C       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | c      | 1   |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | D       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | D      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | Е       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | E      | 1   |     |      |      |       |       | Ur    | nuse | ad a  | rea  |      |       |      |    |   |    |
|         | F       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | F      | 1   |     |      |      |       |       | -     |      |       |      |      |       |      |    |   |    |
|         | 0       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    | Г |         | 0      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 1       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 1      | ] ' | I/O | data | me   | emo   | ry    |       |      | _     |      |      |       |      |    |   |    |
|         | 2       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      | 2    |    |   | _       |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 3       | 4  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      | 3    | 1  |   |         | ,      |     |     |      |      |       |       | Uni   | used | d are | a    |      |       |      |    |   |    |
|         | 4       | 4  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 4      |     |     |      |      |       | ,     |       |      |       |      |      |       |      |    |   |    |
|         | 5<br>6  | -  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | 5      | -   |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 7       | -  |   |      |     |      |      |            | <b></b> | _  |    |       |     |       |    |   |      |      |    |   |         | 6<br>7 | ł   |     |      |      |       |       |       |      |       |      |      |       |      |    |   | ıl |
| 1       | 8       | 1  |   |      |     |      | RA   | IVI        | (25)    |    |    | S X 4 | 4 C | oits) |    |   |      |      |    |   | F       | 8      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   | J  |
|         | 9       | 1  |   |      |     |      |      |            |         | R/ | W  |       |     |       |    |   |      |      |    |   |         | 9      | 1   |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | A       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | A      | 1   |     |      |      |       |       | Ur    | nuse | ed a  | rea  |      |       |      |    |   |    |
|         | В       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | В      | 1   |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | С       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | С      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | D       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | D      | 1   |     |      | I/C  | م ا   | . ~   |       | on.  | (C 1  | wor  | do v | 16    | ita) |    |   |    |
|         | E       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         | E      |     |     |      | 1/ C | ua    | ıa II | ICIII | OI y | (04   | WOI  | u5 A | 40    | 113) |    |   |    |
|         | F       |    |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      | _  | L |         | F      |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 0       | 4  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 1       | 4  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 2       | -  |   |      |     |      |      |            |         | _  |    |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
| 2       | 3 4     | -  |   |      |     |      | RA   | M          | (12     |    |    | s x 4 | 4 b | oits) |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 5       | 1  |   |      |     |      |      |            |         | R/ | W  |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 6       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | 7       | 1  |   |      |     |      |      |            |         |    |    |       |     |       |    |   |      |      |    |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |
|         | · · · · | -  |   |      |     |      |      |            |         |    |    |       | _   |       |    |   |      |      | _  |   |         |        |     |     |      |      |       |       |       |      |       |      |      |       |      |    |   |    |

Fig. 4.1.1(b) Memory map (S1C624A0)

| Address | Low      |                                                                               | Address | Low    |                                              |
|---------|----------|-------------------------------------------------------------------------------|---------|--------|----------------------------------------------|
|         |          | 0 1 2 3 4 5 6 7 8 9 A B C D E F                                               |         |        | 0 1 2 3 4 5 6 7 8 9 A B C D E F              |
| Page    | High 0   | M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF                               | Page    | High   |                                              |
|         | 1        | MO   M1   M2   M3   M4   M5   M6   M7   M8   M9   MA   MB   MC   MD   ME   MF | -       | 1      | -                                            |
|         | 2        |                                                                               |         | 2      | Display data memory (102 words x 4 bits)     |
|         | 3        |                                                                               |         | 3      | R/W                                          |
|         | 5        |                                                                               |         | 5      | -                                            |
|         | 6        |                                                                               |         | 6      |                                              |
| 0       | 7        | RAM (256 words x 4 bits)                                                      | E       | 7      | Unused area                                  |
|         | 8        | R/W                                                                           | -       | 8      | _                                            |
|         | 9<br>A   |                                                                               |         | 9<br>A |                                              |
|         | В        |                                                                               |         | В      | Display data memory (102 words x 4 bits) R/W |
|         | С        |                                                                               |         | С      | R/VV                                         |
|         | D<br>E   |                                                                               |         | D<br>E |                                              |
|         | F        |                                                                               |         | F      | Unused area                                  |
|         | 0        |                                                                               |         | 0      | I/O data memory                              |
|         | 1 2      |                                                                               |         | 1 2    | - 1/O data memory                            |
|         | 3        |                                                                               |         | 3      | Unused area                                  |
|         | 4        |                                                                               |         | 4      | Oliuseu alea                                 |
|         | 5<br>6   |                                                                               |         | 5<br>6 |                                              |
| _       | 7        | RAM (256 words x 4 bits)                                                      |         | 7      |                                              |
| 1       | 8        | R/W                                                                           | F       | 8      |                                              |
|         | 9<br>A   |                                                                               |         | 9      | Unused area                                  |
|         | В        |                                                                               |         | A<br>B | -                                            |
|         | С        |                                                                               |         | С      |                                              |
|         | D        |                                                                               |         | D      | I/O data memory (64 words x 4 bits)          |
|         | E<br>F   |                                                                               |         | E<br>F | -                                            |
|         | 0        |                                                                               |         |        |                                              |
|         | 1        |                                                                               |         |        |                                              |
|         | 3        |                                                                               |         |        |                                              |
|         | 4        |                                                                               |         |        |                                              |
|         | 5        |                                                                               |         |        |                                              |
|         | 7        | RAM (256 words x 4 bits)                                                      |         |        |                                              |
| 2       | 8        | R/W                                                                           |         |        |                                              |
|         | 9        |                                                                               |         |        |                                              |
|         | A<br>B   |                                                                               |         |        |                                              |
|         | С        |                                                                               |         |        |                                              |
|         | D        |                                                                               |         |        |                                              |
|         | E<br>F   |                                                                               |         |        |                                              |
|         | 0        |                                                                               |         |        |                                              |
|         | 1        |                                                                               |         |        |                                              |
|         | 3        |                                                                               |         |        |                                              |
|         | 4        |                                                                               |         |        |                                              |
|         | 5        |                                                                               |         |        |                                              |
|         | 6<br>7   | RAM (256 words x 4 bits)                                                      |         |        |                                              |
| 3       | 8        | RAIW (256 WORDS X 4 DRS)                                                      |         |        |                                              |
|         | 9        |                                                                               |         |        |                                              |
|         | A<br>B   |                                                                               |         |        |                                              |
|         | C        |                                                                               |         |        |                                              |
|         | D        |                                                                               |         |        |                                              |
|         | E        |                                                                               |         |        |                                              |
|         | <b>F</b> |                                                                               |         |        |                                              |
|         | 1        |                                                                               |         |        |                                              |
|         | 2        | DAM (400 1                                                                    |         |        |                                              |
| 4       | 3 4      | RAM (128 words x 4 bits)<br>R/W                                               |         |        |                                              |
|         | 5        | 15/44                                                                         |         |        |                                              |
|         | 6        |                                                                               |         |        |                                              |
|         | 7        |                                                                               | J       |        |                                              |

Fig. 4.1.1(c) Memory map (S1C624C0)

| Address | Low    |    | П  |    |    |     |         |      | Т     | T      | Т    | Τ   | Т     |    |    |    |    |    | Ţ. | Address | Low    |          |     |      | Γ    | $\top$ | Т        | T   |     |       | Γ          | Т    | Τ  | Т     | Т   |       | Т   | Т |   |
|---------|--------|----|----|----|----|-----|---------|------|-------|--------|------|-----|-------|----|----|----|----|----|----|---------|--------|----------|-----|------|------|--------|----------|-----|-----|-------|------------|------|----|-------|-----|-------|-----|---|---|
| Page    | High   | 0  | 1  | 2  | 3  | 4   | 5       | 6    | 7     | 8      | 9    |     | A     | В  | С  | D  | E  | F  |    | Page    | High   | 0        | 1   | 2    | 3    | 3 4    | 5        |     | 6   | 7     | 8          | 9    |    | A E   | 3   | С     | D I | E | F |
| , ago   | 0      | мо | M1 | M2 | МЗ | M4  | M5      | м    | 16 M  | 7 M    | 8 Ms | 9 1 | 1 AN  | ив | мс | MD | МЕ | MF | H  | 1 age   | 0      | $\vdash$ | _   | _    | _    |        |          | _   |     |       | _          |      | _  |       | _   |       | _   |   | _ |
|         | 1      |    |    |    |    |     |         | _    |       |        |      |     |       |    |    |    |    |    |    |         | 1      | 1        |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 2      | ]  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 2      | ]        |     | Di   | isp  | olay   | data     | n   | nen | nory  | y (        | 102  | wc | ords  | x 4 | bits  | )   |   |   |
|         | 3      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 3      |          |     |      |      |        |          |     |     | R/    | /W         | 1    |    |       |     |       |     |   |   |
|         | 4      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 4      | 1        |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 5      | -  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 5      | 1        |     |      |      |        |          | _   |     |       |            |      |    |       |     |       |     |   | _ |
|         | 6<br>7 | 1  |    |    |    |     | 5 A N C | 1 /2 | 256 v | vor    | do v | 4 1 | hita' | ١  |    |    |    |    |    |         | 6<br>7 |          |     |      |      |        |          |     |     |       |            |      | ι  | Jnus  | ed  | area  | a   |   |   |
| 0       | 8      | 1  |    |    |    | - 1 | \/\iv   | 1 (2 |       | VOI:   |      | 41  | DILO, | ,  |    |    |    |    |    | E       | 8      |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   | _ |
|         | 9      | 1  |    |    |    |     |         |      | - 15  | ., , , |      |     |       |    |    |    |    |    |    |         | 9      | 1        |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | A      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | A      | 1        |     | _    |      | . 1    | .1 - 1 - |     |     |       | . ,        | 400  |    |       |     | 1. 24 |     |   |   |
|         | В      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | В      | 1        |     | D    | ISP  | olay   | aata     | a m | nen |       |            |      | wc | ords  | X 4 | DITS  | )   |   |   |
|         | С      | ]  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | С      | 1        |     |      |      |        |          |     |     | R/    | /VV        | '    |    |       |     |       |     |   |   |
|         | D      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | D      |          |     |      |      |        |          | _   |     |       |            |      |    |       |     |       |     |   |   |
|         | E      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | E      |          |     |      |      |        |          |     |     |       |            |      | 1  | Jnus  | ed  | are   |     |   |   |
|         | F      | -  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    | L  |         | F      |          |     |      |      |        |          | _   |     |       |            |      | _  | Jiius | cu  | arci  |     |   |   |
|         | 0      | ł  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 0      | ١,       | I/O | data | a n  | nem    | orv      |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 2      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 1      | - '      | 1,0 | uate | 2 11 |        | Ory      | L   |     |       | 7          |      |    |       |     |       |     |   |   |
|         | 3      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 3      | 1        |     |      |      |        |          |     |     |       | J          |      |    |       |     |       |     |   |   |
|         | 4      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 4      | 1        |     |      | 7    |        |          |     |     |       |            |      | ι  | Jnus  | ed  | are   | a   |   |   |
|         | 5      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 5      | 1        |     |      | _    |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 6      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 6      | 1        |     |      |      |        | _        |     |     |       |            |      |    |       |     |       |     |   |   |
| 1       | 7      | ]  |    |    |    | F   | RAM     | 1 (2 | 256 v |        |      | 4 I | bits) | )  |    |    |    |    |    | F       | 7      | 1        |     |      |      | _      |          |     |     |       |            |      |    |       |     |       |     |   |   |
| '       | 8      | ]  |    |    |    |     |         |      | R     | R/W    | '    |     |       |    |    |    |    |    |    | г       | 8      |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 9      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | 9      |          |     |      |      |        |          |     | Un  | use   | he         | area |    |       |     |       |     |   |   |
|         | A      | 4  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | Α      |          |     |      |      |        |          |     | 011 | uoc   | <i>,</i> u | uicu |    |       |     |       |     |   |   |
|         | B<br>C | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    | -  |         | В      |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   | _ |
|         | D      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | C<br>D | 1        |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | E      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | E      | ł        |     |      | I/   | O d    | ata ı    | me  | emo | ory ( | (64        | 4 wo | rd | s x 4 | bit | ts)   |     |   |   |
|         | F      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         | F      | 1        |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 0      |    |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    | _  |         | '      |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   | _ |
|         | 1      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 2      |    |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 3      | ł  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 4<br>5 | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 6      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 7      | 1  |    |    |    | F   | RAM     | 1 (2 | 256 v | vor    | ds x | 4 1 | hits' | )  |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
| 2       | 8      | 1  |    |    |    |     | .,      | . (2 |       | VOI:   |      | - ' | J113  | ,  |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | 9      | 1  |    |    |    |     |         |      | - '   | .,     |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | Α      | ]  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | В      |    |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | С      | 1  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | D      | -  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | E<br>F | -  |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |
|         | F      |    |    |    |    |     |         |      |       |        |      |     |       |    |    |    |    |    |    |         |        |          |     |      |      |        |          |     |     |       |            |      |    |       |     |       |     |   |   |

Fig. 4.1.1(d) Memory map (S1C62480)

# 4.2 Detail Map of the I/O Data Memory

Tables 4.2.1(a)-(f) show the detail map of the I/O data memory.

Table 4.2.1(a) I/O data memory map (F00H–F05H, F10H–F15H)

|         |       | Rea   | ister |       |                |              |         |        |                                             |
|---------|-------|-------|-------|-------|----------------|--------------|---------|--------|---------------------------------------------|
| Address | D3    | D2    | D1    | D0    | Name           | Init *1      | 1       | 0      | Comment                                     |
|         | IT1   | IT2   | IT8   | IT32  | IT1 *3         | 0            | Yes     | No     | Interrupt factor flag (clock timer 1 Hz)    |
| F00H    | 1111  | 112   | 110   | 1132  | IT2 *3         | 0            | Yes     | No     | Interrupt factor flag (clock timer 2 Hz)    |
| гоон    |       |       | R     |       | IT8 *3         | 0            | Yes     | No     | Interrupt factor flag (clock timer 8 Hz)    |
|         |       |       |       |       | IT32*3         | 0            | Yes     | No     | Interrupt factor flag (clock timer 32 Hz)   |
|         | 0     | 0     | ISW1  | ISW0  | 0 *4           | - *2         |         |        |                                             |
| F01H    | ,     | _ `   |       |       | 0 *4           | - *2         |         |        |                                             |
|         |       |       | R     |       | ISW1*3         | 0            | Yes     | No     | Interrupt factor flag (stopwatch 1 Hz)      |
|         |       |       |       |       | ISW0*3         | 0            | Yes     | No     | Interrupt factor flag (stopwatch 10 Hz)     |
|         | 0     | 0     | 0     | IPT   | 0 *4           | - *2         |         |        |                                             |
| F02H    |       |       |       |       | 0 *4           | - *2<br>- *2 |         |        |                                             |
|         |       |       | R     |       | 0 *4<br>IPT *3 | - *2<br>0    | Yes     | No     | Interrupt factor flag (programmable timer)  |
|         |       |       |       |       | 0 *4           | - *2         | 169     | INU    | interrupt factor frag (programmable timer)  |
|         | 0     | 0     | 0     | ISIO  | 0 *4           | - *2<br>- *2 |         |        |                                             |
| F03H    |       | l     | l     | l     | 0 *4           | - *2<br>- *2 |         |        |                                             |
|         |       | 1     | R     |       | ISIO*3         | 0            | Yes     | No     | Interrupt factor flag (serial interface)    |
|         | _     | _     | _     |       | 0 *4           | - *2         |         |        |                                             |
|         | 0     | 0     | 0     | IK0   | 0 *4           | - *2         |         |        |                                             |
| F04H    |       |       |       |       | 0 *4           | - *2         |         |        |                                             |
|         |       |       | R     |       | IK0 *3         | 0            | Yes     | No     | Interrupt factor flag (K00–K03)             |
|         | 0     | 0     | 0     | IK1   | 0 *3           | - *2         |         |        |                                             |
| F05H    | U     | U     | U     | IKI   | 0 *3           | - *2         |         |        |                                             |
| 1 0311  |       |       | R     |       | 0 *3           | - *2         |         |        |                                             |
|         |       |       |       |       | IK1 *4         | 0            | Yes     | No     | Interrupt factor flag (K10–K13)             |
|         | EIT1  | EIT2  | EIT8  | EIT32 | EIT1           | 0            | Enable  | Mask   | Interrupt mask register (clock timer 1 Hz)  |
| F10H    |       |       |       |       | EIT2           | 0            | Enable  | Mask   | Interrupt mask register (clock timer 2 Hz)  |
|         |       | R     | W     |       | EIT8           | 0            | Enable  | Mask   | Interrupt mask register (clock timer 8 Hz)  |
|         |       |       |       |       | EIT32<br>0 *3  | 0<br>- *2    | Enable  | Mask   | Interrupt mask register (clock timer 32 Hz) |
|         | 0     | 0     | EISW1 | EISW0 | 0 *3           | - *2<br>- *2 |         |        |                                             |
| F11H    |       |       |       |       | EISW1          | 0            | Enable  | Mask   | Interrupt mask register (stopwatch 1 Hz)    |
|         | 1     | R     | R     | /W    | EISW0          | 0            | Enable  | Mask   | Interrupt mask register (stopwatch 1 Hz)    |
|         |       |       |       |       | 0 *3           | - *2         | Litable | IVIGOR | interrupt mask register (stopwater 10 112)  |
|         | 0     | 0     | 0     | EIPT  | 0 *3           | - *2         |         |        |                                             |
| F12H    |       | _     |       |       | 0 *3           | - *2         |         |        |                                             |
|         |       | R     |       | R/W   | EIPT           | 0            | Enable  | Mask   | Interrupt mask register (programmble timer) |
|         | 0     |       |       | FIGIO | 0 *3           | - *2         |         |        |                                             |
| E4011   | 0     | 0     | 0     | EISIO | 0 *3           | - *2         |         |        |                                             |
| F13H    |       | R     |       | R/W   | 0 *3           | - *2         |         |        |                                             |
|         |       | Ν.    |       | IX/VV | EISIO          | 0            | Enable  | Mask   | Interrupt mask register (serial interface)  |
|         | EIK03 | EIK02 | EIK01 | EIK00 | EIK03          | 0            | Enable  | Mask   | Interrupt mask register (K03)               |
| F14H    |       | L\02  |       |       | EIK02          | 0            | Enable  | Mask   | Interrupt mask register (K02)               |
|         |       | R     | W     |       | EIK01          | 0            | Enable  | Mask   | Interrupt mask register (K01)               |
|         |       |       |       |       | EIK00          | 0            | Enable  | Mask   | Interrupt mask register (K00)               |
|         | EIK13 | EIK12 | EIK11 | EIK10 | EIK13          | 0            | Enable  | Mask   | Interrupt mask register (K13)               |
| F15H    | _     |       |       |       | EIK12          | 0            | Enable  | Mask   | Interrupt mask register (K12)               |
|         |       | R     | W     |       | EIK11          | 0            | Enable  | Mask   | Interrupt mask register (K11)               |
|         |       |       |       |       | EIK10          | 0            | Enable  | Mask   | Interrupt mask register (K10)               |

<sup>\*1</sup> Initial value following initial reset

<sup>\*2</sup> Not set in the circuit

<sup>\*3</sup> Reset (0) immediately after being read

<sup>\*4</sup> Always "0" when being read

Table 4.2.1(b) I/O data memory map (F20H-F27H, F30H, F31H, F40H-F42H)

|               |                                         | Reg   | ister |        |            |              |            |     | _                                     |
|---------------|-----------------------------------------|-------|-------|--------|------------|--------------|------------|-----|---------------------------------------|
| Address       | D3                                      | D2    | D1    | D0     | Name       | Init *1      | 1          | 0   | Comment                               |
|               |                                         |       |       |        | TM3        | 0            | -          |     | Clock timer data (16 Hz)              |
| <b>-</b> 0011 | TM3                                     | TM2   | TM1   | TM0    | TM2        | 0            |            |     | Clock timer data (32 Hz)              |
| F20H          |                                         |       |       |        | TM1        | 0            |            |     | Clock timer data (64 Hz)              |
|               |                                         |       | R     |        | TM0        | 0            |            |     | Clock timer data (128 Hz)             |
|               | TM7                                     | TM6   | TM5   | TM4    | TM7        | 0            |            |     | Clock timer data (1 Hz)               |
| E0411         | I IVI /                                 | TIVIO | CIVIT | 1 1014 | TM6        | 0            |            |     | Clock timer data (2 Hz)               |
| F21H          |                                         |       | R     |        | TM5        | 0            |            |     | Clock timer data (4 Hz)               |
|               |                                         |       | `     |        | TM4        | 0            |            |     | Clock timer data (8 Hz)               |
|               | SWL3                                    | SWL2  | SWL1  | SWL0   | SWL3       | 0            |            |     | ☐ MSB                                 |
| F22H          | 01120                                   | OWE   | OWE   | 01120  | SWL2       | 0            |            |     | Stopwatch timer                       |
| FZZI1         |                                         |       | R     |        | SWL1       | 0            |            |     | 1/100 sec data (BCD)                  |
|               |                                         |       | `     |        | SWL0       | 0            |            |     | ☐ LSB                                 |
|               | SWH3                                    | SWH2  | SWH1  | SWH0   | SWH3       | 0            |            |     | ☐ MSB                                 |
| F23H          | • • • • • • • • • • • • • • • • • • • • |       |       |        | SWH2       | 0            |            |     | Stopwatch timer                       |
| 1 2011        |                                         |       | R     |        | SWH1       | 0            |            |     | 1/10 sec data (BCD)                   |
|               |                                         |       | `     | r      | SWH0       | 0            |            |     | □ LSB                                 |
|               | PT3                                     | PT2   | PT1   | PT0    | PT3        | X *3         |            |     | ☐ MSB                                 |
| F24H          |                                         |       |       |        | PT2        | X *3         |            |     | Programmable timer data (low-order)   |
|               |                                         |       | R     |        | PT1        | X *3         |            |     |                                       |
|               |                                         |       |       |        | PT0        | X *3         |            |     | □ LSB                                 |
|               | PT7                                     | PT6   | PT5   | PT4    | PT7        | X *3         |            |     | ☐ MSB                                 |
| F25H          |                                         |       |       |        | PT6        | X *3         |            |     | Programmable timer data (high-order)  |
|               |                                         | ı     | R     |        | PT5        | X *3         |            |     |                                       |
|               |                                         |       |       |        | PT4        | X *3         |            |     | ☐ LSB                                 |
|               | RD3                                     | RD2   | RD1   | RD0    | RD3        | X *3         |            |     | MSB                                   |
| F26H          |                                         |       |       |        | RD2        | X *3         |            |     | Programmable timer                    |
|               |                                         | R     | /W    |        | RD1        | X *3         |            |     | reload data (low-order)               |
|               |                                         |       |       |        | RD0        | X *3<br>X *3 |            |     | LSB                                   |
|               | RD7                                     | RD6   | RD5   | RD4    | RD7<br>RD6 | X *3         |            |     | MSB Programmable timer                |
| F27H          |                                         |       |       |        | RD5        | X *3         |            |     | reload data (high-order)              |
|               |                                         | R     | /W    |        | RD4        | X *3         |            |     | LSB                                   |
|               |                                         |       |       |        | SD3        | X *3         |            |     | ¬ MSB                                 |
|               | SD3                                     | SD2   | SD1   | SD0    | SD3        | X *3         |            |     | Serial interface                      |
| F30H          |                                         |       |       |        | SD2        | X *3         |            |     | data register (low-order)             |
|               |                                         | R     | /W    |        | SD0        | X *3         |            |     | LSB                                   |
|               |                                         |       |       |        | SD7        | X *3         |            |     | ¬ MSB                                 |
|               | SD7                                     | SD6   | SD5   | SD4    | SD6        | X *3         |            |     | Serial interface                      |
| F31H          |                                         | _     |       |        | SD5        | X *3         |            |     | data register (high-order)            |
|               |                                         | R     | /W    |        | SD4        | X *3         |            |     | LSB                                   |
|               | 1/00                                    | 160.5 | 146 : | 1/22   | K03        | - *2         | High       | Low |                                       |
|               | K03                                     | K02   | K01   | K00    | K02        | - *2         | High       | Low |                                       |
| F40H          |                                         |       |       |        | K01        | - *2         | High       | Low | Input port (K00–K03)                  |
|               |                                         |       | R     |        | K00        | - *2         | High       | Low |                                       |
|               | DEKOS                                   | DEKOS | DEK04 | DEKOO  | DFK03      | 1            | ٦ <u>ـ</u> |     |                                       |
|               | DFK03                                   | DFK02 | DFK01 | DFK00  | DFK02      | 1            | 7L         |     | Input relation register (DFK00–DFK03) |
| F41H          |                                         |       | ΛΛ/   |        | DFK01      | 1            | 7L         |     | input relation register (DFK00–DFK03) |
|               |                                         | R     | /W    |        | DFK00      | 1            | J.         |     |                                       |
|               | K13                                     | K12   | K11   | K40    | K13        | - *2         | High       | Low |                                       |
| F42H          | NIS                                     | NIZ   | IXII  | K10    | K12        | - *2         | High       | Low | Input port (V10, V12)                 |
| F4∠H          |                                         |       | R     |        | K11        | - *2         | High       | Low | Input port (K10–K13)                  |
| I             |                                         |       | `     |        | K10        | - *2         | High       | Low |                                       |

<sup>\*1</sup> Initial value following initial reset\*2 Not set in the circuit

<sup>\*3</sup> Undefined

Table 4.2.1(c) I/O data memory map (F50H-F54H, F60H-F63H)

| F50H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | []      |      | Rea  | ister |      |      |         |      |     |                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-------|------|------|---------|------|-----|-----------------------------------------------------|
| F50H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Address | D3   |      |       | D0   | Name | Init *1 | 1    | 0   | Comment                                             |
| F50H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Doo  | Doo  | DOA   | Doo  | R03  |         | High | Low | Output port (R03) / External memory address (A3)    |
| FS0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | R03  | R02  | R01   | R00  | R02  | X *2    | High | Low | Output port (R02) / External memory address (A2)    |
| F51H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      | ^^/   |      | R01  |         | High | Low | Output port (R01) / External memory address (A1)    |
| F51H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *6      |      | K    | /VV   |      | R00  | X *2    | High | Low | Output port (R00) / External memory address (A0)    |
| F51H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | D40  | D40  | D44   | D40  | R13  |         | High | Low | Output port (R13) / External memory address (A7)    |
| F52H   R23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | R13  | R12  | K11   | R10  | R12  | X *2    | High | Low | Output port (R12) / External memory address (A6)    |
| F52H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      | 0.47  | •    | R11  | X *2    | High | Low | Output port (R11) / External memory address (A5)    |
| F52H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *6      |      | K    | /VV   |      | R10  | X *2    | High | Low | Output port (R10) / External memory address (A4)    |
| F52H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Daa  | Daa  | D24   | Dan  | R23  | X *2    | High | Low | Output port (R23) / External memory address (A11)*4 |
| F53H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FEOU    | K23  | K22  | KZI   | K20  | R22  | X *2    | High | Low | Output port (R22) / External memory address (A10)*4 |
| R33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F52H    |      |      | ΛΛ/   | •    | R21  | X *2    | High | Low | Output port (R21) / External memory address (A9) *4 |
| F53H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      | K    | /VV   |      | R20  | X *2    | High | Low | Output port (R20) / External memory address (A8) *4 |
| F53H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Daa  | Daa  | D24   | Dan  | R33  | X *2    | High | Low | Output port (R33)                                   |
| F53H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | KSS  | K32  | KSI   | K30  |      |         | Off  | On  | PTCLK output                                        |
| F53H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      | ΔΔ1   |      |      |         | *3   | *3  | [SRDY (SIO READY)]                                  |
| R31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEOU    |      | K    | /VV   |      | R32  | X *2    | High | Low | Output port (R32)                                   |
| R43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F53H    |      |      |       |      |      |         | *3   | *3  | [External memory read (RD)] *4                      |
| R43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |      | R31  | X *2    | High | Low | Output port (R31) / External memory address (A13)*4 |
| F54H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      |       |      |      |         | *3   | *3  | [External memory write $(\overline{WR})$ ] *4       |
| F54H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      |       |      | R30  | X *2    | High | Low | Output port (R30) / External memory address (A12)*4 |
| F64H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | D.42 | D40  | D44   | D40  | R43  | 1       | High | Low |                                                     |
| F54H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | K43  | K42  | K41   | K40  |      |         | Off  | On  | Buzzer output (BZ)                                  |
| F54H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      | ΛΛ/   |      | R42  | 1       | High | Low | Output port (R42)                                   |
| R41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      | ĸ    | / V V |      |      |         | Off  | On  | Clock output (FOUT)                                 |
| R41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEALL   |      |      |       |      |      |         | *3   | *3  | [Buzzer inverted output $(\overline{BZ})$ ]         |
| R40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F54F1   |      |      |       |      | R41  | 1       | High | Low | Output port (R41)                                   |
| P03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |      |      | l       | Off  | On  | LCD frame signal (FR)                               |
| P03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |      | R40  | 1       | High | Low | Output port (R40)                                   |
| P03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |      |      |         | Off  | On  | Clock inverted output (FOUT)                        |
| F60H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      |       |      |      |         | Off  | On  | LCD synchronous signal (CL)                         |
| F60H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | D03  | DO2  | P01   | POO  | P03  | X *2    | High | Low | I/O port (P03) / External memory data (D3) *5       |
| Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGUL    | 1 00 | 1 02 | 101   | 1 00 | P02  | X *2    | High | Low | I/O port (P02) / External memory data (D2) *5       |
| P13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 0011  |      | D    | ΛΛ/   |      | P01  | X *2    | High | Low | I/O port (P01) / External memory data (D1) *5       |
| F61H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |      | / V V |      | P00  | X *2    | High | Low | I/O port (P00) / External memory data (D0) *5       |
| F61H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | P13  | P12  | P11   | P10  | P13  | X *2    | High | Low | I/O port (P13) / External memory data (D7) *5       |
| P11   X *2   High   Low   I/O port (P11) / External memory data (D5) *5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E61L    | 1 10 | 1 12 | 1 11  | 1 10 | P12  | X *2    | High | Low | I/O port (P12) / External memory data (D6) *5       |
| P10   X **2   High   Low   I/O port (P10) / External memory data (D4) *5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10111   |      | P    | ΛΛΙ   |      | P11  | X *2    | High | Low | I/O port (P11) / External memory data (D5) *5       |
| F62H    P23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |      | , v v |      | P10  | X *2    | High | Low | I/O port (P10) / External memory data (D4) *5       |
| F62H    P22   X *2   High   Low   I/O port (P22) / External memory CS (CS2) *5   R/W   P21   X *2   High   Low   I/O port (P21) / External memory CS (CS1) *5   W   P20   X *2   High   Low   I/O port (P20) / External memory CS (CS0) *5   P30   P31   P30   P33   X *2   High   Low   I/O port / Dedicated output port (P33)   P32   P31   P30   P31   X *2   High   Low   I/O port / Dedicated output port (P32)   P31   X *2   High   Low   I/O port / Dedicated output port (P31)   P31   X *2   High   Low   I/O port / Dedicated output port (P31)   P31   P30   P31   P31 |         | P23  | P22  | P21   | P20  | P23  | X *2    | High | Low | I/O port (P23) / External memory CS (CS3) *5        |
| P21   X *2   High   Low   I/O port (P21) / External memory CS (CS1) *5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F62H    | 1 20 |      |       | 1.20 | P22  | / *     | High | Low | 1 \ ' '                                             |
| F63H  P33  P32  P31  P30  P30  P33  X *2  High  Low  I/O port / Dedicated output port (P33)  I/O port / Dedicated output port (P32)  P31  X *2  High  Low  I/O port / Dedicated output port (P32)  P31  X *2  High  Low  I/O port / Dedicated output port (P31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0211  |      | R    | /W    |      | P21  | X *2    | High | Low |                                                     |
| F63H    P33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      | ,    | W     | ı    |      | - '`    |      |     |                                                     |
| F63H P32 X *2 High Low I/O port / Dedicated output port (P32)  P31 X *2 High Low I/O port / Dedicated output port (P31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | P33  | P32  | P31   | P30  |      | , · ·   |      |     |                                                     |
| P31   X *2   High   Low   I/O port / Dedicated output port (P31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F63H    | 1 00 |      |       |      | P32  |         | High | Low |                                                     |
| P30 X *2 High   Low   I/O port / Dedicated output port (P30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      | R    | ΛW    |      | P31  |         | High | Low | I/O port / Dedicated output port (P31)              |
| 1 100   7. 1 mg.   20m   1/0 port / Dedicated datput port (150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *6      |      |      | ,     |      | P30  | X *2    | High | Low | I/O port / Dedicated output port (P30)              |

<sup>\*1</sup> Initial value following initial reset

<sup>\*2</sup> Undefined

<sup>\*3</sup> When selecting options enclosed in brackets [] as output option, the output register will function as register only and will not affect the individual outputs

<sup>\*4</sup> In the S1C62440, it can be used only as a port for output

<sup>\*5</sup> In the S1C62440, it can be used only as a port for I/O port

<sup>\*6</sup> In the S1C62440, the F50H, F51H and F63H cannot be used

Table 4.2.1(d) I/O data memory map (F70H-F79H)

|          |             | Reg    | ister  |        |                     |            |                  |                | 0 .                                                 |
|----------|-------------|--------|--------|--------|---------------------|------------|------------------|----------------|-----------------------------------------------------|
| Address  | D3          | D2     | D1     | D0     | Name                | Init *1    | 1                | 0              | Comment                                             |
|          | CLKCHG      | OSCC   | VSC1   | VSC0   | CLKCHG              | 0          | OSC3             | OSC1           | CPU system clock switch                             |
| F70H     | CLICOTIO    | 0000   | V001   | V 300  | oscc                | 0          | On               | Off            | OSC3 oscillation On/Off                             |
| 1 7011   |             | R      | W      |        | VSC1                | 0          |                  |                | CPU operating voltage switch                        |
|          |             |        |        | 1      | VSC0                | 0          |                  |                |                                                     |
|          | ALOFF       | ALON   | LDUTY  | HLMOD  | ALOFF               | 1          | All off          | Normal         | All LCD dots fade out control                       |
| F71H     |             |        |        |        | ALON                | 0          | All on<br>1/8    | Normal         | All LCD dots displayed control                      |
|          |             | R      | /W     |        | LDUTY<br>HLMOD      | 0          | 1/8<br>HLMOD     | 1/16<br>Normal | LCD drive duty switch<br>Heavy load protection mode |
|          |             |        |        |        | LC3                 | X *4       | HLIVIOD          | Nomiai         |                                                     |
|          | LC3         | LC2    | LC1    | LC0    | LC3                 | X *4       |                  |                | LCD contrast adjustment<br>LC3-LC0 = 0 light        |
| F72H     |             |        |        |        | LC1                 | X *4       |                  |                | EC3-EC0 = 0 light                                   |
|          |             | R      | /W     |        | LC0                 | X *4       |                  |                | LC3-LC0 = 15 dark                                   |
|          |             |        |        |        | SVDDT               | 1 *5       | Low              | Normal         | SVD evaluation data                                 |
| F7011    | SVDDT       | SVDON  | SVC1   | SVC0   | SVDON               | 0          | On               | Off            | SVD circuit On/Off                                  |
| F73H     | R           |        | R/W    |        | SVC1                | X *4       |                  |                | 7                                                   |
|          | K           |        | R/W    |        | SVC0                | X *4       |                  |                | SVD criteria voltage setting                        |
|          | SHOTPW      | BZFQ2  | BZFQ1  | BZFQ0  | SHOTPW              | 0          | 62.5 ms          | 31.25 ms       | 1-shot buzzer pulse width                           |
| F74H     | OHO H W     | DZI QZ | DZI QI | DZI QU | BZFQ2               | 0          |                  |                |                                                     |
| 1 7      |             | R      | W      |        | BZFQ1               | 0          |                  |                | Buzzer frequency selection                          |
|          |             |        |        | ı      | BZFQ0               | 0          |                  |                |                                                     |
|          | BZSHOT      | ENVRST | ENVRT  | ENVON  | BZSHOT              | 0          | Trigger          | -<br>DEADY     | 1-shot buzzer trigger (W)                           |
| FZELL    | BEGING!     | LITTIO | Littin | Litton | ENI/DOT             | DECET      | BUSY             | READY          | Status (R)                                          |
| F75H     | W           |        | _      |        | ENVRST<br>ENVRT     | RESET<br>0 | Reset<br>1.0 sec | 0.5 sec        | Envelope reset Envelope cycle selection             |
|          | R           | W      | R/     | W      | ENVON               | 0          | On               | O.5 Sec        | Envelope Cycle selection  Envelope On/Off           |
|          | IX.         |        |        |        | 0 *3                | - *2       | OII              | Oil            | Envelope On/On                                      |
|          | 0           | 0      | TMRST  | WDRST  | 0 *3                | - *2       |                  |                |                                                     |
| F76H     |             |        |        | l      | TMRST <sup>3</sup>  | Reset      | Reset            | _              | Clock timer reset                                   |
|          |             | ₹      | ١      | N      | WDRST               | Reset      | Reset            | _              | Watchdog timer reset                                |
|          | _           | 0      | CMDCT  | CWDUR  | 0 *3                | - *2       |                  |                | <u>_</u>                                            |
| [ F77] ! | 0           | 0      | SWRST  | SWRUN  | 0 *3                | - *2       |                  |                |                                                     |
| F77H     |             | 3      | W      | R/W    | SWRST <sup>*3</sup> | Reset      | Reset            | _              | Stopwatch timer reset                               |
|          | '           | `      | VV     | IN/ VV | SWRUN               | 0          | Run              | Stop           | Stopwatch timer Run/Stop                            |
|          | 0           | 0      | PTRST  | PTRUN  | 0 *3                | - *2       |                  |                | ·                                                   |
| F78H     |             |        |        |        | 0 *3                | - *2       |                  |                |                                                     |
| 1,011    |             | 3      | w      | R/W    | PTRST <sup>*3</sup> | Reset      | Reset            | -              | Programmable timer reset                            |
|          |             |        |        |        | PTRUN               | 0          | Run              | Stop           | Programmable timer Run/Stop                         |
|          | PTCOUT PTC2 | PTC2   | PTC1   | PTC0   | PTCOUT              | 0          | On               | Off            | Programmable timer clock output                     |
| F79H     |             |        |        |        | PTC2                | 0          |                  |                | December 11 to 1 to 1                               |
|          |             | R      | /W     |        | PTC1                | 0          |                  |                | Programmable timer input clock selection            |
|          |             |        |        |        | PTC0                | 0          |                  |                |                                                     |

