VFP10™ Vector Floating-point
Coprocessor

(Rev 1)

Technical Reference Manual

ARM

Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0178B

VFP10™ Vector Floating-point Coprocessor
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change
22 May, 2001 A First release
24 May, 2001 B Second release, addition of FPINST and FPINST2 <reg> field addresses

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and hames mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omissionin
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

The information in this document isfinal (information on a developed product).
Web Address

http://www.arm.com

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Contents

VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Preface
ADOUL thiS OCUMENToiiiiiiiiiiieieie e e X
FUINEr FEAINGeviiiiieeiiiie e Xii
FEEUADACK ..ottt xiii
Chapter 1 Introduction
11 AboUt the VFPL0O COPIrOCESSONvviiiiieiiiiieeiiiiee et e ettt sieee e 1-2
1.2 COProCeSSOr INTEITACEcoiviiiiiii i 1-4
1.3 The VFP10 coprocessor pipeline ... 1-5
1.4 MOdES Of OPEIAION ... 1-12
15 ShOrt VECLOr INSIIUCHIONSeeiiiiieieiec e 1-15
1.6 Parallel execution of INSTIUCHIONSooviiiiiiiiie e 1-16
1.7 VFP10 coprocessor treatment of branch instructionsc.cccccceevnneen. 1-17
1.8 Writing optimal VFP10 COProCessor COUEoccvvvrrieeriieeeniieenineenineens 1-18
1.9 ClOCKING .ttt et e e 1-19
1.10 LICSES] (] T TP PTRRUUTPPRPRN 1-20
1.11 Modifications from VFP10 coprocessor (Rev 0)ccceeeeeriiiieeneenniieneeenn. 1-21
Chapter 2 VFP10 Register File
2.1 About the register file ... 2-2
ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. iii

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

2.2
2.3
2.4
2.5
2.6
2.7

Register file internal fOrmatsooooiiiiiiiiiiii e
Decoding the register file ...
Loading operands from ARM regiSterscccccvvevveerrnnennn

Maintaining consistency in register precisions
Data transfer between memory and VFP10 coprocessor registers 2-10
Access to register banks in CDP 0perationsccoccceveeriinieeeeennsiieeens. 2-12

VFP10 Programmer’s Model

3.1
3.2
3.3
3.4
3.5

About the programmer’s MOdeloccueieiiiiiiiiiiei e
Compliance with [EEE-754coocviiieeiiiinnn.
ARM V5TE coprocessor eXtenSIiONScocceeevvvveeieeenninnn.
Summary of VFP coprocessor system control registers
FPSCR FEUISIEN ..ottt

Instruction Execution in the VFP10 Coprocessor

4.1
4.2
4.3
4.4
4.5
4.6
4.7

About instruction execution in the VFP10 COProCcessorccvcvveeviveennne 4-2
Serializing INSIIUCHIONScooiiiiiiiiei e
Interrupting VFP10 coprocessor instructions
FOrwardingcoeeeioiiiiiee e

Hazard and resource stall conditionscccocvveeiiiiiniiieinie e
Parallel execution of OPErationsSccceeiiiiiiiiieeiieee e
EXECULION tIMING oottt

Exception Handling

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

AbOUt EXCEPLION PrOCESSING ..vvveiiiiieiiiie ettt 5-2
10 o] oo] ot Lo [T RO PR 5-3
llegal INSTIUCHIONSiiiiiiiiii e 5-6
Determination of the trigger iINSIrUCHIONccuvieiiiiiiiiieieeeee e

Input subnormal
Invalid operation
Division by zero
OVEITIOW .ttt e e e e e e
UNAEITIOW ...t e
INEXACT FESUIL ..o e
Input exceptions
ArithmMetiC EXCEPLIONSiiiiiieiiiie et 5-23

Design for Test

6.1 About DFT

6.2 VFP10 DFT

6.3 VEPL0 COFE ..ttt ettt
6.4 VFPLO tESE WIAPPET ...ttt ettt e e e e e e e e e e e e
6.5 VFP10 clocking

6.6 Test Pins ...ccooveeevieenne

Glossary

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

List of Tables
VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 4-1
Table 4-2

ChaNQE NISTOMY ..ttt e e s ii
MECR TTANSTEIS ..eeiiiiiieiee et e e e s et e e e e s snta e e e e e s snbeeeeenaas
MRC TFANSTEIS ...eiiii ittt ettt e e et e e s e e e b e e e e e e annneeeaenan
MCRR transfers
MRRC transfers
Single-precision data memory images and byte addresses
Double-precision data memory images and byte addresses
Register bank deSCrPLIONcceiiiiiieii e
Single-precision three-operand register usage ...
Single-precision two-operand register usageccccceeuneee.
Double-precision three-operand register usage
Double-precision two-operand regiSter USAgEcoovureeeeeeriiiiiiieieeaiiieeeeeseaeeeeens
Default NaN VAIUESoooiiiiiiiiec ettt e e e e e e e s e nnsbaeeaeenes
Access to control registers
FPEXC bit field deSCHPLIONScoccvveiiiieeiiiee e
Vector iteration count bit VAIUEScooiiiiiiiiiiiii e
S | DN o 1= o PSPPSR
Vector length/stride COMDINALIONSoouuiiiiiiiiieii e
Exception status and CONtrol DItSccccooiiiiiiiiiiiiii e
Single-precision source register locking and clearing in non-RunFast mode 4-12
Double-precision source register locking and clearing in non-RunFast mode 4-12

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. v

List of Tables

Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table G-8

Single-precision source register locking and clearing in RunFast mode 4-13
Double-precision source register locking and clearing in RunFast mode 4-13
Instruction cycles for eXxample 1 ... 4-14
Instruction cycles for eXample 2 ... 4-15
Instruction cycles for short vector MULS example ..o 4-16
Instruction cycles for short vector FMULS example ... 4-16
Instruction cycles for example in Run Fast modeccccooviiiiiiiiiiiiine e 4-17

Instruction cycles for vector MULS example
Instruction cycles for eXample 2 ...
Pipeline stages for load multiple, vector MULS, scalar FADDSccccevcvvvennnne
Parallel execution in three pipelines ...

Throughput and latency cycle timings for VFP10 CDP operations
Possible IEEE 754 invalid operation eXCeptionsccccoveeeeeeeennnnns

Default results for positive invalid iINPULSoooiiiiiiiiniieee e
OVEITIOW FESUIL ... ettt
LSA and USA determinationcccccoeeveee
USA and LSA values and conditions
FMUL family bounce and exceptional thresholds
FDIV bounce and exceptional thresholds ...
FCVTSD bouNnCe CONAItIONS ...cooiiiiiiiiiee et
SP Float-to-integer bounce thresholds and stored results
DP Float-to-integer bounce thresholds and stored resultsccccvviveiniieenneen,
Scan chain coNfIQUIatiONoooueiiiioiii et
Internal scan chain configuration ...
Wrapper cell control and observation configurations
VFP10 macrocell teSt POrtsccoceevvvveiieeeeiiieesieeee

VFP10 test signals during Core SCan tESEc..ooivieieiiiiiiiiie e
VFP10 coprocessor test signals in functional modecccccceeviiiiiniiiiieccinnen,
VFP10 test pins in VFP10 coprocessor external test wrapper mode 6-13
Register banks in single-precision and double-precision registers Glossary-4

Vi

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

List of Figures
VFP10 Vector Floating-point Coprocessor
Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5

FMAGC PIPEINE ..ot 1-6
Divide and square root PIPEIINEccoiiiiiiiiie e 1-8
LOAd/SIOre PIPEIINEeeeiiiiieei e e 1-10
INEEYEN TOIMAL ...eeiiiie ettt e e e bt e e e e et e e e e s anbeeeaenan 2-3
Single-precision data fOrMAaLooceeiiiiii e 2-4
Register data fOMMALSccueiiiieiiiiee e e e 2-4
Register file fOrMALc.eiiiiie e 2-6
FMDRR DIt fIEIOS ..ottt 3-11
FMRRD DIt fIEIOS ..ottt 3-12
FMSRR DIt fIRIAS ...t 3-13
FMRRS DIt fIRIAS ..oivieieiiiiieiie ettt 3-15
FPEXC regiSter FOMMALcoouueiiiiiiiiieie ettt 3-19
FPSID register fOrMALccviiiiiieiiee et 3-21
User status and control bit fieldS SUMMArYccccooiiiiiiiii e 3-23
Dedicated iNput Wrapper CEIIooi i 6-6
Dedicated output Wrapper CeIIo..uuiiiie e 6-7
Reset dedicated Wrapper Celloii i 6-8
VFP10 production scan mode ClOCKINGcoiuiiiiiaiiiiiiie et 6-10
VFP10 serial core test clocking reqUIremMentccccooeeeiiiiieniicenieeee e 6-10

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. vii

List of Figures

viii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Preface

Thisprefaceintroducesthe VFP10™ (Rev1) Vector Floating-point Coprocessor and its
reference documentation. It contains the following sections:

. About this document on page x
. Further reading on page xii
. Feedback on page xiii.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. ix

Preface

About this document

Intended audience

Using this manual

This document is the technical reference manual for the VFP10 coprocessor (Revl).

This document has been written for experienced hardware and software engineerswho
arefamiliar with the ARM 10 Thumb Family architecture and are conversant with | EEE
754 and its conventions for dealing with floating-point arithmetic. We recommend
reading the relevant sections of the ARM Architecture Reference Manual beforereading
this manual.

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an overview of the VFP10 coprocessor pipelines,
modes of operation and a summary of the differences between this
revision and the previous revision.

Chapter 2 VFP10 Register File

Read this chapter for adescription of the VVFP10 coprocessor register file.

Chapter 3 VFP10 Programmer’s Model
Read this chapter for details of the programmer’s model and VVFP10
Coprocessor registers.

Chapter 4 Instruction Execution in the VFP10 Coprocessor
Read this chapter for details of instruction execution in VFP10
COprocessor.

Chapter 5 Exception Handling
Read this chapter for a description of VFP10 coprocessor exception
handling.

Chapter 6 Design for Test

Read this chapter for adescription of VFP10 coprocessor design for test
features.

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Preface

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

italic Highlights important notes, introduces special terminol ogy, denotes
internal cross-references, and citations.

typewriter Denotestext that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands and functions where the argument isto
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outsi de example code and ARM
processor signal names.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. Xi

Preface

Further reading

ARM publications

Other publications

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq

This document containsinformation that is specific to the VFP10 Vector Floating-point
Coprocessor (Rev 1). Refer to the following documents for other relevant information:

ARM Architecture Reference Manual (ARM DUI 0100) Revision D or later
AFSFirmware Suite Version 1.3 Reference Guide (ARM DUI

0102).

ARM1020E Technical Reference Manual (ARM DDI 0177)

ARM10200E Test Chip Implementation Guide (ARM DXI 0106).

This manual makes extensive use of the terminology and conventions of:

ANSI/IEEE Std 754-1985, |EEE Standard for Binary Floating-point Arithmetic.

Xii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Preface

Feedback

ARM Limited welcomes feedback both on the VFP10 Vector Floating-point
Coprocessor (Rev1), and on the documentation.

Feedback on the VFP10 Vector Floating-point Coprocessor (Rev1l)

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send email to errata@arm.com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are al so welcome.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Xiii

Preface

Xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Chapter 1
Introduction

This chapter introduces the VFP10 Vector Floating-point Coprocessor. It contains the
following sections:

About the VFP10 coprocessor on page 1-2

Coprocessor interface on page 1-4

The VFP10 coprocessor pipeline on page 1-5

Modes of operation on page 1-12

Short vector instructions on page 1-15

Parallel execution of instructions on page 1-16

VFP10 coprocessor treatment of branch instructions on page 1-17
Wkiting optimal VFP10 coprocessor code on page 1-18
Clocking on page 1-19

Testing on page 1-20

Modifications from VFP10 coprocessor (Rev 0) on page 1-21.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

1-1

Introduction

1.1 About the VFP10 coprocessor

The ARM VFP10 Floating-point Coprocessor is the first implementation of the \ector
Floating-point Architecture (VFPv2). It provides |EEE 754-compliant, low-cost
floating-point computation for applications where high-performance graphics
processing or signal processing capabilities are required.

The VFP10 coprocessor is optimized for:
. high data transfer bandwidth through 64-bit split load and store buses

. fast hardware execution of a high percentage of operations on normalized data
resulting in higher overall performance while providing full IEEE 754 support
when required

. parallel divide and square-root operationsin parallel with other arithmetic
operations to reduce the impact of long latency operations

. full IEEE 754 compatibility in RunFast mode without support code assistance,
providing determinable run-time calculations for al input data

. low power consumption, small die size and reduced kernel code.

The VFP10 coprocessor is a high-performance, low-power ARM enhanced numeric
coprocessor macrocel | that provides high throughput |EEE 754-compatible operations.
Designed to beincorporated with the ARM 10 family of cores, the VFP10 coprocessor
provides full support of single-precision and double-precision addition, subtraction,
multiplication, division, and multiply with accumulate operations. Conversions
between floating-point data formats and ARM integer word format are provided, with
specia operations to perform the conversion in Round-To-Zero (RZ) rounding for
high-level language support.

The VFP10 coprocessor delivers high performance in general purpose applications,
such as Java, and an excellent performance-power-area solution for embedded
applications.

Note

This document is intended to be read in conjunction with the Vector Floating-point
Architecture section of the ARM Architecture Reference Manual. Only VFP10-specific
implementation issues are described in this book.

1-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.1.1 Applications

Introduction

The VFP10 coprocessor is built with full-scan for high coverage testability. Advanced
power-saving support is incorporated to take advantage of the power-saving modes of
the ARM1020E macrocell. The VFP10 coprocessor provides high-performance,
low-cost floating-point computation particularly suitable for a wide spectrum of
applications such as:

personal digital assistants and smartphones for graphics, voice and user
interfaces, Javainterpretation, and Just In Time (JIT) compilation

games machines for high-resolution three-dimensional graphics and digital audio

printers and Multi-Function Peripheral (MFP) controllers for high-definition
color rendering requiring high data memory bandwidth

network controllersfor high data bandwidth between network ports and for data
compression

set-top boxes for digital audio and digital video and three-dimensional user
interfaces

automotive applications for engine management and power train computations.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-3

Introduction

1.2

Coprocessor interface

The VFP10 coprocessor is designed to be integrated with an ARM 10 family device
through a general -purpose ARM 1020E coprocessor interface. Thisinterface is further
defined in the ARM1020E Technical Reference Manual.

The VFP10 coprocessor uses coprocessor |D numbers 10 and 11, mainly for
single-precision and double-precision operations, respectively. In some cases, such as
mixed precision operations, the coprocessor |D represents the destination precision. In
a system containing a VFP10 coprocessor, these coprocessor |D numbers must not be
used by another coprocessor.

For the VFP10 coprocessor to operate at the maximum frequency specified, the
coprocessor interface between the ARM 1020E and the VVFP10 coprocessor must be
implemented with care to minimize the physical distance between the ARM 1020E
device and the VFP10 coprocessor, and to make the interconnect wires as short as
possible. See the ARM10200E | mplementation Guide for more information.

1-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

1.3 The VFP10 coprocessor pipeline

The VFP10 coprocessor comprises three separate pipelines:
. the multiply-accumulate pipeline (FMAC)

. the Divide and square root pipeline (DS).

. the Load/Store pipeline (LS)

These are each capabl e of operating independently of the other pipelinesand in parallel
with them. Each of the three pipelines share the first two pipeline stages, Issue and
Decode. These two stages and the first cycle of the Execute stage of each pipeline
remains in lockstep with the ARM pipeline stage but effectively one cycle behind the
ARM pipeline. When the ARM isin the Decode stage for a particular VFP instruction,
the VFP10 coprocessor isin the I ssue stage for the same instruction. This lockstep
mechanism maintains in-order issue between the ARM processor and the VFP10
COproCcessor.

Thethree pipelinesare capable of operating in parallel, enabling morethan 1 instruction
to be completed per cycle. Instructions issued to the FMAC pipeline can complete out
of order with respect to load and store operations and divide or square root operations.
This out-of-order completion might be visible to the user in the case of an exception
generated by a short vector FMAC or DS operation, with aload or store operation
initiated before the exception was detected. The destination registers or memory of the
load or store operation will reflect the completion of atransfer while the destination
registers of the exceptional FMAC or DS operation will retain their values before the
operation was initiated. Thisis described in more detail in Parallel execution of
operations on page 4-21.

The pipeline supports single-cycle throughput for all single-precision operations
(excluding divide and square root) and most doubl e-precision operations.
Double-precision multiply and multiply-accumul ate operations have a two-cycle
throughput. The LS pipelineis capable of supplying two single-precision operands or
one double-precision operand per cycle, ba ancing the data transfer capability with the
operand reguirements.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-5

Introduction

1.3.1 The FMAC pipeline
The FMAC pipelineis shown in Figure 1-1.
Decode Execute1 Execute2 Execute 3 Execute 4/WB
Read port Fn—g oPC
j Product
Exception sum and
detect round
Load » Zero
forw a[:: detect Multiply
forward g
Final sum
generation
Read port Fn »
> rl(:)lﬂ:ld Result
Read port Fm > - select
Exception
detect
M
Z P
dotect U
+1 Normalize Special
Read port Fm » results
3 OPA
Read port Fd __g
Exception
detect A operand Align
e e PG Wriack
To Register File < <
Figure 1-1 FMAC pipeline
1.3.2 FMAC pipeline execution
The FMAC pipeline executes the following instructions:
FADD Addition.
FSUB Subtraction.
FMUL, FNMUL Multi pIy.
FMAC, FNMAC, FMSC, FNMSC
Multiply-accumul ate.
FABS Absolute value.
FNEG Negation.
FUITO, FTOUI Unsigned integer conversion.
FSITO,FTOSI Signed integer conversion.
1-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

FTOUIZ, FTOSIZ
Floating-point to integer conversion with forced RZ rounding mode.
FCMP, FCMPE, FCMPZ,FCMPEZ
Comparison.
FCVTSD, FCVTDS
Format conversion.
FCPY Copy register.

See Execution timing on page 4-23 for cycle counts.

The FMAC family of instructions (FMAC, FNMAC, FMSC, and FNMSC) perform a chained
multiply and accumulate operation. The product is computed, rounded to the specified
rounding mode and destination precision, and checked for exceptions before the
accumul ate operation is performed. The accumulate operation is also rounded to the
specified rounding mode and destination precision, and checked for exceptions. The
final result isidentical to the equivalent sequence of operations executed in sequence.
Exception processing and status reporting also reflect the independence of the
components of the chained operations.

Asan example, the FMAC instruction performs achained multiply-add operation with the

following sequence of operations:

1. Theproduct of the operandsin the Fn and Fm registers are multiplied.

2. Theproduct is rounded to the current rounding mode and destination precision
and checked for exceptions.

3. Theresult is summed with the operand in the Fd register.

4. Thesum isrounded to the current rounding mode and destination precision and
checked for exceptions. If no exception conditions that require support code are
present, the result is written to the Fd register.

For example, the instruction
FMACS S@, S1, S2
returns the same result as:

FMULS TEMP, S1, S2
FADDS S@, S1, TEMP

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-7

Introduction

1.3.3 Divide and square root pipeline

The divide and square root (DS) pipeline is shown in Figure 1-2.

Decode Execute1 Execute2 Execute 3 Execute 4/WB
Dividend Partial
Read port remainder/
Fm) ‘_> Radicand
—>
>

> g | Zero

> detect

Load
forw ard Divisor/
visor ;
FMAC > Radicand Sign Divisor/Root
forw ard Multiple ol ’
> inal resul
selection
T N Normalize
< >
Read port : y
Fn P R >
Next Next Root
Quotient/ Multiples
Root »
Selection
» Increment
Final
quotient/
roots

A

To Register File <

Figure 1-2 Divide and square root pipeline

The divide and square root pipeline executes the following instructions:
FDIV Division
FSQRT Square root

The VFP10 coprocessor executes divide and square root functions for both
single-precision and double-precision operands with all |EEE 754 rounding modes
supported. The DS unit uses a shared radix-4 algorithm that provides a good balance
between speed and chip area. The DS operations have alatency of 17 cyclesfor
single-precision operations and 31 cycles for double-precision operations. The
throughput is 14 cycles for single-precision operations and 28 cycles for
double-precision operations.

1-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

1.3.4 Load/store pipeline

The LS pipeline handles all of theinstructionsthat involve datatransfer to and from the
ARM1020E macrocell, including loads (LDC) and (LDM), stores (STC) and (STM), movesto
coprocessor register (MCR) and (MRCC), and moves from coprocessor register (MRC) and
MRRC). It remains synchronized with the ARM1020E macrocell LS pipeline for the
duration of the instruction.

Datawritten to the ARM 1020E macrocell isread from the VFP10 coprocessor register
filein the Decode (D) stage and transferred to the ARM 1020E macrocell in the same
cycle, and islatched on the ARM1020E macrocell Execute/Memory cycle boundary.
Thetransfer is made on a dedicated 64-bit store data bus between all coprocessors and
the ARM1020E macrocell.

L oad datais written to the VFP10 coprocessor on a dedicated 64-bit load bus between
the ARM1020E macrocell and all coprocessors. Datais received by the VFP10
coprocessor on the Memory (M)/Writeback (W) boundary. Data is written to the
register fileinthe Writeback stage, and available for forwarding to CDP operationsin the
same cycle. Figure 1-3 on page 1-10 showsthe LS pipeline.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-9

Introduction

Issue

Fn

CPINSTR Register
(Instructon —» Address
Bus) Generation

F

Store

Load

1.3.5 Load/Store operations

TR

Decode Execute Memory Writeback
> Read port Fn
—>DS Fwd
—» FMAC Fwd
Load Fwd
Register [~ Read port Fm
File: Read
and
Format
Muxes DS Wb >
—» Read port Fd FMAC Wb »
LDCMCRDATA >
[63:0] Bus .
Register
File: Write
» Store Data Bus - and
STCMRCDATA[63:0] Format
Muxes

Figure 1-3 Load/Store pipeline

The load/store pipeline executes the following instructions:

FLD

FLDM

FST

FST™M

Load asingle data value, either single-precision, double-precision, or
32-hit integer from memory to the VFP10 coprocessor register file.

Load up to 32 single-precision or integer data values or 16
double-precision data values from memory to the VFP10 coprocessor
register file.

Store a single data value, either single-precision, double-precision, or
32-hit integer from the VFP10 coprocessor register file to memory.

Store up to 32 single-precision or integer data values or 16
double-precision data values from the VV FP10 coprocessor register fileto
memory.

1-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

FMSR

FMDHR

FMDLR

FMRS

FMRDH

FMRDL

FMDRR

FMRRD

FMRRS

FMXR

FMRX

Introduction

Transfer asingle-precision or integer data value from a VFP10
coprocessor single-precision register to an ARM1020E macrocel |
register.

Transfer the upper-half of a double-precision data value from aVFP10
coprocessor double-precision register to an ARM1020E macrocell
register.

Transfer the lower-half of a double-precision data value from aVFP10
coprocessor double-precision register to an ARM 1020E macrocell
register.

Transfer asingle-precision or integer data value from an ARM1020E
macrocell register to aVFP10 coprocessor single-precision register.

Transfer the upper-half of a double-precision data value from aVFP10
coprocessor double-precision register.

Transfer the lower-half of a double-precision data value from an
ARM 1020E macrocell register to aVVFP10 coprocessor double-precision
register.

Transfer two ARM 1020E macrocell registers to a double-precision
register in the VFP10 coprocessor.

Transfer a double-precision register in the VFP10 coprocessor to two
ARM1020E macrocell registers.

Transfer apair of consecutively-numbered registersin the VFP10
coprocessor to two ARM 1020E macrocell registers.

Transfer an ARM 1020E macrocell register valueto aV FP10 coprocessor
control register.

