
Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0178B

VFP10™ Vector Floating-point
Coprocessor

(Rev 1)

Technical Reference Manual

ii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10™ Vector Floating-point Coprocessor
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

Change history

Date Issue Change

22 May, 2001 A First release

24 May, 2001 B Second release, addition of FPINST and FPINST2 <reg> field addresses

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. iii

Contents
VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Preface
About this document .. x
Further reading ... xii
Feedback ... xiii

Chapter 1 Introduction
1.1 About the VFP10 coprocessor .. 1-2
1.2 Coprocessor interface ... 1-4
1.3 The VFP10 coprocessor pipeline .. 1-5
1.4 Modes of operation ... 1-12
1.5 Short vector instructions ... 1-15
1.6 Parallel execution of instructions ... 1-16
1.7 VFP10 coprocessor treatment of branch instructions 1-17
1.8 Writing optimal VFP10 coprocessor code ... 1-18
1.9 Clocking .. 1-19
1.10 Testing .. 1-20
1.11 Modifications from VFP10 coprocessor (Rev 0) .. 1-21

Chapter 2 VFP10 Register File
2.1 About the register file .. 2-2

Contents

iv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

2.2 Register file internal formats ... 2-3
2.3 Decoding the register file .. 2-5
2.4 Loading operands from ARM registers ... 2-7
2.5 Maintaining consistency in register precisions ... 2-9
2.6 Data transfer between memory and VFP10 coprocessor registers 2-10
2.7 Access to register banks in CDP operations .. 2-12

Chapter 3 VFP10 Programmer’s Model
3.1 About the programmer’s model .. 3-2
3.2 Compliance with IEEE-754 ... 3-4
3.3 ARM v5TE coprocessor extensions ... 3-11
3.4 Summary of VFP coprocessor system control registers 3-17
3.5 FPSCR register .. 3-23

Chapter 4 Instruction Execution in the VFP10 Coprocessor
4.1 About instruction execution in the VFP10 coprocessor 4-2
4.2 Serializing instructions .. 4-4
4.3 Interrupting VFP10 coprocessor instructions .. 4-5
4.4 Forwarding .. 4-6
4.5 Hazard and resource stall conditions ... 4-11
4.6 Parallel execution of operations ... 4-21
4.7 Execution timing ... 4-23

Chapter 5 Exception Handling
5.1 About exception processing ... 5-2
5.2 Support code .. 5-3
5.3 Illegal instructions ... 5-6
5.4 Determination of the trigger instruction ... 5-7
5.5 Input subnormal .. 5-12
5.6 Invalid operation ... 5-13
5.7 Division by zero .. 5-16
5.8 Overflow ... 5-17
5.9 Underflow ... 5-19
5.10 Inexact result .. 5-21
5.11 Input exceptions ... 5-22
5.12 Arithmetic exceptions ... 5-23

Chapter 6 Design for Test
6.1 About DFT .. 6-2
6.2 VFP10 DFT ... 6-3
6.3 VFP10 Core .. 6-4
6.4 VFP10 test wrapper .. 6-6
6.5 VFP10 clocking ... 6-10
6.6 Test Pins ... 6-11

Glossary

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. v

List of Tables
VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Change history .. ii
Table 2-1 MCR transfers ... 2-7
Table 2-2 MRC transfers ... 2-7
Table 2-3 MCRR transfers .. 2-8
Table 2-4 MRRC transfers .. 2-8
Table 2-5 Single-precision data memory images and byte addresses 2-10
Table 2-6 Double-precision data memory images and byte addresses 2-11
Table 2-7 Register bank description .. 2-12
Table 2-8 Single-precision three-operand register usage ... 2-15
Table 2-9 Single-precision two-operand register usage .. 2-16
Table 2-10 Double-precision three-operand register usage .. 2-16
Table 2-11 Double-precision two-operand register usage .. 2-16
Table 3-1 Default NaN values ... 3-6
Table 3-2 Access to control registers .. 3-17
Table 3-3 FPEXC bit field descriptions .. 3-19
Table 3-4 Vector iteration count bit values .. 3-20
Table 3-5 FPSID bit fields ... 3-21
Table 3-6 Vector length/stride combinations ... 3-25
Table 3-7 Exception status and control bits .. 3-26
Table 4-1 Single-precision source register locking and clearing in non-RunFast mode 4-12
Table 4-2 Double-precision source register locking and clearing in non-RunFast mode 4-12

List of Tables

vi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 4-3 Single-precision source register locking and clearing in RunFast mode 4-13
Table 4-4 Double-precision source register locking and clearing in RunFast mode 4-13
Table 4-5 Instruction cycles for example 1 ... 4-14
Table 4-6 Instruction cycles for example 2 ... 4-15
Table 4-7 Instruction cycles for short vector MULS example .. 4-16
Table 4-8 Instruction cycles for short vector FMULS example ... 4-16
Table 4-9 Instruction cycles for example in Run Fast mode ... 4-17
Table 4-10 Instruction cycles for vector MULS example ... 4-18
Table 4-11 Instruction cycles for example 2 ... 4-19
Table 4-12 Pipeline stages for load multiple, vector MULS, scalar FADDS 4-20
Table 4-13 Parallel execution in three pipelines ... 4-22
Table 4-14 Throughput and latency cycle timings for VFP10 CDP operations 4-23
Table 5-1 Possible IEEE 754 invalid operation exceptions ... 5-13
Table 5-2 Default results for positive invalid inputs ... 5-15
Table 5-3 Overflow result .. 5-18
Table 5-4 LSA and USA determination ... 5-23
Table 5-5 USA and LSA values and conditions .. 5-24
Table 5-6 FMUL family bounce and exceptional thresholds ... 5-26
Table 5-7 FDIV bounce and exceptional thresholds ... 5-27
Table 5-8 FCVTSD bounce conditions .. 5-28
Table 5-9 SP Float-to-integer bounce thresholds and stored results 5-30
Table 5-10 DP Float-to-integer bounce thresholds and stored results 5-32
Table 6-1 Scan chain configuration .. 6-4
Table 6-2 Internal scan chain configuration .. 6-5
Table 6-3 Wrapper cell control and observation configurations .. 6-9
Table 6-4 VFP10 macrocell test ports ... 6-11
Table 6-5 VFP10 test signals during core scan test ... 6-12
Table 6-6 VFP10 coprocessor test signals in functional mode ... 6-13
Table 6-7 VFP10 test pins in VFP10 coprocessor external test wrapper mode 6-13
Table G-8 Register banks in single-precision and double-precision registers Glossary-4

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. vii

List of Figures
VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Figure 1-1 FMAC pipeline ... 1-6
Figure 1-2 Divide and square root pipeline ... 1-8
Figure 1-3 Load/Store pipeline ... 1-10
Figure 2-1 Integer format .. 2-3
Figure 2-2 Single-precision data format ... 2-4
Figure 2-3 Register data formats .. 2-4
Figure 2-4 Register file format .. 2-6
Figure 3-1 FMDRR bit fields ... 3-11
Figure 3-2 FMRRD bit fields ... 3-12
Figure 3-3 FMSRR bit fields ... 3-13
Figure 3-4 FMRRS bit fields ... 3-15
Figure 3-5 FPEXC register format .. 3-19
Figure 3-6 FPSID register format ... 3-21
Figure 3-7 User status and control bit fields summary ... 3-23
Figure 6-1 Dedicated input wrapper cell ... 6-6
Figure 6-2 Dedicated output wrapper cell ... 6-7
Figure 6-3 Reset dedicated wrapper cell .. 6-8
Figure 6-4 VFP10 production scan mode clocking ... 6-10
Figure 6-5 VFP10 serial core test clocking requirement ... 6-10

List of Figures

viii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. ix

Preface

This preface introduces the VFP10™ (Rev1) Vector Floating-point Coprocessor and its
reference documentation. It contains the following sections:

• About this document on page x

• Further reading on page xii

• Feedback on page xiii.

Preface

x Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

About this document

This document is the technical reference manual for the VFP10 coprocessor (Rev1).

Intended audience

This document has been written for experienced hardware and software engineers who
are familiar with the ARM10 Thumb Family architecture and are conversant with IEEE
754 and its conventions for dealing with floating-point arithmetic. We recommend
reading the relevant sections of the ARM Architecture Reference Manual before reading
this manual.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an overview of the VFP10 coprocessor pipelines,
modes of operation and a summary of the differences between this
revision and the previous revision.

Chapter 2 VFP10 Register File

Read this chapter for a description of the VFP10 coprocessor register file.

Chapter 3 VFP10 Programmer’s Model

Read this chapter for details of the programmer’s model and VFP10
coprocessor registers.

Chapter 4 Instruction Execution in the VFP10 Coprocessor

Read this chapter for details of instruction execution in VFP10
coprocessor.

Chapter 5 Exception Handling

Read this chapter for a description of VFP10 coprocessor exception
handling.

Chapter 6 Design for Test

Read this chapter for a description of VFP10 coprocessor design for test
features.

Preface

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. xi

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code and ARM
processor signal names.

Preface

xii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq

ARM publications

This document contains information that is specific to the VFP10 Vector Floating-point
Coprocessor (Rev 1). Refer to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DUI 0100) Revision D or later

• AFS Firmware Suite Version 1.3 Reference Guide (ARM DUI

0102).

• ARM1020E Technical Reference Manual (ARM DDI 0177)

• ARM10200E Test Chip Implementation Guide (ARM DXI 0106).

Other publications

This manual makes extensive use of the terminology and conventions of:

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-point Arithmetic.

Preface

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. xiii

Feedback

ARM Limited welcomes feedback both on the VFP10 Vector Floating-point
Coprocessor (Rev1), and on the documentation.

Feedback on the VFP10 Vector Floating-point Coprocessor (Rev1)

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Preface

xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the VFP10 Vector Floating-point Coprocessor. It contains the
following sections:

• About the VFP10 coprocessor on page 1-2

• Coprocessor interface on page 1-4

• The VFP10 coprocessor pipeline on page 1-5

• Modes of operation on page 1-12

• Short vector instructions on page 1-15

• Parallel execution of instructions on page 1-16

• VFP10 coprocessor treatment of branch instructions on page 1-17

• Writing optimal VFP10 coprocessor code on page 1-18

• Clocking on page 1-19

• Testing on page 1-20

• Modifications from VFP10 coprocessor (Rev 0) on page 1-21.

Introduction

1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.1 About the VFP10 coprocessor

The ARM VFP10 Floating-point Coprocessor is the first implementation of the Vector
Floating-point Architecture (VFPv2). It provides IEEE 754-compliant, low-cost
floating-point computation for applications where high-performance graphics
processing or signal processing capabilities are required.

The VFP10 coprocessor is optimized for:

• high data transfer bandwidth through 64-bit split load and store buses

• fast hardware execution of a high percentage of operations on normalized data
resulting in higher overall performance while providing full IEEE 754 support
when required

• parallel divide and square-root operations in parallel with other arithmetic
operations to reduce the impact of long latency operations

• full IEEE 754 compatibility in RunFast mode without support code assistance,
providing determinable run-time calculations for all input data

• low power consumption, small die size and reduced kernel code.

The VFP10 coprocessor is a high-performance, low-power ARM enhanced numeric
coprocessor macrocell that provides high throughput IEEE 754-compatible operations.
Designed to be incorporated with the ARM10 family of cores, the VFP10 coprocessor
provides full support of single-precision and double-precision addition, subtraction,
multiplication, division, and multiply with accumulate operations. Conversions
between floating-point data formats and ARM integer word format are provided, with
special operations to perform the conversion in Round-To-Zero (RZ) rounding for
high-level language support.

The VFP10 coprocessor delivers high performance in general purpose applications,
such as Java, and an excellent performance-power-area solution for embedded
applications.

Note
 This document is intended to be read in conjunction with the Vector Floating-point
Architecture section of the ARM Architecture Reference Manual. Only VFP10-specific
implementation issues are described in this book.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-3

1.1.1 Applications

The VFP10 coprocessor is built with full-scan for high coverage testability. Advanced
power-saving support is incorporated to take advantage of the power-saving modes of
the ARM1020E macrocell. The VFP10 coprocessor provides high-performance,
low-cost floating-point computation particularly suitable for a wide spectrum of
applications such as:

• personal digital assistants and smartphones for graphics, voice and user
interfaces, Java interpretation, and Just In Time (JIT) compilation

• games machines for high-resolution three-dimensional graphics and digital audio

• printers and Multi-Function Peripheral (MFP) controllers for high-definition
color rendering requiring high data memory bandwidth

• network controllers for high data bandwidth between network ports and for data
compression

• set-top boxes for digital audio and digital video and three-dimensional user
interfaces

• automotive applications for engine management and power train computations.

Introduction

1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.2 Coprocessor interface

The VFP10 coprocessor is designed to be integrated with an ARM10 family device
through a general-purpose ARM1020E coprocessor interface. This interface is further
defined in the ARM1020E Technical Reference Manual.

The VFP10 coprocessor uses coprocessor ID numbers 10 and 11, mainly for
single-precision and double-precision operations, respectively. In some cases, such as
mixed precision operations, the coprocessor ID represents the destination precision. In
a system containing a VFP10 coprocessor, these coprocessor ID numbers must not be
used by another coprocessor.

For the VFP10 coprocessor to operate at the maximum frequency specified, the
coprocessor interface between the ARM1020E and the VFP10 coprocessor must be
implemented with care to minimize the physical distance between the ARM1020E
device and the VFP10 coprocessor, and to make the interconnect wires as short as
possible. See the ARM10200E Implementation Guide for more information.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-5

1.3 The VFP10 coprocessor pipeline

The VFP10 coprocessor comprises three separate pipelines:

• the multiply-accumulate pipeline (FMAC)

• the Divide and square root pipeline (DS).

• the Load/Store pipeline (LS)

These are each capable of operating independently of the other pipelines and in parallel
with them. Each of the three pipelines share the first two pipeline stages, Issue and
Decode. These two stages and the first cycle of the Execute stage of each pipeline
remains in lockstep with the ARM pipeline stage but effectively one cycle behind the
ARM pipeline. When the ARM is in the Decode stage for a particular VFP instruction,
the VFP10 coprocessor is in the Issue stage for the same instruction. This lockstep
mechanism maintains in-order issue between the ARM processor and the VFP10
coprocessor.

The three pipelines are capable of operating in parallel, enabling more than 1 instruction
to be completed per cycle. Instructions issued to the FMAC pipeline can complete out
of order with respect to load and store operations and divide or square root operations.
This out-of-order completion might be visible to the user in the case of an exception
generated by a short vector FMAC or DS operation, with a load or store operation
initiated before the exception was detected. The destination registers or memory of the
load or store operation will reflect the completion of a transfer while the destination
registers of the exceptional FMAC or DS operation will retain their values before the
operation was initiated. This is described in more detail in Parallel execution of
operations on page 4-21.

The pipeline supports single-cycle throughput for all single-precision operations
(excluding divide and square root) and most double-precision operations.
Double-precision multiply and multiply-accumulate operations have a two-cycle
throughput. The LS pipeline is capable of supplying two single-precision operands or
one double-precision operand per cycle, balancing the data transfer capability with the
operand requirements.

Introduction

1-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.3.1 The FMAC pipeline

The FMAC pipeline is shown in Figure 1-1.

Figure 1-1 FMAC pipeline

1.3.2 FMAC pipeline execution

The FMAC pipeline executes the following instructions:

FADD Addition.

FSUB Subtraction.

FMUL, FNMUL Multiply.

FMAC,FNMAC,FMSC,FNMSC
Multiply-accumulate.

FABS Absolute value.

FNEG Negation.

FUITO, FTOUI Unsigned integer conversion.

FSITO,FTOSI Signed integer conversion.

Read port Fm

Read port Fd

Read port Fn

Read port Fm

Multiply

Normalize

A operand

inversion and

negation

Align

Final sum

generation

FMAC Writeback
path

Special

results

Final

round Result
select

+1

Execute2 Execute 3Execute1Decode Execute 4/WB

Read port Fn

OPA

OPB

Exception

detect

OPC

Load

forw ard

Exception
detect

Zero

detect

Exception

detect

Zero

detect

Zero

detect

Product

sum and
round

DS

forw ard

To Register File

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-7

FTOUIZ, FTOSIZ
Floating-point to integer conversion with forced RZ rounding mode.

FCMP, FCMPE, FCMPZ,FCMPEZ
Comparison.

FCVTSD,FCVTDS
Format conversion.

FCPY Copy register.

See Execution timing on page 4-23 for cycle counts.

The FMAC family of instructions (FMAC, FNMAC, FMSC, and FNMSC) perform a chained
multiply and accumulate operation. The product is computed, rounded to the specified
rounding mode and destination precision, and checked for exceptions before the
accumulate operation is performed. The accumulate operation is also rounded to the
specified rounding mode and destination precision, and checked for exceptions. The
final result is identical to the equivalent sequence of operations executed in sequence.
Exception processing and status reporting also reflect the independence of the
components of the chained operations.

As an example, the FMAC instruction performs a chained multiply-add operation with the
following sequence of operations:

1. The product of the operands in the Fn and Fm registers are multiplied.

2. The product is rounded to the current rounding mode and destination precision
and checked for exceptions.

3. The result is summed with the operand in the Fd register.

4. The sum is rounded to the current rounding mode and destination precision and
checked for exceptions. If no exception conditions that require support code are
present, the result is written to the Fd register.

For example, the instruction
FMACS S0, S1, S2

 returns the same result as:
FMULS TEMP, S1, S2
FADDS S0, S1, TEMP

Introduction

1-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.3.3 Divide and square root pipeline

The divide and square root (DS) pipeline is shown in Figure 1-2.

Figure 1-2 Divide and square root pipeline

The divide and square root pipeline executes the following instructions:

FDIV Division

FSQRT Square root

The VFP10 coprocessor executes divide and square root functions for both
single-precision and double-precision operands with all IEEE 754 rounding modes
supported. The DS unit uses a shared radix-4 algorithm that provides a good balance
between speed and chip area. The DS operations have a latency of 17 cycles for
single-precision operations and 31 cycles for double-precision operations. The
throughput is 14 cycles for single-precision operations and 28 cycles for
double-precision operations.

Execute2 Execute 3Execute1Decode Execute 4/WB

Zero

detect

Dividend

Divisor/

Radicand Divisor/Root

Multiple

Final
quotient/

roots

Final result
selection

Load

forw ard

FMAC
forw ard

Read port
Fn

Normalize

Increment

Partial

remainder/

Radicand

Next

Quotient/

Root

Selection

To Register File

Read port

Fm

Next Root

Multiples

Sign

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-9

1.3.4 Load/store pipeline

The LS pipeline handles all of the instructions that involve data transfer to and from the
ARM1020E macrocell, including loads (LDC) and (LDM), stores (STC) and (STM), moves to
coprocessor register (MCR) and (MRCC), and moves from coprocessor register (MRC) and
MRRC). It remains synchronized with the ARM1020E macrocell LS pipeline for the
duration of the instruction.

Data written to the ARM1020E macrocell is read from the VFP10 coprocessor register
file in the Decode (D) stage and transferred to the ARM1020E macrocell in the same
cycle, and is latched on the ARM1020E macrocell Execute/Memory cycle boundary.
The transfer is made on a dedicated 64-bit store data bus between all coprocessors and
the ARM1020E macrocell.

Load data is written to the VFP10 coprocessor on a dedicated 64-bit load bus between
the ARM1020E macrocell and all coprocessors. Data is received by the VFP10
coprocessor on the Memory (M)/Writeback (W) boundary. Data is written to the
register file in the Writeback stage, and available for forwarding to CDP operations in the
same cycle. Figure 1-3 on page 1-10 shows the LS pipeline.

Introduction

1-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Figure 1-3 Load/Store pipeline

1.3.5 Load/Store operations

The load/store pipeline executes the following instructions:

FLD Load a single data value, either single-precision, double-precision, or
32-bit integer from memory to the VFP10 coprocessor register file.

FLDM Load up to 32 single-precision or integer data values or 16
double-precision data values from memory to the VFP10 coprocessor
register file.

FST Store a single data value, either single-precision, double-precision, or
32-bit integer from the VFP10 coprocessor register file to memory.

FSTM Store up to 32 single-precision or integer data values or 16
double-precision data values from the VFP10 coprocessor register file to
memory.

Read port Fd

Read port Fm
Register

File: Read

and
Format

Muxes

Memory WritebackExecuteDecode

Read port Fn

Issue

Register

Address
Generation

Store Data Bus -

STCMRCDATA[63:0]

Register

File: Write

and

Format
Muxes

DS Wb
FMAC Wb

LDCMCRDATA

[63:0] Bus

DS Fw d

FMAC Fw d

Load Fw d

CPINSTR

(Instruction
Bus)

Fd

Fm

Fn

Store

Load

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-11

FMSR Transfer a single-precision or integer data value from a VFP10
coprocessor single-precision register to an ARM1020E macrocell
register.

FMDHR Transfer the upper-half of a double-precision data value from a VFP10
coprocessor double-precision register to an ARM1020E macrocell
register.

FMDLR Transfer the lower-half of a double-precision data value from a VFP10
coprocessor double-precision register to an ARM1020E macrocell
register.

FMRS Transfer a single-precision or integer data value from an ARM1020E
macrocell register to a VFP10 coprocessor single-precision register.

FMRDH Transfer the upper-half of a double-precision data value from a VFP10
coprocessor double-precision register.

FMRDL Transfer the lower-half of a double-precision data value from an
ARM1020E macrocell register to a VFP10 coprocessor double-precision
register.

FMDRR Transfer two ARM1020E macrocell registers to a double-precision
register in the VFP10 coprocessor.

FMRRD Transfer a double-precision register in the VFP10 coprocessor to two
ARM1020E macrocell registers.

FMRRS Transfer a pair of consecutively-numbered registers in the VFP10
coprocessor to two ARM1020E macrocell registers.

FMXR Transfer an ARM1020E macrocell register value to a VFP10 coprocessor
control register.

FMRX Transfer a VFP10 coprocessor control register to an ARM1020E
macrocell register value.

Introduction

1-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.4 Modes of operation

The VFP10 coprocessor provides full IEEE 754 compatibility through a combination of
hardware and software. Some of the rare cases in the IEEE 754 can require significant
additional compute time to resolve correctly according to the requirements of the IEEE
754 specification. For instance, the VFP10 coprocessor does not process subnormal
inputs directly. To provide correct handling of input subnormal according to the IEEE
754 specification, a trap is made to support code to process the operation. Using the
support code for processing this operation can require hundreds of cycles. In some
applications this is unavoidable, as compliance with the IEEE 754 specification is
essential to proper operation of the program. In many other applications, especially in
the embedded space, strict compliance to the IEEE 754 is unnecessary, while
determinable runtime, low interrupt latency, and low power are of more importance.
The VFP10 coprocessor provides both:

• the full compliance mode, referred to as non-RunFast, described in Non-RunFast
mode on page 1-12

• limited compliance mode, referred to as RunFast, described in RunFast Mode on
page 1-13.

1.4.1 Non-RunFast mode

When the VFP10 coprocessor is not in RunFast mode, all operations that cannot be
processed according to the IEEE 754 specification utilize support code for assistance.
The operations requiring support code are:

• any CDP operation involving a subnormal input when FTZ mode (FPSCR[24]) is
not enabled

• any CDP operation involving a NaN input when DN mode (FPSCR[25]) is not
enabled

• any CDP operation that has the potential of generating an underflow condition

• any CDP operation when the Inexact Exception Enable (IXE) bit is set

• any CDP operation when overflow is possible and the Overflow Exception
Enable (OFE) FPSCR[10]) is set

• any CDP operation that involves an invalid combination as the result of a product
overflow and the Invalid Exception Enable (IOE, FPSCR[8]) is set.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-13

The VFP10 coprocessor properly signals valid exception conditions according to the
IEEE 754 specification. The support code is utilized to determine the nature of the
exception, whether processing is required to perform preliminary computation for an
exception handler, and to call an installed exception handler or signal the termination of
the process.

Arithmetic exceptions on page 5-23 describes in greater detail the conditions under
which the VFP10 coprocessor traps to support code.

1.4.2 RunFast Mode

Although we refer to the behavior of the VFP10 coprocessor as being in RunFast Mode,
RunFast is not a mode that is set specifically, but the behavior of the VFP10 coprocessor
when the FTZ (Flush-to-Zero Mode, FPSCR[24]) and DN (Default NaN Mode,
FPSCR[25]) bits are set, and all exception enable bits are clear, that is, no exceptions
are enabled in the FPSCR bits [15], [12:8].

Specifically, in Run Fast mode the VFP10 coprocessor:

• processes an input subnormal operand and a tiny result before rounding as a
positive zero

• processes an input NaN as a default NaN

• returns the IEEE specified default result for operations that overflow, operations
which are considered as invalid, and for divide-by-zero cases, fully in hardware
and without additional latency

• processes all operations in hardware without trapping to support code.

In the FTZ mode, the VFP10 coprocessor treats a subnormal input as a positive zero for
computation. An operation that is determined to underflow the range of the destination
precision before rounding returns a positive zero.

Two flags are available to provide visibility into the VFP10 coprocessor in FTZ mode

• the IDC bit in the FPSCR (FPSCR[7]) is set in a sticky manner to indicate the
presence of a flushed input in the computations executed since this bit was last
cleared

• the UFC bit in the FPSCR (FPSCR[11]) is set in a sticky manner to indicate the
presence of a flushed result in the computations executed since this bit was last
cleared.

These two bits provide visibility to the programmer of the behavior of the code in the
presence of very small inputs or results.