<sup>\*1</sup> Initial value following initial reset
\*2 Not set in the circuit
\*3 Always "0" when being read
\*4 Undefined

<sup>\*5</sup> When SVD is off, "1" is read out

Table 4.2.1(e) I/O data memory map (F7AH-F7EH)

| Address |        | Reg     | ister |         |                  |         |           |        | Comment                                     |
|---------|--------|---------|-------|---------|------------------|---------|-----------|--------|---------------------------------------------|
| Address | D3     | D2      | D1    | D0      | Name             | Init *1 | 1         | 0      | Comment                                     |
|         | SCTRG  | SEN     | SCS1  | SCS0    | SCTRG*3          | -       | Trigger   | -      | Serial interface clock trigger              |
| F7AH    | SCING  | SLIV    | 3031  | 3030    | SEN              | 0       | ¬L        |        | Serial interface clock edge selection       |
| Г/АП    | w      |         | R/W   |         | SCS1             | 0       |           |        | l¬                                          |
|         | VV     |         | R/W   |         | SCS0             | 0       |           |        | Serial interface clock mode selection       |
|         | HZR3   | HZR2    | HZR1  | HZR0    | HZR3*3           | 0       | Output    | High-Z | R30–R33 output high-impedance control       |
| F7BH    | TIZINO | TIZINZ  | HZIXI | HZINU   | HZR2             | 0       | Output    | High-Z | R20–R23 output high-impedance control       |
| F/DN    |        | D       | W     |         | HZR1*6           | 0       | Output    | High-Z | R10-R13 output high-impedance control       |
|         |        | I.      | / V V |         | HZR0*6           | 0       | Output    | High-Z | R00-R03 output high-impedance control       |
|         | 0      | HZCS    | ADINC | PICON   | 0 *3             | - *2    |           |        |                                             |
| FZCLI   | U      | пдСЗ    | ADING | FICON   | HZCS<br>*3, 4, 6 | 0       | Output    | High-Z | CS0-CS3 output high-impedance control       |
| F7CH    | R      | R/W     | w     | R/W     | ADINC            | - *2    | Increment | -      | External memory address increment (A0-A13)  |
|         | K      | IN/ VV  | VV    | IX/VV   | PICON *4, 7      | 0       | Auto Inc. | Normal | External memory address auto increment mode |
|         | IOC3   | IOC2    | IOC1  | IOC0    | IOC3*6           | 0       | Output    | Input  | I/O control (P30–P33)                       |
| F7DH    | 1003   | 1002    | 1001  | 100     | IOC2             | 0       | Output    | Input  | I/O control (P20–P23)                       |
|         |        | D       | /W    |         | IOC1             | 0       | Output    | Input  | I/O control (P10–P13)                       |
|         |        | , K     | / V V |         | IOC0             | 0       | Output    | Input  | I/O control (P00–P03)                       |
|         | PUP3   | PUP2    | PUP1  | PUP0    | PUP3*6           | 0       | Off       | On     | I/O pull up resistor On/Off (P30–P33)       |
| F7EH    | 1 053  | 1 0 7 2 | TOFT  | 1 0 0 0 | PUP2             | 0       | Off       | On     | I/O pull up resistor On/Off (P20–P23)       |
|         |        | D       | /W    |         | PUP1             | 0       | Off       | On     | I/O pull up resistor On/Off (P10–P13)       |
|         |        | I.      | / V V |         | PUP0             | 0       | Off       | On     | I/O pull up resistor On/Off (P00–P03)       |

- \*1 Initial value following initial reset
- \*2 Not set in the circuit
- \*3 Always "0" when being read
- \*4 These control bits are only valid during selection of external memory/address output as output port option
- \*5 These control bits are only valid during selection of external memory/chip select output as I/O port option
- \*6 In the S1C62440, it is a register that becomes invalid and during reading it is always "0"
- \*7 In the S1C62440, it is used as a general purpose register that does not have a function

Table 4.2.1(f) I/O data memory map (FC0H–FFFH)

| Address  |     | Reg   | ister |     |      |         |      |     | Comment                                        |
|----------|-----|-------|-------|-----|------|---------|------|-----|------------------------------------------------|
| Address  | D3  | D2    | D1    | D0  | Name | Init *1 | 1    | 0   | Comment                                        |
| FC0H     | P03 | P02   | P01   | P00 | P03  | X *2    | High | Low | I/O port (P03) / External memory data bus (D3) |
|          | F03 | F 0 2 | FUI   | F00 | P02  | X *2    | High | Low | I/O port (P02) / External memory data bus (D2) |
| FFEH     |     | D     | W     |     | P01  | X *2    | High | Low | I/O port (P01) / External memory data bus (D1) |
| (even)*3 |     | I.    | / V V |     | P00  | X *2    | High | Low | I/O port (P00) / External memory data bus (D0) |
| FC1H     | P13 | P12   | P11   | P10 | P13  | X *2    | High | Low | I/O port (P13) / External memory data bus (D7) |
|          | FIJ | FIZ   | FII   | FIU | P12  | X *2    | High | Low | I/O port (P12) / External memory data bus (D6) |
| FFFH     |     | D     | W     |     | P11  | X *2    | High | Low | I/O port (P11) / External memory data bus (D5) |
| (odd)*3  |     | , K   | / V V |     | P10  | X *2    | High | Low | I/O port (P10) / External memory data bus (D4) |

- \*1 Initial value following initial reset
- \*2 Undefined
- \*3 Image area of I/O ports (P00–P03, P10–P13) .... S1C624A0/4C0/480 only See 6.14, "External Memory Access (S1C624A0/4C0/480)"

# CHAPTER 5 INITIAL RESET

### 5.1 Initialized Status

The CPU core and peripheral circuits are initialized by initial resetting as follows:

Table 5.1.1 Initialized status

|                          | CPU core |            |               |
|--------------------------|----------|------------|---------------|
| Name                     | Symbol   | Bit length | Setting value |
| Program counter, step    | PCS      | 8          | 00H           |
| Program counter, page    | PCP      | 4          | 1H            |
| Program counter, bank    | PCB      | 1          | 0             |
| New page pointer         | NPP      | 4          | 1H            |
| New bank pointer         | NBP      | 1          | 0             |
| Stack pointer            | SP       | 8          | Undefined     |
| Index register • IX      | IX       | 12         | Undefined     |
| Index register • IY      | IY       | 12         | Undefined     |
| Register pointer         | RP       | 4          | Undefined     |
| General-purpose register | A        | 4          | Undefined     |
| General-purpose register | В        | 4          | Undefined     |
| Interrupt flag           | I        | 1          | 0             |
| Decimal flag             | D        | 1          | Undefined     |
| Zero flag                | Z        | 1          | Undefined     |
| Carry flag               | C        | 1          | Undefined     |

| Peripheral circ           | cuit       |               |
|---------------------------|------------|---------------|
| Name                      | Bit length | Setting value |
| RAM                       | 4          | Undefined     |
| Segment data              | 4          | Undefined     |
| Other peripheral circuits | 4          | *             |

<sup>\*</sup> See Tables 4.2.1(a)-(f).

Note Undefined values must be defined by the program.

# 5.2 Example Program for the System Initialization

Following program shows the example of the procedure for system initialization.

The program example is of an S1C624C0 and for the S1C62440/4A0/480, it is necessary to change the RAM and the clear field of the display data memory.

```
; *
;* INITIAL RESET PROGRAM FOR E0C624C
ZCLKCG EQU
              70H
              73H
ZSVD
       EQU
              100H
       ORG
       JΡ
              INIT
       ORG
              10EH
INIT:
;* INITIALIZE CPU CORE AT THE BEGINNING
       RST
              F,0000B ; CLEAR IDZC FLAGS
              A,00H
                        ;SET STACKPOINTER TO 00H
       LD
       LD
              SPH, A
       LD
              A,00H
       LD
              SPL,A
;* SETUP THE OSC CONDITION
              A,OFH
       LD
                        ;SET TO I/O DATA MEMORY ADDRESS
       LD
              XP,A
       LD
              X,ZSVD
       LD
              MX,0110B ;TURN ON SVD CIRCUIT & SVD
                         ; VOLTAGE IS SET AS -3.3V
              DLY100
       CALL
                        ;WAIT FOR 100µS
       LD
              A,MX
       AND
              A,1000B
                        ; MASK OF SVD & THE RESULT
                        ; IS STORED IN "A"
```

```
LD
                MX,A
        JΡ
                NZ, DMC00 ; IF (VDD-VSS) IS LOWER THAN 3.3V
                           ; THEN VS1 SHOULD BE -1.2V
;
OP21:
        LD
                X,ZCLKCG
                           ; IF (VDD-VSS) IS 3.3V OR MORE
                A,0001B
        LD
                           ; THEN VS1 SHOULD BE -2.1V
        LD
                MX,A
; * CLEAR DATA MEMORY
DMC00: LD
                XP,A
                           ;CLEAR PAGE0
        LD
                X,00H
;
        LD
                Y,00H
                           ;SET UP THE COUNTER
        RCF
POLP:
                MX,00H
        LBPX
        ADC
                YL,2
                YH,0
        ADC
                NC,POLP
        JΡ
DMC10: LD
                A,1
                           ;CLEAR PAGE1
        LD
                XP,A
;
        LD
                Y,00H
                           ;SET UP THE COUNTER
        RCF
                             - In the case of the S1C62440,
                             set to "80H"
P1LP:
                MX,00H
        LBPX
        ADC
                YL,2
                YH,0
        ADC
                NC,P1LP
        JΡ
DMC20: LD
                A.2
                           ;CLEAR PAGE2
        LD
                XP,A
                Y,00H
                           ;SET UP THE COUNTER
        _{
m LD}
                                                     In the S1C62440
        RCF
                             - In the case of the S1C624A0,
                                                     these are not
                             set to "80H"
                                                     necessary
P2LP:
                MX,00H
        LBPX
        ADC
                YL,2
        ADC
                YH,0
        JΡ
                NC, P2LP
;
```

```
DMC30: LD
           A,3
                        ;CLEAR PAGE3
       LD
               XP,A
       _{
m LD}
               Y,00H
                        ;SET UP THE COUNTER
       RCF
P3LP: LBPX
               MX,00H
       ADC
               YL,2
               YH,0
       ADC
       JΡ
               NC,P3LP
                                                  In the S1C62440/
                                                  4A0/480 these
DMC40: LD
              A,4
                         ;CLEAR PAGE4
                                                  are not necessary
       LD
               XP,A
       LD
               Y,80H ;SET UP THE COUNTER
       RCF
P4LP:
       LBPX
               MX,00H
               YL,2
       ADC
               YH,0
       ADC
               NC,P4LP
       JΡ
;* CLEAR SEGMENT DATA MEMORY
                         ;CLEAR 1ST PART
SEG1:
       LD
               A,OEH
       LD
               XP,A
       LD
               X,00H
                          ;SET UP THE COUNTER
       _{
m LD}
               Y,80H
       RCF
                           — In the case of the S1C62440/4A0,
                            set to "B0H"
               MX,00H
SP1LP: LBPX
       ADC
               YL,2
       ADC
               YH,0
       JΡ
               NC,SP1LP
SEG2:
              X,80H ;CLEAR 2ND PART
       _{
m LD}
                          ;SET UP THE COUNTER
       LD
               Y,080H
                           - In the case of the S1C62440/4A0,
       RCF
                            set to "B0H"
SP2LP: LBPX
               MX,00H
       ADC
               YL,2
       ADC
               YH,0
       JΡ
               NC,SP2LP
```

```
;* INITIALIZE PERIPHERAL CIRCUITS
              A,OFH
CNTLCD: LD
                         ;SET CONTRAST FOR LCD DISPLAY
               XP,A
       LD
                         ;SET PAGE FOR PERIPHERAL
               X,72H
       LD
                         ;SET ADDRESS FOR LCD CONTROL
       LD
               MX,8
                         ;SET CONTRAST "8"
RSTCTM: LD
               X,76H
                         ; RESET CLOCK TIMER
               MX,0010B
       OR
RSTWD: OR
               MX,0001B ; RESET WATCHDOG TIMER
       LD
               X,00H
                         ; RESET CLOCK TIMER INTERRUPT
                         ; FLAG
       LD
               A,MX
               F,0000B
       RST
                         ;CLEAR IDZC FLAGS
               A,0
       LD
DLY100:
                         ;THE SUBROUTINE TO WAIT 100µS
                         ;SOFTWARE TIMER ROUTINE DEPENDS
                         ; ON OSC FREQUENCY
       RET
```

# 5.3 Programming Note for the System Initialization

In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.

### CHAPTER 6 PERIPHERAL CIRCUITS

### 6.1 Watchdog Timer

I/O data memory of the watchdog timer

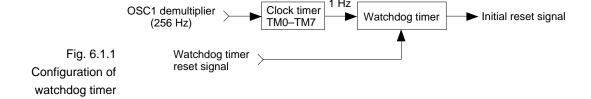

The control register of the watchdog timer is shown in Table 6.1.1.

Table 6.1.1 Control register of watchdog timer

| Address | Address Register |               |   |      |       |       |       |         | Comment              |
|---------|------------------|---------------|---|------|-------|-------|-------|---------|----------------------|
| Addiess | D3               | D3 D2 D1 D0   |   | Name | SR    | 1     | 0     | Comment |                      |
|         | 0                | 0 TMRST WDRST |   | 0    | -     |       |       |         |                      |
| F7011   | F                | ?             | v | V    | 0     | -     |       | -       |                      |
| F76H    | '                |               |   |      | TMRST | Reset | Reset | -       | Clock timer reset    |
|         |                  |               |   |      | WDRST | Reset | Reset | ı       | Watchdog timer reset |

Example program for the watchdog timer

Following program shows the reset procedure for watchdog timer.



```
; *
; *
; * RESET WATCHDOG TIMER
ZWDRST EQU
               76H
                         ; WATCHDOG PORT ADDRESS
XWDR
       EQU
               0001B
                         ;WATCHDOG RESET BIT
       LD
              A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
               XP,A
       LD
;
               X,ZWDTM
       LD
                        ;SET WATCHDOG PORT ADDRESS
       OR
               MX,XWDR
                         ; RESET WATCHDOG TIMER
;
```

- (1) The watchdog timer must reset within 3-second cycles by the software.
- (2) When clock timer resetting (TMRST←"1") is performed, the watchdog timer is counted up; reset the watchdog immediately after if necessary.

#### 6.2 Oscillation Circuit

I/O data memory of the oscillation circuit

The control registers of the oscillation circuit are shown in Table 6.2.1.

Table 6.2.1 Control registers of oscillation circuit

| Addross | Address Register |      |      |      |        |    |      |      | Comment                      |
|---------|------------------|------|------|------|--------|----|------|------|------------------------------|
| Address | D3               | D2   | D1   | D0   | Name   | SR | 1    | 0    | Comment                      |
|         | CLKCHG           | oscc | VSC1 | VSC0 | CLKCHG | 0  | OSC3 | OSC1 | CPU system clock change      |
| F7011   |                  | R    | W    |      | oscc   | 0  | On   | Off  | OSC3 oscillation On/Off      |
| F70H    |                  |      |      |      | VSC1   | 0  |      |      | CDU operating valtage switch |
|         |                  |      |      |      | VSC0   | 0  |      |      | CPU operating voltage switch |

Switches the operating voltage of the internal circuit in accordance to the oscillation frequency and power source voltage.

The corresponding setting description is shown in Table 6.2.2.

Table 6.2.2
Corresponding between oscillation frequency, power source voltage, and operating voltage (Vs1)

| VSC1 | VSC0 | Vs1    | Oscillation circuit | Oscillation frequency | Power source voltage (VDD-Vss) |
|------|------|--------|---------------------|-----------------------|--------------------------------|
| 0    | 0    | -1.2 V | OSC1                | 32.768 kHz            | Under 3.1 V                    |
| 0    | 1    | -2.1 V | OSC1                | 32.768 kHz            | 3.1 V or more (*)              |
| 0    | 1    | -2.1 V | OSC3                | 1 MHz                 | 2.2 V or more                  |
| 1    | ×    | -3.0 V | OSC3                | 2 MHz                 | 3.1 V or more                  |

The VDD is reference voltage as 0 V. And the voltage value of Vs1 is refered to VDD.

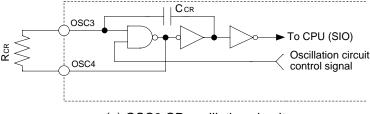
In the case of using a lithium battery of which initial source voltage is around 3.6 V as power source, it will be permitted to use VSC1 = "0" and VSC0 = "0" condition instead of the (\*) condition.

VSC1 and VSC0 are set to "0" at initial reset.

Note When switching Vs1 from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

$$(VSC1, VSC0) = (0, 0) \rightarrow (0, 1) \rightarrow 5 \text{ ms WAIT} \rightarrow (1, \times)$$

$$= (1, \times) \rightarrow (0, 1) \rightarrow 5 \text{ ms WAIT} \rightarrow (0, 0)$$


$$= (0, 0) \rightarrow (1, \times) \text{ is prohibited}$$

$$= (1, \times) \rightarrow (0, 0) \text{ is prohibited}$$

- Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.
- In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option as OSC1, Vs1 becomes -2.1 V even when VSC1 = VSC0 = 0 and will never become -1.2 V. In addition, since the current consumption is great for CR oscillation compared with the quartz crystal oscillation, when low power consumption is required, you should select quartz crystal oscillation as OSC1.

### Example program for the oscillation circuit

Following program shows the oscillation clock controlling procedure.



(a) OSC3 CR oscillation circuit

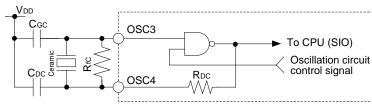



Fig. 6.2.1 Configuration of OSC3 oscillation circuit

(b) OSC3 ceramic oscillation circuit

Table 6.2.3 Oscillation frequency and required operating voltage

| Oscillation frequency | Oscillation circuit | Operating voltage Vs1 |
|-----------------------|---------------------|-----------------------|
| 32.768 kHz            | OSC1                | -1.2 V or -2.1 V      |
| 1 MHz                 | OSC3                | -2.1 V                |
| 2 MHz                 | OSC3                | -3.0 V                |

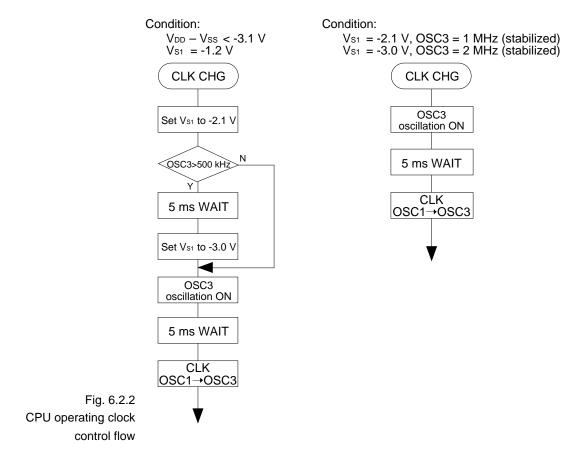
Table 6.2.4 Clock frequency and instruction execution time

|                 | Instru      | ction execution ti | me (µs)     |  |  |
|-----------------|-------------|--------------------|-------------|--|--|
| Clock frequency | 5-clock     | 7-clock            | 12-clock    |  |  |
|                 | instruction | instruction        | instruction |  |  |
| 32.768 kHz      | 152.6       | 213.6              | 366.2       |  |  |
| 1 MHz           | 5.0         | 7.0                | 12.0        |  |  |
| 2 MHz           | 2.5         | 3.5                | 6.0         |  |  |

```
; *
; * OSCILLATION CLOCK CONTROL
; *
                           ;OSC CONTROL REGISTER ADDRESS
ZCLKCG
         EQU
                 70H
XCLKH
                 1000B
                           ; CLOCK HIGH FREQ. SELECT
         EQU
ZSVD
         EQU
                 73H
                          ;SVD PORT ADDRESS
CLKLTH:
; * CHANGE CLOCK FREQ. FROM 32KHz TO 1MHz
                           ;SET TO I/O DATA MEMORY ADDRESS
          LD
                 A,OFH
          LD
                 XP,A
         LD
                 X,ZSVD
                           ; CHECK VDD-VSS IS HIGHER THAN 3.3V
         LD
                 MX,0110B
                 DLY100
         CALL
          FAN
                 MX,1000B
          JΡ
                 NZ, RESIGN; IF LOWER THAN 3.3V THEN RESIGN
;
         LD
                 X,ZCLKCG ;SET VS1=-2.1V
         LD
                 MX,0001B
                 DLY5MS
          CALL
                          ;WAIT 5mS
         LD
                 MX,0111B ;SET VS1=-3.0V & OSC3 ON
         CALL
                 DLY5MS
                           ;WAIT 5mS
;
```

```
OR
                MX, XCLKH ; CHANGE CLOCK FROM 32KHz TO 1MHz
RESIGN:
         RET
DLY100:
                         ;THE SUBROUTINE TO WAIT 100µS
         RET
DLY5MS:
                         ;THE SUBROUTINE TO WAIT 5mS
         RET
;
CLKHTL:
;* CHANGE CLOCK FREQ. FROM 1MHz TO 32KHz
         LD
                A,OFH ;SET TO I/O DATA MEMORY ADDRESS
         LD
                XP,A
;
                X, ZCLKCG ; CHANGE CLOCK FROM 1MHz TO 32KHz
         LD
         AND
                MX,0111B
         LD
                MX,0001B ;SET VS1=-2.1V & OSC3 OFF
         LD
                X,ZSVD
                          ; CHECK VSS & SETUP
         LD
                MX,0110B ;SUITABLE VS1 CONDITION
         CALL
                DLY100
         LD
                A,MX
                A,1000B
         AND
                MX,A
         LD
                Z, ENDCLK
         JΡ
;
         CALL
               DLY5MS ; WAIT 5mS
         LD
                MX,0000B ;SET VS1=-1.2V
         RET
;
```

(1) When high-speed operation of the CPU is not required, observe the following reminders to minimize power current consumption.


Set the CPU operating clock to OSC1. Turn the OSC3 oscillation OFF. Set the internal operating voltage (Vs1) to -1.2 V or -2.1 V.

- (2) Before you use OSC1 as system clock, you should check the supply voltage (Vss) using the SVD circuit. If the SVD circuit detects supply voltage less than 3.1 V (VDD-Vss < 3.1 V) then set the operating voltage (Vs1) to -1.2 V. Or if the SVD circuit detects supply voltage 3.1 V or more (VDD-Vss ≥ 3.1 V) then set Vs1 to -2.1 V. Moreover, because -1.2 V will be set during initial reset, be sure to execute the previous process at the beginning of the initial routine.
- (3) When switching Vs<sub>1</sub> from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

(VSC1, VSC0) = 
$$(0, 0) \rightarrow (0, 1) \rightarrow 5$$
 ms WAIT  $\rightarrow (1, \times)$   
=  $(1, \times) \rightarrow (0, 1) \rightarrow 5$  ms WAIT  $\rightarrow (0, 0)$   
=  $(0, 0) \rightarrow (1, \times)$  is prohibited  
=  $(1, \times) \rightarrow (0, 0)$  is prohibited

Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.

- (4) When switching the CPU operating clock from OSC1 to OSC3, follow the flow chart shown in Figure 6.2.2 and then proceed with software processing.
- (5) Use separate instructions to switch the clock from OSC3 to OSC1 and turn the OSC3 oscillation OFF. Simultaneous processing with a single instruction may cause malfunction of the CPU.



# 6.3 Input Ports (Kxx)

I/O data memory of the input ports

The control registers of the input ports are shown in Tables 6.3.1(a) and (b).

Table 6.3.1(a) Control registers of input ports (1)

| Address    |             | Reg   | ister |       |       |    |        |      | . Comment                       |
|------------|-------------|-------|-------|-------|-------|----|--------|------|---------------------------------|
| 7 tudi C33 | D3 D2 D1 D0 |       |       |       | Name  | SR | 1      | 0    | Comment                         |
|            | 0           | 0     | 0     | IK0   | 0     | _  |        |      |                                 |
| F0411      |             | ı     | R     |       | 0     | _  |        |      |                                 |
| F04H       | F04H        |       |       |       | 0     | _  |        |      |                                 |
|            |             |       |       |       | IK0   | 0  | Yes    | No   | Interrupt factor flag (K00–K03) |
|            | 0 0 0 IK1   |       |       |       | 0     | _  |        |      |                                 |
| F05H       |             | I     | R     |       | 0     | -  |        |      |                                 |
| 10311      |             |       |       |       | 0     | _  |        |      |                                 |
|            |             |       |       |       | IK1   | 0  | Yes    | No   | Interrupt factor flag (K10–K13) |
|            | EIK03       | EIK02 | EIK01 | EIK00 | EIK03 | 0  | Enable | Mask | Interrupt mask register (K03)   |
| F14H       |             | R     | W     |       | EIK02 | 0  | Enable | Mask | Interrupt mask register (K02)   |
| F14F1      |             |       |       |       | EIK01 | 0  | Enable | Mask | Interrupt mask register (K01)   |
|            |             |       |       |       | EIK00 | 0  | Enable | Mask | Interrupt mask register (K00)   |
|            | EIK13       | EIK12 | EIK11 | EIK10 | EIK13 | 0  | Enable | Mask | Interrupt mask register (K13)   |
| F15H       |             | R     | W     |       | EIK12 | 0  | Enable | Mask | Interrupt mask register (K12)   |
| FION       | 1           |       |       |       | EIK11 | 0  | Enable | Mask | Interrupt mask register (K11)   |
|            |             |       |       |       | EIK10 | 0  | Enable | Mask | Interrupt mask register (K10)   |

Table 6.3.1(b) Control registers of input ports (2)

| Address |       | Reg   | ister |       |       |    |      |     | Comment                               |
|---------|-------|-------|-------|-------|-------|----|------|-----|---------------------------------------|
| Address | D3    | D2    | D1    | D0    | Name  | SR | 1    | 0   | Comment                               |
|         | K03   | K02   | K01   | K00   | K03   | -  | High | Low |                                       |
| F40H    |       | I     | R     |       | K02   | -  | High | Low | Input port (K00–K03)                  |
| 1 4011  |       |       |       |       | K01   | -  | High | Low | input port (X00–X03)                  |
|         |       |       |       |       | K00   | -  | High | Low |                                       |
|         | DFK03 | DFK02 | DFK01 | DFK00 | DFK03 | 1  |      |     |                                       |
| F41H    |       | R     | W     |       | DFK02 | 1  |      |     | Input relation register (DFK00–DFK03) |
| 14111   |       |       |       |       | DFK01 | 1  |      |     | input relation register (DFR00-DFR03) |
|         |       |       |       | ,     | DFK00 | 1  |      |     |                                       |
|         | K13   | K12   | K11   | K10   | K13   | -  | High | Low |                                       |
| F42H    |       | I     | R     |       | K12   | -  | High | Low | Input port (K10–K13)                  |
| 1 7211  |       |       |       |       | K11   | -  | High | Low | impurport (KTO KTO)                   |
|         |       |       |       |       | K10   | _  | High | Low |                                       |

# Example program for the input ports

Following program shows the input ports controlling procedure.

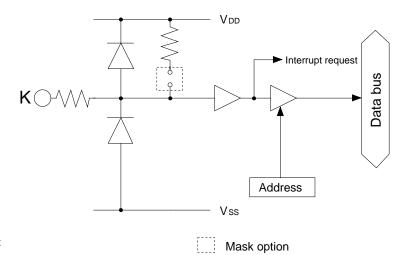



Fig. 6.3.1 Configuration of input port

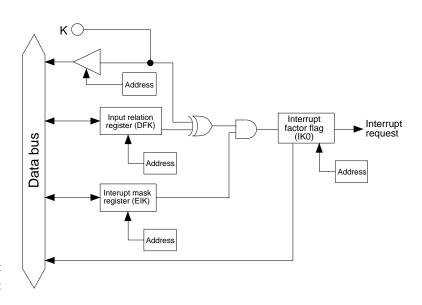



Fig. 6.3.2 Configuration of input (K00–K03) interrupt circuit

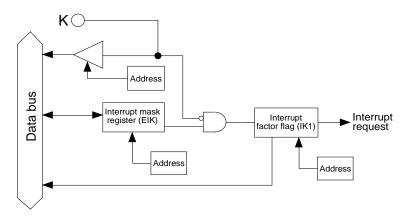



Fig. 6.3.3 Configuration of input (K10–K13) interrupt circuit

|     | Inte     | rrupt ma | ask reg   | ister     |                                    | In         | put relati | on regist | er         |  |  |  |  |  |
|-----|----------|----------|-----------|-----------|------------------------------------|------------|------------|-----------|------------|--|--|--|--|--|
|     | EIK03    | EIK02    | EIK01     | EIK00     |                                    | DFK03      | DFK02      | DFK01     | DFK00      |  |  |  |  |  |
|     | 1        | 1        | 1         | 0         |                                    | 1          | 0          | 1         | 0          |  |  |  |  |  |
|     | With th  | e above  | e setting | g, the ir | itei                               | rupt of K  | K00-K03    | is genera | ated unde  |  |  |  |  |  |
|     | the foll | owing c  | onditio   | n:        |                                    |            |            |           |            |  |  |  |  |  |
|     |          | Input    | ports     |           |                                    |            |            |           |            |  |  |  |  |  |
| (1) | K03      | K02      | K01       | K00       |                                    |            |            |           |            |  |  |  |  |  |
|     | 1        | 0        | 1         | 0         |                                    | (Initial v | alue)      |           |            |  |  |  |  |  |
|     |          | `        | l         |           |                                    |            |            |           |            |  |  |  |  |  |
| (2) | K03      | K02      | K01       | K00       |                                    |            |            |           |            |  |  |  |  |  |
|     | 1        | 0        | 1         | 1         |                                    |            |            |           |            |  |  |  |  |  |
|     |          | ,        | l         |           |                                    |            |            |           |            |  |  |  |  |  |
| (3) | К03      | K02      | K01       | K00       |                                    |            |            |           |            |  |  |  |  |  |
|     | 0        | 0        | 1         | 1         | -                                  | Interrup   |            |           |            |  |  |  |  |  |
|     |          | ,        | l         |           | _                                  |            |            |           | interrupt  |  |  |  |  |  |
| (4) | К03      | K02      | K01       | K00       | will be generated when no matching |            |            |           |            |  |  |  |  |  |
|     | 0        | 1        | 1         | 1         |                                    |            |            |           | oits input |  |  |  |  |  |
|     |          |          |           |           |                                    |            | registers  |           | •          |  |  |  |  |  |
|     |          |          |           |           |                                    |            |            |           |            |  |  |  |  |  |

Fig. 6.3.4 Example of an interrupt for K00–K03

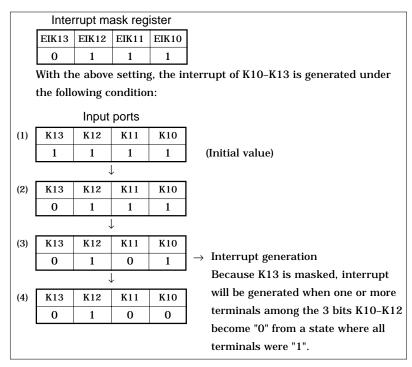



Fig. 6.3.5 Example of an interrupt for K10–K13

```
; * INPUT PORT
; *
ZIK0
       EOU
               04H
                         ; INPUT PORT 0 INTERRUPT FLAG
               05H
                         ; INPUT PORT 1 INTERRUPT FLAG
ZIK1
       EQU
ZEIK0
      EQU
               14H
                         ; INPUT PORT 0 MASK REGISTER
               15H
                         ; INPUT PORT 1 MASK REGISTER
ZEIK1
       EQU
ZK0
       EQU
               40H
                         ; INPUT PORT 0 ADDRESS
ZDFK0
       EQU
               41H
                         ; INPUT PORT 0 INPUT RELATION
                         ; REGISTER ADDRESS
               42H
                         ; INPUT PORT 1 ADDRESS
ZK1
       EOU
KOINIT:
;* INPUT PORT 0 & 1 INITIAL ROUTINE
       LD
               A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
               XP,A
       LD
                         ; INITIALIZE FOR DFK0
       LD
               X,ZKO
```

```
LD
            A,MX
       LD
             Y,ZDFK0
       LD
            MY,MX
;
       DI
       LD
            X,ZEIKO
       LD
              MX, OFH ; ENABLE INPUT PORT O INTERRUPT
              X,ZEIK1
       LD
              MX,0FH ; ENABLE INPUT PORT 1 INTERRUPT
       _{
m LD}
                       ; ENABLE INTERRUPTS
       ΕI
       RET
K0INT:
;* KO INTERRUPT SERVICE ROUTINE
       LD
            X,ZIKO ; CHECK INPUT PORT INTERRUPT FLAG
       DI
       LD
              A,MX
       CP
              A,00H
                       ; CHECK THE FLAG
              Z,K0INT1 ; IF NO FLAG "ON" THEN JMP TO
       JP
                       ;K0INT1
       LD
              X,ZKO
       LD
              Y, ZDFKO ; STORE TO INPUT RELATION REGISTER
             MY, MX
       LD
       ΕI
                       ; DO THE SERVICE
;
      DO THE PROCESS HERE
K0INT1:
      ΕI
       RET
;
K1INT:
;* K1 INTERRUPT SERVICE ROUTINE
```

```
; CHECK INPUT PORT INTERRUPT FLAG
       LD
               X,ZIK1
       DI
       LD
               A,MX
       CP
               A,00H
        JΡ
               Z,K1INT1
       LD
               X,ZK1
                          ; READ INPUT PORT 1 DATA
       DO THE PROCESS HERE
K1INT1:
       ΕT
       RET
```

(1) When changing the input port from Low level to High level with a pull up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull up resistor and input gate capacity. Hence, when reading data from the input port, set an appropriate waiting time. Care is particularly required for key matrix configuration scanning. For reference, approximately 500  $\mu$ s waiting time is required.

#### (2) Input interrupt programing related precautions

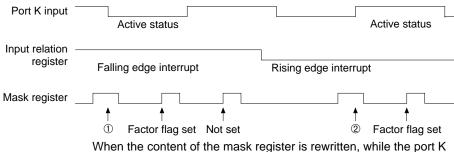



Fig. 6.3.6 Input interrupt timing

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at ① and ②, ① being the interrupt due to the falling edge and ② the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = Low status, when the falling edge interrupt is effected and

input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 6.3.6. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ② shown in Figure 6.3.6. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the input relation register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input relation register in the mask register = "0" status.

- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

# 6.4 Output Ports (Rxx)

I/O data memory of the output ports

The control registers of the output ports are shown in Tables 6.4.1(a) and (b).