Transfer aVFP10 coprocessor control register to an ARM1020E
macrocell register value.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-11

Introduction

1.4 Modes of operation

TheVFP10 coprocessor providesfull IEEE 754 compatibility through acombination of
hardware and software. Some of the rare cases in the |[EEE 754 can require significant
additional compute time to resolve correctly according to the requirements of the IEEE
754 specification. For instance, the VFP10 coprocessor does hot process subnormal
inputs directly. To provide correct handling of input subnormal according to the IEEE
754 specification, atrap is made to support code to process the operation. Using the
support code for processing this operation can require hundreds of cycles. In some
applications thisis unavoidable, as compliance with the |IEEE 754 specification is
essential to proper operation of the program. In many other applications, especialy in
the embedded space, strict compliance to the IEEE 754 is unnecessary, while
determinable runtime, low interrupt latency, and low power are of more importance.
The VFP10 coprocessor provides both:

. the full compliance mode, referred to as non-RunFast, described in Non-RunFast
mode on page 1-12

. limited compliance mode, referred to as RunFast, described in RunFast Mode on
page 1-13.

1.4.1 Non-RunFast mode

When the VFP10 coprocessor is not in RunFast mode, all operations that cannot be
processed according to the |EEE 754 specification utilize support code for assistance.
The operations requiring support code are;

. any CDP operation involving asubnormal input when FTZ mode (FPSCR[24]) is

not enabled

. any CDP operation involving a NaN input when DN mode (FPSCR[25]) is not
enabled

. any CDP operation that has the potential of generating an underflow condition

. any CDP operation when the Inexact Exception Enable (1XE) bit is set

. any CDP operation when overflow is possible and the Overflow Exception
Enable (OFE) FPSCR[10]) is set

. any CDP operation that involves an invalid combination asthe result of aproduct
overflow and the Invalid Exception Enable (IOE, FPSCR[8]) is set.

1-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

The VFP10 coprocessor properly signals valid exception conditions according to the

| EEE 754 specification. The support code is utilized to determine the nature of the
exception, whether processing is required to perform preliminary computation for an
exception handler, and to call aninstalled exception handler or signal the termination of
the process.

Arithmetic exceptions on page 5-23 describes in greater detail the conditions under
which the VFP10 coprocessor traps to support code.

1.4.2 RunFast Mode

Although werefer to the behavior of the VFP10 coprocessor as being in RunFast Mode,
RunFast isnot amodethat is set specifically, but the behavior of the VFP10 coprocessor
when the FTZ (Flush-to-Zero Mode, FPSCR[24]) and DN (Default NaN Mode,
FPSCR[25]) bits are set, and all exception enable bits are clear, that is, no exceptions
are enabled in the FPSCR bits [15], [12:8].

Specifically, in Run Fast mode the VV FP10 coprocessor:

. processes an input subnormal operand and atiny result before rounding as a
positive zero

. processes an input NaN as a default NaN

. returns the | EEE specified default result for operations that overflow, operations
which are considered asinvalid, and for divide-by-zero cases, fully in hardware
and without additional latency

. processes all operationsin hardware without trapping to support code.

Inthe FTZ mode, the VFP10 coprocessor treats asubnormal input as a positive zero for
computation. An operation that is determined to underflow the range of the destination
precision before rounding returns a positive zero.

Two flags are available to provide visibility into the VFP10 coprocessor in FTZ mode

. the IDC bit in the FPSCR (FPSCR[7]) is set in a sticky manner to indicate the
presence of aflushed input in the computations executed since this bit was last
cleared

. the UFC bit in the FPSCR (FPSCR[11]) is set in a sticky manner to indicate the
presence of aflushed result in the computations executed since this bit was | ast
cleared.

These two bits provide visibility to the programmer of the behavior of the code in the
presence of very small inputs or results.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-13

Introduction

The Default NaN (DN) mode specifies that the result of any operation that involves
either input NaNs or generated aNaN result returnsthe default NaN. Propagation of the
fraction bitsis maintained only by FABS, FNEG, and FCPY operations, all other CDP
operations ignore any information in the fraction bits of an input NaN.

RunFast mode enables the programmer to write code for the VFP10 coprocessor that
runs in determinable time, regardless of the characteristics of the input data, without
requiring the support code for assistance completing any operation. Within RunFast
mode no user exception traps are available, although exception status bitsin the FPSCR
will be correct according to the IEEE754 for Inexact, Overflow, Invalid operation, and
Divide-by-zero. The Underflow exception status bit has been modified for FTZ mode.
All these bits are set by an exceptional condition and can only by cleared by awrite to
the FPSCR. See Invalid operation on page 5-13 and following for more detail on these
exceptions.

Specifically, in Run Fast mode the VFP10 coprocessor:
. processes an input subnormal operand as a positive zero
. processes an input NaN as a default NaN

. returns the | EEE specified default result for operations that overflow, operations
which are considered asinvalid, and for divide-by-zero cases, fully in hardware
and without additional latency.

1-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

15 Short vector instructions

The VFPv2 architecture provides amechanism for execution of short vectorsof upto 8
operations on single-precision data and up to 4 operations for double-precision data.
Short vectors are most useful in graphics and signal-processing applications. They
contribute to smaller code size, faster execution by supporting parallel operations, most
notably multiple transfers, and simplify the generation of high data throughput
algorithms.

Short vector operations issue the individual operations specified in theinstructionin a
serial fashion. A short vector does not begin execution until all the source registers are
available and al destination registers are not the target of another operation (to
eliminate write-after-write hazards).

See Chapter 4 Instruction Execution in the VFP10 Coprocessor for more information
on instruction execution.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-15

Introduction

1.6 Parallel execution of instructions

The VFP10 coprocessor providesthe ability to execute several floating-point operations
in parallel, while the ARM1020E macrocell is executing ARM instructions. While a
short vector operation will execute for anumber of cyclesin the VFP10 coprocessor, it
will appear to the ARM 1020E macrocell as a single-cycle instruction and be retired in
the ARM1020E macrocell before it compl etes execution in the VFP10 coprocessor.

The three pipelines are designed to operate independently of one another once initial
processing is completed. This makes it possible to issue a short vector operation and a
load or store multiple operation in the next cycle, and have both executing at the same
time, provided no datahazards exist between thetwo instructions. With thismechanism,
algorithms which can be double-buffered can be written to hide much of the time to
transfer data to and from the VFP10 coprocessor under the arithmetic operations,
resulting in a significant improvement in performance.

The separate divide and square root pipeline allows for operations, both data transfer
and CDPs (provided they are not to the DS pipeline) to execute in parallel with the
divide. The DS block has a dedicated write port to the register file, and no special care
is needed when executing operations in parallel with divide or square root instructions.
Thisisonly truefor scalar divides; short vector divideswill still support the parallel data
transfer operationsto executein parallel inthe LS pipeline, but the FMAC pipeline will
be unavailable until the final iteration of the short vector divide or square root has
completed the initial execute cycle. Thisis described further in Parallel execution of
operations on page 4-21.

1-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

1.7 VFP10 coprocessor treatment of branch instructions

The VFP10 coprocessor does not directly provide branch instructions. Instead, the
result of afloating-point compare instruction can be stored in the ARM condition code
flags by loading the FPSCR register to the program counter using the FMSTAT instruction.
This enables the ARM branch instructions and conditional execution capabilitiesto be
used for executing conditional floating-point code. See section C5 of the ARM
Architecture Reference Manual for information on the use of ARM conditional
execution to test IEEE 754 predicates.

In many cases, inwhich full |EEE 754 comparisons are not needed, simple comparisons
of single-precision data, such as comparisonsto zero, or to aconstant, can be doneusing
a FMRS transfer and the ARM CMP and CMN instructions. This method is faster in many
cases than using a FCMP followed by an FMSTAT instruction. For more information See
Compliance with | EEE-754 on page 3-4.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 1-17

Introduction

1.8 Writing optimal VFP10 coprocessor code

These guidelines provide significant performance increases for VFP10 coprocessor
code:

. Schedule most scalar operations immediately following each other, provided
there is no read-after-write hazard. Scalar double-precision multiply or
multiply-accumul ate instructions, or short vector instructions of length greater
than 1, must be followed by either asingle ARM or load/store instruction instead
of an arithmetic FMAC VFP10 coprocessor instruction.

. Avoid short vector divides and square roots. The VFP10 coprocessor FMAC and
DS pipelines are unavailable until the final iteration of the short vector divide or
squareroot isissued from the D stage. If the short vector divide or square root can
be separated, other VFP10 coprocessor instructions can be issued in the cycles
immediately following the divide or square root. See Example 4-21 on page 4-22
for more information on parallel execution.

. The best performance for data-intensive applications requires double-buffering
looped short vector instructions. The vector banks can be divided in half to
provide two independent working areas. Arithmetic operations on one half of the
bank must be followed by loads or stores to the other bank to take advantage of
the simultaneous execution of data transfer operations with the arithmetic
instructions.

. The first VFP10 coprocessor instruction following a branch mispredict is
serialized and waitsfor all VFP10 coprocessor instructions prior to the branch to
complete. Avoid placing long load/store instructions or divide/sguare-root
instructions before branches that are not predicted correctly a high percentage of
the time.

. Movesto and from control registers are serializing. Avoid placing thesein loops
or time-critical code.

. In non-RunFast mode, avoid reading source operands in the next cycle (this
generates a read-after-read hazard).

. Avoid using FCMpz/FCMPEZ if fully compliant |EEE 754 comparisons are not
required. The use of an FMRS instruction with an ARM CMP or CMN may be faster for
simple comparisons.

1-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

1.9 Clocking

Introduction

The VFP10 coprocessor is afully static design, with asingle clock input GCLK that
can be stopped indefinitely without loss of state. GCLK has the same timing
requirements asthe ARM1020E GCLK and isin phasewithit. The VFP GCLK must
be implemented to avoid excessive skew between the ARM1020E GCLK clock to
preserve signal integrity and timing on the coprocessor interface. Refer to ARM1020E
Technical Reference Manual for more information on the coprocessor interface.

The clock generation within the VFP10 coprocessor is tightly integrated with the test
functionality. Please see the next section on testing for more information on the impact
on the clocking by the test logic.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-19

Introduction

1.10 Testing

The VFP10 coprocessor is a fully-scanned design, with full boundary scan capability
allowing for independent testing. See Chapter 5 Design for Test for more information
on testing.

1-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Introduction

1.11 Modifications from VFP10 coprocessor (Rev 0)

The VFP10 coprocessor described in this Technical Reference Manual is the second
revision of the VFP10 coprocessor design. Thefirst revision, VFP10 coprocessor (Rev
0), was designed as a prototype and not intended for product integration. Significant
enhancements have been made to the VFP10 coprocessor as aresult of continued
development of the ARM floating-point products. These differences are as follows:

. 64-bit transfer instructions, implementations of the V5TE MCRR and MRRC
operations, are included in the VFP10 coprocessor Revl. These instructions
transfer two ARM registers to and from a double-precision or two contiguous
single-precision registers in the VFP10 coprocessor. These instructions are
described in ARM v5TE coprocessor extensions on page 3-11.

. The DSis separate from the primary execution pipeline (FMAC) pipeline,
enabling parallel execution of instructionsin the FMAC pipeline with adivide or
square root in the DS pipeline. Full hazard detection and register interlocking
between the two pipelinesis handled completely by hardware. Thisis discussed
further in Parallel execution of operations on page 4-21.

. Conditions under which an instruction requires support code intervention have
been significantly reduced. The VVFP10 coprocessor (Rev 0) requires support code
to process arithmetic operations involving infinities or which could potentially
overflow, and divide-by-zero cases. The VFP10 coprocessor (Revl) handles
infinity inputs, overflow conditions, and divide-by-zero cases according to the
|EEE 754 for the case of the exception not enabled. Support codeis utilized for
any arithmetic operation for which overflow is possible when the overflow trapis
enabled. Thisis discussed further in Chapter 5 Exception Handling.

. The VFP10 coprocessor (Revl) introduces a new mode which simplifies and
significantly increases the performance for programs that use NaNs but do not
require propagation of the fraction bits of the NaN. This mode, referred to as
Default NaN (DN) mode, when enabled causes the V FP10 coprocessor (Rev 1) to
process any arithmetic operation involving a NaN in accordance with the IEEE
754 specification. Any arithmetic operation involving aquiet NaN returns the
default NaN without trapping to support code. Any arithmetic operation involving
asignaling NaN will set the Invalid Operation Exception status bit, and, if the
Invalid Operation exceptionisenabled, atrap istaken and the user trap handler is
called. Thisis described further in |EEE-754 implementation choices on

page 3-4.

. A further enhancement is made to the performance of high data throughput code
when the code is capable of executing in FTZ mode and Default NaN mode, and
when no exceptions are enabled. This condition, referred to as RunFast mode,
enables the VFP10 coprocessor to remove certain hazard conditions which are

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 1-21

Introduction

related to the pipeline, namely between short vector operations and loads
involving the short vector sourceregisters. In VVFP10 coprocessor (Rev 0) theload
operation would be required to stall until the scoreboard locks on the source
registers were removed by each iteration of the short vector operation. This
requirement was present to preserve the source registers in the event of an
exception detected on one of the short vector iterations. When executing in
RunFast mode the source registers are not required to be preserved, and the |oad
does not stall. Thisisdiscussed further in RunFast Mode on page 1-13, and in
Hazard and resource stall conditions on page 4-11.

A new exception isintroduced in Rev1 which identifies cases of an input
subnormal when in Flush-to-zero mode. The VFP10 (Rev 0) coprocessor did not
report the instance of a subnormal input when flushed to zero in FTZ mode. The
new exception status flag iscalled IDC. A corresponding enable, IDE, alowsfor
trapping on this case to a user trap handler. Thisis discussed further in Input
subnormal on page 5-12.

The functionality of the UFC bit ismodified in FTZ modeto identify the flushing
of atiny result. The exception does not cause atrap even if UFE isenabled. This
is discussed further in Underflow on page 5-19.

The VFP10 coprocessor Rev0 was implemented in a fully-synthesized
methodology, while the Rev1 is a semi-custom design. The VFP10 coprocessor
(Rev1) supports full scan testing, with boundary scan for isolation of the VFP10
coprocessor from other modules for testing purposes.

1-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Chapter 2
VFP10 Register File

This chapter describes implementati on-specific features of the VFP10 coprocessor that
are useful to programmers. It contains the following sections:

. About the register file on page 2-2

. Register fileinternal formats on page 2-3

. Decoding the register file on page 2-5

. Loading operands from ARM registers on page 2-7

. Maintaining consistency in register precisions on page 2-9

. Data transfer between memory and VFP10 coprocessor registers on page 2-10
. Access to register banks in CDP operations on page 2-12.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-1

VFP10 Register File

2.1 About the register file

The ARM VFP10 coprocessor uses a register file that contains thirty-two 32-bit
registers organized in four banks. Each register can be used to store:

. asingle-precision dataitem
. asingle integer dataitem.

Alternatively, a consecutive pair of registers (R(even+1),R(even)) Can be used to store a
double-precision item. The registers in the VFP10 coprocessor can also be used as
secondary data storage by a non floating-point application, because no modification of
the datais performed on aload or store operation.

The register file addressing is circular within each of the banks for most operations.
Load and store operations do not circulate, allowing for multiple banks, up to the entire
register file, to beloaded or stored in asingle instruction. Short vector operations obey
certain rules specifying in what conditions the registersin the argument list specify
circular buffers or scalar registers. The LEN and STRIDE fields within the FPSCR
specify the number of operations performed by the short vector instructions. Further
information and examples arein the ARM Architecture Reference Manual, Section C5.
The banked approach to the register file supports the use of circular buffers by short
vector instructionsfor applications requiring high data throughput, such asfiltering and
graphics transforms.

2-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Register File

2.2 Register file internal formats

The VFPv2 architecture provides the option of an internal dataformat that is different
from some or al of the external formats. For the VVFP10 coprocessor, datain theregister
file possesses the same format as datain memory. No modification to the format is
performed by aload or store operation for single-precision, double-precision, or integer
data. It is the responsibility of the programmer to be aware of the data typein each
register. Hardware does not perform any checking of the agreement between datatype
in the source registers and the data type expected by the instruction. Hardware always
interprets the data according to the precision contained in the instruction. It is
recommended that for context saving and restoring V FP data registers you use the
FLDMX/FSTMX instructions for compatibility with future implementations.

Attempting to access aregister that has not been initialized or loaded with valid datais
UNPREDICTABLE. A means to detect accessto an uninitialized register isto load all
registers with signaling NaNsin the precision of the initial access of the register and
enable the invalid exception to detect access to an uninitialized register.

2.2.1 Integer data format

The VFP10 coprocessor supports signed and unsigned 32-bit integers. Signed integers
aretreated astwo’'s complement values. Figure 2-1 showstheinteger format for signed
and unsigned integers.

31 0

Integer

Figure 2-1 Integer format

No modification to the datais implicit in aload, store, or transfer operation on integer
data. The format of integer data within the register fileisidentical to the format in
memory or in an ARM general-purpose register.

2.2.2 Single-precision data format

The single-precision data format used in the VFP10 coprocessor is defined in the
ANSI/IEEE Std 754-1985, | EEE Standard for Binary Floating-point Arithmetic. Refer
to thisfor details about:

. the exponent bias
. special formats
. numerical ranges.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-3

VFP10 Register File

Figure 2-2 shows the single-precision bit fields.

3130 2322 0

S Exponent Mantissa (no explicit integer bit)

Figure 2-2 Single-precision data format

Single-precision data format comprises:

. the sign bit, [bit 31]

. the exponent, bits [30:23]

. the mantissa with no explicit integer bit, bits [22:0].

2.2.3 Double-precision data format

Double-precision
MSW

Double-precision
LSW

The double-precision dataformat used in the VFP10 coprocessor isdefined in the |EEE
754 specification. Refer to this for details about:

. the exponent bias
. special formats
. numerical ranges.

Double-precision format comprises the Most Sgnificant Word (MSW) and the Least
Sgnificant Word (L SW). Figure 2-3 shows the bit fields of the two words in
double-precision format.

3130 2019 0

S Exponent Mantissa upper 20 bits (no explicit integer bit)

Mantissa lower 32 bits

Figure 2-3 Register data formats

MSW comprises:

. the sign bit, bit 31 of the MSW

. the exponent, bits [30:20]

. the mantissa upper 20 bits with no explicit integer bit, bits[19:0].

L SW comprises the mantissalower 32 bits.

2-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Register File

2.3 Decoding the register file

Register file access involves the most significant four bits of the register number in the
instruction word. For operations involving double-precision operands or destinations,
the M, N, and D hit corresponding to a double-precision access must be zero. For
single-precision and integer accesses the most significant four bitsisin the Fx bit
positions (where x is, m, n, or d) and the least significant bit in the M, N, or D bits
respectively for each instruction format. Figure 2-4 on page 2-6 shows the register file
encoding. See the ARM Architecture Reference Manual for instruction formats and the
position of these bits.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 2-5

VFP10 Register File

31

instruction format

F

n,m,d

Double-precision bit index

Single-precision bit index

_____’_4:

© 0o N o g b~ W N P O

O L
» W N P O

=
o

v

=1

Odd single-precision/

most significant word
double-precision

v

=0

Even single-precision/
least significant word

double-precision

63

31 0|31 0
S1 DO SO
S3 D1 S2
S5 D2 S4
S7 D3 S6
S9 D4 S8
S11 D5 S10
S13 D6 S12
§15 D7 S14
S§17 D8 S16
S19 D9 S18
8§21 D10 S20
8§23 D11 S22
S25 D12 S24
8§27 D13 S26
§29 D14 S28
S31 D15 S30

Figure 2-4 Register file format

2-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Loading operands from ARM registers

VFP10 Register File

Floating-point data can be transferred between ARM registers and VFP10 coprocessor
registers using the MCR, MRC, MCRR, and MRCC coprocessor data transfer instructions.
Single-precision and integer data can be transferred to the ARM 1020E macrocell and
manipulated in asingle ARM register, while double-precision data requires two ARM
registers. No exceptions are possible on these transfer instructions.

MCR and MRC instructions transfer 32-bit quantities between ARM and VFP10
coprocessor registers. Table 2-1 describesMCR transfersr.

Table 2-1 MCR transfers

Instruction Operation Description

FMXR VFP System Reg = Rd System register transfer.
Register may be any of FPSID, FPSCR,
FPEXC, FPINST, or FPINST2.

FMDLR Dn[31:0] =Rd Transfer of the lower half of a
double-precision dataitem.

FMDHR Dn[63:32] = Rd Transfer of the upper half of a
double-precision dataitem.

FMSR Sn=Rd Transfer of asingle-precision or integer data

item.

Table 2-2 describes MRC transfers.

Table 2-2 MRC transfers

Instruction Operation Description

FMRX Rd = VFP System Reg System register transfer.
Register may be any of FPSID, FPSCR,
FPEXC, FPINST, or FPINST2.

FMRDL Rd = Dn[31:0] Transfer of the lower half of a
double-precision dataitem.

FMRDH Rd = Dn[63:32] Transfer of the upper half of a
double-precision dataitem.

FMRS Rd=Sn Transfer of asingle-precision or integer data

item.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 2-7

VFP10 Register File

MCRR and MRRC instructions transfer 64-bit quantities between ARM and VFP10
coprocessor registers. Table 2-3 describesMCRR transfers.

Table 2-3 MCRR transfers

Instruction Operation

Description

Transfer the concatenation of Rn:Rd to VFP
double-precision register Dm.

FMDRR Dm[lower half] = Rd
Dm = [upper half]Rn
FMSRR Sm=Rd
Sm+1=Rn

Transfer the pair of ARM registers{ Rn, Rd}
to acontiguous pair of VFP single-precision
registers { Sm+1, Sm}.

Table 2-4 describes MRRC transfers

Table 2-4 MRRC transfers

Instruction Operation

Description

Transfer the VVFP double-precision register
Dm to the concatenation of Rn:Rd.

FMRRD Rd = Dm[lower half]
Rn = Dm[upper half]
FMRRS Rd =Sm
Rn = Sm+1

Transfer the contiguous pair of VFP
single-precision registers { Sm+1, Sm} toa
pair of ARM registers{Rn, Rd}.

2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Register File

2.5 Maintaining consistency in register precisions

The VFP10 coprocessor register file stores single-precision, double-precision, and
integer data in the same registers. For example, D6 occupies the same registers as S12
and S13. The usable format of the register or registersis a function of the last load or
arithmetic instruction that wrote to the register or registers.

The hardware does not do any checking of the register contents to enforce consistent
use of the current register format with the precision of the current operation.
Inconsistent use of the registers is possible but UNPREDICTABLE. The dataisinterpreted
by the hardware in the format required by theinstruction regardless of thelatest store or
write operation to the register. It is the task of the compiler or programmer to maintain
consistency in register usage.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 2-9

VFP10 Register File

2.6

Data transfer between memory and VFP10 coprocessor registers

The format for accessing data stored in memory is determined by the CP15 control
register B bit. The ARM1020E macrocell supports both little-endian and big-endian
access formatsin memory.

The ARM 1020E macrocell stores 32-bit words in memory with the LSB in the lowest
byte of memory regardless of the endianness selected. For a store of a single-precision
data value the LSB bits are located at the target address with the lower two bits of the
address set to 00. The MSB is at the target address with the lower two bits set to 11. To
load the single-precision datato an ARM register or to aVVFP10 coprocessor register

you must set the lower two bits of the target address to 00.

For single-precision data, Table 2-5 on page 2-10 showsthe datastoragein memory and
the address access to each byte in both little-endian and big-endian access modes. Inthe
examplesin Table 2-5 on page 2-10 and Table 2-6 on page 2-11 the target address is

0x40000000.

Table 2-5 Single-precision data memory images and byte addresses

Single-precision
data bytes

Address in
memory

Little-endian
byte address

Big-endian byte
address

MSB
Bitg31:24]

0x40000003

0x40000003

0x40000000

Bits[23:16]

0x40000002

0x40000002

0x40000001

Bitg[15:8]

0x40000001

0x40000001

0x40000002

LSB
Bits[7:0]

0x40000000

0x40000000

0x40000003

2-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

VFP10 Register File

For double-precision data, the location of the two words that comprise the data are
stored in different locations for little-endian and big-endian data access formats.
Table 2-6 shows the data storage in memory and the address to access each byte in
little-endian and big-endian access modes.

