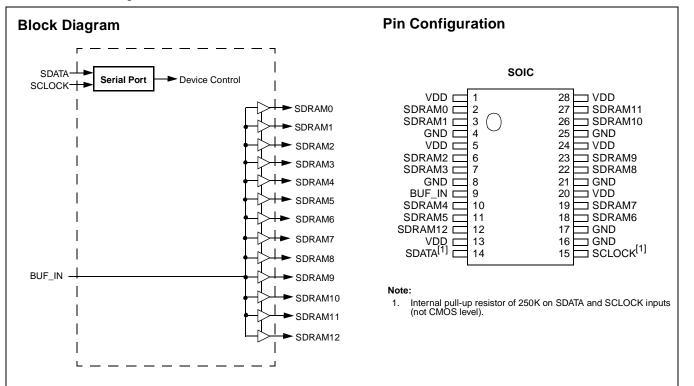


W40S11-23

Clock Buffer/Driver

Features


- Thirteen skew-controlled CMOS clock outputs (SDRAM0:12)
- Supports three SDRAM DIMMs
- Ideal for high-performance systems designed around Intel's latest chip set
- I²C serial configuration interface
- · Clock Skew between any two outputs is less than 250 ps
- 1- to 5-ns propagation delay
- DC to 133-MHz operation
- Single 3.3V supply voltage
- Low power CMOS design packaged in a 28-pin, 300-mil SOIC (Small Outline Integrated Circuit)

Overview

The Cypress W40S11-23 is a low-voltage, thirteen-output clock buffer. Output buffer impedance is approximately 15Ω , which is ideal for driving SDRAM DIMMs.

Key Specifications

Supply Voltages: $V_{DD} = 3.3V \pm 5\%$
Operating Temperature: 0°C to +70°C
Input Threshold: 1.5V typical
Maximum Input Voltage:V _{DD} + 0.5V
Input Frequency:0 to 133 MHz
BUF_IN to SDRAM0:12 Propagation Delay: 1.0 to 5.0 ns
Output Edge Rate: ≥1.5 V/ns
Output Clock Skew: ±250 ps
Output Duty Cycle: 45/55% worst case
Output Impedance:
Output Type: CMOS rail-to-rail

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description		
SDRAM0:12	2, 3, 6, 7, 10, 11, 18, 19, 22, 23, 26, 27, 12	0	SDRAM Outputs: Provides buffered copy of BUF_IN. The propagation delay from rising input edge to a rising output edge is 1 to 5 ns. All outputs are skew controlled within \pm 250 ps of each other.		
BUF_IN	9	I	ock Input: This clock input has an input threshold voltage of 1.5V (typ).		
SDATA	14	I/O	^{2}C Data input: Data should be presented to this input as described in the I ² C section of this data sheet. Internal 250-k Ω pull-up resistor.		
SCLOCK	15	Ι	² C clock input: The I ² C data clock should be presented to this input as described i he I ² C section of this data sheet. Internal 250-kΩ pull-up resistor.		
VDD	1, 5, 13, 20, 24, 28	Р	Power Connection: Power supply for core logic and output buffers. Connected to 3 supply.		
GND	4, 8, 16, 17, 21, 25	G	Ground Connection: Connect all ground pins to the common system ground plane		

Functional Description

Output Drivers

The W40S11-23 output buffers are CMOS type which deliver a rail-to-rail (GND to $\rm V_{DD})$ output voltage swing into a nominal

capacitive load. Thus, output signaling is both TTL and CMOS level compatible. Nominal output buffer impedance is 15Ω .

Operation

Data is written to the W40S11-23 in ten bytes of eight bits each. Bytes are written in the order shown in Table 1.

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W40S11-23 to accept the bits in Data Bytes 0–6 for in- ternal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W40S11-23 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W40S11-23, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another ad- dressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W40S11-23, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial com- munication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Refer to Table 2	The data bits in these bytes set internal W40S11-23 registers that control
5	Data Byte 1		device operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit control
6	Data Byte 2		functions, refer to <i>Table 2</i> , Data Byte Serial Configuration Map.
7	Data Byte 3	Don't Care	Refer to Cypress Frequency Timing Generators.
8	Data Byte 4		
9	Data Byte 5]	
10	Data Byte 6		

Table 1. Byte Writing Sequence

Writing Data Bytes

Each bit in the data bytes control a particular device function. Bits are written MSB (most significant bit) first, which is bit 7. *Table 2* gives the bit formats for registers located in Data Bytes 0–6.