Table 6.4.1(a) Control registers of output ports (1)

| Address    |      | Reg             | ister |      |       |    |        |        | Comment                          |
|------------|------|-----------------|-------|------|-------|----|--------|--------|----------------------------------|
| / ludi C33 | D3   | D2              | D1    | D0   | Name  | SR | 1      | 0      | Comment                          |
|            | R03  | R02             | R01   | R00  | R03   | Χ  | High   | Low    | Output port (R03)                |
|            | RUS  | RUZ             | KUI   | KUU  | KUS   | ^  | High   | Low    | External memory address (A3)     |
|            |      | D               | W     |      | R02   | Х  | High   | Low    | Output port (R02)                |
| F50H       |      | IX.             | / ۷ ۷ |      | NUZ   | ^  | High   | Low    | External memory address (A2)     |
| *2         |      |                 |       |      | R01   | Χ  | High   | Low    | Output port (R01)                |
| *2         |      |                 |       |      | KUT   | ^  | High   | Low    | External memory address (A1)     |
|            |      |                 |       |      | R00   | Χ  | High   | Low    | Output port (R00)                |
|            |      |                 |       |      | Kuu   | ^  | High   | Low    | External memory address (A0)     |
|            | R13  | R12             | R11   | R10  | R13   | Х  | High_  | _ Low_ | Output port (R13)                |
|            | ICIO | IVIZ            | IXII  | IXIO | KIO   | Λ  | High   | Low    | External memory address (A7)     |
|            |      | D               | W     |      | R12   | Χ  | High   | Low    | Output port (R12)                |
| F51H       |      | K.              | / V V |      | INIZ  | Λ  | High   | Low    | External memory address (A6)     |
| *2         |      |                 |       |      | R11   | Χ  | High   | _ Low  | Output port (R11)                |
|            |      |                 |       |      | KII   | ^  | High   | Low    | External memory address (A5)     |
|            |      |                 |       |      | R10   | Χ  | High   | Low    | Output port (R10)                |
|            |      |                 |       |      |       | ^  | High   | Low    | External memory address (A4)     |
|            | R23  | R23 R22 R21 R20 |       |      |       | Х  | High   | Low    | Output port (R23)                |
|            | KZS  | RZZ             | KZ I  | K20  | R23   |    | High   | Low    | External memory address (A11) *1 |
|            |      | ь               | W     |      | R22   | Χ  | High   | Low    | Output port (R22)                |
| F52H       |      | K.              | / V V |      | NZZ   | ^  | High   | Low    | External memory address (A10) *1 |
| 1 3211     |      |                 |       |      | R21   | Χ  | _ High | _ Low_ | Output port (R21)                |
|            |      |                 |       |      | INZ I | ^  | High   | Low    | External memory address (A9) *1  |
|            |      |                 |       |      | R20   | Χ  | High   | Low    | Output port (R20)                |
|            |      |                 |       |      | INZU  | ^  | High   | Low    | External memory address (A8) *1  |
|            | Doo  | Doo             | D04   | Dag  | R33   | Х  | High   | Low    | Output port (R33)                |
|            | R33  | R32             | R31   | R30  | RSS   | ^  | Off    | On     | PTCLK output                     |
|            |      | р               | ΛΛ/   |      |       |    | [      |        | [SRDY (SIO READY)]               |
|            | R/W  |                 |       |      | R32   | Х  | High   | Low    | Output port (R32)                |
| F53H       |      |                 |       |      | R32   | X  |        |        | [External memory read (RD)] *1   |
| гээп       |      |                 |       |      | D04   |    | High   | Low    | Output port (R31)                |
|            |      |                 |       |      | R31   | Х  | High   | Low    | External memory address (A13) *1 |
|            |      |                 |       |      |       |    | [      |        | [External memory write (WR)] *1  |
|            |      |                 |       |      | Dan   | ., | High   | Low    | Output port (R30)                |
|            |      |                 |       |      | R30   | Х  | High   | Low    | External memory address (A12) *1 |

| Table C 4 4/  | (h) Cantual |                |                | 2) |
|---------------|-------------|----------------|----------------|----|
| 1 able 0.4.10 | D) COHIIO   | i redisters or | output ports ( | ۷١ |

| Address |      | Reg  | ister |      |      |    |        |        | Comment                                  |
|---------|------|------|-------|------|------|----|--------|--------|------------------------------------------|
| Address | D3   | D2   | D1    | D0   | Name | SR | 1      | 0      | Confinent                                |
|         | R43  | R42  | R41   | R40  | R43  | 1  | _ High | Low    | Output port (R43)                        |
|         | 1740 | 1142 | 1741  | 1740 | 1145 | '  | Off    | On     | Buzzer output (BZ)                       |
|         |      | D    | W     |      | R42  | 1  | _ High | Low    | Output port (R42)                        |
|         |      | IX.  | / V V |      | 1142 | '  | Off    | On     | Clock output (FOUT)                      |
| F54H    |      |      |       |      |      |    |        |        | [Buzzer inverted output (BZ)]            |
| 1 3411  |      |      |       |      | R41  | 1  | _ High | _ Low_ | Output port (R41)                        |
|         |      |      |       |      | 1141 | '  | Off    | On     | LCD frame signal (FR)                    |
|         |      |      |       |      | R40  | 1  | _ High | _ Low  | Output port (R40)                        |
|         |      |      |       |      | 1140 | '  | Off    | On     | Clock inverted output (FOUT)             |
|         |      |      |       |      |      |    | Off    | On     | LCD synchronous signal (CL)              |
|         | HZR3 | HZR2 | HZR1  | HZR0 | HZR3 | 0  | Output | High-Z | R30–R33 output high-impedance control    |
| F7BH    |      | R    | /W    |      | HZR2 | 0  | Output | High-Z | R20–R23 output high-impedance control    |
| 17511   |      |      |       |      | HZR1 | 0  | Output | High-Z | R10–R13 output high-impedance control *3 |
|         |      |      |       |      | HZR0 | 0  | Output | High-Z | R00–R03 output high-impedance control *3 |

- \*1 In the S1C62440, it can be used only as a port for output
- \*2 In the S1C62440, the F50H and F51H cannot be used \*3 In the S1C62440, it is a register that becomes invalid and during reading it is always "0"

### Example program for the output ports

Following program shows the output ports controlling procedure in ordinary DC output case.

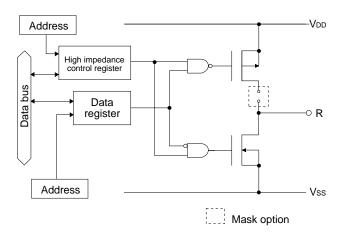



Fig. 6.4.1 Configuration of output port

```
OUTPUT PORT
  LOADING DATA OF B REGISTER TO R20-R23
ZHZR
       EQU
               7BH
                          ;HIGH INPEDANCE CONTROL
                          ; REGISTER ADDRESS
ZR2
               52H
       EOU
                          ;OUTPUT PORT ADDRESS
XHZOFF EOU
               0100B
                          ;HIGH IMPEDANCE OFF
                          ; (R2 PORT SET TO ACTIVE)
;
       LD
               A,0FH
                         ;SET TO I/O DATA MEMORY ADDRESS
       LD
               YP,A
       LD
               Y, ZHZR
                         ;SET HIGH IMPEDANCE CONTROL
                          ; REGISTER ADDRESS
       LD
               MY, XHZOFF; ENABLE OUTPUT PORT
       LD
               Y, ZR2
                         ;SET PORT ADDRESS
                         ;OUTPUT B REG. TO R1 PORT
       LD
               MY,B
       RET
```

- (1) When BZ,  $\overline{BZ}$ , FOUT,  $\overline{FOUT}$ , and PTCLK (DC) are selected by mask option, a hazard may be observed in the output waveform when the data of the output register changes.
- (2) Because the R00–R03, R10–R13, R20–R23, and R30–R32 (R33) ports gain high impedance during initial reset, be careful when using them as interface with external devices and the like.
- (3) When R33 port is selected for 2 states and DC (PTCLK) output by mask option, R33 terminal becomes undefined at initial reset.

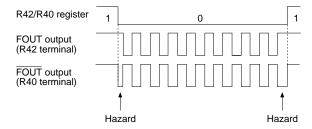



Fig. 6.4.2 Example of the hazard

# 6.5 I/O Ports (Pxx)

### I/O data memory of the I/O ports

The control registers of the I/O ports are shown in Table 6.5.1.

Table 6.5.1 Control registers of I/O ports

| Address  |      | Reg  | ister   |      |      |    |        |        | Comment                                  |
|----------|------|------|---------|------|------|----|--------|--------|------------------------------------------|
| Address  | D3   | D2   | D1      | D0   | Name | SR | 1      | 0      | Comment                                  |
|          | P03  | P02  | P01     | P00  | P03  | Х  | _ High | _ Low_ | I/O port (P03)                           |
| l        | 1 00 | 1 02 | 101     | 1 00 | 1 00 |    | High   | Low    | External memory data (D3) *1             |
|          |      | R    | W       |      | P02  | Х  | High_  | _ Low_ | I/O port (P02)                           |
| F60H     |      |      |         |      | 102  |    | High   | Low    | External memory data (D2) *1             |
|          |      |      |         |      | P01  | Х  | High _ | _ Low_ | I/O port (P01)                           |
|          |      |      |         |      |      |    | High   | Low    | External memory data (D1) *1             |
|          |      |      |         |      | P00  | Х  | High   | _ Low_ | I/O port (P00)                           |
|          |      |      |         |      | . 00 |    | High   | Low    | External memory data (D0) *1             |
|          | P13  | P12  | P11     | P10  | P13  | Х  | High   | _ Low  | I/O port (P13)                           |
|          |      |      |         |      |      |    | High   | Low    | External memory data (D7) *1             |
|          |      | R    | W       |      | P12  | Х  | High _ | _ Low  | I/O port (P12)                           |
| F61H     |      |      |         |      |      |    | High   | Low    | External memory data (D6) *1             |
|          |      |      |         |      | P11  | Х  | _ High | _ Low  | I/O port (P11)                           |
|          |      |      |         |      |      |    | High   | Low    | External memory data (D5) *1             |
|          |      |      |         |      | P10  | Х  | High _ | _ Low  | I/O port (P10)                           |
|          |      |      |         |      |      |    | High   | Low    | External memory data (D4) *1             |
|          | P23  | P22  | P21     | P20  | P23  | Х  | High _ | _ Low_ | I/O port (P23)                           |
|          | . 20 |      |         | . 20 |      |    | High   | Low    | External memory chip select (CS3) *1     |
|          |      |      | <u></u> |      | P22  | Х  | High _ | _ Low_ | I/O port (P22)                           |
| F62H     |      | ١    | N       |      |      |    | High   | Low    | External memory chip select (CS2) *1     |
| . 02     |      |      |         |      | P21  | Х  | _ High | _ Low  | I/O port (P21)                           |
|          |      |      |         |      |      |    | High   | Low    | External memory chip select (CS1) *1     |
|          |      |      |         |      | P20  | Х  | High _ | _ Low  | I/O port (P20)                           |
|          |      |      |         | 1    |      |    | High   | Low    | External memory chip select (CS0) *1     |
|          | P33  | P32  | P31     | P30  | P33  | Х  | _ High | _ Low  | I/O port (P33)                           |
| ļ        | 1 00 | 102  | 101     | 1 00 |      |    | High   | Low    | Dedicated output port (P33)              |
|          |      | R    | W       |      | P32  | Х  | High _ | _ Low  | I/O port (P32)                           |
| F63H     |      |      |         |      |      |    | High   | Low    | Dedicated output port (P32)              |
| *2       |      |      |         |      | P31  | Х  | High _ | _ Low_ | I/O port (P31)                           |
| - 1      |      |      |         |      |      |    | High   | Low    | Dedicated output port (P31)              |
|          |      |      |         |      | P30  | Х  | High _ | _ Low  | I/O port (P30)                           |
|          |      |      |         |      |      |    | High   | Low    | Dedicated output port (P30)              |
|          | IOC3 | IOC2 | IOC1    | IOC0 | IOC3 | 0  | Output | Input  | I/O control (P30–P33) *3                 |
|          |      | R    | /W      |      | IOC2 | 0  | Output | Input  | I/O control (P20–P23)                    |
| F7DH     |      |      |         |      | IOC1 | 0  | Output | Input  | I/O control (P10–P13)                    |
|          |      |      |         |      | IOC0 | 0  | Output | Input  | I/O control (P00–P03)                    |
|          | PUP3 | PUP2 | PUP1    | PUP0 | PUP3 | 0  | Off    | On     | I/O pull up resistor On/Off (P30–P33) *3 |
| <b>I</b> |      |      |         | !    |      |    |        |        |                                          |
| F7EH     |      | R    | /W      |      | PUP2 | 0  | Off    | On     | I/O pull up resistor On/Off (P20–P23)    |
|          |      |      |         |      | PUP1 | 0  | Off    | On     | I/O pull up resistor On/Off (P10–P13)    |
|          |      |      |         |      | PUP0 | 0  | Off    | On     | I/O pull up resistor On/Off (P00–P03)    |

<sup>\*1</sup> In the S1C62440, it can be used only as a port for I/O port \*2 In the S1C62440, the F63H cannot be used

<sup>\*3</sup> In the S1C62440, it is a register that becomes invalid and during reading it is always "0"

# Example program for the I/O ports

Following program shows the I/O ports controlling procedure.

This program sets P00–P03, P20–P23, and P30–P33 as input port with pull up resistor and P10–P13 as output port. Then it output the content of B register to P10–P13. However, in the S1C62440 the P30–P33 settings are invalid.

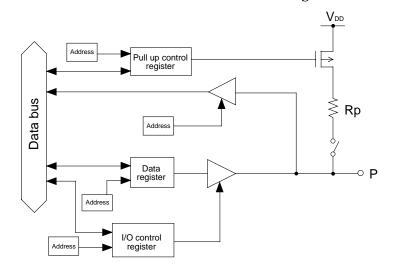



Fig. 6.5.1 Configuration of I/O port

```
; *
; * I/O PORT
ZIOC
       EOU
               7DH
                         ;I/O CONTROL REGISTER
ZPUP
       EQU
               7EH
                         ;I/O PULL UP CONTROL REGISTER
               61H
                         ;P1 PORT ADDRESS
ZP1
       EOU
               A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
       LD
       LD
               XP,A
       LD
               X,ZIOC
                         ;SET I/O PORT CONTROL ADDRESS
       LD
               MX,0010B
                         ;SET I/O PORT 1 AS OUTPUT PORT
       LD
               X,ZPUP
                         ;OFF THE PULL UP RESISTOR OF P1 PORT
       LD
               MX,0010B
       LD
               X,ZP1
                         ;SET I/O PORT ADDRESS
       LD
               MX,B
                         ;OUTPUT B REG. TO I/O PORT AS OUTPUT
       RET
```

- (1) When the I/O port is set at output mode, and low impedance load is connected to the port terminal, the data written and read may differ.
- (2) If the state of the I/O port meets any of the following 4 conditions, the reading data will be undefined:
  - The input/output mode is set at output mode
  - Output specification is set at Nch open drain
  - The content of the data register is "1"
  - The pull up resistor turned is OFF
- (3) When P30-P33 has been set as the output exclusive in the mask option, a pull up resistor cannot be added even if the pull up resistor control register PUP3 has been made "0".

#### 6.6 LCD Driver

I/O data memory of the LCD driver

The control registers of the LCD driver are shown in Table 6.6.1.

Table 6.6.1 Control registers of LCD driver

| Address   |       | Reg  | ister |       |       |    |         |        | Comment                        |
|-----------|-------|------|-------|-------|-------|----|---------|--------|--------------------------------|
| 7 tauress | D3    | D2   | D1    | D0    | Name  | SR | 1       | 0      | Comment                        |
|           | ALOFF | ALON | LDUTY | HLMOD | ALOFF | 1  | All off | Normal | All LCD dots fade out control  |
| F71H      | R/W   |      |       |       | ALON  | 0  | All on  | Normal | All LCD dots displayed control |
|           |       |      |       |       | LDUTY | 0  | 1/8     | 1/16   | LCD drive duty switch          |
|           |       |      |       |       | HLMOD | 0  | HLMOD   | Normal | Heavy load protection mode     |
|           | LC3   | LC2  | LC1   | LC0   | LC3   | х  |         |        | I CD content of instances      |
| F7011     |       | R    | W     |       | LC2   | X  |         |        | LCD contrast adjustment        |
| F72H      |       |      |       |       | LC1   | x  |         |        | LC3-LC0 = 0 light :            |
|           |       |      |       |       | LC0   | Х  |         |        | LC3–LC0 = 15 dark              |

## Segment data memory

The segment data memory of S1C62440/4A0 is allocated to the built-in RAM addresses E00H-E4FH and E80H-ECFH, and S1C624C0/480 is allocated to the built-in RAM addresses E00H-E65H and E80H-EF5H.

Figures 6.6.1(a) and (b) show the correspondence between the segment data memory and the LCD dot matrix.

#### S1C62440/4A0 SEG0 SEG1 SEG2 SEG3 SEG39 COM<sub>0</sub> □**D**0− □D0-□D0 -□D0 -□D0 -COM1 $\Box D1$ $\Box$ D1 $\Box$ D1 $\Box$ D1 $\Box$ D1 E00H E02H E04H E06H E4EH COM2 $\square$ D2 $\square D2$ $\square$ D2 $\Box$ D2 $\Box$ D2 COM3 □D3□ □D3-□D3 -□D3 -□D3-COM4 □D0¬ □D0-□D0 -□**D**0 -□**D**0-COM<sub>5</sub> $\square D1$ $\square D1$ $\Box$ D1 $\square D1$ $\Box$ D1 E01H E03H E05H E07H E4FH COM6 $\Box$ D2 $\square D2$ $\Box$ D2 $\Box$ D2 $\Box$ D2 COM7 □D3<sup>\_</sup> □D3-□D3 -□D3-□D3-COM8 □**D**0− □D0 -□D0 -□D0 -□D0 -COM9 $\square D1$ $\Box$ D1 $\Box$ D1 $\Box$ D1 $\Box$ D1 E80H E82H E84H E86H **ECEH** $\Box$ D2 COM10 □D2 $\square$ D2 $\square$ D2 $\square D2$ COM11 □D3 □ □**D**3 − □D3 -□D3 -□**D**3 − COM12 □D0¬ □D0-□D0 -□D0 -□**D**0 -COM13 □D1 $\square D1$ $\square D1$ $\square D1$ $\Box$ D1 E83H E85H E81H **E87H ECFH** COM14 □D2 $\square D2$ $\square D2$ $\square D2$ $\square D2$ COM15 D3-□D3 -□D3-□D3 -□D3 -

Data bit

Fig. 6.6.1(a) LCD dot matrix and segment data memory correspondence (S1C62440/4A0)

Memory address

#### S1C624C0/480

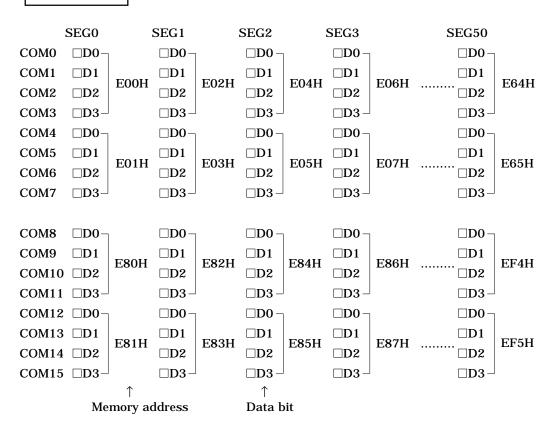
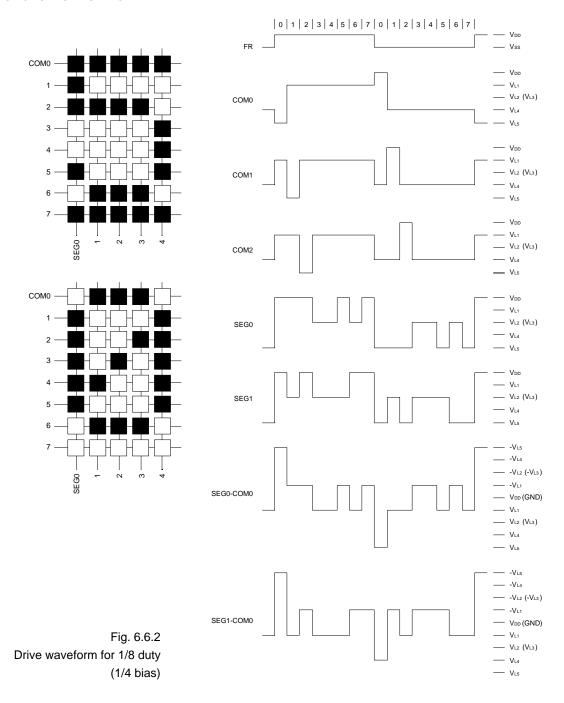




Fig. 6.6.1(b) LCD dot matrix and segment data memory correspondence (S1C624C0/480)

## Example program for the LCD driver

Following program shows the LCD driver controlling procedure.



```
;* LCD DRIVER
; *
ZLDUTY
         EQU
                71H
ZLC
         EQU
                72H
XALON
         EQU
                0100B
XALOFF
                1000B
        EQU
YCOLUM EQU 0250H
XCURSOR EQU
                01H
XNCURSR EOU
                00H
TSTLCD:
;* TESTING FOR LCD PANEL
         LD
                A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
         LD
                XP,A
;
                X,ZLC
         LD
                          ;SET THE CONTRAST OF LCD
                MX,8
         LD
;
                A,00H
         _{
m LD}
TSTLD1:
         _{
m LD}
                X,ZLDUTY
         AND
                MX,0011B
         OR
                MX,XALON ;TURN ON
         CALL
                WAITHS ; WAIT 0.5 SEC
         AND
                MX,0011B
         OR
                MX, XALOFF; TURN OFF
         CALL
                WAITHS ; WAIT 0.5 SEC
         ADD
                A,1
         JΡ
                NC, TSTLD1
;* TESTING THE TOLERANCE OF FRAME FREQUENCY
         AND
                MX,0011B
         OR
                MX, XALON ; TURN ON & CONTINUE 5 SEC
                WAIT5S
                         ;WAIT 5 SEC
         CALL
         AND
                MX,0011B ;TURN OFF AND SET LCD
                          ; TO NORMAL DRIVING CONDITION
;
```

```
NUMLCD:
;* DISPLAY NUMERAL ON THE LCD PANEL
        LD
               X,ZLDUTY
        OR
              MX,0010B ;SELECT 1/8 DUTY
;
        LD
              A, OEH ; SET XP TO THE PAGE OF SEG. DATA
              XP,A ; MEMORY
        LD
;
              A,02H ;SET Y REG. TO COLUMN INDEX MEMORY
        LD
        LD
              YP,A
        LD
              Y, YCOLUM
        LD
              MY,1 ;SELECT 1ST COLUMN
              A,5
                       ;DISPLAY "5"
        _{
m LD}
        LD
              B, XCURSOR; WITH CURSOR
        CALL DSPLCD
        LD MY, 2 ; SELECT 2ND COLUMN
              A,0
                       ;DISPLAY "0"
        LD
              B, XNCURSR; WITHOUT CURSOR
        LD
;
        CONTINUE
WAITHS:
                       ;WAIT 0.5 SEC
        RET
                      ;WAIT 5 SEC
WAIT5S:
        RET
;
DSPLCD:
; * DISPLAY ONE NUMERAL
        LD X,00H ; SET UP THE COLUMN
DSPLCD1:
        ADD
              MY,0FH
              MY,0
        CP
```

II-52

```
JΡ
                 Z,DSPLCD2
                            ;SHIFT THE COLUMN
          RCF
          ADC
                 XL,0AH
                 XH,00H
          ADC
          JΡ
                 DSPLCD1
DSPLCD2:
          PSET
                 0FH
          JPBA
          ORG
                 0F00H
NUM0:
          LBPX
                 MX,3EH
                            ;DISPLAY PATARN FOR "0" WITHOUT
          LBPX
                 MX,51H
                            ; CURSOR
          LBPX
                 MX,49H
                 MX,45H
          LBPX
          RETD
                 3EH
;
          ORG
                 0F15H
NUM5C:
          LBPX
                 MX,0A7H
                            ;DISPLAY PATARN FOR "5" WITH
          LBPX
                 MX,0C5H
                            ; CURSOR
                 MX,0C5H
          LBPX
          LBPX
                 MX,0C5H
                 0в9н
          RETD
```

Because at initial reset, the contents of segment data memory and LC0–LC3 are undefined, there is need to initialize by software.

#### 6.7 Clock Timer

I/O data memory of the clock timer

The control registers of the clock timer are shown in Table 6.7.1.

Table 6.7.1 Control registers of clock timer

| Address    |      | Reg  | ister |       |       |       |        |      | Comment                                      |
|------------|------|------|-------|-------|-------|-------|--------|------|----------------------------------------------|
| / tudi C33 | D3   | D2   | D1    | D0    | Name  | SR    | 1      | 0    | Comment                                      |
|            | IT1  | IT2  | IT8   | IT32  | IT1   | 0     | Yes    | No   | Interrupt factor flag<br>(clock timer 1 Hz)  |
| EOOL       | F00H |      |       |       | IT2   | 0     | Yes    | No   | Interrupt factor flag<br>(clock timer 2 Hz)  |
| 1 0011     |      |      |       |       | IT8   | 0     | Yes    | No   | Interrupt factor flag<br>(clock timer 8 Hz)  |
|            |      |      |       |       | IT32  | 0     | Yes    | No   | Interrupt factor flag<br>(clock timer 32 Hz) |
|            | EIT1 | EIT2 | EIT8  | EIT32 | EIT1  | 0     | Enable | Mask | Interrupt mask register (clock timer 1 Hz)   |
| F10H       | R/W  |      |       |       | EIT2  | 0     | Enable | Mask | Interrupt mask register (clock timer 2 Hz)   |
| 11011      |      |      |       |       | EIT8  | 0     | Enable | Mask | Interrupt mask register (clock timer 8 Hz)   |
|            |      |      |       |       | EIT32 | 0     | Enable | Mask | Interrupt mask register (clock timer 32 Hz)  |
|            | TM3  | TM2  | TM1   | TM0   | TM3   | 0     |        |      | Clock timer data (16 Hz)                     |
| F20H       | R    |      |       |       | TM2   | 0     |        |      | Clock timer data (32 Hz)                     |
| 12011      |      |      |       |       | TM1   | 0     |        |      | Clock timer data (64 Hz)                     |
|            |      |      |       |       | TM0   | 0     |        |      | Clock timer data (128 Hz)                    |
|            | TM7  | TM6  | TM5   | TM4   | TM7   | 0     |        |      | Clock timer data (1 Hz)                      |
| F21H       |      | l    | R     |       | TM6   | 0     |        |      | Clock timer data (2 Hz)                      |
|            |      |      |       |       | TM5   | 0     |        |      | Clock timer data (4 Hz)                      |
|            |      |      |       |       | TM4   | 0     |        |      | Clock timer data (8 Hz)                      |
|            | 0    | 0    | TMRST | WDRST | 0     | -     |        |      |                                              |
| F76H       | ı    | R    | \     | N     | 0     | -     |        |      |                                              |
| 17011      |      |      |       |       | TMRST | Reset | Reset  | _    | Clock timer reset                            |
|            |      |      |       |       | WDRST | Reset | Reset  | -    | Watchdog timer reset                         |

### Example program for the clock timer

Following program shows the clock timer controlling procedure.



Clock timer timing chart Address Register Frequency 128 Hz D1 64 Hz F20H 32 Hz D3 16 Hz D0 8 Hz 4 Hz D1 F21H D2 2 Hz D3 1 Hz 32 Hz interrupt request 11111111111111111111111111111111 t 8 Hz interrupt request t t t 2 Hz interrupt request 1 Hz interrupt request t

Fig. 6.7.2 Timing chart of clock timer

The clock timer interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz, and 1 Hz). At this time, the corresponding interrupt factor flag (IT32, IT8, IT2, and IT1) is set to "1".

Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT8, EIT2, and EIT1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

```
; *
; * CLOCK TIMER
; *
                          ; RESET THE CLOCK TIMER
                 76H
ZTMRST
         EQU
                           ;LOWER NIBBLE OF TIMER DATA
ZTML
         EQU
                 20H
ZTMH
         EOU
                 21H
                          ; HIGHER NIBBLE OF TIMER DATA
ZEIT
         EQU
                 10H
                          ;TIMER INTERRUPT MASK REGISTER
ZIT
         EQU
                 00H
                          ;TIMER INTERRUPT FLAG REGISTER
XTMRST
         EQU
                 0010B
XWDRST
       EQU
                 0001B
;
TMINIT:
; * ENABLE INTERRUPT FOR CLOCK TIMER AND RESET IT
         LD
                 A,OFH
                          ;SET TO I/O DATA MEMORY ADDRESS
         LD
                 XP,A
;
         LD
                 X, ZTMRST ; RESET TIMER
                 MX,XTMRST
         OR
         OR
                 MX,XWDRST; RESET WATCHDOG TIMER
;
         DΤ
         LD
                 X,ZIT
                          ; RESET IT FLAGS
         LD
                 MX, MX
;
         LD
                 X,ZEIT
                          ;SET TO TIMER MASK REGISTER
         LD
                 MX,0001B ; ENABLE TIMER 1Hz INTERRUPT
         ΕI
         RET
TMINT:
;* CLOCK TIMER INTERRUPT SERVICE ROUTINE
                          ;SET TO I/O DATA MEMORY ADDRESS
         L'D
                A,OFH
         LD
                XP,A
         LD
                YP,A
;
         DI
         LD
                 X,ZIT
                          ;LOAD TIMER INTERRUPT FLAG REGISTER
         LD
                 A,MX
                          ; CHECK TIMER 1Hz
         FAN
                 A,1000B
                 Z,TMINT1 ; IF NO FLAG "ON" THEN JUMP TO TMINT1
         JΡ
         PUSH
                           ; SAVE THE INTERRUPT FLAG TO STACK
                 X,ZTMH
                          ;SET TO HIGHER NIBBLE OF THE TIMER
         LD
                           ; DATA REGISTER
```

```
; READ HIGHER NIBBLE OF THE TIMER DATA
TMINT2:
                 A,MX
          LD
          LD
                 Y,ZTML
                            ; READ LOWER NIBBLE OF THE TIMER DATA
          LD
                 B,MY
          CP
                 MX,A
                            ; READ HIGHER NIBBLE AGAIN
                            ; AND COMPARE WITH LAST CONTENT
          JΡ
                 NZ,TMINT2
          POP
                 Α
          DO THE PROCEDURE FOR 1Hz
TMINT1:
          ΕI
          RET
```

- (1) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.
- (2) Because the watchdog timer counts up during reset as in the above (1), reset the watchdog timer as necessary.
- (3) When the low-order digits (TM0-TM3) and high-order digits (TM4-TM7) are consecutively read, proper reading may not be obtained due to the carry from the low-order digits into the high-order digits (when the reading of the low-order digits and high-order digits span the timing of the carry). For this reason, perform multiple reading of timer data, make comparisons and use matching data as result.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

#### 6.8 Stopwatch Timer

I/O data memory of the stopwatch timer

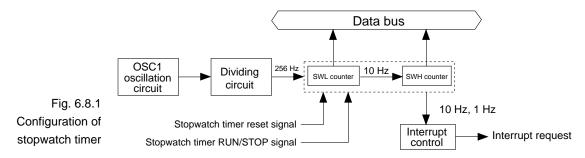
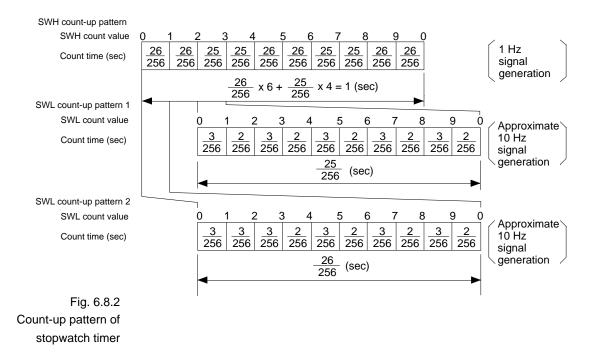

The control registers of the stopwatch timer are shown in Table 6.8.1.

Table 6.8.1 Control registers of stopwatch timer


| Address   |      | Register |       |       |       |       |        |      | Comment                                      |
|-----------|------|----------|-------|-------|-------|-------|--------|------|----------------------------------------------|
| , (001033 | D3   | D2       | D1    | D0    | Name  | SR    | 1      | 0    | Comment                                      |
|           | 0    | 0        | ISW1  | ISW0  | 0     | _     |        |      |                                              |
| F01H      |      |          | R     |       | 0     | -     |        |      |                                              |
| FUIH      |      |          |       |       | ISW1  | 0     | Yes    | No   | Interrupt factor flag<br>(stopwatch 1 Hz)    |
|           |      |          | _     |       | ISW0  | 0     | Yes    | No   | Interrupt factor flag<br>(stopwatch 10 Hz)   |
|           | 0    | 0        | EISW1 | EISW0 | 0     | -     |        |      |                                              |
| F11H      | ı    | R        | R     | W     | 0     | -     |        |      |                                              |
|           |      |          |       |       | EISW1 | 0     | Enable | Mask | Interrupt mask register<br>(stopwatch 1 Hz)  |
|           |      |          |       |       | EISW0 | 0     | Enable | Mask | Interrupt mask register<br>(stopwatch 10 Hz) |
|           | SWL3 | SWL2     | SWL1  | SWL0  | SWL3  | 0     |        |      | MSB                                          |
| F22H      |      | ا        | R     |       | SWL2  | 0     |        |      | Stopwatch timer 1/100 sec data (BCD)         |
| FZZN      |      |          |       |       | SWL1  | 0     |        |      | 1/100 sec data (BCD)                         |
|           |      |          |       |       | SWL0  | 0     |        |      | LSB                                          |
|           | SWH3 | SWH2     | SWH1  | SWH0  | SWH3  | 0     |        |      | MSB                                          |
| F23H      |      |          | R     |       | SWH2  | 0     |        |      | Stopwatch timer 1/10 sec data (BCD)          |
| 1 2311    |      |          |       |       | SWH1  | 0     |        |      | 1/10 see data (BCD)                          |
|           |      |          |       |       | SWH0  | 0     |        |      | LSB                                          |
|           | 0    | 0        | SWRST | SWRUN | 0     | -     |        |      |                                              |
| F77H      |      | R        | W     | R/W   | 0     | -     |        |      |                                              |
|           |      |          |       |       | SWRST | Reset | Reset  | -    | Stopwatch timer reset                        |
|           |      |          |       |       | SWRUN | 0     | Run    | Stop | Stopwatch timer Run/Stop                     |

## Example program for the stopwatch timer

Following program shows the stopwatch timer controlling procedure.



The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.



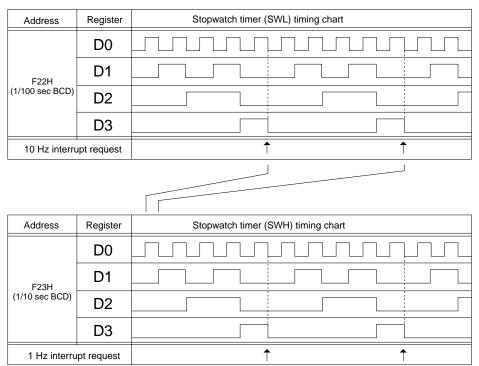



Fig. 6.8.3 Timing chart for stopwatch timer

The stopwatch interrupts are generated by the overflow of their respective counters SWL and SWH (changing "9" to "0"). At this time, the corresponding interrupt factor flags (ISW0 and ISW1) are set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EISW0 and EISW1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

```
;* STOPWATCH TIMER
; *
         EQU
               77H
ZSWRST
ZSWRUN EQU
                77H
ZSWL
        EQU
               22H
ZSWH
        EQU
               23H
ZEISW
        EQU
               11H
ZISW
         EQU
               01H
SWINIT:
; * ENABLE INTERRUPT FOR STOPWATCH TIMER AND START IT.
;
         LD
                A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
         LD
                XP,A
;
         DΙ
                X,ZEISW
         LD
         LD
                MX,0011B ; ENABLE STOPWATCH INTERRUPT
;
         LD
                X,ZSWRST
         LD
                MX,0010B ; RESET STOPWATCH TIMER
;
         OR
                MX,0001B ;START STOPWATCH TIMER
         ΕI
         RET
;
;
SWINT:
;* STOPWATCH INTERRUPT SERVICE ROUTINE
         LD
                X,ZISW ; CHECK STOPWATCH INTERRUPT
         DI
         LD
                A,MX
         CР
                A,00H
                         ; CHECK THE FLAG
                Z,SWINT1 ; IF NO FLAG "ON" THEN JUMP TO SWINT1
         JΡ
         PUSH
                Α
         LD
                B,0FH
         LD
                YP,B
                Y,ZSWL
         _{
m LD}
                X, ZSWRUN
         LD
```

```
AND MX,1110B; STOP STOPWATCH TIMER
LDPY A,MY; READ SWL DATA TO "A" REG.
LD B,MY; READ SWH DATA TO "B" REG.
OR MX,0001B; START STOPWATCH TIMER

.
.
.
.
DO THE PROCEDURE FOR STOPWATCH
.
.
SWINT1: EI
RET
```

- (1) When data of the counter is read at run mode, perform the reading after suspending the counter once and then set SWRUN to "1" again. Moreover, it is required that the suspension period not exceed 976  $\mu$ s (1/4 cycle of 256 Hz).
- (2) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

### 6.9 Programmable Timer

I/O data memory of the programmable timer The control registers of the programmable timer are shown in Tables 6.9.1(a) and (b).