Table 2-6 Double-precision data memory images and byte addresses

Double- Little-endian Big-endian

recision . .
Eata bytes ';ii:ﬁ?; n Byte address gcé(:rzgf; n Byte address
MSB 0x40000007 0x40000007 0x40000003 0x40000000
Bitg[63:56]
Bitg[55:48] 0x40000006 0x40000006 0x40000002 0x40000001
Bitg[47:40] 0x40000005 0x40000005 0x40000001 0x40000002
Bitg[39:32] 0x40000004 0x40000004 0x40000000 0x40000003
Bitg[31:24] 0x40000003 0x40000003 0x40000007 0x40000004
Bitg[23:16] 0x40000002 0x40000002 0x40000006 0x40000005
Bitg[15:08] 0x40000001 0x40000001 0x40000005 0x40000006
LSB 0x40000000 0x40000000 0x40000004 0x40000007
Bitg[7:0]

The memory image for the dataisidentical for both little-endian and big-endian within
word dataitems. The hardware performs the transformations of the address to provide
both little-endian and big-endian addressing to the programmer.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 2-11

VFP10 Register File

2.7 Access to register banks in CDP operations

Theregister fileis especialy suited for short vector operations. You can use four banks
of registersin acircular fashion to facilitate signal processing and matrix operations.
For details of this refer to the ARM Architecture Reference Manual.

2.7.1 About register banks

Theregister fileisdivided into 4 bankswith 8 registersin each bank for single-precision
operations and 4 registers per bank for double-precision operations. The banks are
accessed in acircular manner by CDPinstructions. Load and store multipleinstructions
do not accesstheregistersin acircular manner but will treat the register fileasalinearly
ordered structure.

Table 2-7 shows how the register banks are defined.

Table 2-7 Register bank description

Single-precision Double-precision
Bank] : . -
registers in bank registers in bank
0 S0-S7 D0-D3
1 S8-S15 D4-D7
2 S16-S23 D8-D11
3 S24-S31 D12-D15

A short vector CDP operation that has a source or destination vector crossing a bank
boundary accesses the registers within the bank asif the last register in the bank was
followed in alinear order by thefirst register in the bank.

Example 2-1 on page 2-12 shows a short vector operation crossing bank boundaries.

2-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Register File

Example 2-1 Register access example

For instance, the add operation:
FADDS S11, S22, S31

if treated as a vector of length 6, would access the registers in the following
manner:

FADDS S11, S22, S31 ; the first iteration

FADDS S12, S23, S24 the second iteration. The second source vector has
wrapped around and is accessing the first register in
the 4th bank

the third iteration. The first source vector has
wrapped around and is accessing the first register in
the 3rd bank

the fourth iteration

the fifth iteration

the sixth and Tast iteration The destination vector
has wrapped around and is writing to the first;
register in the second bank

FADDS S13, S16, S25

FADDS S14, S17, S26
FADDS S15, S18, S27
FADDS S8, S19, S28

2.7.2 Operations using register banks

The register file organization supports four types of operations described in the
following sections:

. Scalar-only operations on page 2-13

. \ector-only operations on page 2-14

. \ector-only operation with scalar source on page 2-14
. Scalar operationsin short vector mode on page 2-15.

See FPSCR register on page 3-23 for details of LEN and STRIDE fields and the
FPSCR.

Scalar-only operations

An operation is a scalar-only operation if the operands are treated as scalars and the
result isa scalar. There are two ways to perform a scalar-only operation:

. Setting the LEN field of the Floating-Point Satus and Control Register (FPSCR)
to 0 selects a vector length of 1. For example, if LEN = 0, then the following
operation:

FADDS S12, S21, S22

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 2-13

VFP10 Register File

results in the sum of the single-precision valuesin S21 and S22 being written to
S12.

. If the LEN field of the FPSCR is not 0, the operation is scalar-only if the
destination register isin bank 0. For example, regardless of the value of LEN, the
following operation:

FADDD D2, D5, D14

results in the sum of the double-precision valuesin D5 and D14 being written to
D2. No other operation will be performed by thisinstruction even though the LEN
field valueisnonzero. Scalar operationsin short vector mode on page 2-15 shows
an example where scalar and short vector operations are intermixed.

Some operations can only operate on scalar dataregardless of the value of the LEN field
or destination register bank number. These operations are:

. compare instructions FCMP, FCMPZ, FCMPE, and FCMPEZ
. integer conversion instructions FTOUI, FTOUIZ, FTOSI, FTOSIZ, FUITO, and FSITO
. precision conversion instructions FCVTDS and FCVTSD.

Vector-only operations

Vector-only operations requirethe LEN field to be nonzero, and the destination and Fm
registers not in bank O.

For example, if LEN = 3 (an effective vector length of 4) and STRIDE = 0 (for avector
stride of one) the following instruction:

FMACS S16, S0, S8
results in the following operations being performed as an atomic operation:

FMACS S16, SO, S8

FMACS S17, S1, S9

FMACS S18, S2, S10

FMACS S19, S3, S11.

Vector-only operation with scalar source

The VFPv2 architecture enables a vector to be operated on by a scalar operand. The
destination must be a vector (not in bank 0) and the Fm operand must be in bank 0.

For example, if LEN = 1 (an effective vector length of 2) and STRIDE = 0 (for avector
stride of one) the following operation:

FMULD D12, D8, D2

resultsin the following scalar operations being performed as an atomic operation:

2-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Register File

FMULD D12, D8, D2
FMULD D13, D9, D2.

This effectively scales the two entry vectors (D8, D9) by the valuein D2 and writes the
new vector to D12 and D13.

Scalar operations in short vector mode

You can intermix scalar and short vector operations by carefully selecting the source
and destination registers. Combining the second method of performing scalar-only
operations with nonscalar operation meansthat it is not necessary to change the LEN
field to 0 from anonzero value to perform scalar operations.

For example, if LEN = 1 for avector length of 2 and STRIDE = 0 (for avector stride of
one), then the following instructions:

FABSD D4, D8
FADDS S0, S0, S31
FMULS S24, S26, S1

results in the following operations being performed:

FABSD D4, D8 ;a vector double-precision ABS operation
FABSD D5, D9 ;on registers (D8, D9) to (D4, D5)

FADDS SO, S0,S31 ;a scalar increment of SO by S31

FMULS S24,S26,S1 ;a vector(S26, S27) scaled by S1

FMULS S25,S27,S1 ;and written to (S24, S25)

Table 2-8 to Table 2-11 on page 2-16 summarize the four types of operations possible
in the VFPv2 architecture. Any refersto the availability of all registersin the precision
for the specified operand. The VFP10 coprocessor supports all these operationsin
hardware. Srefersto a scalar register only with a single register on each of the Fd, Fn,
and Fm operands. V refersto avector register with multiple registersfor Fd and Fn, and
possibly also for Fm. Table 2-8 describes single-precision three-operand register usage.

Table 2-8 Single-precision three-operand register usage

LEN field Fd Fn Fm Operation type

0 Any Any Any S=SopSorS=SopS* S
Non-0 0-7 Any Any S=SopSorS=SopS* S
Non-0 8-31 Any 0-7 V=VopSorV=VopV*S
Non-0 8-31 Any 8-31 V=VopVorV=VopV*V

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 2-15

VFP10 Register File

Table 2-9 describes single-precision two-operand register usage.

Table 2-9 Single-precision two-operand register usage

]I(_iglg Fd Fm t?/Eiration
0 Any Any S=0pS
Non-0 0-7 Any S=0pS
Non-0 8-31 0-7 V=0pS
Non-0 8-31 8-31 V=0pV

Table 2-10 describes double-precision three-operand register usage.

Table 2-10 Double-precision three-operand register usage

LEN field Fd Fn Fm Operation type

0 Any Any Any S=SopSorS=SopS* S
Non-0 0-3 Any Any S=SopSorS=SopS* S
Non-0 4-15 Any 0-3 V=VopSorV=VopV*S
Non-0 4-15 Any 4-15 V=VopVorV=VopV*V

Table 2-10 describes double-precision two-operand register usage.

Table 2-11 Double-precision two-operand register usage

hg{: Fd Fm tC})/[:F))eeration
0 Any Any S=0pS
Non-0 0-3 Any S=o0pS
Non-0 4-15 0-3 V=0p$S
Non-0 4-15 4-15 V=0pV

2-16 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Chapter 3
VFP10 Programmer’s Model

This chapter describes implementati on-specific features of the VFP10 coprocessor that
are useful to programmers. It contains the following sections:

. About the programmer’s model on page 3-2

. Compliance with |EEE-754 on page 3-4

. ARM V5TE coprocessor extensions on page 3-11

. Summary of VFP coprocessor system control registers on page 3-17
. FPSCR register on page 3-23.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-1

VFP10 Programmer’'s Model

3.1

About the programmer’s model

This section gives a general introduction to the VFP10 coprocessor implementation of
the VFPv2 floating-point architecture.

ARM Architecture Reference Manual deals with Architecture aspects of VFPv1.

VFP10 implements all the instructions and modes of the VFPv2 architecture. The
VFPv2 adds the following features and enhancements to the VFPv1 architecture:

The ARM v5TE instruction set, which includes MRRC and MCRR 64-bit ARM to
coprocessor transfer instructions. These instructions allow the transfer of a
double-precision register, or two consecutively numbered single-precision
registers, to or from a pair of ARM registers. See Loading operands from ARM
registers on page 2-7 for syntax and usage of VFP MRRC and MCRR instructions.

The Default NaN operating mode. In this mode, any operation that involves one
or more NaNs as operands producesthe default NaN as aresult, rather than return
the NaN or one of the NaNs involved in the operation. This mode is compatible
with the IEEE-754 specification but not with current industry handling of NaNs.

Addition of the subnormal Input exception flag (IDC). Thisflag is set whenever
an operation has as an operand a subnormal value. It remains set until cleared
through a write to the FPSCR. A separate trap enable bit is also added (IDE).
When set, the VFP10 coprocessor traps to the UNDEFINED trap upon an assertion of
IDC.

Modification of the functionality of the UFC bit when FTZ modes are enabled. In
this mode, the UFC bit is set whenever aresult is below the threshold for normal
numbers before rounding, and is flushed to zero. UFC remains set until cleared
through awriteto the FPSCR. The underflow trap enable bit, UFE, does not cause
atrap to the UNDEFINED trap handler on an assertion of UFC.

Modification of the invalid trap functionality when FTZ and DN modes are
enabled. In this mode, the IOC bit is set on any operation that would normally
have asserted |OC with the exception of certain cases of floating-point to integer
conversions. If the conversion is performed in a rounding mode other than
round-to-zero (truncate), and the result overflows the destination integer format
dueto rounding, |OC does not cause atrap to betaken if IOE isenabled, but does
set the |OC hit. If IOE is set and a floating-point to integer conversion overflows
the destination integer format before rounding, |0C is set, and the VFP10
coprocessor does trap to the UNDEFINED trap handler.

3-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

Modification of the functionality of the IXC bit in FTZ mode. In the VFPv1
architecture specification the | XC bit was set when an input or result was flushed
to zero. In VFPv2 the IDC and UFC hits provide thisinformation. See Inexact
result on page 5-21 for more information.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-3

VFP10 Programmer’'s Model

3.2 Compliance with IEEE-754

This section introduces issues connected with |EEE-754 compliance:
. why compliance is important

. hardware and software components

. software-based components and their availability.

3.2.1 An IEEE-754-compliant implementation

The VFP10 coprocessor and support code together provide | EEE-754-compliant
implementations of all the floating-point operations supplied by the VFPv2
architecture. Unless a floating-point exception occurs and the enable bit of the
exception in the FPSCR is set, it appears to the program that the floating-point
instruction was executed by the hardware. However, if in the execution of theinstruction
an exceptiona condition is detected which reguires software to complete the operation,
theinstruction is processed, taking significantly more cyclesthan normal to producethe
result. This only happens for cases whose incidence istypically very low, andisa
common practice in the industry.

The VFP support code a so includes routines that perform administrative tasks such as
initializing the VFP system.

3.2.2 Complete implementation of IEEE-754

The following operations from the | EEE-754 standard are not supplied by the VFP
instruction set:

. remainder

. round floating-point number to integer-valued floating-point number
. binary-to-decimal conversions

. decimal-to-binary conversions

. direct comparison of single-precision and double-precision values.

To obtain a complete implementation of the IEEE-754 standard, the VFP coprocessor
and support code must be augmented with library functions that implement the above
operations. See AFSFirmware Suite Version 1.3 Reference Guide for details of support
code.

3.2.3 |EEE-754 implementation choices

The VFPv2 architecture specifies how various i mplementation choices allowed by the
|IEEE-754 standard are made. Full details are in the ARM Architecture Reference
Manual Section C1 1.3.

3-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

Further implementation choices are made within the VFP10 coprocessor about which
cases are handled by the VFP10 coprocessor hardware and which cases are bounced to
the support code.

To execute frequently encountered operations as fast as possible and minimize silicon

area, handling of infrequently occurring values and some exceptionsis relegated to the

support code. The VFP10 coprocessor supports two modes for handling infrequently

occurring values.

. non-RunFast, which is fully-IEEE 754 compliant with support code assistance

. RunFast, which is near fully-IEEE 754 compliant in hardware
alone.Non-RunFast requires the floating-point support code to handle certain
operands and exceptional conditions not supported in the hardware. Although
fully compliant with the |EEE 754, the support code can increase the runtime of
an application and increase the size of kernel code.

When the flush-to-zero (FTZ) and default NaN (DN) modes are enabled, and all
exceptions are disabled, the VFP10 coprocessor operates in RunFast mode. While the
potential loss of accuracy for very small valuesis present, the use of the RunFast mode
removes a significant number of performance-limiting stall conditions, allowing for
increased performance of typical and optimized code, and a reduction in the size of
kernel code by not requiring the floating-point support code to be present.

Supported formats
The supported formats are:

. Single-precision and double-precision. No extended format is supported.

. Integer formats:
— unsigned 32-bit integers
— two’'scomplement signed 32-bit integers.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-5

VFP10 Programmer’'s Model

NaN handling

All single-precision and double-precision values with maximum exponent field and
nonzero fraction field are valid NaNs. A NaN is signaling or quiet depending on
whether its most significant fraction bit is O or 1 respectively. Two NaN values are
treated as different NaNs if they differ in any bit.

Table 3-1 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent FF 7FF

Fraction [22] -1 [51] -1
[21:0] -dl O [50:0] -l O

Any signaling NaN passed as input to an operation causes an Invalid Operation
exception, which is passed to a user handler if present, and if not, then adefault quiet
NaN is created. Therulesfor casesinvolving multiple NaN operands may be found in
the ARM Architecture Reference Manual.

In the absence of any signalling NaNs, any quiet NaNs passed as input to an operation
cause adefault quiet NaN to bereturned. Thereturn NaN is guaranteed to be one of the
input NaNs.

The default NaN for ARM floating-point processors and libraries is defined as follows:

. In non-RunkFast mode, NaNs are handled according to the descriptioninthe ARM
Architecture Reference Manual . The hardware does not processthe NaNsdirectly
for arithmetic CDP instructions, but traps to the support code for all NaN
processing. For datatransfer operations, NaNs are transferred without raising the
Invalid Operation Exception or trapping to support code. For the non-arithmetic
CDP instructions, FABS, FNEG, and FCPY, NaNs are copied, with change of sign if
specified in the instructions, without setting the Invalid Operation Exception or
trapping to support code.

. In RunFast mode, NaNs are handled completely within the hardware without
support code assistance. Signaling NaNs set the 10C bit when encountered in an
arithmetic CDP operation. NaN handling by data transfer and non-arithmetic
CDP ingtructions is the same as in non-RunFast mode. Arithmetic CDP
instructions involving NaN operands return the default NaN regardless of the
fractions of the NaN operands. Although thisis a departure from the behavior of
most hardware floating-point units in the industry, it is compliant with the IEEE
754 specification.

3-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

Comparisons

Comparison results set condition codesin the FPSCR. The FMSTAT instruction transfers
the current condition codes in the FPSCR to the ARM CPSR. Refer to the ARM
Architecture Reference Manual for mapping of |EEE predicates to ARM conditions.
The condition codes used are chosen so that subsequent conditional execution of ARM
instructions can test the predicates defined in the standard.

The VFP10 coprocessor hardware handles most comparisons of numeric values itself,
generating the appropriate condition code depending on whether the result isless than,
equal, or greater than.

The VFP10 coprocessor supports:
. compare operations FCMPS,FCMPZS,FCMPD,and FCMPDZS
. compare with exception operations FCMPES,FCMPEZS,FCMPED,and FCMPEDZ.

In the compare family the presence of a signaling NaN compares as unordered and
generates an Invalid Operation exception. If the Invalid Operation exception enableis
set (I0E, FPSCR[8]) the user trap handler iscalled. A quiet NaN compares as unordered
but does not generate an Invalid Operation exception.

In the comparewith exception family theinvalid exceptionis signaled when one or both
operands to the compare are NaNs, either signaling or quiet and the comparison is
unordered.

Some simple comparisons on single-precision data may be computed directly by the
ARM1020E core. If only equality or comparison to zero is needed, and NaNs are not an
issue, performing the comparison in ARM registers using CMP or CMN instructions may
be faster.

If comparison to zero is needed, the ARM comparison instructions may be faster. The
following instructions set the Z flag for positive values:

FMRS Rx,Sn
P RX, #0
BEQ Tabel

If the input values might include negative numbers, including negative zero, the
following code setsthe Z flag correctly:

FMRS Rx, Sn
CcMP Rx, #0x80000000
CMPNE Rx, #0
BEQ Tabel

Using atemporary register is even faster:

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-7

VFP10 Programmer’'s Model

FMRS Rx,Sn
MOVS Rt,Rx,LSL #1
BEQ Tabel

Comparisonswith particular valuesare also possible. For example, to check if apositive
valueisgreater or equal to +1.0, use:

FMRS Rx,Sn
cMP Rx,#0x3F800000
BGE Tabel

Magnitude comparisons are possible for single-precision values using the following
code.

Note
NaNs compare equal when al bits of the NaN areidentical

FMRS Rx,Sn
FMRS Ry,SM
CMp Rx,Ry

ORRNE Rt,Rx,Ry
MOVNES Rt,Rt,LSL #1

The Z flag is set correctly and this makes unsigned comparisons easier.
When comparisonsare required for double-precision values or when | EEE comparisons

arerequired, it is safer to use the VFP FCMP and FCMPE instructions with FMSTAT.

Underflow

Note
References to IEEE-754 in this section appear in italicized text.

For the underflow exception, the after rounding form of tininess and the
subnormalization loss form of loss of accuracy are used.

In FTZ mode (see part C section 2-4, page C2-13 of the ARM Architecture Reference
Manual for information on FTZ mode) results which are tiny before rounding are
flushed to apositive zero and the UFC bit in the FPSCR (FPSCR[3]) is set. Support code
is not involved.

When the VFP10 coprocessor is not in FTZ mode, any operation for which there exists
arisk of tininess occurring bounces to support code. If the operation does not result in
atiny result, the computed result isreturned and the UFC bit in the FPSCR (FPSCR[3])

3-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

isnot set. However, | XC might be set if the operation wasinexact. If tininess does occur,
the rules given above govern what actions are taken as aresult. See Exception disabled
on page 5-14 for more information on underflow handling.

Exceptions

Exceptionsaretaken in the VFP10 coprocessor in an imprecise manner. The state of the
ARM and of the VFP is not guaranteed to be the state at the point in the program flow
at which the exception occurred. Rather, exceptional instructions causes the VFP10
coprocessor to enter an exceptional state, and the next floating-point instruction issued
to the VP10 coprocessor triggers exception processing. It is possible that a number of
non-V FP10 instructions and some VFP10 coprocessor instructions may have been
executed after the exceptional instruction was issued and before exception processing
begins. Any source registersinvolved in the exceptional instruction are preserved, and
the destination register is not overwritten on entry to the support code. Once the support
code has processed the exception it returnsto the program flow at the point of thetrigger
instruction, if the detected exception enable is not set, or passes control to a user trap
handler if the detected exception enableis set and atrap handler has been installed. If
the exception is overflow or underflow, the |EEE 754 specified intermediate result is
written to the destination register in the VFP10 coprocessor before the user trap handler
iscalled.

—— Note
The precise set of facilities available are system-dependent.

3.2.4 Non-IEEE 754 operation modes

The VFP10 coprocessor provides two non-1EEE 754 modes:
. Flush-to-zero (FTZ) mode on page 3-9
. Default NaN mode on page 3-10.

Flush-to-zero (FTZ) mode

The VFP10 coprocessor provides a Flush-To-Zero (FTZ) modetoincrease performance
on very small inputs and results. FTZ mode is enabled by setting the FZ bit in the
FPSCR (FPSCR[24]). When the VFP10 coprocessor isin FTZ mode al input
subnormal operands to arithmetic CDP operations are treated as positive zerosin the
operation. Exceptions that result from a zero operand are signaled appropriately. FABS,
FCMP, and FNEG are not considered arithmetic CDP operations, and are not affected by
FTZ mode. Results that are tiny for the destination precision (that is, smaller in

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-9

VFP10 Programmer’'s Model

magnitude than the minimum normal value) before rounding are replaced with a
positive zero. Two exception status bits, IDC (FPSCR[15]) and UFC (FPSCR[3]), are
used to identify when an input flush or aresult flush occurred, respectively.

Default NaN mode

Default NaN mode is selected by setting the DN bit in the (FPSCR [25]). The default
for thisbit is disabled, or 0. This mode specifies a behavior that is consistent with the
| EEE 754 but not with contemporary general purpose or embedded offerings. The [EEE
754 specifies the result of an operation involving a NaN returns a QNaN but suggests
the QNaN be of one of the source NaNs. In most contemporary floating-point
implementations the fraction bits returned are the fraction bits of the input NaN or one
of theinput NaNs in a case of more than one, and which input NaN is specified in the
architecture. When Default NaN mode is not enabled, the VFPv2 architecture behaves
as described in the ARM Architecture Reference Manual.

In Default NaN mode any operation involving one or more input NaNs, quiet or
signaling, returnsthe default NaN. The IOC bit isset in any arithmetic CDP instruction
with asignalling NaN operand.

The exception to this are data transfer operations and the non-arithmetic operations
FCPY, FABS, and FNEG. These operations continue to process NaNs retaining the fraction
bits. Asin the case when the DN mode is not enabled, no exception status bits can be
set for these instructions when aNaN is involved.

3-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

3.3 ARM v5TE coprocessor extensions

3.3.1 FMDRR

This section describes the syntax and usage of the four v5TE architecture coprocessor
extension instructions:

FMDRR on page 3-11
FMRRD on page 3-12
FMSRR on page 3-13
FMRRS on page 3-15.

The FMDRR operation transfers datain two ARM registers to a double-precision register

inthe

VFP10 coprocessor. The ARM registers are not required to be contiguous.

Figure 3-1 shows the bit fields for the FMDRR instruction.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Cond [1/1/0/0/0/1/0|0 Rn Rd 110|1|1|0|R|R|1| Dm
Figure 3-1 FMDRR bit fields

Syntax

FMDRR {<cond>} <Dm>, <Rd>, <Rn>

where:

<cond> Isthe condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Dm> Specifies the destination double-precision VFP coprocessor register.

<Rd> Specifies the source ARM register for the lower half of the 64-bit
operand.

<Rn> Specifies the source ARM register for the upper half of the 64-bit

operand.

Architecture version

D variants only

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-11

VFP10 Programmer’'s Model

Exceptions

None

Operation

if ConditionPassed(cond) then
Dm[upper half] = Rn
Dm[Tower half] = Rd

Notes

Conversions In the programmer’'s model, FMDRR does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the bm value as a
double-precision floating-point number.

3.3.2 FMRRD

The FMRRD operation transfers datain adouble-precision register inthe VFPto two ARM
registers. The ARM registersare not required to be contiguous. Figure 3-2 showsthe bit
fields for the FMRRD instruction.

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
Cond 111/0/0/0[1]0(1 Rn Rd 110110 RIRJ1 Dm

Figure 3-2 FMRRD bit fields

Syntax

FMRRD {<cond>} <Rd>, <Rn>, <Dm>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register for the lower half of the 64-bit
operand.

<Rn> Specifies the destination ARM register for the upper half of the 64-bit
operand.