Introduction

1-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

The Default NaN (DN) mode specifies that the result of any operation that involves
either input NaNs or generated a NaN result returns the default NaN. Propagation of the
fraction bits is maintained only by FABS, FNEG, and FCPY operations, all other CDP
operations ignore any information in the fraction bits of an input NaN.

RunFast mode enables the programmer to write code for the VFP10 coprocessor that
runs in determinable time, regardless of the characteristics of the input data, without
requiring the support code for assistance completing any operation. Within RunFast
mode no user exception traps are available, although exception status bits in the FPSCR
will be correct according to the IEEE754 for Inexact, Overflow, Invalid operation, and
Divide-by-zero. The Underflow exception status bit has been modified for FTZ mode.
All these bits are set by an exceptional condition and can only by cleared by a write to
the FPSCR. See Invalid operation on page 5-13 and following for more detail on these
exceptions.

Specifically, in Run Fast mode the VFP10 coprocessor:

• processes an input subnormal operand as a positive zero

• processes an input NaN as a default NaN

• returns the IEEE specified default result for operations that overflow, operations
which are considered as invalid, and for divide-by-zero cases, fully in hardware
and without additional latency.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-15

1.5 Short vector instructions

The VFPv2 architecture provides a mechanism for execution of short vectors of up to 8
operations on single-precision data and up to 4 operations for double-precision data.
Short vectors are most useful in graphics and signal-processing applications. They
contribute to smaller code size, faster execution by supporting parallel operations, most
notably multiple transfers, and simplify the generation of high data throughput
algorithms.

Short vector operations issue the individual operations specified in the instruction in a
serial fashion. A short vector does not begin execution until all the source registers are
available and all destination registers are not the target of another operation (to
eliminate write-after-write hazards).

 See Chapter 4 Instruction Execution in the VFP10 Coprocessor for more information
on instruction execution.

Introduction

1-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.6 Parallel execution of instructions

The VFP10 coprocessor provides the ability to execute several floating-point operations
in parallel, while the ARM1020E macrocell is executing ARM instructions. While a
short vector operation will execute for a number of cycles in the VFP10 coprocessor, it
will appear to the ARM1020E macrocell as a single-cycle instruction and be retired in
the ARM1020E macrocell before it completes execution in the VFP10 coprocessor.

The three pipelines are designed to operate independently of one another once initial
processing is completed. This makes it possible to issue a short vector operation and a
load or store multiple operation in the next cycle, and have both executing at the same
time, provided no data hazards exist between the two instructions. With this mechanism,
algorithms which can be double-buffered can be written to hide much of the time to
transfer data to and from the VFP10 coprocessor under the arithmetic operations,
resulting in a significant improvement in performance.

The separate divide and square root pipeline allows for operations, both data transfer
and CDPs (provided they are not to the DS pipeline) to execute in parallel with the
divide. The DS block has a dedicated write port to the register file, and no special care
is needed when executing operations in parallel with divide or square root instructions.
This is only true for scalar divides; short vector divides will still support the parallel data
transfer operations to execute in parallel in the LS pipeline, but the FMAC pipeline will
be unavailable until the final iteration of the short vector divide or square root has
completed the initial execute cycle. This is described further in Parallel execution of
operations on page 4-21.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-17

1.7 VFP10 coprocessor treatment of branch instructions

The VFP10 coprocessor does not directly provide branch instructions. Instead, the
result of a floating-point compare instruction can be stored in the ARM condition code
flags by loading the FPSCR register to the program counter using the FMSTAT instruction.
This enables the ARM branch instructions and conditional execution capabilities to be
used for executing conditional floating-point code. See section C5 of the ARM
Architecture Reference Manual for information on the use of ARM conditional
execution to test IEEE 754 predicates.

In many cases, in which full IEEE 754 comparisons are not needed, simple comparisons
of single-precision data, such as comparisons to zero, or to a constant, can be done using
a FMRS transfer and the ARM CMP and CMN instructions. This method is faster in many
cases than using a FCMP followed by an FMSTAT instruction. For more information See
Compliance with IEEE-754 on page 3-4.

Introduction

1-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.8 Writing optimal VFP10 coprocessor code

These guidelines provide significant performance increases for VFP10 coprocessor
code:

• Schedule most scalar operations immediately following each other, provided
there is no read-after-write hazard. Scalar double-precision multiply or
multiply-accumulate instructions, or short vector instructions of length greater
than 1, must be followed by either a single ARM or load/store instruction instead
of an arithmetic FMAC VFP10 coprocessor instruction.

• Avoid short vector divides and square roots. The VFP10 coprocessor FMAC and
DS pipelines are unavailable until the final iteration of the short vector divide or
square root is issued from the D stage. If the short vector divide or square root can
be separated, other VFP10 coprocessor instructions can be issued in the cycles
immediately following the divide or square root. See Example 4-21 on page 4-22
for more information on parallel execution.

• The best performance for data-intensive applications requires double-buffering
looped short vector instructions. The vector banks can be divided in half to
provide two independent working areas. Arithmetic operations on one half of the
bank must be followed by loads or stores to the other bank to take advantage of
the simultaneous execution of data transfer operations with the arithmetic
instructions.

• The first VFP10 coprocessor instruction following a branch mispredict is
serialized and waits for all VFP10 coprocessor instructions prior to the branch to
complete. Avoid placing long load/store instructions or divide/square-root
instructions before branches that are not predicted correctly a high percentage of
the time.

• Moves to and from control registers are serializing. Avoid placing these in loops
or time-critical code.

• In non-RunFast mode, avoid reading source operands in the next cycle (this
generates a read-after-read hazard).

• Avoid using FCMPZ/FCMPEZ if fully compliant IEEE 754 comparisons are not
required. The use of an FMRS instruction with an ARM CMP or CMN may be faster for
simple comparisons.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-19

1.9 Clocking

The VFP10 coprocessor is a fully static design, with a single clock input GCLK that
can be stopped indefinitely without loss of state. GCLK has the same timing
requirements as the ARM1020E GCLK and is in phase with it. The VFP GCLK must
be implemented to avoid excessive skew between the ARM1020E GCLK clock to
preserve signal integrity and timing on the coprocessor interface. Refer to ARM1020E
Technical Reference Manual for more information on the coprocessor interface.

The clock generation within the VFP10 coprocessor is tightly integrated with the test
functionality. Please see the next section on testing for more information on the impact
on the clocking by the test logic.

Introduction

1-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.10 Testing

The VFP10 coprocessor is a fully-scanned design, with full boundary scan capability
allowing for independent testing. See Chapter 5 Design for Test for more information
on testing.

Introduction

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-21

1.11 Modifications from VFP10 coprocessor (Rev 0)

The VFP10 coprocessor described in this Technical Reference Manual is the second
revision of the VFP10 coprocessor design. The first revision, VFP10 coprocessor (Rev
0), was designed as a prototype and not intended for product integration. Significant
enhancements have been made to the VFP10 coprocessor as a result of continued
development of the ARM floating-point products. These differences are as follows:

• 64-bit transfer instructions, implementations of the V5TE MCRR and MRRC
operations, are included in the VFP10 coprocessor Rev1. These instructions
transfer two ARM registers to and from a double-precision or two contiguous
single-precision registers in the VFP10 coprocessor. These instructions are
described in ARM v5TE coprocessor extensions on page 3-11.

• The DS is separate from the primary execution pipeline (FMAC) pipeline,
enabling parallel execution of instructions in the FMAC pipeline with a divide or
square root in the DS pipeline. Full hazard detection and register interlocking
between the two pipelines is handled completely by hardware. This is discussed
further in Parallel execution of operations on page 4-21.

• Conditions under which an instruction requires support code intervention have
been significantly reduced. The VFP10 coprocessor (Rev 0) requires support code
to process arithmetic operations involving infinities or which could potentially
overflow, and divide-by-zero cases. The VFP10 coprocessor (Rev1) handles
infinity inputs, overflow conditions, and divide-by-zero cases according to the
IEEE 754 for the case of the exception not enabled. Support code is utilized for
any arithmetic operation for which overflow is possible when the overflow trap is
enabled. This is discussed further in Chapter 5 Exception Handling.

• The VFP10 coprocessor (Rev1) introduces a new mode which simplifies and
significantly increases the performance for programs that use NaNs but do not
require propagation of the fraction bits of the NaN. This mode, referred to as
Default NaN (DN) mode, when enabled causes the VFP10 coprocessor (Rev 1) to
process any arithmetic operation involving a NaN in accordance with the IEEE
754 specification. Any arithmetic operation involving a quiet NaN returns the
default NaN without trapping to support code. Any arithmetic operation involving
a signaling NaN will set the Invalid Operation Exception status bit, and, if the
Invalid Operation exception is enabled, a trap is taken and the user trap handler is
called. This is described further in IEEE-754 implementation choices on
page 3-4.

• A further enhancement is made to the performance of high data throughput code
when the code is capable of executing in FTZ mode and Default NaN mode, and
when no exceptions are enabled. This condition, referred to as RunFast mode,
enables the VFP10 coprocessor to remove certain hazard conditions which are

Introduction

1-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

related to the pipeline, namely between short vector operations and loads
involving the short vector source registers. In VFP10 coprocessor (Rev 0) the load
operation would be required to stall until the scoreboard locks on the source
registers were removed by each iteration of the short vector operation. This
requirement was present to preserve the source registers in the event of an
exception detected on one of the short vector iterations. When executing in
RunFast mode the source registers are not required to be preserved, and the load
does not stall. This is discussed further in RunFast Mode on page 1-13, and in
Hazard and resource stall conditions on page 4-11.

• A new exception is introduced in Rev1 which identifies cases of an input
subnormal when in Flush-to-zero mode. The VFP10 (Rev 0) coprocessor did not
report the instance of a subnormal input when flushed to zero in FTZ mode. The
new exception status flag is called IDC. A corresponding enable, IDE, allows for
trapping on this case to a user trap handler. This is discussed further in Input
subnormal on page 5-12.

• The functionality of the UFC bit is modified in FTZ mode to identify the flushing
of a tiny result. The exception does not cause a trap even if UFE is enabled. This
is discussed further in Underflow on page 5-19.

• The VFP10 coprocessor Rev0 was implemented in a fully-synthesized
methodology, while the Rev1 is a semi-custom design. The VFP10 coprocessor
(Rev1) supports full scan testing, with boundary scan for isolation of the VFP10
coprocessor from other modules for testing purposes.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-1

Chapter 2
VFP10 Register File

This chapter describes implementation-specific features of the VFP10 coprocessor that
are useful to programmers. It contains the following sections:

• About the register file on page 2-2

• Register file internal formats on page 2-3

• Decoding the register file on page 2-5

• Loading operands from ARM registers on page 2-7

• Maintaining consistency in register precisions on page 2-9

• Data transfer between memory and VFP10 coprocessor registers on page 2-10

• Access to register banks in CDP operations on page 2-12.

VFP10 Register File

2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

2.1 About the register file

The ARM VFP10 coprocessor uses a register file that contains thirty-two 32-bit
registers organized in four banks. Each register can be used to store:

• a single-precision data item

• a single integer data item.

Alternatively, a consecutive pair of registers (R(even+1),R(even)) can be used to store a
double-precision item. The registers in the VFP10 coprocessor can also be used as
secondary data storage by a non floating-point application, because no modification of
the data is performed on a load or store operation.

The register file addressing is circular within each of the banks for most operations.
Load and store operations do not circulate, allowing for multiple banks, up to the entire
register file, to be loaded or stored in a single instruction. Short vector operations obey
certain rules specifying in what conditions the registers in the argument list specify
circular buffers or scalar registers. The LEN and STRIDE fields within the FPSCR
specify the number of operations performed by the short vector instructions. Further
information and examples are in the ARM Architecture Reference Manual, Section C5.
The banked approach to the register file supports the use of circular buffers by short
vector instructions for applications requiring high data throughput, such as filtering and
graphics transforms.

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-3

2.2 Register file internal formats

The VFPv2 architecture provides the option of an internal data format that is different
from some or all of the external formats. For the VFP10 coprocessor, data in the register
file possesses the same format as data in memory. No modification to the format is
performed by a load or store operation for single-precision, double-precision, or integer
data. It is the responsibility of the programmer to be aware of the data type in each
register. Hardware does not perform any checking of the agreement between data type
in the source registers and the data type expected by the instruction. Hardware always
interprets the data according to the precision contained in the instruction. It is
recommended that for context saving and restoring VFP data registers you use the
FLDMX/FSTMX instructions for compatibility with future implementations.

Attempting to access a register that has not been initialized or loaded with valid data is
UNPREDICTABLE. A means to detect access to an uninitialized register is to load all
registers with signaling NaNs in the precision of the initial access of the register and
enable the invalid exception to detect access to an uninitialized register.

2.2.1 Integer data format

The VFP10 coprocessor supports signed and unsigned 32-bit integers. Signed integers
are treated as two’s complement values. Figure 2-1 shows the integer format for signed
and unsigned integers.

Figure 2-1 Integer format

No modification to the data is implicit in a load, store, or transfer operation on integer
data. The format of integer data within the register file is identical to the format in
memory or in an ARM general-purpose register.

2.2.2 Single-precision data format

The single-precision data format used in the VFP10 coprocessor is defined in the
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-point Arithmetic. Refer
to this for details about:

• the exponent bias

• special formats

• numerical ranges.

31 0

Integer

VFP10 Register File

2-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Figure 2-2 shows the single-precision bit fields.

Figure 2-2 Single-precision data format

Single-precision data format comprises:

• the sign bit, [bit 31]

• the exponent, bits [30:23]

• the mantissa with no explicit integer bit, bits [22:0].

2.2.3 Double-precision data format

The double-precision data format used in the VFP10 coprocessor is defined in the IEEE
754 specification. Refer to this for details about:

• the exponent bias

• special formats

• numerical ranges.

Double-precision format comprises the Most Significant Word (MSW) and the Least
Significant Word (LSW). Figure 2-3 shows the bit fields of the two words in
double-precision format.

Figure 2-3 Register data formats

MSW comprises:

• the sign bit, bit 31 of the MSW

• the exponent, bits [30:20]

• the mantissa upper 20 bits with no explicit integer bit, bits [19:0].

LSW comprises the mantissa lower 32 bits.

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-5

2.3 Decoding the register file

Register file access involves the most significant four bits of the register number in the
instruction word. For operations involving double-precision operands or destinations,
the M, N, and D bit corresponding to a double-precision access must be zero. For
single-precision and integer accesses the most significant four bits is in the Fx bit
positions (where x is, m, n, or d) and the least significant bit in the M, N, or D bits
respectively for each instruction format. Figure 2-4 on page 2-6 shows the register file
encoding. See the ARM Architecture Reference Manual for instruction formats and the
position of these bits.

VFP10 Register File

2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Figure 2-4 Register file format

31 0instruction format

F
n,m,d

N,M,

D

S13 D6 S12

=1

Odd single-precision/

most significant word

double-precision

=0

Even single-precision/

least significant word

double-precision

31 0 31 0

S1 D0 S0

S5 D2 S4

S3 D1 S2

S7 D3 S6

S11 D5 S10

S9 D4 S8

S15 D7 S14

S19 D9 S18

S17 D8 S16

S21 D10 S20

S25 D12 S24

S23 D11 S22

S27 D13 S26

S31 D15 S30

S29 D14 S28

Double-precision bit index

Single-precision bit index
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

63 0

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-7

2.4 Loading operands from ARM registers

Floating-point data can be transferred between ARM registers and VFP10 coprocessor
registers using the MCR, MRC, MCRR, and MRCC coprocessor data transfer instructions.
Single-precision and integer data can be transferred to the ARM1020E macrocell and
manipulated in a single ARM register, while double-precision data requires two ARM
registers. No exceptions are possible on these transfer instructions.

MCR and MRC instructions transfer 32-bit quantities between ARM and VFP10
coprocessor registers. Table 2-1 describes MCR transfersr.

Table 2-2 describes MRC transfers.

Table 2-1 MCR transfers

Instruction Operation Description

FMXR VFP System Reg = Rd System register transfer.
Register may be any of FPSID, FPSCR,
FPEXC, FPINST, or FPINST2.

FMDLR Dn[31:0] = Rd Transfer of the lower half of a
double-precision data item.

FMDHR Dn[63:32] = Rd Transfer of the upper half of a
double-precision data item.

FMSR Sn = Rd Transfer of a single-precision or integer data
item.

Table 2-2 MRC transfers

Instruction Operation Description

FMRX Rd = VFP System Reg System register transfer.
Register may be any of FPSID, FPSCR,
FPEXC, FPINST, or FPINST2.

FMRDL Rd = Dn[31:0] Transfer of the lower half of a
double-precision data item.

FMRDH Rd = Dn[63:32] Transfer of the upper half of a
double-precision data item.

FMRS Rd = Sn Transfer of a single-precision or integer data
item.

VFP10 Register File

2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

MCRR and MRRC instructions transfer 64-bit quantities between ARM and VFP10
coprocessor registers. Table 2-3 describes MCRR transfers.

Table 2-4 describes MRRC transfers

Table 2-3 MCRR transfers

Instruction Operation Description

FMDRR Dm[lower half] = Rd
Dm = [upper half]Rn

Transfer the concatenation of Rn:Rd to VFP
double-precision register Dm.

FMSRR Sm = Rd
Sm+1 = Rn

Transfer the pair of ARM registers {Rn, Rd}
to a contiguous pair of VFP single-precision
registers {Sm+1, Sm}.

Table 2-4 MRRC transfers

Instruction Operation Description

FMRRD Rd = Dm[lower half]
Rn = Dm[upper half]

Transfer the VFP double-precision register
Dm to the concatenation of Rn:Rd.

FMRRS Rd = Sm

Rn = Sm+1

Transfer the contiguous pair of VFP
single-precision registers {Sm+1, Sm} to a
pair of ARM registers {Rn, Rd}.

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-9

2.5 Maintaining consistency in register precisions

The VFP10 coprocessor register file stores single-precision, double-precision, and
integer data in the same registers. For example, D6 occupies the same registers as S12
and S13. The usable format of the register or registers is a function of the last load or
arithmetic instruction that wrote to the register or registers.

The hardware does not do any checking of the register contents to enforce consistent
use of the current register format with the precision of the current operation.
Inconsistent use of the registers is possible but UNPREDICTABLE. The data is interpreted
by the hardware in the format required by the instruction regardless of the latest store or
write operation to the register. It is the task of the compiler or programmer to maintain
consistency in register usage.

VFP10 Register File

2-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

2.6 Data transfer between memory and VFP10 coprocessor registers

The format for accessing data stored in memory is determined by the CP15 control
register B bit. The ARM1020E macrocell supports both little-endian and big-endian
access formats in memory.

The ARM1020E macrocell stores 32-bit words in memory with the LSB in the lowest
byte of memory regardless of the endianness selected. For a store of a single-precision
data value the LSB bits are located at the target address with the lower two bits of the
address set to 00. The MSB is at the target address with the lower two bits set to 11. To
load the single-precision data to an ARM register or to a VFP10 coprocessor register
you must set the lower two bits of the target address to 00.

For single-precision data, Table 2-5 on page 2-10 shows the data storage in memory and
the address access to each byte in both little-endian and big-endian access modes. In the
examples in Table 2-5 on page 2-10 and Table 2-6 on page 2-11 the target address is
0x40000000.

Table 2-5 Single-precision data memory images and byte addresses

Single-precision
data bytes

Address in
memory

Little-endian
byte address

Big-endian byte
address

MSB

Bits[31:24]

0x40000003 0x40000003 0x40000000

Bits[23:16] 0x40000002 0x40000002 0x40000001

Bits[15:8] 0x40000001 0x40000001 0x40000002

LSB

Bits[7:0]

0x40000000 0x40000000 0x40000003

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-11

For double-precision data, the location of the two words that comprise the data are
stored in different locations for little-endian and big-endian data access formats.
Table 2-6 shows the data storage in memory and the address to access each byte in
little-endian and big-endian access modes.

The memory image for the data is identical for both little-endian and big-endian within
word data items. The hardware performs the transformations of the address to provide
both little-endian and big-endian addressing to the programmer.

Table 2-6 Double-precision data memory images and byte addresses

Double-
precision
data bytes

Little-endian Big-endian

Address in
memory

Byte address
Address in
memory

Byte address

MSB
Bits[63:56]

0x40000007 0x40000007 0x40000003 0x40000000

Bits[55:48] 0x40000006 0x40000006 0x40000002 0x40000001

Bits[47:40] 0x40000005 0x40000005 0x40000001 0x40000002

Bits[39:32] 0x40000004 0x40000004 0x40000000 0x40000003

Bits[31:24] 0x40000003 0x40000003 0x40000007 0x40000004

Bits[23:16] 0x40000002 0x40000002 0x40000006 0x40000005

Bits[15:08] 0x40000001 0x40000001 0x40000005 0x40000006

LSB
Bits[7:0]

0x40000000 0x40000000 0x40000004 0x40000007

VFP10 Register File

2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

2.7 Access to register banks in CDP operations

The register file is especially suited for short vector operations. You can use four banks
of registers in a circular fashion to facilitate signal processing and matrix operations.
For details of this refer to the ARM Architecture Reference Manual.

2.7.1 About register banks

The register file is divided into 4 banks with 8 registers in each bank for single-precision
operations and 4 registers per bank for double-precision operations. The banks are
accessed in a circular manner by CDP instructions. Load and store multiple instructions
do not access the registers in a circular manner but will treat the register file as a linearly
ordered structure.

Table 2-7 shows how the register banks are defined.

A short vector CDP operation that has a source or destination vector crossing a bank
boundary accesses the registers within the bank as if the last register in the bank was
followed in a linear order by the first register in the bank.

Example 2-1 on page 2-12 shows a short vector operation crossing bank boundaries.

Table 2-7 Register bank description

Bank
Single-precision
registers in bank

Double-precision
registers in bank

0 S0-S7 D0-D3

1 S8-S15 D4-D7

2 S16-S23 D8-D11

3 S24-S31 D12-D15

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-13

Example 2-1 Register access example

For instance, the add operation:
FADDS S11, S22, S31

if treated as a vector of length 6, would access the registers in the following
manner:

FADDS S11, S22, S31 ; the first iteration
FADDS S12, S23, S24 ; the second iteration. The second source vector has

 ; wrapped around and is accessing the first register in
; the 4th bank

FADDS S13, S16, S25 ; the third iteration. The first source vector has
; wrapped around and is accessing the first register in
; the 3rd bank

FADDS S14, S17, S26 ; the fourth iteration
FADDS S15, S18, S27 ; the fifth iteration
FADDS S8, S19, S28 ; the sixth and last iteration The destination vector

; has wrapped around and is writing to the first;
; register in the second bank

2.7.2 Operations using register banks

The register file organization supports four types of operations described in the
following sections:

• Scalar-only operations on page 2-13

• Vector-only operations on page 2-14

• Vector-only operation with scalar source on page 2-14

• Scalar operations in short vector mode on page 2-15.

See FPSCR register on page 3-23 for details of LEN and STRIDE fields and the
FPSCR.

Scalar-only operations

An operation is a scalar-only operation if the operands are treated as scalars and the
result is a scalar. There are two ways to perform a scalar-only operation:

• Setting the LEN field of the Floating-Point Status and Control Register (FPSCR)
to 0 selects a vector length of 1. For example, if LEN = 0, then the following
operation:

FADDS S12, S21, S22

VFP10 Register File

2-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

results in the sum of the single-precision values in S21 and S22 being written to
S12.

• If the LEN field of the FPSCR is not 0, the operation is scalar-only if the
destination register is in bank 0. For example, regardless of the value of LEN, the
following operation:

FADDD D2, D5, D14

results in the sum of the double-precision values in D5 and D14 being written to
D2. No other operation will be performed by this instruction even though the LEN
field value is nonzero. Scalar operations in short vector mode on page 2-15 shows
an example where scalar and short vector operations are intermixed.

Some operations can only operate on scalar data regardless of the value of the LEN field
or destination register bank number. These operations are:

• compare instructions FCMP, FCMPZ, FCMPE, and FCMPEZ

• integer conversion instructions FTOUI, FTOUIZ, FTOSI, FTOSIZ, FUITO, and FSITO

• precision conversion instructions FCVTDS and FCVTSD.

Vector-only operations

Vector-only operations require the LEN field to be nonzero, and the destination and Fm
registers not in bank 0.

For example, if LEN = 3 (an effective vector length of 4) and STRIDE = 0 (for a vector
stride of one) the following instruction:

FMACS S16, S0, S8

results in the following operations being performed as an atomic operation:

FMACS S16, S0, S8
FMACS S17, S1, S9
FMACS S18, S2, S10
FMACS S19, S3, S11.

Vector-only operation with scalar source

The VFPv2 architecture enables a vector to be operated on by a scalar operand. The
destination must be a vector (not in bank 0) and the Fm operand must be in bank 0.

For example, if LEN = 1 (an effective vector length of 2) and STRIDE = 0 (for a vector
stride of one) the following operation:

FMULD D12, D8, D2

results in the following scalar operations being performed as an atomic operation:

VFP10 Register File

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-15

FMULD D12, D8, D2
FMULD D13, D9, D2.

This effectively scales the two entry vectors (D8, D9) by the value in D2 and writes the
new vector to D12 and D13.

Scalar operations in short vector mode

You can intermix scalar and short vector operations by carefully selecting the source
and destination registers. Combining the second method of performing scalar-only
operations with nonscalar operation means that it is not necessary to change the LEN
field to 0 from a nonzero value to perform scalar operations.