Table 6.9.1(a) Control registers of programmable timer (1)

| Address |     | Register |     |      |      | Comment |        |      |                                                |  |
|---------|-----|----------|-----|------|------|---------|--------|------|------------------------------------------------|--|
| Addicss | D3  | D2       | D1  | D0   | Name | SR      | 1      | 0    | Comment                                        |  |
|         | 0   | 0        | 0   | IPT  | 0    | _       |        |      |                                                |  |
| F02H    |     | I        | R   |      | 0    | -       |        |      |                                                |  |
| FUZH    |     |          |     |      | 0    | _       |        |      |                                                |  |
|         |     |          |     |      | IPT  | 0       | Yes    | No   | Interrupt factor flag<br>(programmable timer)  |  |
|         | 0   | 0        | 0   | EIPT | 0    | -       |        |      |                                                |  |
| F12H    |     | R        |     | R/W  | 0    | _       |        |      |                                                |  |
| 1 1211  |     |          |     |      | 0    | _       |        |      |                                                |  |
|         |     |          |     |      | EIPT | 0       | Enable | Mask | Interrupt mask register (programmable timer)   |  |
|         | PT3 | PT2      | PT1 | PT0  | PT3  | х       |        |      | MSB                                            |  |
| F24H    |     |          | R   |      | PT2  | х       |        |      | Programmable timer data (low-order)            |  |
| 1 2-111 |     |          |     |      | PT1  | Х       |        |      | rrogrammable unier data (low-order)            |  |
|         |     |          |     |      | PT0  | Х       |        |      | LSB                                            |  |
|         | PT7 | PT6      | PT5 | PT4  | PT7  | х       |        |      | MSB                                            |  |
| F25H    |     | l        | R   |      | PT6  | х       |        |      | Programmable timer data (high-order)           |  |
| 1 2011  |     |          |     |      | PT5  | х       |        |      | Trogrammable timer data (mgn order)            |  |
|         |     |          |     |      | PT4  | Х       |        |      | LSB                                            |  |
|         | RD3 | RD2      | RD1 | RD0  | RD3  | х       |        |      | MSB                                            |  |
| F26H    |     | R        | W   |      | RD2  | х       |        |      | Programmable timer<br>reload data (low-order)  |  |
| 1 2011  |     |          |     |      | RD1  | х       |        |      | Foldad data (15 % order)                       |  |
|         |     |          |     |      | RD0  | Х       |        |      | LSB                                            |  |
|         | RD7 | RD6      | RD5 | RD4  | RD7  | х       |        |      | MSB                                            |  |
| F27H    |     | R        | /W  |      | RD6  | х       |        |      | Programmable timer<br>reload data (high-order) |  |
| 12/11   |     |          |     |      | RD5  | х       |        |      | and (ingl. order)                              |  |
|         |     |          |     |      | RD4  | Х       |        |      | LSB                                            |  |

Table 6.9.1(b) Control registers of programmable timer (2)

| Address |        | Reg  | ister |       |        |       |       |      | Comment                                  |
|---------|--------|------|-------|-------|--------|-------|-------|------|------------------------------------------|
| Address | D3     | D2   | D1    | D0    | Name   | SR    | 1     | 0    | Comment                                  |
|         | 0      | 0    | PTRST | PTRUN | 0      | -     |       |      |                                          |
| F78H    | F      | 2    | W     | R/W   | 0      | -     |       |      |                                          |
| 1 7011  |        |      |       |       | PTRST  | Reset | Reset | -    | Programmable timer reset                 |
|         |        |      |       |       | PTRUN  | 0     | Run   | Stop | Programmable timer Run/Stop              |
|         | PTCOUT | PTC2 | PTC1  | PTC0  | PTCOUT | 0     |       |      | Programmable timer clock output          |
| F79H    |        | R    | W     |       | PTC2   | 0     |       |      |                                          |
| F79H    |        |      |       |       | PTC1   | 0     |       |      | Programmable timer input clock selection |
|         |        |      |       |       | PTC0   | 0     |       |      |                                          |

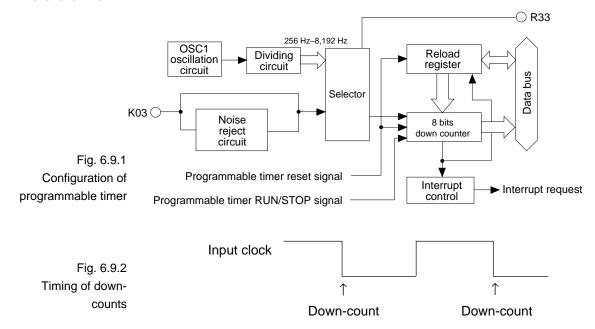
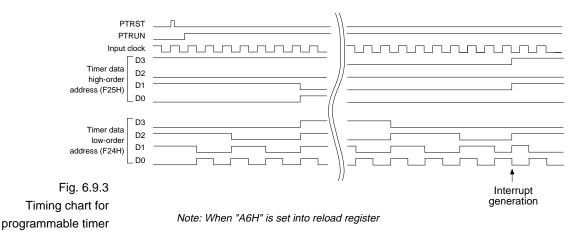

The PTC0-PTC2 setting and input clock correspondence is shown in Table 6.9.2.

Table 6.9.2 Input clock setting


| PTC2 | PTC1 | PTC0 | Input clock                     |
|------|------|------|---------------------------------|
| 0    | 0    | 0    | K03 input (with noise rejector) |
| 0    | 0    | 1    | K03 input (direct)              |
| 0    | 1    | 0    | 256 Hz                          |
| 0    | 1    | 1    | 512 Hz                          |
| 1    | 0    | 0    | 1,024 Hz                        |
| 1    | 0    | 1    | 2,048 Hz                        |
| 1    | 1    | 0    | 4,096 Hz                        |
| 1    | 1    | 1    | 8,192 Hz                        |

Example program for the programmable timer

Following program shows the programmable timer controlling procedure.



External clock of K03 input (with noise rejector) is for counting by key entry, the input signal from which passes the 256 Hz sampling noise reject circuit. With this, no more than 2 ms of chattering is purged, and at least 4 ms signal is received.



When the down-counter values PTO-PT7 have become 00H the interrupt factor flag IPT is set to "1" and an interrupt is generated. The interrupt can be masked through the interrupt mask register EIPT. However, regardless of the setting of the interrupt mask register, the interrupt factor flag is set to "1" when the down-counter equals 00H.

```
; *
;* PROGRAMMABLE TIMER
; *
ZPTRST
          EQU
                 78H
          EQU
                 78H
ZPTRUN
ZPTCOU
          EOU
                 79H
ZRDL
          EQU
                 26H
ZRDH
          EQU
                 27H
ZPTL
          EQU
                 24H
ZPTH
          EQU
                 25H
ZEIPT
          EQU
                 12H
ZIPT
          EQU
                 02H
PTINIT:
; * ENABLE INTERRUPT FOR PROGRAMMABLE TIMER,
   PRESET AND START IT.
;
                 A,OFH
                            ;SET TO I/O DATA MEMORY ADDRESS
          LD
                 XP,A
          LD
;
          DI
          LD
                 X,ZEIPT
                            ; ENABLE PROGRAMMABLE TIMER INTERRUPT
                 MX,0001B
          LD
                            ; PRESET THE RELOAD REG TO 100.
          LD
                 X,ZRDL
                 MX,04H
          LDPX
                 MX,06H
          LD
;
          LD
                 X,ZPTCOU ;SELECT K03 AS CLOCK
          LD
                 MX,0001B
;
          LD
                 X, ZPTRST
          OR
                 MX,0010B ; RESET PROGRAMMABLE TIMER
```

```
OR
               MX,0001B ;START PROGRAMMABLE TIMER
         EI
         RET
PTINT:
;* PROGRAMMABLE TIMER INTERRUPT SERVICE ROUTINE
               A,OFH
         LD
         LD
                XP,A
         LD
                X,ZIPT ; CHECK PROGRAMMABLE TIMER INTERRUPT
         DI
         LD
                A,MX
         FAN
                A,0001B ; CHECK THE FLAG
         JΡ
                Z,PTINT1 ; IF NO FLAG "ON" THEN JUMP TO PRINT1
         DO THE PROCEDURE FOR PROGRAMMABLE TIMER
;
PTINT1:
         ΕI
         RET
PTREAD:
; * READ PROGRAMMABLE TIMER ROUTINE
;
         LD
                A,OFH
         LD
                XP,A
;
                          ; CHANGE TO HIGH SPEED OSC CLOCK WHEN
         CALL
                HSPCLK
                          ; INPUT CLOCK OF PROGRAMMABLE TIMER IS
                          ; HIGHER FREQUENCY THAN 280Hz
                X,ZPTRUN ;STOP PROGRAMMABLE TIMER
         LD
         AND
                MX,1110B
         LD
               X,ZRDL
              A,MX
         LDPX
         LD
                B,MX
         LD
                X,ZPTRUN ;START PROGRAMMABLE TIMER
         OR
                MX,0001B
```

- (1) When initiating programmable timer count, perform programming by the following steps:
  - 1. Set the initial data to RD0-RD7.
  - 2. Reset the programmable timer by writing "1" to PTRST.
  - 3. Start the down-count by writing "1" to PTRUN.
- (2) When the reload register (RD0-RD7) value is set at "00H", the down-counter becomes a 256-value counter.
- (3) When data of the timer is read consecutively in 8 bits in the RUN mode, perform the reading after suspending the timer once and then set the PTRUN to "1" again. Moreover, it is required that the suspension period be within 1/4 cycle of the input clock (in case of 1/2 duty). Accordingly, when the input clock is a fast clock faster than a 256 Hz, high speed processing by OSC3 is required.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

### 6.10 SVD (Supply Voltage Detection) Circuit

I/O data memory of the SVD circuit

The control registers of the SVD circuit are shown in Table 6.10.1.

Table 6.10.1 Control registers of SVD circuit

| Address |       | Regi  | ister |      |       |    |     |        | Comment                      |
|---------|-------|-------|-------|------|-------|----|-----|--------|------------------------------|
| Address | D3    | D2    | D1    | D0   | Name  | SR | 1   | 0      | Comment                      |
|         | SVDDT | SVDON | SVC1  | SVC0 | SVDDT | 1  | Low | Normal | SVD evaluation data          |
| FZOLL   | R     |       | R/W   |      | SVDON | 0  | On  | Off    | SVD circuit On/Off           |
| F73H    |       |       |       |      | SVC1  | Х  |     |        | SVD oritorio voltogo pottino |
|         |       |       |       |      | SVC0  | Х  |     |        | SVD criteria voltage setting |

Criteria voltage for supply voltage detection is set as shown in Table 6.10.2.

Table 6.10.2 Criteria voltage for SVD circuit

| SVC1 | SVC0 | Criteria voltage |
|------|------|------------------|
| 0    | 0    | -2.2 V           |
| 0    | 1    | -2.5 V           |
| 1    | 0    | -3.1 V           |
| 1    | 1    | -4.2 V           |

The VDD reference voltage is used as the criteria voltage. At initial reset, this register becomes undefined.

### Example program for the SVD circuit

#### Following program shows the SVD controlling procedure.

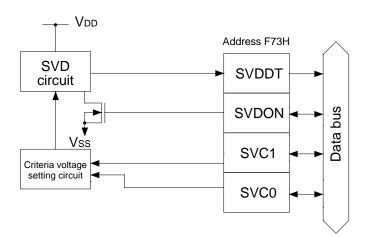


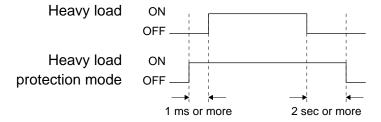

Fig. 6.10.1 Configuration of SVD circuit

```
;* CHECK THE RESULT OF SUPPLY VOLTAGE DETECTION CIRCUIT
; *
ZSVD
          EQU
                 73H
                           ;SVD PORT ADDRESS
XSVDON
          EQU
                 01XXB
                           ;SVD ENABLE BIT & DETECT VOLTAGE
                           ;"XX" SHOULD BE DEFINED DUE TO
                           ;THE DETECT VOLTAGE
                           ;SET TO I/O DATA MEMORY ADDRESS
CHKSVD:
          LD
                 A,OFH
                 XP,A
          LD
          LD
                 X,ZSVD
          LD
                 MX, XSVDON; TURN ON SVD CIRCUIT & SET DETECT
                           ; VOLTAGE
          CALL
                 DLY100
                           ;*1: WAIT FOR 100µS TO BE STABLE
                           ;SVD CIRCUIT
          L'D
                 A,MX
                           ; READ SVD DATA
          AND
                 A,1000B
                           ; MASK OF SVD DATA & THE RESULT IS
                           ;STORED IN "A"
                            ;"1" MEANS BATTERY BECOME LOW
          LD
                 MX,A
                            ;*2: TURN OFF SVD CIRCUIT TO REDUCE
                            ; CURRENT CONSUMPTION
          RET
DLY100:
                           ; THE SUBROUTINE TO WAIT 100\mu S
;
          RET
```

- (1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
- (2) To obtain a stable detection result, after setting SVDON to "1", provide at least 100  $\mu s$  waiting time before performing SVDDT reading.

#### 6.11 Heavy Load Protection Circuit

I/O data memory of the heavy load protection circuit The control register of the heavy load protection circuit is shown in Table 6.11.1.


Table 6.11.1 Control register of heavy load protection circuit

| Address |       | Reg  | ister |       |       |    |         |        | Comment                        |
|---------|-------|------|-------|-------|-------|----|---------|--------|--------------------------------|
| Address | D3    | D2   | D1    | D0    | Name  | SR | 1       | 0      | Comment                        |
|         | ALOFF | ALON | LDUTY | HLMOD | ALOFF | 1  | All off | Normal | All LCD dots fade out control  |
| F71H    | R/W   |      |       |       | ALON  | 0  | All on  | Normal | All LCD dots displayed control |
|         |       |      |       |       | LDUTY | 0  | 1/8     | 1/16   | LCD drive duty switch          |
|         |       |      |       |       | HLMOD | 0  | HLMOD   | Normal | Heavy load protection mode     |

Example program for the heavy load protection circuit

Following program shows the heavy load protection circuit controlling procedure.

Fig. 6.11.1 Control timing for heavy load protection mode



```
; * ENABLE HEAVY LOAD PROTECTION MODE
; *
ZHLMOD EQU
              71H
                        ; HLMOD REGISTER ADDRESS
XHLON
       EQU
              0001B
                        ; HLMOD ENABLE BIT
ENHLP: LD
             A, OFH ; SET TO I/O DATA MEMORY ADDRESS
        LD
               XP,A
        LD
              X,ZHLMOD ;SET HLMOD REGISTER ADDRESS
         OR
              MX,XHLON ;SET HLMOD TURN ON
        NOP5
                        ;*1: WAIT MORE THAN 4 STEPS TO BE
                        ;STABLE HLMOD CIRCUIT BEFORE TURN
        NOP5
                        ON THE HEAVY LOAD
        NOP5
        NOP5
        RET
;
; *
;* DISABLE HEAVY LOAD PROTECTION MODE DUE TO SVD
; *
ZHLMOD EQU
              71H
                        ; HLMOD REGISTER ADDRESS
XHLOFF EQU
              1110B
                        ;HLMOD DISABLE BIT
DISHLP: CALL SVD22 ; CHECK VDD-VSS IS LOWER THAN 2.2V
        AND
               A,1000B ; "1" MEANS BATTERY LOW
              Z,TOFF
        JΡ
        RET
                        ;*2: RETURN WITHOUT HLMOD TURN OFF
                        ;WHEN BATTERY IS LOWER THAN 2.2V
;
               A,OFH
                       ;SET TO I/O DATA MEMORY ADDRESS
TOFF:
        LD
        LD
               XP,A
         LD
               X,ZHLMOD ;SET HLMOD REGISTER ADDRESS
         AND
               MX, XHLOFF; *3: SET HLMOD TURN OFF TO REDUCE
                        ;THE CURRENT CONSUMPTION
        RET
SVD23:
                        ;THE SUBROUTINE WHICH CHECKS
                        ; WHETHER BLD SENCE LOWER THAN 2.2V
                        ;OR NOT
         RET
```

- (1) During heavy load or when 2.2 V or below is detected by SVD, set it to heavy load protection mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.
- (2) Perform heavy load driving only after setting up at least 1 ms wait time through the software, after switching to the heavy load protection mode. (See Figure 6.11.1.)
- (3) When the heavy load protection mode is to canceled after completion of heavy load driving, set up at least 2 seconds wait time through the software. (See Figure 6.11.1.)

#### 6.12 Serial Interface Circuit

I/O data memory of the serial interface circuit The control registers of the serial interface circuit are shown in Table 6.12.1.

Table 6.12.1 Control registers of serial interface circuit

| Address  |       | Register |      |       |       |    |         |      | Comment                                        |
|----------|-------|----------|------|-------|-------|----|---------|------|------------------------------------------------|
| 71001000 | D3    | D2       | D1   | D0    | Name  | SR | 1       | 0    | Common                                         |
|          | 0     | 0        | 0    | ISIO  | 0     | -  |         |      |                                                |
| F03H     |       | ı        | R    |       | 0     | -  |         |      |                                                |
| гозп     |       |          |      |       | 0     | -  |         |      |                                                |
|          |       |          |      |       | ISIO  | 0  | Yes     | No   | Interrupt factor flag<br>(serial interface)    |
|          | 0     | 0        | 0    | EISIO | 0     | -  |         |      |                                                |
| F13H     |       | R        |      | R/W   | 0     | -  |         |      |                                                |
| 1 1311   |       |          |      |       | 0     | -  |         |      |                                                |
|          |       |          |      |       | EISIO | 0  | Enable  | Mask | Interrupt mask register (serial interface)     |
|          | SD3   | SD2      | SD1  | SD0   | SD3   | Х  |         |      | MSB                                            |
| F30H     |       | R        | W    |       | SD2   | Х  |         |      | Serial interface<br>data register (low-order)  |
| 13011    |       |          |      |       | SD1   | Х  |         |      | data register (10w-order)                      |
|          |       |          |      |       | SD0   | Х  |         |      | LSB                                            |
|          | SD7   | SD6      | SD5  | SD4   | SD7   | Χ  |         |      | MSB                                            |
| F31H     |       | R        | W    |       | SD6   | Х  |         |      | Serial interface<br>data register (high-order) |
| 13111    |       |          |      |       | SD5   | Х  |         |      | data register (ingir-order)                    |
|          |       |          |      |       | SD4   | Х  |         |      | LSB                                            |
|          | SCTRG | SEN      | SCS1 | SCS0  | SCTRG | -  | Trigger |      | Serial interface<br>clock trigger              |
| F7AH     | W     |          | R/W  |       | SEN   | 0  |         |      | Serial interface<br>clock edge selection       |
| ITAII    |       |          |      |       | SCS1  | 0  |         |      | Serial interface                               |
|          |       |          |      |       | SCS0  | 0  |         |      | clock mode selection                           |

Table 6.12.2 Synchronous clock selection

| SCS1 | SCS0 | Mode        | Synchronous clock |
|------|------|-------------|-------------------|
| 1    | 1    |             | CLK               |
| 1    | 0    | Master mode | CLK/2             |
| 0    | 1    |             | CLK/4             |
| 0    | 0    | Slave mode  | External clock    |

CLK: CPU system clock

Synchronous clock (SCLK) is selected from among the above 4 types: 3 types of internal clock and external clock. At initial reset, external clock is selected.

# Example program for the serial interface circuit

Following program shows the serial interface controlling procedure.



Table 6.12.3 Synchronous clock selection

| SCS1 | SCS0 | Mode        | Synchronous clock |
|------|------|-------------|-------------------|
| 1    | 1    |             | CLK               |
| 1    | 0    | Master mode | CLK/2             |
| 0    | 1    |             | CLK/4             |
| 0    | 0    | Slave mode  | External clock    |

CLK: CPU system clock

At initial reset, the slave mode (external clock mode) is selected.

Moreover, the synchronous clock, along with the input /output of the 8 bits serial data, is controlled as follows:

- At master mode, after output of 8 clocks from the SCLK terminal, clock output is automatically suspended and SCLK terminal is fixed at high level.
- At slave mode, after input of 8 clocks to the SCLK terminal, subsequent clock inputs are masked.

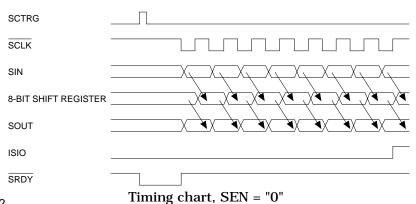



Fig. 6.12.2 Serial interface timing chart

```
;*
;* SERIAL INTERFACE
; *
ZSCTRG EOU
              7AH
             03H
ZISIO EOU
ZEISIO EQU
              13H
ZSD03 EQU
             30H
ZSD47 EQU
             31H
ZSRDY EQU
             53H
             00H
YSIO03 EQU
                       ;DATA BUFFER FOR SD03
YSIO04 EQU
           01H
                       ;DATA BUFFER FOR SD47
                       ;K10 PORT EQU READY
ZPRDY EQU
             42H
ZPREQ EQU
              51H
                       ;R10 PORT EQU REQUEST
;OUTSIO:
;* OUTPUT DATA TO SERIAL INTERFACE
       LD
             A,OFH
                      ;SET TO I/O DATA MEMORY ADDRESS
       LD
              XP,A
;
              X,ZSD03 ; RESET SERIAL INTERFACE CIRCUIT
       _{
m LD}
       LDPX
             A,MX
       LD
              A,MX
              X,ZSCTRG ;SELECT CLK/4 RISE EDGE TIMING
       LD
       LD
              MX,0001B ; & MASTER MODE
;
       DΙ
                       ; PREPARE FOR INTERRUPT
       LD
              X,ZISIO
       LD
              A,MX
              X,ZEISIO ; ENABLE SERIAL INTERFACE INTERRUPT
       LD
       LD
              MX,1
       EI
       LD
              A,02H
                      ;SET UP DATA
       _{
m LD}
              YP,A
       _{
m LD}
             Y,YSIO03
       LD
              X,ZSD03
       LDPY
             A,MY
       LDPX
             MX,A
             A,MY
       LD
       LD
             MX,A
       LD
             X,ZSCTRG ;START SERIAL INTERFACE
```

```
OR
               MX,1000B
;
READSIO:
;* INPUT DATA FROM SERIAL INTERFACE
       LD
               A,OFH
                         ;SET TO I/O DATA MEMORY ADDRESS
       LD
               XP,A
;
       LD
               X, ZPREQ
                         ; SEND REQUEST SIGNAL
       OR
               MX,0001B ; TO SLAVE SYSTEM
       LD
               X,ZSD03
                         ; RESET SERIAL INTERFACE CIRCUIT
       LDPX
               A,MX
       LD
               A,MX
;
               X,ZCTRG
                         ;SELECT CLK/4 RISE EDGE
       LD
       LD
               MX,0001B ;TIMING & MASTER MODE
       DΙ
                         ; PREPARE FOR INTERRUPT
       LD
               X,ZISIO
               A,MX
       LD
       LD
               X,ZEISIO ; ENABLE SERIAL INTERFACE INTERRUPT
       LD
               MX,1
       EI
;
       LD
               A,02H
                         ;SET UP DATA TO SERIAL INTERFACE
       LD
               YP,A
                         ;DATA REGISTER
       LD
               Y,YSIO03
       LD
               X,ZSD03
       LDPX
               A,MX
               MY,A
       LDPY
       LD
               A,MX
       LD
               MY,A
       LD
               X,ZPRDY
                         ; CHECK READY
PRDYLP:
       FAN
               MX,0001B
       JΡ
               Z,PRDYLP ; IF NOT READY THEN WAIT
;
       LD
               X,ZSCTRG ; IF READY THEN SEND DATA
       OR
               MX,1000B
        :
```

- (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fOSC1  $\leftrightarrow$  fOSC3) while the serial interface is operating.
- (2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
- (3) As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state.

  Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
- (4) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (5) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.

#### 6.13 Sound Generator

I/O data memory of the sound generator

The control registers of the sound generator are shown in Table 6.13.1.

Table 6.13.1 Control registers of sound generator

| Address | Register |        |        |       | Comment |    |                |          |                                             |
|---------|----------|--------|--------|-------|---------|----|----------------|----------|---------------------------------------------|
| Address | D3       | D2     | D1     | D0    | Name    | SR | 1              | 0        | Comment                                     |
|         | R43      | R42    | R41    | R40   | R43     | 1  | High_          | _ Low_   | Output port (R43)                           |
| F54H    |          |        |        |       |         |    | Off            | On       | Buzzer output (BZ)                          |
|         | R/W      |        |        |       | R42     | 1  | High_          | _ Low_   | Output port (R42)                           |
|         | IVW      |        |        |       |         |    | Off            | On       | Clock output (FOUT)                         |
|         |          |        |        |       |         |    |                |          | [Buzzer inverted output $(\overline{BZ})$ ] |
|         |          |        |        |       | R41     | 1  | High_          | _ Low    | Output port (R41)                           |
|         |          |        |        |       |         |    | Off            | On       | LCD frame signal (FR)                       |
|         |          |        |        |       | R40     | 1  | High_          | _ Low    | Output port (R40)                           |
|         |          |        |        |       |         |    | Off            | On       | Clock inverted output (FOUT)                |
|         |          | ı      | 1      |       |         |    | Off            | On       | LCD synchronous signal (CL)                 |
|         | SHOTPW   | BZFQ2  | BZFQ1  | BZFQ0 | SHOTPW  | 0  | 62.5 ms        | 31.25 ms | 1-shot buzzer pulse width                   |
| F74H    | R/W      |        |        |       | BZFQ2   | 0  |                |          |                                             |
|         |          |        |        |       | BZFQ1   | 0  |                |          | Buzzer frequency selection                  |
|         |          |        |        |       | BZFQ0   | 0  |                |          |                                             |
|         | BZSHOT   | ENVRST | ENVRT  | ENVON | BZSHOT  | 0  | Trigger        |          | 1-shot buzzer trigger                       |
|         |          |        |        |       | J       | Ů  | BUSY           | READY    | Status                                      |
| F75H    | W W R/W  |        | ENVRST | Reset | Reset   | -  | Envelope reset |          |                                             |
|         |          |        |        |       | ENVRT   | 0  | 1.0 sec        | 0.5 sec  | Envelope cycle selection                    |
|         |          |        |        |       | ENVON   | 0  | On             | Off      | Envelope On/Off                             |

Table 6.13.2 Setting of frequencies of buzzer signals

| BZFQ2 | BZFQ1 | BZFQ0 | Buzzer frequency (Hz) |
|-------|-------|-------|-----------------------|
| 0     | 0     | 0     | 4,096.0               |
| 0     | 0     | 1     | 3,276.8               |
| 0     | 1     | 0     | 2,730.7               |
| 0     | 1     | 1     | 2,340.6               |
| 1     | 0     | 0     | 2,048.0               |
| 1     | 0     | 1     | 1,638.4               |
| 1     | 1     | 0     | 1,365.3               |
| 1     | 1     | 1     | 1,170.3               |

At initial reset, 4,096 Hz is selected.

Example program for the sound generator

Following program shows the sound generator controlling procedure.

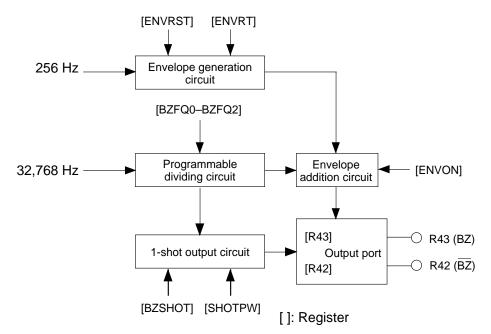



Fig. 6.13.1 Configuration of sound generator

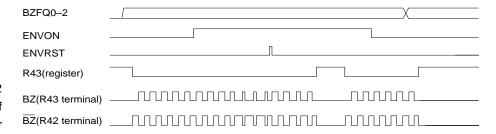
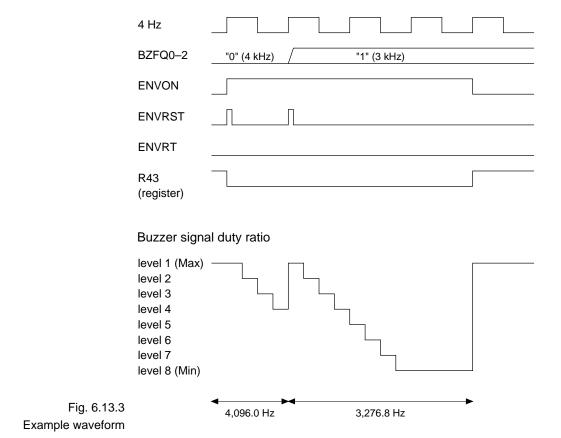



Fig. 6.13.2 Timing chart of sound generator


Table 6.13.3 Setting of frequencies of buzzer signals

| BZFQ2 | BZFQ1 | BZFQ0 | Buzzer frequency (Hz) |
|-------|-------|-------|-----------------------|
| 0     | 0     | 0     | 4,096.0               |
| 0     | 0     | 1     | 3,276.8               |
| 0     | 1     | 0     | 2,730.7               |
| 0     | 1     | 1     | 2,340.6               |
| 1     | 0     | 0     | 2,048.0               |
| 1     | 0     | 1     | 1,638.4               |
| 1     | 1     | 0     | 1,365.3               |
| 1     | 1     | 1     | 1,170.3               |

Note A hazard may be observed in the output waveform of the BZ and  $\overline{BZ}$  signals when switchs the buzzer frequency while the BZ and  $\overline{BZ}$  signals being output.

Table 6.13.4 Duty ratio and buzzer frequencies

|                   | Buzzer frequencies |         |         |         |  |  |  |
|-------------------|--------------------|---------|---------|---------|--|--|--|
| Duty ratio        | 4,096.0            | 3,276.8 | 2,730.7 | 2,340.6 |  |  |  |
|                   | 2,048.0            | 1,638.4 | 1,365.3 | 1,170.3 |  |  |  |
| Level 1 (maximum) | 8/16               | 8/20    | 12/24   | 12/28   |  |  |  |
| Level 2           | 7/16               | 7/20    | 11/24   | 11/28   |  |  |  |
| Level 3           | 6/16               | 6/20    | 10/24   | 10/28   |  |  |  |
| Level 4           | 5/16               | 5/20    | 9/24    | 9/28    |  |  |  |
| Level 5           | 4/16               | 4/20    | 8/24    | 8/28    |  |  |  |
| Level 6           | 3/16               | 3/20    | 7/24    | 7/28    |  |  |  |
| Level 7           | 2/16               | 2/20    | 6/24    | 6/28    |  |  |  |
| Level 8 (minimum) | 1/16               | 1/20    | 5/24    | 5/28    |  |  |  |



```
; * SOUND GENERATOR
; *
ZBFO
       EOU
              74H
      EOU
              75H
ZENV
ZRBZ
       EQU
              54H
ZTMH
     EQU
              21H
X4HZ
     EQU
              0010B
ALARM:
; * ALARM SOUND GENERATOR SUB ROUTINE
              A,OFH
                            ;SET TO I/O DATA MEMORY ADDRESS
       LD
              XP,A
       LD
;
              B,0
       LD
                             ; INIT. TIMING COUNTER
CKEDG: LD
              X,ZTMH
                            ; CHECK EDGE OF 4Hz SIGNAL
       _{
m LD}
              A,MX
CKEDGE: PUSH
              Α
       XOR
              A,MX
              A,X4HZ
       FAN
       POP
              Α
       JΡ
              Z,CKEDGE
;
       CP
              B,1
                             ; CHECK TIMING COUNTER
       JΡ
              NC, NEXT1
                             ; IF T-CNT>1 THEN JUMP
                             ; IF T-CNT=1 THEN JUMP
       JΡ
              Z, INCTC
              X,ZBZFQ
       _{
m LD}
       LBPX
              MX,01010000B ; BZ 4KHz, ENV.ON & RESET, RT 0.5SEC
                             ;BZ, /BZ ON
       LD
              X,ZRBZ
       AND
              MX,0011B
INCTC: ADD
              В,1
              CKEDG
       JΡ
;
NEXT1: CP
              B, 2
       JΡ
              NZ,NEXT2
                            ; IF T-CNT/=2 THEN JUMP
;
             X,ZBZFQ
       LD
       LBPX MX,01010001B ;BZ 3.3KHz, ENV.ON & RESET, RT 0.5SEC
       JΡ
              INCTC
```

```
NEXT2: CP
                B,8
       JΡ
                C, INCTC
                                ; IF T-CNT<8 THEN JUMP
;
               X,ZENV
                                ; ENV.OFF
       LD
       LD
                MX,0
       LD
                X,ZRBZ
       OR
               MX,1100B
                                ;BZ. /BZ OFF
       RET
```

## Programming notes

- (1) The BZ and  $\overline{BZ}$  signals may generate hazards in the following cases:
  - When the content of R43 register is changed, BZ and  $\overline{BZ}$  signals are switched ON or OFF.
  - When the contents of buzzer frequency selection registers (BZFQ0–BZFQ2) while the buzzer signal (BZ and  $\overline{BZ}$ ) is being output.
- (2) The 1-shot buzzer operates only when the regular buzzer output is in the OFF (R43 = "0") state and writing to BZSHOT becomes invalid in the ON (R43 = "1") state.

## 6.14 External Memory Access (S1C624A0/4C0/480)

I/O data memory of the external memory access control The control registers of the external memory access are shown in Tables 6.14.1(a) and (b).

Table 6.14.1(a) Control registers of external memory (1)

| Address    | Register |      |       |       |       |       |        | Comment                       |                               |
|------------|----------|------|-------|-------|-------|-------|--------|-------------------------------|-------------------------------|
| Address    | D3       | D2   | D1    | D0    | Name  | SR    | 1      | 0                             | Comment                       |
|            | R03      | R02  | D04   | R00   | DOS   | Х     | High   | Low                           | Output port (R03)             |
|            | RUS      | RU2  | R01   | K00   | R03   | KU3 X | High   | Low                           | External memory address (A3)  |
| <b> </b>   |          | D    | W     |       | R02   | D00 V |        | Low                           | Output port (R02)             |
| <br>  F50H |          | K.   | /VV   |       | R02   | X     | High   | Low                           | External memory address (A2)  |
| Гооп       |          |      |       |       | R01   | Х     | High_  | Low                           | Output port (R01)             |
|            |          |      |       |       | RUI   | ^     | High   | Low                           | External memory address (A1)  |
|            |          |      |       |       | R00   | X     | High   | Low                           | Output port (R00)             |
|            |          |      |       |       | KUU   | ^     | High   | Low                           | External memory address (A0)  |
|            | R13      | R12  | R11   | R10   | R13   | Х     | High_  | _ Low_                        | Output port (R13)             |
| ll         | 1(10     | IXIZ | IXII  | IXIO  | IXIO  |       | High   | Low                           | External memory address (A7)  |
|            |          | В    | W     |       | R12   | Х     | High_  | Low                           | Output port (R12)             |
| F51H       |          | K.   | /VV   |       | IX12  | ^     | High   | Low                           | External memory address (A6)  |
| ' 3        |          |      |       |       | R11   | X     | High_  | _ Low_                        | Output port (R11)             |
|            |          |      |       |       | IXII  | ^     | High   | Low                           | External memory address (A5)  |
|            |          |      |       |       | R10   | Х     | High_  | _ Low_                        | Output port (R10)             |
|            |          |      |       |       | 11.10 |       | High   | Low                           | External memory address (A4)  |
|            | R23      | R22  | R21   | R20   | R23   | 23 X  | High_  | _ Low                         | Output port (R23)             |
| l l        | NZJ      | NZZ  | NZ I  | NZU   | 1123  | ^     | High   | Low                           | External memory address (A11) |
|            |          | D    | W     |       | R22   | X     | High_  | Low                           | Output port (R22)             |
| F52H       |          | N,   | · v v |       | 1122  |       | High   | Low                           | External memory address (A10) |
| 1 3211     |          |      |       |       | R21   | X     | High_  | _ Low                         | Output port (R21)             |
|            |          |      |       |       | 1121  | ,     | High   | Low                           | External memory address (A9)  |
|            |          |      |       |       | R20   | Х     | High _ | _ Low                         | Output port (R20)             |
|            |          |      |       |       | 1120  | Λ.    | High   | Low                           | External memory address (A8)  |
|            | R33      | R32  | R31   | R30   | R33   | Х     | High_  | _ Low_                        | Output port (R33)             |
|            | 1100     | 1102 | 11.01 | 11.00 | 1.00  |       | Off    | On                            | PTCLK output                  |
|            |          | R    | w     |       |       |       | BUSY   | READY                         | [SRDY (SIO READY)]            |
|            |          | 10   | **    |       | R32   | Х     | High_  | Low                           | Output port (R32)             |
| F53H       |          |      |       |       | 1102  | ^     |        |                               | [External memory read (RD)]   |
|            |          |      |       |       | R31   | Х     | High_  | _ Low                         | Output port (R31)             |
|            |          |      |       | 1.01  |       | High_ | _ Low  | External memory address (A13) |                               |
|            |          |      |       |       |       |       |        | [External memory write (WR)]  |                               |
|            |          |      |       |       | R30   | Х     | High_  | _ Low_                        | Output port (R30)             |
|            |          |      |       |       | 1100  | ^     | High   | Low                           | External memory address (A12) |

Table 6.14.1(b) Control registers of external memory (2)

| Address |      | Reg  | ister |       |           |               |                                             |                | Comment                                    |  |  |  |  |  |  |  |      |     |                                   |
|---------|------|------|-------|-------|-----------|---------------|---------------------------------------------|----------------|--------------------------------------------|--|--|--|--|--|--|--|------|-----|-----------------------------------|
| Address | D3   | D2   | D1    | D0    | Name      | SR            | 1                                           | 0              | Comment                                    |  |  |  |  |  |  |  |      |     |                                   |
|         | P03  | P02  | P01   | P00   | P03       | Х             | High                                        | Low            | I/O port (P03)                             |  |  |  |  |  |  |  |      |     |                                   |
|         | F03  | F 02 | FUI   | F00   | F 03      | ^             | High                                        | Low            | External memory data (D3)                  |  |  |  |  |  |  |  |      |     |                                   |
|         |      | D    | /W    |       | P02       | 2 X           | High                                        | Low            | I/O port (P02)                             |  |  |  |  |  |  |  |      |     |                                   |
| F60H    |      | IX.  | / V V |       | FUZ       | ^             | High                                        | Low            | External memory data (D2)                  |  |  |  |  |  |  |  |      |     |                                   |
| 1 0011  |      |      |       |       | P01       | X             | _ High                                      | _ Low_         | I/O port (P01)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | 101       |               | High                                        | Low            | External memory data (D1)                  |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | P00       | X             | _ High                                      | _ Low_         | I/O port (P00)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | 1 00      |               | High                                        | Low            | External memory data (D0)                  |  |  |  |  |  |  |  |      |     |                                   |
|         | P13  | P12  | P11   | P10   | P13       | X             | _ High                                      | _ Low          | <u>I/O port (P13)</u>                      |  |  |  |  |  |  |  |      |     |                                   |
|         | 0    |      |       |       |           | ^`            | High                                        | Low            | External memory data (D7)                  |  |  |  |  |  |  |  |      |     |                                   |
|         |      | R    | /W    |       | P12       | X             | High                                        | Low            | I/O port (P12)                             |  |  |  |  |  |  |  |      |     |                                   |
| F61H    |      | 10   |       |       |           |               | High                                        | Low            | External memory data (D6)                  |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | P11       | X             | High                                        | _ Low          | I/O port (P11)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       |           |               | High                                        | Low            | External memory data (D5)                  |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | P10       | X             | High                                        | _ Low          | I/O port (P10)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       |           |               | High                                        | Low            | External memory data (D4)                  |  |  |  |  |  |  |  |      |     |                                   |
|         | P23  | P22  | P21   | P20   | P23       | X             | _ High                                      | _ Low          | I/O port (P23)                             |  |  |  |  |  |  |  |      |     |                                   |
|         | . 20 |      |       | . =0  |           |               | High                                        | Low            | External memory chip select (CS3)          |  |  |  |  |  |  |  |      |     |                                   |
|         |      | R/W  |       | P22   | X         | High          | _ Low                                       | I/O port (P22) |                                            |  |  |  |  |  |  |  |      |     |                                   |
| F62H    |      | \    | N     |       |           |               | High                                        | Low            | External memory chip select (CS2)          |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | P21       | X             | High                                        | _ <u>Low</u>   | I/O port (P21)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       |           |               |                                             |                |                                            |  |  |  |  |  |  |  | High | Low | External memory chip select (CSI) |
|         |      |      |       |       | P20       | X             | High                                        | _ Low          | I/O port (P20)                             |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       |           |               | High                                        | Low            | External memory chip select (CS0)          |  |  |  |  |  |  |  |      |     |                                   |
|         | HZR3 | HZR2 | HZR1  | HZR0  | HZR3      | 0             | Output                                      | High-Z         | R30-R33 output high-impedance control      |  |  |  |  |  |  |  |      |     |                                   |
| F7BH    |      | R    | /W    |       | HZR2      | 0             | Output                                      | High-Z         | R20-R23 output high-impedance control      |  |  |  |  |  |  |  |      |     |                                   |
| 17611   |      |      |       |       | HZR1      | 0             | Output                                      | High-Z         | R10-R13 output high-impedance control      |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      |       |       | HZR0      | HZR0 0 Output |                                             | High-Z         | R00-R03 output high-impedance control      |  |  |  |  |  |  |  |      |     |                                   |
|         | 0    | HZCS | ADINC | PICON | 0         | -             |                                             |                |                                            |  |  |  |  |  |  |  |      |     |                                   |
| F70!!   | R    | R/W  | W     | R/W   | HZCS      | 0             | Output                                      | High-Z         | CS0-CS3 output high-impedance control      |  |  |  |  |  |  |  |      |     |                                   |
| F7CH    |      |      |       |       | ADINC     | _             | Increment                                   | -              | External memory address increment (A0-A13) |  |  |  |  |  |  |  |      |     |                                   |
|         |      |      | PICON | 0     | Auto Inc. | Normal        | External memory address auto increment mode |                |                                            |  |  |  |  |  |  |  |      |     |                                   |

Table 6.14.2 Relationships of Rxx registers and address

| Address  | A13 A12 | A11 | A10 | A9  | A8  | A7  | A6  | A5  | A4  | A3  | A2  | A1  | A0  |
|----------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Register | R31 R30 | R23 | R22 | R21 | R20 | R13 | R12 | R11 | R10 | R03 | R02 | R01 | R00 |

Note When a read-write device is connected to external memory, R31 become the  $\overline{WR}$  output, and the A13 signal cannot be output.