3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3.3.3 FMSRR

VFP10 Programmer’s Model

<Dm> Specifies the source double-precision VFP coprocessor register.
Architecture version

D variants only

Exceptions

None

Operation

if ConditionPassed(cond) then
Rn = Dm[upper half]

Rd = Dm[Tower half]
Notes
Useof R15 If R15 is specified for <Rd> or <Rn>, the results are UNPREDICTABLE.
Conversions In the programmer’'s model, FMRRD does not perform any

conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the bm value as a
double-precision floating-point number.

The FMSRR operation transfersdatain two ARM registersto two consecutively numbered
single-precision registers Sm and Sm+1 in the VFP10 coprocessor. The ARM registersare
not required to be contiguous. Figure 3-3 showsthe bit fields of the FM SRR instruction.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Cond 1/1/0/0/0(1]0|0 Rn Rd 1/0[1]/0|0 | R|M[1 Sm

Figure 3-3 FMSRR bit fields

Syntax

FMSRR {<cond>} <Rd>, <Rn>, <registers>

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-13

VFP10 Programmer’'s Model

where:

<cond>

<Rd>

<Rn>

<registers>

I's the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

Specifies the source ARM register for the Sm+1 V FP coprocessor
single-precision register.

Specifies the source ARM register for the Sm VVFP coprocessor
single-precision register.

Specifiesthe pair of consecutively numbered single-precision destination
VFP coprocessor registers, separated by a comma and surrounded by
brackets. If misthe number of thefirst register in thelist, thelist is
encoded in the instruction by setting Sm and M to the top 4 bits and the
bottom bit respectively of m. For example, if <registers>is {S1, S2}, the
Sm field of the instruction is 00000 and the M bit is 1.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then

Sm =

Sm+1
Notes
Conversions

Rd
= Rn

In the programmer’'s model, FMSRR does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registers treat the contents as an integer,
whereas most VFP instructions treat the Sm and Sm+1 values as a
single-precision floating-point numbers.

Invalid register lists

If Smisebl111 andMis 1 (an encoding of $31) theinstruction is
UNPREDICTABLE.

3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

3.34 FMRRS

The FMRRS operation transfers data in two consecutively numbered single-precision
registersin the VFP to two ARM registers. The ARM registers are not required to be
contiguous. Figure 3-4 shows the hit fields for FMRRS.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
Cond 1/1/0/0/0(1]0(1 Rn Rd 1/0[1]/0|0| R M[1 Sm

Figure 3-4 FMRRS bit fields

Syntax

FMRRS {<cond>} <Rd>, <Rn>, <registers>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register for the Sm+1 VFP coprocessor
single-precision value.

<Rn> Specifies the destination ARM register for the Sm VVFP coprocessor

single-precision value.

<registers> Specifiesthe pair of consecutively numbered single-precision source
V FP coprocessor registers, separated by a comma and surrounded by
brackets. If misthe number of the first register in thelist, thelistis
encoded in the instruction by setting Sm and M to the top 4 bits and the
bottom bit respectively of m. For example, if <registers> is {516, S17},
the Sm field of the instruction is 0b1000 and the M bit is 0.

Architecture version
All

Exceptions

None

Operation

If ConditionPassed(cond) then
Rd = Sm

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 3-15

VFP10 Programmer’'s Model

Rn = Sm+1

Notes

Conversions In the programmer's model, FMRRS does not perform any
conversion of the value transferred. Arithmetic instructions on
either of the ARM registerstreat the contents as an integer,
whereas most VFP instructions treat the Sm and Sm+1 values as
a single-precision floating-point numbers.

Invalid register lists

If Smis@bl111 andMis 1 (an encoding of $31) theinstruction is
UNPREDICTABLE

Use of R15 If R15 is specified for <Rd> or <Rn>, the results are UNPREDICTABLE.

3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

3.4 Summary of VFP coprocessor system control registers

The VFP10 coprocessor provides sufficient information for processing of all exception
conditions encountered by the hardware. In the event of an exceptional situation, the
hardware provides the instruction word, exception status information, such asthe
detected exceptional condition and in the case of vector operations, the iteration count
of the exceptional iteration. These registers are designed to be used with the support
code software available from ARM Ltd. Asaresult, this document does not fully
specify exception handling in all cases.

Support for exceptional conditionsis provided in hardware through three exception
registers:

. FPINST
. FPINST2
. FPEXC.

In addition, the source data registers for an exceptional instruction is available to the
support code. However, it ispossiblethat someor all of the other dataregisterswill have
been modified and not in the state at the time the exceptional instruction was issued.

Accessto the FPEXC, FPINST, and FPINST2 registersis available only in a Privileged
mode, and access does not trigger exceptions. The FMXR and FMRX instructions are used
to store and load these registers, respectively. Table 3-2 describes access to these
registers.

Table 3-2 Access to control registers

FMXR/FMRX Trigger

Register <reg> field exception Legal
. - modes
encoding processing?
FPINST b1001 No Privileged
FPINST2 b1010 No Privileged
FPEXC b1000 No Privileged

The FPEXC must be saved and restored whenever the context is changed. If the VFP10
coprocessor isin the exceptional state (EX, FPEXC[31], is set) the FPINST and
FPINST2 registers must also be saved and restored. The context switch code can be
written to consider the EX bit in the determination of which registersto save and restore,
or it might choose to save al three.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-17

VFP10 Programmer’'s Model

341 Instruction word registers (FPINST and FPINST2)

3.4.2 The support

In an exceptional condition, the VFP10 coprocessor provides two exception status
registers. The first, FPINST, contains the exceptional instruction, while the second,
FPINST2, contains an instruction which was issued and acknowledged by the VFP10
coprocessor before the exception was detected. This instruction has been retired in the
ARM 1020E processor and cannot be reissued, and must be executed by support code.

Theinstruction in the FPINST register isin the same format as the issued instruction
but is modified in several ways. The condition code bits ([31:28]) have been forced to
1110, the AL (always) condition. If the instruction is a short vector, the source and
destination registerswhich reference short vectorsare updated to point to the sourceand
destination registersof thefirst exceptional iteration. See Exception processing for CDP
short vector instructions on page 5-8 for more information.

The instruction in the FPINST2 register isin the same format as the issued instruction
and is modified only by the forcing of the condition code bits ([31:28]) to 1110, the AL
(always) condition.

Boththe FPINST and FPINST 2 registers must be saved and restored in acontext switch
if the EX bit in the FPSCR (FPSCR[31)] is set. If EX is clear, these registers are not
required to be saved and restored. They may be saved and restored to simplify context
switch code.

code exception status word FPEXC

The FPEXC register contains the VFP enable bit (FPEXC(30). Accessto the FPEXC
with the FMRX and FMXR instructions does not cause the UNDEFINED instruction trap to be
taken if the VFP10 coprocessor is disabled.

In abounce situation, the exceptional condition is recorded in the FPEXC register to
provide support code information sufficient to recover from the exceptional condition
or report the condition to asystem or user software exception handler. Theformat of the
FPEXC register is shown in Figure 3-5 on page 3-19.

The exception signals in the FPEX C identify potential exceptional conditions. For two
of the bits, INV and UFC, an instruction that sets one of these bits signals a condition
that cannot in every situation be completed by the hardware and requires assistance
from the support code. These bits do not always signify atrue exceptional condition.
For example, the UFC flag is set whenever an operation has the potential to generate a
result that is below the minimum threshold for the destination precision, which is not
known conclusively until the final normalization and rounding in the last stage. The
INV bit always represents a condition in which one or more input operands cannot be
processed according to the architectural specifications by the hardware. This includes

3-18

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

31

VFP10 Programmer’s Model

subnormalized inputs when the VVFP10 coprocessor is not in FTZ mode and NaNswhen
the VFP10 coprocessor is not in DN mode. Table 3-3 shows the function of the status
and exception bits in the FPEXC.

For the OFC and 10C hits, the conditions identified by these bits being set cause a
bounce only when the corresponding trap enable bit in the FPSCR is set. They represent
potential exceptional conditionsthat will be handled by the hardware but could produce
atrue exceptional condition, but thisis not known conclusively until the last stage. If
the user wantsto take atrap on one of these conditions the bounce must occur based on
information known only in the first stage. Support code is required to complete the
operation to the point of determination of the exceptional state. If a true exception
exists, the user-provided trap handler is called. If not, the result is returned and no
exception is signalled. Figure 3-5 on page 3-19 shows the FPEXC bit fields

Note

The support code must clear the EX bit immediately on entry to avoid arecursive
exception trap situation. All exception status bits must be cleared before returning from
exception code to user code. The FPEXC must be saved and restored in a context
switch.

30 29 28 1110 8 7 6 4 3 2 1 0

EX

EN| SBZ | FP2V SBZ VECITR|INV|SBZ |UFC|OFC|SBZ |IOC

Figure 3-5 FPEXC register format
Table 3-3 shows the FPEXC bit fields.

Table 3-3 FPEXC bit field descriptions

Bit Name Description

31 EX Exception status bit.
If set, the VFP isin exception mode and causes al following
VFP instructions (except FMRX and FMXR of the FPEXC,
FPINST, FPINST2, or FPSID registersin a Privileged Mode)

to assert CPBOUNCEE.
30 EN Enable VFP:

0 = disabled (default)

1 =enabled.
29 SBZ Should be zero.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-19

VFP10 Programmer’'s Model

Table 3-3 FPEXC bit field descriptions (continued)

Bit Name

Description

28 FP2v

Set if the FPINST2 register contains avalid instruction.

Bits[27:11] SBZ

Should be zero.

Bit§10:8] VECITR

Vector iteration count.

Thisfield contains the number of iterationsremainingin a
short vector operation in which an iteration was exceptional.
Details of the counts are given in Table 3-4.

7 INV

Set if the VFP10 coprocessor is not in FTZ mode and an
operand is a subnormal or if the VFP10 coprocessor isnot in
DN mode and an operand is a NaN.

Bits[6:4] SBZ

Should be zero.

Set if the VFP10 coprocessor is not in FTZ mode and a
potential underflow condition exists.

Set if the OFE hit in the FPSCR is set and the VFP10
coprocessor is not in RunFast mode and a potential overflow
condition exists.

Do not modify.

3 UFC
2 OFC
1 DNM
0 10C

Set if the IOE bit in the FPSCR is set and the VFP10
coprocessor is not in RunFast mode and a potentid invalid
operation condition exists.

Table 3-4 lists the iterations for short vector operations in FPEXC.

Table 3-4 Vector iteration count bit values

Bit values for FPEXC[10:8] Iterations

000 1
001 2
010 3
011 4
100 5

3-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

3.4.3

The FPSID register

VFP10 Programmer’s Model

Table 3-4 Vector iteration count bit values (continued)

Bit values for FPEXC[10:8] Iterations
101 6
110 7
111 0
Figure 3-6 shows the bit fieldsin the FPSID register.
31 24 23 22 21 20 19 16 15 8 7 4 3 0
Implementer |SW | Format| SNG Architecture Part number Variant Revision

Figure 3-6 FPSID register format

The value for of the FPSID register for the VFP10 coprocessor (Revl) is 0x410101A0.

Table 3-5 gives the meanings of the bit fieldsin FPSID.

Table 3-5 FPSID bit fields

Bit Meaning Value
Bitg[31:24] Implementer 0x41 = A
(ARM Limited)
Bit[23] Hardware/Software 0bo:
Hardware implementation
Bitg[22:21] FSTMX/FLDMX format 0b00:
Format 1
Bit[20] Precisions supported 0bo:
Both single-precision and
double-precision data are
supported
Bitg[19:16] Architecture version 0b0001:
VFPv2 architecture

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

3-21

VFP10 Programmer’'s Model

Table 3-5 FPSID bit fields

Bit Meaning Value
Bits[15:8] Part number 0x10:
VFP10 (Rev 1)
Bitg[7:4] Variant OxA:
ARM10 coprocessor interface
Bits[3:0] Revision 0x0:
First version

Access to the FPSID register with the FMRX and FMXR instructions does not trigger
exception processing in any ARM processor mode. The FPSID may be read when the
VFP10 coprocessor is disabled without causing an UNDEFINED instruction trap to be
taken.

3-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

3.5 FPSCR register

All FPSCR hits can be read and written, and can be accessed in both privileged and
unprivileged modes. All bits described as SBZ (Should be Zero) in Figure 3-7 are
reserved for future expansion. They are initialized to zeros. Non-initialization code
must use read/modify/write techniques when handling the FPSCR, to ensure that these
bits are not modified. Failure to observe this rule can result in code which has
unexpected side effectson future systems. Figure 3-7 showsthe bit fieldsfor the FPSCR

register.
31302928 2726 25 24 23 22 2120 19 18 1615 1413 12 11 10 9 8 7 65 4 3 2 1 0
N/ Z|C|V|SBZ |[DN|Fz | RMode |Stride |[SBZ | LEN |IDE|SBZ |IXE|UFE|OFE |DZE|IOE|IDC| SBZ |IXC|UFC|OFC|DzC| IOC

Figure 3-7 User status and control bit fields summary

3.5.1 FPSCR bit descriptions

The FPSCR hits are described in the following subsections:

Condition flags on page 3-23

Default NaN mode control on page 3-24
FTZ mode control on page 3-24

Rounding mode control on page 3-24
\ector length/stride control on page 3-25
Exception status and control on page 3-26.

Condition flags

Bitg31:28] of the FPSCR contain the results of the most recent floating-point

comparison:

N Is 1 if the comparison produced a less than result.

4 Is1if the comparison produced an equal result.

C Is 1 if the comparison produced an equal, greater than or unordered
result.

\% Is 1 if the comparison produced an unordered result.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-23

VFP10 Programmer’'s Model

These condition flags do not directly affect conditional execution, either of ARM
instructions or of VFP instructions. A comparison instruction is normally followed by
an FMSTAT instruction. Thistransfersthe FPSCR condition flagsto the ARM CPSR flags,
after which they can affect conditional execution.

Default NaN mode control

Bit[25] of the FPSCR is the DN bit and controls default NaN mode.

DN == Default NaN mode is disabled and the behavior of the floating-point
system is fully compliant with the IEEE 754 standard.

DN == Default NaN mode is enabled.

FTZ mode control
Bit[24] of the FPSCR is the FZ bit and controls flush-to-zero mode.

FZ == Flush-to-zero mode is disabled and the behavior of the floating-point
system is fully compliant with the IEEE 754 standard.

Fz == Flush-to-zero mode is enabled.

Rounding mode control

Bitg[23:22] of the FPSCR select the current rounding mode. Thisrounding modeisused
for ailmost all floating-point instructions. The only floating-point instructions which do
not useit are FTOSIZD, FTOSIZS, FTOUIZD and FTOUIZS, which always use RZ mode.

The rounding modes are encoded as follows:

0b00 Indicates Round to Nearest (RN) mode.

0Ob01 Indicates Round towards Plus Infinity (RP) mode.
0b10 Indicates Round towards Minus Infinity (RM) mode.
Ob11 Indicates Round towards Zero (RZ) mode.

3-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

VFP10 Programmer’s Model

Vector length/stride control

The LEN field (bits[18:16]) of the FPSCR controls the vector length for VFP
instructions that operate on short vectors, that is, how many registers are in a vector
operand. Similarly, the STRIDE field (bitg21:20]) controls the vector stride, that is,
how far apart the registersin avector liein the register bank. The allowed combinations
of LEN and STRIDE are shown in Table 3-6.

All other combinations of LEN and STRIDE produce UNPREDICTABLE results.

The combination LEN == 0b000, STRIDE == 0b00 is sometimes called scalar mode.
When it isin effect, all arithmetic instructions specify simple scalar operations.
Otherwise, most arithmetic instructions specify a scalar operation if their destination
liesin the range S0-S7 (for single precision) or DO-D3 (for double precision). The full
rules used to determine which operands are vectors and full details of how vector
operands are specified can be found in The ARM Architecture Reference Manual.

Therulesfor vector operands do not allow the same register to appear twice or morein
avector. The allowed LEN/STRIDE combinations listed in Table 3-6 never cause this
to happen for single-precision instructions, so single-precision scalar and vector
instructions can be used with all of these LEN/STRIDE combinations.

For double-precision vector instructions, some of the allowed LEN/STRIDE
combinations would cause the same register to appear twicein avector. If a
double-precision vector instruction is executed with such a LEN/STRIDE combination
in effect, the instruction is UNPREDICTABLE. The last column of Table 3-6 indicates
which LEN/STRIDE combinationsthis appliesto. Double-precision scalar instructions
work normally with all of the allowed LEN/STRIDE combinations.

Table 3-6 Vector length/stride combinations

LEN STRIDE Iveicg;tohr ;/ter(i:(;cér Double-precision vector instructions
0b000 0b00 1 - All instructions are scalar

0b001 0b00 2 1 Work normally

0b001 Ob11 2 2 Work normally

0b010 0b00 3 1 Work normally

0b010 Ob11 3 2 UNPREDICTABLE

0b011 0b00 4 1 Work normally

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 3-25

VFP10 Programmer’'s Model

Table 3-6 Vector length/stride combinations (continued)

LEN STRIDE Iveencé?k: \S/S?écér Double-precision vector instructions
Ob011 Ob1l 4 2 UNPREDICTABLE
0b100 0b00 5 1 UNPREDICTABLE
0b101 0b00 6 1 UNPREDICTABLE
0b110 0b00 7 1 UNPREDICTABLE
Ob111 0b00 8 1 UNPREDICTABLE

Exception status and control

Bits[12:8] and bits[4:0] of the FPSCR are thetrap enable bitsand cumul ative exception
bits respectively for the six types of exception.

Table 3-7 shows which bits are associated with each exception.

Table 3-7 Exception status and control bits

Exception type

Trap enable bit

Cumulative exception bit

Invalid Operation IOE (hit[8]) 10C (bit[0])
Division by Zero DZE (bit[9]) DZC (bit[1])
Overflow OFE (bit[10]) OFC (hbit[2])
Underflow UFE (bit[11]) UFC (bit[3])
Inexact IXE (bit[12]) IXC (bit[4])
Input Denormal IDE (bit[15]) 10C (bit[7])

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Chapter 4
Instruction Execution in the VFP10
Coprocessor

This chapter contains detailed information about the ARM VFP10 coprocessor
instruction execution. It contains the following sections:

. About instruction execution in the VFP10 coprocessor on page 4-2
. Serializing instructions on page 4-4

. Interrupting VFP10 coprocessor instructions on page 4-5

. Hazard and resource stall conditions on page 4-11

. Parallel execution of operations on page 4-21

. Execution timing on page 4-23.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-1

Instruction Execution in the VFP10 Coprocessor

4.1

41.1

About instruction execution in the VFP10 coprocessor

The VFP10 coprocessor supportsin hardware all addressing modes described in section
C5 of the ARM Architecture Reference Manual.

The advanced features of the VFP10 coprocessor, specifically the short vector
operations and the recirculating register file, are further enhanced in the VFP10
coprocessor through a high-performance interface that allows the VFP10 coprocessor
to execute several operationsin parallel. To the ARM 1020E processor, a short vector
operation appears as a single-cycle operation. The short vector operation issuesin a
single cycle and, once clear of hazards, proceeds through the ARM pipeline one stage
per cycle, whileiterating in the VFP10 coprocessor pipeline for numerous cycles.

The appearance of a short vector operation to the ARM 1020E processor as a
single-cycle instruction permits the ARM 1020E processor to continue execution of
both ARM 1020E processor and coprocessor instructions without waiting for the short
vector operation to retire. In addition, the VFP10 coprocessor, with a separate LS
pipeline, can execute load or store operations while processing short vector operations.
This allows for very efficient processing of high data throughput operations such as
filters and matrix computations. With the large register set, most operations can be
double buffered, with one data buffer processed in the arithmetic pipeline while the
other buffer is stored or loaded. A more detailed description of the parallel execution
capabilities of the VFP10 coprocessor is given in An example of parallel execution on
page 4-21.

Interrupting serializing instructions

The overlapping execution of instructions can be interrupted by serializing instructions.
Theseinstructions stall both the VFP10 coprocessor and ARM instruction | ssue stages
until the VFP10 coprocessor pipelines are past the point of updating either the condition
codes or exception status or when awrite to a system register can no longer affect the
operation of acurrent or pending instruction. Serializing instructions may be used to

capture condition codes and exception status, or to delineate a block of instructionsfor
execution with the ability to capture the exception status of that block of instructions.

Serializing instructions are the FMRX and FMXR operations, including the FMSTAT
instruction. These operations are also used to modify the mode of operation of
subsequent instructions, such as the rounding mode or vector length. See the ARM
Architecture Reference Manual for more information on serializing instructions.

4-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

41.2 Hazard detection

The VFP10 coprocessor detects and processes hazards completely in hardware. A
hazard isa condition in which a prior instruction may change the contents of aregister
required by a subsequent instruction after the contents of the register have been read
(thisis aread-after-write, or RAW, hazard) or alater instruction may write aregister
before an earlier instruction will writeit, causing the register to contain the datawritten
by the earlier instruction rather than the later one (thisis awrite-after-write, or WAW,
hazard), or alater instruction writes a register before an earlier instruction can read the
prior contents (thisis awrite-after-read, or WAR, hazard.)

A fourth hazard exists, although not adata hazard, in which alater instruction isreading
aregister before an earlier instruction has read the register (thisis a read-after-read, or
RAR, hazard). Thislast hazard is a control hazard, and can cause disruption in the
register scoreboarding logic, allowing one of the first 3 hazards to occur.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-3

Instruction Execution in the VFP10 Coprocessor

4.2

Serializing instructions

The following instructions behave as serializing operations until the information in the
read, for FMRX operations, isvalid up to thisinstruction, or the impact of the write, for
FMRX operations, cannot affect current or pending operations.

For read operations, such asaread of the FPSCR, the instructions currently in the
pipeline, in most cases, could cause a change in the condition codes, asin the case of a
FCMP instruction, or exception status flags, such as INEXACT. A read of the FPSCR,
FPEXC, FPINST, or FPINST?2, isstalled until it isno longer possiblefor these registers
to be changed by any instruction executing or awaiting execution in any of the VFP10
coprocessor pipelines.

A write to the FPSCR stalls until modification of any of the control bits cannot affect
any operation currently executing or awaiting execution. Writing the FPEXC, FPINST,
or FPINST2 registerswill stall until the pipeline is completely clear before executing.

The FPSID register is a unique case. While the contents are unchangeable by any
instruction, accessing this register may be used as a general purpose serializing
operation or to create a exception boundary.

Note
FMXR, FMRX, and FPSTAT instructions are valid trigger instructions, and cause exception
processing if a pending exception has caused the VFP10 coprocessor to be in the
exceptiona state. Theinstruction that causesthe trigger is executed on the return of the
exception processing routine.

4-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

4.3 Interrupting VFP10 coprocessor instructions

VFP instructions are issued by the core and maintain alockstep between the core and
the VFP10 coprocessor until theinstruction completes, for load and store operations, or
completes the Execute stage in the core. While VFP instructions can be short vectors
with long execution times, the core sees only a single-cycle instruction and retires the
instruction in the core many cycles beforeit isretiresin the VFP10 coprocessor. When
the core takes an interrupt any instruction which is flushed from the core pipeline will
also be flushed from the VFP10 pipeline. Any instructions which are stalled by either
the core or the VFP10 coprocessor will be flushed.

If the interrupt is the result of adata abort condition, the load or store operation which
caused the abort will be restarted once the interrupt condition has been handled. Load
and store multiples are idempotent, allowing for load and store multiple operations to
detect some exception conditions after transfer has begun, and interrupt the operation
after theinitial transfer. Once the interrupt has been processed, the load or store may
restart from the beginning; the source data is guaranteed to be unchanged and no
operations depending on the load or store datawill have executed until theload or store
operation is completed.

