Features

- Supply Voltage Range: 2.7 V to 5.5 V
- Excellent Isolation Characteristics
- Low Current Consumption: 3.2 mA without RIP3
- IIP3 Programmable
- Input Frequency Operating Range Up to 2 GHz
- RF Characteristics Nearly Independent of Supply Voltage

Benefits

- Low Current Consumption
- Small Package
- Easy to Implement

Electrostatic sensitive device.
Observe precautions for handling.

2-GHz

Single-balanced Mixer

Description

The U2796B is a $2-\mathrm{GHz}$ down-conversion mixer for telecommunication systems, e.g., cellular radio, CT1, CT2, DECT, PCN, using Atmel's advanced bipolar UHF technology. The U2796B is well suited for the receiver portion of the RF circuit. Singlebalanced structure has been chosen for best noise performance and low current consumption. The IIP3 is programmable.

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning

Pin Description

Pin	Symbol	Function
1	$\mathrm{~V}_{\mathrm{S}}$	Supply voltage
2	RF	RF input and IIP3 programming port
3	BP $_{\mathrm{C}}$	Bypass capacitor
4	IFo	IF output
5	IFo	IF output
6	GND	Ground
7	LO $_{\mathrm{i}}$	Local oscillator input
8	GND	Ground

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	6	V
Input voltage	V_{i}	0 to V_{S}	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SO8	$\mathrm{R}_{\mathrm{thJA}}$	175	K/W

Operating Range

Parameters	Symbol	Value	Unit
Supply-voltage range	V_{S}	2.7 to 5.5	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Test conditions (unless otherwise specified):
$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} ; \mathrm{I}_{\mathrm{M}}=1.2 \mathrm{~mA}^{(1)}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. System impedance $\mathrm{Z}_{\mathrm{O}}=50 \Omega$

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*	
1.1	Supply voltage		1	$\mathrm{V}_{\text {S }}$	2.7		5.5	V	D	
1.2	Supply current	$\mathrm{R}_{\mathrm{IP} 3}=\infty$	1	I_{S}	2.8	3.2	3.7	mA	A	
1.3	Conversion gain Figure 4	$\begin{aligned} & \mathrm{RL}=3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{IP3} 3}=\infty \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \end{aligned}$		PG_{C}		9		dB	B	
1.4	Conversion gain Figure 4	$\begin{aligned} & \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz} \end{aligned}$		PG_{C}		9		dB	B	
2	Isolation									
2.1	LO spurious at $\mathrm{RF}_{\text {in }}$	$\mathrm{Pi}_{\mathrm{LO}}=-10 \mathrm{dBm}$ Figure 5	2, 7	IS ${ }_{\text {LORF }}$			-35	dBm	D	
2.2	RF to LO Figure 6	$\begin{aligned} & \mathrm{Pi}_{\mathrm{RF}}=-25 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \end{aligned}$	2, 7	$\mathrm{IS}_{\text {RFLO }}$	30	40		dB	D	
2.3	RF to LO Figure 6	$\mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$	2, 7	$\mathrm{IS}_{\text {RFLO }}$		20		dB	D	
3	Operating Frequencies									
3.1	RF frequency		2	$R F_{i}$			2000	MHz	D	
3.2	$\mathrm{LO}_{\text {in }}$ frequency		7	LO_{i}			2000	MHz	D	
3.3	$\mathrm{IF}_{\text {out }}$ frequency		4, 5	$1 F_{0}$			300	MHz	D	
4	Input Level									
4.1	RF input (-1 dB comp.)	$\mathrm{RL}=50 \Omega$,	2	$\mathrm{Pi}_{\text {RF }}$		-15		dBm	D	
4.2	3rd-order intercept point	$\mathrm{Pi}_{\mathrm{LO}}=-10 \mathrm{dBm}, \mathrm{R}_{\mathrm{IP} 3}=\infty$ Figure 2	2	IIP3		-4		dBm	B	
4.3	LO input		7	$\mathrm{P}_{\mathrm{iLO}}$		-6	0	dBm	D	
5	Impedances									
5.1	RF input		2	$\mathrm{Z}_{\mathrm{iRF}}$		25		Ω	D	
5.2	LO input		7	Zito		50		Ω	D	
5.3	IF output		4, 5	$\mathrm{Z}_{\text {olF }}$		$\begin{gathered} >10 \\ k \Omega \\| \\ 0.9 \mathrm{pF} \end{gathered}$			D	
5.4	Noise figure (DSB) Figure 7	$\begin{aligned} & \mathrm{Pi}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{RL}>3 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \end{aligned}$		NF_{50}		9	10	dB	B	
5.5	Noise figure (DSB) Figure 7	$\mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$		NF_{50}		12		dB	B	
5.6	Voltage standing wave ratio LO		7	VSWR ${ }_{\text {LO }}$		1.3	2		B	