At initial reset, the above registers will be undefined.

Table 6.14.3
Relationships of registers
Pxx and data bits

| Data     | D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| Register | P13 | P12 | P11 | P10 | P03 | P02 | P01 | P00 |

Note The data is written and read in the order of low-order bits (D0–D3) then high-order bits (D4–D7).

At initial reset, the above registers will be undefined.

# Example program for the external memory control

Following program shows the external memory access controlling procedure.

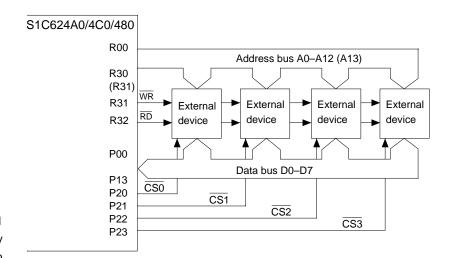



Fig. 6.14.1 External memory block diagram

Table 6.14.4 Output ports and address bus

| Output port |        | Address bus                 |
|-------------|--------|-----------------------------|
| R00-R03     | A0-A3  | (select in units of 4 bits) |
| R10-R13     | A4-A7  | (select in units of 4 bits) |
| R20-R22     | A8-A10 | (select in units of 3 bits) |
| R23         | A11    | (select in units of 1bit)   |
| R30         | A12    | (select in units of 1 bit)  |
| R31         | A13    | (read-only device only)     |

The above address signals may be selected by mask option as shown in the table and therefore, unneeded address lines may used as regular output ports.

Moreover, address bus perform the following control functions by software:

- Can perform high impedance control.
- Address incrementing may be automatically accomplished through software and data read/write.

Table 6.14.5 I/O ports and data bus

| I/O port | Data bus |
|----------|----------|
| P00-P03  | D0-D3    |
| P10-P13  | D4-D7    |

Data is written and read in the order of low-order bits (D0–D3) then high-order bits (D4–D7). Through writing/read operation to this register, the write signal ( $\overline{\text{WR}}$ ) and read signal ( $\overline{\text{RD}}$ ) to the external memory are automatically output.

Consecutive access of data and virtual data register

Output or input of external memory data to the external data bus is done by accessing registers P00–P03 and P10–P13. It requires access of low order data and high order data, and is related to the increase of program steps. Hence, the S1C624A0/4C0/480 allows even and odd number addresses in the RAM addresses (FC0H–FFFH) to be logically allocated to P00–P03 and P10–P13, respectively, as virtual data; S1C624A0/4C0/480 also makes consecutive access by LBPX and RETD instructions possible. The memory map of this logical space is shown on Figure 6.14.2.

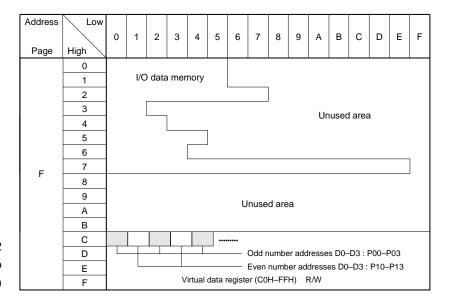



Fig. 6.14.2 Memory map (virtual data registers)

Note The virtual data register is a logical space and no memory is physically allocated. The actual writing/reading through access of this space is done for registers P00–P03, and P10–P13.

Table 6.14.6 I/O ports and chip selector signal

| I/O port | Chip selector signal    |
|----------|-------------------------|
| P20      | <del>CS0</del>          |
| P21      | CS1                     |
| P22      | $\overline{	ext{CS2}}$  |
| P23      | $\overline{\text{CS3}}$ |

By writing "0" on P2x, the  $\overline{CSx}$  signal becomes active (low level setting); writing "1" will make it normal (high level setting).

By setting the chip select register (P20–P23) corresponding to the device desired to be accessed to "0" and then performing data reading/writing, the  $\overline{CSx}$  terminal which selects the active signal will be automatically set to low level, in the same manner as  $\overline{WR}$  and  $\overline{RD}$  signals. Moreover, after the access, it is automatically set to high level.

Because of the write-only (W/O) function, the chip select register may not be re-written by logical arithmetic instructions.

 $\overline{\text{CS}}$  signal can perform high impedance control by software. Note, however, that the pull up resistor is turned on to prevent misoperation of external devices.

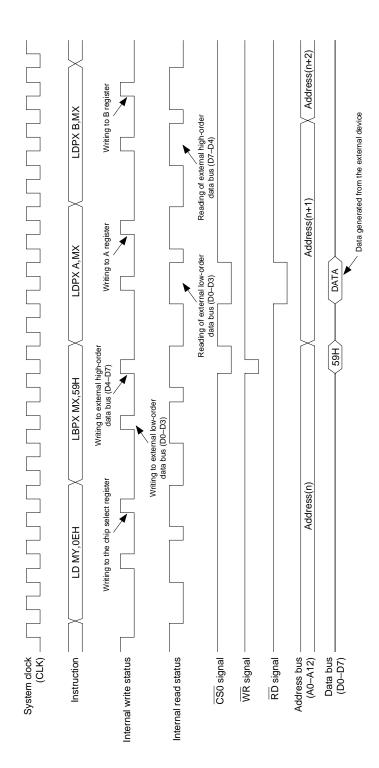



Fig. 6.14.3 Timing chart of external memory access

```
;* EXTERNAL MEMORY ACCESS
; *
ZADDL EQU
              50H
ZADDM EQU
              51H
ZADDH EQU
             52H
             53H
ZADDHH EQU
             62H
ZCS
      EQU
ZDL
      EQU
            C0H
                      ; PHYSICAL ADDRESS IS 60H
                       ; PHYSICAL ADDRESS IS 61H
      EOU
             C1H
ZDH
ZADINC EOU
             7CH
ZADHZ EQU
              7BH
YBUF EOU 0F0H
                      ; OFOH TO OFFH ARE ASSIGNED
                       ; AS DATA BUFFER MEMORY
;
TRANS8:
;* 8 BYTE DATA TRANSFER FROM DATA BUFFER TO EXTERNAL MEMORY
             A,00H ;SET TOP ADDRESS OF DATA BUFFER MEMORY
       LD
              YP,A
       LD
       LD
             Y,YBUF
;
              A,OFH
       LD
                      ;SET TO I/O DATA MEMORY ADDRESS
              XP,A
       LD
;
       LD
              X, ZADDL ; SET TOP ADDRESS OF EXTERNAL MEMORY
       LDPX MX,0
       LDPX MX,0
       LDPX
             MX, 0
       LD
             MX,0
;
       LD
              X, ZADINC ; ADDRESS OUTPUT & AUTO INC.
       OR
              MX,0101B
;
       LD
              X,ZCS
                      ;CHIP SELECT OUTPUT (1CS0)
       AND
              MX,1110B
              X,0C0H ;SET DATA PORT ADDRESS
       LD
              в,0н
       LD
```

```
TRLOP1:LDPX
               MX, MY
                          ;1 BYTE TRANSFER
       INC
       LDPX
               MX,MY
       INC
               Υ
       ADD
               В,2Н
       JΡ
               NZ,TRLOP1; IF <8 BYTE THEN JUMP
       LD
               X,ZCS
                          ; CHIP SELECT DISABLE
       OR
               MX,1111B
       LD
               X,ZADHZ
                          ; MAKE 1CS & ADDRESS BUS TO HIZ
                          ; FOR THE OTHER CPU ACCESS
       LDPX
               MX,0
       LD
               MX,0
;
```

## **Programming notes**

- (1) Be sure to data writing/reading for external memory in the order of low-order bits (D0-D3) then high-order bits (D4-D7).
- (2) Because of the write-only (W/O) function, the chip select register (P20–P23) may not be re-written by logical arithmetic instruction.

## 6.15 Interrupt

## Interrupt vector, factor flag, and mask register

When an interrupt request is issued to the CPU, the CPU starts interrupt processing.

Interrupt processing is accomplished by the following steps after the instruction being executed is completed.

- ① The address (value of the program counter) of the program which should be run next is saved in the stack area (RAM).
- ② The vector address (1 page 02H–0CH) for each interrupt request is set to the program counter.
- ③ Branch instruction written to the vector is effected (branch to software interrupt processing routine).

Note Time equivalent to 12 cycles of CPU system clock is required for steps ① and ②.

The interrupt request and interrupt vector correspondence is shown in Table 6.15.1.

Table 6.15.1
Interrupt request and interrupt vectors

| Interrupt vector | Interrupt request            | Priority     |
|------------------|------------------------------|--------------|
| (PCS and PCS)    | interrupt request            | 1 Honly      |
| 102H             | Clock timer interrupt        | Low          |
| 104H             | Stopwatch timer interrupt    | 1            |
| 106H             | Input (K00-K03) interrupt    |              |
| 108H             | Input (K10–K13) interrupt    |              |
| 10AH             | Serial interface interrupt   | $\downarrow$ |
| 10CH             | Programmable timer interrupt | High         |

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

The interrupt factor flags and interrupt mask registers correspondence are shown in Table 6.15.2.

The configuration of the interrupt circuit is shown in Figure 6.15.1.

Table 6.15.2 Interrupt factor flags and interrupt mask registers

| Interrupt factor                          | Interrupt factor flag | Interrupt mask register |
|-------------------------------------------|-----------------------|-------------------------|
| Falling edge of clock timer (1 Hz)        | IT1 (F00H [D3])       | EIT1 (F10H [D3])        |
| Falling edge of clock timer (2 Hz)        | IT2 (F00H [D2])       | EIT2 (F10H [D2])        |
| Falling edge of clock timer (8 Hz)        | IT8 (F00H [D1])       | EIT8 (F10H [D1])        |
| Falling edge of clock timer (32 Hz)       | IT32 (F00H [D0])      | EIT32 (F10H [D0])       |
| Overflow of stopwatch timer (SWH) (1 Hz)  | ISW1 (F01H [D1])      | EISW1 (F11H [D1])       |
| Overflow of stopwatch timer (SWL) (10 Hz) | ISW0 (F01H [D0])      | EISW0 (F11H [D0])       |
| No matching between input ports           | IK0 (F04H [D0])       | EIK03 (F14H [D3])       |
| (K00-K03)                                 |                       | EIK02 (F14H [D2])       |
| and input relation registers              |                       | EIK01 (F14H [D1])       |
| (DFK00-DFK03)                             |                       | EIK00 (F14H [D0])       |
| Falling edge of input ports (K10-K13)     | IK1 (F05H [D0])       | EIK13 (F15H [D3])       |
|                                           |                       | EIK12 (F15H [D2])       |
|                                           |                       | EIK11 (F15H [D1])       |
|                                           |                       | EIK10 (F15H [D0])       |
| Data (8 bits) input/output of serial      | ISIO (F03H [D0])      | EISIO (F13H [D0])       |
| interface has completed                   |                       |                         |
|                                           |                       |                         |
| Counter value of programmable             | IPT (F02H [D0])       | EIPT (F12H [D0])        |
| timer = 00H                               |                       |                         |

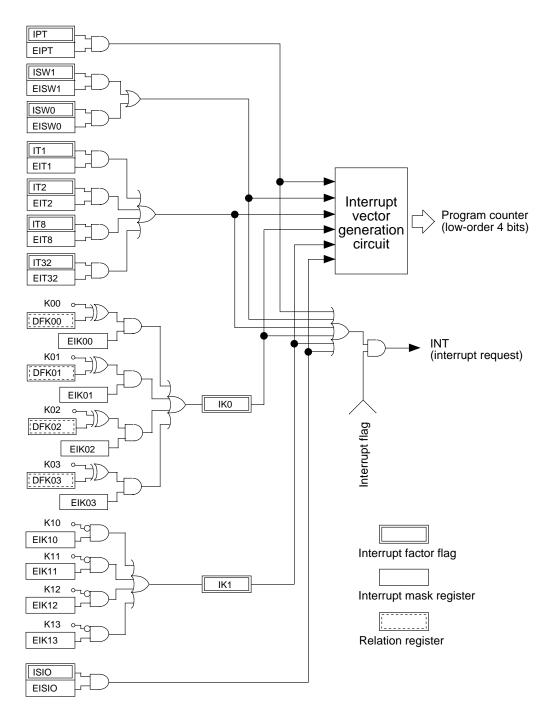



Fig. 6.15.1 Configuration of interrupt circuit

## Example program for the interrupt

Following program shows the interrupt procedure.

```
;* INTERRUPT
ZIPT
       EQU
              02H
ZISIO EQU
              03H
ZIK1
       EQU
              05H
ZIK0
       EQU
              04H
ZISW
      EQU
              01H
ZIT
       EQU
              00H
       ORG
              102H
       PSET
              INTRPT
       JΡ
              INTRPT
                        ;CLOCK TIMER (6th PRIORITY)
       PSET
              INTRPT
                        ;STOPWATCH (5th PRIORITY)
       JΡ
              INTRPT
       PSET
              INTRPT
       JΡ
              INTRPT
                       ;K00 TO K03 (4th PRIORITY)
       PSET
              INTRPT
              INTRPT   ;K10 TO K13 (3rd PRIORITY)
       JΡ
       PSET
              INTRPT
       JΡ
              INTRPT  ;SERIAL INTERFACE (2nd PRIORITY)
       PSET
              INTRPT
              INTRPT  ; PROG. TIMER (1st PRIORITY)
       JΡ
;
INTRPT: PUSH
              ΧP
                        ; SAVE CURRENT CONDITION
       PUSH
              XH
                        ;STORED X REG. (12 BITS)
       PUSH
              XL
;
              ΥP
       PUSH
       PUSH
              ΥH
       PUSH
                        ;STORED Y REG. (12 BITS)
              YL
       PUSH
                        ;STORE B,A,F REG.
              В
       PUSH
              Α
       PUSH
       LD
              A,OFH
                        ;SET TO I/O DATA MEMORY ADDRESS
       LD
              XP,A
```

```
CHKPTM: LD
              X,ZIPT
                       ; CHECK PROGRAMMABLE TIMER INT.
              MX,0001B
       FAN
       JΡ
              Z, CHKSIO ; IF NO PROG. TIMER INT. THEN JUMP
;
                       ; CALL PROG. TIMER INT. ROUTINE
       CALL
              INTPTM
              X,ZISIO ; CHECK SERIAL INTERFACE INT.
CHKSIO: LD
              MX,0001B
       FAN
       JΡ
              Z,CHKK1 ; IF NO SERIAL INTERFACE INT. THEN JUMP
;
                      ; CALL SERIAL INTERFACE INT. ROUTINE
       CALL
              INTSIO
              X,ZIK1
                       ; CHECK K1 INT.
CHKK1: LD
       FAN
              MX,0001B
       JΡ
              Z,CHKK0
                      ; IF NO K1 INT. THEN JUMP
;
       CALL
              INTK1 ; CALL K1 INT. ROUTINE
CHKK0: LD
              X,ZIKO
                       ; CHECK KO INT.
       FAN
              MX,0001B
       JΡ
              Z, CHKSWO ; IF NO KO INT. THEN JUMP
;
                        ; CALL KO INT. ROUTINE
       CALL
              INTK0
CHKSW0:LD
              X,ZISW
                        ; CHECK STOPWATCH INT.
       _{
m LD}
              B,MX
                       ; CHECK SWO
              B,0001B
       FAN
              Z, CHKSW1 ; IF NO SW0 INT. THEN JUMP
       JΡ
;
       CALL
              INTSW0
                      ; CALL SWO INT. ROUTINE
CHKSW1: FAN
              B,0010B
                       ; CHECK SW1
       JΡ
              Z, CHKT32 ; IF NO SW1 INT. THEN JUMP
;
                       ; CALL SW1 INT. ROUTINE
       CALL
              INTSW1
CHKT32:LD
              X,ZIT
                       ; CHECK CLOCK TIMER INT.
              B,MX
       LD
       FAN
              B,0001B ; CHECK 32Hz INT.
                       ; IF NO 32Hz INT. THEN JUMP
       JΡ
              Z,CHKT8
              INTT32 ; CALL T32 INT. ROUTINE
       CALL
CHKT8: FAN
              B,0010B ; CHECK 8Hz INT.
              Z,CHKT2 ; IF NO 8Hz INT. THEN JUMP
       JΡ
```

```
CALL
              INTT8
                        ; CALL T8 INT. ROUTINE
CHKT2: FAN
              B,0100B
                       ; CHECK 2Hz INT.
       JΡ
               Z,CHKT1
                        ; IF NO 2Hz INT. THEN JUMP
;
                        ; CALL T2 INT. ROUTINE
       CALL
               INTT2
CHKT1: FAN
              B,1000B
                        ; CHECK 1Hz INT.
              Z, INTEND ; IF NO 1Hz INT. THEN JUMP
       JΡ
;
                        ; CALL T1 INT. ROUTINE
       CALL
              INTT1
                         ; RESTORE F, A, B FLAG
INTEND:POP
              F
       POP
              Α
       POP
              В
;
       POP
              YL
                        ; RESTORE Y REG. (12 BITS)
       POP
              ΥH
       POP
              ΥP
;
       POP
                        ; RESTORE X REG. (12 BITS)
              XL
       POP
              XH
       POP
              ΧP
       EI
                         ; ENABLE INTERRUPT
       RET
```

## **Programming notes**

- (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register. Note, however, that the input interrupt factor flags (IKO and IK1) will be eliminated.
- (2) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.
- (5) If an interrupt occurs while the CPU is processing some other interrupt request of which the priority is lower than the new one but the CPU has not fetched the interrupt vector, the CPU may shift to a vector address (one of among 102H, 104H, 106H, 10AH and 10EH) that is different from the new interrupt.

Therefore, make sure the interrupt factor flag has been set immediately after the branch instruction stored in the vector address is executed and quit the interrupt processing if it has not been set.

Furthermore, place a branch instruction for executing the interrupt processing routine in the vector address 10EH because the CPU may shift to that address. By setting the start address of the programmable timer interrupt processing routine as the branch destination, the priority level by hardware can be maintained.

Program example 1: To quit the interrupt processing if the interrupt factor flag has not been set

| 0100H | PSET | NIT     |
|-------|------|---------|
| 0101H | JP   | INIT    |
| 0102H | PSET | TM_INT  |
| 0103Н | JP   | TM_INT  |
| 0104H | PSET | SW_INT  |
| 0105H | JP   | SW_INT  |
| 0106H | PSET | K0X_INT |
|       |      |         |

```
0107H
         JΡ
                 KOX_INT
0108H
          PSET
                 K1X_INT
0109H
         JΡ
                 K1X_INT
010AH
         PSET
                 SIO_INT
010BH
         JΡ
                 SIO INT
                 PT_INT
010CH
         PSET
010DH
         JΡ
                 PT_INT
                 PT_INT
010EH
          PSET
010FH
         JΡ
                 PT_INT
; INTERRUPT PROCESSING FOR PROGRAMMABLE TIMER
PT_INT:
          PUSH
                 F
          :
          LD
                 A,OFH
          LD
                 XP,A
          LD
                 X,02H
          FAN
                 MX,0001B
                             ; CHECK PROG. TIMER INT. FACTOR FLAG
          JΡ
                 Z, EXIT
                 :
; INTERRUPT PROCESSING FOR SERIAL I/O
SIO_INT:
          PUSH
                 F
          :
                 A,OFH
          LD
          LD
                 XP,A
          LD
                 X,03H
          FAN
                             ; CHECK SERIAL I/O INT. FACTOR FLAG
                 MX,0001B
          JΡ
                 Z, EXIT
; INTERRUPT PROCESSING FOR K10-K13
K1X INT:
          PUSH
                 F
          :
                 :
                 A,OFH
          LD
          LD
                 XP,A
          LD
                 X,05H
          FAN
                 MX,00001B ; CHECK K10-K13 PORT INT. FACTOR FLAG
          JΡ
                 Z, EXIT
                 :
; INTERRUPT PROCESSING FOR K00-K03
KOX INT:
          PUSH
                 F
                 :
```

```
LD
                  A,OFH
          LD
                  XP,A
          LD
                  X,04H
          FAN
                 MX,00001B
                               ;CHECK K00-K03 PORT INT. FACTOR FLAG
          JΡ
                  Z, EXIT
; INTERRUPT PROCESSING FOR STOPWATCH TIMER
SW_INT:
          PUSH
                  F
          :
                 A, OFH
          LD
          LD
                 XP,A
          LD
                 X,01H
          FAN
                 MX,0011B
                               ; CHECK STOPWATCH INT. FACTOR FLAG
          JΡ
                  Z, EXIT
; INTERRUPT PROCESSING FOR TIMER
TM INT:
                  F
          PUSH
          :
                  A,OFH
          LD
          LD
                 XP,A
                  X,00H
          LD
          FAN
                 MX,1111B
                               ; CHECK TIMER INT. FACTOR FLAG
                  Z, EXIT
          JΡ
EXIT:
          POP
                  F
          EI
                               ; RETURNES WITHOUT ANY PROCESS IF NO
          RET
                               ; INTERRUPT FACTOR FLAG IS SET
```

If the program does not have the individual processing routine for each interrupt (for example, in the case of all interrupts using the same processing routine in which the type of interrupt is judged by reading the interrupt flags, or in the case of the main routine checking all the interrupt flags by branching the flow the RET instruction stored in all the vector address), place the instruction the same as the other interrupt vectors in address 10EH.

Program example 2: To branch the flow to the same processing routine from interrupt vectors and to check all the interrupt factor flags in the routine

| 0100H | PSET | INIT |
|-------|------|------|
| 0101H | JP   | INIT |

```
0102H
          PSET
                 INTERRUPT
0103H
          JΡ
                 INTERRUPT
0104H
          PSET
                 INTERRUPT
0105H
          JΡ
                 INTERRUPT
0106H
          PSET
                 INTERRUPT
0107H
          JΡ
                 INTERRUPT
0108H
          PSET
                 INTERRUPT
0109H
          JΡ
                 INTERRUPT
010AH
          PSET
                 INTERRUPT
010BH
          JΡ
                 INTERRUPT
010CH
          PSET
                 INTERRUPT
010DH
          JΡ
                 INTERRUPT
010EH
          PSET
                 INTERRUPT
010FH
          JΡ
                 INTERRUPT
INTERRUPT:
          PUSH
                 F
          :
          LD
                 A,OFH
          LD
                 XP,A
          LD
                 X,00H
          LDPX
                 A, MX
                 A,1111B
          OR
          JΡ
                 NZ,TM_INT
                              ; CHECK TIMER INT. FACTOR FLAG
          LDPX
                 A,MX
          OR
                 A,0011B
                              ; CHECK STOPWATCH INT. FACTOR FLAG
          JΡ
                 NZ,SW_INT
          LDPX
                 A,MX
          OR
                 A,0001B
          JΡ
                 NZ,PT_INT
                              ; CHECK PROG. TIMER INT. FACTOR FLAG
                 A,MX
          LDPX
          OR
                 A,0001B
                              ; CHECK SERIAL I/O INT. FACTOR FLAG
          JΡ
                 NZ,SIO_INT
          LDPX
                 A,MX
                 A,0001B
          OR
          JΡ
                 NZ,KO_INT
                              ; CHECK K00-K03 PORT INT. FACTOR FLAG
          LDPX
                 A,MX
          OR
                 A,0001B
          JΡ
                 NZ,K1 INT
                              ;CHECK K10-K13 PORT INT. FACTOR FLAG
                 F
          POP
          ΕI
                              ; RETURNES WITHOUT ANY PROCESS IF NO
          RET
                              ; INTERRUPT FACTOR FLAG IS SET
```

## Program example 3: To check all the interrupt factor flags in the main routine the RET instruction is placed in all interrupt vectors

| PSET | INIT |
|------|------|
| JP   | INIT |
| RET  |      |
|      | JP   |

```
0103H
          NOP5
0104H
          RET
0105H
          NOP5
0106H
          RET
0107H
         NOP5
0108H
          RET
0109H
         NOP5
010AH
          RET
010BH
         NOP5
010CH
          RET
010DH
          NOP5
010EH
          RET
010FH
          NOP5
MAIN:
(Enable interrupt flags)
          HALT
          LD
                 A, OFH
          LD
                 XP,A
                 X,00H
          LD
          LDPX
                 A,MX
          OR
                 A,1111B
          JΡ
                 NZ,TM_INT
                              ; CHECK TIMER INT. FACTOR FLAG
          LDPX
                 A, MX
                 A,0011B
          OR
                 NZ,SW_INT
          JΡ
                              ; CHECK STOPWATCH INT. FACTOR FLAG
          LDPX
                 A,MX
          OR
                 A,0001B
          JΡ
                 NZ,PT_INT
                              ; CHECK PROG. TIMER INT. FACTOR FLAG
          LDPX
                 A,MX
          OR
                 A,0001B
          JΡ
                 NZ,SIO_INT
                              ; CHECK SERIAL I/O INT. FACTOR FLAG
                 A, MX
          LDPX
          OR
                 A,0001B
                 NZ,KO INT
                              ; CHECK K00-K03 PORT INT. FACTOR FLAG
          JΡ
          LDPX
                 A,MX
          OR
                 A,0001B
                              ;CHECK K10-K13 PORT INT. FACTOR FLAG
          JΡ
                 NZ,K1 INT
                              ; RETURNES WITHOUT ANY PROCESS IF NO
                 MAIN
          JΡ
                              ; INTERRUPT FACTOR FLAG IS SET
```

When the interrupt function is not used, it is not necessary to pay attention to the above mentioned precautions.

## CHAPTER 7 SUMMARY OF NOTES

## 7.1 Notes for Low Current Consumption

The S1C62440/4A0/4C0/480 contain control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 7.1.1 Circuits and control registers

|                            | <u> </u>          |                                    |
|----------------------------|-------------------|------------------------------------|
| Circuits (and Items)       | Control registers | Order of consumed current          |
| CPU                        | HALT instruction  | See electrical characteristics (*) |
| CPU operation frequency    | CLKCHG, OSCC      | See electrical characteristics (*) |
| Internal regulated voltage | VSC0, VSC1        | See electrical characteristics (*) |
| Heavy load protection mode | HLMOD             | See electrical characteristics (*) |
| SVD circuit                | SVDON             | Several tens µA                    |

<sup>\* &</sup>quot;S1C62440/624A0/624C0/62480 Technical Hardware", Chapter 17

Below are the circuit statuses at initial reset.

CPU: Operating

CPU operating frequency: OSC1 side (CLKCHG = "0"),

OSC3 oscillation circuit stoped

(OSCC = "0")

Internal regulated voltage: -1.2 V (VSC0, VSC1 = "0")

In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option, internal regulated voltage becomes -2.1 V.

Heavy load protection mode: Normal operating mode

(HLMOD = "0")

SVD circuit: OFF

(SVDON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several  $\mu A$  on account of the LCD panel characteristics.

## 7.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mined when programming.

System initialization In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.

### Memory

Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

## SVD (supply voltage detection) circuit

- (1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = 11).
- (2) To obtain a stable detection result, after setting SVDON to "1", provide at least 100 µs waiting time before performing SVDDT reading.

## Heavy load protection mode

- (1) During heavy load or when 2.2 V or below is detected by SVD, set it to heavy load protection mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.
- (2) Perform heavy load driving only after setting up at least 1 ms wait time through the software, after switching to the heavy load protection mode. (See Figure 6.11.1.)
- (3) When the heavy load protection mode is to canceled after completion of heavy load driving, set up at least 2 seconds wait time through the software. (See Figure 6.11.1.)

- Watchdog timer (1) The watchdog timer must reset within 3-second cycles by the software.
  - (2) When clock timer resetting (TMRST←"1") is performed, the watchdog timer is counted up; reset the watchdog immediately after if necessary.

Oscillation circuit (1) When high-speed operation of the CPU is not required, observe the following reminders to minimize power current consumption.

Set the CPU operating clock to OSC1. Turn the OSC3 oscillation OFF. Set the internal operating voltage (Vs1) to -1.2 V or -2.1 V.

- (2) Before you use OSC1 as system clock, you should check the supply voltage (Vss) using the SVD circuit. If the SVD circuit detects supply voltage less than 3.1 V (Vdd-Vss < 3.1 V) then set the operating voltage (Vs1) to -1.2 V. Or if the SVD circuit detects supply voltage 3.1 V or more (Vdd-Vss  $\geq$  3.1 V) then set Vs1 to -2.1 V. Moreover, because -1.2 V will be set during initial reset, be sure to execute the previous process at the beginning of the initial routine.
- (3) When switching Vs1 from -1.2 V (for OSC1 crystal oscillation circuit) to -3.0 V (for OSC3 oscillation circuit), or vice versa, be sure to hold the -2.1 V setting for more than 5 ms first for power voltage stabilization.

$$\begin{aligned} (VSC1,\ VSC0) &= (0,\ 0) \rightarrow (0,\ 1) \rightarrow 5\ ms\ WAIT \rightarrow (1,\ \times) \\ &= (1,\ \times) \rightarrow (0,\ 1) \rightarrow 5\ ms\ WAIT \rightarrow (0,\ 0) \\ &= (0,\ 0) \rightarrow (1,\ \times)\ is\ prohibited \\ &= (1,\ \times) \rightarrow (0,\ 0)\ is\ prohibited \end{aligned}$$

Furthermore, perform the switch after making sure that power voltage by SVD is more than the Vs1 (absolute value) set voltage. Switching Vs1 when the power source voltage is lower than the set voltage may cause malfunction.

- (4) When switching the CPU operating clock from OSC1 to OSC3, follow the flow chart shown in Figure 6.2.2 and then proceed with software processing.
- (5) Use separate instructions to switch the clock from OSC3 to OSC1 and turn the OSC3 oscillation OFF. Simultaneous processing with a single instruction may cause malfunction of the CPU.
- (6) In the S1C62440/4C0/480, when CR oscillation has been selected by the mask option, internal regulated voltage becomes -2.1 V and will never become -1.2 V.

Input port (1) When changing the input port from Low level to High

(Kxx) level with a pull up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull up resistor and input gate capacity. Hence, when reading data from the input port, set an appropriate waiting time.

Care is particularly required for key matrix configuration scanning. For reference, approximately 500 µs waiting time is required.

### (2) Input interrupt programing related precautions

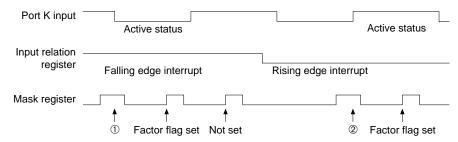



Fig. 7.2.1 Input interrupt timing

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at ① and ②, ① being the interrupt due to the falling edge and ② the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = Low status, when the falling edge interrupt is effected and

input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 7.2.1. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case.

When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ② shown in Figure 7.2.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the input relation register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input relation register in the mask register = "0" status.

- (Rxx)
- Output port (1) When BZ, BZ, FOUT, FOUT, and PTCLK (DC) are selected by mask option, a hazard may be observed in the output waveform when the data of the output register changes.
  - (2) Because the R00-R03, R10-R13, R20-R23, and R30-R32 (R33) ports gain high impedance during initial reset, be careful when using them as interface with external devices and the like.
  - (3) When R33 port is selected for 2 states and DC (PTCLK) output by mask option, R33 terminal becomes undefined at initial reset.
  - I/O port (1) When the I/O port is set at output mode, and low imped-(Pxx) ance load is connected to the port terminal, the data written and read may differ.
    - (2) If the state of the I/O port meets all of the following 4 conditions, the reading data will be undefined:
      - The input/output mode is set at output mode
      - Output specification is set at Nch open drain
      - The content of the data register is "1"
      - The pull up resistor turned is OFF
    - (3) When P30-P33 has been set as the output exclusive in the mask option, a pull up resistor cannot be added even if the pull up resistor control register PUP3 has been made "0".

LCD driver Because at initial reset, the contents of segment data memory and LCO-LC3 are undefined, there is need to initialize by software.

Clock timer (1) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.

- (2) Because the watchdog timer counts up during reset as in the above (1), reset the watchdog timer as necessary.
- (3) When the low-order digits (TM0-TM3) and high-order digits (TM4-TM7) are consecutively read, proper reading may not be obtained due to the carry from the low-order digits into the high-order digits (when the reading of the low-order digits and high-order digits span the timing of the carry). For this reason, perform multiple reading of timer data, make comparisons and use matching data as result.

When data of the counter is read at run mode, perform the Stopwatch timer reading after suspending the counter once and then set SWRUN to "1" again. Moreover, it is required that the suspension period not exceed 976 µs (1/4 cycle of 256 Hz).

- Programmable timer (1) When initiating programmable timer count, perform programming by the following steps:
  - 1. Set the initial data to RD0-RD7.
  - 2. Reset the programmable timer by writing "1" to PTRST.
  - 3. Start the down-count by writing "1" to PTRUN.
  - (2) When the reload register (RD0-RD7) value is set at "00H", the down-counter becomes a 256-value counter.
  - (3) When data of the timer is read consecutively in 8 bits in the RUN mode, perform the reading after suspending the timer once and then set the PTRUN to "1" again. Moreover, it is required that the suspension period be within 1/4 cycle of the input clock (in case of 1/2 duty). Accordingly, when the input clock is a fast clock faster than 256 Hz, high speed processing by OSC3 is required.