Oncetheinterrupting condition has begun processing, the VVFP10 coprocessor may not
be available to the interrupt routine until any short vector operations which were begun
before the interrupt was processed and passed the core Execute stage has passed the
VFP10 coprocessor Execute 1 stage. In other words, the VFP10 coprocessor can still
have resource and data hazards which could impact the execution of acontext switch of
the VP10 coprocessor after the interrupt has been taken. The maximum delay the
VFP10 coprocessor may be unavailable is the time to process a short vector of 8
single-precision divide or square root operation, or 114 cycles after the divide or square
root has entered the Execute 1 stage of the VFP10 coprocessor.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-5

Instruction Execution in the VFP10 Coprocessor

4.4

Forwarding

The VFP10 coprocessor forwards data from load operations and CDP operations to
CDP operations. In general, any forwarding operation reduces by one the number of
cyclesadependent operation that would have stalled waiting on the forwarded data. The
VFP10 coprocessor does not forward in the following cases:

. To or from an operation involving integer data, either as a producer or consumer
. To a store operation (FST,FSTM, MRC, MRRC)

. To any operation with a different source precision than the precision of the
writeback data.

In Example 4-1 no forward from D2 to the FADDS operation occurs even though S5 isthe
upper half of D2.

Example 4-1 No forwarding with different precisions

FMULD D2,D0,D1
FADDS S12,513,S5

In the following examples, Example 4-2 to Example 4-12 on page 4-9, the stall counts
listed are given assuming that all transfers to and from memory hit in the cache and are
aligned in memory according to the size of the transfer (8-byte aligned for FLDM and
FSTM operations.) Memory access timings directly impact final cycle counts and
should be taken into account when predicting performance.

In Example 4-2 the load data is not forwarded to the float-to-integer conversion
operation. The FTOUIS instruction stalls for 3 cycles until the data has been loaded into
theregister file before reading the operand for the conversion. No forwarding isdoneto
or from integer operations.

Example 4-2 Load data not forwarded

FLDS S1,[Rx]
FTOUIS S2,S1

Example 4-3 shows astore of the destination register of the double-precision FMULD. The
FSTD stallsfor 5 cycles (the FMULD requires two cycles in the Execute 1 stage) and there
is no forwarding path to store instructions in the VFP10 coprocessor.

4-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

Example 4-3 Store of a destination register of a double-precision FMULD

FMULD D1,D2,D3
FSTD D1, [Rx]

Example 4-4 shows a single-precision case of Example 4-3. Again, no forwarding is
done from the FADDS to the FSTS, and the FSTS stalls for 4 cycles.

Example 4-4 Store of a destination register of a single-precision FMULD

FADDS S1,S2,S3
FSTS S1,[Rx]

In Example 4-5 the second FADDS instruction is dependent on the result of the first FADDS
instruction. The result of the first FADDS is forwarded to the second FADDS instruction,
reducing the stall from 4 cyclesto 3 cycles.

Example 4-5 Second FADD dependent on result of first FADD

FADDS S1,S2,S3
FADDS S8,59,S1

Example 4-6 showsadouble-precision case of Example 4-5. Theresult of thefirst FMACS
is forwarded to the second FMACS, reducing the stall from 5 cyclesto 4 cycles.

Example 4-6 Reducing stall cycles

FMACS D1,D2,D3
FMACS D8,D9,D1

Example 4-7 is similar to Example 4-5 because the result of the FADDS is not forwarded
to the FTOUIS. The FTOUIS stallsfor 4 cycles.

Example 4-7 FADDS not forwarded

FADDS S1,S2,S3
FTOUIS S12,S1

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-7

Instruction Execution in the VFP10 Coprocessor

In Example 4-8 the result of the compare is |oaded into the ARM CPSR and a
conditional branch is performed based on the condition codes from the FCMPS. In this
case, the FMSTAT stalls for 3 cycles until the condition codes from the FCMPS are known.
2 cycleslater the CPSR in the ARM1020E is updated with the condition codes, and a
branch decision can be made based on the result of the FCMPS.

Example 4-8 Condition codes and branches

FCMPS S1,S2
FMSTAT
Bxx Tabel

Example 4-9illustrates the use of the ARM 10E core to perform simple comparisons on
single-precision data. The (MP stalls for 1 cycle until the dataisin the ARM register.

Example 4-9 Using the ARM10E core for comparisons

FMRS Rx,S1
Cmp Rx,Constant
Bxx Tabel

In Example 4-10, the FADDS requires S15, which isbeing loaded in the FLDM, to be valid.
The FLDM attemptsto load the datain order of lowest register number to highest register
number, making the loading of S15 the last load performed. The VVFP10 coprocessor
interface to the ARM 1020E core is 64-bits, allowing two single-precision data values
to beloaded in asingle cycle. S15 isloaded in the 4th transfer of the FLDM. The FADDS
executes after astall of 2 + Nt cycles, where N isthe transfer iteration, beginning with
0 for S8 and S9, and t is the number of cycles between transfersin the FLDM. For
Example 4-10, if dataistransferred every two cycles, the stall for the FADDS is2 + 3 * 2,
for 8 cycles.

Example 4-10 Last load causing a stall

FLDM [Rx],{S8-S15}
FADDS S1,S2,S15

In Example 4-11 on page 4-9 the FADDS is stalled by the divide for 16 cycles. If the
operations were in double-precision rather than single-precision, the stall for the FADDD
would be 30 cycles.

4-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

Example 4-11 FDIVS stall

FDIVS S1, S2, S3
FADDS S4, S5, S1

Example 4-12 showsaresource conflict for the DS pipeline. The second FSQRT stallsfor
13 cycles without a data conflict, and 16 cyclesif the destination of the first FSQRT isa
source operand for the second. If the operations were in double-precision rather than
single-precision, the stall counts would be 27 and 30, respectively.

Example 4-12 Resource conflict in the DS pipeline

FSQRT S1, S2
FSQRT S3, S4

441 Operation of the scoreboard

The scoreboard contains asingle bit for each register which will not be available to an
instruction in the next cycle. Note that no distinction is made between source and
destination register. As aresult, Read-after-Read hazards are detected as valid hazards
by the VVFP10 coprocessor. Clearing of bitsin the scoreboard lock register isdone at two
pointsin the pipelines. Source registers for store operations are locked, if the operation
isastore multiple, and cleared in the E stage of the LS pipeline. Source registers for
CDP operations are cleared in the E1 stage of the pipeline for scalar operations, and for
short vector operationsthe registersinvolved in theiteration in the E1 stage are cleared.

Destination registers are cleared in the cycle before they are written back to the register
fileor availablefor forwarding. Destination registersare cleared in the scoreboard inthe
E3 stage of either the FMAC or DS pipeline and in the Memory stage of the LS pipeline.

The registersinvolved in an operation, both as source and destination, are determined
inthel stage of the VFP10 coprocessor pipelineand alock mask is generated. Registers
involved in each iteration of a short vector operation are included in the lock mask. As
described in the next several sections, the determination of the which source registers
areincluded in the lock mask is afunction also of the RunFast mode. A check is made
in this cycle on the scoreboard lock register, and if the lock mask and the lock register
do not contain any of the same registers, the lock mask is ORed with the lock register
to form the new scoreboard register. If ahazard is detected, the lock register is not
updated and the instruction stallsin the | stage.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-9

Instruction Execution in the VFP10 Coprocessor

Note

The clearing of registers and the check are performed in parallel, with the cleared
registers not available to the check operation until the following cycle. The clearing is
done in the cycle before the data is available, and will not stall an operation unless the
datais not available in the next cycle.

4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

45 Hazard and resource stall conditions

The VFP10 coprocessor incorporates full hazard detection and implements a
fully-interlocked pipeline protocol. No scheduling is required by the compiler to
guarantee that the instructions execute in what appears to be a serial order and with the
sameresultsasif each instruction were allowed to complete fully before the subsequent
instruction was allowed to begin. The VFP10 coprocessor uses a scoreboard mechanism
to process interlocks caused by either source or destination registers unavailable to the
instructions or unavailable data and to stall the instruction until all data operands or
registers are available when required.

The determination of hazardsand interlock conditionsisdifferent in non-RunFast mode
and RunFast mode. RunFast mode, with its guarantee of no bounce conditions,
implements a less strict hazard detection mechanism, allowing, in some cases, for
instructions to begin execution earlier in time than in non-RunFast mode. Interlock
determination in non-RunFast mode on page 4-11 and Interlock determination in
RunFast mode on page 4-13 describe these differences.

451 Interlock determination in non-RunFast mode

The possibility of abounce condition on any operation requires all source registersfor
that operation, and for any iterations remaining after the bounced iteration, to be
unchanged by subsequent instructions. This causes the typical read-after-write (RAW)
and write-after-read (WAR) hazards, aswell as the read-after-read (RAR) hazard, to
introduce stalls in the pipeline. The nature of the scoreboard does not support a
distinction between source registers and destination registers, and continues to detect a
hazard on any register involved in a computation until the lock on that register is
cleared. Source registers, which are not also the destination, have their locks cleared in
the first execute stage (E1) and destination register locks are cleared in the next to last
execute stage (E3).

Vector operations are not allowed to begin execution until all registersinvolved in the
operation are not locked. When a short vector operation is allowed to proceed in the
pipeline beyond the Decode (D) stage, all registersinvolved in the operation arelocked.
Each iteration clearsits source register locks (provided they are not also the destination
register) in the E1 stage and the destination register in the next to last execute stage.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-11

Instruction Execution in the VFP10 Coprocessor

Table 4-1 and Table 4-2 show the registers that are locked and the cycle in which they
are cleared for both scalar (VECITR set to 0) and short vector operations. An L in
Table 4-1 and Table 4-2 denotes the source registers for that iteration are locked in the
scoreboard.

Table 4-1 Single-precision source register locking and clearing in non-RunFast mode

Iteration source registers locked in D stage Cycleiteration source registers cleared in E1

VECITR 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0 L - - - - - - - 1 - - - - - - -

1 L L - - - - - - - 2 - - - - - -

2 L L L - - - - - - - 3 - - - - -

3 L L L L - - - - - - - 4 - - - -

4 L L L L L - - - - - - - 5 - - -

5 L L L L L L - - - - - - - 6 - -

6 L L L L L L L - - - - - - - 7 -

7 L L L L L L L L - - - - - - - 8
For doubl e-precision operations the source register is cleared in thefirst E1 cycle, with
operations involving a multiplication requiring 2 cycles in the E1 stage as shown in
Table 4-2. For example, for a 2 iteration FMULD instruction, the source registers for the
second iteration are cleared in cycle 3.

Table 4-2 Double-precision source register locking and clearing in non-RunFast
mode
Iteration source Cycle iteration
registers locked in source registers
D stage cleared in E1
VECITR 1 2 3 4 1 2 3 4
0 L - - - m - - -
1 L L - - - 23 - -
2 L L L - - - 35 -
3 L L L L - - - 47
4-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4572 Interlock determination in RunFast mode

Instruction Execution in the VFP10 Coprocessor

RunFast mode guaranteesthat no bouncing is possiblewhen all exceptionsare disabled,
removing the requirement to preserve source registers. For all scalar operations and

non-multiple store operations no source registers are locked. For short vector
operations, the length of the vector dictates which sourceregistersarelocked. Table 4-3
showsthe source registersthat arelocked for ashort vector operation and inwhich cycle

they are cleared.

Table 4-3 Single-precision source register locking and clearing in RunFast mode

Iteration source registers locked in D stage

Cycle iteration source registers cleared in E1

VECITR 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0 - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - -
4 - S
5 - - - - L L - - S
6 - - - - L L L - - -
7 - - - - L L L L - - - ... -

Table 4-4 shows the source registers that are locked for a short vector operation and in

which cycle they are cleared.

Table 4-4 Double-precision source register locking and clearing in RunFast mode

Iteration source
registers locked

Cycle iteration
source registers

in D stage cleared in E1
VECITR 1 2 3 1 2 3 4
2 - - L - - v -
3 - - L - - - 2/3
ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-13

Instruction Execution in the VFP10 Coprocessor

45.3 Examples of hazard conditions

Source registers must be protected in the event of an exceptional condition on the
instruction or an iteration if it is a short vector operation. Read-after-read hazards are
respected, that is, aread of alocked source register will stall until the source register is
released by the prior operation.

Source registers are cleared in the first E1 cycle of an operation. Destination registers
are cleared in the 2nd to last cycle (to enable forwarding to a subsequent instruction.)

Read after write example 1

Example 4-13 isaload of a single-precision data item followed by an arithmetic
operation on that data.

Example 4-13 Read after write example 1

FLDS S4, [r0]
FADDS S5, S4, S3

In cycle 4 the data is written from the ARM 1020E processor core and forwarded in
cycle5tothefirst D stage of the FADDS.

Table 4-5 Instruction cycles for example 1

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9
FLDS I D E M W - - - -
FADDS - | D D El E2 E3 E4

4-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

Read after write example 2

Example 4-14 isaload multiple of single-precision data, with avector FADDS following.
Theonly register shared is the first loaded by the FLDM, and the stall ends after that
register has been received by the VFP10 coprocessor.

Example 4-14 Read after write example 2

FLDM [r2], {s7-s14}
FADDS S16, S7, S25

In Example 4-14 the LEN field is 3, for avector length of 4, and the STRIDE field is 0,
for +1 striding. Thisis another example of a RAW hazard case. The operand data
referenced by S7 isforwarded to the FADDS in cycle 5.

Table 4-6 Instruction cycles for example 2

Instruction cycle number

(6]
»
~
(o]
©

Instruction 1 2 3 4

FLDM I D E M W W W W -
D

FADDS - | D

Example 3

Example 4-15 isavector FMULS of length 4 (LEN is set to 3, with STRIDE set to 0) with
a store of source register S25.

Example 4-15 Vector FMULS example

FMULS S8,516,524
FSTS S25,[r2]

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-15

Instruction Execution in the VFP10 Coprocessor

The VFP10 coprocessor in non-RunFast mode stalls until the source register has been
cleared by the FMULS before allowing the store to begin execution. Register S25 is
released in cycle 4, and the FSTS moves from Decode (D) to Execute (E) in the next

cycle.

Table 4-7 Instruction cycles for short vector MULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS | D El E1 E1 E1 E2 E3 E4

FSTS - | D D D E M W -

Example 4 load of all source registers

Example 4-16 is a short vector FMULS of length 4 (LEN is set to 3, with STRIDE set to
0) with aload of al of the source registers.

Example 4-16 Vector FMULS example

FMULS S8,S16,S24
FLDMS [r2], {S16-S27}

The VFP10 coprocessor in non-RunFast mode stalls until all the source registers,
S16-S19 and S24-S27, have been cleared by the FMULS before allowing theload to begin
execution. Table 4-8 shows the instruction cycles for the short vector FMULS example

Table 4-8 Instruction cycles for short vector FMULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS | D El E1 E1 E1 E2 E3 E4

FLDMS - | D D D D E M W

4-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

Hazards in RunFast mode

In RunFast mode source registers are locked only for vectors that are larger than
half-vectors, that is, when the vector length exceeds 4 for single-precision operations or
2 for double-precision operations. When the vectors are sufficiently short, no hazards
exist involving the source registers. Repeating the last two examples above illustrates
the advantage of RunFast mode for these cases.

Vector FMULS example in RunFast mode

Example 4-17 isavector FMULS of length 4 (LEN isset to 3, with STRIDE set to 0) with
astore of one of the last source registers.

Example 4-17 Vector FMULS RunFast mode example

FMULS S8,S16,S24
FSTS S25,[r2]

The VFP10 coprocessor in RunFast mode does not stall the store, which can begin
execution in the next cycle. Table 4-9 shows the instruction cycle for Example 4-17 in
RunFast mode.

Table 4-9 Instruction cycles for example in Run Fast mode

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9

FMULS I D El E1 E1 E1 E2 E3 E4

FSTS - | D E M w W - -

In Example 4-18 avector FMULS of length 4 (LEN isset to 3, with STRIDE set to 0) with
aload of all of the source registers. The VFP10 coprocessor in RunFast mode does not
stall until the FLDM operation.

Example 4-18 Vector FMULS with a load of all registers in RunFast mode

FMULS S8, S16, S24
FLDM [r2], {S16-S27}

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-17

Instruction Execution in the VFP10 Coprocessor

Table 4-10 shows the instruction cycle progression for Example 4-18.

Table 4-10 Instruction cycles for vector MULS example

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

FMULS I D El E1 E1 E1 E2 E3 E4 -

FLDM - | D E M W W W W W

45.4 Resource hazards

The VFP10 coprocessor has three pipelines:
. the L/S pipeline

. the FMAC pipeline

. the DS pipeline.

The L/S pipeline is completely separate from the other two, and no resource hazards
exist between arithmetic instructions and data transfer instructions. However, the first
E1 stage instruction is shared between the FMAC and the DS pipelines, creating a
resource stall for a short vector CDP operation for subsequent CDP operations.
Resource stalls in the VFP are possible in the following cases:

. adata transfer operation following an incomplete data transfer operation. Each
data transfer may be stalled by the core due to unavailable data, for example,
memory latency or a cache miss.

. an arithmetic operation following either a short vector arithmetic operation or a
double-precision multiply or multiply-accumul ate operation. The latency on
double-precision multiply and multiply-accumul ate operationsis 2 cycles,
causing asingle cycle stall for immediately following arithmetic operations.

. adivide or square root will stall the DS pipeline for 13 or 27 cycles, for
single-precision or double-precision operations, respectively. A subsequent
divide or square root operation will stall until this number of cycles has passed.

455 Resource hazard examples

The following examplesillustrate the resource hazards present in the VFP10
COpProcessor.

4-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

Load multiple, single load followed by FADDS

In Example 4-19 aload multiple is followed by asingle FMULS and a FADDS. The single
load stalls the VFP10 coprocessor and the ARM core until the load multipleis
completed. The FADDS is stalled in the core as aresult.

Example 4-19 Load multiple followed by a single FMULS and FADDS

FLDM [r2],{S8-S12}
FLDS [r4] S16
FADDS S2, S3, S4

Table 4-11 shows the pipeline stages for the 3 instructionsin Example 4-19 on
page 4-19.

Table 4-11 Instruction cycles for example 2

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10
FLDM | D E M w w W - - -
FLDS - I D D D E M w - -
FADDS - - | | | D El E2 E3 E4

Load multiple, vector FMULS followed by scalar FADDS

In Example 4-20 aload multipleisfollowed by avector FMULS (assume LEN isset to 3
and STRIDE isset to 0), followed by ascalar FADDS. No register conflicts exist between
the FLDM and the FMULS. Noticethat the destination of the FADDS isin bank O, forcing scalar
operation.

Example 4-20 Load multiple, vector FMULS followed by scalar FADDS

FLDM [r2], {S8-S12}
FMULS S16, S24, S4
FADDS S1, S20, S21

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 4-19

Instruction Execution in the VFP10 Coprocessor

Table 4-12 shows the pipeline stages for the 3 instructionsin Example 4-20.

Table 4-12 Pipeline stages for load multiple, vector MULS, scalar FADDS

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FLDM | D E M W W W - - -
FMULS - | D El E1 E1 E1 E2 E3 E4 -
FADDS - - | D D D D El E2 E3 E4

4-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Instruction Execution in the VFP10 Coprocessor

4.6 Parallel execution of operations

An instruction may begin execution when no register or resource conflicts exist
(including read-after-read hazards) and the respective pipeline or pipelines (Load/Store
or CDP) are not executing a vector or multiple operation with pending iterations. The
following further outlines these rules.

A load or store operation begins execution if:

. No data hazards exist with any currently executing operations (including
read-after-read hazards)

. The LS pipelineis not currently stalled by the ARM or busy with aload or store
multiple.

A CDP may beissued to the FMAC pipelineif:

. No data hazards exist with any currently executing operations (including
read-after-read hazards)

. The arithmetic pipeline is available (it may be unavailable if avector CDPis
executing or a double multiply isin the first cycle of the multiply operation)

. No vector operation is currently executing in either the arithmetic or DS pipeline.
A divide or square root instruction may beissued to the DS pipelineif:
. No data hazards exist (including read-after-read hazards)

. The DS pipelineis available (no current divide or square root is executing in the
DS pipeline E1 stage)

. No vector operation is executing in the arithmetic pipeline.

46.1 An example of parallel execution

The VFP10 coprocessor is capable of execution in each of the three pipelines
independently of the others and without blocking issue or writeback from any pipeline.
Example 4-21 on page 4-22 shows a case of the VFP10 coprocessor using the 3
pipelinesin parallel:

. aload multiple in the L/S pipdline

. ashort vector add in the FMAC pipeline

. adivide in the DS pipeline.

AssumetheLEN fieldinthe FPSCRisset to 3, for avector length of 4, and the STRIDE
fieldisset to O, for astride of +1.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 4-21

Instruction Execution in the VFP10 Coprocessor

Example 4-21 Parallel execution in all 3 pipelines

FLDM [r4], {S4-S13}
FDIVS Se, S1, S2
FADDS S16, S20, S24

Table 4-13 shows the pipeline progression for the 3 instructions

Table 4-13 Parallel execution in three pipelines

Instruction cycle number

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FLDM

D E M W W W W W - - - - - - -

FDIVS

I D El E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E2

FADDS

- | D El E1 E1 E1 E2 E3 E4 - - - - -

In Example 4-21, no data hazards exist between any of the three instructions. The load
multiple is able to begin execution immediately, and datais transferred to the register
file beginning in cycle 5. The FDIVS is a scalar operation (the destination isin Bank 0)
and requiresone cyclein the FMAC E1 stage. If the divide was a short vector operation
the FADDS would not begin execution until thelast iteration had passed the E1 stage. The
FADDS isashort vector operation and requiresthe FMAC E1 stagefor cycles5-8. Incycle
9 another arithmetic operation could begin provided it was not a divide or square root.
Thisinstruction stalls only if it requires the destination register of the divide or any of
the destination registers of the last 3 iterations of the FADDS (the result of the first
iteration is available from the register filein cycle 9, and al of the registers updated by
the FLDM are valid).

4-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

4.7

Instruction Execution in the VFP10 Coprocessor

Execution timing

These VFP10 coprocessor instruction timing computations are provided asaguide, and
not a substitute for running the code on a system or cycle-accurate simulator. Also, the
execution of VFP10 coprocessor instructions is also dependent on the execution of the
instruction in the ARM 1020E macrocell, and stall and memory access issues will
directly impact performance of VFP10 coprocessor code. See the ARM1020E Technical
Reference Manual for information on instruction timing within the ARM core.

In Table 4-14 throughput is defined asthe cycle after issue in which another instruction,
without adatahazard, could begin execution. Instruction latency isthe number of cycles
after which the data is avail able for another operation. Forwarding reduces the latency
by one cycle for dependent operations on floating-point data when the destination
precision of thefirst or the precision of the |load datais the same as the source precision
of the second.

—— Note

FMXR and FMRX are serializing instructions. The latency depends on the register
transferred and the current activity in the VFP10 coprocessor when the instruction is
issued.

Table 4-14 shows the throughput and latency for all CDP operations in the VFP10
COproCcessor.

Table 4-14 Throughput and latency cycle timings for VFP10 CDP operations

Single-precision Double-precision
Instructions

Throughput Latency Throughput Latency
FADD, FSUB, FABS, FNEG, 1 4 1 4
FCVT, FCPY
FCMP, FCMPE, FCMPZ, FCMPEZ 1 4 1 4
FSITO, FUITO, FTOSI, FTOUI, 1 4 1 4
FTOUIZ, FTOSIZ
FMUL, FNMUL 1 4 2 5
FMAC, FNMAC, FMSC, FNMSC 1 4 2 5
FDIV, FSQRT 14 17 28 31
FLD 1a 2 1 2

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved.

4-23

Instruction Execution in the VFP10 Coprocessor

Table 4-14 Throughput and latency cycle timings for VFP10 CDP operations (continued)

Single-precision Double-precision
Instructions

Throughput Latency Throughput Latency
FST 1a 1 1 1
FLDM Xb Xb+2 N N+2
FSTM Xb Xb+1 N N+1
FMSTAT 1 2 - -
FMSR 1 2 - -
FMDHR/DLR - - 1 2
FMRS 1 1 - -
FMRDH/RDL 1 1 - -
FMXRC 1 2 - -
FMRXc 1 1 - -

a Two single-precision data values can be loaded or stored in asingle cycle.

b. The number of cycles represented by X isceiling (N/2). The datafor load and store multiples maybe
in most cases used when it is|oaded or stored, not waiting until the instruction is completed.

¢. FMXRandFMRX areserializing instructions. Thelatency will depend on theregister transferred and
the current activity in the VFP10 when the instruction is issued.