For example, if LEN = 1 for a vector length of 2 and STRIDE = 0 (for a vector stride of
one), then the following instructions:

FABSD D4, D8
FADDS S0, S0, S31
FMULS S24, S26, S1

results in the following operations being performed:

FABSD D4, D8 ;a vector double-precision ABS operation
FABSD D5, D9 ;on registers (D8, D9) to (D4, D5)
FADDS S0, S0,S31 ;a scalar increment of S0 by S31
FMULS S24,S26,S1 ;a vector(S26, S27) scaled by S1
FMULS S25,S27,S1 ;and written to (S24, S25)

Table 2-8 to Table 2-11 on page 2-16 summarize the four types of operations possible
in the VFPv2 architecture. Any refers to the availability of all registers in the precision
for the specified operand. The VFP10 coprocessor supports all these operations in
hardware. S refers to a scalar register only with a single register on each of the Fd, Fn,
and Fm operands. V refers to a vector register with multiple registers for Fd and Fn, and
possibly also for Fm. Table 2-8 describes single-precision three-operand register usage.

Table 2-8 Single-precision three-operand register usage

LEN field Fd Fn Fm Operation type

0 Any Any Any S = S op S or S = S op S * S

Non-0 0-7 Any Any S = S op S or S = S op S * S

Non-0 8-31 Any 0-7 V = V op S or V = V op V * S

Non-0 8-31 Any 8-31 V = V op V or V = V op V * V

VFP10 Register File

2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 2-9 describes single-precision two-operand register usage.

Table 2-10 describes double-precision three-operand register usage.

Table 2-10 describes double-precision two-operand register usage.

Table 2-9 Single-precision two-operand register usage

LEN
field

Fd Fm
Operation
type

0 Any Any S = op S

Non-0 0-7 Any S = op S

Non-0 8-31 0-7 V= op S

Non-0 8-31 8-31 V= op V

Table 2-10 Double-precision three-operand register usage

LEN field Fd Fn Fm Operation type

0 Any Any Any S = S op S or S = S op S * S

Non-0 0-3 Any Any S = S op S or S = S op S * S

Non-0 4-15 Any 0-3 V = V op S or V = V op V * S

Non-0 4-15 Any 4-15 V = V op V or V = V op V * V

Table 2-11 Double-precision two-operand register usage

LEN
field

Fd Fm
Operation
type

0 Any Any S = op S

Non-0 0-3 Any S = op S

Non-0 4-15 0-3 V= op S

Non-0 4-15 4-15 V= op V

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-1

Chapter 3
VFP10 Programmer’s Model

This chapter describes implementation-specific features of the VFP10 coprocessor that
are useful to programmers. It contains the following sections:

• About the programmer’s model on page 3-2

• Compliance with IEEE-754 on page 3-4

• ARM v5TE coprocessor extensions on page 3-11

• Summary of VFP coprocessor system control registers on page 3-17

• FPSCR register on page 3-23.

VFP10 Programmer’s Model

3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3.1 About the programmer’s model

This section gives a general introduction to the VFP10 coprocessor implementation of
the VFPv2 floating-point architecture.

ARM Architecture Reference Manual deals with Architecture aspects of VFPv1.

VFP10 implements all the instructions and modes of the VFPv2 architecture. The
VFPv2 adds the following features and enhancements to the VFPv1 architecture:

• The ARM v5TE instruction set, which includes MRRC and MCRR 64-bit ARM to
coprocessor transfer instructions. These instructions allow the transfer of a
double-precision register, or two consecutively numbered single-precision
registers, to or from a pair of ARM registers. See Loading operands from ARM
registers on page 2-7 for syntax and usage of VFP MRRC and MCRR instructions.

• The Default NaN operating mode. In this mode, any operation that involves one
or more NaNs as operands produces the default NaN as a result, rather than return
the NaN or one of the NaNs involved in the operation. This mode is compatible
with the IEEE-754 specification but not with current industry handling of NaNs.

• Addition of the subnormal Input exception flag (IDC). This flag is set whenever
an operation has as an operand a subnormal value. It remains set until cleared
through a write to the FPSCR. A separate trap enable bit is also added (IDE).
When set, the VFP10 coprocessor traps to the UNDEFINED trap upon an assertion of
IDC.

• Modification of the functionality of the UFC bit when FTZ modes are enabled. In
this mode, the UFC bit is set whenever a result is below the threshold for normal
numbers before rounding, and is flushed to zero. UFC remains set until cleared
through a write to the FPSCR. The underflow trap enable bit, UFE, does not cause
a trap to the UNDEFINED trap handler on an assertion of UFC.

• Modification of the invalid trap functionality when FTZ and DN modes are
enabled. In this mode, the IOC bit is set on any operation that would normally
have asserted IOC with the exception of certain cases of floating-point to integer
conversions. If the conversion is performed in a rounding mode other than
round-to-zero (truncate), and the result overflows the destination integer format
due to rounding, IOC does not cause a trap to be taken if IOE is enabled, but does
set the IOC bit. If IOE is set and a floating-point to integer conversion overflows
the destination integer format before rounding, IOC is set, and the VFP10
coprocessor does trap to the UNDEFINED trap handler.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-3

• Modification of the functionality of the IXC bit in FTZ mode. In the VFPv1
architecture specification the IXC bit was set when an input or result was flushed
to zero. In VFPv2 the IDC and UFC bits provide this information. See Inexact
result on page 5-21 for more information.

VFP10 Programmer’s Model

3-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3.2 Compliance with IEEE-754

This section introduces issues connected with IEEE-754 compliance:

• why compliance is important

• hardware and software components

• software-based components and their availability.

3.2.1 An IEEE-754-compliant implementation

The VFP10 coprocessor and support code together provide IEEE-754-compliant
implementations of all the floating-point operations supplied by the VFPv2
architecture. Unless a floating-point exception occurs and the enable bit of the
exception in the FPSCR is set, it appears to the program that the floating-point
instruction was executed by the hardware. However, if in the execution of the instruction
an exceptional condition is detected which requires software to complete the operation,
the instruction is processed, taking significantly more cycles than normal to produce the
result. This only happens for cases whose incidence is typically very low, and is a
common practice in the industry.

The VFP support code also includes routines that perform administrative tasks such as
initializing the VFP system.

3.2.2 Complete implementation of IEEE-754

The following operations from the IEEE-754 standard are not supplied by the VFP
instruction set:

• remainder

• round floating-point number to integer-valued floating-point number

• binary-to-decimal conversions

• decimal-to-binary conversions

• direct comparison of single-precision and double-precision values.

To obtain a complete implementation of the IEEE-754 standard, the VFP coprocessor
and support code must be augmented with library functions that implement the above
operations. See AFS Firmware Suite Version 1.3 Reference Guide for details of support
code.

3.2.3 IEEE-754 implementation choices

The VFPv2 architecture specifies how various implementation choices allowed by the
IEEE-754 standard are made. Full details are in the ARM Architecture Reference
Manual Section C1 1.3.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-5

Further implementation choices are made within the VFP10 coprocessor about which
cases are handled by the VFP10 coprocessor hardware and which cases are bounced to
the support code.

To execute frequently encountered operations as fast as possible and minimize silicon
area, handling of infrequently occurring values and some exceptions is relegated to the
support code. The VFP10 coprocessor supports two modes for handling infrequently
occurring values:

• non-RunFast, which is fully-IEEE 754 compliant with support code assistance

• RunFast, which is near fully-IEEE 754 compliant in hardware
alone.Non-RunFast requires the floating-point support code to handle certain
operands and exceptional conditions not supported in the hardware. Although
fully compliant with the IEEE 754, the support code can increase the runtime of
an application and increase the size of kernel code.

When the flush-to-zero (FTZ) and default NaN (DN) modes are enabled, and all
exceptions are disabled, the VFP10 coprocessor operates in RunFast mode. While the
potential loss of accuracy for very small values is present, the use of the RunFast mode
removes a significant number of performance-limiting stall conditions, allowing for
increased performance of typical and optimized code, and a reduction in the size of
kernel code by not requiring the floating-point support code to be present.

Supported formats

The supported formats are:

• Single-precision and double-precision. No extended format is supported.

• Integer formats:

— unsigned 32-bit integers

— two’s complement signed 32-bit integers.

VFP10 Programmer’s Model

3-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

NaN handling

All single-precision and double-precision values with maximum exponent field and
nonzero fraction field are valid NaNs. A NaN is signaling or quiet depending on
whether its most significant fraction bit is 0 or 1 respectively. Two NaN values are
treated as different NaNs if they differ in any bit.

Any signaling NaN passed as input to an operation causes an Invalid Operation
exception, which is passed to a user handler if present, and if not, then a default quiet
NaN is created. The rules for cases involving multiple NaN operands may be found in
the ARM Architecture Reference Manual.

In the absence of any signalling NaNs, any quiet NaNs passed as input to an operation
cause a default quiet NaN to be returned. The return NaN is guaranteed to be one of the
input NaNs.

The default NaN for ARM floating-point processors and libraries is defined as follows:

• In non-RunFast mode, NaNs are handled according to the description in the ARM
Architecture Reference Manual. The hardware does not process the NaNs directly
for arithmetic CDP instructions, but traps to the support code for all NaN
processing. For data transfer operations, NaNs are transferred without raising the
Invalid Operation Exception or trapping to support code. For the non-arithmetic
CDP instructions, FABS, FNEG, and FCPY, NaNs are copied, with change of sign if
specified in the instructions, without setting the Invalid Operation Exception or
trapping to support code.

• In RunFast mode, NaNs are handled completely within the hardware without
support code assistance. Signaling NaNs set the IOC bit when encountered in an
arithmetic CDP operation. NaN handling by data transfer and non-arithmetic
CDP instructions is the same as in non-RunFast mode. Arithmetic CDP
instructions involving NaN operands return the default NaN regardless of the
fractions of the NaN operands. Although this is a departure from the behavior of
most hardware floating-point units in the industry, it is compliant with the IEEE
754 specification.

Table 3-1 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent FF 7FF

Fraction [22] - 1
[21:0] - all 0

[51] - 1
[50:0] - all 0

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-7

Comparisons

Comparison results set condition codes in the FPSCR. The FMSTAT instruction transfers
the current condition codes in the FPSCR to the ARM CPSR. Refer to the ARM
Architecture Reference Manual for mapping of IEEE predicates to ARM conditions.
The condition codes used are chosen so that subsequent conditional execution of ARM
instructions can test the predicates defined in the standard.

The VFP10 coprocessor hardware handles most comparisons of numeric values itself,
generating the appropriate condition code depending on whether the result is less than,
equal, or greater than.

The VFP10 coprocessor supports:

• compare operations FCMPS,FCMPZS,FCMPD,and FCMPDZS

• compare with exception operations FCMPES,FCMPEZS,FCMPED,and FCMPEDZ.

In the compare family the presence of a signaling NaN compares as unordered and
generates an Invalid Operation exception. If the Invalid Operation exception enable is
set (IOE, FPSCR[8]) the user trap handler is called. A quiet NaN compares as unordered
but does not generate an Invalid Operation exception.

In the compare with exception family the invalid exception is signaled when one or both
operands to the compare are NaNs, either signaling or quiet and the comparison is
unordered.

Some simple comparisons on single-precision data may be computed directly by the
ARM1020E core. If only equality or comparison to zero is needed, and NaNs are not an
issue, performing the comparison in ARM registers using CMP or CMN instructions may
be faster.

If comparison to zero is needed, the ARM comparison instructions may be faster. The
following instructions set the Z flag for positive values:

FMRS Rx,Sn
CMP Rx,#0
BEQ label

If the input values might include negative numbers, including negative zero, the
following code sets the Z flag correctly:

FMRS Rx, Sn
CMP Rx, #0x80000000
CMPNE Rx, #0
BEQ label

Using a temporary register is even faster:

VFP10 Programmer’s Model

3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

FMRS Rx,Sn
MOVS Rt,Rx,LSL #1
BEQ label

Comparisons with particular values are also possible. For example, to check if a positive
value is greater or equal to +1.0, use:

FMRS Rx,Sn
CMP Rx,#0x3F800000
BGE label

Magnitude comparisons are possible for single-precision values using the following
code.

Note

 NaNs compare equal when all bits of the NaN are identical

FMRS Rx,Sn
FMRS Ry,SM
CMP Rx,Ry
ORRNE Rt,Rx,Ry
MOVNES Rt,Rt,LSL #1

The Z flag is set correctly and this makes unsigned comparisons easier.

When comparisons are required for double-precision values or when IEEE comparisons
are required, it is safer to use the VFP FCMP and FCMPE instructions with FMSTAT.

Underflow

Note
 References to IEEE-754 in this section appear in italicized text.

For the underflow exception, the after rounding form of tininess and the
subnormalization loss form of loss of accuracy are used.

In FTZ mode (see part C section 2-4, page C2-13 of the ARM Architecture Reference
Manual for information on FTZ mode) results which are tiny before rounding are
flushed to a positive zero and the UFC bit in the FPSCR (FPSCR[3]) is set. Support code
is not involved.

When the VFP10 coprocessor is not in FTZ mode, any operation for which there exists
a risk of tininess occurring bounces to support code. If the operation does not result in
a tiny result, the computed result is returned and the UFC bit in the FPSCR (FPSCR[3])

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-9

is not set. However, IXC might be set if the operation was inexact. If tininess does occur,
the rules given above govern what actions are taken as a result. See Exception disabled
on page 5-14 for more information on underflow handling.

Exceptions

Exceptions are taken in the VFP10 coprocessor in an imprecise manner. The state of the
ARM and of the VFP is not guaranteed to be the state at the point in the program flow
at which the exception occurred. Rather, exceptional instructions causes the VFP10
coprocessor to enter an exceptional state, and the next floating-point instruction issued
to the VFP10 coprocessor triggers exception processing. It is possible that a number of
non-VFP10 instructions and some VFP10 coprocessor instructions may have been
executed after the exceptional instruction was issued and before exception processing
begins. Any source registers involved in the exceptional instruction are preserved, and
the destination register is not overwritten on entry to the support code. Once the support
code has processed the exception it returns to the program flow at the point of the trigger
instruction, if the detected exception enable is not set, or passes control to a user trap
handler if the detected exception enable is set and a trap handler has been installed. If
the exception is overflow or underflow, the IEEE 754 specified intermediate result is
written to the destination register in the VFP10 coprocessor before the user trap handler
is called.

Note

 The precise set of facilities available are system-dependent.

3.2.4 Non-IEEE 754 operation modes

The VFP10 coprocessor provides two non-IEEE 754 modes:

• Flush-to-zero (FTZ) mode on page 3-9

• Default NaN mode on page 3-10.

Flush-to-zero (FTZ) mode

The VFP10 coprocessor provides a Flush-To-Zero (FTZ) mode to increase performance
on very small inputs and results. FTZ mode is enabled by setting the FZ bit in the
FPSCR (FPSCR[24]). When the VFP10 coprocessor is in FTZ mode all input
subnormal operands to arithmetic CDP operations are treated as positive zeros in the
operation. Exceptions that result from a zero operand are signaled appropriately. FABS,
FCMP, and FNEG are not considered arithmetic CDP operations, and are not affected by
FTZ mode. Results that are tiny for the destination precision (that is, smaller in

VFP10 Programmer’s Model

3-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

magnitude than the minimum normal value) before rounding are replaced with a
positive zero. Two exception status bits, IDC (FPSCR[15]) and UFC (FPSCR[3]), are
used to identify when an input flush or a result flush occurred, respectively.

Default NaN mode

Default NaN mode is selected by setting the DN bit in the (FPSCR [25]). The default
for this bit is disabled, or 0. This mode specifies a behavior that is consistent with the
IEEE 754 but not with contemporary general purpose or embedded offerings. The IEEE
754 specifies the result of an operation involving a NaN returns a QNaN but suggests
the QNaN be of one of the source NaNs. In most contemporary floating-point
implementations the fraction bits returned are the fraction bits of the input NaN or one
of the input NaNs in a case of more than one, and which input NaN is specified in the
architecture. When Default NaN mode is not enabled, the VFPv2 architecture behaves
as described in the ARM Architecture Reference Manual.

In Default NaN mode any operation involving one or more input NaNs, quiet or
signaling, returns the default NaN. The IOC bit is set in any arithmetic CDP instruction
with a signalling NaN operand.

The exception to this are data transfer operations and the non-arithmetic operations
FCPY, FABS, and FNEG. These operations continue to process NaNs retaining the fraction
bits. As in the case when the DN mode is not enabled, no exception status bits can be
set for these instructions when a NaN is involved.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-11

3.3 ARM v5TE coprocessor extensions

This section describes the syntax and usage of the four v5TE architecture coprocessor
extension instructions:

• FMDRR on page 3-11

• FMRRD on page 3-12

• FMSRR on page 3-13

• FMRRS on page 3-15.

3.3.1 FMDRR

The FMDRR operation transfers data in two ARM registers to a double-precision register
in the VFP10 coprocessor. The ARM registers are not required to be contiguous.
Figure 3-1 shows the bit fields for the FMDRR instruction.

Figure 3-1 FMDRR bit fields

Syntax

FMDRR {<cond>} <Dm>, <Rd>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Dm> Specifies the destination double-precision VFP coprocessor register.

<Rd> Specifies the source ARM register for the lower half of the 64-bit
operand.

<Rn> Specifies the source ARM register for the upper half of the 64-bit
operand.

Architecture version

D variants only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 1 0 0 0 1 0 0 Rn Rd 1 0 1 1 0 R R 1 Dm

VFP10 Programmer’s Model

3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exceptions

None

Operation

if ConditionPassed(cond) then
Dm[upper half] = Rn
Dm[lower half] = Rd

Notes

Conversions In the programmer's model, FMDRR does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the Dm value as a
double-precision floating-point number.

3.3.2 FMRRD

The FMRRD operation transfers data in a double-precision register in the VFP to two ARM
registers. The ARM registers are not required to be contiguous. Figure 3-2 shows the bit
fields for the FMRRD instruction.

Figure 3-2 FMRRD bit fields

Syntax

FMRRD {<cond>} <Rd>, <Rn>, <Dm>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register for the lower half of the 64-bit
operand.

<Rn> Specifies the destination ARM register for the upper half of the 64-bit
operand.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 1 0 0 0 1 0 1 Rn Rd 1 0 1 1 0 R R 1 Dm

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-13

<Dm> Specifies the source double-precision VFP coprocessor register.

Architecture version

D variants only

Exceptions

None

Operation

if ConditionPassed(cond) then
Rn = Dm[upper half]
Rd = Dm[lower half]

Notes

Use of R15 If R15 is specified for <Rd> or <Rn>, the results are UNPREDICTABLE.

Conversions In the programmer's model, FMRRD does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the Dm value as a
double-precision floating-point number.

3.3.3 FMSRR

The FMSRR operation transfers data in two ARM registers to two consecutively numbered
single-precision registers Sm and Sm+1 in the VFP10 coprocessor. The ARM registers are
not required to be contiguous. Figure 3-3 shows the bit fields of the FMSRR instruction.

Figure 3-3 FMSRR bit fields

Syntax

FMSRR {<cond>} <Rd>, <Rn>, <registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 1 0 0 0 1 0 0 Rn Rd 1 0 1 0 0 R M 1 Sm

VFP10 Programmer’s Model

3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the source ARM register for the Sm+1 VFP coprocessor
single-precision register.

<Rn> Specifies the source ARM register for the Sm VFP coprocessor
single-precision register.

<registers> Specifies the pair of consecutively numbered single-precision destination
VFP coprocessor registers, separated by a comma and surrounded by
brackets. If m is the number of the first register in the list, the list is
encoded in the instruction by setting Sm and M to the top 4 bits and the
bottom bit respectively of m. For example, if <registers> is {S1, S2}, the
Sm field of the instruction is 0b0000 and the M bit is 1.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then
Sm = Rd
Sm+1 = Rn

Notes

Conversions In the programmer's model, FMSRR does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the Sm and Sm+1 values as a
single-precision floating-point numbers.

Invalid register lists

If Sm is 0b1111 and M is 1 (an encoding of S31) the instruction is
UNPREDICTABLE.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-15

3.3.4 FMRRS

The FMRRS operation transfers data in two consecutively numbered single-precision
registers in the VFP to two ARM registers. The ARM registers are not required to be
contiguous. Figure 3-4 shows the bit fields for FMRRS.

Figure 3-4 FMRRS bit fields

Syntax

FMRRS {<cond>} <Rd>, <Rn>, <registers>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register for the Sm+1 VFP coprocessor
single-precision value.

<Rn> Specifies the destination ARM register for the Sm VFP coprocessor
single-precision value.

<registers> Specifies the pair of consecutively numbered single-precision source
VFP coprocessor registers, separated by a comma and surrounded by
brackets. If m is the number of the first register in the list, the list is
encoded in the instruction by setting Sm and M to the top 4 bits and the
bottom bit respectively of m. For example, if <registers> is {S16, S17},
the Sm field of the instruction is 0b1000 and the M bit is 0.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then
Rd = Sm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 1 0 0 0 1 0 1 Rn Rd 1 0 1 0 0 R M 1 Sm

VFP10 Programmer’s Model

3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Rn = Sm+1

Notes

Conversions In the programmer's model, FMRRS does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the Sm and Sm+1 values as
a single-precision floating-point numbers.

Invalid register lists

If Sm is 0b1111 and M is 1 (an encoding of S31) the instruction is
UNPREDICTABLE

Use of R15 If R15 is specified for <Rd> or <Rn>, the results are UNPREDICTABLE.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-17

3.4 Summary of VFP coprocessor system control registers

The VFP10 coprocessor provides sufficient information for processing of all exception
conditions encountered by the hardware. In the event of an exceptional situation, the
hardware provides the instruction word, exception status information, such as the
detected exceptional condition and in the case of vector operations, the iteration count
of the exceptional iteration. These registers are designed to be used with the support
code software available from ARM Ltd. As a result, this document does not fully
specify exception handling in all cases.

Support for exceptional conditions is provided in hardware through three exception
registers:

• FPINST

• FPINST2

• FPEXC.

In addition, the source data registers for an exceptional instruction is available to the
support code. However, it is possible that some or all of the other data registers will have
been modified and not in the state at the time the exceptional instruction was issued.

Access to the FPEXC, FPINST, and FPINST2 registers is available only in a Privileged
mode, and access does not trigger exceptions. The FMXR and FMRX instructions are used
to store and load these registers, respectively. Table 3-2 describes access to these
registers.

The FPEXC must be saved and restored whenever the context is changed. If the VFP10
coprocessor is in the exceptional state (EX, FPEXC[31], is set) the FPINST and
FPINST2 registers must also be saved and restored. The context switch code can be
written to consider the EX bit in the determination of which registers to save and restore,
or it might choose to save all three.

Table 3-2 Access to control registers

Register
FMXR/FMRX
<reg> field
encoding

Trigger
exception
processing?

Legal
modes

FPINST b1001 No Privileged

FPINST2 b1010 No Privileged

FPEXC b1000 No Privileged

VFP10 Programmer’s Model

3-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3.4.1 Instruction word registers (FPINST and FPINST2)

In an exceptional condition, the VFP10 coprocessor provides two exception status
registers. The first, FPINST, contains the exceptional instruction, while the second,
FPINST2, contains an instruction which was issued and acknowledged by the VFP10
coprocessor before the exception was detected. This instruction has been retired in the
ARM1020E processor and cannot be reissued, and must be executed by support code.

The instruction in the FPINST register is in the same format as the issued instruction
but is modified in several ways. The condition code bits ([31:28]) have been forced to
1110, the AL (always) condition. If the instruction is a short vector, the source and
destination registers which reference short vectors are updated to point to the source and
destination registers of the first exceptional iteration. See Exception processing for CDP
short vector instructions on page 5-8 for more information.

The instruction in the FPINST2 register is in the same format as the issued instruction
and is modified only by the forcing of the condition code bits ([31:28]) to 1110, the AL
(always) condition.

Both the FPINST and FPINST2 registers must be saved and restored in a context switch
if the EX bit in the FPSCR (FPSCR[31)] is set. If EX is clear, these registers are not
required to be saved and restored. They may be saved and restored to simplify context
switch code.

3.4.2 The support code exception status word FPEXC

The FPEXC register contains the VFP enable bit (FPEXC(30). Access to the FPEXC
with the FMRX and FMXR instructions does not cause the UNDEFINED instruction trap to be
taken if the VFP10 coprocessor is disabled.

In a bounce situation, the exceptional condition is recorded in the FPEXC register to
provide support code information sufficient to recover from the exceptional condition
or report the condition to a system or user software exception handler. The format of the
FPEXC register is shown in Figure 3-5 on page 3-19.

The exception signals in the FPEXC identify potential exceptional conditions. For two
of the bits, INV and UFC, an instruction that sets one of these bits signals a condition
that cannot in every situation be completed by the hardware and requires assistance
from the support code. These bits do not always signify a true exceptional condition.
For example, the UFC flag is set whenever an operation has the potential to generate a
result that is below the minimum threshold for the destination precision, which is not
known conclusively until the final normalization and rounding in the last stage. The
INV bit always represents a condition in which one or more input operands cannot be
processed according to the architectural specifications by the hardware. This includes

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-19

subnormalized inputs when the VFP10 coprocessor is not in FTZ mode and NaNs when
the VFP10 coprocessor is not in DN mode. Table 3-3 shows the function of the status
and exception bits in the FPEXC.

For the OFC and IOC bits, the conditions identified by these bits being set cause a
bounce only when the corresponding trap enable bit in the FPSCR is set. They represent
potential exceptional conditions that will be handled by the hardware but could produce
a true exceptional condition, but this is not known conclusively until the last stage. If
the user wants to take a trap on one of these conditions the bounce must occur based on
information known only in the first stage. Support code is required to complete the
operation to the point of determination of the exceptional state. If a true exception
exists, the user-provided trap handler is called. If not, the result is returned and no
exception is signalled. Figure 3-5 on page 3-19 shows the FPEXC bit fields

Note
 The support code must clear the EX bit immediately on entry to avoid a recursive
exception trap situation. All exception status bits must be cleared before returning from
exception code to user code. The FPEXC must be saved and restored in a context
switch.

