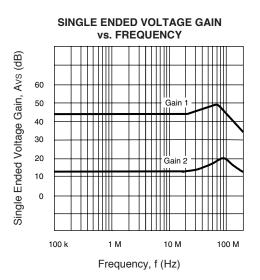
ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER


FEATURES

CEL

- BANDWIDTH AND TYPICAL GAIN: 120 MHz at Avol = 300 170 MHz at Avol = 100 700 MHz at Avol = 10
- VERY SMALL PHASE DELAY
- GAIN ADJUSTABLE FROM 10 TO 300
- NO FREQUENCY COMPENSATION REQUIRED

DESCRIPTION

NEC's UPC1663GV is a video amplifier with differential input and output stages. A high frequency process ($f_T = 6 \text{ GHz}$) improves AC performance compared with industry-standard video amplifiers. This device is excellent as a sense amplifier for high-density CCDs, as a video or pulse amplifier in highresolution displays, and in communications equipment.

UPC1663GV

ELECTRICAL CHARACTERISTICS (TA = 25°C, Vcc = ±6 V, Rs = 50 Ω, f = 10 MHz)

	PART NUMBER PACKAGE OUTLINE	UPC1663GV S08				
SYMBOLS	PARAMETERS AND CONDITI	UNITS	MIN	ТҮР	MAX	
Icc	Power Supply Current				13	20
Avd	Differential Voltage Gain: Gain ¹ Gain ²		200 8	320 10	500 12	
BW	Bandwidth (Gain is 3 dB down from the gain at 100 KHz)	MHz MHz		120 700		
tR	Rise Time, Vout = 1V _{p-p} :	ns ns		2.9 2.7		
tpd	Propagation Delay, Vout = 1 Vp-p:	Gain ¹ Gain ²	ns ns		2 1.2	
Rin	Input Impedance:	Gain ¹ Gain ²	kΩ kΩ	50	4.0 180	
CIN	Input Capacitance		pF		2	
lio	Input Offset Current		μΑ		0.4	5.0
lв	Input Bias Current		μΑ		20	40
VN	Input Noise Voltage, 10 k to 10 MHz		μVr.m.s.		3	
Vi	Input Voltage Range		V	±1.0		
CMRR	Common Mode Rejection Ratio, Vcm = Vcm =	dB dB	55 53	94 60		
SVRR	Supply Voltage Rejection Ratio, $\Delta V = \pm 0$	0.5 V	dB	50	70	
VO(off)	Output Offset Voltage, Vo(off) = IOUT1 - Gain ¹ Gain ²	VVV		0.3 0.1	1.5 1.0	
VO (CM)	Output Common Mode Voltage	V	2.4	2.9	3.4	
VOp-p	Max. Output Voltage Swing, Single-end	Vp-p	3.0	4.0		
lsink	Output Sink Current	mA	2.5	3.6		

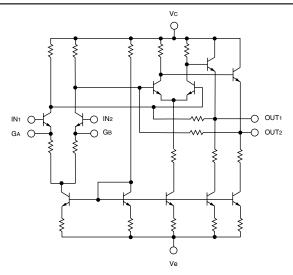
Notes:

1. Gain select pins GA and GB are connected together.

2. All gain select pins are open.

3. Insert adjustment resistor (0 to 10 k Ω) between GA and GB when variable gain is necessary.

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

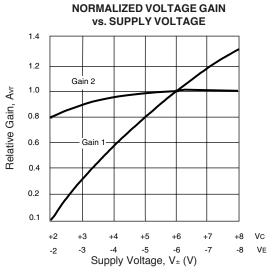

SYMBOLS	PARAMETERS	UNITS	RATINGS
VC-VE	Voltage between Vc and V \ensuremath{Ve}	V	-0.3 to 14
Рт	Total Power Dissipation ²	mW	200
Vid	Differential Input Voltage	V	±5
VIN	Input Voltage	V	±6
lo	Output Current	mA	35
Тор	Operating Temperature	°C	-45 to +75
Tstg	Storage Temperature	°C	-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.

2. Mounted on 50 cm x 50 cm x 1.6 mm glass epoxy PCB with copper film (TA = Max ToP).

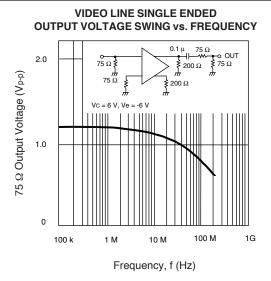
EQUIVALENT CIRCUIT



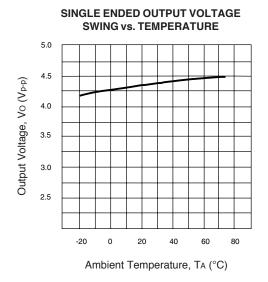
TYPICAL PERFORMANCE UNDER SINGLE SUPPLY +5 V OPERATION*

PARAMETER	CONDITIONS	TYPICAL	UNITS
Differential Gain Gain 1 Gain 2	15 MHz	35 11	dB dB
Bandwidth Gain 1 Gain 2	Gain is 3 dB down from the gain at 100 KHz	106 115	MHz MHz
Rise Time Gain 1	$Rs = 50 \Omega$, Vout = 80 mV _{p-p}	2.2	ns
Propagation Delay Gain 1 Gain 2	RS = 50 Ω, Vουτ = 80 mVp-p RS = 50 Ω, Vουτ = 60 mVp-p		ns ns
Phase Shift Gain 1 Gain 2	100 MHz	-123 -93	degree degree
Output Power $R_A = 240 \Omega$ $R_A = 910 \Omega$ $R_A = 80 \Omega$	ZL = 50 Ω, 15 MHz	5.0 0 -11.5	dBm dBm dBm