4-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Chapter 5
Exception Handling

This chapter describes VFP10 coprocessor exception processing. It contains the
following sections:

. About exception processing on page 5-2
. Support code on page 5-3

. Invalid operation on page 5-13

. Division by zero on page 5-16

. Overflow on page 5-17

. Underflow on page 5-19

. Inexact result on page 5-21

. Arithmetic exceptions on page 5-23.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved.

5-1

Exception Handling

51 About exception processing

The VFP10 coprocessor processes exceptions imprecisely with respect to both the
ARM state and VVFP10 state. Exceptions are detected after the instruction has passed the
point in the ARM for exception processing. The VFP10 coprocessor enters an
exceptional state after the exceptional operation has been detected, and signals the
presence of an exception by refusing to accept a subsequent VV FP10 coprocessor
instruction. The instruction that triggers the exception processing is said to bounce to
the ARM 1020E. Theinstruction that bouncesis always a subsequent instruction but not
necessarily the instruction immediately following the exceptional instruction. In many
cases, aVFP10 coprocessor instruction following the exceptional instruction will
bounce, although, depending on the nature of the exceptional instruction, it can be
severa instructions following before abounce occurs.

VFP10 generated exceptions are only possible on arithmetic operations and not on data
transfer operations. Another class of instructions, involving copying data between
VFP10 coprocessor registers, is considered to be non-arithmetic and is not capabl e of
producing exceptions. These are FCPY, FABS, and FNEG. The FCPY instruction can be used
to copy SNaNs between VFP10 coprocessor registers, without setting the |OC bit, and
subnormals between VFP10 coprocessor registers, without flushing the subnormal to
positive zero or taking an input exception. The FABS and FNEG instructions maybe viewed
as copying with sign changing, and behave in the same manner as FCPY with regards to
exceptions.

In both non-RunFast and RunFast modes the VVFP10 coprocessor, with support code,
processes exceptions according to the IEEE 754 specification, including the calling of
user trap handlers with IEEE 754 specified intermediate operands.

Note
In RunFast mode the VFP10 coprocessor modifies the definition of the underflow
exception flag to provide additional information in cases in which the result has been
flushed to positive zero.

Compl ete descriptions of each of the exception flags and their bounce characteristics
are given in sections Invalid operation on page 5-13 to Arithmetic exceptions on
page 5-23.

5-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

5.2 Support code

The VFP10 coprocessor provides floating-point functionality through acombination of
hardware and software support. Floating-point instructions are normally executed by
the VFP hardware. However, the VFP10 coprocessor may use the interface signals
between it and the ARM1020E core to refuse to accept a floating-point instruction,
causing the ARM 1020E undefined instruction exception. Thisisknown asbouncing the
instruction. When an instruction is bounced, software installed on the ARM 1020E
undefined instruction vector determines why the VFP10 coprocessor rejected the
instruction and takes appropriate remedial action. This softwareis called the VFP
support code. The support code has two components:

. alibrary of routines that perform floating-point arithmetic functions

. a set of exception handlers that process exception conditions.

There are two main reasons for bouncing an instruction:
. potentia floating-point arithmetic exceptions
. illegal instructions.

See AFS Firmware Suite Version 1.3 Reference Guide for details of support code.

521 Bounced instructions

When a bounce occurs, the hardware sets the EX bit in the FPEXC register and |oads
FPINST with a copy of the potentially exceptional instruction. This condition in the
VFP10 coprocessor is referred to as the exceptional state. The instruction that is
bounced as aresult of the exceptional stateisreferred to asthetrigger instruction. Any
trigger instruction currently inthe VVFP10 coprocessor Decode (D) stage, or issued after
entering the exceptional state, is bounced.

The hardware detects potential exceptions pessimistically. This means an instruction
bounce always occurs when thereis an enabl ed fl oating-point exception but also occurs
in somerare cases when thereis no floating-point exception present, only apotential for
an exception detected in the E1 stage.

Theremedial action is performed as follows:

1. Thesupport code starts with reading the FPEXC register. If the EX bit
(FPEXC[31]) is set, apotential exception is present. If not, anillegal instruction
is detected. See lllegal instructions on page 5-6.

2. TheFPEXC register iswritten to clear the EX bit (failureto do this can result in
an infinite loop of exception traps when the support code next accesses the VFP
hardware).

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-3

Exception Handling

The FPINST register isread to determine the instruction that caused the potential
exception.

The support code then decodes the instruction in the FPINST register, readsits
operands (including implicit ones such as the FPSCR rounding mode and vector
length), executed the operation, and determines whether a floating-point
exception occurred.

If no floating-point exception occurred, the support code writes the correct result
of the operation, and sets any appropriate status flagsin the FPSCR.

If one or more floating-point exceptions occurred, but all of them were disabled,
the support code determines the correct result of the instruction, writesit to the

destination register, and sets the corresponding cumul ative exception bitsin the
FPSCR.

If one or more floating-point exceptions occurred and at |east one of them was
enabled, the support code computes the | EEE-754 specified intermediate result,
if required, and callsthe user-provided trap handler for that exception. The user’'s
trap handler can provide aresult for the instruction and continue program
execution, generate a signal or message to the operating system or the user, or
simply terminate the program.

If the potentially exceptional instruction specified a short vector operation, any
vector iterations after the one that encountered the potentially exceptional
condition will not have been executed by the hardware. The support code will
repeat steps 4 and 5 above for any such iterations. See Exception processing for
CDP short vector instructions on page 5-8 for more details.

If the FPv2 bit is set in the FPEXC (FPEXC Bit [28]), the FPINST2 register
contains another VFP instruction that has been issued between the potentially
exceptiona instruction and thetrigger instruction. Thisinstruction is executed by
the support code in the same manner described above. See I nstruction word
registers (FPINST and FPINST2) on page 318 for more on FPINST2.

Steps 1-7 imply that the support code must be capable of performing steps 4 and
5for any operation/operands combination, not just for those combinationsthat the
VFP10 hardware treats as potentially exceptional.

Once the support code has compl eted processing the potentially exceptional
instruction, it returns to the program containing the trigger instruction.

The original bounce of the trigger instruction always occurs during the initial
stage of the hardware coprocessor handshake, and prevents any operation(s) the
trigger instructions specify from executing.

5-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

Accordingly, the support code returns to the address of the trigger instruction,
causingthe ARM to refetch thetrigger instruction from memory and re-issueit to
the VFP10 coprocessor. Unless another bounce occurs, this resultsin the trigger
instruction being fully executed after the return. Returning in this fashion is
known as retrying the trigger instruction.

The support code may be written to use the VFP10 hardware for its internal
calculations, provided recursive bounces are avoided or handled correctly, and provided
careistaken to restore the state of the original program on returning to it. This last
requirement can be difficult to satisfy if the original program was executing in FIQ
mode or in undefined instruction mode. It islegitimate for support code to disallow or
restrict the use of VFP instructionsin these two processor modes.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-5

Exception Handling

5.3 lllegal instructions

If thereisnot apotential floating-point exception from an earlier instruction, the current
instruction can still be bounced because it is architecturally undefined in some way.
When this happens, the EX bit in the FPEXC (FPEXC[31]) is 0. Theinstruction that
caused the bounce is contained in the memory word pointed to by r14_undef - 4.

Itispossiblethat both conditionsfor an instruction to be bounced occur simultaneously.
This happens when an illegal instruction is encountered and there is also a potential
floating-point exception from an earlier instruction. When this happens, the EX bitis 1
and the support code processes the potential exception in the earlier instruction. If and
when it returns, it causestheillegal instruction to be retried and the sequence of events
described in the paragraph above occurs.

The following types of instructions are architecturally required to be treated asillegal
instructions:

. instructionswith opcode bit combinations defined as Reserved in the Architecture
specification

. load/store instructions with (P, W, and U) bit combinations marked as UNDEFINED

. FMRX/FMXR instructions to or from a control register that is not defined

. User mode FMRX/FMXR instructions to or from a control register that may only be
accessed in Privileged mode.

Certain types of instruction do not have architecturally-defined behavior, even to the
extent of causing the ARM undefined instruction trap to be entered. They may betreated
asillegal instructions by someimplementations of the VP, but this should not be relied
upon. The types of instructions are:

. L oad/Store multiple instructions with a transfer count of zero or greater than
thirty-two. In this implementation this case is bounced.

. A short vector operation that has a combination of precision, length, and stride
that would cause the vector to wrap around more than once (more than one access
to the same register). In this implementation this case is bounced.

. A short vector operation with overlapping source and destination register
addresses that are not exactly the same. In thisimplementation this case is not
bounced and the results are UNPREDICTABLE.

5-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

54 Determination of the trigger instruction

The ARM 1020E coprocessor interface specifies an exceptional instruction that bounces
to support code must signal on a subsequent coprocessor instruction. Thisis known as
impreci se exception handling and has the characteristic that the user state of the VFP10
coprocessor aswell asthe ARM and any other coprocessors or processors available
when the exception is processed may not represent the state at the time of the
exceptional instruction execution or the state that isexpectedin aserial execution of the
code stream. The VFP10 coprocessor parallel execution of Load/Store operations and
CDP operations allows for the VFP10 coprocessor and ARM 1020E core register files
and memory to be modified outside program order in normal operation.

The determination of what is the trigger instruction is amatter of instruction issue
timing. A CDP instruction is not determined potentially exceptional until the E1
Execute cycle. Another VFP10 instruction issued immediately following this
instruction will have completed processing by the ARM 1020E and could no longer
cause an undefined instruction exception to be taken. In this case, thisinstruction isin
what isreferred to as the pre-trigger slot and must be retained for the support code in
the FPINST2 register.

When the exceptional condition is detected on ashort vector operation the rules change.
Because the short vector operation appears to the ARM1020E as a single-cycle
operation, other VFP10 instructions can be issued, execute and retire before the short
vector operation retires. Several rules determine what is the trigger instruction:

. accessing the exception registers (FPEXC, FPINST, and FPINST2) or FPSID, is
not atrigger instruction in a Privileged mode

. any instruction which is stalled in the Decode stage due to register or resource
hazard id the trigger instruction

. thefirst instruction issued at least two cycles after the exceptional condition has
been detected is the trigger instruction

. aload or store instruction which reaches the Execute stage is not the trigger
instruction (there can be several of theseif the short vector is sufficiently long and
the exception is detected on alater iteration).

541 Exception processing for CDP scalar instructions

A scalar CDP determined to be exceptional causesthe FPINST register to be loaded
with the instruction word for the offending instruction and the FPEX C to be set with the
exception condition. Once the exception is detected, the offending instruction is
blocked from further execution whileany previousinstructionsnot yet retired isallowed
to retire.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-7

Exception Handling

Two possible conditions might exist in the following situation:

. If there is not a floating-point instruction (CDP or Load/Store) in the VFP10
Decode stage, the VFP10 coprocessor waits until one isissued. The next trigger
instruction is bounced.

. If thereis atrigger instruction in the VFP10 Decode stage, it is bounced in the
cycle after the exception is detected on the offending instruction.

The FMXR and FMRX instructions accessing the FPINST or FPEX C registersare not trigger
instructionsin a Privileged mode, and is bounced if it was theinstruction following the
offending instruction in any of the above situations.

Thetrigger instruction that was in the VFP10 Decode stage is retried by the ARM core
when the ARM core returns from exception processing.

5.4.2 Exception processing for CDP short vector instructions

For short vector instructions any iteration may be exceptional. If an exceptional
condition is detected for a vector iteration, the vector iterationsissued before the
offending operation are allowed to complete and retire.

Once the offending iteration of the short vector operation is found to be potentially
exceptiona the following sequence of operations occurs.

1. TheEX bitinthe FPEXC register is set.
2. TheFPINST register isloaded with the operation instruction word.

3. Thesource and destination register addresses are modified to point to the source
and destination registers of the offending iteration.

4. TheVECITR field iswritten with the coded number of the offending iteration.

5.4.3 Examples of exception detection for short vector instructions

In Example 5-1 on page 5-9 to Example 5-4 on page 5-11 code fragmentsillustrate the
exception detection mechanism of the VFP10 coprocessor for short vector operations.
The LEN field in the FPSCR is set to 0bo11, for a vector length of four.

In Example 5-1, assumethe LEN field in the FPSCR is set to O (scalar operations). The
FLDMD (Inst A) issues and retires regardless of the exceptional status of the FMULD in Inst
B. TheFSTMD in Inst C isstalled waiting on the FLDMD to complete, and will bethetrigger
instruction, and retried upon the return from exception processing. The FPINST register
contains the FMULD (with the condition codes set to AL) and the FPINST2 register is
invalid and FPV2 is set to 0.

5-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

Example 5-1 FLDMD completes regardless of a subsequent exceptional CDP

FLDMD R2, {D0-D5} ; Inst A load multiple of 6 double-precision words
FMULD D8, D12, D8 ; Inst B scalar double-precision multiply

FSTMD R3, {D6-D7} ; Inst C store multiple of 2 double-precision words
FMULS SO, S1, S1 ; Inst D scalar single-precision multiply SO = S1:S1

In Example 5-2, the FMULD is a vector operation of length 4 (LEN set to 3 in the FPSCR)
and apotential underflow exception is detected on the second iteration. Theload in Inst
B andthe storein Inst C both issue before the exception isdetected on Inst A. (A double
multiply requires 2 cyclesin the E1 stage, with exceptions detected in the first of the
two cycles. The exception on the 4th and last iteration is detected in the 3rd cycle after
the issue of the FMULD to the E1 stage.) The first load issues in the 2nd cycle after the
FMULD and requires one cycle. The following store issuesin the 3rd cycle after the FMULD
but before the exception isdetected, and isallowed to complete and retire. The FLDS (Inst
D) isstalled in the D stage due to a resource conflict with Inst C and isthe trigger
instruction. It will be retried upon the return from exception processing. FPINST2 is
invalid and FPV2 is set to 0.

Example 5-2 Exceptional vector CDP followed by several load/store operations

FMULD D8, D12, D8
FLDDD D@, {R5}
FSTMS R3, {S2-S9}
FLDS S8, {R9}

Inst A short vector double-precision multiply of len 4
Inst B Toad of a single double-precision data

Inst C store multiple of 8 single-precision data

Inst D Toad of a single double-precision data

After the exception processing has begun, the FPEXC register contains the following
fields:

EX:
EN:
VECITR: 00
IDC:

1 (Signaling the VFP10 coprocessor is exceptional)
1
1
0
INV: 0
1
0
0

(VECITR reports 2 iterations remain after exceptional iteration

UFC:
OFC :
I0C:

(The exception detected is a potential underflow)

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 0100 (multiply)
Fd/D: 1001/0 (Destination is D9 for the exceptional iteration)
Fn/N: 1001/0 (Fn source is D9 for the exceptional iteration)

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-9

Exception Handling

Fm/M: 1101/0 (Fm source is D13 for the exceptional iteration)
CpID: 1011 (operation is double-precision)

In Example 5-3 Inst A is a scalar operation (the destination is in bank 0) and has a
potential invalid exception. Inst B has progressed into the D stage and is captured into
the FPINST 2 register (with the conditiona bitsforced to AL) and is not thetrigger. Inst
Cis 2 cycles behind the exceptional instruction and is the trigger instruction. It will be
retried upon the return from exception processing.

Example 5-3 Exceptional CDP with CDP in the pre-trigger slot

FADDS SO, S1, S2 ; Inst A scalar single-precision add
FADDS S3, S4, S5 ; Inst B scalar single-precision add
FMULS S12, S16, S16 ; Inst C short vector single-precision multiply

After the exception processing has begun, the FPEXC register contains the following
fields:

EX:

EN:

FPV2:
VECITR: 11

1 (Signaling the VFP10 coprocessor is exceptional)

1

1

1
IDC: 0

0

0

0

1

(FPINST2 contains a valid instruction)
(no iterations remaining after exceptional iteration)

INV:
UFC:
OFC:

I0C: (exception is a potential invalid)

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 0110 (add)

Fd/D: 0000/0 (Destination 1is S@)

Fn/N: 0000/1 (Fn source is S1)

Fm/M: 0001/0 (Fm source is S2)

CpID: 1010 (operation 1is single-precision)

FPINST2 contains the instruction word for the FADDS in Inst B.

In Example 5-4 on page 5-11 an exceptional short vector of length 4 (LEN set to 3) with
apotentia overflow exception in thefirst iteration is followed by a CDP with aregister
conflict. The second CDP (Inst B) is stalled in the D stage waiting on Inst A to exit the
E1 stage. Inst B isthe trigger instruction and will be retried upon the return from
exception processing. FPINST2 isinvalid and FPV2 isset to 0.

5-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

Example 5-4 Exceptional vector CDP followed by scalar CDP with register conflict

FABSD D4, D4, D12 ;Inst A short vector double-precision absolute value of
; length 4
FMACS S@, S3, S2 ;Inst B scalar single-precision mac

After the exception processing has begun, the FPEXC and FPINST registers have the

following fields:

EX: 1 (Signaling the VFP1@ coprocessor is exceptional)
EN: 1

FPV2: @ (FPINST2 does not contain a valid instruction
VECITR:010 (VECITR reports 3 iterations remain)

IDC: 0

INV: 0

UFC: 0

OFC: 1 (The exception detected is a potential overflow)
I0C: 0

The FPINST register contains the following fields (the conditional field and forced bits
are not shown):

Op: 1111 (extend)

Fd/D: 0100/0 (Destination is D4)

Fn/N: 0000/1 (Fn specifies FABS instruction)
Fm/M: 1100/0 (Fm source is D12)

CpID: 1011 (operation 1is double-precision

FPINST2 contains invalid data.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-11

Exception Handling

55 Input subnormal

ThelDC bit inthe FPSCR (FPSCR][7]) is set whenever an input operand is a subnormal
and the operation is not a floating-point to integer conversion. The behavior of the
VFP10 coprocessor with asubnormal input operand is afunction of the FZ bit in the
FPSCR. If the FZ bit is 0, the VFP10 coprocessor bounces on the presence of an input
subnormal. If the FZ bit is 1, the IDE bit in the FPSCR (FPSCR[15]) determines
whether a bounce occurs.

5.5.1 Exception enabled

If the IDE bit in the FPSCR (FPSCR[15]) is set, the EX bit inthe FPEXC ([31]) and the
IDC bit in the FPSCR (bit [7]) is set. The source and destination registers for the
instruction will be valid in the VFP10 coprocessor register file.

5.5.2 Exception disabled

If the VFP10 coprocessor isnot in FTZ mode, the result of the operation, with theinput
subnormal replaced with apositive zero, iscompleted and written to the register file. All
appropriate status bits in the FPSCR are set accordingly.

5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

5.6 Invalid operation

An operation isinvalid if there does not exist arepresentation for the result, or if the
result is not defined. An example is adding a positive infinity to a negative infinity, or
trying to represent a floating-point number greater than 232 as a 32-hit integer. The
VFP10 coprocessor in RunFast mode handles all invalid casesin hardware without
support code intervention. In non-RunFast mode, only cases involving signaling NaNs
require support code intervention.

Table 5-1 showsthe operand combinationsthat produceinvalid operation exceptions. In
addition to the conditionsin Table 5-1, any CDP instruction other than FCPY, FNEG, and
FABS causes an invalid operation exception if one or more of its operandsisasignaling
NaN (see Table 3-1).

Table 5-1 Possible IEEE 754 invalid operation exceptions

Instruction Invalid operation exceptions

FMAC/FNMAC Any of the conditions that can cause an invalid exception for FADD or
FMUL can cause an invalid exception for FMAC and FNMAC. The product
generated by the multiply operation of the FMAC or FNMAC isconsidered in
the determination of the invalid exception for the subsequent sum
operation.

FMSC/FNMSC Any of the conditions that can cause an invalid exception for FSUB or
FMUL can cause an invalid exception for FMSC and FNMSC. The product
generated by the multiply operation of the FMSC or FNMSC isconsidered in
the determination of theinvalid exception for the subsequent difference

operation.
FADD (+infinity) + (-infinity) or (-infinity) + (+infinity)
FSuUB (+infinity) - (+infinity) or (-infinity) - (-infinity)
FDIV 0/0 or infinity/infinity

In FTZ mode a subnormal input is treated as a positive zero for
INVALID exception determination.

FMUL/FNMUL 0* % infinity or £ infinity*0

FSQRT Sourceis< 0

FFTOUT Rounded result would lie outside the range O<= result < 232
FFTOST Rounded result would lie outside the range -231 <= result < 231

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-13

Exception Handling

5.6.1 Exception enabled

The VFP10 coprocessor detects most invalid conditions correctly but some are detected
pessimistically. The pessimistically detected cases are:

. FTOUI with anegative input. A small negative input may round to azero, whichis
not ainvalid condition

. Float-to-integer with a maximum exponent for the destination precision and any
rounding mode other than RZ. Theimpact of rounding isunknown inthe E1 stage

. A FMAC-family operation with an infinity for the A operand and a potential
product overflow to an infinity that can result in an invalid condition.

When the V FP10 coprocessor detectsapessimistic case, the EX bit inthe FPEXC ([31])
and the 1OC bit in the FPEXC (bit [0]) will be set. The |OC hit in the FPSCR doesnot
have been set by the hardware, and must be set by the support code before calling the
user-provided trap handler.

The support code determines the exception status of the pessimistically bounced cases,
and if an invalid condition exists, the invalid exception trap handler you created is
called. The source and destination registers for the instruction will be valid in the
VFP10 coprocessor register file.

5.6.2 Exception disabled

If the IOE bit is clear, the VFP10 coprocessor processes al invalid cases according to
the | EEE-754 specification. The value written into the destination register for al
operations except integer conversion operations will be the default NaN.

Conversion of afloating-point value that is outside the range of the destination integer
isaninvalid condition rather than an overflow condition. When an invalid condition
exists for afloating-point to integer conversion, the VFP10 coprocessor deliversa
default result to the destination register and sets the IOC bit in the FPSCR. The default
results are given below in Table 5-2 on page 5-15.

Note

A negative input to an unsigned conversion, which does not round to atrue zero in the
conversion process, will set the |OC bit in the FPEXC.

5-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Table 5-2Table 5-2

Exception Handling

Table 5-2 Default results for positive invalid inputs

FTUOI(Z) FTOSI(2)

Input value
Result I0C set? Result 10C set?

X =232 FFFFFFFF Yes 7FFFFFFF Yes
Blex <23 Integer No 7FFFFFFF Yes
Osx<23 Integer No Integer No
0>x2-231 00000000 Yes Integer No
X <-281 00000000 Yes 80000000 Yes

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

Exception Handling

5.7 Division by zero

Thedivision by zero exception isgenerated for adivision x/0, where x is anything other
than a zero, infinity, or aNaN. In FTZ mode a subnormal input is treated as a positive
zero for divide-by-zero determination. What happens depends on whether the invalid
operation exception is enabled.

5.7.1 Exception enabled

If the DZE bit of the FPSCR (FPSCR[9]) is 1, the divide-by-zero user trap handler is
called. The source and destination registers for the instruction will be valid in the
VFP10 coprocessor register file.

5.7.2 Exception disabled

A correctly signed infinity iswritten to the destination register and the DZC bitisset in
the FPSCR (FPSCR[1]).

5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

5.8 Overflow

Exception Handling

When OFE isset inthe FPSCR (FPSCR[10]) overflow isdetected pessimistically based
on the preliminary calculation of the final exponent value. If the pessimistic
determination of overflow by the hardware is confirmed by the support code for an
operation with a floating-point result, an overflow exception is generated. This
confirmation consists of determining that the result of the operation after rounding
exceeds the largest representable number in magnitude in the destination format.

5.8.1 Exception enabled

The VFP10 coprocessor detects most overflow conditions conclusively but some are
detected pessimistically. Specifically, when the initial computation of the result
exponent is the maximum exponent or one less than the maximum exponent of the
destination precision, the possibility of overflow due to mantissa overflow or rounding
exists, but cannot be known in thefirst Execute stage. The VVFP10 coprocessor bounces
on such cases and uses the support code to determine the exceptional status of the
operation. If it does not overflow, the support code writes the computed result to the
destination register and returns without setting OFC (FPSCR[2]). If it does overflow,
the intermediate result is written to the destination register, OFC is set, and the user
overflow trap handler is called.