Figure 3-5 FPEXC register format

Table 3-3 shows the FPEXC bit fields.

31 30 29 28 1 0

EX EN SBZSBZ SBZ

11 10 8 7 46 3 2

VECITR UFC OFCSBZINVFP2V IOC

Table 3-3 FPEXC bit field descriptions

Bit Name Description

31 EX Exception status bit.

If set, the VFP is in exception mode and causes all following
VFP instructions (except FMRX and FMXR of the FPEXC,
FPINST, FPINST2, or FPSID registers in a Privileged Mode)
to assert CPBOUNCEE.

30 EN Enable VFP:

0 = disabled (default)

1 = enabled.

29 SBZ Should be zero.

VFP10 Programmer’s Model

3-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 3-4 lists the iterations for short vector operations in FPEXC.

28 FP2V Set if the FPINST2 register contains a valid instruction.

Bits [27:11] SBZ Should be zero.

Bits[10:8] VECITR Vector iteration count.

This field contains the number of iterations remaining in a
short vector operation in which an iteration was exceptional.
Details of the counts are given in Table 3-4.

7 INV Set if the VFP10 coprocessor is not in FTZ mode and an
operand is a subnormal or if the VFP10 coprocessor is not in
DN mode and an operand is a NaN.

Bits[6:4] SBZ Should be zero.

3 UFC Set if the VFP10 coprocessor is not in FTZ mode and a
potential underflow condition exists.

2 OFC Set if the OFE bit in the FPSCR is set and the VFP10
coprocessor is not in RunFast mode and a potential overflow
condition exists.

1 DNM Do not modify.

0 IOC Set if the IOE bit in the FPSCR is set and the VFP10
coprocessor is not in RunFast mode and a potential invalid
operation condition exists.

Table 3-4 Vector iteration count bit values

Bit values for FPEXC[10:8] Iterations

000 1

001 2

010 3

011 4

100 5

Table 3-3 FPEXC bit field descriptions (continued)

Bit Name Description

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-21

3.4.3 The FPSID register

Figure 3-6 shows the bit fields in the FPSID register.

Figure 3-6 FPSID register format

The value for of the FPSID register for the VFP10 coprocessor (Rev1) is 0x410101A0.

Table 3-5 gives the meanings of the bit fields in FPSID.

101 6

110 7

111 0

Table 3-4 Vector iteration count bit values (continued)

Bit values for FPEXC[10:8] Iterations

31 24 23 22 21 16 15 4 38 7 0

Implementer

19

Architecture Part number RevisionSW

20

SNGFormat Variant

Table 3-5 FPSID bit fields

Bit Meaning Value

Bits[31:24] Implementer 0x41 = A
(ARM Limited)

Bit[23] Hardware/Software 0b0:
Hardware implementation

Bits[22:21] FSTMX/FLDMX format 0b00:
Format 1

Bit[20] Precisions supported 0b0:
Both single-precision and
double-precision data are
supported

Bits[19:16] Architecture version 0b0001:
VFPv2 architecture

VFP10 Programmer’s Model

3-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Access to the FPSID register with the FMRX and FMXR instructions does not trigger
exception processing in any ARM processor mode. The FPSID may be read when the
VFP10 coprocessor is disabled without causing an UNDEFINED instruction trap to be
taken.

Bits[15:8] Part number 0x10:
VFP10 (Rev 1)

Bits[7:4] Variant 0xA:
ARM10 coprocessor interface

Bits[3:0] Revision 0x0:
First version

Table 3-5 FPSID bit fields

Bit Meaning Value

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-23

3.5 FPSCR register

All FPSCR bits can be read and written, and can be accessed in both privileged and
unprivileged modes. All bits described as SBZ (Should be Zero) in Figure 3-7 are
reserved for future expansion. They are initialized to zeros. Non-initialization code
must use read/modify/write techniques when handling the FPSCR, to ensure that these
bits are not modified. Failure to observe this rule can result in code which has
unexpected side effects on future systems. Figure 3-7 shows the bit fields for the FPSCR
register.

Figure 3-7 User status and control bit fields summary

3.5.1 FPSCR bit descriptions

The FPSCR bits are described in the following subsections:

• Condition flags on page 3-23

• Default NaN mode control on page 3-24

• FTZ mode control on page 3-24

• Rounding mode control on page 3-24

• Vector length/stride control on page 3-25

• Exception status and control on page 3-26.

Condition flags

Bits[31:28] of the FPSCR contain the results of the most recent floating-point
comparison:

N Is 1 if the comparison produced a less than result.

Z Is 1 if the comparison produced an equal result.

C Is 1 if the comparison produced an equal, greater than or unordered
result.

V Is 1 if the comparison produced an unordered result.

6 5 4 3 2 1 031302928 27 26 25 24

N Z C V DN FZ SBZSBZ IOCDZCOFCUFCIXC

23 22 21 20 19 18 16 15 1413 12 11 10 9 8 7

RMode Stride LEN IDESBZ SBZ IDCIOEDZEOFEUFEIXE

VFP10 Programmer’s Model

3-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

These condition flags do not directly affect conditional execution, either of ARM
instructions or of VFP instructions. A comparison instruction is normally followed by
an FMSTAT instruction. This transfers the FPSCR condition flags to the ARM CPSR flags,
after which they can affect conditional execution.

Default NaN mode control

Bit[25] of the FPSCR is the DN bit and controls default NaN mode.

DN == 0 Default NaN mode is disabled and the behavior of the floating-point
system is fully compliant with the IEEE 754 standard.

DN == 1 Default NaN mode is enabled.

FTZ mode control

Bit[24] of the FPSCR is the FZ bit and controls flush-to-zero mode.

FZ == 0 Flush-to-zero mode is disabled and the behavior of the floating-point
system is fully compliant with the IEEE 754 standard.

FZ == 1 Flush-to-zero mode is enabled.

Rounding mode control

Bits[23:22] of the FPSCR select the current rounding mode. This rounding mode is used
for almost all floating-point instructions. The only floating-point instructions which do
not use it are FTOSIZD, FTOSIZS, FTOUIZD and FTOUIZS, which always use RZ mode.

The rounding modes are encoded as follows:

0b00 Indicates Round to Nearest (RN) mode.

0b01 Indicates Round towards Plus Infinity (RP) mode.

0b10 Indicates Round towards Minus Infinity (RM) mode.

0b11 Indicates Round towards Zero (RZ) mode.

VFP10 Programmer’s Model

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-25

Vector length/stride control

The LEN field (bits [18:16]) of the FPSCR controls the vector length for VFP
instructions that operate on short vectors, that is, how many registers are in a vector
operand. Similarly, the STRIDE field (bits[21:20]) controls the vector stride, that is,
how far apart the registers in a vector lie in the register bank. The allowed combinations
of LEN and STRIDE are shown in Table 3-6.

All other combinations of LEN and STRIDE produce UNPREDICTABLE results.

The combination LEN == 0b000, STRIDE == 0b00 is sometimes called scalar mode.
When it is in effect, all arithmetic instructions specify simple scalar operations.
Otherwise, most arithmetic instructions specify a scalar operation if their destination
lies in the range S0-S7 (for single precision) or D0-D3 (for double precision). The full
rules used to determine which operands are vectors and full details of how vector
operands are specified can be found in The ARM Architecture Reference Manual.

The rules for vector operands do not allow the same register to appear twice or more in
a vector. The allowed LEN/STRIDE combinations listed in Table 3-6 never cause this
to happen for single-precision instructions, so single-precision scalar and vector
instructions can be used with all of these LEN/STRIDE combinations.

For double-precision vector instructions, some of the allowed LEN/STRIDE
combinations would cause the same register to appear twice in a vector. If a
double-precision vector instruction is executed with such a LEN/STRIDE combination
in effect, the instruction is UNPREDICTABLE. The last column of Table 3-6 indicates
which LEN/STRIDE combinations this applies to. Double-precision scalar instructions
work normally with all of the allowed LEN/STRIDE combinations.

Table 3-6 Vector length/stride combinations

LEN STRIDE
Vector
length

Vector
stride

Double-precision vector instructions

0b000 0b00 1 - All instructions are scalar

0b001 0b00 2 1 Work normally

0b001 0b11 2 2 Work normally

0b010 0b00 3 1 Work normally

0b010 0b11 3 2 UNPREDICTABLE

0b011 0b00 4 1 Work normally

VFP10 Programmer’s Model

3-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception status and control

Bits [12:8] and bits [4:0] of the FPSCR are the trap enable bits and cumulative exception
bits respectively for the six types of exception.

Table 3-7 shows which bits are associated with each exception.

0b011 0b11 4 2 UNPREDICTABLE

0b100 0b00 5 1 UNPREDICTABLE

0b101 0b00 6 1 UNPREDICTABLE

0b110 0b00 7 1 UNPREDICTABLE

0b111 0b00 8 1 UNPREDICTABLE

Table 3-6 Vector length/stride combinations (continued)

LEN STRIDE
Vector
length

Vector
stride

Double-precision vector instructions

Table 3-7 Exception status and control bits

Exception type Trap enable bit Cumulative exception bit

Invalid Operation IOE (bit[8]) IOC (bit[0])

Division by Zero DZE (bit[9]) DZC (bit[1])

Overflow OFE (bit[10]) OFC (bit[2])

Underflow UFE (bit[11]) UFC (bit[3])

Inexact IXE (bit[12]) IXC (bit[4])

Input Denormal IDE (bit[15]) IOC (bit[7])

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-1

Chapter 4-
Instruction Execution in the VFP10
Coprocessor

This chapter contains detailed information about the ARM VFP10 coprocessor
instruction execution. It contains the following sections:

• About instruction execution in the VFP10 coprocessor on page 4-2

• Serializing instructions on page 4-4

• Interrupting VFP10 coprocessor instructions on page 4-5

• Hazard and resource stall conditions on page 4-11

• Parallel execution of operations on page 4-21

• Execution timing on page 4-23.

Instruction Execution in the VFP10 Coprocessor

4-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4.1 About instruction execution in the VFP10 coprocessor

The VFP10 coprocessor supports in hardware all addressing modes described in section
C5 of the ARM Architecture Reference Manual.

The advanced features of the VFP10 coprocessor, specifically the short vector
operations and the recirculating register file, are further enhanced in the VFP10
coprocessor through a high-performance interface that allows the VFP10 coprocessor
to execute several operations in parallel. To the ARM1020E processor, a short vector
operation appears as a single-cycle operation. The short vector operation issues in a
single cycle and, once clear of hazards, proceeds through the ARM pipeline one stage
per cycle, while iterating in the VFP10 coprocessor pipeline for numerous cycles.

The appearance of a short vector operation to the ARM1020E processor as a
single-cycle instruction permits the ARM1020E processor to continue execution of
both ARM1020E processor and coprocessor instructions without waiting for the short
vector operation to retire. In addition, the VFP10 coprocessor, with a separate LS
pipeline, can execute load or store operations while processing short vector operations.
This allows for very efficient processing of high data throughput operations such as
filters and matrix computations. With the large register set, most operations can be
double buffered, with one data buffer processed in the arithmetic pipeline while the
other buffer is stored or loaded. A more detailed description of the parallel execution
capabilities of the VFP10 coprocessor is given in An example of parallel execution on
page 4-21.

4.1.1 Interrupting serializing instructions

The overlapping execution of instructions can be interrupted by serializing instructions.
These instructions stall both the VFP10 coprocessor and ARM instruction Issue stages
until the VFP10 coprocessor pipelines are past the point of updating either the condition
codes or exception status or when a write to a system register can no longer affect the
operation of a current or pending instruction. Serializing instructions may be used to
capture condition codes and exception status, or to delineate a block of instructions for
execution with the ability to capture the exception status of that block of instructions.

Serializing instructions are the FMRX and FMXR operations, including the FMSTAT
instruction. These operations are also used to modify the mode of operation of
subsequent instructions, such as the rounding mode or vector length. See the ARM
Architecture Reference Manual for more information on serializing instructions.

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-3

4.1.2 Hazard detection

The VFP10 coprocessor detects and processes hazards completely in hardware. A
hazard is a condition in which a prior instruction may change the contents of a register
required by a subsequent instruction after the contents of the register have been read
(this is a read-after-write, or RAW, hazard) or a later instruction may write a register
before an earlier instruction will write it, causing the register to contain the data written
by the earlier instruction rather than the later one (this is a write-after-write, or WAW,
hazard), or a later instruction writes a register before an earlier instruction can read the
prior contents (this is a write-after-read, or WAR, hazard.)

A fourth hazard exists, although not a data hazard, in which a later instruction is reading
a register before an earlier instruction has read the register (this is a read-after-read, or
RAR, hazard). This last hazard is a control hazard, and can cause disruption in the
register scoreboarding logic, allowing one of the first 3 hazards to occur.

Instruction Execution in the VFP10 Coprocessor

4-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4.2 Serializing instructions

The following instructions behave as serializing operations until the information in the
read, for FMRX operations, is valid up to this instruction, or the impact of the write, for
FMRX operations, cannot affect current or pending operations.

For read operations, such as a read of the FPSCR, the instructions currently in the
pipeline, in most cases, could cause a change in the condition codes, as in the case of a
FCMP instruction, or exception status flags, such as INEXACT. A read of the FPSCR,
FPEXC, FPINST, or FPINST2, is stalled until it is no longer possible for these registers
to be changed by any instruction executing or awaiting execution in any of the VFP10
coprocessor pipelines.

A write to the FPSCR stalls until modification of any of the control bits cannot affect
any operation currently executing or awaiting execution. Writing the FPEXC, FPINST,
or FPINST2 registers will stall until the pipeline is completely clear before executing.

The FPSID register is a unique case. While the contents are unchangeable by any
instruction, accessing this register may be used as a general purpose serializing
operation or to create a exception boundary.

Note
 FMXR, FMRX, and FPSTAT instructions are valid trigger instructions, and cause exception
processing if a pending exception has caused the VFP10 coprocessor to be in the
exceptional state. The instruction that causes the trigger is executed on the return of the
exception processing routine.

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-5

4.3 Interrupting VFP10 coprocessor instructions

VFP instructions are issued by the core and maintain a lockstep between the core and
the VFP10 coprocessor until the instruction completes, for load and store operations, or
completes the Execute stage in the core. While VFP instructions can be short vectors
with long execution times, the core sees only a single-cycle instruction and retires the
instruction in the core many cycles before it is retires in the VFP10 coprocessor. When
the core takes an interrupt any instruction which is flushed from the core pipeline will
also be flushed from the VFP10 pipeline. Any instructions which are stalled by either
the core or the VFP10 coprocessor will be flushed.

If the interrupt is the result of a data abort condition, the load or store operation which
caused the abort will be restarted once the interrupt condition has been handled. Load
and store multiples are idempotent, allowing for load and store multiple operations to
detect some exception conditions after transfer has begun, and interrupt the operation
after the initial transfer. Once the interrupt has been processed, the load or store may
restart from the beginning; the source data is guaranteed to be unchanged and no
operations depending on the load or store data will have executed until the load or store
operation is completed.

Once the interrupting condition has begun processing, the VFP10 coprocessor may not
be available to the interrupt routine until any short vector operations which were begun
before the interrupt was processed and passed the core Execute stage has passed the
VFP10 coprocessor Execute 1 stage. In other words, the VFP10 coprocessor can still
have resource and data hazards which could impact the execution of a context switch of
the VFP10 coprocessor after the interrupt has been taken. The maximum delay the
VFP10 coprocessor may be unavailable is the time to process a short vector of 8
single-precision divide or square root operation, or 114 cycles after the divide or square
root has entered the Execute 1 stage of the VFP10 coprocessor.

Instruction Execution in the VFP10 Coprocessor

4-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4.4 Forwarding

The VFP10 coprocessor forwards data from load operations and CDP operations to
CDP operations. In general, any forwarding operation reduces by one the number of
cycles a dependent operation that would have stalled waiting on the forwarded data. The
VFP10 coprocessor does not forward in the following cases:

• To or from an operation involving integer data, either as a producer or consumer

• To a store operation (FST,FSTM, MRC, MRRC)

• To any operation with a different source precision than the precision of the
writeback data.

In Example 4-1 no forward from D2 to the FADDS operation occurs even though S5 is the
upper half of D2.

Example 4-1 No forwarding with different precisions

FMULD D2,D0,D1
FADDS S12,S13,S5

In the following examples, Example 4-2 to Example 4-12 on page 4-9, the stall counts
listed are given assuming that all transfers to and from memory hit in the cache and are
aligned in memory according to the size of the transfer (8-byte aligned for FLDM and
FSTM operations.) Memory access timings directly impact final cycle counts and
should be taken into account when predicting performance.

In Example 4-2 the load data is not forwarded to the float-to-integer conversion
operation. The FTOUIS instruction stalls for 3 cycles until the data has been loaded into
the register file before reading the operand for the conversion. No forwarding is done to
or from integer operations.

Example 4-2 Load data not forwarded

FLDS S1,[Rx]
FTOUIS S2,S1

Example 4-3 shows a store of the destination register of the double-precision FMULD. The
FSTD stalls for 5 cycles (the FMULD requires two cycles in the Execute 1 stage) and there
is no forwarding path to store instructions in the VFP10 coprocessor.

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-7

Example 4-3 Store of a destination register of a double-precision FMULD

FMULD D1,D2,D3
FSTD D1,[Rx]

Example 4-4 shows a single-precision case of Example 4-3. Again, no forwarding is
done from the FADDS to the FSTS, and the FSTS stalls for 4 cycles.

Example 4-4 Store of a destination register of a single-precision FMULD

FADDS S1,S2,S3
FSTS S1,[Rx]

In Example 4-5 the second FADDS instruction is dependent on the result of the first FADDS
instruction. The result of the first FADDS is forwarded to the second FADDS instruction,
reducing the stall from 4 cycles to 3 cycles.

Example 4-5 Second FADD dependent on result of first FADD

FADDS S1,S2,S3
FADDS S8,S9,S1

Example 4-6 shows a double-precision case of Example 4-5. The result of the first FMACS
is forwarded to the second FMACS, reducing the stall from 5 cycles to 4 cycles.

Example 4-6 Reducing stall cycles

FMACS D1,D2,D3
FMACS D8,D9,D1

Example 4-7 is similar to Example 4-5 because the result of the FADDS is not forwarded
to the FTOUIS. The FTOUIS stalls for 4 cycles.

Example 4-7 FADDS not forwarded

FADDS S1,S2,S3
FTOUIS S12,S1

Instruction Execution in the VFP10 Coprocessor

4-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

In Example 4-8 the result of the compare is loaded into the ARM CPSR and a
conditional branch is performed based on the condition codes from the FCMPS. In this
case, the FMSTAT stalls for 3 cycles until the condition codes from the FCMPS are known.
2 cycles later the CPSR in the ARM1020E is updated with the condition codes, and a
branch decision can be made based on the result of the FCMPS.

Example 4-8 Condition codes and branches

FCMPS S1,S2
FMSTAT
Bxx label

Example 4-9 illustrates the use of the ARM10E core to perform simple comparisons on
single-precision data. The CMP stalls for 1 cycle until the data is in the ARM register.

Example 4-9 Using the ARM10E core for comparisons

FMRS Rx,S1
CMP Rx,Constant
Bxx label

In Example 4-10, the FADDS requires S15, which is being loaded in the FLDM, to be valid.
The FLDM attempts to load the data in order of lowest register number to highest register
number, making the loading of S15 the last load performed. The VFP10 coprocessor
interface to the ARM1020E core is 64-bits, allowing two single-precision data values
to be loaded in a single cycle. S15 is loaded in the 4th transfer of the FLDM. The FADDS
executes after a stall of 2 + Nt cycles, where N is the transfer iteration, beginning with
0 for S8 and S9, and t is the number of cycles between transfers in the FLDM. For
Example 4-10, if data is transferred every two cycles, the stall for the FADDS is 2 + 3 * 2,
for 8 cycles.

Example 4-10 Last load causing a stall

FLDM [Rx],{S8-S15}
FADDS S1,S2,S15

In Example 4-11 on page 4-9 the FADDS is stalled by the divide for 16 cycles. If the
operations were in double-precision rather than single-precision, the stall for the FADDD
would be 30 cycles.

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-9

Example 4-11 FDIVS stall

FDIVS S1, S2, S3
FADDS S4, S5, S1

Example 4-12 shows a resource conflict for the DS pipeline. The second FSQRT stalls for
13 cycles without a data conflict, and 16 cycles if the destination of the first FSQRT is a
source operand for the second. If the operations were in double-precision rather than
single-precision, the stall counts would be 27 and 30, respectively.

Example 4-12 Resource conflict in the DS pipeline

FSQRT S1, S2
FSQRT S3, S4

4.4.1 Operation of the scoreboard

The scoreboard contains a single bit for each register which will not be available to an
instruction in the next cycle. Note that no distinction is made between source and
destination register. As a result, Read-after-Read hazards are detected as valid hazards
by the VFP10 coprocessor. Clearing of bits in the scoreboard lock register is done at two
points in the pipelines. Source registers for store operations are locked, if the operation
is a store multiple, and cleared in the E stage of the LS pipeline. Source registers for
CDP operations are cleared in the E1 stage of the pipeline for scalar operations, and for
short vector operations the registers involved in the iteration in the E1 stage are cleared.

Destination registers are cleared in the cycle before they are written back to the register
file or available for forwarding. Destination registers are cleared in the scoreboard in the
E3 stage of either the FMAC or DS pipeline and in the Memory stage of the LS pipeline.

The registers involved in an operation, both as source and destination, are determined
in the I stage of the VFP10 coprocessor pipeline and a lock mask is generated. Registers
involved in each iteration of a short vector operation are included in the lock mask. As
described in the next several sections, the determination of the which source registers
are included in the lock mask is a function also of the RunFast mode. A check is made
in this cycle on the scoreboard lock register, and if the lock mask and the lock register
do not contain any of the same registers, the lock mask is ORed with the lock register
to form the new scoreboard register. If a hazard is detected, the lock register is not
updated and the instruction stalls in the I stage.

Instruction Execution in the VFP10 Coprocessor

4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Note

 The clearing of registers and the check are performed in parallel, with the cleared
registers not available to the check operation until the following cycle. The clearing is
done in the cycle before the data is available, and will not stall an operation unless the
data is not available in the next cycle.

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-11

4.5 Hazard and resource stall conditions

The VFP10 coprocessor incorporates full hazard detection and implements a
fully-interlocked pipeline protocol. No scheduling is required by the compiler to
guarantee that the instructions execute in what appears to be a serial order and with the
same results as if each instruction were allowed to complete fully before the subsequent
instruction was allowed to begin. The VFP10 coprocessor uses a scoreboard mechanism
to process interlocks caused by either source or destination registers unavailable to the
instructions or unavailable data and to stall the instruction until all data operands or
registers are available when required.

The determination of hazards and interlock conditions is different in non-RunFast mode
and RunFast mode. RunFast mode, with its guarantee of no bounce conditions,
implements a less strict hazard detection mechanism, allowing, in some cases, for
instructions to begin execution earlier in time than in non-RunFast mode. Interlock
determination in non-RunFast mode on page 4-11 and Interlock determination in
RunFast mode on page 4-13 describe these differences.

4.5.1 Interlock determination in non-RunFast mode

The possibility of a bounce condition on any operation requires all source registers for
that operation, and for any iterations remaining after the bounced iteration, to be
unchanged by subsequent instructions. This causes the typical read-after-write (RAW)
and write-after-read (WAR) hazards, as well as the read-after-read (RAR) hazard, to
introduce stalls in the pipeline. The nature of the scoreboard does not support a
distinction between source registers and destination registers, and continues to detect a
hazard on any register involved in a computation until the lock on that register is
cleared. Source registers, which are not also the destination, have their locks cleared in
the first execute stage (E1) and destination register locks are cleared in the next to last
execute stage (E3).

Vector operations are not allowed to begin execution until all registers involved in the
operation are not locked. When a short vector operation is allowed to proceed in the
pipeline beyond the Decode (D) stage, all registers involved in the operation are locked.
Each iteration clears its source register locks (provided they are not also the destination
register) in the E1 stage and the destination register in the next to last execute stage.

Instruction Execution in the VFP10 Coprocessor

4-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 4-1 and Table 4-2 show the registers that are locked and the cycle in which they
are cleared for both scalar (VECITR set to 0) and short vector operations.An L in
Table 4-1 and Table 4-2 denotes the source registers for that iteration are locked in the
scoreboard.

For double-precision operations the source register is cleared in the first E1 cycle, with
operations involving a multiplication requiring 2 cycles in the E1 stage as shown in
Table 4-2. For example, for a 2 iteration FMULD instruction, the source registers for the
second iteration are cleared in cycle 3.

Table 4-1 Single-precision source register locking and clearing in non-RunFast mode

Iteration source registers locked in D stage Cycle iteration source registers cleared in E1

VECITR 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0 L - - - - - - - 1 - - - - - - -

1 L L - - - - - - - 2 - - - - - -

2 L L L - - - - - - - 3 - - - - -

3 L L L L - - - - - - - 4 - - - -

4 L L L L L - - - - - - - 5 - - -

5 L L L L L L - - - - - - - 6 - -

6 L L L L L L L - - - - - - - 7 -

7 L L L L L L L L - - - - - - - 8

Table 4-2 Double-precision source register locking and clearing in non-RunFast
mode

Iteration source
registers locked in
D stage

Cycle iteration
source registers
cleared in E1

VECITR 1 2 3 4 1 2 3 4

0 L - - - 1/1 - - -

1 L L - - - 2/3 - -

2 L L L - - - 3/5 -

3 L L L L - - - 4/7

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-13

4.5.2 Interlock determination in RunFast mode

RunFast mode guarantees that no bouncing is possible when all exceptions are disabled,
removing the requirement to preserve source registers. For all scalar operations and
non-multiple store operations no source registers are locked. For short vector
operations, the length of the vector dictates which source registers are locked. Table 4-3
shows the source registers that are locked for a short vector operation and in which cycle
they are cleared.