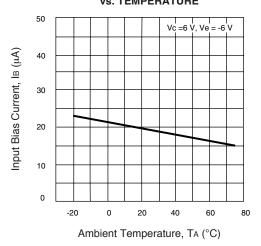
* See Application Circuit

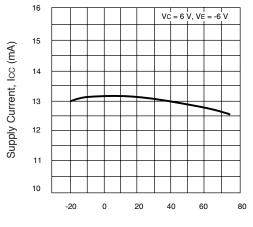

RECOMMENDED OPERATING CONDITIONS (TA = 25°C)

SYMBOLS	CHARACTERISTICS	UNITS	MIN	ТҮР	MAX
Vc	Positive Supply Voltage	V	+2	+6	+6.5
Ve	Negative Supply Voltage	V	-2	-6	-6.5
IO source	Source Current	mA			20
IO sink	Sink Current	mA			2.5
	Frequency Range	MHz	DC		200

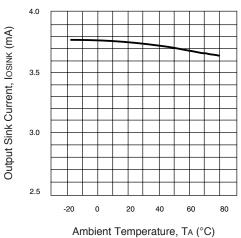

Attention:

Due to high frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation.

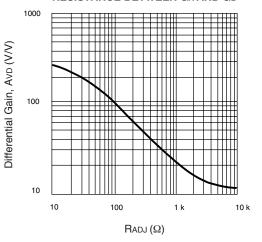

TYPICAL PERFORMANCE CURVES (TA = 25°C)


TYPICAL PERFORMANCE CURVES (TA = 25°C)

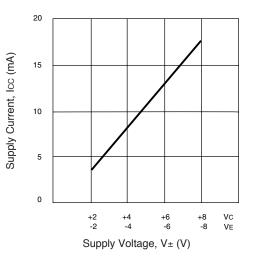
INPUT BIAS CURRENT vs. TEMPERATURE

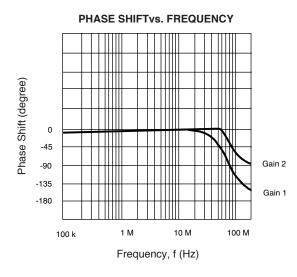


SUPPLY CURRENT vs. TEMPERATURE

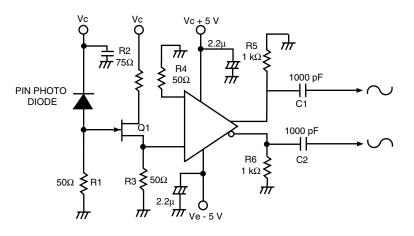


Ambient Temperature, TA (°C)


SINK CURRENT vs. TEMPERATURE


DIFFERENTIAL VOLTAGE GAIN vs. RESISTANCE BETWEEN GA AND GB

SUPPLY CURRENT vs. SUPPLY VOLTAGE



TYPICAL PERFORMANCE CURVES (TA = 25°C)

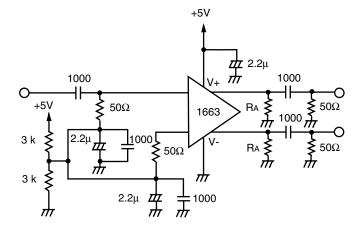
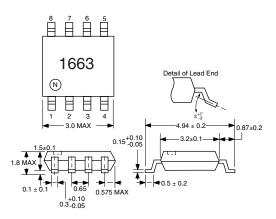
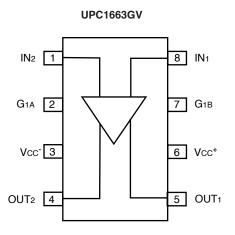

TYPICAL APPLICATIONS

Photo Signal Detector

Since the input impedance of the IC falls when the gain rises, stable operation can be achieved by inserting a FET buffer when necessary as illustrated above.


Application for +5 V Single Supply

OUTLINE DIMENSIONS (Units in mm)


CONNECTION DIAGRAM (TOP VIEW)

UPC1663GV PACKAGE OUTLINE S08

Notes:

- 1. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position at maximum material condition.
- 2. All dimensions are typical unless otherwise specified.

ORDERING INFORMATION

PART NUMBER	QUANTITY
UPC1663GV-E1-A	1000/Reel

PIN DESCRIPTION

Pin No.	Pin Name	In single Bias (V)	In single bias (V)	Functions and Application	Internal Equivalent Circuit	
8	IN1	Pin	Apply	Input pin	6	
1	IN2	voltage	voltage			
		0	Vcc/2			
5	OUT1	Pin	Apply	Output pin		
4	OUT2	voltage	voltage			
		0	Vcc/2			
6	Vcc+	±2 to ±6.5	-0.3 to +14	Plus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance.		
3	Vcc-		GND	Minus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance.		
7	G1A	_	_	Gain adjustment pin.		
2	G1B			External resistor from 0 to 10 kW can be inserted between pin 2 and 7 to determine gain value.	Internal circuit constants should be refered to application note.	

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM

DATA SUBJECT TO CHANGE WITHOUT NOTICE

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentratio in CEL	
Lead (Pb)	< 1000 PPM	-A-AZNot Detected(*)	
Mercury	< 1000 PPM	Not Detected	
Cadmium	< 100 PPM	Not Detected	
Hexavalent Chromium	< 1000 PPM	Not Detected	
РВВ	< 1000 PPM	Not Detected	
PBDE	< 1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.