(SIN, SOUT, and SCLK)

- Serial interface (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc1  $\leftrightarrow$  fosc3) while the serial interface is operating.
  - (2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
  - (3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

- Sound generator (1) The BZ and  $\overline{BZ}$  signals may generate hazards in the following cases:
  - When the content of R43 register is changed, BZ and BZ signals are switched ON or OFF.
  - When the contents of buzzer frequency selection registers (BZFQ0-BZFQ2) while the buzzer signal (BZ and  $\overline{BZ}$ ) is being output.
  - (2) The 1-shot buzzer operates only when the regular buzzer output is in the OFF (R43 = "1") state and writing to BZSHOT becomes invalid in the ON (R43 = "0") state.

External memory access

- (1) Be sure to data writing/reading for external memory in the order of low-order bits (D0-D3) then high-order bits (D4-D7).
- (2) Because of the write-only (W/O) function, the chip select register (P20-P23) may not be re-written by logical arithmetic instruction.

Interrupt (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register. Note, however, that the input interrupt factor flags (IKO and IK1) will be eliminated.

- (2) Be sure that the interrupt factor flag reading is done with the interrupt in the DISABLE state (DI). Reading the interrupt factor flag while in the ENABLE state (EI) may cause malfunction.
- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DISABLE state (DI). Writing to the interrupt mask register while in the ENABLE state (EI) may cause malfunction.
- (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.
- (5) If an interrupt occurs while the CPU is processing some other interrupt request of which the priority is lower than the new one but the CPU has not fetched the interrupt vector, the CPU may shift to a vector address (one of among 102H, 104H, 106H, 10AH and 10EH) that is different from the new interrupt.

Therefore, make sure the interrupt factor flag has been set immediately after the branch instruction stored in the vector address is executed and quit the interrupt processing if it has not been set.

Furthermore, place a branch instruction for executing the interrupt processing routine in the vector address 10EH because the CPU may shift to that address. By setting the start address of the programmable timer interrupt processing routine as the branch destination, the priority level by hardware can be maintained.

If the program does not have the individual processing routine for each interrupt (for example, in the case of all interrupts using the same processing routine in which the type of interrupt is judged by reading the interrupt flags, or in the case of the main routine checking all the interrupt flags by branching the flow the RET instruction stored in all the vector address), place the instruction the same as the other interrupt vectors in address 10EH. When the interrupt function is not used, it is not necessary to pay attention to the above mentioned precautions.

## APPENDIX A S1C62440/4A0/4C0/480 DATA MEMORY (RAM) MAP

## S1C62440/4A0/4C0/480 data memory map (1) - RAM

| Н | L           | 0    | 1        | 2   | 3 | 4 | 5            | 6        | 7            | 8            | 9            | Α    | В            | С            | D | Е        | F            |
|---|-------------|------|----------|-----|---|---|--------------|----------|--------------|--------------|--------------|------|--------------|--------------|---|----------|--------------|
| 0 | NAME        |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
|   | MSB         |      |          |     |   | Ţ | Ī            |          | Ī            |              |              |      |              | Ī            |   |          | T            |
|   |             |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
|   |             |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
|   | LSB         |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
| 1 | NAME        | ļ    | ļ        |     |   |   | ļ            | <u> </u> | ļ            | ļ            | ļ            |      | ļ            | ļ            |   | <u> </u> | ļ            |
|   | MSB         |      | ļ        |     |   | ļ | ļ            |          | ļ            | ļ            | ļ            |      | ļ            | ļ            |   |          | ļ            |
|   |             | <br> | ļ        |     |   | ļ | ļ            | <b>-</b> | ļ<br>+       | ļ<br>+       | <br>         |      | ļ<br>        | ļ<br>+       |   |          | ļ            |
|   |             | <br> | ļ        |     |   |   | <del> </del> | ļ        | ļ<br>†       | ļ            | ļ<br>        | <br> | ļ            | ļ            |   | <br>     | ļ            |
| _ | LSB         |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
|   | NAME        | <br> | +        | - 🕇 | + | + | +            | <b></b>  | ļ            | <del> </del> | <b></b> -    |      | <del> </del> | <del> </del> |   |          | ļ            |
|   | MSB         |      | +        | - 🕇 |   | + | +            | <b>+</b> | ļ            | <del> </del> | <b></b>      |      | <del> </del> | <del> </del> |   |          | <del> </del> |
|   |             |      | <b>+</b> | - 🕇 | + | + | +            | <b>+</b> | <del> </del> | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |   |          | <del> </del> |
|   | L OD        |      | <b>+</b> | - 🕇 | + | + | +            | +        | <del> </del> | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |   |          | <del> </del> |
| _ | LSB         |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
| 3 | NAME<br>MSB |      | +        | - + | + | + | +            | +        | <del> </del> | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |   |          | <del> </del> |
|   | INIOR       |      | +        | - + | + | + | +            | +        | <del> </del> | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |   |          | <del> </del> |
|   |             |      | +        | - + | + | + | +            | +        | <del> </del> | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |   |          | <del> </del> |
|   | LSB         |      | †        | - + | + | † | +            | +        | † ·          | † ·          | <del> </del> |      | t            | † ·          |   |          | † ·          |
| 4 | NAME        |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
| • | MSB         |      | †        | +   | † | † | †            | +        | †            | †            |              |      | †            | †            |   |          | † ·          |
|   |             |      | †        | +   | † | † | †            | <b>†</b> | †            | †            | † ·          |      | †            | †            |   |          | † ·          |
|   |             |      | †        | - † | † | † | †            | <b>†</b> | †            | †            | † ·          |      | †            | †            |   |          | † ·          |
|   | LSB         |      | Ť        |     | T | Ť | 1            |          | T            | T            |              |      | T            | T            |   |          | †            |
| 5 | NAME        |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
|   | MSB         |      | T        |     | T | T | T            | T        | T            | T            |              |      | T            | T            |   |          | T            |
|   |             |      |          |     |   | I | I            | I        | I            | I            |              |      | I            | I            |   |          | I            |
|   |             |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          | Ι            |
|   | LSB         |      |          |     |   |   |              |          |              |              |              |      |              |              |   |          |              |
| 6 | NAME        | L    | 1        |     |   | 1 | 1            |          |              | l            |              |      |              | <u> </u>     |   |          | ļ.,          |
|   | MSB         |      | ļ        |     |   |   |              | ļ        |              | ļ            | ļ            |      | ļ            | ļ            |   |          | ļ.,          |
|   |             |      | ļ        |     |   |   |              |          | ļ            | ļ            |              |      | ļ            | ļ            |   |          | ļ            |
|   |             | ļ    | ļ        |     |   |   | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |   | ļ        | ļ            |
|   | LSB         |      |          |     |   | 1 |              |          |              |              |              |      |              |              |   |          |              |
| 7 | NAME        | ļ    | ļ        | . ‡ |   |   | ļ            | <b>_</b> | ļ            | ļ            | ļ            |      | ļ            | ļ            |   | ļ        | ļ            |
|   | MSB         | ļ    | ļ        | . ‡ |   |   | ļ            | <b>_</b> | ļ            | ļ            | ļ            |      | ļ            | ļ            |   | ļ        | ļ            |
|   |             | ļ    | ļ        | . ‡ |   | ļ | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |   |          | ļ            |
|   |             |      |          |     |   |   |              |          |              | 1            |              |      |              | 1            |   |          |              |

## S1C62440/4A0/4C0/480 data memory map (2) - RAM

| Н | L           | 0 | 1            | 2        | 3   | 4 | 5   | 6 | 7            | 8            | 9            | Α | В            | С   | D            | E            | F            |
|---|-------------|---|--------------|----------|-----|---|-----|---|--------------|--------------|--------------|---|--------------|-----|--------------|--------------|--------------|
|   | NAME        |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| Ŭ | MSB         |   | †            | +        | +   | + | - † | † | †            | †            | †            |   | † ·          | +   |              |              | †            |
|   | IVIOD       |   | †            | †        | - † | + | - + | † | †            | †            | †·           |   | † ·          | † · |              | † ·          | †            |
|   |             |   | †            | +        | +   | + | -+  | + | +            | +            | †            |   | +            | +   |              |              | †            |
|   | LSB         |   | <del> </del> | +        | - + | + | -+  | + | †            | +            | +            |   | t            | +   |              |              | <del> </del> |
| _ | NAME        |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| 9 | MSB         |   | <del> </del> | +        | - + | + | - + | + | <del>+</del> | <del> </del> | <del> </del> |   | +            | +   |              |              | +            |
|   | IVIOD       |   | <del> </del> | +        | - + | + | - + | + | +            | <del> </del> | +            |   | +            | +   |              |              | <del> </del> |
|   |             |   | +            | +        | - + | + | - + | + | +            |              | +            |   |              | +   |              |              | <del> </del> |
|   |             |   | <del> </del> | +        | - + | + | - + | + | <del>+</del> | <del> </del> | <del> </del> |   | <del> </del> | +   |              |              | <del> </del> |
| _ | LSB         |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| А | NAME        |   | ļ            | +        | - + | + | - + | + | +            |              |              |   |              |     |              |              | <del> </del> |
|   | MSB         |   | <del> </del> | +        | -   | + | - + | + | <del>+</del> | ļ            | <del> </del> |   | ļ            | ļ   |              |              | <del> </del> |
|   |             |   | ļ            | ļ        | -   | + |     | ļ | ļ            | ļ            | ļ            |   | ļ            | ļ   |              |              | ļ            |
|   |             |   | ļ            | ļ        |     | + |     | ļ | ļ            |              |              |   |              |     |              |              | ļ            |
|   | LSB         |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| В | NAME        |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   | ļ            | ļ   |              | ļ            | ļ            |
|   | MSB         |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   | ļ            | ļ   |              |              | ļ            |
|   |             |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   | ļ            | ļ   |              |              | ļ            |
|   |             |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   |              |     |              |              | ļ            |
|   | LSB         |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| С | NAME        |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   |              | ļ   |              |              | ļ.,          |
|   | MSB         |   | ļ            | ļ        |     |   |     | ļ | ļ            | ļ            | ļ            |   |              |     |              |              | ļ.,          |
|   |             |   | <u> </u>     | <u></u>  |     |   |     | 1 |              |              |              |   |              |     |              |              | l            |
|   |             |   | ļ            | ļ        |     |   |     | ļ |              |              | <u> </u>     |   |              |     |              |              | ļ.,          |
|   | LSB         |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| D | NAME        |   | l            | 1        |     | 1 |     | 1 | 1            | l            | l            |   | l            |     | L            | L            | l.,          |
|   | MSB         |   |              |          |     |   |     |   | 1            |              |              |   |              |     |              |              |              |
|   |             |   |              |          |     |   |     |   | 1            |              |              |   |              |     |              |              |              |
|   |             |   |              | T        |     |   |     | T | T            | T            |              |   |              |     |              |              | T            |
|   | LSB         |   |              | T        | T   | T |     | T | T            | T            |              |   |              |     |              |              | T            |
| Е | NAME        |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
|   | MSB         |   | T            | T        |     | 1 |     | T | T            |              |              |   |              |     |              |              | T            |
|   |             |   | T            | Ť        |     | T |     | Ť | Ť            | T            | Ť            |   |              |     |              |              | T            |
|   |             |   | Ť            | Ť        |     | T |     | Ť | Ť            | Ť            | T            |   |              |     |              |              | T            |
|   | LSB         |   | †            | Ť        | †   | Ť | - † | Ť | †            | Ť            | †            |   | † ·          | †·  | † <i>-</i>   | † ·          | †            |
| F | NAME        |   |              |          |     |   |     |   |              |              |              |   |              |     |              |              |              |
| • | NAME<br>MSB |   | †            | †        | +   | † | +   | † | †            | †            | †            |   | †            | † · | † <i>-</i>   | †            | †            |
|   |             |   | †            | †        | +   | † | - † | † | †            | †            | †            |   | †            | †·  | †·           | † ·          | †            |
|   |             |   | †            | <b>†</b> | +   | + | - + | † | †            | †            | †            |   | †            | † · | t            | †            | †            |
|   | LSB         |   | +            | +        | -+  | + | -+  | + | +            | +            | <del> </del> |   | <del> </del> | +   | <del> </del> | <del> </del> | +            |

## S1C62440/4A0/4C0/480 data memory map (3) - RAM

| Н | L           | 0     | 1              | 2 | 3            | 4            | 5        | 6            | 7            | 8            | 9            | Α | В            | С            | D | E              | F            |
|---|-------------|-------|----------------|---|--------------|--------------|----------|--------------|--------------|--------------|--------------|---|--------------|--------------|---|----------------|--------------|
| 0 | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| · | MSB         |       | † ·            |   | †            | †            | †        | †            | †            | † ·          |              |   |              | †            |   |                | †            |
|   |             |       | t              |   | †            | †            | +        | †            | †            | †·           | +            |   | t            | † ·          |   |                | †            |
|   |             |       | <del> </del> - |   | †            | †            | †        | †            | †            | <del> </del> |              |   |              | †·           |   |                | †            |
|   | LSB         | l     | <del> </del>   |   | †            | †            | <b>†</b> | †            | †            | <del> </del> |              |   |              | † ·          |   | <del> </del>   | †            |
| 1 | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| ' | MSB         |       | <del> </del>   |   | <del> </del> | †            | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | †            |
|   | _ IVIOD _   |       | <del> </del>   |   | <del> </del> | †            | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | †            |
|   |             |       | <del> </del>   |   | <del> </del> | †            | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | LSB         |       | <del> </del>   |   | <del> </del> | †            | +        | <del> </del> | t            | <del> </del> | +            |   | <del> </del> | † ·          |   |                | <del> </del> |
| 2 | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
|   | MSB         |       | <del> </del>   |   | <del> </del> | †            | +        | <del> </del> | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   | <del> </del> - | <del> </del> |
|   | IVIOD       |       | <del> </del>   |   | <del> </del> | †            | +        | <del> </del> | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   |             |       | <del> </del>   |   | <del> </del> | †            | +        | <del> </del> | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | LSB         | l     | <del> </del>   |   | <del> </del> | <del> </del> | <b>†</b> | <del> </del> | <del> </del> | <del> </del> |              |   |              | <del> </del> |   |                | <del> </del> |
| 2 | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| S | MSB         |       | <del> </del>   |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> |              | <del> </del> |   |              | <del> </del> |   |                | <del> </del> |
|   | IVIOD       |       | <del> </del>   |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   |             |       | <del> </del>   |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
| - | LSB         |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | <del> </del> | <del> </del> | <del> </del> | +            |   | <del> </del> | <del> </del> |   |                | <del> </del> |
| 4 | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| 4 | MSB         |       | <del> </del>   |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | INIOD       |       |                |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> |              | <del> </del> |   |              | <del> </del> |   |                | <del> </del> |
|   |             |       |                |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> |              | <del> </del> |   |              | <del> </del> |   |                | <del> </del> |
|   | LCD         |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | <del> </del> | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
| _ | LSB<br>NAME |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| Э | MSB         |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | +            | <del> </del> | <del> </del> | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | INIOR       |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | +            | <del> </del> |              | +            |   |              | <del> </del> |   |                | ļ            |
|   |             |       |                |   | <del> </del> | <del> </del> | +        | +            | <del> </del> |              | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | LSB         |       |                |   | <del> </del> | <del> </del> | <b>†</b> | +            | <del> </del> |              | +            |   |              | <del> </del> |   |                | <del> </del> |
| _ | NAME        |       |                |   |              |              |          |              |              |              |              |   |              |              |   |                |              |
| О | NAIVIE      |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | +            | <del> </del> |              | +            |   |              | <del> </del> |   |                | <del> </del> |
|   | MSB         |       | <del> </del>   |   | <del> </del> | <b>†</b>     | +        | +            | <del> </del> |              | +            |   |              | <del> </del> |   |                | ļ            |
|   |             |       |                |   | <del> </del> | <del>+</del> | +        | +            | <del> </del> |              |              |   |              | <del> </del> |   |                | <del> </del> |
|   | 1.00        |       | <del> </del>   |   | <del> </del> | <b>+</b>     | +        | +            | <del> </del> | ļ            | <del> </del> |   |              | <del> </del> |   | ļ              | <del> </del> |
| _ | LSB         |       |                |   |              | -            |          |              |              |              |              |   |              |              |   |                | $\vdash$     |
| 1 | NAME        |       | <del> </del>   |   | <b>+</b>     | <b>+</b>     | +        | +            | <del> </del> | <del> </del> | <b>+</b>     | ļ |              | <del> </del> |   | ļ              | ļ            |
|   | MSB         | l<br> | <del> </del>   |   | <del> </del> | <b>+</b>     | +        | +            | <del> </del> | ļ            | <del> </del> | ļ | ļ            | <del> </del> |   | ļ              | <del> </del> |
|   |             | ļ     | ļ              |   | <del> </del> | ļ            | +        | +            | <del> </del> | ļ            | <del> </del> |   |              | <del> </del> |   | ļ              | ļ            |
|   | L           | L     | 1              |   |              |              | 1        |              |              |              |              |   |              | 1            | 1 |                |              |

S1C62440/4A0/4C0/480 data memory map (4) - RAM < S1C624A0/4C0/480 only >

| Н | L        | 0            | 1            | 2        | 3   | 4        | 5   | 6            | 7            | 8            | 9            | Α | В        | С            | D            | Е            | F            |
|---|----------|--------------|--------------|----------|-----|----------|-----|--------------|--------------|--------------|--------------|---|----------|--------------|--------------|--------------|--------------|
|   | NAME     |              | -            |          | +   | -        |     |              | -            |              |              |   |          |              |              |              |              |
| U | MSB      |              | †            | †        | - † | †        | - † | †            | †            | <del> </del> | <del> </del> |   | +        | †            | <del> </del> | +            | †            |
|   | IVIOD    |              | +            | +        | - † | +        | - + | +            | t            | <del> </del> | <del> </del> |   | +        | †            | <del> </del> | <del> </del> | †            |
|   |          |              | <del> </del> | +        | -+  | +        | - + | <del>+</del> | <del> </del> | <del> </del> | <del> </del> |   | +        | <del> </del> | <del> </del> | +            | <del> </del> |
|   | I CD     |              | <del> </del> | +        | - + | +        | - † | +            | <del> </del> | <del> </del> | <del> </del> |   | +        | <del> </del> | <del> </del> | <del> </del> | <del> </del> |
| _ | LSB      |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
| 9 | NAME     |              | <del> </del> | +        | - + | +        | - + | +            | <del> </del> | <del> </del> | <del> </del> |   | +        | <del> </del> | <del> </del> |              | ļ            |
|   | MSB      |              | <del> </del> | +        | -+  | +        | - + | ļ            | <b></b>      | ļ            | <b></b>      |   | <b></b>  | <del> </del> | ļ            | ļ            | ļ            |
|   |          |              | <del> </del> | +        | -+  | +        | - + | ļ            | <del> </del> | ļ            | <b></b>      |   | <b></b>  | ļ            | ļ            | ļ            | ļ            |
|   |          |              | <b></b>      | +        | -   | ļ        |     | <b>+</b>     | <del> </del> | ļ            | <b></b>      |   | <b></b>  | <del> </del> | <del> </del> | ļ            | ļ            |
| _ | LSB      |              |              |          | +   |          |     |              |              |              |              |   |          |              |              |              |              |
| Α | NAME     |              | ļ            | ļ        | - + | ļ        | - + | ļ            | ļ            | ļ            | <del> </del> |   | ļ        | ļ            | ļ            |              | ļ            |
|   | MSB      |              | ļ            | ļ        | - + | ļ        | . ‡ | ļ            | ļ            | ļ            | ļ            |   | ļ        | ļ            | ļ            | ļ            | ļ            |
|   |          |              | ļ            | ļ        | -   | ļ        |     | ļ            | ļ            | ļ            | ļ            |   | ļ        | ļ            | ļ            | ļ            | ļ            |
|   |          |              | ļ            | ļ        | -   | ļ        |     | ļ            | ļ            | ļ            | ļ            |   | ļ        | ļ            | ļ            |              | ļ            |
|   | LSB      |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              | _            |
| В | NAME     |              | ļ            | ļ        |     | ļ        |     | ļ            | ļ<br>        | ļ            | ļ            |   |          | ļ            | ļ            |              | ļ            |
|   | MSB      | ļ            | ļ            | ļ        | -   | ļ        |     | ļ            | ļ            | ļ            | ļ            |   | ļ        | ļ            | ļ            | ļ            | ļ            |
|   |          |              | ļ            | ļ        | -   | ļ        |     | ļ            | ļ            | ļ            | ļ            |   | ļ        | ļ            | ļ            |              | ļ            |
|   |          |              | ļ            | ļ        |     | ļ        |     | ļ            | ļ            | ļ            | ļ            |   |          | ļ            | ļ            |              | ļ            |
|   | LSB      |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
| С | NAME     |              | ļ            | 1        |     | l        |     | ļ            |              | ļ            | ļ            |   |          |              | ļ            |              | ļ            |
|   | MSB      |              | <u> </u>     | 1        |     | 1        |     | 1            |              | l            | <u> </u>     |   |          |              | <u> </u>     |              | L            |
|   |          |              | l            | <u></u>  | .1  | 1        |     | 1            | l            | l            |              |   |          |              | l            |              | <u> </u>     |
|   |          |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
|   | LSB      |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
| D | NAME     |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
|   | MSB      | T            | T            | T        |     | T        |     |              | T            | T            | T            |   |          | T            |              |              | T            |
|   |          |              | T            | Ţ        | T   |          | T   | T            | T            | Ť            | T            |   |          | T            | T            |              | Ť ·          |
|   | [        | T            | T            | T        | 1   | T        | Ţ   | T            | T            | T            | T            |   | T        | T            | T            | T            | T            |
|   | LSB      | T            | T            | T        | T   | T        | T   | T            | T            | T            | T            |   |          | T            | T            | T            | T            |
| E | NAME     |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
|   | MSB      |              | T            | †        | - † | T        | - + | †            | †            | † ·          | †            |   |          | † ·          | † ·          |              | † ·          |
|   |          |              | †            | †        | - † | T        | - † | †            | †            | †            | <b>†</b>     |   |          | †            | †            | T            | † ·          |
|   |          |              | †            | †        | - † | +        | +   | †            | †            | †            | †            |   | +        | †            | †            | † ·          | † ·          |
|   | LSB      | †            | †            | †        | -†  | †        | †   | †            | †            | †            | †            |   | †        | †            | †            | †            | † ·          |
| F | NAME     |              |              |          |     |          |     |              |              |              |              |   |          |              |              |              |              |
| ' | MSB      | †            | †            | †        | - † | †        | +   | †            | †            | †            | †            |   | †        | †            | †            | † ·          | †            |
|   | ַנוּטַטַ | <del> </del> | †            | †        | - † | +        | +   | +            | †            | †            | †            |   | +        | †            | † ·          | † ·          | †·           |
|   |          | <del> </del> | <del> </del> | †        | - † | +        | - † | <b>†</b>     | †            | <del> </del> | +            |   | +        | †            | †·           | +            | †            |
|   | LSB      | ļ            | <b>+</b>     | <b>+</b> | - + | <b>4</b> | - + | <b>+</b>     | <b>+</b>     | ļ            | <b>4</b>     | L | <b>1</b> | ļ            | ļ            | ļ            | ļ            |

## S1C62440/4A0/4C0/480 data memory map (5) - RAM < S1C624A0/4C0/480 only >

| H L 0 1 2 3 4 5 6 7 8 9 A B C D    NAME | D E          | F        |
|-----------------------------------------|--------------|----------|
| MSB                                     |              |          |
| LSB                                     | t            | -+       |
| NAME                                    | <del> </del> | -+       |
| NAME                                    | +            | - +      |
| NAME                                    | <del> </del> | - +      |
| MSB                                     |              |          |
| LSB                                     | <del> </del> | - +      |
| 2 NAME                                  | <del> </del> | -+       |
| 2 NAME                                  | <del> </del> | - +      |
| 2 NAME                                  | <del> </del> | - +      |
| MSB                                     |              |          |
| LSB                                     | <del> </del> |          |
| 3 NAME                                  | ļ            |          |
| 3 NAME                                  | ļ            |          |
| 3 NAME                                  | ļ            |          |
| MSB                                     |              |          |
| LSB                                     | ļ            |          |
| A   NAME                                | ļ            | <b>.</b> |
| 4 NAME                                  | ļ            | <b>.</b> |
| A   NAME                                |              |          |
| MSB                                     |              |          |
| LSB                                     |              |          |
| S                                       |              |          |
| S                                       |              |          |
| 5 NAME                                  |              |          |
| S                                       |              |          |
| MSB                                     |              |          |
| LSB                                     |              | T        |
| 6 NAME                                  |              | T        |
| 6 NAME                                  |              | T        |
| 6 NAME                                  | TT           | T        |
| LSB 7 NAME                              |              |          |
| LSB 7 NAME                              | T            |          |
| 7 NAME                                  | T            | - +      |
| 7 NAME                                  | t            |          |
| 7 NAME                                  | tt           | -+       |
| MSB                                     |              |          |
|                                         | tt           | -+       |
|                                         | t            | -+       |
|                                         | t            | -+       |
| LSB                                     | <del> </del> | -+       |

## S1C62440/4A0/4C0/480 data memory map (6) - RAM < S1C624C0/480 only >

| Н  | L     | 0 | 1            | 2            | 3            | 4            | 5 | 6            | 7   | 8            | 9 | Α   | В            | С            | D   | Е   | F            |
|----|-------|---|--------------|--------------|--------------|--------------|---|--------------|-----|--------------|---|-----|--------------|--------------|-----|-----|--------------|
|    | NAME  |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     |              |
| -  | MSB   | † | †            | †            | †            | †            | † | †            | † · | †            | † | † · | †            | †            | † · | † · | †            |
|    | 1000  |   | †            | †            | †            | †            | + | †            |     | †            |   |     | +            | †            |     |     | †            |
|    |       |   | †            | †            | †            | †            | + | †            |     | †            | + |     | +            | †·           |     |     | †            |
|    | LSB   |   | †            | †            | †            | †            | † | †            |     | † ·          | † |     | †            | †            |     |     | †            |
| a  | NAME  |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     |              |
| J  | MSB   |   | †            | †            | †            | †            | + | †            |     | †            | + |     | +            | †·           |     |     | †            |
|    |       |   | †            | †            | †            | †            | + | †            |     | †            | + |     | †            | †·           |     |     | †            |
|    |       |   | †            | †            | †            | †            | + | †            |     | †            | + |     | †            | †·           |     |     | †            |
|    | LSB   |   | †            | †            | †            | <b>+</b>     | + | †            |     | † ·          | + |     | +            | † ·          |     |     | †            |
| ۸  | NAME  |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     |              |
| А  | MSB   |   | <del> </del> | <del> </del> | +            | <del> </del> | + | <del> </del> |     | †            | + |     | +            | <del> </del> |     |     | <del> </del> |
|    | INIOD |   | <del> </del> | <del> </del> | +            | <b>+</b>     | + | +            |     | <del> </del> | + |     | +            | <del> </del> |     |     | <del> </del> |
|    |       |   | <del> </del> | <del> </del> | +            | <b>+</b>     | + | +            |     | <del> </del> | + |     | +            | <del> </del> |     |     | <del> </del> |
|    | LSB   |   | <del> </del> | <del> </del> | +            | <b>+</b>     | + | +            |     | <del> </del> | + |     | +            | <del> </del> |     |     | <del> </del> |
| р. | LOB   |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     |              |
| В  | NAME  |   | <del> </del> | <del> </del> | <del> </del> | <del> </del> | + | <del> </del> |     | <del> </del> | + |     | <del> </del> | <del> </del> |     |     | <del> </del> |
|    | MSB   |   | ļ            | <del> </del> | ļ            | ļ            | + | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | <b></b>      | ļ            | ļ            | + | ļ            |     | ļ            |   |     | ļ            | ļ            |     |     | ļ            |
| -  |       |   | <del> </del> | <del> </del> | +            | ļ            | + | <b>+</b>     |     | <del> </del> |   |     |              | <del> </del> |     |     | <b>∤</b>     |
| _  | LSB   |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     |              |
| C  | NAME  |   | <del> </del> | <del> </del> | <b>+</b>     | ļ            | + | ļ            |     | <del> </del> |   |     | ļ            | ļ            |     |     | ļ            |
|    | MSB   |   | ļ            | ļ            | ļ            | ļ            |   | ļ            |     | ļ            |   |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            |   | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            |   | ļ            |     | ļ            | ļ |     |              | ļ            |     |     | ļ            |
| _  | LSB   |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     | -            |
| D  | NAME  |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
|    | MSB   |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            |   |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            |   |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            |   | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
| -  | LSB   |   |              |              |              |              |   | -            |     |              |   |     |              |              |     |     |              |
| Ε  | NAME  |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
|    | MSB   |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            | ļ |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            |     | ļ            |   |     | ļ            | ļ            |     |     | ļ            |
|    |       |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            | ļ   | ļ            | ļ | ļ   | ļ            | ļ            | ļ   | ļ   | ļ            |
|    | LSB   |   |              |              |              |              |   |              |     |              |   |     |              |              |     |     | 1            |
| F  | NAME  |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            | 1   | ļ            | ļ |     | ļ            | ļ            | ļ   | L   | ļ            |
|    | MSB   |   | ļ            | ļ            | ļ            | ļ            | ļ | ļ            | ļ   | ļ            | ļ | ļ   | ļ            | ļ            | ļ   |     | ļ            |
| F  |       |   | ļ            | ļ            | 1            | ļ            | 1 | 1            | ļ   | ļ            | ļ | ļ   | ļ            | ļ            | ļ   |     | ļ            |
|    |       | 1 | 1            | 1            | 1            | 1            | 1 | 1            | 1   | 1            | 1 | 1   | i .          | 1            | i . | 1   | 1            |

## $S1C62440/4A0/4C0/480\ data\ memory\ map\ (7)\ -RAM < S1C624C0\ only >$

|          | OGRAM       |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
|----------|-------------|--------------|------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|----------|--------------|------|--------------|----------------|
| Н        | L           | 0            | 1          | 2    | 3            | 4            | 5            | 6            | 7            | 8            | 9            | Α    | В        | С            | D    | Е            | F              |
| 0        | NAME        | ļ            | ļ          | <br> | <u> </u><br> | ļ            | ļ            | ļ            | ļ            | ļ            | ļ            | <br> | <br>     | ļ            | <br> | <br>         | ļ              |
|          | MSB         | ļ            |            | <br> |              |              | ļ            | ļ            |              | ļ            | ļ            |      | <br>     | ļ            |      | <br>         | ļ              |
|          |             |              |            |      |              | l            | ļ            | ļ            | <u> </u>     |              |              |      | <u> </u> | <b></b>      |      | <u> </u>     | ļ              |
|          | I CD        | <del> </del> |            |      |              | <del> </del> | <del> </del> | <del> </del> |              | <del> </del> | <del> </del> |      |          | <del> </del> |      |              | <del> </del>   |
| 1        | LSB<br>NAME |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
| '        | MSB         | +            |            |      |              |              | † ·          | +            |              |              | <del> </del> |      |          | +            |      |              | <del> </del>   |
|          | INIOD       | <del> </del> | +          |      |              |              | †            | <del> </del> |              |              | <del> </del> |      |          | t            |      |              | †              |
|          |             | †            | †          |      |              |              | †·           | †            |              |              | †            |      |          | †            |      |              |                |
|          | LSB         |              |            |      |              |              | T            | T            |              |              | T            |      |          | T            |      |              | ļ              |
| 2        | NAME        |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
|          | MSB         | ļ            |            |      |              |              | ļ            | <u> </u>     |              | <u> </u>     | ļ            |      | ļ        | ļ            |      | ļ            | ļ              |
|          |             | ļ            |            |      |              |              | ļ            | ļ            |              |              | ļ            |      |          | ļ            |      |              | ļ              |
|          |             | ļ            |            |      |              | ļ<br>        | ļ            | ļ<br>+       | ļ<br>        | ļ<br>        | ļ<br>        | <br> | <br>     | ļ            | <br> | <br>         | ļ              |
|          | LSB         |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              | _              |
| 3        | NAME        | ļ            |            |      |              |              | ļ            | ļ            |              |              | ļ            |      | <br>     | ļ            |      | <br>         | ļ              |
|          | MSB         | <b></b> -    |            |      |              |              | <del> </del> | ļ            |              | ļ            | <b></b> -    |      |          | <b></b> -    |      |              | ļ              |
|          |             |              |            |      |              |              | <del> </del> | ļ            |              |              |              |      |          | <del> </del> |      |              |                |
|          | LSB         | <del> </del> |            |      |              | <del> </del> |      | l        | <del> </del> |      | l            | <del> </del>   |
| 1        | NAME        |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
| 7        | MSB         |              |            |      |              |              | †            | +            |              |              |              |      |          |              |      |              | <del> </del>   |
|          | 111000      |              |            |      |              |              | †            | † ·          |              |              |              |      |          |              |      |              |                |
|          |             |              |            |      |              |              | †            | † ·          |              | † ·          | †            |      |          | † ·          |      |              |                |
|          | LSB         |              |            |      |              | T            | T            |              | T            | T            |              |      | Ī        |              |      | T            |                |
| 5        | NAME        |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
|          | MSB         |              |            |      |              |              | ļ            |              |              |              |              |      |          | ļ            |      |              | ļ              |
|          |             |              |            |      |              | ļ            | ļ            | ļ            | ļ            | ļ            | ļ            |      |          | ļ            |      | ļ            | ļ              |
|          |             |              |            |      |              |              | ļ            | ļ            |              |              |              |      |          |              |      |              |                |
|          | LSB         |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
| 6        | NAME        |              |            |      |              |              | ļ            | ļ            |              | ļ            | ļ            |      |          | ļ            |      |              |                |
|          | MSB         |              |            |      |              |              | ļ            | <b></b> -    |              |              |              |      |          |              |      |              |                |
|          |             |              |            |      |              |              | <del> </del> | +            |              |              |              |      |          |              |      |              |                |
|          | LCD         |              |            |      |              |              | <del> </del> |              |              |              |              |      |          |              |      |              |                |
| 7        | LSB<br>NAME |              |            |      |              |              |              |              |              |              |              |      |          |              |      |              |                |
| <b>'</b> | MSB         | t            | t          |      |              | <u> </u>     | †            | †            | <u> </u>     | t            | t            |      |          | t            |      | <del> </del> | <del> </del> : |
|          | INIOD       | †·           | †          |      |              | t            | †            | †            | t ·          | †·           | †            |      | t ·      | †·           |      | t            | t              |
|          |             | +            | †          |      |              |              | †            | †            |              |              | +            |      | +        | +            |      | † ·          | ļ              |
|          | LSB         | † ·          | † <u> </u> |      | +            | † ·          | †            | †            | † ·          | † ·          | † ·          | t ·  | † ·      | † ·          |      | † ·          | t              |

## $S1C62440/4A0/4C0/480\ data\ memory\ map\ (8)\ -RAM < S1C624C0\ only >$

| Н  | L       | 0            | 1            | 2 | 3 | 4 | 5        | 6 | 7 | 8              | 9              | Α | В   | С              | D | E            | F            |
|----|---------|--------------|--------------|---|---|---|----------|---|---|----------------|----------------|---|-----|----------------|---|--------------|--------------|
|    | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| Ĭ  | MSB     |              | †            | T | † | † | †        | † | † | † ·            |                |   | †   | †              |   |              | † ·          |
|    |         | †            | †            | † | † | † | †        | † | † | † ·            |                |   | † · |                |   |              | † ·          |
|    |         | † ·          | †            | † | † | † | †        | † | † |                |                |   |     |                |   |              | †            |
|    | LSB     | †            | †            | + | † | † | <b>†</b> | † | † | † ·            |                |   | † · |                |   |              | †            |
| 9  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| Ŭ  | MSB     | †            | †            | † | † | † | †        | † | † |                |                |   | † · |                |   |              | †            |
|    |         | †            | †            | † | † | † | †        | † | † |                |                |   | † · |                |   |              | †            |
|    |         | †            | †            | † | † | † | †        | † | † | † ·            |                |   | † · |                |   |              | †            |
|    | LSB     | † ·          | †            | † | † | † | †        | † | † | † ·            |                |   | † · |                |   |              | †            |
| Α  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
|    | MSB     | †            | †            |   | † | † | T        | † | † | †              |                |   | †   |                |   |              | †            |
|    | 1       | † ·          | †            | † | † | † | +        | † | † |                |                |   | † · |                |   |              | †            |
|    |         | † ·          | †            | † | † | † | +        | † | † |                |                |   | † · |                |   |              | †            |
|    | LSB     | † ·          | †            | † | † | † | †        | † | † | † ·            |                |   | † · |                |   |              | †            |
| В  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| _  | MSB     | †            | †            | + | † | † | +        | † | † |                |                |   | † · |                |   |              | †            |
|    | I INOB  | †            | †            | + | † | † | +        | † | + |                |                |   | † · |                |   |              | †            |
|    |         | †            | †            | + | † | † | +        | † | † | †·             | +              |   | †   | +              |   |              | †            |
|    | LSB     | †            | †            | + | † | † | +        | † | † | † ·            |                |   | †   |                |   |              | †            |
| C. | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| Ŭ  | MSB     | †            | †            | + | † | † | +        | † | + |                |                |   | † · |                |   |              | †            |
|    | I INOB  | †            | †            | + | † | † | +        | † | + | +              |                |   | † · |                |   |              | †            |
|    |         | †            | †            | + | † | † | +        | † | + | +              |                |   | † · |                |   |              | †            |
|    | LSB     |              | †            | + | † | † | +        | † | + |                |                |   | † · |                |   |              | †            |
| D  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
|    | MSB     | †            | †            | + | † | † | +        | † | + | +              |                |   | † · |                |   |              | †            |
|    | I INOB  | †            | †            | + | † | † | +        | † | + | +              |                |   | † · |                |   |              | †            |
|    |         | †            | †            | + | † | † | +        | † | + | +              |                |   | † · |                |   |              | †            |
|    | LSB     | †            | †            | + | † | † | +        | † | † | t ·            |                |   | † · |                |   |              | †            |
| F  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| _  | MSB     | †            | †            | + | † | † | +        | † | + | +              | +              |   | †   | +              |   |              | †            |
|    | I IVIOD | †            | †            | + | † | † | +        | † | + | +              | +              |   | † · | +              |   |              | †            |
|    |         | †            | †            | + | † | † | +        | † | + | +              | +              |   | †   | +              |   |              | †            |
|    | LSB     | †            | †            | † | † | † | †        | † | † | † ·            | †              |   | † · | †              |   | t            | †            |
| F  | NAME    |              |              |   |   |   |          |   |   |                |                |   |     |                |   |              |              |
| •  | MSB     | †            | †            | + | † | † | +        | + | + | †·             | t              |   | †   | t              |   | t            | †            |
|    | IVISE   | t            | †            | + | † | † | +        | † | † | †              | t              |   | †   | t              |   | t            | +            |
|    |         | <del> </del> | †            | + | † | † | +        | † | † | <del> </del> - | <del> </del> - |   | †   | <del> </del> - |   | <u> </u>     | ļ            |
|    | LSB     | +            | <del> </del> | + | + | + | +        | + | + | +              | ļ              |   | +   | <del> </del>   |   | <del> </del> | <del> </del> |