Table 4-4 shows the source registers that are locked for a short vector operation and in
which cycle they are cleared.

Table 4-3 Single-precision source register locking and clearing in RunFast mode

Iteration source registers locked in D stage Cycle iteration source registers cleared in E1

VECITR 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - -

4 - - - - L - - - - - - - 1 - - -

5 - - - - L L - - - - - - - 2 - -

6 - - - - L L L - - - - - - - 3 -

7 - - - - L L L L - - - - - - - 4

Table 4-4 Double-precision source register locking and clearing in RunFast mode

Iteration source
registers locked
in D stage

Cycle iteration
source registers
cleared in E1

VECITR 1 2 3 4 1 2 3 4

0 - - - - - - - -

1 - - - - - - - -

2 - - L - - - 1/1 -

3 -- - L L - - - 2/3

Instruction Execution in the VFP10 Coprocessor

4-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4.5.3 Examples of hazard conditions

Source registers must be protected in the event of an exceptional condition on the
instruction or an iteration if it is a short vector operation. Read-after-read hazards are
respected, that is, a read of a locked source register will stall until the source register is
released by the prior operation.

Source registers are cleared in the first E1 cycle of an operation. Destination registers
are cleared in the 2nd to last cycle (to enable forwarding to a subsequent instruction.)

Read after write example 1

Example 4-13 is a load of a single-precision data item followed by an arithmetic
operation on that data.

Example 4-13 Read after write example 1

FLDS S4, [r0]
FADDS S5, S4, S3

In cycle 4 the data is written from the ARM1020E processor core and forwarded in
cycle 5 to the first D stage of the FADDS.

Table 4-5 Instruction cycles for example 1

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FLDS I D E M W - - - -

FADDS - I D D D E1 E2 E3 E4

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-15

Read after write example 2

Example 4-14 is a load multiple of single-precision data, with a vector FADDS following.
The only register shared is the first loaded by the FLDM, and the stall ends after that
register has been received by the VFP10 coprocessor.

Example 4-14 Read after write example 2

FLDM [r2], {s7-s14}
FADDS S16, S7, S25

In Example 4-14 the LEN field is 3, for a vector length of 4, and the STRIDE field is 0,
for +1 striding. This is another example of a RAW hazard case. The operand data
referenced by S7 is forwarded to the FADDS in cycle 5.

Example 3

Example 4-15 is a vector FMULS of length 4 (LEN is set to 3, with STRIDE set to 0) with
a store of source register S25.

Example 4-15 Vector FMULS example

FMULS S8,S16,S24
FSTS S25,[r2]

Table 4-6 Instruction cycles for example 2

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FLDM I D E M W W W W -

FADDS - I D D D E1 E2 E3 E4

Instruction Execution in the VFP10 Coprocessor

4-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

The VFP10 coprocessor in non-RunFast mode stalls until the source register has been
cleared by the FMULS before allowing the store to begin execution. Register S25 is
released in cycle 4, and the FSTS moves from Decode (D) to Execute (E) in the next
cycle.

Example 4 load of all source registers

Example 4-16 is a short vector FMULS of length 4 (LEN is set to 3, with STRIDE set to
0) with a load of all of the source registers.

Example 4-16 Vector FMULS example

FMULS S8,S16,S24
FLDMS [r2], {S16-S27}

The VFP10 coprocessor in non-RunFast mode stalls until all the source registers,
S16-S19 and S24-S27, have been cleared by the FMULS before allowing the load to begin
execution. Table 4-8 shows the instruction cycles for the short vector FMULS example

Table 4-7 Instruction cycles for short vector MULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS I D E1 E1 E1 E1 E2 E3 E4

FSTS - I D D D E M W -

Table 4-8 Instruction cycles for short vector FMULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS I D E1 E1 E1 E1 E2 E3 E4

FLDMS - I D D D D E M W

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-17

Hazards in RunFast mode

In RunFast mode source registers are locked only for vectors that are larger than
half-vectors, that is, when the vector length exceeds 4 for single-precision operations or
2 for double-precision operations. When the vectors are sufficiently short, no hazards
exist involving the source registers. Repeating the last two examples above illustrates
the advantage of RunFast mode for these cases.

Vector FMULS example in RunFast mode

Example 4-17 is a vector FMULS of length 4 (LEN is set to 3, with STRIDE set to 0) with
a store of one of the last source registers.

Example 4-17 Vector FMULS RunFast mode example

FMULS S8,S16,S24
FSTS S25,[r2]

The VFP10 coprocessor in RunFast mode does not stall the store, which can begin
execution in the next cycle. Table 4-9 shows the instruction cycle for Example 4-17 in
RunFast mode.

In Example 4-18 a vector FMULS of length 4 (LEN is set to 3, with STRIDE set to 0) with
a load of all of the source registers. The VFP10 coprocessor in RunFast mode does not
stall until the FLDM operation.

Example 4-18 Vector FMULS with a load of all registers in RunFast mode

FMULS S8, S16, S24
FLDM [r2], {S16-S27}

Table 4-9 Instruction cycles for example in Run Fast mode

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS I D E1 E1 E1 E1 E2 E3 E4

FSTS - I D E M W W - -

Instruction Execution in the VFP10 Coprocessor

4-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 4-10 shows the instruction cycle progression for Example 4-18.

4.5.4 Resource hazards

The VFP10 coprocessor has three pipelines:

• the L/S pipeline

• the FMAC pipeline

• the DS pipeline.

The L/S pipeline is completely separate from the other two, and no resource hazards
exist between arithmetic instructions and data transfer instructions. However, the first
E1 stage instruction is shared between the FMAC and the DS pipelines, creating a
resource stall for a short vector CDP operation for subsequent CDP operations.
Resource stalls in the VFP are possible in the following cases:

• a data transfer operation following an incomplete data transfer operation. Each
data transfer may be stalled by the core due to unavailable data, for example,
memory latency or a cache miss.

• an arithmetic operation following either a short vector arithmetic operation or a
double-precision multiply or multiply-accumulate operation. The latency on
double-precision multiply and multiply-accumulate operations is 2 cycles,
causing a single cycle stall for immediately following arithmetic operations.

• a divide or square root will stall the DS pipeline for 13 or 27 cycles, for
single-precision or double-precision operations, respectively. A subsequent
divide or square root operation will stall until this number of cycles has passed.

4.5.5 Resource hazard examples

The following examples illustrate the resource hazards present in the VFP10
coprocessor.

Table 4-10 Instruction cycles for vector MULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

FMULS I D E1 E1 E1 E1 E2 E3 E4 -

FLDM - I D E M W W W W W

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-19

Load multiple, single load followed by FADDS

In Example 4-19 a load multiple is followed by a single FMULS and a FADDS. The single
load stalls the VFP10 coprocessor and the ARM core until the load multiple is
completed. The FADDS is stalled in the core as a result.

Example 4-19 Load multiple followed by a single FMULS and FADDS

FLDM [r2],{S8-S12}
FLDS [r4] S16
FADDS S2, S3, S4

Table 4-11 shows the pipeline stages for the 3 instructions in Example 4-19 on
page 4-19.

Load multiple, vector FMULS followed by scalar FADDS

In Example 4-20 a load multiple is followed by a vector FMULS (assume LEN is set to 3
and STRIDE is set to 0), followed by a scalar FADDS. No register conflicts exist between
the FLDM and the FMULS. Notice that the destination of the FADDS is in bank 0, forcing scalar
operation.

Example 4-20 Load multiple, vector FMULS followed by scalar FADDS

FLDM [r2], {S8-S12}
FMULS S16, S24, S4
FADDS S1, S20, S21

Table 4-11 Instruction cycles for example 2

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

FLDM I D E M W W W - - -

FLDS - I D D D E M W - -

FADDS - - I I I D E1 E2 E3 E4

Instruction Execution in the VFP10 Coprocessor

4-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 4-12 shows the pipeline stages for the 3 instructions in Example 4-20.

Table 4-12 Pipeline stages for load multiple, vector MULS, scalar FADDS

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FLDM I D E M W W W - - -

FMULS - I D E1 E1 E1 E1 E2 E3 E4 -

FADDS - - I D D D D E1 E2 E3 E4

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-21

4.6 Parallel execution of operations

An instruction may begin execution when no register or resource conflicts exist
(including read-after-read hazards) and the respective pipeline or pipelines (Load/Store
or CDP) are not executing a vector or multiple operation with pending iterations. The
following further outlines these rules.

A load or store operation begins execution if:

• No data hazards exist with any currently executing operations (including
read-after-read hazards)

• The LS pipeline is not currently stalled by the ARM or busy with a load or store
multiple.

A CDP may be issued to the FMAC pipeline if:

• No data hazards exist with any currently executing operations (including
read-after-read hazards)

• The arithmetic pipeline is available (it may be unavailable if a vector CDP is
executing or a double multiply is in the first cycle of the multiply operation)

• No vector operation is currently executing in either the arithmetic or DS pipeline.

A divide or square root instruction may be issued to the DS pipeline if:

• No data hazards exist (including read-after-read hazards)

• The DS pipeline is available (no current divide or square root is executing in the
DS pipeline E1 stage)

• No vector operation is executing in the arithmetic pipeline.

4.6.1 An example of parallel execution

The VFP10 coprocessor is capable of execution in each of the three pipelines
independently of the others and without blocking issue or writeback from any pipeline.
Example 4-21 on page 4-22 shows a case of the VFP10 coprocessor using the 3
pipelines in parallel:

• a load multiple in the L/S pipeline

• a short vector add in the FMAC pipeline

• a divide in the DS pipeline.

Assume the LEN field in the FPSCR is set to 3, for a vector length of 4, and the STRIDE
field is set to 0, for a stride of +1.

Instruction Execution in the VFP10 Coprocessor

4-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Example 4-21 Parallel execution in all 3 pipelines

FLDM [r4], {S4-S13}
FDIVS S0, S1, S2
FADDS S16, S20, S24

Table 4-13 shows the pipeline progression for the 3 instructions

In Example 4-21, no data hazards exist between any of the three instructions. The load
multiple is able to begin execution immediately, and data is transferred to the register
file beginning in cycle 5. The FDIVS is a scalar operation (the destination is in Bank 0)
and requires one cycle in the FMAC E1 stage. If the divide was a short vector operation
the FADDS would not begin execution until the last iteration had passed the E1 stage. The
FADDS is a short vector operation and requires the FMAC E1 stage for cycles 5-8. In cycle
9 another arithmetic operation could begin provided it was not a divide or square root.
This instruction stalls only if it requires the destination register of the divide or any of
the destination registers of the last 3 iterations of the FADDS (the result of the first
iteration is available from the register file in cycle 9, and all of the registers updated by
the FLDM are valid).

Table 4-13 Parallel execution in three pipelines

Instruction cycle number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FLDM I D E M W W W W W - - - - - - -

FDIVS - I D E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E2

FADDS - - I D E1 E1 E1 E1 E2 E3 E4 - - - - -

Instruction Execution in the VFP10 Coprocessor

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-23

4.7 Execution timing

These VFP10 coprocessor instruction timing computations are provided as a guide, and
not a substitute for running the code on a system or cycle-accurate simulator. Also, the
execution of VFP10 coprocessor instructions is also dependent on the execution of the
instruction in the ARM1020E macrocell, and stall and memory access issues will
directly impact performance of VFP10 coprocessor code. See the ARM1020E Technical
Reference Manual for information on instruction timing within the ARM core.

In Table 4-14 throughput is defined as the cycle after issue in which another instruction,
without a data hazard, could begin execution. Instruction latency is the number of cycles
after which the data is available for another operation. Forwarding reduces the latency
by one cycle for dependent operations on floating-point data when the destination
precision of the first or the precision of the load data is the same as the source precision
of the second.

Note

 FMXR and FMRX are serializing instructions. The latency depends on the register
transferred and the current activity in the VFP10 coprocessor when the instruction is
issued.

Table 4-14 shows the throughput and latency for all CDP operations in the VFP10
coprocessor.

Table 4-14 Throughput and latency cycle timings for VFP10 CDP operations

Instructions
Single-precision Double-precision

Throughput Latency Throughput Latency

FADD, FSUB, FABS, FNEG,
FCVT, FCPY

1 4 1 4

FCMP, FCMPE, FCMPZ, FCMPEZ 1 4 1 4

FSITO, FUITO, FTOSI, FTOUI,
FTOUIZ, FTOSIZ

1 4 1 4

FMUL, FNMUL 1 4 2 5

FMAC, FNMAC, FMSC, FNMSC 1 4 2 5

FDIV, FSQRT 14 17 28 31

FLD 1a 2 1 2

Instruction Execution in the VFP10 Coprocessor

4-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

FST 1a 1 1 1

FLDM Xb Xb+2 N N+2

FSTM Xb Xb+1 N N+1

FMSTAT 1 2 - -

FMSR 1 2 - -

FMDHR/DLR - - 1 2

FMRS 1 1 - -

FMRDH/RDL 1 1 - -

FMXRc 1 2 - -

FMRXc 1 1 - -

a. Two single-precision data values can be loaded or stored in a single cycle.
b. The number of cycles represented by X is ceiling (N/2). The data for load and store multiples maybe

in most cases used when it is loaded or stored, not waiting until the instruction is completed.
c. FMXR and FMRX are serializing instructions. The latency will depend on the register transferred and

the current activity in the VFP10 when the instruction is issued.

Table 4-14 Throughput and latency cycle timings for VFP10 CDP operations (continued)

Instructions
Single-precision Double-precision

Throughput Latency Throughput Latency

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-1

Chapter 5-
Exception Handling

This chapter describes VFP10 coprocessor exception processing. It contains the
following sections:

• About exception processing on page 5-2

• Support code on page 5-3

• Invalid operation on page 5-13

• Division by zero on page 5-16

• Overflow on page 5-17

• Underflow on page 5-19

• Inexact result on page 5-21

• Arithmetic exceptions on page 5-23.

Exception Handling

5-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.1 About exception processing

The VFP10 coprocessor processes exceptions imprecisely with respect to both the
ARM state and VFP10 state. Exceptions are detected after the instruction has passed the
point in the ARM for exception processing. The VFP10 coprocessor enters an
exceptional state after the exceptional operation has been detected, and signals the
presence of an exception by refusing to accept a subsequent VFP10 coprocessor
instruction. The instruction that triggers the exception processing is said to bounce to
the ARM1020E. The instruction that bounces is always a subsequent instruction but not
necessarily the instruction immediately following the exceptional instruction. In many
cases, a VFP10 coprocessor instruction following the exceptional instruction will
bounce, although, depending on the nature of the exceptional instruction, it can be
several instructions following before a bounce occurs.

VFP10 generated exceptions are only possible on arithmetic operations and not on data
transfer operations. Another class of instructions, involving copying data between
VFP10 coprocessor registers, is considered to be non-arithmetic and is not capable of
producing exceptions. These are FCPY, FABS, and FNEG. The FCPY instruction can be used
to copy SNaNs between VFP10 coprocessor registers, without setting the IOC bit, and
subnormals between VFP10 coprocessor registers, without flushing the subnormal to
positive zero or taking an input exception. The FABS and FNEG instructions maybe viewed
as copying with sign changing, and behave in the same manner as FCPY with regards to
exceptions.

In both non-RunFast and RunFast modes the VFP10 coprocessor, with support code,
processes exceptions according to the IEEE 754 specification, including the calling of
user trap handlers with IEEE 754 specified intermediate operands.

Note
 In RunFast mode the VFP10 coprocessor modifies the definition of the underflow
exception flag to provide additional information in cases in which the result has been
flushed to positive zero.

Complete descriptions of each of the exception flags and their bounce characteristics
are given in sections Invalid operation on page 5-13 to Arithmetic exceptions on
page 5-23.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-3

5.2 Support code

The VFP10 coprocessor provides floating-point functionality through a combination of
hardware and software support. Floating-point instructions are normally executed by
the VFP hardware. However, the VFP10 coprocessor may use the interface signals
between it and the ARM1020E core to refuse to accept a floating-point instruction,
causing the ARM1020E undefined instruction exception. This is known as bouncing the
instruction. When an instruction is bounced, software installed on the ARM1020E
undefined instruction vector determines why the VFP10 coprocessor rejected the
instruction and takes appropriate remedial action. This software is called the VFP
support code. The support code has two components:

• a library of routines that perform floating-point arithmetic functions

• a set of exception handlers that process exception conditions.

There are two main reasons for bouncing an instruction:

• potential floating-point arithmetic exceptions

• illegal instructions.

See AFS Firmware Suite Version 1.3 Reference Guide for details of support code.

5.2.1 Bounced instructions

When a bounce occurs, the hardware sets the EX bit in the FPEXC register and loads
FPINST with a copy of the potentially exceptional instruction. This condition in the
VFP10 coprocessor is referred to as the exceptional state. The instruction that is
bounced as a result of the exceptional state is referred to as the trigger instruction. Any
trigger instruction currently in the VFP10 coprocessor Decode (D) stage, or issued after
entering the exceptional state, is bounced.

The hardware detects potential exceptions pessimistically. This means an instruction
bounce always occurs when there is an enabled floating-point exception but also occurs
in some rare cases when there is no floating-point exception present, only a potential for
an exception detected in the E1 stage.

The remedial action is performed as follows:

1. The support code starts with reading the FPEXC register. If the EX bit
(FPEXC[31]) is set, a potential exception is present. If not, an illegal instruction
is detected. See Illegal instructions on page 5-6.

2. The FPEXC register is written to clear the EX bit (failure to do this can result in
an infinite loop of exception traps when the support code next accesses the VFP
hardware).

Exception Handling

5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3. The FPINST register is read to determine the instruction that caused the potential
exception.

4. The support code then decodes the instruction in the FPINST register, reads its
operands (including implicit ones such as the FPSCR rounding mode and vector
length), executed the operation, and determines whether a floating-point
exception occurred.

5. If no floating-point exception occurred, the support code writes the correct result
of the operation, and sets any appropriate status flags in the FPSCR.

If one or more floating-point exceptions occurred, but all of them were disabled,
the support code determines the correct result of the instruction, writes it to the
destination register, and sets the corresponding cumulative exception bits in the
FPSCR.

If one or more floating-point exceptions occurred and at least one of them was
enabled, the support code computes the IEEE-754 specified intermediate result,
if required, and calls the user-provided trap handler for that exception. The user’s
trap handler can provide a result for the instruction and continue program
execution, generate a signal or message to the operating system or the user, or
simply terminate the program.

6. If the potentially exceptional instruction specified a short vector operation, any
vector iterations after the one that encountered the potentially exceptional
condition will not have been executed by the hardware. The support code will
repeat steps 4 and 5 above for any such iterations. See Exception processing for
CDP short vector instructions on page 5-8 for more details.

7. If the FPv2 bit is set in the FPEXC (FPEXC Bit [28]), the FPINST2 register
contains another VFP instruction that has been issued between the potentially
exceptional instruction and the trigger instruction. This instruction is executed by
the support code in the same manner described above. See Instruction word
registers (FPINST and FPINST2) on page 318 for more on FPINST2.

Steps 1-7 imply that the support code must be capable of performing steps 4 and
5 for any operation/operands combination, not just for those combinations that the
VFP10 hardware treats as potentially exceptional.

8. Once the support code has completed processing the potentially exceptional
instruction, it returns to the program containing the trigger instruction.
The original bounce of the trigger instruction always occurs during the initial
stage of the hardware coprocessor handshake, and prevents any operation(s) the
trigger instructions specify from executing.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-5

Accordingly, the support code returns to the address of the trigger instruction,
causing the ARM to refetch the trigger instruction from memory and re-issue it to
the VFP10 coprocessor. Unless another bounce occurs, this results in the trigger
instruction being fully executed after the return. Returning in this fashion is
known as retrying the trigger instruction.

The support code may be written to use the VFP10 hardware for its internal
calculations, provided recursive bounces are avoided or handled correctly, and provided
care is taken to restore the state of the original program on returning to it. This last
requirement can be difficult to satisfy if the original program was executing in FIQ
mode or in undefined instruction mode. It is legitimate for support code to disallow or
restrict the use of VFP instructions in these two processor modes.

Exception Handling

5-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.3 Illegal instructions

If there is not a potential floating-point exception from an earlier instruction, the current
instruction can still be bounced because it is architecturally undefined in some way.
When this happens, the EX bit in the FPEXC (FPEXC[31]) is 0. The instruction that
caused the bounce is contained in the memory word pointed to by r14_undef - 4.

It is possible that both conditions for an instruction to be bounced occur simultaneously.
This happens when an illegal instruction is encountered and there is also a potential
floating-point exception from an earlier instruction. When this happens, the EX bit is 1
and the support code processes the potential exception in the earlier instruction. If and
when it returns, it causes the illegal instruction to be retried and the sequence of events
described in the paragraph above occurs.

The following types of instructions are architecturally required to be treated as illegal
instructions:

• instructions with opcode bit combinations defined as Reserved in the Architecture
specification

• load/store instructions with (P, W, and U) bit combinations marked as UNDEFINED

• FMRX/FMXR instructions to or from a control register that is not defined

• User mode FMRX/FMXR instructions to or from a control register that may only be
accessed in Privileged mode.

Certain types of instruction do not have architecturally-defined behavior, even to the
extent of causing the ARM undefined instruction trap to be entered. They may be treated
as illegal instructions by some implementations of the VFP, but this should not be relied
upon. The types of instructions are:

• Load/Store multiple instructions with a transfer count of zero or greater than
thirty-two. In this implementation this case is bounced.

• A short vector operation that has a combination of precision, length, and stride
that would cause the vector to wrap around more than once (more than one access
to the same register). In this implementation this case is bounced.

• A short vector operation with overlapping source and destination register
addresses that are not exactly the same. In this implementation this case is not
bounced and the results are UNPREDICTABLE.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-7

5.4 Determination of the trigger instruction

The ARM1020E coprocessor interface specifies an exceptional instruction that bounces
to support code must signal on a subsequent coprocessor instruction. This is known as
imprecise exception handling and has the characteristic that the user state of the VFP10
coprocessor as well as the ARM and any other coprocessors or processors available
when the exception is processed may not represent the state at the time of the
exceptional instruction execution or the state that is expected in a serial execution of the
code stream. The VFP10 coprocessor parallel execution of Load/Store operations and
CDP operations allows for the VFP10 coprocessor and ARM1020E core register files
and memory to be modified outside program order in normal operation.

The determination of what is the trigger instruction is a matter of instruction issue
timing. A CDP instruction is not determined potentially exceptional until the E1
Execute cycle. Another VFP10 instruction issued immediately following this
instruction will have completed processing by the ARM1020E and could no longer
cause an undefined instruction exception to be taken. In this case, this instruction is in
what is referred to as the pre-trigger slot and must be retained for the support code in
the FPINST2 register.

When the exceptional condition is detected on a short vector operation the rules change.
Because the short vector operation appears to the ARM1020E as a single-cycle
operation, other VFP10 instructions can be issued, execute and retire before the short
vector operation retires. Several rules determine what is the trigger instruction:

• accessing the exception registers (FPEXC, FPINST, and FPINST2) or FPSID, is
not a trigger instruction in a Privileged mode

• any instruction which is stalled in the Decode stage due to register or resource
hazard id the trigger instruction

• the first instruction issued at least two cycles after the exceptional condition has
been detected is the trigger instruction

• a load or store instruction which reaches the Execute stage is not the trigger
instruction (there can be several of these if the short vector is sufficiently long and
the exception is detected on a later iteration).

5.4.1 Exception processing for CDP scalar instructions

A scalar CDP determined to be exceptional causes the FPINST register to be loaded
with the instruction word for the offending instruction and the FPEXC to be set with the
exception condition. Once the exception is detected, the offending instruction is
blocked from further execution while any previous instructions not yet retired is allowed
to retire.

Exception Handling

5-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Two possible conditions might exist in the following situation:

• If there is not a floating-point instruction (CDP or Load/Store) in the VFP10
Decode stage, the VFP10 coprocessor waits until one is issued. The next trigger
instruction is bounced.

• If there is a trigger instruction in the VFP10 Decode stage, it is bounced in the
cycle after the exception is detected on the offending instruction.

The FMXR and FMRX instructions accessing the FPINST or FPEXC registers are not trigger
instructions in a Privileged mode, and is bounced if it was the instruction following the
offending instruction in any of the above situations.

The trigger instruction that was in the VFP10 Decode stage is retried by the ARM core
when the ARM core returns from exception processing.

5.4.2 Exception processing for CDP short vector instructions

For short vector instructions any iteration may be exceptional. If an exceptional
condition is detected for a vector iteration, the vector iterations issued before the
offending operation are allowed to complete and retire.

Once the offending iteration of the short vector operation is found to be potentially
exceptional the following sequence of operations occurs:

1. The EX bit in the FPEXC register is set.

2. The FPINST register is loaded with the operation instruction word.

3. The source and destination register addresses are modified to point to the source
and destination registers of the offending iteration.

4. The VECITR field is written with the coded number of the offending iteration.

5.4.3 Examples of exception detection for short vector instructions

In Example 5-1 on page 5-9 to Example 5-4 on page 5-11 code fragments illustrate the
exception detection mechanism of the VFP10 coprocessor for short vector operations.
The LEN field in the FPSCR is set to 0b011, for a vector length of four.