When the VFP10 coprocessor detects apessimistic case, the EX bitinthe FPEXC ([31])
and the OFC bit in the FPEXC (bit [2]) will be set. The OFC hit in the FPSCR will not
have been set by the hardware, and must be set by the support code before calling the

user's trap handler. The source and destination registersfor the instruction will be valid
in the VFP10 coprocessor register file. See Arithmetic exceptions on page 5-23 for the
conditions which will cause an overflow bounce.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-17

Exception Handling

5.8.2 Exception disabled

A correctly signed infinity or largest finite number for the destination precisionis
written to the destination register according to Table 5-3. The OFC bit and the IXC hit
are set in theFPSCR.

Table 5-3 Overflow result

Rounding mode Result

RN Infinity, with the sign of the intermediate result.

Rz Largest magnitude val ue for the destination size, with the sign of the
intermediate result.

RP For positive overflow, +infinity.
For negative overflow, the largest negative value for the destination
size.

RM For positive overflow, the largest positive value for the destination
size.

For negative overflow, -infinity.

5-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

59 Underflow

Exception Handling

Underflow is detected pessimistically in non-RunFast mode. If the pessimistic
determination of underflow by the hardware is confirmed by the support code for an
operation with afloating-point result, an underflow exception is generated. How thisis
confirmed depends on whether the VFP10 coprocessor isin Flush-to-zero mode.

. If the FZ bit is set, all underflowing results are forced to apositive signed zero and
written to the destination register. The UFC and | XC bits are set in the FPSCR.
No trap istaken. If the underflow exception enable hit is set, it isignored.

. If the FZ bit is not set what happens next depends on whether the underflow
operation exception is enabled.

5.9.1 Exception enabled

The VFP10 coprocessor detects most underflow conditions conclusively but some are
detected pessimistically. Specifically, when the initial computation of the result
exponent is below athreshold for the destination precision, the possibility of underflow
due to massive cancellation exists, but cannot be known in the first Execute stage. The
VFP10 coprocessor will bounce on such cases and utilize the support code to determine
the exceptional status of the operation. If it does not underflow, either catastrophically
or to a subnormal result, the support code will write the computed result to the
destination register and return without setting UFC. If it does underflow, regardless of
any accuracy loss, theintermediate result will bewritten to the destination register, UFC
will be set, and the trap handler you created will be called. Underflow is confirmed if
the result of the operation after rounding is less in magnitude than the smallest
normalized number in the destination format. If it is confirmed, the IEEE 754 defined
intermediate result is written to the destination register and the user underflow trap
handler is called.

When the VFP10 coprocessor detects apessimistic case, the EX bitinthe FPEXC ([31])
and the UFC bit in the FPEXC (bit [3]) will be set. The UFC bit in the FPSCR will not
have been set by the hardware, and must be set by the support code before calling the
user's trap handler. The source and destination registersfor the instruction will be valid
in the VFP10 coprocessor register file. See section Arithmetic exceptions on page 5-23
for the conditions that will cause an underflow bounce.

5.9.2 Exception disabled

When the FZ bit in the FPSCR is not set, the VFP10 coprocessor will bounce on
potential underflow casesin the same fashion as detailed above for the exception
enabled case. The correct result will be written to the destination register, and any
exception status bits set accordingly.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-19

Exception Handling

When the FZ bit in the FPSCR is set, the VFP10 coprocessor will make the
determination of underflow before rounding and flush any result that underflows,
returning a positive zero to the destination register and setting the UFC and I XC bitsin
the FPSCR.

Note

The determination of an underflow condition is made before rounding rather than after.
This can result in an intermediate val ue, with the minimum exponent for the destination
precision (00 for single-precision and 000 for double-precision), fraction of all ones,
and around increment, to be flushed to zero rather than the minimum normal value to
be returned. If the intermediate value was the minimum normal value before the
underflow condition test is made, it will not be flushed to zero.

5-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

5.10 Inexact result

Floating-point arithmetic inherently has limited precision and typically the result of an
arithmetic operation on two floating-point values has more significant bits than the
destination register can contain. When this happens, the result isrounded to avalue that
the destination register can hold, and is said to be inexact.

The inexact exception occurs whenever:

. aresult is not equal to the computed result before rounding

. an untrapped overflow exception occurs

. an untrapped underflow exception occurs, and there isloss of accuracy.

—— Note

Theinexact exception occurs frequently in the course of normal floating-point
calculations, and does not indicate a significant numerical error except in some
specialized applicationsfor floating-point arithmetic. Enabling the inexact exceptionin
the FPSCR can significantly reduce the performance of the VFP10 coprocessor.

The VFP10 coprocessor handles the inexact exception differently from the other
floating-point exceptions. It has no mechanism for reporting inexact results to the
software, but can handle the exception without software intervention aslong as the
inexact exception isnot enabled (in other words, aslong asthe | XE bit inthe FPSCR is
0).

5.10.1 Exception enabled

If the I XE bitinthe FPSCRis 1, all CDP operationswill be bounced to the support code
without any attempt to perform the calculation. The support codeisthen responsiblefor
performing the cal culation, determining which, if any, exceptions have taken place, and
handling them appropriately. As part of this, if it determines that an inexact exception
occurs, it calls the user trap handler.

—— Note

If processing the instruction determines that the overflow or underflow exception also
occurs, it gives that exception priority over the inexact exception.

5.10.2 Exception disabled

If the IXE bit in the FPSCR is 0, the VFP10 coprocessor writes the result to the
destination register and sets the I XC bit in the FPSCR.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 5-21

Exception Handling

5.11 Input exceptions

The VFP10 coprocessor processes most input operands completely in hardware.
However, the hardware is incapable of processing some operands and will bounce to
support code to process the instruction. The inputs which are bounced are:

. NaNs operands, when the DN mode is not enabled

. subnormal operands, when the FTZ mode is not enabled.

5-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

5.12 Arithmetic exceptions

This section detail s the conditions under which the VFP10 coprocessor will bounce an
arithmetic operation pessimistically. It is the task of the support code to determine the
actual exception status of the instruction, and return either the result and appropriate
exception status hits, or the intermediate result and a call to the user's trap handler.

Like input exceptions, arithmetic exceptions always bounce. The support code then
determines the result value and whether any |EEE 754 exceptions occurred. Any
instruction that generates an arithmetic exception therefore takes many more cycles
than normal to execute.

The following sections specify the precise circumstances in which arithmetic
exceptions occur for each instruction:

. FADD/FSUB/FCM P/FCMPZ/FCMPE/FCM PEZ
. FMUL/FNMUL on page -121

. FMAC/FMSC/FNMAC/FNMSC on page -138

. FDIV on page -138

. FSQRT on page -145

. FCPY/FABS/FNEG on page -146

. FCVTDS/FCVTSD on page -146

. FUITO/FSITO on page -147

. FTOUI/FTOUIZ/FTOSI/FTOSIZ on page -147.

5.12.1 FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ

The exponent in addition or subtraction operations, and compare (which is effectively a
subtraction operation) isinitialy set to thelarger of thetwo input exponents. For clarity
we define the operation in terms of Like-Signed Addition (LSA) or an Unlike-Signed
Addition (USA). Table 5-4 specifies how this division is made. + refers to a positive
operand and - refers to a negative operand.

Table 5-4 LSA and USA determination

Instruction A sign B sign Operation
FADD + + LSA
FADD + - USA
FADD - + USA
FADD - - LSA
FSUB/FCMP + + USA

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-23

Exception Handling

Table 5-4 LSA and USA determination (continued)

Instruction A sign B sign Operation
FSUB/FCMP + - LSA
FSUB/FCMP - + LSA
FSUB/FCMP - - USA

For LSA, the bounce conditions are more pessimistic for overflow than they are for
USA, sinceitispossiblefor an LSA operation to cause the exponent to be incremented
if the mantissa overflows. The LSA ranges are made slightly more pessimistic to
incorporate FMAC operations (see FMAC/FMSC/FNMAC/FNMSC on page 5-26).

For USA, the underflow bounce ranges are pessimistic to a greater degree to
accommodate the possibility of a massive cancellation in which the result exponent
might be smaller than the larger operand exponent by as much as the length of the
mantissa (24 for single-precision and 53 for double-precision). The overflow range for
USA isdightly pessimistic (it is set to the LSA overflow range) to reduce the number
of logic terms. Table 5-5 lists the USA and L SA values and conditions. All exponent
values are in hexadecimal, 11 bits for double-precision, and 8 bits for single-precision.

Table 5-5 USA and LSA values and conditions

Double- Single-

Condition (non-FZ mode)

precision precision Value Sp Dp
>7FF - DP Ovfl - Bounce
7FF - DP Ovfl, NaN, - Bounce
Inf

7FE - DP Ovfl Det - Bounce
7FD - DP Ovfl Det - Bounce
7FC - DP Norm - Norm
>47F >FF SP Ovfl Bounce Norm
47F FF SP NaN, Inf Bounce Norm
47E FE SP Ovfl Det Bounce Norm
47D FD SP Ovfl Det Bounce Norm
47C FC SP Norm Norm Norm

5-24

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Exception Handling

Table 5-5 USA and LSA values and conditions (continued)

Condition (non-FZ mode)

Double- Single-
o e Value

precision precision sp op

3FF 7F e=0 biasvalue Norm Norm

3A0 20 SPNorm (LSA) MIN (USA) Norm

39F 1F SPUnfl (USA) Bounce (USA) Norm

Norm (LSA)

381 01 SPNorm (LSA) MIN (LSA) Norm

380 00 SP subnormal Bounce Norm

<380 <00 SP Unfl Bounce Norm

040 - DP Norm - Norm (LSA)

(USA) MIN (USA)

03F - DPUnfl (USA) - Norm (LSA)
Bounce (USA)

001 - DPNorm(LSA) - MIN (LSA)
Bounce (USA)

000 - DP subnormal - Bounce

<000 - DP Unfl - Bounce

5.12.2 FMUL/FNMUL

The determination for potential exceptional conditionsis made based on the initial
product exponent, the sum of the multiplicand and multiplier exponents. FMUL family
bounce and exceptional thresholds on page 5-26 lists the VFP10 coprocessor response
for specific values of theinitia product exponent. It is possible for the exponent to be
incremented by a mantissa overflow condition. Thisisthe cause for the additional
bounce values near the real overflow threshold. The one additional value incorporated
into the bounce range makes the FMUL/FNMUL overflow detection rangesidentical to those
of the FADD family in FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ on page 5-23.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

5-25

Exception Handling

Table 5-6 FMUL family bounce and exceptional thresholds

Condition (non-RunFast mode)

Double- Single-

precision precision value sp DP
STEE - DP Ovfl - Bounce
7EE - DP NaN, Inf - Bounce
7FE - DP Max Norm - Bounce
7FD - DP Norm - Bounce
7FC - DP Norm - Norm
>47F >FF SP Ovil Bounce Norm
47F FF SP NaN, Inf Bounce Norm
47E FE SP Max Norm Bounce Norm
47D FD SP Norm Bounce Norm
47C FC SP Norm Norm Norm
3FF 7F e=0 biasvalue Norm Norm
381 01 SP Norm Norm Norm
380 00 SP subnormal Bounce Norm
<380 <00 SP Unfl Bounce Norm
001 - DP Norm - Norm
000 - DP subnormal - Bounce
<000 - DP Unfl - Bounce

5.12.3 FMAC/FMSC/FNMAC/FNMSC

The FMAC family of operations addsto the potential overflow range by generating final
valuesin therange [0, 4). Inthiscaseit is possible for the final exponent to require

incrementing by two to normalize the mantissa.

5-26

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

5.12.4 FDIV

Exception Handling

The bounce thresholds presented earlier for the FADD family and the FMUL family
incorporate this additional factor. Those ranges are used to detect potential exceptions
for the FMAC family.

Thethresholds for divide are simple and based only on the difference of the exponents
of the dividend and the divisor. It is not possiblein a divide operation for the mantissa
to overflow and cause an increment of the exponent. However, it is possible for the
mantissato require asingle bit left shift and the exponent to be decremented for
normalization. The overflow ranges are the same as those of the LSA operationsin
FADD/FSUB/FCMP/FCMPZ/FCMPE/FCMPEZ on page 5-23 (again, to reduce logic
complexity). The underflow ranges include the minimum normal exponent (0xo1 for
single-precision and 0x001 for double-precision). The completetable is shownin
Table 5-7.

Table 5-7 FDIV bounce and exceptional thresholds

Double- Single- Condition (non-RunFast mode)

precision precision Value sp DP
>7FF - DP Ovfl - Bounce
7FF - DP NaN, Inf - Bounce
7FE - DP Max Norm - Bounce
7FD - DP Norm - Bounce
7FC - DP Norm - Norm
>47F >FF SP Ovfl Bounce Norm
47F FF SP NaN, Inf Bounce Norm
47E FE SP Max Norm Bounce Norm
47D FD SP Norm Bounce Norm
47C FC SP Norm Norm Norm
3FF 7F e=0 biasvalue Norm Norm
382 02 SP Norm Norm Norm
381 01 SP Norm Bounce Norm
380 00 SP subnormal Bounce Norm

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-27

Exception Handling

Table 5-7 FDIV bounce and exceptional thresholds (continued)

Condition (non-RunFast mode)

Double- Single-

. . Value
precision precision sp op
<380 <00 SP Unfl Bounce Norm
002 - DP Norm - Norm
001 - DP Norm - Bounce
000 - DP subnormal - Bounce
<000 - DP Unfl - Bounce

5.12.5 FSQRT

It is not possible for FSQRT to overflow or underflow.

5.12.6 FCPY/FABS/FNEG

It is not possible for FCPY,FABS, or FNEG to bounce for any operand.

5.12.7 FCVTDS/FCVTSD

Only the FCVTSD operation is capable of overflow or underflow. Table 5-8 liststhe FCVTSD
bounce conditions. The overflow ranges are the same as the LSA ranges. Thisisto
reduce logic complexity. Table 5-8 lists the FCVTSD bounce conditions.

Table 5-8 FCVTSD bounce conditions

DP Value Condition (non-RunFast mode) FCVTSD
>47F SP Ovfl Bounce

47F SP NaN, Inf Bounce

47E SP Max Norm Bounce

47D SP Norm Bounce

47C SP Norm Norm

3FF e=0 bias value Norm

5-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Exception Handling

Table 5-8 FCVTSD bounce conditions (continued)

DP Value Condition (non-RunFast mode) FCVTSD
381 SP Norm Norm

380 SP subnormal Bounce

<380 SP Unfl Bounce

5.12.8 FUITO/FSITO

It is not possible to generate overflow or underflow in an integer-to-float conversion.

5.12.9 FTOUI/FTOUIZ/FTOSI/FTOSIZ

Float-to-integer conversions generate only Invalid exceptions rather than overflow or
underflow. The thresholds for pessimistic bouncing are different for the various
rounding modes to support signed conversions with round-to-zero rounding in the
maximum range possible for C, C++ and Java compiled code.

Table 5-9 on page 5-30 and Table 5-10 on page 5-32 use the following notation. Ex
stands for Exception generated:

I Invalid

None Operation isvalid

In the VFP Response column:

All These input values are bounced for al rounding modes.

S These input values are bounced for signed conversionsin all
rounding modes.

Snz These input values are bounced for signed conversionsin all
rounding modes except round-to-zero.

U These input values are bounced for unsigned conversionsin all
rounding modes.

Unz These input values are bounced for unsigned conversionsin all
rounding modes except round-to-zero.

None All values are valid

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 5-29

Exception Handling

In the Unsigned results and Sgned results column:

N
P
M
z

Round-to-nearest rounding mode.

Round-to-Plus-Infinity rounding mode.
Round-to-Minus-Infinity rounding mode.

Round-to-Zero mode.

Table 5-9 shows the single-precision float-to-integer bounce range and the results
returned for exceptional conditions.

Table 5-9 SP Float-to-integer bounce thresholds and stored results

i Signed
Float Value Unsigned Ex igne Ex VFP
value result result response
NaN - 00000000 | 00000000 I Bounce All
7F800000 +Inf FFFFFFFF I TFFFFFFF I Bounce All
TF7FFFFF +Max Sp
to to FFFFFFFF | TFFFFFFF | Bounce All
4F800000 532
AFTFFFFF (232-28) FFFFFFO0
to to to | TFFFFFFF | Bounce SUnz
4F000000 231 80000000
AEFFFFFF (281-27) 7FFFFF80 7TFFFFF80
to to to \% to \% Bounce SnZ
4E800000 230 40000000 40000000
4ETFFFFF (230- 26) 3FFFFFCO 3FFFFFCO
to to to \Y, to \Y, Bounce None
00000000 +0 00000000 00000000
80000000 -0 00000000
to to 00000000 | to \Y, Bounce U
CETFFFFF (-230 +26) C0000040

5-30 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Exception Handling

Table 5-9 SP Float-to-integer bounce thresholds and stored results (continued)

Float Value Unsigned Ex Signed Ex VFP

value result result response
CE800000 -230 C0000000 Bounce U

to to 00000000 | to \%

CEFFFFFF (-281 +27) 80000080 Bounce U Snz
CF000000 -231

to to 00000000 80000000 Bounce All
FF7FFFFF -Max Sp

FF800000 -Inf 00000000 80000000 | Bounce All

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

5-31

Exception Handling

Table 5-10 shows the double-precision float-to-integer bounce range and the results

returned for exceptional conditions.

Table 5-10 DP Float-to-integer bounce thresholds and stored results

. Signed

Float value Value Unsigned result Ex g Ex VFP

result response
NaN - 00000000 | 00000000 | Bounce All
7FF00000_00000000 +Inf FFFFFFFF | TFFFFFFF | Bounce All
7FEFFFFF_FFFFFFFF +Max DP
to to FFFFFFFF | TFFFFFFF Bounce All
41F00000_00000000 232
A1EFFFFF_FFFFFFFF (232 2-21) FFFFFFFF (NP) |
to to FFFFFFFF (ZM) v 7FFFFFFF |
41EFFFFF_FFF00000 (282 - 21
A1EFFFFF_FFEFFFFF (232 -2-1-2-21) FFFFFFFF (P) |
to to FFFFFFFF (NZM) v TFFFFFFF | Bounce SUnZ
41EFFFFF_FFEO00001 932 p-14 p-21
41EFFFFF_FFEOO0000 282 . 20 FFFFFFFF \Vj
to to to TFFFFFFF |
41E00000_00000000 231 80000000 \V;
41DFFFFF_FFFFFFFF (281- 2-22) 80000000 (NP) \% 7TFFFFFFF (NP) |
to to 7FFFFFFF (ZM) V 7FFFFFFF (ZM) \Y
41DFFFFF_FFE000000 (2%2-21) to
A1DFFFFF_FFDFFFFF 232.2-1.2-22 80000000 (P) TFFFFFFF (P) |
to to TFFFFFFF (NZM) V 7TFFFFFFF (NZM) V Bounce SnZ
41D00000_FFC00001 208221+ 221 o
41D00000_FFC00000 232.20 TFFFFFFF \% TFFFFFFF \%
to to to to
41D00000_00000000 231 40000000 Y, 40000000
41CFFFFF_FFFFFFFF (230- 2-23) 40000000 (NP) V40000000 (NP) vV Bouncenone

3FFFFFFF (zM) V. 3FFFFFFF(ZM) Vv

to to to to
00000000_00000000 +0 00000000 Y, 00000000 Vv
80000000_00000000 -0 00000000 \%
to to 00000000 | to Bounce U
C1CFFFFF_FFFFFFFF (-230 +2-23) C00000001 (ZP) \Y

C00000000 (NM) Vv

5-32

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Exception Handling

Table 5-10 DP Float-to-integer bounce thresholds and stored results (continued)

Float value Value Unsigned result Ex Signed Ex VFP
result response

C1D00000_00000000 -230 C0000000 \%

to to 00000000 | to Bounce U SnZ
80000001 (ZP) |

C1DFFFFF_FFFFFFFF (-231 +2-22) 80000000 (NM) |

C1E00000_00000000 -2-3L 00000000 | 80000000 \%

C1E00000_00000001 -2-31.2-21 80000000 (NZP) \%

to to 00000000 | 80000000 (M) |

C1E00000_00100000 -2-31.2-1

C1E00000_00100001 -2-31.2-1.2-21 Bounce All

to to 00000000 | 80000000 (ZP) \%

C1E00000_00200000 2-31.20 80000000 (NM) |

C1E00000_ 00200001 2-31_90.9-21 |

to to 00000000 | 80000000

FFEFFFFF_FFFFFFFF -Max DP

FFFO0000_00000000 -Inf 00000000 | 00000000 | Bounce All

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

5-33

Exception Handling

5-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Chapter 6
Design for Test

This chapter describes the Design For Test (DFT) features of the VFP10 coprocessor
and describes how best to integrate the DFT features into an System on a Chip (SoC).

This chapter contains the following sections:
. About DFT on page 6-2

. VFP10 DFT on page 6-3

. VFP10 Core on page 6-4

. VFP10 test wrapper on page 6-6

. VFP10 clocking on page 6-10

. Test Pins on page 6-11.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved.

6-1

Design for Test

6.1 About DFT

Using DFT techniques during the design and implementation phase of a chip produces
the hardware hooks in the design unit to enable a tester to apply vectors, or control
stimulus to achieve a high quality measurement. Thisis especially important if the
design unit is to be embedded within other design units or chip logic.

If the proper mix of DFT techniques and logic are used, the resulting design:

. is easier to integrate

. is easier to generate vectors for

. has more efficient test vectors (in terms of size and tester time)

. has more cost-effective vectors with higher defect coverage per clock cycle.

Ultimately, the vectors that are generated for the design are easier to apply to the
embedded core by the tester.

6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Design for Test

6.2 VFP10 DFT

The VFP10 coprocessor is afull scan Mux Dflip-flop core, with the exception of the
latch-based Register file module. It contains one internal clock domain, GCLK.

The VFP10 coprocessor has atest wrapper to alow for test control and observation of
the core from the ports as well as control and observation of the external logic
surrounding the core. The test wrapper provides asingle seria scan ring around the
entire periphery of the core. The ultimate goal of adding awrapper isto allow atester
to apply vectors, or control stimulus, to achieve a high quality measurement with a
minimal amount of external pin control. Thisis extremely important if the design unit
isto be embedded or buried within other design units or chip logic. The test wrapper
can have dedicated wrapper cells or shared wrapper cells. The VFP10 coprocessor
contains only dedicated wrapper cells that are clocked by a dedicated wrapper clock,
VFP10WCLK.

VFP10WCLK isnot perfectly delay matched with GCLK and care must be taken to
prevent hold time errors. In the case of the VFP10 coprocessor hard core, the patterns
are created with VFP10WCLK 180 degrees out of phase, with GCLK.

In addition, any asynchronous signals must bedirectly controlled by the Automated Test
Pattern Generator (ATPG) tool. The asynchronous reset signals on the VFP10
coprocessor are directly controlled during scan mode by the VFP10DFTRESET
signal. This port must be controlled directly by apin in scan mode.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 6-3

Design for Test

6.3

6.3.1

VFP10 Core

Scan chains

The VFP10 coprocessor core contains two different configurations of scan chains.
These configurations aretwelve, or six internal scan chains. The scan chains are shorter
if therearemore parallel scan chainsinadesign. Thetotal vector count becomessmaller
as the scan chains become shorter which saves tester memory. However, the final
package or test environment may not have the pin bandwidth to handle the highest
number of chains attainable on the VFP10 coprocessor, so other options are made
available.

The VFP10 coprocessor is comprised of twelve individual scan chains. These scan
chains are concatenated with the control signals SCANM UX6 and SCANM UX12 to
allow another configuration of the scan chains. The other option is six internal scan
chains. Table 6-1 illustrates the how the scan chains are concatenated.