Note: 1. I_{M} : Internal mixer current, set by $R_{I P 3}$ at pin 2 (see Figure 3, Figure 4, Figure 5 and Figure 6)

Figure 3. Mixer Current $\left(\mathrm{I}_{\mathrm{M}}\right)$ versus RE

Figure 4. Third-order Input Intercept IIP3 Point versus I_{M}

Figure 5. Mixer Circuitry

Figure 6. Test Circuit Conversion Power Gain (PG $)$ and 3rd-order Input Intercept Point (IIP3)

Figure 7. Test Circuit Isolation LO to RF

Figure 8. Test Circuit Isolation RF to LO

Figure 9. Test Circuit Noise Figure

Note: 1. The noise floor of the LO generator might influence the noise figure test result. In order to avoid this, either a bandpass or a highpass filter with fc $>f_{\text {IF }}$ should be implemented.
2. If IF output network does not provide sufficient suppression of the LO component,a lowpass filter should be inserted to avoid overdriving the noise figure meter.
3. For best noise performance 0 dBm LO power level is required.

Figure 10. S11 RF Input Impedance

Figure 11. S11 LO Input Impedance

Application Circuit

Recommended Values for the Evaluator

C_{1} and $\mathrm{C}_{2}=150 \mathrm{pF}, \mathrm{C}_{3}$ and $\mathrm{C}_{4}=100 \mathrm{nF} . \mathrm{C}_{\mathrm{r}}$ is calculated for resonance with the balun at f_{IF}, or as a highpass filter for f_{LO}. The output balun transformer ratio $\geq 8: 1$ for $Z_{\mathrm{O}}=50 \Omega$. R_{2} increases the IF output level and is calculated from:

$$
\mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{S}}\left(4, \text { MinimalMinimal5) }-\mathrm{V}_{\mathrm{S}}(1)\right.}{\mathrm{I}_{\mathrm{S}}(1)}
$$

For example $, \mathrm{V}_{\mathrm{S}}(4,5)=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}(1)=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}(1)=2.2 \mathrm{~mA}, \mathrm{R}_{2} \approx 470 \Omega$, where $\mathrm{I}_{\mathrm{S}}(1)$ is the current consumption without the mixer stage.

Application Hint

The output transformer at the Pins 4 and 5 can be replaced by LC circuits as shown in Figure 12. Compared to transformer, LC circuits save space and are suitable for higher IF frequencies. When applying one of these solutions, it has to be checked whether the requirements on noise figure and gain can be achieved.

The second circuit was dimensioned for approximately 130 MHz and a load resistance of 50Ω. If, for instance, the impedance of a subsequent filter is $1 \mathrm{k} \Omega$, the capacitive voltage divider may be left out.

Figure 12. Application Hint

Evaluation Board

Ordering Information

Extended Type Number	Package	Remarks
U2796B-MFP	SO8	Tube
U2796B-MFPG3	SO8	Taped and reeled

Package Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