In Example 5-1, assume the LEN field in the FPSCR is set to 0 (scalar operations). The
FLDMD (Inst A) issues and retires regardless of the exceptional status of the FMULD in Inst
B. The FSTMD in Inst C is stalled waiting on the FLDMD to complete, and will be the trigger
instruction, and retried upon the return from exception processing. The FPINST register
contains the FMULD (with the condition codes set to AL) and the FPINST2 register is
invalid and FPV2 is set to 0.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-9

Example 5-1 FLDMD completes regardless of a subsequent exceptional CDP

FLDMD R2, {D0-D5} ; Inst A load multiple of 6 double-precision words
FMULD D8, D12, D8 ; Inst B scalar double-precision multiply
FSTMD R3, {D6-D7} ; Inst C store multiple of 2 double-precision words
FMULS S0, S1, S1 ; Inst D scalar single-precision multiply S0 = S1*S1

In Example 5-2, the FMULD is a vector operation of length 4 (LEN set to 3 in the FPSCR)
and a potential underflow exception is detected on the second iteration. The load in Inst
B and the store in Inst C both issue before the exception is detected on Inst A. (A double
multiply requires 2 cycles in the E1 stage, with exceptions detected in the first of the
two cycles. The exception on the 4th and last iteration is detected in the 3rd cycle after
the issue of the FMULD to the E1 stage.) The first load issues in the 2nd cycle after the
FMULD and requires one cycle. The following store issues in the 3rd cycle after the FMULD
but before the exception is detected, and is allowed to complete and retire. The FLDS (Inst
D) is stalled in the D stage due to a resource conflict with Inst C and is the trigger
instruction. It will be retried upon the return from exception processing. FPINST2 is
invalid and FPV2 is set to 0.

Example 5-2 Exceptional vector CDP followed by several load/store operations

FMULD D8, D12, D8 ; Inst A short vector double-precision multiply of len 4
FLDDD D0, {R5} ; Inst B load of a single double-precision data
FSTMS R3, {S2-S9} ; Inst C store multiple of 8 single-precision data
FLDS S8, {R9} ; Inst D load of a single double-precision data

After the exception processing has begun, the FPEXC register contains the following
fields:

EX: 1 (Signaling the VFP10 coprocessor is exceptional)
EN: 1
VECITR: 001 (VECITR reports 2 iterations remain after exceptional iteration
IDC: 0
INV: 0
UFC: 1 (The exception detected is a potential underflow)
OFC : 0
IOC: 0

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 0100 (multiply)
Fd/D: 1001/0 (Destination is D9 for the exceptional iteration)
Fn/N: 1001/0 (Fn source is D9 for the exceptional iteration)

Exception Handling

5-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Fm/M: 1101/0 (Fm source is D13 for the exceptional iteration)
CpID: 1011 (operation is double-precision)

In Example 5-3 Inst A is a scalar operation (the destination is in bank 0) and has a
potential invalid exception. Inst B has progressed into the D stage and is captured into
the FPINST2 register (with the conditional bits forced to AL) and is not the trigger. Inst
C is 2 cycles behind the exceptional instruction and is the trigger instruction. It will be
retried upon the return from exception processing.

Example 5-3 Exceptional CDP with CDP in the pre-trigger slot

FADDS S0, S1, S2 ; Inst A scalar single-precision add
FADDS S3, S4, S5 ; Inst B scalar single-precision add
FMULS S12, S16, S16 ; Inst C short vector single-precision multiply

After the exception processing has begun, the FPEXC register contains the following
fields:

EX: 1 (Signaling the VFP10 coprocessor is exceptional)
EN: 1
FPV2: 1 (FPINST2 contains a valid instruction)
VECITR: 111 (no iterations remaining after exceptional iteration)
IDC: 0
INV: 0
UFC: 0
OFC: 0
IOC: 1 (exception is a potential invalid)

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 0110 (add)
Fd/D: 0000/0 (Destination is S0)
Fn/N: 0000/1 (Fn source is S1)
Fm/M: 0001/0 (Fm source is S2)
CpID: 1010 (operation is single-precision)

FPINST2 contains the instruction word for the FADDS in Inst B.

In Example 5-4 on page 5-11 an exceptional short vector of length 4 (LEN set to 3) with
a potential overflow exception in the first iteration is followed by a CDP with a register
conflict. The second CDP (Inst B) is stalled in the D stage waiting on Inst A to exit the
E1 stage. Inst B is the trigger instruction and will be retried upon the return from
exception processing. FPINST2 is invalid and FPV2 is set to 0.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-11

Example 5-4 Exceptional vector CDP followed by scalar CDP with register conflict

FABSD D4, D4, D12 ;Inst A short vector double-precision absolute value of
 ; length 4

FMACS S0, S3, S2 ;Inst B scalar single-precision mac

After the exception processing has begun, the FPEXC and FPINST registers have the
following fields:
EX: 1 (Signaling the VFP10 coprocessor is exceptional)
EN: 1
FPV2: 0 (FPINST2 does not contain a valid instruction
VECITR:010 (VECITR reports 3 iterations remain)
IDC: 0
INV: 0
UFC: 0
OFC: 1 (The exception detected is a potential overflow)
IOC: 0

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 1111 (extend)
Fd/D: 0100/0 (Destination is D4)
Fn/N: 0000/1 (Fn specifies FABS instruction)
Fm/M: 1100/0 (Fm source is D12)
CpID: 1011 (operation is double-precision

FPINST2 contains invalid data.

Exception Handling

5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.5 Input subnormal

The IDC bit in the FPSCR (FPSCR[7]) is set whenever an input operand is a subnormal
and the operation is not a floating-point to integer conversion. The behavior of the
VFP10 coprocessor with a subnormal input operand is a function of the FZ bit in the
FPSCR. If the FZ bit is 0, the VFP10 coprocessor bounces on the presence of an input
subnormal. If the FZ bit is 1, the IDE bit in the FPSCR (FPSCR[15]) determines
whether a bounce occurs.

5.5.1 Exception enabled

If the IDE bit in the FPSCR (FPSCR[15]) is set, the EX bit in the FPEXC ([31]) and the
IDC bit in the FPSCR (bit [7]) is set. The source and destination registers for the
instruction will be valid in the VFP10 coprocessor register file.

5.5.2 Exception disabled

If the VFP10 coprocessor is not in FTZ mode, the result of the operation, with the input
subnormal replaced with a positive zero, is completed and written to the register file. All
appropriate status bits in the FPSCR are set accordingly.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-13

5.6 Invalid operation

An operation is invalid if there does not exist a representation for the result, or if the
result is not defined. An example is adding a positive infinity to a negative infinity, or
trying to represent a floating-point number greater than 232 as a 32-bit integer. The
VFP10 coprocessor in RunFast mode handles all invalid cases in hardware without
support code intervention. In non-RunFast mode, only cases involving signaling NaNs
require support code intervention.

Table 5-1 shows the operand combinations that produce invalid operation exceptions. In
addition to the conditions in Table 5-1, any CDP instruction other than FCPY, FNEG, and
FABS causes an invalid operation exception if one or more of its operands is a signaling
NaN (see Table 3-1).

Table 5-1 Possible IEEE 754 invalid operation exceptions

Instruction Invalid operation exceptions

FMAC/FNMAC Any of the conditions that can cause an invalid exception for FADD or
FMUL can cause an invalid exception for FMAC and FNMAC. The product
generated by the multiply operation of the FMAC or FNMAC is considered in
the determination of the invalid exception for the subsequent sum
operation.

FMSC/FNMSC Any of the conditions that can cause an invalid exception for FSUB or
FMUL can cause an invalid exception for FMSC and FNMSC. The product
generated by the multiply operation of the FMSC or FNMSC is considered in
the determination of the invalid exception for the subsequent difference
operation.

FADD (+infinity) + (-infinity) or (-infinity) + (+infinity)

FSUB (+infinity) - (+infinity) or (-infinity) - (-infinity)

FDIV 0/0 or infinity/infinity

In FTZ mode a subnormal input is treated as a positive zero for
INVALID exception determination.

FMUL/FNMUL 0 * ± infinity or ± infinity*0

FSQRT Source is < 0

FFTOUI Rounded result would lie outside the range 0<= result < 232

FFTOSI Rounded result would lie outside the range -231 <= result < 231

Exception Handling

5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.6.1 Exception enabled

The VFP10 coprocessor detects most invalid conditions correctly but some are detected
pessimistically. The pessimistically detected cases are:

• FTOUI with a negative input. A small negative input may round to a zero, which is
not a invalid condition

• Float-to-integer with a maximum exponent for the destination precision and any
rounding mode other than RZ. The impact of rounding is unknown in the E1 stage

• A FMAC-family operation with an infinity for the A operand and a potential
product overflow to an infinity that can result in an invalid condition.

When the VFP10 coprocessor detects a pessimistic case, the EX bit in the FPEXC ([31])
and the IOC bit in the FPEXC (bit [0]) will be set. The IOC bit in the FPSCR doesnot
have been set by the hardware, and must be set by the support code before calling the
user-provided trap handler.

The support code determines the exception status of the pessimistically bounced cases,
and if an invalid condition exists, the invalid exception trap handler you created is
called. The source and destination registers for the instruction will be valid in the
VFP10 coprocessor register file.

5.6.2 Exception disabled

If the IOE bit is clear, the VFP10 coprocessor processes all invalid cases according to
the IEEE-754 specification. The value written into the destination register for all
operations except integer conversion operations will be the default NaN.

Conversion of a floating-point value that is outside the range of the destination integer
is an invalid condition rather than an overflow condition. When an invalid condition
exists for a floating-point to integer conversion, the VFP10 coprocessor delivers a
default result to the destination register and sets the IOC bit in the FPSCR. The default
results are given below in Table 5-2 on page 5-15.

Note
 A negative input to an unsigned conversion, which does not round to a true zero in the
conversion process, will set the IOC bit in the FPEXC.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-15

Table 5-2Table 5-2

Table 5-2 Default results for positive invalid inputs

Input value
FTUOI(Z) FTOSI(Z)

Result IOC set? Result IOC set?

x ≥ 232 FFFFFFFF Yes 7FFFFFFF Yes

231 ≤ x < 231 Integer No 7FFFFFFF Yes

0 ≤ x < 231 Integer No Integer No

0 > x ≥ −231 00000000 Yes Integer No

x < -231 00000000 Yes 80000000 Yes

Exception Handling

5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.7 Division by zero

The division by zero exception is generated for a division x/0, where x is anything other
than a zero, infinity, or a NaN. In FTZ mode a subnormal input is treated as a positive
zero for divide-by-zero determination. What happens depends on whether the invalid
operation exception is enabled.

5.7.1 Exception enabled

If the DZE bit of the FPSCR (FPSCR[9]) is 1, the divide-by-zero user trap handler is
called. The source and destination registers for the instruction will be valid in the
VFP10 coprocessor register file.

5.7.2 Exception disabled

A correctly signed infinity is written to the destination register and the DZC bit is set in
the FPSCR (FPSCR[1]).

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-17

5.8 Overflow

When OFE is set in the FPSCR (FPSCR[10]) overflow is detected pessimistically based
on the preliminary calculation of the final exponent value. If the pessimistic
determination of overflow by the hardware is confirmed by the support code for an
operation with a floating-point result, an overflow exception is generated. This
confirmation consists of determining that the result of the operation after rounding
exceeds the largest representable number in magnitude in the destination format.

5.8.1 Exception enabled

The VFP10 coprocessor detects most overflow conditions conclusively but some are
detected pessimistically. Specifically, when the initial computation of the result
exponent is the maximum exponent or one less than the maximum exponent of the
destination precision, the possibility of overflow due to mantissa overflow or rounding
exists, but cannot be known in the first Execute stage. The VFP10 coprocessor bounces
on such cases and uses the support code to determine the exceptional status of the
operation. If it does not overflow, the support code writes the computed result to the
destination register and returns without setting OFC (FPSCR[2]). If it does overflow,
the intermediate result is written to the destination register, OFC is set, and the user
overflow trap handler is called.

When the VFP10 coprocessor detects a pessimistic case, the EX bit in the FPEXC ([31])
and the OFC bit in the FPEXC (bit [2]) will be set. The OFC bit in the FPSCR will not
have been set by the hardware, and must be set by the support code before calling the
user's trap handler. The source and destination registers for the instruction will be valid
in the VFP10 coprocessor register file. See Arithmetic exceptions on page 5-23 for the
conditions which will cause an overflow bounce.

Exception Handling

5-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.8.2 Exception disabled

A correctly signed infinity or largest finite number for the destination precision is
written to the destination register according to Table 5-3. The OFC bit and the IXC bit
are set in theFPSCR.

Table 5-3 Overflow result

Rounding mode Result

RN Infinity, with the sign of the intermediate result.

RZ Largest magnitude value for the destination size, with the sign of the
intermediate result.

RP For positive overflow, +infinity.
For negative overflow, the largest negative value for the destination
size.

RM For positive overflow, the largest positive value for the destination
size.
For negative overflow, -infinity.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-19

5.9 Underflow

Underflow is detected pessimistically in non-RunFast mode. If the pessimistic
determination of underflow by the hardware is confirmed by the support code for an
operation with a floating-point result, an underflow exception is generated. How this is
confirmed depends on whether the VFP10 coprocessor is in Flush-to-zero mode.

• If the FZ bit is set, all underflowing results are forced to a positive signed zero and
written to the destination register. The UFC and IXC bits are set in the FPSCR.
No trap is taken. If the underflow exception enable bit is set, it is ignored.

• If the FZ bit is not set what happens next depends on whether the underflow
operation exception is enabled.

5.9.1 Exception enabled

The VFP10 coprocessor detects most underflow conditions conclusively but some are
detected pessimistically. Specifically, when the initial computation of the result
exponent is below a threshold for the destination precision, the possibility of underflow
due to massive cancellation exists, but cannot be known in the first Execute stage. The
VFP10 coprocessor will bounce on such cases and utilize the support code to determine
the exceptional status of the operation. If it does not underflow, either catastrophically
or to a subnormal result, the support code will write the computed result to the
destination register and return without setting UFC. If it does underflow, regardless of
any accuracy loss, the intermediate result will be written to the destination register, UFC
will be set, and the trap handler you created will be called. Underflow is confirmed if
the result of the operation after rounding is less in magnitude than the smallest
normalized number in the destination format. If it is confirmed, the IEEE 754 defined
intermediate result is written to the destination register and the user underflow trap
handler is called.

When the VFP10 coprocessor detects a pessimistic case, the EX bit in the FPEXC ([31])
and the UFC bit in the FPEXC (bit [3]) will be set. The UFC bit in the FPSCR will not
have been set by the hardware, and must be set by the support code before calling the
user's trap handler. The source and destination registers for the instruction will be valid
in the VFP10 coprocessor register file. See section Arithmetic exceptions on page 5-23
for the conditions that will cause an underflow bounce.

5.9.2 Exception disabled

When the FZ bit in the FPSCR is not set, the VFP10 coprocessor will bounce on
potential underflow cases in the same fashion as detailed above for the exception
enabled case. The correct result will be written to the destination register, and any
exception status bits set accordingly.

Exception Handling

5-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

When the FZ bit in the FPSCR is set, the VFP10 coprocessor will make the
determination of underflow before rounding and flush any result that underflows,
returning a positive zero to the destination register and setting the UFC and IXC bits in
the FPSCR.

Note

 The determination of an underflow condition is made before rounding rather than after.
This can result in an intermediate value, with the minimum exponent for the destination
precision (00 for single-precision and 000 for double-precision), fraction of all ones,
and a round increment, to be flushed to zero rather than the minimum normal value to
be returned. If the intermediate value was the minimum normal value before the
underflow condition test is made, it will not be flushed to zero.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-21

5.10 Inexact result

Floating-point arithmetic inherently has limited precision and typically the result of an
arithmetic operation on two floating-point values has more significant bits than the
destination register can contain. When this happens, the result is rounded to a value that
the destination register can hold, and is said to be inexact.

The inexact exception occurs whenever:

• a result is not equal to the computed result before rounding

• an untrapped overflow exception occurs

• an untrapped underflow exception occurs, and there is loss of accuracy.

Note

 The inexact exception occurs frequently in the course of normal floating-point
calculations, and does not indicate a significant numerical error except in some
specialized applications for floating-point arithmetic. Enabling the inexact exception in
the FPSCR can significantly reduce the performance of the VFP10 coprocessor.

The VFP10 coprocessor handles the inexact exception differently from the other
floating-point exceptions. It has no mechanism for reporting inexact results to the
software, but can handle the exception without software intervention as long as the
inexact exception is not enabled (in other words, as long as the IXE bit in the FPSCR is
0).

5.10.1 Exception enabled

If the IXE bit in the FPSCR is 1, all CDP operations will be bounced to the support code
without any attempt to perform the calculation. The support code is then responsible for
performing the calculation, determining which, if any, exceptions have taken place, and
handling them appropriately. As part of this, if it determines that an inexact exception
occurs, it calls the user trap handler.

Note
 If processing the instruction determines that the overflow or underflow exception also
occurs, it gives that exception priority over the inexact exception.

5.10.2 Exception disabled

If the IXE bit in the FPSCR is 0, the VFP10 coprocessor writes the result to the
destination register and sets the IXC bit in the FPSCR.

Exception Handling

5-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.11 Input exceptions

The VFP10 coprocessor processes most input operands completely in hardware.
However, the hardware is incapable of processing some operands and will bounce to
support code to process the instruction. The inputs which are bounced are:

• NaNs operands, when the DN mode is not enabled

• subnormal operands, when the FTZ mode is not enabled.

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-23

5.12 Arithmetic exceptions

This section details the conditions under which the VFP10 coprocessor will bounce an
arithmetic operation pessimistically. It is the task of the support code to determine the
actual exception status of the instruction, and return either the result and appropriate
exception status bits, or the intermediate result and a call to the user's trap handler.

Like input exceptions, arithmetic exceptions always bounce. The support code then
determines the result value and whether any IEEE 754 exceptions occurred. Any
instruction that generates an arithmetic exception therefore takes many more cycles
than normal to execute.

The following sections specify the precise circumstances in which arithmetic
exceptions occur for each instruction:

• FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ

• FMUL/FNMUL on page -121

• FMAC/FMSC/FNMAC/FNMSC on page -138

• FDIV on page -138

• FSQRT on page -145

• FCPY/FABS/FNEG on page -146

• FCVTDS/FCVTSD on page -146

• FUITO/FSITO on page -147

• FTOUI/FTOUIZ/FTOSI/FTOSIZ on page -147.

5.12.1 FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ

The exponent in addition or subtraction operations, and compare (which is effectively a
subtraction operation) is initially set to the larger of the two input exponents. For clarity
we define the operation in terms of Like-Signed Addition (LSA) or an Unlike-Signed
Addition (USA). Table 5-4 specifies how this division is made. + refers to a positive
operand and - refers to a negative operand.

Table 5-4 LSA and USA determination

Instruction A sign B sign Operation

FADD + + LSA

FADD + - USA

FADD - + USA

FADD - - LSA

FSUB/FCMP + + USA

Exception Handling

5-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

For LSA, the bounce conditions are more pessimistic for overflow than they are for
USA, since it is possible for an LSA operation to cause the exponent to be incremented
if the mantissa overflows. The LSA ranges are made slightly more pessimistic to
incorporate FMAC operations (see FMAC/FMSC/FNMAC/FNMSC on page 5-26).

For USA, the underflow bounce ranges are pessimistic to a greater degree to
accommodate the possibility of a massive cancellation in which the result exponent
might be smaller than the larger operand exponent by as much as the length of the
mantissa (24 for single-precision and 53 for double-precision). The overflow range for
USA is slightly pessimistic (it is set to the LSA overflow range) to reduce the number
of logic terms. Table 5-5 lists the USA and LSA values and conditions. All exponent
values are in hexadecimal, 11 bits for double-precision, and 8 bits for single-precision.

FSUB/FCMP + - LSA

FSUB/FCMP - + LSA

FSUB/FCMP - - USA

Table 5-5 USA and LSA values and conditions

Double-
precision

Single-
precision

Value
Condition (non-FZ mode)

SP DP

>7FF - DP Ovfl - Bounce

7FF - DP Ovfl, NaN,
Inf

- Bounce

7FE - DP Ovfl Det - Bounce

7FD - DP Ovfl Det - Bounce

7FC - DP Norm - Norm

>47F >FF SP Ovfl Bounce Norm

47F FF SP NaN, Inf Bounce Norm

47E FE SP Ovfl Det Bounce Norm

47D FD SP Ovfl Det Bounce Norm

47C FC SP Norm Norm Norm

Table 5-4 LSA and USA determination (continued)

Instruction A sign B sign Operation

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-25

5.12.2 FMUL/FNMUL

The determination for potential exceptional conditions is made based on the initial
product exponent, the sum of the multiplicand and multiplier exponents. FMUL family
bounce and exceptional thresholds on page 5-26 lists the VFP10 coprocessor response
for specific values of the initial product exponent. It is possible for the exponent to be
incremented by a mantissa overflow condition. This is the cause for the additional
bounce values near the real overflow threshold. The one additional value incorporated
into the bounce range makes the FMUL/FNMUL overflow detection ranges identical to those
of the FADD family in FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ on page 5-23.

3FF 7F e=0 bias value Norm Norm

3A0 20 SP Norm (LSA) MIN (USA) Norm

39F 1F SP Unfl (USA) Bounce (USA)
Norm (LSA)

Norm

381 01 SP Norm (LSA) MIN (LSA) Norm

380 00 SP subnormal Bounce Norm

<380 <00 SP Unfl Bounce Norm

040 - DP Norm
(USA)

- Norm (LSA)
MIN (USA)

03F - DP Unfl (USA) - Norm (LSA)
Bounce (USA)

001 - DP Norm (LSA) - MIN (LSA)
Bounce (USA)

000 - DP subnormal - Bounce

<000 - DP Unfl - Bounce

Table 5-5 USA and LSA values and conditions (continued)

Double-
precision

Single-
precision

Value
Condition (non-FZ mode)

SP DP

Exception Handling

5-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

.

5.12.3 FMAC/FMSC/FNMAC/FNMSC

The FMAC family of operations adds to the potential overflow range by generating final
values in the range [0, 4). In this case it is possible for the final exponent to require
incrementing by two to normalize the mantissa.

Table 5-6 FMUL family bounce and exceptional thresholds

Double-
precision

Single-
precision

Value
Condition (non-RunFast mode)

SP DP

>7FF - DP Ovfl - Bounce

7FF - DP NaN, Inf - Bounce

7FE - DP Max Norm - Bounce

7FD - DP Norm - Bounce

7FC - DP Norm - Norm

>47F >FF SP Ovfl Bounce Norm

47F FF SP NaN, Inf Bounce Norm

47E FE SP Max Norm Bounce Norm

47D FD SP Norm Bounce Norm

47C FC SP Norm Norm Norm

3FF 7F e=0 bias value Norm Norm

381 01 SP Norm Norm Norm

380 00 SP subnormal Bounce Norm

<380 <00 SP Unfl Bounce Norm

001 - DP Norm - Norm

000 - DP subnormal - Bounce

<000 - DP Unfl - Bounce

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-27

The bounce thresholds presented earlier for the FADD family and the FMUL family
incorporate this additional factor. Those ranges are used to detect potential exceptions
for the FMAC family.

5.12.4 FDIV

The thresholds for divide are simple and based only on the difference of the exponents
of the dividend and the divisor. It is not possible in a divide operation for the mantissa
to overflow and cause an increment of the exponent. However, it is possible for the
mantissa to require a single bit left shift and the exponent to be decremented for
normalization. The overflow ranges are the same as those of the LSA operations in
FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ on page 5-23 (again, to reduce logic
complexity). The underflow ranges include the minimum normal exponent (0x01 for
single-precision and 0x001 for double-precision). The complete table is shown in
Table 5-7.

Table 5-7 FDIV bounce and exceptional thresholds

Double-
precision

Single-
precision

Value
Condition (non-RunFast mode)

SP DP

>7FF - DP Ovfl - Bounce

7FF - DP NaN, Inf - Bounce

7FE - DP Max Norm - Bounce

7FD - DP Norm - Bounce

7FC - DP Norm - Norm

>47F >FF SP Ovfl Bounce Norm

47F FF SP NaN, Inf Bounce Norm

47E FE SP Max Norm Bounce Norm

47D FD SP Norm Bounce Norm

47C FC SP Norm Norm Norm

3FF 7F e=0 bias value Norm Norm

382 02 SP Norm Norm Norm

381 01 SP Norm Bounce Norm

380 00 SP subnormal Bounce Norm

Exception Handling

5-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.12.5 FSQRT

It is not possible for FSQRT to overflow or underflow.

5.12.6 FCPY/FABS/FNEG

It is not possible for FCPY,FABS, or FNEG to bounce for any operand.

5.12.7 FCVTDS/FCVTSD

Only the FCVTSD operation is capable of overflow or underflow. Table 5-8 lists the FCVTSD
bounce conditions. The overflow ranges are the same as the LSA ranges. This is to
reduce logic complexity. Table 5-8 lists the FCVTSD bounce conditions.

<380 <00 SP Unfl Bounce Norm

002 - DP Norm - Norm

001 - DP Norm - Bounce

000 - DP subnormal - Bounce

<000 - DP Unfl - Bounce

Table 5-7 FDIV bounce and exceptional thresholds (continued)

Double-
precision

Single-
precision

Value
Condition (non-RunFast mode)

SP DP

Table 5-8 FCVTSD bounce conditions

DP Value Condition (non-RunFast mode) FCVTSD

>47F SP Ovfl Bounce

47F SP NaN, Inf Bounce

47E SP Max Norm Bounce

47D SP Norm Bounce

47C SP Norm Norm

3FF e=0 bias value Norm

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-29

5.12.8 FUITO/FSITO

It is not possible to generate overflow or underflow in an integer-to-float conversion.