## S1C62440/4A0/4C0/480 data memory map (9) - RAM < S1C624C0 only >

| Н | L     | 0            | 1              | 2            | 3        | 4            | 5            | 6        | 7            | 8            | 9            | Α    | В            | С            | D     | E    | F            |
|---|-------|--------------|----------------|--------------|----------|--------------|--------------|----------|--------------|--------------|--------------|------|--------------|--------------|-------|------|--------------|
|   | NAME  |              | •              | _            |          | '            | +            |          |              |              |              |      | _            |              |       | _    | ļ ·          |
| ١ | MSB   | <del> </del> | <del> </del> - | <del> </del> | +        | <del>+</del> | <del> </del> | +        | <del> </del> | <del> </del> | +            |      | <del> </del> | +            |       |      | <del> </del> |
|   | IVIOD | <del> </del> | <del> </del>   | <del> </del> | +        | <del> </del> | <del>+</del> | <b>+</b> | <del> </del> | <del> </del> | +            |      | <del> </del> | +            |       |      | +            |
|   |       |              | <del> </del>   | <del> </del> | +        | +            | <del> </del> | +        | +            | <del> </del> | <b>+</b>     |      | <del> </del> | <b>+</b>     |       |      | ļ            |
|   | 1.00  | <del> </del> | <del> </del>   | <del> </del> | <b>+</b> | <b>+</b>     | <del>+</del> | ļ        | <b>+</b>     | <del> </del> | <del> </del> |      | <del> </del> | <del> </del> |       |      | <b>+</b>     |
| _ | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 1 | NAME  | <b></b>      | ļ              | <del> </del> | <b>+</b> | <b>‡</b>     | <b>+</b>     | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |       |      |              |
|   | MSB   |              | ļ              | <del> </del> | +        | ļ            | <b>+</b>     | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |       |      | ļ            |
|   |       | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |       |      |              |
|   |       | ļ            | ļ<br>+         | <b> </b>     | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            | <br> | ļ            | ļ            | <br>  | <br> | ļ            |
|   | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 2 | NAME  | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |       |      | ļ            |
|   | MSB   | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            |       |      | ļ            |
|   |       | ļ            | ļ<br>+         | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ<br> |      | ļ            |
|   |       |              | ļ<br>+         | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            |              | ļ            |      | ļ            | ļ            |       |      | ļ            |
|   | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 3 | NAME  | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            | ļ ·  | ļ            | ļ            | ļ     |      |              |
|   | MSB   | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ     |      | ļ            |
|   |       | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ<br>        |      | ļ            | ļ            |       |      | ļ            |
|   |       | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ     |      | ļ            |
|   | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 4 | NAME  | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ     |      | ļ            |
|   | MSB   | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ     |      | ļ            |
|   |       | ļ            | ļ              | ļ            | ļ        | ļ            | ļ            | ļ        | ļ            | ļ            | ļ            |      | ļ            | ļ            | ļ     |      | ļ            |
|   |       |              | <u> </u>       | ļ            | ļ        | 1            | 1            | ļ        | ļ            | ļ            | <u> </u>     |      | ļ            | <u> </u>     |       |      | ļ            |
|   | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 5 | NAME  |              | <u> </u>       | ļ            | <u></u>  | 1            | 1            | ļ        | ļ            | ļ            | <u> </u>     |      | ļ            | <u> </u>     |       |      | L            |
|   | MSB   |              | <u> </u>       | <u> </u>     | <u></u>  | 1            | 1            |          | ļ            | ļ            | <u> </u>     |      |              | <u> </u>     |       |      | ļ            |
|   |       |              | <u> </u>       | l            | <u></u>  | 1            | 1            |          | ļ            | ļ            | <u> </u>     |      |              | <u> </u>     |       |      | ļ            |
|   |       | l            |                | l            |          | 1            | 1            | 1        | <u> </u>     | <u> </u>     | <u> </u>     |      |              | <u> </u>     |       |      | <u> </u>     |
|   | LSB   |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
| 6 | NAME  |              |                | L            | 1        | l            | 1            | 1        |              | L            |              |      |              |              |       |      |              |
|   | MSB   |              |                | Ī            | T        | T            | T            | T        | T            |              |              |      |              |              |       |      |              |
|   |       |              |                | Ī            | T        | T            | Ţ            | T        | T            |              |              |      |              |              |       |      | T            |
|   |       | T            | T              | T            | T        | T            | T            | T        | T            | T            | T            | T    | T            | T            | T     | T    | T            |
|   | LSB   | T            | T              | T            | T        | T            | T            | T        | T            | T            | T            | T    | Ī            | T            | T     | T    | T            |
| 7 | NAME  |              |                |              |          |              |              |          |              |              |              |      |              |              |       |      |              |
|   | MSB   | T            | T              | T            | T        | T            | T            | T        | T            | T            | T            | T    | T            | T            | T     | T    | T            |
|   | 1     | †            | †              | †            | <b>†</b> | <b>†</b>     | †            | <b>†</b> | †            | †            | †            | † ·  | †            | †            | † ·   | † ·  | †            |
|   |       | †            | †              | †            | †        | †            | †            | †        | †            | †            | †            | † ·  | †            | †            | † ·   | † ·  | †            |
|   | LSB   | t            | †              | †            | +        | †            | †            | †        | †            | †            | †            | +    | †            | †            | t     | t    | † ·          |

### S1C62440/4A0/4C0/480 data memory map (10) - Segment data memory

| P | R | OGRAM | NAME   | : C24  | 4/4A/4 | C/48   |        |                         |        |        |        |        |        |        |        |        |        |        |
|---|---|-------|--------|--------|--------|--------|--------|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Р | Н | L     | 0      | 1      | 2      | 3      | 4      | 5                       | 6      | 7      | 8      | 9      | Α      | В      | С      | D      | Е      | F      |
| E | 0 | NAME  |        |        |        |        |        |                         |        |        |        |        |        |        |        |        |        |        |
|   |   | MSB   | [3,0]  | [7,0]  | [3,1]  | [7,1]  | [3,2]  | [7,2]                   | [3,3]  | [7,3]  | [3,4]  | [7,4]  | [3,5]  | [7,5]  | [3,6]  | [7,6]  | [3,7]  | [7,7]  |
|   |   |       | [2,0]  | [6,0]  | [2,1]  | [6,1]  | [2,2]  | [6,2]                   | [2,3]  | [6,3]  | [2,4]  | [6,4]  | [2,5]  | [6,5]  | [2,6]  | [6,6]  | [2,7]  | [6,7]  |
|   |   |       | [1,0]  | [5,0]  | [1,1]  | [5,1]  | [1,2]  | [5,2]                   | [1,3]  | [5,3]  | [1,4]  | [5,4]  | [1,5]  | [5,5]  | [1,6]  | [5,6]  | [1,7]  | [5,7]  |
| L |   | LSB   | [0,0]  | [4,0]  | [0,1]  | [4,1]  | [0,2]  | [4,2]                   | [0,3]  | [4,3]  | [0,4]  | [4,4]  | [0,5]  | [4,5]  | [0,6]  | [4,6]  | [0,7]  | [4,7]  |
|   | 1 | NAME  |        |        |        |        |        |                         |        |        |        |        |        |        |        |        |        |        |
|   |   | MSB   | [3,8]  | [7,8]  | [3,9]  | [7,9]  | [3,10] | [7,10]                  | [3,11] | [7,11] | [3,12] | [7,12] | [3,13] | [7,13] | [3,14] | [7,14] | [3,15] | [7,15] |
|   |   |       | [2,8]  | [6,8]  | [2,9]  | [6,9]  |        |                         |        | +      | +      |        |        |        | [2,14] |        | +      | +      |
|   |   |       | [1,8]  | [5,8]  | [1,9]  | [5,9]  |        |                         |        | +      | +      |        |        |        | [1,14] |        | +      | +      |
| L |   | LSB   | [0,8]  | [4,8]  | [0,9]  | [4,9]  | [0,10] | [4,10]                  | [0,11] | [4,11] | [0,12] | [4,12] | [0,13] | [4,13] | [0,14] | [4,14] | [0,15] | [4,15] |
|   | 2 | NAME  |        |        |        |        |        |                         |        |        |        |        |        |        |        |        |        |        |
|   |   | MSB   | +      | [7,16] |        |        |        |                         |        | +      | +      |        |        |        |        |        | +      | +      |
|   |   |       | +      | [6,16] |        |        | +      |                         | +      | +      | +      |        |        |        | +      |        | +      | +      |
|   |   |       | +      | [5,16] |        |        |        |                         | +      | +      | +      |        |        |        |        |        |        | [5,23] |
| L |   | LSB   | [0,16] | [4,16] | [0,17] | [4,17] | [0,18] | [4,18]                  | [0,19] | [4,19] | [0,20] | [4,20] | [0,21] | [4,21] | [0,22] | [4,22] | [0,23] | [4,23] |
|   | 3 | NAME  |        |        |        |        |        |                         | ļ<br>  | ļ<br>  |        |        |        |        |        |        |        | ļ      |
|   |   | MSB   | +      | [7,24] |        |        | +      |                         | +      | +      | +      |        |        |        | +      |        | +      | +      |
|   |   |       | +      | [6,24] |        |        |        |                         | +      | +      | +      |        |        |        |        |        | +      | +      |
|   |   |       | +      | [5,24] |        |        |        |                         |        | +      | +      |        |        |        |        |        | +      | +      |
|   |   | LSB   | [0,24] | [4,24] | [0,25] | [4,25] | [0,26] | [4,26]                  | [0,27] | [4,27] | [0,28] | [4,28] | [0,29] | [4,29] | [0,30] | [4,30] | [0,31] | [4,31] |
|   | 4 | NAME  | <br>   |        | <br>   | <br>   |        | <br> - <u> -</u>  - - - | <br>   |        | <br>   | <br>   |
|   | - | MSB   | +      | [7,32] |        |        | +      |                         |        | +      | +      |        |        |        | +      |        | +      | +      |
|   |   |       | +      | [6,32] |        |        |        |                         | +      | +      | +      |        |        |        |        |        |        | +      |
|   |   |       | +      | [5,32] |        |        |        |                         |        | +      | +      |        |        |        |        |        | +      | +      |
|   |   | LSB   | [0,32] | [4,32] | [0,33] | [4,33] | [0,34] | [4,34]                  | [0,35] | [4,35] | [0,36] | [4,36] | [0,37] | [4,37] | [0,38] | [4,38] | [0,39] | [4,39] |

[COM, SEG] . . . LCD dot

### S1C62440/4A0/4C0/480 data memory map (11) - Segment data memory < S1C624C0/480 only >

|   | PR | OGRAM | NAME   | : C24  | C/48   |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---|----|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Р | Н  | L     | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | Α      | В      | С      | D      | E      | F      |
| Е | 5  | NAME  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|   |    | MSB   | [3,40] | [7,40] | [3,41] | [7,41] | [3,42] | [7,42] | [3,43] | [7,43] | [3,44] | [7,44] | [3,45] | [7,45] | [3,46] | [7,46] | [3,47] | [7,47] |
|   |    |       | [2,40] | [6,40] | [2,41] | [6,41] | [2,42] | [6,42] | [2,43] | [6,43] | [2,44] | [6,44] | [2,45] | [6,45] | [2,46] | [6,46] | [2,47] | [6,47] |
|   |    |       | [1,40] | [5,40] | [1,41] | [5,41] | [1,42] | [5,42] | [1,43] | [5,43] | [1,44] | [5,44] | [1,45] | [5,45] | [1,46] | [5,46] | [1,47] | [5,47] |
|   |    | LSB   | [0,40] | [4,40] | [0,41] | [4,41] | [0,42] | [4,42] | [0,43] | [4,43] | [0,44] | [4,44] | [0,45] | [4,45] | [0,46] | [4,46] | [0,47] | [4,47] |
|   | 6  | NAME  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|   |    | MSB   | [3,48] | [7,48] | [3,49] | [7,49] | [3,50] | [7,50] |        |        |        |        |        |        |        |        |        |        |
|   |    |       | [2,48] | [6,48] | [2,49] | [6,49] | [2,50] | [6,50] |        |        |        |        |        |        |        |        |        |        |
|   |    |       | [1,48] | [5,48] | [1,49] | [5,49] | [1,50] | [5,50] | L      | L      |        |        |        | l      |        |        |        |        |
|   |    | LSB   | [0,48] | [4,48] | [0,49] | [4,49] | [0,50] | [4,50] |        |        |        |        |        |        |        |        |        |        |

[COM, SEG] . . . LCD dot

## S1C62440/4A0/4C0/480 data memory map (12) - Segment data memory

|   | PR | OGRAM | NAME   | : C24   | 4/4A/4 | C/48    |         |         |         |         |               |         |         |         |              |         |         |          |
|---|----|-------|--------|---------|--------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|--------------|---------|---------|----------|
| Р | Н  | L     | 0      | 1       | 2      | 3       | 4       | 5       | 6       | 7       | 8             | 9       | Α       | В       | С            | D       | Е       | F        |
| Е | 8  | NAME  |        |         |        |         |         |         |         |         |               |         |         |         |              |         |         |          |
|   |    | MSB   | [11,0] | [15,0]  | [11,1] | [15,1]  | [11,2]  | [15,2]  | [11,3]  | [15,3]  | [11,4]        | [15,4]  | [11,5]  | [15,5]  | [11,6]       | [15,6]  | [11,7]  | [15,7]   |
|   |    |       | [10,0] | [14,0]  | [10,1] | [14,1]  | [10,2]  | [14,2]  | [10,3]  | [14,3]  | [10,4]        | [14,4]  | [10,5]  | [14,5]  | [10,6]       | [14,6]  | [10,7]  | [14,7]   |
|   |    |       | [9,0]  | [13,0]  | [9,1]  | [13,1]  | [9,2]   | [13,2]  | [9,3]   | [13,3]  | [9,4]         | [13,4]  | [9,5]   | [13,5]  | [9,6]        | [13,6]  | [9,7]   | [13,7]   |
|   |    | LSB   | [8,0]  | [12,0]  | [8,1]  | [12,1]  | [8,2]   | [12,2]  | [8,3]   | [12,3]  | [8,4]         | [12,4]  | [8,5]   | [12,5]  | [8,6]        | [12,6]  | [8,7]   | [12,7]   |
|   | 9  | NAME  |        |         |        |         |         |         |         |         |               |         |         |         |              |         |         |          |
|   |    | MSB   | [11,8] | [15,8]  | [11,9] | [15,9]  | [11,10] | [15,10] | [11,11] | [15,11] | [11,12]       | [15,12] | [11,13] | [15,13] | [11,14]      | [15,14] | [11,15] | [15,15]  |
|   |    |       | [10,8] | [14,8]  | [10,9] |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | [14,15]  |
|   |    |       | [9,8]  | [13,8]  | [9,9]  | [13,9]  | [9,10]  | [13,10] | [9,11]  | [13,11] | [9,12]        | [13,12] | [9,13]  | [13,13] | [9,14]       | [13,14] | [9,15]  | [13,15]  |
|   |    | LSB   | [8,8]  | [12,8]  | [8,9]  | [12,9]  | [8,10]  | [12,10] | [8,11]  | [12,11] | [8,12]        | [12,12] | [8,13]  | [12,13] | [8,14]       | [12,14] | [8,15]  | [12,15]  |
|   | Α  | NAME  |        | ļ       |        |         |         |         |         |         | ļ             |         |         |         |              |         | ļ       |          |
|   |    | MSB   | +      | [15,16] |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | +        |
|   |    |       |        |         |        |         |         |         |         |         |               |         |         |         |              |         |         | [14,23]  |
|   |    |       |        |         |        |         |         |         |         |         | <del></del> - |         |         |         | <del> </del> |         | F       | [13,23]  |
| ļ |    | LSB   | [8,16] | [12,16] | [8,17] | [12,17] | [8,18]  | [12,18] | [8,19]  | [12,19] | [8,20]        | [12,20] | [8,21]  | [12,21] | [8,22]       | [12,22] | [8,23]  | [12,23]  |
|   | В  | NAME  |        |         |        |         |         |         |         |         |               |         |         |         |              |         |         | ļ        |
|   |    | MSB   | +      | +       |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       |         | [15,31]  |
|   |    |       | +      | [14,24] |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | +        |
|   |    |       | +      | +       |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | [13,31]  |
| - |    | LSB   | [8,24] | [12,24] | [8,25] | [12,25] | [8,26]  | [12,26] | [8,27]  | [12,27] | [8,28]        | [12,28] | [8,29]  | [12,29] | [8,30]       | [12,30] | [8,31]  | [12,31]  |
|   | С  | NAME  |        |         |        |         |         |         |         |         |               |         |         |         |              |         |         | <u> </u> |
|   |    | MSB   | +      | +       |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | [15,39]  |
|   |    | <br>  | +      | +       |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | [14,39]  |
|   |    |       | +      | +       |        |         |         |         |         | +       | +             | +       | +       |         | +            | +       | +       | [13,39]  |
|   |    | LSB   | [8,32] | [12,32] | [8,33] | [12,33] | [8,34]  | [12,34] | [8,35]  | [12,35] | [8,36]        | [12,36] | [8,37]  | [12,37] | [8,38]       | [12,38] | [8,39]  | [12,39]  |

[COM, SEG] . . . LCD dot

### S1C62440/4A0/4C0/480 data memory map (13) - Segment data memory < S1C624C0/480 only >

|   | PR | OGRAM | NAME    | : C24   | C/48    |         |         |         |         |         |         |         |         |         |         |         |         |         |
|---|----|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Р | Н  | L     | 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | Α       | В       | С       | D       | Е       | F       |
| Е | D  | NAME  |         |         |         | L       |         |         |         |         |         |         |         |         |         |         |         |         |
|   |    | MSB   | [11,40] | [15,40] | [11,41] | [15,41] | [11,42] | [15,42] | [11,43] | [15,43] | [11,44] | [15,44] | [11,45] | [15,45] | [11,46] | [15,46] | [11,47] | [15,47] |
|   |    |       | [10,40] | [14,40] | [10,41] | [14,41] | [10,42] | [14,42] | [10,43] | [14,43] | [10,44] | [14,44] | [10,45] | [14,45] | [10,46] | [14,46] | [10,47] | [14,47] |
|   |    |       | [9,40]  | [13,40] | [9,41]  | [13,41] | [9,42]  | [13,42] | [9,43]  | [13,43] | [9,44]  | [13,44] | [9,45]  | [13,45] | [9,46]  | [13,46] | [9,47]  | [13,47] |
|   |    | LSB   | [8,40]  | [12,40] | [8,41]  | [12,41] | [8,42]  | [12,42] | [8,43]  | [12,43] | [8,44]  | [12,44] | [8,45]  | [12,45] | [8,46]  | [12,46] | [8,47]  | [12,47] |
|   | E  | NAME  |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|   |    | MSB   | [11,48] | [15,48] | [11,49] | [15,49] | [11,50] | [15,50] |         |         |         |         |         |         |         |         |         |         |
|   |    |       | [10,48] | [14,48] | [10,49] | [14,49] | [10,50] | [14,50] |         |         |         |         |         |         |         |         |         |         |
|   |    |       | [9,48]  | [13,48] | [9,49]  | [13,49] | [9,50]  | [13,50] | l       |         |         |         | l<br>   |         |         |         | l       |         |
|   |    | LSB   | [8,48]  | [12,48] | [8,49]  | [12,49] | [8,50]  | [12,50] |         |         |         |         |         |         |         |         |         |         |

[COM, SEG] . . . LCD dot

## S1C62440/4A0/4C0/480 data memory map (14) - I/O data memory < S1C62440 >

| Н | L      | 0      | 1     | 2     | 3      | 4      | 5      | 6     | 7     | 8     | 9      | Α     | В    | С     | D    | Е    | F   |
|---|--------|--------|-------|-------|--------|--------|--------|-------|-------|-------|--------|-------|------|-------|------|------|-----|
|   | NAME   | ZTI    | ZISW  | ZIPT  | ZISIO  | ZIK0   | ZIK1   |       |       |       |        |       |      |       |      |      |     |
| Ĭ | MSB    | IT1    | 0     | 0     | 0      | 0      | 0      |       |       |       |        |       |      | †     |      |      | †   |
|   | 1.355. | IT2    | 0     | 0     | 0      | 0      | 0      |       |       |       |        |       |      |       |      |      | † · |
|   |        | IT8    | ISW1  | 0     | 0      | 0      | 0      |       |       |       |        |       |      | †     |      |      | †   |
|   | LSB    | IT32   | ISW0  | IPT   | ISIO   | IK0    | IK1    |       |       |       |        |       |      |       |      |      | † · |
| 1 | NAME   | ZEIT   | ZEISW | ZEIPT | ZEISIO | ZEIK0  | ZEIK1  |       |       |       |        |       |      |       |      |      |     |
|   | MSB    | EIT1   | 0     | 0     | 0      | EIK03  | EIK13  |       |       |       |        |       |      |       |      |      | †   |
|   |        | EIT2   | 0     | 0     | 0      | EIK02  | EIK12  |       |       |       |        |       |      |       |      |      | †   |
|   |        | EIT8   | EISW1 | 0     | 0      | EIK01  | EIK11  |       |       |       |        |       |      |       |      |      | † · |
|   | LSB    | EIT32  | EISW0 | EIPT  | EISIO  | EIK00  | EIK10  |       |       |       |        |       |      |       |      |      | †   |
| 2 | NAME   | ZTML   | ZTMH  | ZSWL  | ZSWH   | ZPTL   | ZPTH   | ZRDL  | ZRDH  |       |        |       |      |       |      |      |     |
|   | MSB    | TM3    | TM7   | SWL3  | SWH3   | PT3    | PT7    | RD3   | RD7   |       |        |       |      |       |      |      | Ť   |
|   |        | TM2    | TM6   | SWL2  | SWH2   | PT2    | PT6    | RD2   | RD6   |       |        |       |      |       |      |      | Ť · |
|   |        | TM1    | TM5   | SWL1  | SWH1   | PT1    | PT5    | RD1   | RD5   |       |        |       |      |       |      |      | Ť · |
|   | LSB    | TM0    | TM4   | SWL0  | SWH0   | PT0    | PT4    | RD0   | RD4   |       |        |       |      |       |      |      | Ť · |
| 3 | NAME   | ZSDL   | ZSDH  |       |        |        |        |       |       |       |        |       |      |       |      |      |     |
|   | MSB    | SD3    | SD7   |       |        |        |        |       |       |       |        |       |      |       |      |      | Ť   |
|   |        | SD2    | SD6   |       |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   |        | SD1    | SD5   |       |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   | LSB    | SD0    | SD4   |       |        |        |        |       |       |       |        |       |      |       |      |      | T   |
| 4 | NAME   | ZK0    | ZDFK0 | ZK1   |        |        |        |       |       |       |        |       |      |       |      |      |     |
|   | MSB    | K03    | DFK03 | K13   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   |        | K02    | DFK02 | K12   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   |        | K01    | DFK01 | K11   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   | LSB    | K00    | DFK00 | K10   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
| 5 | NAME   |        |       | ZR2   | ZR3    | ZR4    |        |       |       |       |        |       |      |       |      |      |     |
|   | MSB    |        |       | R23   | R33    | R43    |        |       |       |       |        |       |      |       |      |      | T   |
|   |        |        |       | R22   | R32    | R42    |        |       |       |       |        |       |      |       |      |      | T   |
|   |        |        |       | R21   | R31    | R41    |        |       |       |       |        |       |      |       |      |      | T   |
|   | LSB    |        |       | R20   | R30    | R40    |        | T     |       |       |        |       |      |       |      |      | T   |
| 6 | NAME   | ZP0    | ZP1   | ZP2   |        |        |        |       |       |       |        |       |      |       |      |      |     |
|   | MSB    | P03    | P13   | P23   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   |        | P02    | P12   | P22   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   |        | P01    | P11   | P21   |        |        |        |       |       |       |        |       |      |       |      |      | T   |
|   | LSB    | P00    | P10   | P20   |        |        |        |       |       |       |        |       |      | L     |      |      |     |
| 7 | NAME   | ZOSC   | ZLCD  | ZLC   | ZSVD   | ZBZ    | ZENV   | ZTRST | ZSWR  | ZPTR  | ZPTC   | ZSC   | ZHZR | ZEMA  | ZIOC | ZPUP |     |
|   |        | CLKCHG | ALOFF | LC3   | SVDDT  | SHOTPW | BZSHOT | 0     | 0     | 0     | PTCOUT | SCTRG | HZR3 | 0     |      |      | T   |
|   |        | oscc   | ALON  | LC2   | SVDON  | BZFQ2  | ENVRST | 0     | 0     | 0     | PTC2   | SEN   | HZR2 | HZCS  | IOC2 | PUP2 | T   |
|   |        | VSC1   | LDUTY | LC1   | SVC1   | BZFQ1  | ENVRT  | TMRST | SWRST | PTRST | PTC1   | SCS1  |      | ADINC | IOC1 | PUP1 | T   |
|   | LSB    | VSC0   | HLMOD | LC0   | SVC0   | BZFQ0  | ENVON  | WDRST | SWRUN | PTRUN | PTC0   | SCS0  |      | PICON | IOC0 | PUP0 | T   |

## S1C62440/4A0/4C0/480 data memory map (15) - I/O data memory < S1C624A0/4C0/480 >

| Н | L                                       | 0            | 1     | 2     | 3            | 4              | 5              | 6     | 7        | 8              | 9            | Α            | В    | С              | D    | Е            | F            |
|---|-----------------------------------------|--------------|-------|-------|--------------|----------------|----------------|-------|----------|----------------|--------------|--------------|------|----------------|------|--------------|--------------|
|   |                                         |              |       |       |              |                |                | 0     | <i>'</i> | 0              | 9            | Α            | ь    | C              | - U  |              |              |
| U | NAME                                    | ZTI          | ZISW  | ZIPT  | ZISIO        | ZIK0           | ZIK1           |       |          |                |              |              |      |                |      |              | <del> </del> |
|   | MSB                                     | IT1          | 0     | 0     | 0            | 0              | 0              |       |          |                |              |              |      |                |      |              | ļ            |
|   |                                         | IT2          | 0     | 0     | 0            | 0              | 0              |       |          |                | <br>         |              |      | <del> </del>   |      |              | <del> </del> |
|   |                                         | IT8          | ISW1  | 0     | 0            | 0              | 0              |       |          |                |              |              |      |                |      |              | ļ            |
|   | LSB                                     | IT32         | ISW0  | IPT   | ISIO         | IK0            | IK1            |       |          |                |              |              |      |                |      |              |              |
| 1 | NAME                                    | ZEIT         | ZEISW | ZEIPT | ZEISIO       | ZEIK0          | ZEIK1          |       | <br>     |                | <br>         |              |      |                |      |              | ļ            |
|   | MSB                                     | EIT1         | 0     | 0     | 0            | EIK03          | EIK13          |       | <br>     |                | <br>         |              |      | ļ              |      | <br>         | ļ            |
|   |                                         | EIT2         | 0     | 0     | 0            | EIK02          | EIK12          |       |          |                |              |              |      | ļ              |      |              | ļ            |
|   |                                         | EIT8         | EISW1 | 0     | 0            | EIK01          | EIK11          |       | <br>     |                | <br>         |              |      | ļ<br>          |      | <br>         | ļ            |
|   | LSB                                     | EIT32        | EISW0 | EIPT  | EISIO        | EIK00          | EIK10          |       |          |                |              |              |      |                |      |              |              |
| 2 | NAME                                    | ZTML         | ZTMH  | ZSWL  | ZSWH         | ZPTL           | ZPTH           | ZRDL  | ZRDH     |                |              |              |      |                |      |              | ļ            |
|   | MSB                                     | TM3          | TM7   | SWL3  | SWH3         | PT3            | PT7            | RD3   | RD7      |                |              |              |      | ļ              |      |              | ļ            |
|   |                                         | TM2          | TM6   | SWL2  | SWH2         | PT2            | PT6            | RD2   | RD6      |                | ļ            |              |      | ļ              |      |              | ļ            |
|   |                                         | TM1          | TM5   | SWL1  | SWH1         | PT1            | PT5            | RD1   | RD5      |                |              |              |      | ļ              |      |              | ļ            |
|   | LSB                                     | TM0          | TM4   | SWL0  | SWH0         | PT0            | PT4            | RD0   | RD4      |                |              |              |      |                |      |              |              |
| 3 | NAME                                    | ZSDL         | ZSDH  |       |              |                |                |       |          |                |              |              |      |                |      |              | <u> </u>     |
|   | MSB                                     | SD3          | SD7   |       | L            |                |                |       | L        |                | L            |              |      | <u> </u>       |      |              | <u> </u>     |
|   |                                         | SD2          | SD6   |       |              |                |                |       |          |                |              |              |      |                |      |              |              |
|   |                                         | SD1          | SD5   |       |              |                |                |       |          |                |              |              |      |                |      |              | T            |
|   | LSB                                     | SD0          | SD4   |       |              |                |                |       |          |                |              |              |      |                |      |              | T            |
| 4 | NAME                                    | ZK0          | ZDFK0 | ZK1   |              |                |                |       |          |                |              |              |      |                |      |              |              |
|   | MSB                                     | K03          | DFK03 | K13   |              |                |                |       |          |                |              |              |      |                |      |              | T            |
|   |                                         | K02          | DFK02 | K12   |              |                |                |       |          |                |              |              |      |                |      |              | T            |
|   |                                         | K01          | DFK01 | K11   |              |                |                |       |          |                |              |              |      |                |      |              | †            |
|   | LSB                                     | K00          | DFK00 | K10   |              |                |                |       |          |                |              |              |      |                |      |              |              |
| 5 | NAME                                    | ZR0          | ZR1   | ZR2   | ZR3          | ZR4            |                |       |          |                |              |              |      |                |      |              |              |
| Ŭ | MSB                                     | R03          | R13   | R23   | R33          | R43            |                |       |          |                |              |              |      |                |      |              | †            |
|   | 111111111111111111111111111111111111111 | R02          | R12   | R22   | R32          | R42            |                |       |          |                |              |              |      |                |      |              | †            |
|   |                                         | R01          | R11   | R21   | R31          | R41            |                |       |          |                |              |              |      |                |      |              | +            |
|   | LSB                                     | R00          | R10   | R20   | R30          | R40            |                |       |          |                |              |              |      |                |      |              | †            |
| 6 | NAME                                    | ZP0          | ZP1   | ZP2   | ZP3          |                |                |       |          |                |              |              |      |                |      |              |              |
| Ü | MSB                                     | P03          | P13   | P23   | P33          |                |                |       |          |                |              |              |      | +              |      |              | †            |
|   | I INIOD                                 | P02          | P12   | P22   | P32          |                |                |       |          |                |              |              |      | +              |      |              | †            |
|   |                                         | P01          | P11   | P21   | P31          |                |                |       | †        |                | <del> </del> |              |      | +              |      |              | †            |
|   | LSB                                     | P00          | P10   | P20   | P30          |                |                |       | t        |                | <del> </del> |              |      | †              |      |              | <del> </del> |
| 7 | NAME                                    | ZOSC         | ZLCD  | ZLC   | ZSVD         | ZBZ            | ZENV           | ZTRST | ZSWR     | ZPTR           | ZPTC         | ZSC          | ZHZR | ZEMA           | ZIOC | ZPUP         |              |
| 1 |                                         | CLKCHG       | +     | LC3   | +            |                | BZSHOT         |       | 0        |                | PTCOUT       |              | HZR3 | 0              | IOC3 | PUP3         | <del> </del> |
|   | MSB                                     | +            |       |       |              |                |                |       |          |                |              |              |      | +              |      |              | <del> </del> |
|   |                                         | OSCC         | ALON  | LC2   | SVDON        |                | ENVRST         |       | 0        | 0              | PTC2         | SEN          | HZR2 | HZCS           | 10C2 | PUP2         | <del> </del> |
|   | LSB                                     | VSC1<br>VSC0 | LDUTY | LC1   | SVC1<br>SVC0 | BZFQ1<br>BZFQ0 | ENVRT<br>ENVON | TMRST | SWRST    | PTRST<br>PTRUN | PTC1         | SCS1<br>SCS0 | HZR1 | ADINC<br>PICON | IOC1 | PUP1<br>PUP0 | ļ            |

## S1C62440/4A0/4C0/480 data memory map (16) - I/O data memory < S1C624A0/4C0/480 only >

|   | PR | OGRAM | NAME | : C24    | A/4C/4 | 18   |      |          |          |      |       |          |      |      |       |      |      |          |
|---|----|-------|------|----------|--------|------|------|----------|----------|------|-------|----------|------|------|-------|------|------|----------|
| Р | Н  | L     | 0    | 1        | 2      | 3    | 4    | 5        | 6        | 7    | 8     | 9        | Α    | В    | С     | D    | E    | F        |
| F | С  | NAME  |      |          |        |      |      |          |          |      |       |          |      |      |       |      |      |          |
|   |    | MSB   | P03' | P13'     | P03'   | P13' | P03' | P13'     | P03'     | P13' | P03'  | P13'     | P03' | P13' | P03'  | P13' | P03' | P13'     |
|   |    |       | P02' | P12'     | P02'   | P12' | P02' | P12'     | P02'     | P12' | P02'  | P12'     | P02' | P12' | P02'  | P12' | P02' | P12'     |
|   |    |       | P01' | P11'     | P01'   | P11' | P01' | P11'     | P01'     | P11' | P01'  | P11'     | P01' | P11' | P01'  | P11' | P01' | P11'     |
|   |    | LSB   | P00' | P10'     | P00'   | P10' | P00' | P10'     | P00'     | P10' | P00'  | P10'     | P00' | P10' | P00'  | P10' | P00' | P10'     |
|   | D  | NAME  |      | <u> </u> |        |      |      |          |          |      |       |          |      |      |       |      |      | <u> </u> |
|   |    | MSB   | P03' | P13'     | P03'   | P13' | P03' | P13'     | P03'     | P13' | P03'  | P13'     | P03' | P13' | P03'  | P13' | P03' | P13'     |
|   |    |       | P02' | P12'     | P02'   | P12' | P02' | P12'     | P02'     | P12' | P02'  | P12'     | P02' | P12' | P02'  | P12' | P02' | P12'     |
|   |    |       | P01' | P11'     | P01'   | P11' | P01' | P11'     | P01'     | P11' | P01'  | P11'     | P01' | P11' | P01'  | P11' | P01' | P11'     |
|   |    | LSB   | P00' | P10'     | P00'   | P10' | P00' | P10'     | P00'     | P10' | P00'  | P10'     | P00' | P10' | P00'  | P10' | P00' | P10'     |
|   | Е  | NAME  |      | <u> </u> |        |      |      |          |          |      |       |          |      |      |       |      |      | <u> </u> |
|   |    | MSB   | P03' | P13'     | P03'   | P13' | P03' | P13'     | P03'     | P13' | P03'  | P13'     | P03' | P13' | P03'  | P13' | P03' | P13'     |
|   |    |       | P02' | P12'     | P02'   | P12' | P02' | P12'     | P02'     | P12' | P02'  | P12'     | P02' | P12' | P02'  | P12' | P02' | P12'     |
|   |    |       | P01' | P11'     | P01'   | P11' | P01' | P11'     | P01'     | P11' | P01'  | P11'     | P01' | P11' | P01'  | P11' | P01' | P11'     |
|   |    | LSB   | P00' | P10'     | P00'   | P10' | P00' | P10'     | P00'     | P10' | P00'  | P10'     | P00' | P10' | P00'  | P10' | P00' | P10'     |
|   | F  | NAME  | ļ    | ļ        | ļ      | ļ    | ļ    | <u> </u> | <u> </u> | ļ    | ļ<br> | <u> </u> | ļ    | ļ    | ļ<br> | ļ    | ļ    | ļ        |
|   |    | MSB   | P03' | P13'     | P03'   | P13' | P03' | P13'     | P03'     | P13' | P03'  | P13'     | P03' | P13' | P03'  | P13' | P03' | P13'     |
|   |    |       | P02' | P12'     | P02'   | P12' | P02' | P12'     | P02'     | P12' | P02'  | P12'     | P02' | P12' | P02'  | P12' | P02' | P12'     |
|   |    |       | P01' | P11'     | P01'   | P11' | P01' | P11'     | P01'     | P11' | P01'  | P11'     | P01' | P11' | P01'  | P11' | P01' | P11'     |
|   |    | LSB   | P00' | P10'     | P00'   | P10' | P00' | P10'     | P00'     | P10' | P00'  | P10'     | P00' | P10' | P00'  | P10' | P00' | P10'     |