	Affected Pin			Bit Co	ontrol			
Bit(s)	Pin No.	Pin Name	Control Function	0	1			
Data Byte 0 SDRAM Active/Inactive Register (1=Enable, 0=Disable)								
7	11	SDRAM5	Clock Output Disable	Low	Active			
6	10	SDRAM4	Clock Output Disable	Low	Active			
5	N/A	Reserved	(Reserved)	-	-			
4	N/A	Reserved	(Reserved)	-	-			
3	7	SDRAM3	Clock Output Disable	Low	Active			
2	6	SDRAM2	Clock Output Disable	Low	Active			
1	3	SDRAM1	Clock Output Disable	Low	Active			
0	2	SDRAM0	Clock Output Disable	Low	Active			
Data Byte 1 SDRAM Active/Inactive Register (1=Enable, 0=Disable)								
7	27	SDRAM11	Clock Output Disable	Low	Active			
6	26	SDRAM10	Clock Output Disable	Low	Active			
5	23	SDRAM9	Clock Output Disable	Low	Active			
4	22	SDRAM8	Clock Output Disable	Low	Active			
3	3 N/A Reserved (Rese		(Reserved)	-	-			
2 N/A Reserved (F		(Reserved)	-	-				
1	19	SDRAM7	Clock Output Disable	Low	Active			
0	18	SDRAM6	Clock Output Disable	Low	Active			
Data Byte 2	SDRAM Acti	ve/Inactive Regi	ster (1=Enable, 0=Disable)					
7	N/A	Reserved	(Reserved)	-	-			
6	12	SDRAM12	Clock Output Disable	Low	Active			
5	N/A	Reserved	(Reserved)	-				
4	N/A	Reserved	(Reserved)	-				
3	N/A	Reserved	(Reserved)					
2	N/A	Reserved	(Reserved)					
1	N/A	Reserved	(Reserved)					
0	N/A	Reserved	(Reserved)					

 Table 2. Data Bytes 0–2 Serial Configuration Map^[2]

Note:

2. At power-up all SDRAM outputs are enabled and active. Program Reserved bits to a "0."

How To Use the Serial Data Interface

Electrical Requirements

Figure 1 illustrates electrical characteristics for the serial interface bus used with the W40S11-23. Devices send data over the bus with an open drain logic output that can (a) pull the bus line LOW, or (b) let the bus default to logic 1. The pull-up resistor on the bus (both clock and data lines) establish a default logic 1. All bus devices generally have logic inputs to receive data.

Although the W40S11-23 is a receive-only device (no data write-back capability), it does transmit an "acknowledge" data pulse after each byte is received. Thus, the SDATA line can both transmit and receive data.

The pull-up resistor should be sized to meet the rise and fall times specified in AC parameters, taking into consideration total bus line capacitance.

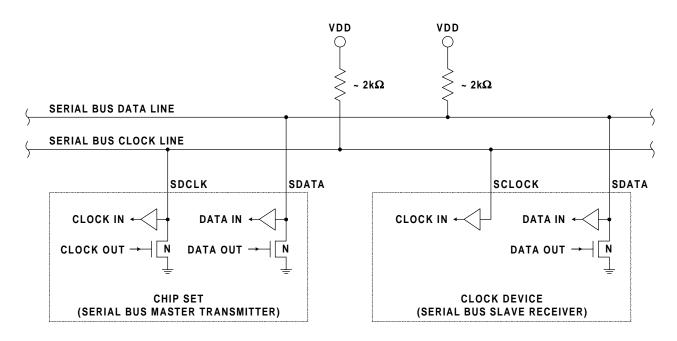


Figure 1. Serial Interface Bus Electrical Characteristics

Signaling Requirements

As shown in *Figure 2*, valid data bits are defined as stable logic 0 or 1 condition on the data line during a clock HIGH (logic 1) pulse. A transitioning data line during a clock HIGH pulse may be interpreted as a start or stop pulse (it will be interpreted as a start or stop pulse if the start/stop timing parameters are met).

A write sequence is initiated by a "start bit" as shown in *Figure* 3. A "stop bit" signifies that a transmission has ended.

As stated previously, the W40S11-23 sends an "acknowledge" pulse after receiving eight data bits in each byte as shown in *Figure 4*.

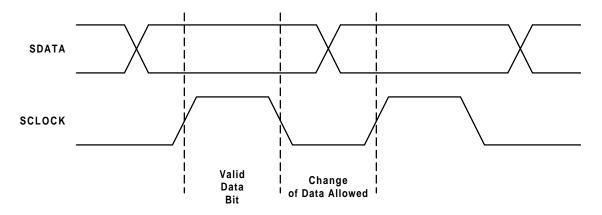


Figure 2. Serial Data Bus Valid Data Bit

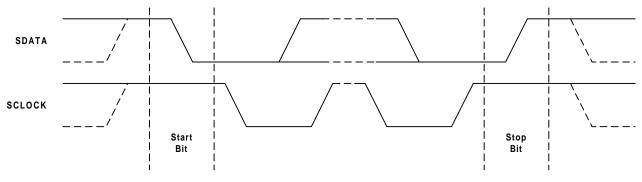


Figure 3. Serial Data Bus Start and Stop Bit

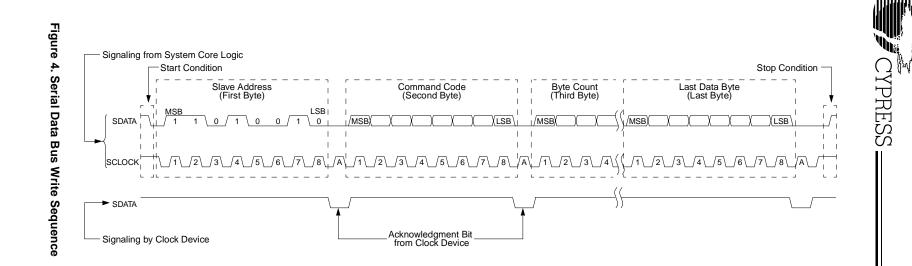


Figure 5. Serial Data Bus Timing Diagram

o

W40S11-23

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
T _A	Operating Temperature	0 to +70	°C
Τ _B	Ambient Temperature under Bias	-55 to +125	°C