5.12.9 FTOUI/FTOUIZ/FTOSI/FTOSIZ

Float-to-integer conversions generate only Invalid exceptions rather than overflow or
underflow. The thresholds for pessimistic bouncing are different for the various
rounding modes to support signed conversions with round-to-zero rounding in the
maximum range possible for C, C++ and Java compiled code.

Table 5-9 on page 5-30 and Table 5-10 on page 5-32 use the following notation. Ex
stands for Exception generated:

I Invalid

None Operation is valid

In the VFP Response column:

All These input values are bounced for all rounding modes.

S These input values are bounced for signed conversions in all
rounding modes.

SnZ These input values are bounced for signed conversions in all
rounding modes except round-to-zero.

U These input values are bounced for unsigned conversions in all
rounding modes.

UnZ These input values are bounced for unsigned conversions in all
rounding modes except round-to-zero.

None All values are valid

381 SP Norm Norm

380 SP subnormal Bounce

<380 SP Unfl Bounce

Table 5-8 FCVTSD bounce conditions (continued)

DP Value Condition (non-RunFast mode) FCVTSD

Exception Handling

5-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

In the Unsigned results and Signed results column:

N Round-to-nearest rounding mode.

P Round-to-Plus-Infinity rounding mode.

M Round-to-Minus-Infinity rounding mode.

Z Round-to-Zero mode.

Table 5-9 shows the single-precision float-to-integer bounce range and the results
returned for exceptional conditions.

Table 5-9 SP Float-to-integer bounce thresholds and stored results

Float
value

Value
Unsigned
result

Ex
Signed
result

Ex
VFP
response

NaN - 00000000 I 00000000 I Bounce All

7F800000 +Inf FFFFFFFF I 7FFFFFFF I Bounce All

7F7FFFFF
to
4F800000

+Max Sp

to

232

FFFFFFFF I 7FFFFFFF I Bounce All

4F7FFFFF
to
4F000000

(232 - 28)
to
231

FFFFFF00
to
80000000

I 7FFFFFFF I Bounce S UnZ

4EFFFFFF
to
4E800000

(231 - 27)
to
230

7FFFFF80
to
40000000

V
7FFFFF80
to
40000000

V Bounce SnZ

4E7FFFFF
to
00000000

(230 - 26)
to
+0

3FFFFFC0
to
00000000

V
3FFFFFC0
to
00000000

V Bounce None

80000000
to
CE7FFFFF

-0
to
(-230 +26)

00000000 I
00000000
to
C0000040

V Bounce U

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-31

CE800000
to
CEFFFFFF

-230

to
(-231 +27)

00000000 I
C0000000
to
80000080

V
Bounce U

Bounce U SnZ

CF000000
to
FF7FFFFF

-231

to
-Max Sp

00000000 I 80000000 I Bounce All

FF800000 -Inf 00000000 I 80000000 I Bounce All

Table 5-9 SP Float-to-integer bounce thresholds and stored results (continued)

Float
value

Value
Unsigned
result

Ex
Signed
result

Ex
VFP
response

Exception Handling

5-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 5-10 shows the double-precision float-to-integer bounce range and the results
returned for exceptional conditions.

Table 5-10 DP Float-to-integer bounce thresholds and stored results

Float value Value Unsigned result Ex
Signed
result

Ex
VFP
response

NaN - 00000000 I 00000000 I Bounce All

7FF00000_00000000 +Inf FFFFFFFF I 7FFFFFFF I Bounce All

7FEFFFFF_FFFFFFFF
to
41F00000_00000000

+Max DP
to
232

FFFFFFFF I 7FFFFFFF I Bounce All

41EFFFFF_FFFFFFFF
to
41EFFFFF_FFF00000
41EFFFFF_FFEFFFFF
to
41EFFFFF_FFE000001
41EFFFFF_FFE000000
to
41E00000_00000000

(232 - 2-21)
to
(232 - 2-1)
(232 -2-1-2-21)
to
232 - 2-1+ 2-21

232 - 20

to
231

FFFFFFFF (NP)
FFFFFFFF (ZM)

FFFFFFFF (P)
FFFFFFFF (NZM)

FFFFFFFF
to
80000000

I

V

I
V

V

V

7FFFFFFF

7FFFFFFF

7FFFFFFF

I

I

I

Bounce S UnZ

41DFFFFF_FFFFFFFF
to
41DFFFFF_FFE000000
41DFFFFF_FFDFFFFF
to
41D00000_FFC00001
41D00000_FFC00000
to
41D00000_00000000

(231- 2-22)
to

(232 - 2-1)
232 - 2-1- 2-22

to

232 - 2-1+ 2-21

232 - 20

to
231

80000000 (NP)
7FFFFFFF (ZM)
to
80000000 (P)
7FFFFFFF (NZM)
to
7FFFFFFF
to
40000000

V
V

V

V

V

7FFFFFFF (NP)
7FFFFFFF (ZM)

7FFFFFFF (P)
7FFFFFFF (NZM)

7FFFFFFF
to
40000000

I
V

I
V

V

V

Bounce SnZ

41CFFFFF_FFFFFFFF

to
00000000_00000000

(230 - 2-23)

to
+0

40000000 (NP)

3FFFFFFF (ZM)
to
00000000

V
V

V

40000000 (NP)
3FFFFFFF (ZM)
to
00000000

V
V

V

Bounce none

80000000_00000000
to
C1CFFFFF_FFFFFFFF

-0
to
(-230 +2-23)

00000000 I
00000000
to
C00000001 (ZP)
C00000000 (NM)

V

V
V

Bounce U

Exception Handling

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-33

C1D00000_00000000
to

C1DFFFFF_FFFFFFFF

-230

to

(-231 +2-22)

00000000 I
C0000000
to
80000001 (ZP)
80000000 (NM)

V

I
I

Bounce U SnZ

C1E00000_00000000
C1E00000_00000001
to
C1E00000_00100000
C1E00000_00100001
to
C1E00000_00200000
C1E00000_00200001
to
FFEFFFFF_FFFFFFFF

-2-31

-2-31 -2-21

to

-2-31 -2-1

-2-31 -2-1-2-21

to
2-31 -20

2-31 -20-2-21

to
-Max DP

00000000

00000000

00000000

00000000

I

I

I

I

80000000
80000000 (NZP)
80000000 (M)

80000000 (ZP)
80000000 (NM)

80000000

V
V
I

V
I
I

Bounce All

FFF00000_00000000 -Inf 00000000 I 00000000 I Bounce All

Table 5-10 DP Float-to-integer bounce thresholds and stored results (continued)

Float value Value Unsigned result Ex
Signed
result

Ex
VFP
response

Exception Handling

5-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-1

Chapter 6-
Design for Test

This chapter describes the Design For Test (DFT) features of the VFP10 coprocessor
and describes how best to integrate the DFT features into an System on a Chip (SoC).
This chapter contains the following sections:

• About DFT on page 6-2

• VFP10 DFT on page 6-3

• VFP10 Core on page 6-4

• VFP10 test wrapper on page 6-6

• VFP10 clocking on page 6-10

• Test Pins on page 6-11.

Design for Test

6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

6.1 About DFT

Using DFT techniques during the design and implementation phase of a chip produces
the hardware hooks in the design unit to enable a tester to apply vectors, or control
stimulus to achieve a high quality measurement. This is especially important if the
design unit is to be embedded within other design units or chip logic.

If the proper mix of DFT techniques and logic are used, the resulting design:

• is easier to integrate

• is easier to generate vectors for

• has more efficient test vectors (in terms of size and tester time)

• has more cost-effective vectors with higher defect coverage per clock cycle.

Ultimately, the vectors that are generated for the design are easier to apply to the
embedded core by the tester.

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-3

6.2 VFP10 DFT

The VFP10 coprocessor is a full scan Mux Dflip-flop core, with the exception of the
latch-based Register file module. It contains one internal clock domain, GCLK.

The VFP10 coprocessor has a test wrapper to allow for test control and observation of
the core from the ports as well as control and observation of the external logic
surrounding the core. The test wrapper provides a single serial scan ring around the
entire periphery of the core. The ultimate goal of adding a wrapper is to allow a tester
to apply vectors, or control stimulus, to achieve a high quality measurement with a
minimal amount of external pin control. This is extremely important if the design unit
is to be embedded or buried within other design units or chip logic. The test wrapper
can have dedicated wrapper cells or shared wrapper cells. The VFP10 coprocessor
contains only dedicated wrapper cells that are clocked by a dedicated wrapper clock,
VFP10WCLK.

VFP10WCLK is not perfectly delay matched with GCLK and care must be taken to
prevent hold time errors. In the case of the VFP10 coprocessor hard core, the patterns
are created with VFP10WCLK 180 degrees out of phase, with GCLK.

In addition, any asynchronous signals must be directly controlled by the Automated Test
Pattern Generator (ATPG) tool. The asynchronous reset signals on the VFP10
coprocessor are directly controlled during scan mode by the VFP10DFTRESET
signal. This port must be controlled directly by a pin in scan mode.

Design for Test

6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

6.3 VFP10 Core

The VFP10 coprocessor core contains two different configurations of scan chains.
These configurations are twelve, or six internal scan chains. The scan chains are shorter
if there are more parallel scan chains in a design. The total vector count becomes smaller
as the scan chains become shorter which saves tester memory. However, the final
package or test environment may not have the pin bandwidth to handle the highest
number of chains attainable on the VFP10 coprocessor, so other options are made
available.

6.3.1 Scan chains

The VFP10 coprocessor is comprised of twelve individual scan chains. These scan
chains are concatenated with the control signals SCANMUX6 and SCANMUX12 to
allow another configuration of the scan chains. The other option is six internal scan
chains. Table 6-1 illustrates the how the scan chains are concatenated.

Table 6-1 Scan chain configuration

Mode
Scan chains
concatenated

Scan-in Scan-out

SCANMUX6 11, 5 SCANIN[5] VFP10SCANOUT[5]

SCANMUX6 10, 4 SCANIN[4] VFP10SCANOUT[4]

SCANMUX6 9, 3 SCANIN[3] VFP10SCANOUT[3]

SCANMUX6 8, 2 SCANIN[2] VFP10SCANOUT[2]

SCANMUX6 7, 1 SCANIN[1] VFP10SCANOUT[1]

SCANMUX6 6, 0 SCANIN[0] VFP10SCANOUT[0]

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-5

There are two signals labelled SCANMUX6 and SCANMUX12 for the internal scan
chains. These signals are tied HIGH or LOW to obtain the desired configuration as
shown in Table 6-2.

Table 6-2 Internal scan chain configuration

Configuration
SCANMUX12
value

SCANMUX6
value

1 scan chain, legal with SCORETEST asserted 0 0

6 internal scan chains, 1 wrapper chain 0 1

12 internal scan chains, 3 wrapper chains 1 0

Restricted 1 1

Design for Test

6-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

6.4 VFP10 test wrapper

The VFP10 coprocessor test wrapper contains one configuration of the wrapper scan
chain. It is important that the wrapper chain is not the longest scan chain so that it does
not control the ultimate length of each scan pattern. This test wrapper chain is the
shortest scan chain regardless of which internal scan chain mode is chosen. This
wrapper scan chain consists of only dedicated test wrapper cells shown in Figure 6-1and
Figure 6-2 on page 6-7. There is a wrapper cell connected to every input and output
functional port with the exception of the clock ports. The test wrapper cells can be used
for control and observation of the ports during testing of theVFP10 coprocessor and the
testing of logic external to the VFP10 coprocessor. Figure 6-1 shows a dedicated input
wrapper cell.

Figure 6-1 Dedicated input wrapper cell

Figure 6-2 on page 6-7 shows a dedicated output wrapper cell. The dedicated output cell
has a safe gate.

SE

Peripheral

logic

VFP10

coprocessor

Wrapper cell

out in

D

SI

CK

Q

0

1

SE

functional path

Scan input Scan output

WCLKWScan enable WMUXINSEL

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-7

Figure 6-2 Dedicated output wrapper cell

6.4.1 Reset dedicated wrapper cell

There is a third type of wrapper cell designed for asynchronous reset input. Figure 6-3
on page 6-8 shows the elements of the reset dedicated wrapper cell.

SE

VFP10

coprocessor

Peripheral

logic

out in

Wrapper cell

D

SI

CK

Q

SE

WCLKWScan enable WMUXOUTSEL

0

1

Scan input Scan output SAFE

Safe

gate

functional path

Design for Test

6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Figure 6-3 Reset dedicated wrapper cell

During external test mode, the safe gate on the reset wrapper cells can enable the reset
of the core to reduce power and to keep the core safe. In addition, all asynchronous
resets are directly controllable during scan mode. The VFP10DFTRESET port is a
separate port that must be directly connected to a pin to have direct control of the reset
during ATPG testing.

6.4.2 Wrapper cell control and observation configurations

The dedicated test cells require some control signals to differentiate:

• core testing

• external testing

• functional mode.

When VFP10WMUXINSEL is selected all of the input wrapper cells are in inward
facing mode to allow for control of the core inputs during test. When this signal is
negated, the wrapper input cells can observe data from logic peripheral to the core. This
is also the state for functional mode. VFP10WMUXSELOUT is connected to the
wrapper cells adjacent to the output ports of the core. When VFP10WMUXSELOUT
is negated, it enables observation of the core logic. This is also the state during

VFP10
coprocessor

SE

Wrapper cell

D

SI

CK

Q

SE

WCLK
WScan

enable
WMUXINSEL

0

1

Scan input
Scan

output
RSTSAFE

Safe

gate

functional path
in

Peripheral

logic

out

DFTRESET

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-9

functional mode. When VFP10WMUXSELOUT is asserted, the wrapper cells can
control data to the logic peripheral to the core. Table 6-3 describes the wrapper cell
control and observation configurations.

6.4.3 Serial core test clocking

There is a serial core test mode enabled by the SCORETEST signal. In SCORETEST
mode, all of the scan chains are connected serially in the VFP10 coprocessor macrocell.
The last cell in the serial chain is a lock-up latch so that this output can connect to
another clock domain and retain safe shift properties. Care must be taken to make sure
the chain shifts safely. VFP10WCLK must be in the same phase as GCLK during this
mode. Capture cycles cannot occur safely because of probable delay differences
between the clock domains.

6.4.4 Clock gating

The clock gating signals are VFP10DFTCKEN and VFP10DFTWCKEN. These
signals enable the gating of:

• the core clocks

• the wrapper clock

• both.

While the clock gating signals are enabled, GCLK and VFP10WCLK are enabled.

Note

 In functional mode, VFP10DFTCKEN must be enabled. You are advised to disable
VFP10DFTWCKEN.

Table 6-3 Wrapper cell control and observation configurations

Mode
Wrapper Mux Control Pins

VFP10WMUXINSEL VFP10WMUXSELOUT

Core test 1 0

External test 0 1

Functional 0 0

Design for Test

6-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

6.5 VFP10 clocking

The VFP10 coprocessor wrapper clock VFP10WCLK is 180 degrees out of phase with
GCLK during production scan mode as shown in Figure 6-4.

Figure 6-4 VFP10 production scan mode clocking

This prevents hold timing issues because GCLK and VFP10WCLK are not perfectly
delay-matched within the VFP10 coprocessor macrocell. VFP10WCLK can be created
by inverting GCLK, but the timing from the package pins to the ports of these two
signals on the VFP10 coprocessor macrocell should be closely delay-matched.

In Serial Core Test (SCORETEST) all scan enables must remain enabled. All clocks are
coincident as shown in Figure 6-5.

Figure 6-5 VFP10 serial core test clocking requirement

The scan chains in the VFP10 coprocessor are concatenated into one scan chain. There
is a lock-up latch attached to the end of the wrapper scan chain.

6.5.1 VFP10 serial core test clocking requirement in safe mode

The wrapper cells connected to the outputs of the VFP10 coprocessor core all have safe
state logic. In core test mode, VFP10SAFE can be asserted so that the values at the
output of the core are held in a steady state. The reset also has a safe gate attached to it.
In external test mode, the VFP10RSTSAFE signal can be asserted. This puts the core
into reset during external test mode. If the state of the core is to be frozen for iddq
testing. VFP10RSTSAFE should be disabled along with the clock enable signals after
set-up of the core to hold state.

GCLK

VFP10WCLK

GCLK

VFP10WCLK

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-11

6.6 Test Pins

The dedicated test ports on this core must be instantiated in a specific manner for the
test of the core to operate properly. Some of the signals are static and some are dynamic.
In the case of the VFP10 coprocessor scan patterns, a dynamic signal must make it from
the pin of the chip to the first flip-flop in the core, that is, the head flip-flop of a scan
chain, within a cycle of the test pattern. The timing of the test patterns is such that at
time 0, the inputs change and at mid-point through the cycle, the clock becomes active
(except in the case of VFP10WCLK, as shown in Figure 6-4 on page 6-10). Table 6-4
describes the VFP10 coprocessor macrocell test ports.

Table 6-4 VFP10 macrocell test ports

Port Name Direction Type Description

VFP10SCANMODE Input Static Puts the device into scan mode

VFP10SCANEN Input Dynamic Scan enable for all internal clock domains
HIGH= shift

SCORETEST Input Static Serialize all of the scan chains (internal and
wrapper)

SCANMUX6 Input Static Enables accessibility to 6 separate internal
scan chains

SCANMUX12 Input Static Enables accessibility to 12 separate internal
scan chains

SCANIN[23:0] Input Dynamic Scan input ports

VFP10SCANOUT[23:0] Output Dynamic Scan output ports

VFP10DFTGCKEN Input Static Enables the internal core clock

VFP10DFTRESET Input Dynamic Direct control over asynchronous reset
during scan mode

VFP10DFTWCKEN Input Static Enables the wrapper clock to the dedicated
test cells

VFP10WSCANEN Input Dynamic Scan enable for all dedicated test cells in the
wrapper
HIGH = shift

WSCANIN[1:0] Input Dynamic Input ports for the wrapper scan chains

VFP10WSCANOUT[1:0] Output Dynamic Output ports for the wrapper scan chains

Design for Test

6-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 6-5 shows the configuration of the VFP10 coprocessor test ports during core
testing. A test control module can be created to control the states of these signals.

VFP10WMUXINSEL Input Static Configures the wrapper cells into core test
mode

VFP10WMUXOUTSEL Input Static Configures the wrapper cells in external test
mode

VFP10SAFE Input Static Forces safe values onto the outputs of the
core
Used during core test.

VFP10RSTSAFE Input Static Enables the Reset to the core

VFP10WCLK Input Dynamic Wrapper clock for dedicated wrapper cells

Table 6-4 VFP10 macrocell test ports

Port Name Direction Type Description

Table 6-5 VFP10 test signals during core scan test

Signal Value

VFP10SCANMODE 1

VFP10DFTGCKEN 1

VFP10DFTWCKEN 1

VFP10SCANEN Connect to an external pin

VFP10WSCANEN Connect to an external pin

VFP10DFTRESET Connect to an external pin

VFP10WMUXINSEL 1

VFP10WMUXOUTSEL 0

VFP10SAFE 1 (recommendation)

VFP10RSTSAFE 0

SCANIN Connect to external pins

VFP10SCANOUT Connect to external pins

Design for Test

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-13

6.6.1 Additional test pin configurations

Additional test pin configurations are described in:

• VFP10 coprocessor test signals in functional mode on page 6-13

• VFP10 test pins in VFP10 coprocessor external test wrapper mode on page 6-13.

 Table 6-6 describes VFP10 coprocessor test signals in functional mode

Table 6-7 describes VFP10 test pins in VFP10 coprocessor external test wrapper mode

Table 6-6 VFP10 coprocessor test signals in functional mode

VFP10 Test Pins Connection

VFP10SCANMODE 0

VFP10DFTGCKEN 1

VFP10DFTWCKEN 0 (recommended)

VFP10SCANEN 0

VFP10WSCANEN 0

VFP10DFTRESET 0 (recommended)

VFP10MUXINSEL 0

VFP10MUXOUTSEL 0

VFP10SAFE 0

VFP10RSTSAFE 0

SCANIN 0 (recommended)

VFP10SCANOUT gated 0 (recommended)

Table 6-7 VFP10 test pins in VFP10 coprocessor external test wrapper mode

VFP10TestMode Connection

VFP10SCANMODE 0

VFP10DFTGCKEN 0 (recommended)

VFP10DFTWCKEN 1

VFP10SCANEN 0

Design for Test

6-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10WSCANEN Connected to a pin

VFP10DFTRESET Connected to a pin if VFP10RSTSAFE disabled

VFP10MUXINSEL 0

VFP10MUXOUTSEL 1

VFP10SAFE 0

VFP10RSTSAFE 1 (recommended)

SCANIN 0

VFP10SCANOUT Not needed, gated 0 (recommended)

VFP10WSCANOUT Connected to a pin or another scan chain

WSCANIN Connected to a pin or another scan chain

Table 6-7 VFP10 test pins in VFP10 coprocessor external test wrapper mode

VFP10TestMode Connection

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Glossary-1

Glossary

This glossary contains selected items from the ARM Architecture Reference Manual,
the IEEE-754-1985 specification, and items defined within the text of the manual.

Bouncing
An instruction is said to be bounced by the VFP10 coprocessor if it is valid for the
VFP10 coprocessor but not acknowledged to the ARM. This action initiates exception
processing through the undefined instruction trap. The VFP10 coprocessor bounces an
instruction by asserting CPBOUNCEE in the D stage of a trigger instruction.

See also Trigger instruction, Potentially exceptional instruction, and Exceptional state.

Coprocessor Data Processing (CDP)
For the VFP10 coprocessor, CDP operations are arithmetic operations rather than load
or store operations.

Default NaN Mode A mode enabled by setting the DN bit in the FPSCR (FPSCR bit 25). In this mode, all
operations, which result in a NaN, will return the default NaN, regardless of the cause
of the NaN result. This mode is compliant with the IEEE 754 specification, but implies
that all information contained in any input NaNs to an operation will be lost.

Glossary

Glossary-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Disabled exception
An exception that has its associated exception enable bit in the FPCSR set to 0 is
referred to as disabled. For these exceptions the IEEE-754 specification defines the
result to be returned. An operation that generates an exception condition may bounce to
the support code to produce the IEEE-754 defined result. The exception is not reported
to the user exception handler.

Enabled exception
An exception with the respective exception enable bit in the FPSCR set to 1. In the event
of an occurrence of this exception a trap to the user handler is taken. An operation that
generates an exception condition might bounce to the support code to produce the
IEEE-754 defined result. The exception is then reported to the user exception handler.

Exceptional state
When a potentially exceptional instruction is issued, the VFP sets the EX bit in the
FPSCR and loads a copy of the instruction word for the potentially exceptional
instruction. If the instruction is a short vector operation, the register fields in the
FPINST are altered to represent the iteration that was exceptional. When in the
exceptional state, the issue of a trigger instruction to the VFP causes a bounce.

See also Bouncing, Potentially exceptional instruction, and Trigger instruction.

Exponent
The component of a floating-point number that normally signifies the integer power to
which two is raised in determining the value of the represented number. Occasionally
the exponent is called the signed or unbiased exponent.

Fd
The destination register and the accumulate value in triadic operations. Sd for single-
precision operations and Dd for double-precision.

Fn
The first source operand in dyadic or triadic operations. Sn for single-precision
operations and Dn for double-precision.

Fm
The second source operand in dyadic or triadic operations. Sm for single-precision
operations and Dm for double-precision

Glossary

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Glossary-3

Fraction
The field of the significand that lies to the right of its implied binary point.

Flush-To-Zero mode
A mode enabled by setting the FZ bit in the FPSCR (FPSCR bit 24). In this mode all
inputs to arithmetic operations which are in the subnormal range for the input precision

(-2Emin < x < 2Emin) and all results which are in the given range, before rounding, are
treated as positive zero, rather than interpreted as, or converted to, a subnormalized
value.

Half vector A short vector operation in which the length is 4 or less for single-precision and 2 or
less for double-precision. In RunFast mode these half-vector operations do not lock
their source registers, and a load immediately following will not have a stall introduced
due to a write-after-read hazard on the source registers. Half-vectors are only CDP
operations which are vectorizable, and do not include DIV or SQRT instructions.

IEEE 754
IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. The
Institute of Electrical and Electronics Engineers, Inc. New York, New York, 10017.
The standard, often referred to as the IEEE-754 standard, which defines data types,
correct operation, exception types and handling, and error bounds for floating-point
systems. Most processors are built in compliance with the standard in either hardware
or a combination of hardware and software.

Illegal instructions
If there is no potential floating-point exception from an earlier instruction, the current
instruction may still be bounced because it is Architecturally undefined in some way.
Such instructions are known as illegal instructions.

Infinity
An IEEE-754 special format used to represent ∞. The exponent will be maximum for
the precision and the significand will be all zeros.

Input exception
An exception condition in which one or more of the operands for a given operation are
not supported by the hardware. The operation will bounce to support code for
completion of the operation.

Intermediate result
An internal format used to store the result of a calculation before rounding. This format
may have a larger exponent field and significand field than the destination format.

Glossary

Glossary-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

MCR/MCRR
A class of data transfer instructions which transfer 32-bit or 64-bit quantities from an
ARM register or registers to a VFP10 coprocessor register or registers.

MRC/MRRC
A class of data transfer instructions which transfer 32-bit or 64-bit quantities from an
VFP10 coprocessor register or registers to an ARM register or registers.