## APPENDIX B S1C62440/4A0/4C0/480 INSTRUCTION SET

### S1C62440/4A0/4C0/480 Instruction set (1)

| Classification | Classification Mne- |             | Operation Code |   |   |   |    |            |            |            |            |            |            |            | Flag    | Clask | Operation                                                                                                 |  |  |
|----------------|---------------------|-------------|----------------|---|---|---|----|------------|------------|------------|------------|------------|------------|------------|---------|-------|-----------------------------------------------------------------------------------------------------------|--|--|
| Classification | monic               | nic Operand | В              | Α | 9 | 8 | 7  | 6          | 5          | 4          | 3          | 2          | 1          | 0          | I D Z C | Clock | Ореганоп                                                                                                  |  |  |
| Branch         | PSET                | p           | 1              | 1 | 1 | 0 | 0  | 1          | 0          | p4         | р3         | p2         | <b>p</b> 1 | p0         |         | 5     | $NBP \leftarrow p4, NPP \leftarrow p3 \sim p0$                                                            |  |  |
| instructions   | JР                  | s           | 0              | 0 | 0 | 0 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 5     | $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$                                       |  |  |
|                |                     | C, s        | 0              | 0 | 1 | 0 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if C=1                                 |  |  |
|                |                     | NC, s       | 0              | 0 | 1 | 1 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if C=0                                 |  |  |
|                |                     | Z, s        | 0              | 1 | 1 | 0 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if Z=1                                 |  |  |
|                |                     | NZ, s       | 0              | 1 | 1 | 1 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 5     | PCB $\leftarrow$ NBP, PCP $\leftarrow$ NPP, PCS $\leftarrow$ s7~s0 if Z=0                                 |  |  |
|                | JPBA                |             | 1              | 1 | 1 | 1 | 1  | 1          | 1          | 0          | 1          | 0          | 0          | 0          |         | 5     | $PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$                            |  |  |
|                | CALL                | s           | 0              | 1 | 0 | 0 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 7     | $M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$                              |  |  |
|                |                     |             |                |   |   |   |    |            |            |            |            |            |            |            |         |       | $SP \leftarrow SP-3$ , $PCP \leftarrow NPP$ , $PCS \leftarrow s7 \sim s0$                                 |  |  |
|                | CALZ                | s           | 0              | 1 | 0 | 1 | s7 | s6         | s5         | s4         | s3         | s2         | s1         | s0         |         | 7     | $M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$                              |  |  |
|                |                     |             |                |   |   |   |    |            |            |            |            |            |            |            |         |       | $SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7 \sim s0$                                         |  |  |
|                | RET                 |             | 1              | 1 | 1 | 1 | 1  | 1          | 0          | 1          | 1          | 1          | 1          | 1          |         | 7     | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |  |  |
|                |                     |             |                |   |   |   |    |            |            |            |            |            |            |            |         |       | $SP \leftarrow SP+3$                                                                                      |  |  |
|                | RETS                |             | 1              | 1 | 1 | 1 | 1  | 1          | 0          | 1          | 1          | 1          | 1          | 0          |         | 12    | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |  |  |
|                |                     |             |                |   |   |   |    |            |            |            |            |            |            |            |         |       | $SP \leftarrow SP+3, PC \leftarrow PC+1$                                                                  |  |  |
|                | RETD                | l           | 0              | 0 | 0 | 1 | 17 | <i>l</i> 6 | <i>l</i> 5 | <i>l</i> 4 | <i>l</i> 3 | <i>l</i> 2 | <i>l</i> 1 | <i>l</i> 0 |         | 12    | $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$                                  |  |  |
|                |                     |             |                |   |   |   |    |            |            |            |            |            |            |            |         |       | $SP \leftarrow SP+3$ , $M(X) \leftarrow l3 \sim l0$ , $M(X+1) \leftarrow l7 \sim l4$ , $X \leftarrow X+2$ |  |  |
| System         | NOP5                |             | 1              | 1 | 1 | 1 | 1  | 1          | 1          | 1          | 1          | 0          | 1          | 1          |         | 5     | No operation (5 clock cycles)                                                                             |  |  |
| control        | NOP7                |             | 1              | 1 | 1 | 1 | 1  | 1          | 1          | 1          | 1          | 1          | 1          | 1          |         | 7     | No operation (7 clock cycles)                                                                             |  |  |
| instructions   | HALT                |             | 1              | 1 | 1 | 1 | 1  | 1          | 1          | 1          | 1          | 0          | 0          | 0          |         | 5     | Halt (stop clock)                                                                                         |  |  |
|                | SLP*                |             | 1              | 1 | 1 | 1 | 1  | 1          | 1          | 1          | 1          | 0          | 0          | 1          |         | 5     | SLEEP (stop oscillation)                                                                                  |  |  |
| Index          | INC                 | X           | 1              | 1 | 1 | 0 | 1  | 1          | 1          | 0          | 0          | 0          | 0          | 0          |         | 5     | X←X+1                                                                                                     |  |  |
| operation      |                     | Y           | 1              | 1 | 1 | 0 | 1  | 1          | 1          | 1          | 0          | 0          | 0          | 0          |         | 5     | Y ← Y+1                                                                                                   |  |  |
| instructions   | LD                  | X, x        | 1              | 0 | 1 | 1 | x7 | х6         | x5         | x4         | х3         | x2         | x1         | x0         |         | 5     | XH←x7~x4, XL←x3~x0                                                                                        |  |  |
|                |                     | Y, y        | 1              | 0 | 0 | 0 | у7 | у6         | у5         | y4         | у3         | y2         | y1         | y0         |         | 5     | YH←y7~y4, YL←y3~y0                                                                                        |  |  |
|                |                     | XP, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 0          | 0          | 0          | r1         | r0         |         | 5     | XP←r                                                                                                      |  |  |
|                |                     | XH, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 0          | 0          | 1          | r1         | r0         |         | 5     | XH←r                                                                                                      |  |  |
|                |                     | XL, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 0          | 1          | 0          | r1         | r0         |         | 5     | XL←r                                                                                                      |  |  |
|                |                     | YP, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 1          | 0          | 0          | r1         | r0         |         | 5     | YP←r                                                                                                      |  |  |
|                |                     | YH, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 1          | 0          | 1          | r1         | r0         |         | 5     | YH←r                                                                                                      |  |  |
|                |                     | YL, r       | 1              | 1 | 1 | 0 | 1  | 0          | 0          | 1          | 1          | 0          | r1         | r0         |         | 5     | YL←r                                                                                                      |  |  |
|                |                     | r, XP       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 0          | 0          | 0          | r1         | r0         |         | 5     | $r \leftarrow XP$                                                                                         |  |  |
|                |                     | r, XH       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 0          | 0          | 1          | r1         | r0         |         | 5     | r←XH                                                                                                      |  |  |
|                |                     | r, XL       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 0          | 1          | 0          | r1         | r0         |         | 5     | $r \leftarrow XL$                                                                                         |  |  |
|                |                     | r, YP       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 1          | 0          | 0          | r1         | r0         |         | 5     | r←YP                                                                                                      |  |  |
|                |                     | r, YH       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 1          | 0          | 1          | r1         | r0         |         | 5     | r←YH                                                                                                      |  |  |
|                |                     | r, YL       | 1              | 1 | 1 | 0 | 1  | 0          | 1          | 1          | 1          | 0          | r1         | r0         |         | 5     | $r \leftarrow YL$                                                                                         |  |  |
|                | ADC                 | XH, i       | 1              | 0 | 1 | 0 | 0  | 0          | 0          | 0          | i3         | i2         | i1         | i0         | 1 1     | 7     | XH←XH+i3~i0+C                                                                                             |  |  |
|                |                     | XL, i       | 1              | 0 | 1 | 0 | 0  | 0          | 0          | 1          | i3         | i2         | i1         | i0         | 1 1     | 7     | XL←XL+i3~i0+C                                                                                             |  |  |
|                |                     | YH, i       | 1              | 0 | 1 | 0 | 0  | 0          | 1          | 0          | i3         | i2         | i1         | i0         | 1 1     | 7     | YH←YH+i3~i0+C                                                                                             |  |  |
|                |                     | YL, i       | 1              | 0 | 1 | 0 | 0  | 0          | 1          | 1          | i3         | i2         | i1         | i0         | 1 1     | 7     | YL←YL+i3~i0+C                                                                                             |  |  |

<sup>\*</sup> Not in S1C62440/4A0/4C0/480

## S1C62440/4A0/4C0/480 Instruction set (2)

|                | Mne-  |         | Operation Code |   |   | Flag |    |            |            |            |    |    |            |            |                                               |     |                                                                                                   |
|----------------|-------|---------|----------------|---|---|------|----|------------|------------|------------|----|----|------------|------------|-----------------------------------------------|-----|---------------------------------------------------------------------------------------------------|
| Classification | monic | Operand | В              | Α | 9 | 8    | ÷  | 6          |            |            | _  | 2  | 1          | 0          | IDZC                                          | Clo | Ck Operation                                                                                      |
| Index          | СР    | XH, i   | 1              | 0 | 1 | 0    | 0  | 1          | 0          | 0          | i3 | i2 | i1         | i0         | 1 1                                           | 7   | XH-i3~i0                                                                                          |
| operation      |       | XL, i   | 1              | 0 | 1 | 0    | 0  | 1          | 0          | 1          | i3 | i2 | i1         | i0         | 1 1                                           | 7   | XL-i3~i0                                                                                          |
| instructions   |       | YH, i   | 1              | 0 | 1 | 0    | 0  | 1          | 1          | 0          | i3 | i2 | i1         | i0         | 1 1                                           | 7   | YH-i3~i0                                                                                          |
|                |       | YL, i   | 1              | 0 | 1 | 0    | 0  | 1          | 1          | 1          | i3 | i2 | i1         | i0         | 1 1                                           | 7   | YL-i3~i0                                                                                          |
| Data           | LD    | r, i    | 1              | 1 | 1 | 0    | 0  | 0          | r1         | r0         | i3 | i2 | i1         | i0         |                                               | 5   | r ← i3~i0                                                                                         |
| transfer       |       | r, q    | 1              | 1 | 1 | 0    | 1  | 1          | 0          | 0          | r1 | r0 | q1         | q0         |                                               | 5   | r←q                                                                                               |
| instructions   |       | A, Mn   | 1              | 1 | 1 | 1    | 1  | 0          | 1          | 0          | n3 | n2 | n1         | n0         |                                               | 5   | A←M(n3~n0)                                                                                        |
|                |       | B, Mn   | 1              | 1 | 1 | 1    | 1  | 0          | 1          | 1          | n3 | n2 | n1         | n0         |                                               | 5   | $B \leftarrow M(n3\sim n0)$                                                                       |
|                |       | Mn, A   | 1              | 1 | 1 | 1    | 1  | 0          | 0          | 0          | n3 | n2 | n1         | n0         |                                               | 5   | M(n3~n0)←A                                                                                        |
|                |       | Mn, B   | 1              | 1 | 1 | 1    | 1  | 0          | 0          | 1          | n3 | n2 | n1         | n0         |                                               | 5   | M(n3~n0)←B                                                                                        |
|                | LDPX  | MX, i   | 1              | 1 | 1 | 0    | 0  | 1          | 1          | 0          | i3 | i2 | i1         | i0         |                                               | 5   | $M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$                                                    |
|                |       | r, q    | 1              | 1 | 1 | 0    | 1  | 1          | 1          | 0          | r1 | r0 | q1         | q0         |                                               | 5   | $r \leftarrow q, X \leftarrow X+1$                                                                |
|                | LDPY  | MY, i   | 1              | 1 | 1 | 0    | 0  | 1          | 1          | 1          | i3 | i2 | i1         | i0         |                                               | 5   | $M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$                                                    |
|                |       | r, q    | 1              | 1 | 1 | 0    | 1  | 1          | 1          | 1          | r1 | r0 | q1         | q0         |                                               | 5   | $r \leftarrow q, Y \leftarrow Y+1$                                                                |
|                | LBPX  | MX, l   | 1              | 0 | 0 | 1    | 17 | <i>l</i> 6 | <i>l</i> 5 | <i>l</i> 4 | 13 | 12 | <i>l</i> 1 | <i>l</i> 0 |                                               | 5   | $M(X) \leftarrow l \cdot 3 \sim l0, M(X+1) \leftarrow l \cdot 7 \sim l \cdot 4, X \leftarrow X+2$ |
| Flag           | SET   | F, i    | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 0          | i3 | i2 | i1         | i0         | $\uparrow\uparrow\uparrow\uparrow$            | 7   | F←F∀i3~i0                                                                                         |
| operation      | RST   | F, i    | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 1          | i3 | i2 | i1         | i0         | $\downarrow \downarrow \downarrow \downarrow$ | 7   | F←F^i3~i0                                                                                         |
| instructions   | SCF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 0          | 0  | 0  | 0          | 1          | 1                                             | 7   | C←1                                                                                               |
|                | RCF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 1          | 1  | 1  | 1          | 0          | $\downarrow$                                  | 7   | C←0                                                                                               |
|                | SZF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 0          | 0  | 0  | 1          | 0          | <b>↑</b>                                      | 7   | Z←1                                                                                               |
|                | RZF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 1          | 1  | 1  | 0          | 1          | <b>↓</b>                                      | 7   | Z←0                                                                                               |
|                | SDF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 0          | 0  | 1  | 0          | 0          | 1                                             | 7   | D←1 (Decimal Adjuster ON)                                                                         |
|                | RDF   |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 1          | 1  | 0  | 1          | 1          | $\downarrow$                                  | 7   | D←0 (Decimal Adjuster OFF)                                                                        |
|                | EI    |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 0          | 1  | 0  | 0          | 0          | 1                                             | 7   | $I \leftarrow 1$ (Enables Interrupt)                                                              |
|                | DI    |         | 1              | 1 | 1 | 1    | 0  | 1          | 0          | 1          | 0  | 1  | 1          | 1          | $\downarrow$                                  | 7   | $I \leftarrow 0$ (Disables Interrupt)                                                             |
| Stack          | INC   | SP      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 1          | 1  | 0  | 1          | 1          |                                               | 5   | $SP \leftarrow SP+1$                                                                              |
| operation      | DEC   | SP      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 1  | 0  | 1          | 1          |                                               | 5   | SP← SP-1                                                                                          |
| instructions   | PUSH  | r       | 1              | 1 | 1 | 1    |    |            |            |            | 0  |    |            |            |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow r$                                                          |
|                |       | XP      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 0  | 1  | 0          | 0          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow XP$                                                         |
|                |       | XH      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 0  | 1  | 0          | 1          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow XH$                                                         |
|                |       | XL      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 0  | 1  | 1          | 0          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow XL$                                                         |
|                |       | YP      |                | 1 |   |      |    |            |            |            | 0  |    |            | _          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow YP$                                                         |
|                |       | YH      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 1  | 0  | 0          | 0          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow YH$                                                         |
|                |       | YL      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 0          | 1  | 0  | 0          | 1          |                                               | 5   | $SP \leftarrow SP-1, M(SP) \leftarrow YL$                                                         |
|                |       | F       |                | 1 |   |      |    | 1          |            |            |    | 0  |            |            |                                               | 5   | , , ,                                                                                             |
|                | POP   | r       |                | 1 |   |      |    |            |            |            | 0  |    |            | _          |                                               | 5   | · · · · · · · · · · · · · · · · · · ·                                                             |
|                |       | XP      |                | 1 |   |      |    |            |            |            | 0  |    |            | _          |                                               | 5   | · //                                                                                              |
|                |       | XH      |                | 1 |   | 1    |    |            |            |            | 0  |    |            |            |                                               | 5   | · · · · · · · · · · · · · · · · · · ·                                                             |
|                |       | XL      |                | 1 |   | 1    |    | 1          |            |            |    | 1  |            |            |                                               | 5   | · · · · · · · · · · · · · · · · · · ·                                                             |
|                |       | YP      | 1              | 1 | 1 | 1    | 1  | 1          | 0          | 1          | 0  | 1  | 1          | 1          |                                               | 5   | $YP \leftarrow M(SP), SP \leftarrow SP+1$                                                         |

## S1C62440/4A0/4C0/480 Instruction set (3)

| Classification | Mne-     |         |   |   |   |   | Оре | eratio | on C | ode |    |    |    |    | Fla | g        |   | Clock | Operation                                                                                            |  |  |
|----------------|----------|---------|---|---|---|---|-----|--------|------|-----|----|----|----|----|-----|----------|---|-------|------------------------------------------------------------------------------------------------------|--|--|
| Classification | monic of | Operand | В | Α | 9 | 8 | 7   | 6      | 5    | 4   | 3  | 2  | 1  | 0  | I D | Z C      | 7 | CIOCK | Operation                                                                                            |  |  |
| Stack          | POP      | YH      | 1 | 1 | 1 | 1 | 1   | 1      | 0    | 1   | 1  | 0  | 0  | 0  |     |          |   | 5     | $YH \leftarrow M(SP), SP \leftarrow SP+1$                                                            |  |  |
| operation      |          | YL      | 1 | 1 | 1 | 1 | 1   | 1      | 0    | 1   | 1  | 0  | 0  | 1  |     |          |   | 5     | $YL \leftarrow M(SP), SP \leftarrow SP+1$                                                            |  |  |
| instructions   |          | F       | 1 | 1 | 1 | 1 | 1   | 1      | 0    | 1   | 1  | 0  | 1  | 0  | 1 1 | 11       | , | 5     | $F \leftarrow M(SP), SP \leftarrow SP+1$                                                             |  |  |
|                | LD       | SPH, r  | 1 | 1 | 1 | 1 | 1   | 1      | 1    | 0   | 0  | 0  | r1 | r0 |     |          |   | 5     | SPH← r                                                                                               |  |  |
|                |          | SPL, r  | 1 | 1 | 1 | 1 | 1   | 1      | 1    | 1   | 0  | 0  | r1 | r0 |     |          |   | 5     | $SPL \leftarrow r$                                                                                   |  |  |
|                |          | r, SPH  | 1 | 1 | 1 | 1 | 1   | 1      | 1    | 0   | 0  | 1  | r1 | r0 |     |          |   | 5     | $r \leftarrow SPH$                                                                                   |  |  |
|                |          | r, SPL  | 1 | 1 | 1 | 1 | 1   | 1      | 1    | 1   | 0  | 1  | r1 | r0 |     |          |   | 5     | $r \leftarrow SPL$                                                                                   |  |  |
| Arithmetic     | ADD      | r, i    | 1 | 1 | 0 | 0 | 0   | 0      | r1   | r0  | i3 | i2 | i1 | i0 | *   | 11       |   | 7     | r←r+i3~i0                                                                                            |  |  |
| instructions   |          | r, q    | 1 | 0 | 1 | 0 | 1   | 0      | 0    | 0   | r1 | r0 | q1 | q0 | *   | 1 1      | 7 | 7     | $r \leftarrow r + q$                                                                                 |  |  |
|                | ADC      | r, i    | 1 | 1 | 0 | 0 | 0   | 1      | r1   | r0  | i3 | i2 | i1 | i0 | *   | 1 1      | 7 | 7     | $r \leftarrow r + i3 \sim i0 + C$                                                                    |  |  |
|                |          | r, q    | 1 | 0 | 1 | 0 | 1   | 0      | 0    | 1   | r1 | r0 | q1 | q0 | *   | 11       | 7 | 7     | $r \leftarrow r + q + C$                                                                             |  |  |
|                | SUB      | r, q    | 1 | 0 | 1 | 0 | 1   | 0      | 1    | 0   | r1 | r0 | q1 | q0 | *   | 11       |   | 7     | r←r-q                                                                                                |  |  |
|                | SBC      | r, i    | 1 | 1 | 0 | 1 | 0   | 1      | r1   | r0  | i3 | i2 | i1 | i0 | *   | 11       |   | 7     | r←r-i3~i0-C                                                                                          |  |  |
|                |          | r, q    | 1 | 0 | 1 | 0 | 1   | 0      | 1    | 1   | r1 | r0 | q1 | q0 | *   | 11       | 7 | 7     | r←r-q-C                                                                                              |  |  |
|                | AND      | r, i    | 1 | 1 | 0 | 0 | 1   | 0      | r1   | r0  | i3 | i2 | i1 | i0 |     | <b>1</b> |   | 7     | r ← r ∧ i3~i0                                                                                        |  |  |
|                |          | r, q    | 1 | 0 | 1 | 0 | 1   | 1      | 0    | 0   | r1 | r0 | q1 | q0 |     | <b>1</b> |   | 7     | $r \leftarrow r \land q$                                                                             |  |  |
|                | OR       | r, i    | 1 | 1 | 0 | 0 | 1   | 1      | r1   | r0  | i3 | i2 | i1 | i0 |     | <b>1</b> |   | 7     | r←r∀i3~i0                                                                                            |  |  |
|                |          | r, q    | 1 | 0 | 1 | 0 | 1   | 1      | 0    | 1   | r1 | r0 | q1 | q0 |     | <b>1</b> |   | 7     | $r \leftarrow r \lor q$                                                                              |  |  |
|                | XOR      | r, i    | 1 | 1 | 0 | 1 | 0   | 0      | r1   | r0  | i3 | i2 | i1 | i0 |     | <b>1</b> |   | 7     | r←r∀i3~i0                                                                                            |  |  |
|                |          | r, q    | 1 | 0 | 1 | 0 | 1   | 1      | 1    | 0   | r1 | r0 | q1 | q0 |     | <b>1</b> |   | 7     | $r \leftarrow r \forall q$                                                                           |  |  |
|                | СР       | r, i    | 1 | 1 | 0 | 1 | 1   | 1      | r1   | r0  | i3 | i2 | i1 | i0 |     | 1 1      | , | 7     | r-i3~i0                                                                                              |  |  |
|                |          | r, q    | 1 | 1 | 1 | 1 | 0   | 0      | 0    | 0   | r1 | r0 | q1 | q0 |     | 1 1      | , | 7     | r-q                                                                                                  |  |  |
|                | FAN      | r, i    | 1 | 1 | 0 | 1 | 1   | 0      | r1   | r0  | i3 | i2 | i1 | i0 |     | <b>1</b> |   | 7     | r∧i3~i0                                                                                              |  |  |
|                |          | r, q    | 1 | 1 | 1 | 1 | 0   | 0      | 0    | 1   | r1 | r0 | q1 | q0 |     | <b>1</b> |   | 7     | r∧q                                                                                                  |  |  |
|                | RLC      | r       | 1 | 0 | 1 | 0 | 1   | 1      | 1    | 1   | r1 | r0 | r1 | r0 |     | 1 1      | 7 | 7     | $d3 \leftarrow d2$ , $d2 \leftarrow d1$ , $d1 \leftarrow d0$ , $d0 \leftarrow C$ , $C \leftarrow d3$ |  |  |
|                | RRC      | r       | 1 | 1 | 1 | 0 | 1   | 0      | 0    | 0   | 1  | 1  | r1 | r0 |     | 1 1      | 7 | 5     | $d3 \leftarrow C$ , $d2 \leftarrow d3$ , $d1 \leftarrow d2$ , $d0 \leftarrow d1$ , $C \leftarrow d0$ |  |  |
|                | INC      | Mn      | 1 | 1 | 1 | 1 | 0   | 1      | 1    | 0   | n3 | n2 | n1 | n0 |     | 11       | 7 | 7     | $M(n3\sim n0) \leftarrow M(n3\sim n0)+1$                                                             |  |  |
|                | DEC      | Mn      | 1 | 1 | 1 | 1 | 0   | 1      | 1    | 1   | n3 | n2 | n1 | n0 |     | 1 1      | 7 | 7     | M(n3~n0) ←M(n3~n0)-1                                                                                 |  |  |
|                | ACPX     | MX, r   | 1 | 1 | 1 | 1 | 0   | 0      | 1    | 0   | 1  | 0  | r1 | r0 | *   | 1 1      | 7 | 7     | $M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$                                                   |  |  |
|                | ACPY     | MY, r   | 1 | 1 | 1 | 1 | 0   | 0      | 1    | 0   | 1  | 1  | r1 | r0 | *   | 1 1      | 7 | 7     | $M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$                                                   |  |  |
|                | SCPX     | MX, r   | 1 | 1 | 1 | 1 | 0   | 0      | 1    | 1   | 1  | 0  | r1 | r0 | *   | 11       | , | 7     | $M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$                                                      |  |  |
|                | SCPY     | MY, r   | 1 | 1 | 1 | 1 | 0   | 0      | 1    | 1   | 1  | 1  | r1 | r0 | *   | 11       | , | 7     | $M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y+1$                                                      |  |  |
|                | NOT      | r       | 1 | 1 | 0 | 1 | 0   | 0      | r1   | r0  | 1  | 1  | 1  | 1  |     | 1        | T | 7     | $r \leftarrow \overline{r}$                                                                          |  |  |

Abbreviations used in the explanations have the following meanings.

## Symbols associated with registers and memory

A ...... A register B ..... B register

X ......XHL register (low order eight bits of index register IX)

Y ...... YHL register (low order eight bits of index register IY)

XH ......XH register (high order four bits of XHL register)

 $XL \ ..... XL$  register (low order four bits of XHL register)

YH ............ YH register (high order four bits of YHL register)
YL ............. YL register (low order four bits of YHL register)

XP ...... XP register (high order four bits of index

register IX)

YP ...... YP register (high order four bits of index register IY)

SP ..... Stack pointer SP

SPH...... High-order four bits of stack pointer SP

SPL ..... Low-order four bits of stack pointer SP

MX, M(X) .. Data memory whose address is specified with index register IX

MY, M(Y)... Data memory whose address is specified with index register IY

Mn, M(n) .. Data memory address 000H-00FH (address specified with immediate data n of 00H-0FH)

M(SP) ...... Data memory whose address is specified with stack pointer SP

r, q ...... Two-bit register code

r, q is two-bit immediate data; according to the contents of these bits, they indicate registers A, B, and MX and MY (data memory whose addresses are specified with index registers IX and IY)

|    | r  | (  | 7  | Registers specified |  |  |  |
|----|----|----|----|---------------------|--|--|--|
| r1 | r0 | q1 | q0 | registers specified |  |  |  |
| 0  | 0  | 0  | 0  | A                   |  |  |  |
| 0  | 1  | 0  | 1  | В                   |  |  |  |
| 1  | 0  | 1  | 0  | MX                  |  |  |  |
| 1  | 1  | 1  | 1  | MY                  |  |  |  |

Symbols associated with NBP..... New bank pointer

program counter NPP ..... New page pointer

PCB..... Program counter bank

PCP ..... Program counter page PCS ..... Program counter step

PCSH .. Four high order bits of PCS

PCSL ... Four low order bits of PCS

Symbols associated with F...... Flag register (I, D, Z, C)

flags C ...... Carry flag

Z ...... Zero flag

D..... Decimal flag

I ..... Interrupt flag

 $\downarrow ...... Flag \ reset$ 

**↑...... Flag set** 

↓...... Flag set or reset

Associated with p ....... Five-bit immediate data or label 00H-1FH

immediate data s...... Eight-bit immediate data or label 00H-0FFH

l ...... Eight-bit immediate data 00H-0FFH

i ........ Four-bit immediate data 00H-0FH

Associated with + ...... Add

arithmetic and other - ...... Subtract

operations A..... Logical AND

v.....Logical OR

∀ ..... Exclusive-OR

 $\star$ ...... Add-subtract instruction for decimal operation

when the D flag is set

# APPENDIX C PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER

| Item No. | Pseudo-instruction   | Meaning                        | I     | Example of | Use                |
|----------|----------------------|--------------------------------|-------|------------|--------------------|
| 1        | EQU                  | To allocate data to label      | ABC   | EQU        | 9                  |
|          | (Equation)           |                                | BCD   | EQU        | ABC+1              |
|          |                      |                                |       | - € 3      |                    |
| 2        | ORG                  | To define location counter     | ORG   | 100H       |                    |
|          | (Origin)             |                                | ORG   | 256        |                    |
| 3        | SET                  | To allocate data to label      | ABC   | SET        | 0001H              |
|          | (Set)                | (data can be changed)          |       |            |                    |
|          |                      |                                | ABC   | SET        | 0002H              |
| 4        | DW<br>(Define Weed)  | To define ROM data             | ABC   | DW         | 'AB'               |
|          | (Define Word)        |                                | BCD   | DW         | 0FFBH              |
| 5        | PAGE                 | To define boundary of page     |       | PAGE       | 1H                 |
|          | (Page)               |                                |       | PAGE       | 15                 |
| 6        | SECTION<br>(Section) | To define boundary of section  |       | SECTION    | 1                  |
| 7        | BANK                 | To define boundary of bank     |       | BANK       | 0                  |
|          | (Bank)               |                                |       | BANK       | 1H                 |
| 8        | END<br>(End)         | To terminate assembly          |       | END        |                    |
| 9        | MACRO                | To define macro                |       |            |                    |
|          | (Macro)              |                                |       | CHECK      | 1                  |
| 10       | LOCAL                | To make local specification of | CHECK | MACRO      | DATA               |
|          | (Local)              | label during macro definition  | LOCAL | LOOP       | MVDATA             |
|          |                      |                                | LOOP  | CP<br>JP   | MX,DATA<br>NZ,LOOP |
| 11       | ENDM                 | To end macro definition        |       |            | ,                  |
|          | (End Macro)          |                                |       | ENDM       |                    |
|          |                      |                                |       |            |                    |
|          |                      |                                | 1     |            |                    |

## APPENDIX D

## **COMMAND TABLE OF ICE**

| Item No. | Function    | Command Format        | Outline of Operation                                               |
|----------|-------------|-----------------------|--------------------------------------------------------------------|
| 1        | Assemble    | #A,a <b>↓</b>         | Assemble command mnemonic code and store at address "a"            |
| 2        | Disassemble | #L,a1,a2 📮            | Contents of addresses a1 to a2 are disassembled and displayed      |
| 3        | Dump        | #DP,a1,a2 🎝           | Contents of program area a1 to a2 are displayed                    |
|          |             | #DD,a1,a2 ↓           | Content of data area a1 to a2 are displayed                        |
| 4        | Fill        | #FP,a1,a2,d 🎝         | Data d is set in addresses a1 to a2 (program area)                 |
|          |             | #FD,a1,a2,d ↓         | Data d is set in addresses a1 to a2 (data area)                    |
| 5        | Set         | #G,a↓                 | Program is executed from the "a" address                           |
|          | Run Mode    | #TIM 🎝                | Execution time and step counter selection                          |
|          |             | #OTF 』                | On-the-fly display selection                                       |
| 6        | Trace       | #T,a,n ↓              | Executes program while displaying results of step instruction      |
|          |             |                       | from "a" address                                                   |
|          |             | #U,a,n ↓              | Displays only the final step of #T,a,n                             |
| 7        | Break       | #BA,a ┛               | Sets Break at program address "a"                                  |
|          |             | #BAR,a ┛              | Breakpoint is canceled                                             |
|          |             | #BD↓                  | Break condition is set for data RAM                                |
|          |             | #BDR ⋥                | Breakpoint is canceled                                             |
|          |             | #BR ↓                 | Break condition is set for Evaluation Board CPU internal registers |
|          |             | #BRR ↓                | Breakpoint is canceled                                             |
|          |             | #BM ┛                 | Combined break conditions set for program data RAM address         |
|          |             |                       | and registers                                                      |
|          |             | #BMR ↓                | Cancel combined break conditions for program data ROM              |
|          |             |                       | address and registers                                              |
|          |             | #BRES ₽               | All break conditions canceled                                      |
|          |             | #BC ₄                 | Break condition displayed                                          |
|          |             | #BE ┛                 | Enter break enable mode                                            |
|          |             | #BSYN ⋥               | Enter break disable mode                                           |
|          |             | #BT ┛                 | Set break stop/trace modes                                         |
|          |             | #BRKSEL,REM 🎩         | Set BA condition clear/remain modes                                |
| 8        | Move        | #MP,a1,a2,a3 Д        | Contents of program area addresses a1 to a2 are moved to           |
|          |             |                       | addresses a3 and after                                             |
|          |             | #MD,a1,a2,a3 <b>□</b> | Contents of data area addresses a1 to a2 are moved to addresses    |
|          |             |                       | a3 and after                                                       |
| 9        | Data Set    | #SP,a ┛               | Data from program area address "a" are written to memory           |
|          |             | #SD,a↓                | Data from data area address "a" are written to memory              |
| 10       | Change CPU  | #DR ↓                 | Display Evaluation Board CPU internal registers                    |
|          | Internal    | #SR ┛                 | Set Evaluation Board CPU internal registers                        |
|          | Registers   | #I 🚚                  | Reset Evaluation Board CPU                                         |
|          |             | #DXY 🎝                | Display X, Y, MX and MY                                            |
|          |             | #SXY 🎝                | Set data for X and Y display and MX, MY                            |

| Item No. | Function   | Command Format      | Outline of Operation                                           |
|----------|------------|---------------------|----------------------------------------------------------------|
| 11       | History    | #H,p1,p2 <b>⊿</b>   | Display history data for pointer 1 and pointer 2               |
|          |            | #HB ↓               | Display upstream history data                                  |
|          |            | #HG ┛               | Display 21 line history data                                   |
|          |            | #HP↓                | Display history pointer                                        |
|          |            | #HPS,a ┛            | Set history pointer                                            |
|          |            | #HC,S/C/E↓          | Sets up the history information acquisition before (S),        |
|          |            |                     | before/after (C) and after (E)                                 |
|          |            | #HA,a1,a2 <b>□</b>  | Sets up the history information acquisition from program area  |
|          |            |                     | a1 to a2                                                       |
|          |            | #HAR,a1,a2 <b>↓</b> | Sets up the prohibition of the history information acquisition |
|          |            |                     | from program area a1 to a2                                     |
|          |            | #HAD 🎝              | Indicates history acquisition program area                     |
|          |            | #HS,a ↓             | Retrieves and indicates the history information which executed |
|          |            |                     | a program address "a"                                          |
|          |            | #HSW,a 🎝            | Retrieves and indicates the history information which wrote or |
|          |            | #HSR,a ┛            | read the data area address "a"                                 |
| 12       | File       | #RF,file ┛          | Move program file to memory                                    |
|          |            | #RFD,file 🔳         | Move data file to memory                                       |
|          |            | #VF,file ₽          | Compare program file and contents of memory                    |
|          |            | #VFD,file ┛         | Compare data file and contents of memory                       |
|          |            | #WF,file ┛          | Save contents of memory to program file                        |
|          |            | #WFD,file ┛         | Save contents of memory to data file                           |
|          |            | #CL,file ┛          | Load ICE set condition from file                               |
|          |            | #CS,file <b>→</b>   | Save ICE set condition to file                                 |
| 13       | Coverage   | #CVD₽               | Indicates coverage information                                 |
|          |            | #CVR ┛              | Clears coverage information                                    |
| 14       | ROM Access | #RP ┛               | Move contents of ROM to program memory                         |
|          |            | #VP↓                | Compare contents of ROM with contents of program memory        |
|          |            | #ROM ┛              | Set ROM type                                                   |
| 15       | Terminate  | #Q 🗗                | Terminate ICE and return to operating system control           |
|          | ICE        |                     |                                                                |
| 16       | Command    | #HELP 🎝             | Display ICE instruction                                        |
|          | Display    |                     |                                                                |
| 17       | Self       | #CHK ┛              | Report results of ICE self diagnostic test                     |
|          | Diagnosis  |                     |                                                                |

□ means press the RETURN key.

## **EPSON** International Sales Operations

#### **AMERICA**

#### **EPSON ELECTRONICS AMERICA, INC.**

#### - HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

#### - SALES OFFICES -

#### West

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

#### Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

#### **Northeast**

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

#### Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

#### **EUROPE**

#### **EPSON EUROPE ELECTRONICS GmbH**

#### - HEADQUARTERS -

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

#### SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

#### **UK BRANCH OFFICE**

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

#### FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

#### **BARCELONA BRANCH OFFICE**

#### **Barcelona Design Center**

Edificio Prima Sant Cugat Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

#### **ASIA**

#### EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

#### SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

#### **EPSON HONG KONG LTD.**

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

#### **EPSON TAIWAN TECHNOLOGY & TRADING LTD.**

10F, No. 287, Nanking East Road, Sec. 3

Taipei

Phone: 02-2717-7360 Fax: 02-2712-9164

Telex: 24444 EPSONTB

#### **HSINCHU OFFICE**

13F-3, No. 295, Kuang-Fu Road, Sec. 2

HsinChu 300

Phone: 03-573-9900 Fax: 03-573-9169

#### **EPSON SINGAPORE PTE., LTD.**

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

#### SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

## SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

## Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

#### ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

#### **ED International Marketing Department Asia**

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110



In pursuit of "Saving" Technology, Epson electronic devices.

Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

## **\$1C62440/624A0/624C0/62480**Technical Manual

## SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

**■ EPSON Electronic Devices Website** 

http://www.epson.co.jp/device/