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 3.3V \pm 5\%$

Parameter	Description	Test Condition/Comments	Min	Тур	Max	Unit				
I _{DD}	3.3V Supply Current	BUF_IN = 100 MHz			250	mA				
Logic Inputs	Logic Inputs									
V _{IL}	Input Low Voltage		GND-0.3		0.8	V				
V _{IH}	Input High Voltage		2.0		V _{DD} +0.5	V				
I _{ILEAK}	Input Leakage Current, BUF_IN		-5		+5	μA				
I _{ILEAK}	Input Leakage Current ^[3]		-20		+5	μA				
Logic Output	ts (SDRAM0:12)									
V _{OL}	Output Low Voltage	I _{OL} = 1 mA			50	mV				
V _{OH}	Output High Voltage	I _{OH} = -1 mA	3.1			V				
I _{OL}	Output Low Current	V _{OL} = 1.5V	65	100	160	mA				
I _{ОН}	Output High Current	V _{OH} = 1.5V	70	110	185	mA				
Pin Capacitance/Inductance										
C _{IN}	Input Pin Capacitance				5	pF				
C _{OUT}	Output Pin Capacitance				6	pF				
L _{IN}	Input Pin Inductance				7	nH				

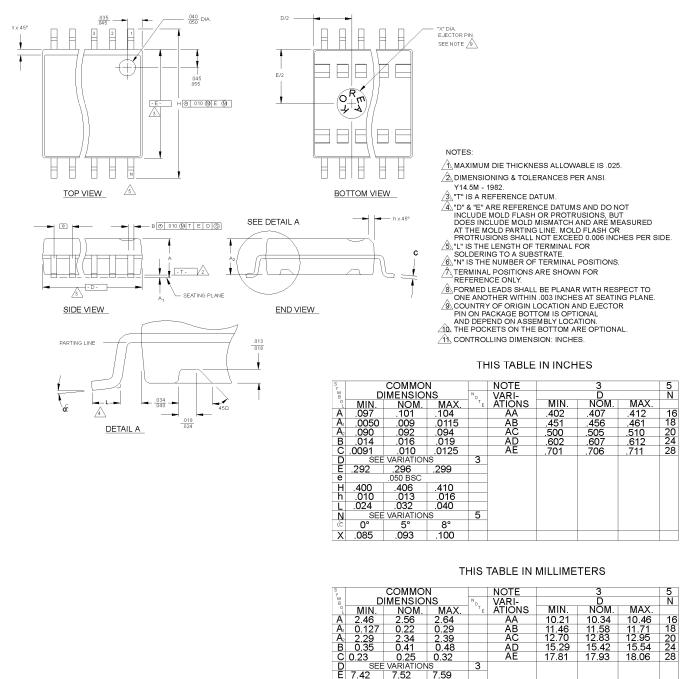
Note:

3. SDATA and SCLOCK logic pins have 250-k $\!\Omega$ internal pull-up resistors.

AC Electrical Characteristics:	T _A = 0°C to +70°C, V _{DD} = 3.3V±5% (Lum	np Capacitance Test Load = 30 pF)	

Parameter	Description	Test Condition	Min	Тур	Max	Unit
f _{IN}	Input Frequency		0		133	MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1.5		4.0	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1.5		4.0	V/ns
t _{SR}	Output Skew, Rising Edges				250	ps
t _{SF}	Output Skew, Falling Edges				250	ps
t _{EN}	Output Enable Time		1.0		8.0	ns
t _{DIS}	Output Disable Time		1.0		8.0	ns
t _{PR}	Rising Edge Propagation Delay		1.0		5.0	ns
t _{PF}	Falling Edge Propagation Delay		1.0		5.0	ns
t _D	Duty Cycle	Measured at 1.5V	45		55	%
Z _o	AC Output Impedance			15		Ω
t _{PR}	Rising Edge Propagation Delay		1.0		5.0	ns

Ordering Information


Ordering Code	Freq. Mask Code	Package Name	Package Type
W40S11	-23	G	28-pin SOIC (300 mils)

Document #: 38-00793

18.06

Package Diagram

28-Pin Small Outline Integrated Circuit (SOIC, 0.300 inch)

© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

0.25 SEE VARIATIONS

7.52 1.27 BSC

10.31 0.33

2.36

0.81

SEE VARIATIONS

0.23

7.42 ē

2.16

Н 10.16 0.25 0.61

h

L

Ņ

Х

0.32

7.59

10.41

0.41

8° 2.54 3

5