NaN
A symbolic entity encoded in a floating-point format. There are two types of NaNs,
signaling and non-signaling, or quiet. Signaling NaNs will cause an Invalid Operand
exception if used as an operand. Quiet NaNs propagate through almost every arithmetic
operation without signaling exceptions. The exponent field will be maximum with the
significand non-zero. To represent a signaling NaN the most significant bit of the
fraction is zero, while a quiet NaN will have the bit set to a one.

Potentially exceptional instruction
An instruction that is determined, based on the exponents of the operands and the sign
bits, to have the potential to be exceptional (either to produce an overflow or underflow
condition). Once this determination is made, the VFP enters the exceptional state and
bounces the next trigger instruction issued.

See also Bouncing, Trigger instruction, and Exceptional state.

Register banks A bank of registers is defined for use in vector operations. For the VFPv2 architecture,
the register banks are defined as:

Reserved
A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces UNPREDICTABLE results if the contents of the
field are not zero. These fields are reserved for use in future extensions of the
architecture or are implementation-specific. All reserved bits not used by the
implementation must be written as zero and will be read as zero.

Table G-8 Register banks in single-precision and double-precision registers

Bank Single-precision registers Double-precision registers

0 s0-s7 d0-d3

1 s8-s15 d4-d7

2 s16-s23 d8-d11

3 s24-s31 d12-d15

Glossary

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Glossary-5

Rounding mode
The IEEE-754 Standard requires all calculations are performed as if to an infinite
precision, that is, a multiply of two single-precision values must calculate accurately the
significand to twice the number of bits of the significand. To represent this value in the
destination precision rounding of the significand is often required. The IEEE-754
standard specifies four rounding modes - Round to Nearest (RN) is accomplished by
rounding at the half way point, with the tie case rounding up if it would zero the LSB
of the significand, making it even. Round to Zero, or chop (RZ) effectively chops any
bits to the right of the significand, always rounding down, and is used by the C, C++,
and Java languages in integer conversions. Round to Plus Infinity (RP) and Round to
Minus Infinity (RM) are used in interval arithmetic.

RunFast Mode
RunFast mode specifies hardware support for the handling of IEEE-754 exceptional
conditions and special operands. RunFast mode is enabled by enabling the Default NaN
mode (FPSCR[25] set), Flush-to-Zero mode (FPSCR[24] set), and disabling all
exceptions (FPSCR[12:8] all clear). In RunFast mode the VFP10 coprocessor will not
bounce to the ARM for any legal operation or any operand, but will supply a result to
the destination. This result will be what is specified by the IEEE-754 for all inexact and
overflow results, and all invalid operations that result from operations not involving
NaNs. For operations involving NaNs, the Default NaN mode specifies the result to be
the default NaN.

Scalar operation
An operation involving a single destination register.

Short vector
operation

An operation involving more than one destination register, perhaps involving different
source registers in the generation of the result for each destination.

Significand
The component of a binary floating-point number that consists of an explicit or implicit
leading bit to the left of its implied binary point and a fraction field to the right.

Stride The stride field in the FPSCR (FPSCR[21:20]) specifies the increment applied to
register addresses in short vector operations. A stride of 00, specifying an increment of
+1, will cause a short vector operation to increment each vector register by 1 for each
iteration, while a stride of 11 will specify an increment of +2.

For example, with a LEN of 011 (for an effective short vector length of 4 iterations) and
a stride of 00, the instruction:

FADDS S8, S16, S24

executes the scalar operations:

FADDS S8, S16, S24

Glossary

Glossary-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

FADDS S9, S17, S25

FADDS S10, S18, S26

FADDS S8, S19, S27

If the stride was changed to 11, the same instruction would execute the following scalar
operations. Notice the change in registers for the 2nd through 4th iterations:

FADDS S8, S16, S24

FADDS S10, S18, S26

FADDS S12, S20, S28

FADDS S14, S22, S30

See the ARM Architecture Reference Manual for a listing of combinations of precision,
short vector length, and stride which are UNPREDICTABLE.

Subnormalized
value (subnormal)

A representation of a value in the range (-2Emin < x < 2Emin). In the IEEE-754 format
for single and double precision operands, a subnormalized value, or subnormal, has a
zero exponent and the leading significant bit is 0 rather than 1. The IEEE-754-1985
specification requires that the generation and manipulation of subnormalized operands
be performed with the same precision as with normal operands.

Support code Software that must be used to complement the hardware to provide compatibility with
the IEEE-754 standard. The support code is intended to have two components:

a library of routines that performs operations beyond the scope of the hardware, such as
transcendental computations, as well as supported functions, such as divide with
unsupported inputs or inputs that might generate an exception a set of exception
handlers that process exceptional conditions to provide IEEE-754 compliance.

The support code is required to perform implemented functions to emulate proper
handling of any unsupported data type or data representation (subnormal values or
decimal data types). The routines can be written to utilize the VFP10 coprocessor in
their intermediate calculations if care is taken to restore the user state at the exit of the
routine.

Trap
An exceptional condition that has the respective exception enable bit set in the FPSCR.
The user provided trap handler is executed.

Trigger instruction
The instruction that causes a bounce at the time it is issued. A potentially exceptional
instruction causes the VFP to enter the exceptional state. The next instruction, unless it
is an FMXR or FMRX instruction accessing one of the FPEXC, FPINST, or FPSID

Glossary

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Glossary-7

registers, causes a bounce, beginning exception processing. The trigger instruction is
not necessarily exceptional, and no processing of it is performed. It will be retried at the
return from exception processing of the potentially exceptional instruction.

See also Bouncing, Potentially exceptional instruction, and Exceptional state.

UNDEFINED
Indicates an instruction that generates an undefined instruction trap. See the ARM
Architecture Reference Manual for more information on ARM exceptions.

UNPREDICTABLE
The result of an instruction or control register field value that cannot be relied upon.
UNPREDICTABLE instructions or results must not represent security holes, or halt or
hang the processor, or any parts of the system.

Unsupported values
Specific data values that are not processed by the hardware but bounced to the support
code for completion. These data can include infinities, NaNs, subnormal values, and
zeros. An implementation is free to select which of these values is supported in
hardware fully or partially, or requires assistance from support code to complete the
operation. Any exception resulting from processing unsupported data is trapped to user
code if the corresponding exception enable bit for the exception is set.

Vector operation

See Short vector operation.

Glossary

Glossary-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
Addition

like-signed 5-23
unlike-signed 5-23

Applications
data-intensive 1-18
examples 1-3, 2-2
filtering 2-2

Architecture
VFPv2 1-2

B
Bouncing

FPEXC register 3-18
FPINST register 5-4
FPINST2 register 3-18, 5-4
in RunFast mode 1-14, 4-13, 5-13
instructions 5-3
pipelines 5-8

Bouncing see also CPBOUNCEE,
FPEXC

C
CDP instruction 1-9, 1-12, 1-16, 2-12,

3-6, 3-9, 3-10, 4-6, 4-11, 4-18,
4-21, 4-23, 5-7, 5-10, 5-21

Code
examples 2-10, 2-12, 2-15, 3-8, 4-6,

4-14, 4-15, 4-17, 4-19, 5-8, 5-10
Comparisons

floating-point 3-23
FPINST2 register 5-10
FPSCR register 3-7
use of FMSTAT 1-17

CPBOUNCEE
signal 3-19

Cumulative exception bits
DZC 3-26, 5-16
IDC 1-13, 1-22, 3-2, 5-12
IOC 3-2, 3-6

IXC 3-3, 3-9, 3-26, 5-18, 5-19,
5-20, 5-21

OFC 3-19, 3-26, 5-17, 5-18
UFC 1-13, 1-22, 3-2, 3-3, 3-8, 3-10,

3-18, 5-19
Cumulative exception bits see also

Exceptions, Trap enable bits

D
Data storage

endianness 2-10
in memory 2-10
target address values 2-10

Default NaN mode 1-14
bits 1-13
default NaNs 3-10
description 3-10
DN bit 3-24
modifications 1-21
NaN results 1-14
removal of hazards 1-21

Index

Index-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Division by zero
exceptions 5-16

DZC
cumulative exception bit 3-26, 5-16

DZE
trap enable bit 3-26, 5-16, 5-17,

5-27

E
EX

FPEXC bit field 3-17, 3-18, 3-19,
5-3, 5-6, 5-8, 5-10, 5-14, 5-17

Exception processing
description 5-2
FPINST register 5-8
procedure 5-3
support code 5-3

Exceptions
arithmetic 5-3
checking 1-7
detection 1-5
division by zero 5-16
handlers 5-3
illegal instructions 5-3
imprecise 3-9
inexact 5-21
like-signed addition 5-23
overflow 5-17
trap enable bits 1-13
underflow 5-19
unlike-signed addition 5-23

Exceptions see also Trap enable bits,
Cumulative exception bits

Exponent 2-3, 2-4

F
FABS instruction 1-6, 5-13
FADD instruction 1-6, 4-7, 4-19
FCMP instruction 1-7, 3-7, 4-4, 5-28
FCPY instruction 1-7, 5-13, 5-28
FCVTSD instruction 1-7
FDIV instruction 1-8, 2-7, 4-6, 4-8,

4-9, 4-22, 4-23, 5-27, 5-28
FLD instruction 1-10, 2-3, 4-6, 4-8,

4-15, 4-16, 4-17, 4-19, 4-22

FLDM instruction 1-10
Floating-point comparisons

condition flags 3-23
Flush-to-zero mode

controlling 3-24
FMAC instruction 1-6, 1-7, 1-18, 4-23,

5-14, 5-24, 5-26
FMAC pipeline

diagram 1-6
FMDHR instruction 1-11, 2-7
FMDLR instruction 1-11, 3-17, 4-23,

5-6, 5-8
FMDRR instruction 1-11, 2-8, 3-11
FMRDH instruction 1-11, 1-17, 1-18,

2-7, 3-7, 4-8
FMRDL instruction 1-11, 2-7
FMRRD instruction 1-11, 2-8, 3-12
FMRRS instruction 1-11, 2-8, 3-15
FMRS instruction 1-11, 1-17
FMRX instruction 1-11, 3-17, 3-19,

4-2, 4-4
FMSR instruction 1-11, 1-18, 2-7, 3-7
FMUL instruction 1-6, 2-14, 4-23,

5-13, 5-25, 5-27
FMXR instruction 1-11, 2-7, 3-17, 4-4,

4-23, 5-6, 5-8
FNEG instruction 1-6
Forwarding

examples 4-6
FPEXC register

bouncing 3-18
EX 3-17, 3-18, 3-19, 5-3, 5-6, 5-8,

5-10, 5-14, 5-17
exception bits 3-19
format 3-18
FPv2 bit 5-4
FTZ mode 3-19
illegal instructions 5-6
not a trigger instruction 5-7
pipeline stalls 4-4
support code 3-17, 5-3
system control register 3-17

FPINST register
bouncing 5-4
exception processing 5-8
not a trigger instructions 5-8
potentially exceptional instruction

5-3
serializing operations 4-4

support code 5-4
system control register 3-17
trigger instructions 5-8

FPINST2 register
AL in condition code 5-10
bouncing 3-18, 5-4
load and store instructions 3-17
pre-trigger slot 5-7
RunFast mode 1-13
serializing operations 4-4
system control register 3-17
with invalid data 5-11

FPSCR register
comparisons 3-7
controlling flush-to zero mode 3-24
controlling the rounding mode 3-24
DZE bit 3-26, 5-16, 5-17, 5-27
format 3-23
FTZ mode 3-24
FZ bit 1-12, 3-9, 3-24, 5-12, 5-19
IDC bit 3-3, 3-10
IXC bit set 5-18
LEN field settings 2-2, 2-13
OFC bit set 5-18
potentially exceptional conditions

3-19, 5-2, 5-8
serializing operations 4-4
STRIDE 2-2, 3-25
subnormal input exception bit 3-2
system control register 3-17
UFE bit 3-2
using ARM comparison operations

1-17, 3-7
FPSID register

format 3-21
FPv2 bit

FPEXC register 5-4
FSITO instruction 1-6
FSQRT instruction 1-8
FST instruction 1-10, 2-3, 4-6, 4-15,

4-16
FSTM instruction 1-10, 2-3, 3-13, 4-6,

5-8
FSUB instruction 1-6, 5-23
FTOSIZD instruction 3-24
FTOSIZS instruction 3-24
FTOUI instruction 1-6
FTOUIZD instruction 3-24
FTOUIZS instruction 3-24

Index

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Index-3

FTZ 3-3
FTZ mode

controlling 3-24
description 3-9
FPEXC 3-19
in Non-RunFast mode 1-12
in RunFast mode 1-13, 3-5
modification to Invalid trap 3-2
modifications from Rev 0 1-21
modifications to IXC bit 3-3
subnormal input 5-16
subnormal operands 5-22
underflowed results 3-8

FZ bit
FPSCR register 1-12, 3-9, 3-24,

5-12, 5-19

G
GCLK

signal 6-10
timing 6-10

H
Hazard detection

Non-RunFast mode 4-11
RunFast mode 4-11

Hazards
defined 4-3
examples 4-14
read-after-read 1-18
read-after-write 1-18

I
ID numbers

VFP10 coprocessor 1-4
IDC

cumulative exception bit 1-13,
1-22, 3-2, 5-12

FPSCR register 3-3, 3-10
subnormal input exception bit 3-2

IDE
trap enable bit 1-22, 3-2, 5-12

Illegal instructions

FPEXC register 5-6
Inexact

exceptions 5-21
Input exceptions

NaNs 5-22
Instructions

bouncing 5-3
branch 1-17
CDP 1-9, 1-12, 1-16, 2-12, 3-6, 3-9,

3-10, 4-6, 4-11, 4-18, 4-21, 4-23,
5-7, 5-10, 5-21

executed in hardware 1-6, 1-8
FABS 1-6, 5-13
FADD 1-6, 4-7, 4-19
FCMP 1-7, 3-7, 4-4, 5-28
FCPY 1-7, 5-13, 5-28
FCVTSD 1-7
FDIV 1-8, 2-7, 4-6, 4-8, 4-9, 4-22,

4-23, 5-27, 5-28
FLD 1-10, 2-3, 4-6, 4-8, 4-15, 4-16,

4-17, 4-19, 4-22
FLDM 1-10
FLMDMX 2-3
FMAC 1-6, 1-7, 1-18, 4-23, 5-14,

5-24, 5-26
FMDHR 1-11, 2-7
FMDLR 1-11, 3-17, 4-23, 5-6, 5-8
FMDRR 1-11, 2-8, 3-11
FMRDH 1-11, 1-17, 1-18, 2-7, 3-7,

4-8
FMRDL 1-11, 2-7
FMRRD 1-11, 2-8, 3-12
FMRRS 1-11, 2-8, 3-15
FMRS 1-11, 1-17
FMRX 1-11, 3-17, 3-19, 4-2, 4-4
FMSR 1-11, 1-18, 2-7, 3-7
FMSTAT 1-17
FMUL 1-6, 2-14, 4-23, 5-13, 5-25,

5-27
FMXR 1-11, 2-7, 3-17, 4-4, 4-23,

5-6, 5-8
FNEG 1-6
FSITO 1-6
FSQRT 1-8
FST 1-10, 2-3, 4-6, 4-15, 4-16
FSTM 1-10, 2-3, 3-13, 4-6, 5-8
FSTMX 2-3
FSUB 1-6, 5-23
FTOSIZD 3-24

FTOSIZS 3-24
FTOUI 1-6
FTOUIZD 3-24
FTOUIZS 3-24
illegal 5-6
MCR 1-9, 2-7
MRC 1-9, 2-7, 4-6
MRCC 1-9, 2-7
MRRC 1-21, 2-8, 3-2

Invalid operations
NaNs 5-13

IOC
cumulative exception bit 3-2, 3-6

IOE
trap enable bit 1-12, 3-2, 3-7, 3-26,

5-14
IXC

cumulative exception bit 3-3, 3-9,
3-26, 5-18, 5-19, 5-20, 5-21

modifications 3-3
IXE

trap enable bit 1-12, 5-21

L
LEN

FPSCR bits 2-13
Like-signed addition 5-23

M
Mantissa 2-4

overflow 5-24
MCR instruction 1-9, 2-7
Modes

Default NaN 1-13, 1-14, 1-21, 3-10,
3-24

Non-RunFast 1-12, 1-18, 3-5, 3-6,
4-11, 4-12, 4-16, 5-2, 5-13, 5-19

RunFast 1-2, 1-13, 1-22, 3-5, 3-6,
4-9, 4-17, 5-2, 5-13

Modifications
Default NaN mode 1-21
IXC 3-3
UFC 3-2

MRC instruction 1-9, 2-7, 4-6
MRCC instruction 1-9, 2-7

Index

Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

MRRC instruction 1-21, 2-8, 3-2

N
NaNs

compare with exception operands
3-7

default definition 3-6
handling in RunFast mode 3-6
input exceptions 5-22
invalid operations 5-13
IOE bit set 3-7
quiet 3-6
signaling 2-3, 3-6, 5-13

Non-RunFast mode 1-12, 1-18, 3-5,
3-6, 4-11, 4-12, 4-16, 5-2, 5-13,
5-19

FTZ mode 1-12
hazard detection 4-11
read-after-read hazard 1-18

O
OFC

cumulative exception bit 3-19,
3-26, 5-17, 5-18

OFE
trap enable bit 1-12, 3-26, 5-17

Operations
scalar-only 2-13
serializing 4-4
vector-only 2-13

Overflow
exceptions 5-17

P
Pipelines

bouncing 5-8
DS 1-8, 1-16, 1-18, 1-21, 4-9, 4-18,

4-21
FMAC 1-5, 1-6, 1-16, 1-21, 4-21
FMAC diagram 1-6
FPEXC register and stalls 4-4
LS 1-5, 1-9, 1-16, 4-2, 4-9, 4-21
operating in parallel 1-5, 4-21

stages 1-5, 5-8
Potentially exceptional conditions

description 5-2
detailed conditions 5-8
FPSCR 3-19

Potentially exceptional instructions
FPINST register 5-3

Pre-trigger slot
FPINST2 register 5-7

R
Read-after-read

hazard 1-18
Non-RunFast mode 1-18

Read-after-write
hazards 1-18

Register file
banks 2-12
consistency in usage 2-9
data formats 2-3
details 2-2
double-precision items 2-2
instructions 2-2
internal formats 2-2
single-precision items 2-2
suitability for vector operations

2-12
Rounding modes

controlling 3-24
RunFast

mode 4-9, 5-13
RunFast mode 1-2, 1-13, 1-22, 3-5,

3-6, 4-17, 5-2
bouncing 4-13
FTZ mode 1-13, 3-5
hazard detection 4-11

S
SCANMUX12

signal 6-4
SCANMUX6

signals 6-4
Scoreboard

description 4-9
SCORETEST

signal 6-9
Serializing operations 4-4
Short vectors

defined 1-15
Signals

CPBOUNCEE 3-19
GCLK 6-10
SCANMUX12 6-4
SCANMUX6 6-4
SCORETEST 6-9
VFP10DFTCKEN 6-9
VFP10DFTRESET 6-3, 6-8
VFP10RSTSAFE 6-10
VFP10SAFE 6-10
VFP10WCLK 6-3, 6-4, 6-9
VFP10WMUXINSEL 6-8
VFP10WMUXSELOUT 6-8, 6-9

STRIDE
 2-15
field settings 3-25, 4-15, 4-16, 4-17,

4-19
FPSCR bits 3-25
scalar mode 3-25

Subnormal input
FTZ mode 5-16

Subnormal operands
FTZ mode 5-22

Support code
arithmetic exceptions 5-23
components 1-2, 1-7, 1-12, 1-13,

5-3
determining exceptional state 3-19,

5-4
determining trigger instructions 5-7
exception processing 5-3
FPEXC register 3-17, 5-3
FPINST register 5-4
IEEE 754 compliance 3-4
library functions 3-4
Non-RunFast mode operation 5-13
overflow 5-17
RunFast mode operation 5-13
system control registers 3-17
UFC bit 5-19
underflow 5-19

System control registers
FPEXC 3-17
FPINST 3-17
FPINST2 1-13, 3-17

Index

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Index-5

FPINST2 register 5-11
FPSCR 3-17
FPSID 3-17, 3-21, 4-4, 5-7

T
Test pins

configurations 6-13
list 6-11

Timing
GCLK 6-10

Trap enable bits
DZE 3-26, 5-16
IDE 1-22, 3-2, 5-12
IOE 1-12, 3-2, 3-7, 3-26, 5-14
IXE 1-12, 5-21
OFE 1-12, 3-26, 5-17
UFE 1-22, 3-2

Trap enable bits see also Exceptions,
Cumulative exception bits

U
UFC

cumulative exception bit 1-13,
1-22, 3-2, 3-3, 3-8, 3-10, 3-18,
5-19

modifications to 3-2
set in support code 5-19

UFE
trap enable bit 1-22, 3-2

Underflow
exceptions 5-2, 5-19
pessimistic determination 5-19

Underflowed results
FTZ mode 3-8

Unlike-signed addition
exceptions 5-23

V
VECITR

FPEXC bit field 1-17, 3-20, 5-4,
5-8, 5-9, 5-10, 5-16, 5-19

Vectors
short 1-5, 1-15

VFPv2
vector floating-point architecture

1-2
VFP10

vector floating-point coprocessor ix
VFP10 coprocessor

ID numbers 1-4
VFP10 pipeline

stages 5-8
VFP10DFTCKEN

clock gating signal 6-9
signals 6-9

VFP10DFTRESET
signal 6-3, 6-8

VFP10DFTWCKEN
clock gating signal 6-9
signals 6-9

VFP10RSTSAFE
signal 6-10

VFP10SAFE
signal 6-10

VFP10WCLK
signal 6-3, 6-4, 6-9

VFP10WMUXINSEL
signal 6-8

VFP10WMUXSELOUT
signal 6-8, 6-9

W
Wrapper cells

dedicated input wrapper cells 6-6
dedicated output wrapper cells 6-6
reset dedicated output wrapper cells

6-7

Index

Index-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

	VFP10™ Vector Floating�point Coprocessor
	Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1 Introduction
	Introduction
	1.1 About the VFP10 coprocessor
	1.2 Coprocessor interface
	1.3 The VFP10 coprocessor pipeline
	1.4 Modes of operation
	1.5 Short vector instructions
	1.6 Parallel execution of instructions
	1.7 VFP10 coprocessor treatment of branch instructions
	1.8 Writing optimal VFP10 coprocessor code
	1.9 Clocking
	1.10 Testing
	1.11 Modifications from VFP10 coprocessor (Rev 0)

	Chapter 2 VFP10 Register File
	VFP10 Register File
	2.1 About the register file
	2.2 Register file internal formats
	2.3 Decoding the register file
	2.4 Loading operands from ARM registers
	2.5 Maintaining consistency in register precisions
	2.6 Data transfer between memory and VFP10 coprocessor registers
	2.7 Access to register banks in CDP operations
	Example�2�1 Register access example

	Chapter 3 VFP10 Programmer’s Model
	VFP10 Programmer’s Model
	3.1 About the programmer’s model
	3.2 Compliance with IEEE-754
	3.3 ARM v5TE coprocessor extensions
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes

	3.4 Summary of VFP coprocessor system control registers
	3.5 FPSCR register

	Chapter 4 Instruction Execution in the VFP10 Coprocessor
	Instruction Execution in the VFP10 Coprocessor
	4.1 About instruction execution in the VFP10 coprocessor
	4.2 Serializing instructions
	4.3 Interrupting VFP10 coprocessor instructions
	4.4 Forwarding
	Example�4�1 No forwarding with different precisions
	Example�4�2 Load data not forwarded
	Example�4�3 Store of a destination register of a double-precision FMULD
	Example�4�4 Store of a destination register of a single-precision FMULD
	Example�4�5 Second FADD dependent on result of first FADD
	Example�4�6 Reducing stall cycles
	Example�4�7 FADDS not forwarded
	Example�4�8 Condition codes and branches
	Example�4�9 Using the ARM10E core for comparisons
	Example�4�10 Last load causing a stall
	Example�4�11 FDIVS stall
	Example�4�12 Resource conflict in the DS pipeline

	4.5 Hazard and resource stall conditions
	Example�4�13 Read after write example 1
	Example�4�14 Read after write example 2
	Example�4�15 Vector FMULS example
	Example�4�16 Vector FMULS example
	Example�4�17 Vector FMULS RunFast mode example
	Example�4�18 Vector FMULS with a load of all registers in RunFast mode
	Example�4�19 Load multiple followed by a single FMULS and FADDS
	Example�4�20 Load multiple, vector FMULS followed by scalar FADDS

	4.6 Parallel execution of operations
	Example�4�21 Parallel execution in all 3 pipelines

	4.7 Execution timing

	Chapter 5 Exception Handling
	Exception Handling
	5.1 About exception processing
	5.2 Support code
	5.3 Illegal instructions
	5.4 Determination of the trigger instruction
	Example�5�1 FLDMD completes regardless of a subsequent exceptional CDP
	Example�5�2 Exceptional vector CDP followed by several load/store operations
	Example�5�3 Exceptional CDP with CDP in the pre-trigger slot
	Example�5�4 Exceptional vector CDP followed by scalar CDP with register conflict

	5.5 Input subnormal
	5.6 Invalid operation
	5.7 Division by zero
	5.8 Overflow
	5.9 Underflow
	5.10 Inexact result
	5.11 Input exceptions
	5.12 Arithmetic exceptions

	Chapter 6 Design for Test
	Design for Test
	6.1 About DFT
	6.2 VFP10 DFT
	6.3 VFP10 Core
	6.4 VFP10 test wrapper
	6.5 VFP10 clocking
	6.6 Test Pins

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