Table 6-1 Scan chain configuration

Mode Scan chains Scan-in Scan-out
concatenated

SCANMUX6 11,5 SCANIN[5] VFP10SCANOUT[5]

SCANMUX6 10,4 SCANIN[4] VFP10SCANOUT[4]

SCANMUX6 93 SCANIN[3] VFP10SCANOUT[3]

SCANMUXG6 8,2 SCANINI[2] VFP10SCANOUT[2]

SCANMUXG6 7,1 SCANIN[1] VFP10SCANOUT[1]

SCANMUXG6 6,0 SCANINIO] VFP10SCANOUT[0]

6-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Design for Test

There are two signals labelled SCANM UX6 and SCANM UX12 for the internal scan
chains. These signals are tied HIGH or LOW to obtain the desired configuration as
shown in Table 6-2.

Table 6-2 Internal scan chain configuration

. . SCANMUX12 SCANMUX6
Configuration
value value
1 scan chain, legal with SCORETEST asserted 0 0
6 internal scan chains, 1 wrapper chain 0 1
12 interna scan chains, 3 wrapper chains 1 0
Restricted 1 1

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-5

Design for Test

6.4

VFP10 test wrapper

out

Peripheral

logic

The VFP10 coprocessor test wrapper contains one configuration of the wrapper scan
chain. It isimportant that the wrapper chain is not the longest scan chain so that it does
not control the ultimate length of each scan pattern. This test wrapper chain isthe
shortest scan chain regardless of which internal scan chain mode is chosen. This
wrapper scan chain consists of only dedicated test wrapper cellsshownin Figure 6-1and
Figure 6-2 on page 6-7. There is awrapper cell connected to every input and output
functional port with the exception of the clock ports. Thetest wrapper cells can be used
for control and observation of the ports during testing of theV FP10 coprocessor and the
testing of logic external to the VFP10 coprocessor. Figure 6-1 shows a dedicated input
wrapper cell.

Scan input S“‘can output

Wrapper cell

functional path 0 in

A VFP10
coprocessor

Y
O

CK

WScan enable WCLK WM UXINSEL

Figure 6-1 Dedicated input wrapper cell

Figure 6-2 on page 6-7 showsadedicated output wrapper cell. The dedicated output cell
has a saf e gate.

6-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Design for Test

Scan input Scanoutput sare
Wrapper cell
out functional path —»f; Safe in
p 1 gate
VFP10 A Peripheral
coprocessor logic
D
- SI Q—
| SE
CK
WScan enable WCLK WM UXOUTSEL

Figure 6-2 Dedicated output wrapper cell

6.4.1 Reset dedicated wrapper cell

Thereisathird type of wrapper cell designed for asynchronous reset input. Figure 6-3
on page 6-8 shows the elements of the reset dedicated wrapper cell.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-7

Design for Test

6.4.2

out

Peripheral
logic

Scaninput Scan RSTSAFE
P output STS
Wrapper cell
functional path > Safe
! gate n
DFTRESET H
VFP10
coprocessor
D
p S| Q J
»| SE
CK

WScan WCLK WM UXINSEL
enable

Figure 6-3 Reset dedicated wrapper cell

During external test mode, the safe gate on the reset wrapper cells can enable the reset
of the core to reduce power and to keep the core safe. In addition, all asynchronous
resets are directly controllable during scan mode. The VFP10DFTRESET portisa
separate port that must be directly connected to a pin to have direct control of the reset
during ATPG testing.

Wrapper cell control and observation configurations

The dedicated test cells require some control signals to differentiate;
. coretesting

. external testing

. functional mode.

When VFP1IOWMUXINSEL is selected al of the input wrapper cells are in inward
facing mode to alow for control of the core inputs during test. When thissignal is
negated, the wrapper input cells can observe datafrom logic peripheral tothe core. This
is aso the state for functional mode. VFP10WM UXSEL OUT is connected to the
wrapper cells adjacent to the output ports of the core. When VFP1IOWMUXSELOUT
is negated, it enables observation of the core logic. Thisis a so the state during

6-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Design for Test

functional mode. When VFP10WM UXSEL OUT is asserted, the wrapper cells can
control datato the logic peripheral to the core. Table 6-3 describes the wrapper cell
control and observation configurations.

Table 6-3 Wrapper cell control and observation configurations

Wrapper Mux Control Pins

ode VFP1OWMUXINSEL VFP10WMUXSELOUT
Core test 1 0
External test 0 1
Functional 0 0

6.4.3 Serial core test clocking

6.4.4 Clock gating

Thereisaseria core test mode enabled by the SCORETEST signal. In SCORETEST
mode, al of the scan chainsare connected serially in the V FP10 coprocessor macrocel .
Thelast cell in the serial chain isalock-up latch so that this output can connect to
another clock domain and retain safe shift properties. Care must be taken to make sure
the chain shifts safely. VFP10W CLK must be in the same phase as GCLK during this
mode. Capture cycles cannot occur safely because of probable delay differences
between the clock domains.

The clock gating signals are VFP10DFTCKEN and VFP10DFTWCKEN. These
signals enable the gating of:

. the core clocks
. the wrapper clock
. both.

While the clock gating signals are enabled, GCLK and VFP10WCLK are enabled.

—— Note

In functional mode, VFP10DFTCK EN must be enabled. You are advised to disable
VFP10DFTWCKEN.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 6-9

Design for Test

6.5 VFP10 clocking

The VFP10 coprocessor wrapper clock VFP10WCLK is180 degreesout of phasewith
GCLK during production scan mode as shown in Figure 6-4.

cek | [| L L L I

veeowerk [[[L[L L[L[|

Figure 6-4 VFP10 production scan mode clocking

This prevents hold timing issues because GCLK and VFP10WCLK are not perfectly
delay-matched within the VFP10 coprocessor macrocell. VFP10WCLK can be created
by inverting GCLK, but the timing from the package pins to the ports of these two
signals on the VFP10 coprocessor macrocell should be closely delay-matched.

In Serial Core Test (SCORETEST) all scan enables must remain enabled. All clocksare
coincident as shown in Figure 6-5.

cek ||| L L1 LI LI 1

veeowerk | | L | | L || |

Figure 6-5 VFP10 serial core test clocking requirement

The scan chains in the VFP10 coprocessor are concatenated into one scan chain. There
is alock-up latch attached to the end of the wrapper scan chain.

6.5.1 VFP10 serial core test clocking requirement in safe mode

The wrapper cells connected to the outputs of the VVFP10 coprocessor core al have safe
state logic. In core test mode, VFP10SAFE can be asserted so that the values at the
output of the core are held in a steady state. Thereset also has a safe gate attached to it.
In external test mode, the VFP10RST SAFE signal can be asserted. This puts the core
into reset during external test mode. If the state of the core isto be frozen for iddq
testing. VFP10RST SAFE should be disabled along with the clock enable signals after
set-up of the core to hold state.

6-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

6.6 Test Pins

Design for Test

The dedicated test ports on this core must be instantiated in a specific manner for the
test of the coreto operate properly. Some of the signal s are static and some are dynamic.
In the case of the VFP10 coprocessor scan patterns, adynamic signal must makeit from
the pin of the chip to thefirst flip-flop in the core, that is, the head flip-flop of a scan
chain, within a cycle of the test pattern. The timing of the test patterns is such that at
time 0, the inputs change and at mid-point through the cycle, the clock becomes active
(except in the case of VFP1O0WCLK, as shown in Figure 6-4 on page 6-10). Table 6-4
describes the VFP10 coprocessor macrocel| test ports.

Table 6-4 VFP10 macrocell test ports

Port Name Direction Type Description

VFP10SCANM ODE Input Static Puts the device into scan mode

VFP10SCANEN Input Dynamic Scan enable for all internal clock domains
HIGH= shift

SCORETEST Input Static Seridlize al of the scan chains (internal and
wrapper)

SCANMUX6 Input Static Enables accessihility to 6 separate internal
scan chains

SCANMUX12 Input Static Enables accessibility to 12 separate internal
scan chains

SCANIN[23:0] Input Dynamic Scan input ports

VFP10SCANOUT[23:0] Output Dynamic Scan output ports

VFP10DFTGCKEN Input Static Enables the internal core clock

VFP10DFTRESET Input Dynamic Direct control over asynchronous reset
during scan mode

VFP10DFTWCKEN Input Static Enables the wrapper clock to the dedicated
test cells

VFP10WSCANEN Input Dynamic Scan enable for all dedicated test cellsin the
wrapper
HIGH = shift

WSCANINI[1:0] Input Dynamic Input ports for the wrapper scan chains

VFP10WSCANOUT[1:0] Output Dynamic Output ports for the wrapper scan chains

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. 6-11

Design for Test

Table 6-4 VFP10 macrocell test ports

Port Name Direction Type Description

VFP1I0WMUXINSEL Input Static Configures the wrapper cells into core test
mode

VFP1I0WMUXOUT SEL Input Static Configures the wrapper cellsin externa test
mode

VFP10SAFE Input Static Forces safe values onto the outputs of the
core
Used during core test.

VFP10RSTSAFE Input Static Enables the Reset to the core

VFP10WCLK Input Dynamic Wrapper clock for dedicated wrapper cells

Table 6-5 shows the configuration of the VFP10 coprocessor test ports during core
testing. A test control module can be created to control the states of these signals.

Table 6-5 VFP10 test signals during core scan test

Signal Value
VFP10SCANMODE 1

VFP10DFTGCKEN 1

VFP10DFTWCKEN 1

VFP10SCANEN Connect to an external pin
VFP10WSCANEN Connect to an external pin
VFP10DFTRESET Connect to an external pin
VFP1OWMUXINSEL 1
VFP1IOWMUXOUTSEL 0

VFP10SAFE 1 (recommendation)
VFP10RST SAFE 0

SCANIN Connect to external pins
VFP10SCANOUT Connect to external pins

6-12

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

Design for Test

6.6.1 Additional test pin configurations

Additional test pin configurations are described in:
. VFP10 coprocessor test signalsin functional mode on page 6-13
. VFP10 test pinsin VFP10 coprocessor external test wrapper mode on page 6-13.

Table 6-6 describes VFP10 coprocessor test signals in functional mode

Table 6-6 VFP10 coprocessor test signals in functional mode

VFP10 Test Pins Connection
VFP10SCANM ODE 0
VFP10DFTGCKEN 1
VFP10DFTWCKEN 0 (recommended)
VFP10SCANEN 0
VFP10WSCANEN 0
VFP10DFTRESET 0 (recommended)
VFP10M UXINSEL 0

VFP1OM UXOUT SEL 0

VFP10SAFE 0
VFP10RSTSAFE 0

SCANIN 0 (recommended)
VFP10SCANOUT gated O (recommended)

Table 6-7 describes VFP10 test pinsin VFP10 coprocessor external test wrapper mode

Table 6-7 VFP10 test pins in VFP10 coprocessor external test wrapper mode

VFP10TestMode Connection
VFP10SCANMODE 0
VFP10DFTGCKEN 0 (recommended)
VFP10DFTWCKEN 1
VFP10SCANEN 0

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. 6-13

Design for Test

Table 6-7 VFP10 test pins in VFP10 coprocessor external test wrapper mode

VFP10TestMode Connection

VFP10WSCANEN Connected to apin

VFP10DFTRESET Connected to apin if VFP10RST SAFE disabled
VFP10M UXINSEL 0

VFP10M UXOUTSEL 1

VFP10SAFE 0

VFP10RSTSAFE 1 (recommended)

SCANIN 0

VFP10SCANOUT Not needed, gated 0 (recommended)
VFP10WSCANOUT Connected to a pin or another scan chain
WSCANIN Connected to a pin or another scan chain

6-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Glossary

This glossary contains selected items from the ARM Ar chitecture Reference Manual,
the |EEE-754-1985 specification, and items defined within the text of the manual.

Bouncing
Aninstruction is said to be bounced by the VVFP10 coprocessor if it isvalid for the
VFP10 coprocessor but not acknowledged to the ARM. This action initiates exception
processing through the undefined instruction trap. The VFP10 coprocessor bounces an
instruction by asserting CPBOUNCEE in the D stage of atrigger instruction.

See also Trigger instruction, Potentially exceptional instruction, and Exceptional state.

Coprocessor Data Processing (CDP)
For the VFP10 coprocessor, CDP operations are arithmetic operations rather than load
or store operations.

Default NaN Mode A mode enabled by setting the DN bit in the FPSCR (FPSCR bit 25). In this mode, all
operations, which result in aNaN, will return the default NaN, regardless of the cause
of the NaN result. Thismode is compliant with the IEEE 754 specification, but implies
that all information contained in any input NaNs to an operation will be lost.

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved. Glossary-1

Glossary

Disabled exception

Enabled exception

Exceptional state

An exception that hasits associated exception enable bit inthe FPCSR setto O is
referred to as disabled. For these exceptions the | EEE-754 specification defines the
result to be returned. An operation that generates an exception condition may bounceto
the support code to produce the | EEE-754 defined result. The exception is not reported
to the user exception handler.

An exception with the respective exception enablebit in the FPSCR set to 1. Inthe event
of an occurrence of this exception atrap to the user handler is taken. An operation that
generates an exception condition might bounce to the support code to produce the

|EEE-754 defined result. The exception is then reported to the user exception handler.

When a potentially exceptional instruction isissued, the VFP sets the EX bit in the
FPSCR and loads a copy of the instruction word for the potentially exceptional
instruction. If the instruction is a short vector operation, the register fieldsin the
FPINST are altered to represent the iteration that was exceptional. When in the
exceptional state, the issue of atrigger instruction to the VFP causes a bounce.

See also Bouncing, Potentially exceptional instruction, and Trigger instruction.

Exponent
The component of afloating-point number that normally signifies theinteger power to
which two israised in determining the value of the represented number. Occasionally
the exponent is called the signed or unbiased exponent.

Fd
The destination register and the accumulate value in triadic operations. Sd for single-
precision operations and Dd for double-precision.

Fn
The first source operand in dyadic or triadic operations. Sn for single-precision
operations and Dn for double-precision.

Fm
The second source operand in dyadic or triadic operations. Sm for single-precision
operations and Dm for double-precision

Glossary-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Fraction

Flush-To-Zero mode

Half vector

IEEE 754

lllegal instructions

Infinity

Input exception

Intermediate result

Glossary

The field of the significand that lies to the right of itsimplied binary point.

A mode enabled by setting the FZ bit in the FPSCR (FPSCR bit 24). In this mode all
inputs to arithmetic operations which are in the subnormal range for theinput precision

(-2EMin < x < 2EMIM) and all results which are in the given range, before rounding, are
treated as positive zero, rather than interpreted as, or converted to, a subnormalized
value.

A short vector operation in which the length is 4 or less for single-precision and 2 or
less for double-precision. In RunFast mode these half-vector operations do not lock
their source registers, and aload immediately following will not have astall introduced
due to awrite-after-read hazard on the source registers. Half-vectors are only CDP
operations which are vectorizable, and do not include DIV or SQRT instructions.

| EEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. The
Institute of Electrical and Electronics Engineers, Inc. New Y ork, New Y ork, 10017.
The standard, often referred to as the IEEE-754 standard, which defines data types,
correct operation, exception types and handling, and error bounds for floating-point
systems. Most processors are built in compliance with the standard in either hardware
or acombination of hardware and software.

If thereis no potential floating-point exception from an earlier instruction, the current
instruction may still be bounced because it is Architecturally undefined in some way.
Such instructions are known asillegal instructions.

An |EEE-754 special format used to represent «. The exponent will be maximum for
the precision and the significand will be all zeros.

An exception condition in which one or more of the operandsfor a given operation are
not supported by the hardware. The operation will bounce to support code for
completion of the operation.

Aninternal format used to store the result of acalculation before rounding. Thisformat
may have alarger exponent field and significand field than the destination format.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-3

Glossary

MCR/MCRR

MRC/MRRC

NaN

A class of data transfer instructions which transfer 32-bit or 64-bit quantities from an
ARM register or registers to a VFP10 coprocessor register or registers.

A class of datatransfer instructions which transfer 32-bit or 64-bit quantities from an
VP10 coprocessor register or registersto an ARM register or registers.

A symbolic entity encoded in afloating-point format. There are two types of NaNs,
signaling and non-signaling, or quiet. Signaling NaNswill cause an Invalid Operand
exception if used as an operand. Quiet NaNs propagate through almost every arithmetic
operation without signaling exceptions. The exponent field will be maximum with the
significand non-zero. To represent a signaling NaN the most significant bit of the
fraction is zero, while aquiet NaN will have the bit set to aone.

Potentially exceptional instruction

Register banks

Reserved

An instruction that is determined, based on the exponents of the operands and the sign
bits, to have the potential to be exceptional (either to produce an overflow or underflow
condition). Once this determination is made, the VFP enters the exceptional state and
bounces the next trigger instruction issued.

See also Bouncing, Trigger instruction, and Exceptiona state.

A bank of registersis defined for use in vector operations. For the VFPv2 architecture,
the register banks are defined as.

Table G-8 Register banks in single-precision and double-precision registers

Bank Single-precision registers Double-precision registers

0 0-s7 do-d3

1 s8-s15 d4-d7

2 516-s23 ds-d11

3 s24-s31 d12-d15

A fieldin acontrol register or instruction format is reserved if the field isto be defined
by the implementation, or produces UNPREDICTABLE resultsif the contents of the
field are not zero. These fields are reserved for use in future extensions of the
architecture or are implementation-specific. All reserved bits not used by the
implementation must be written as zero and will be read as zero.

Glossary-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Rounding mode

RunFast Mode

Scalar operation
Short vector
operation

Significand

Stride

Glossary

The |IEEE-754 Standard requires all calculations are performed asiif to an infinite
precision, that is, amultiply of two single-precision valuesmust cal culate accurately the
significand to twice the number of bits of the significand. To represent thisvaluein the
destination precision rounding of the significand is often required. The |IEEE-754
standard specifies four rounding modes - Round to Nearest (RN) is accomplished by
rounding at the half way point, with the tie case rounding up if it would zero the LSB
of the significand, making it even. Round to Zero, or chop (RZ) effectively chops any
bits to the right of the significand, always rounding down, and is used by the C, C++,
and Java languages in integer conversions. Round to Plus Infinity (RP) and Round to
Minus Infinity (RM) are used ininterval arithmetic.

RunFast mode specifies hardware support for the handling of |EEE-754 exceptional
conditions and special operands. RunFast modeisenabled by enabling the Default NaN
mode (FPSCR[25] set), Flush-to-Zero mode (FPSCR[24] set), and disabling all
exceptions (FPSCR[12:8] all clear). In RunFast mode the VFP10 coprocessor will not
bounce to the ARM for any legal operation or any operand, but will supply aresult to
the destination. Thisresult will bewhat is specified by the |IEEE-754 for all inexact and
overflow results, and all invalid operations that result from operations not involving
NaNs. For operations involving NaNs, the Default NaN mode specifies the result to be
the default NaN.

An operation involving a single destination register.

An operation involving more than one destination register, perhapsinvolving different
source registersin the generation of the result for each destination.

The component of abinary floating-point number that consists of an explicit or implicit
leading bit to the left of itsimplied binary point and afraction field to the right.

The stride field in the FPSCR (FPSCR[21:20]) specifies the increment applied to
register addresses in short vector operations. A stride of 90, specifying an increment of
+1, will cause a short vector operation to increment each vector register by 1 for each
iteration, while a stride of 11 will specify an increment of +2.

For example, withaLEN of 011 (for an effective short vector length of 4 iterations) and
astride of 00, the instruction:

FADDS S8, S16, S24
executes the scalar operations:

FADDS S8, S16, S24

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-5

Glossary

Subnormalized
value (subnormal)

Support code

Trap

Trigger instruction

FADDS S9, S17, S25
FADDS S10, S18, S26
FADDS S8, S19, S27

If the stride was changed to 11, the same instruction woul d execute the following scalar
operations. Notice the change in registers for the 2nd through 4th iterations:

FADDS S8, S16, S24
FADDS S10, S18, S26
FADDS S12, S20, S28
FADDS S14, S22, S30

Seethe ARM Architecture Reference Manual for alisting of combinations of precision,
short vector length, and stride which are UNPREDICTABLE.

A representation of avaluein the range (-25™" < x < 2EMM |n the |EEE-754 format
for single and double precision operands, a subnormalized value, or subnormal, has a
zero exponent and the leading significant bit is O rather than 1. The IEEE-754-1985
specification requires that the generation and manipulation of subnormalized operands
be performed with the same precision as with normal operands.

Software that must be used to complement the hardware to provide compatibility with
the |EEE-754 standard. The support code is intended to have two components:

alibrary of routinesthat performs operations beyond the scope of the hardware, such as
transcendental computations, aswell as supported functions, such as divide with
unsupported inputs or inputs that might generate an exception a set of exception
handlers that process exceptional conditions to provide | EEE-754 compliance.

The support code is required to perform implemented functions to emul ate proper
handling of any unsupported data type or data representation (subnormal values or
decimal datatypes). The routines can be written to utilize the VFP10 coprocessor in
their intermediate calculationsif care is taken to restore the user state at the exit of the
routine.

An exceptional condition that has the respective exception enable bit set in the FPSCR.
The user provided trap handler is executed.

Theinstruction that causes abounce at the timeit isissued. A potentially exceptional
instruction causes the VFP to enter the exceptional state. The next instruction, unlessit
isan FMXR or FMRX instruction accessing one of the FPEXC, FPINST, or FPSID

Glossary-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

UNDEFINED

UNPREDICTABLE

Unsupported values

Vector operation

Glossary

registers, causes a bounce, beginning exception processing. The trigger instruction is
not necessarily exceptional, and no processing of it isperformed. It will beretried at the
return from exception processing of the potentially exceptional instruction.

See also Bouncing, Potentially exceptional instruction, and Exceptional state.

Indicates an instruction that generates an undefined instruction trap. See the ARM
Architecture Reference Manual for more information on ARM exceptions.

Theresult of an instruction or control register field value that cannot be relied upon.
UNPREDICTABLE instructions or results must not represent security holes, or halt or
hang the processor, or any parts of the system.

Specific data values that are not processed by the hardware but bounced to the support
code for completion. These data can include infinities, NaNs, subnormal values, and
zeros. Animplementation is free to select which of these valuesis supported in
hardware fully or partially, or requires assistance from support code to complete the
operation. Any exception resulting from processing unsupported datais trapped to user
code if the corresponding exception enable bit for the exception is set.

See Short vector operation.

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-7

Glossary

Glossary-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

Index

Theitemsin thisindex are listed in aphabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Addition
like-signed 5-23
unlike-signed 5-23
Applications
data-intensive 1-18
examples 1-3, 2-2
filtering 2-2
Architecture
VFPv2 1-2

B

Bouncing
FPEXC register 3-18
FPINST register 5-4
FPINST2 register 3-18, 5-4
in RunFast mode 1-14, 4-13, 5-13
instructions 5-3
pipelines 5-8

Bouncing seealso CPBOUNCEE,
FPEXC

C

CDPinstruction 1-9, 1-12, 1-16, 2-12,
3-6, 3-9, 3-10, 4-6, 4-11, 4-18,
4-21, 4-23, 5-7,5-10, 5-21
Code
examples 2-10, 2-12, 2-15, 3-8, 4-6,
4-14, 4-15, 4-17, 4-19, 5-8, 5-10
Comparisons
floating-point 3-23
FPINST2 register 5-10
FPSCR register 3-7
use of FMSTAT 1-17
CPBOUNCEE
signa 3-19
Cumulative exception bits
DzZC 3-26,516
IDC 1-13, 1-22, 3-2,5-12
I0C 3-2,3-6

IXC 3-3,39, 3-26, 5-18, 5-19,
5-20, 5-21
OFC 3-19, 3-26, 5-17, 5-18
UFC 1-13,1-22,3-2,3-3,3-8,3-10,
3-18, 5-19
Cumulative exception bits see also
Exceptions, Trap enable bits

D

Data storage
endianness 2-10
inmemory 2-10
target addressvalues 2-10
Default NaN mode 1-14
bits 1-13
default NaNs 3-10
description 3-10
DN bit 3-24
modifications 1-21
NaN results 1-14
removal of hazards 1-21

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

Index-1

Index

Division by zero
exceptions 5-16
DzC

cumulative exception bit 3-26, 5-16

DZE
trap enable bit 3-26, 5-16, 5-17,
5-27

E

EX

FPEXC bit field 3-17, 3-18, 3-19,

5-3, 5-6, 5-8, 5-10, 5-14, 5-17

Exception processing

description 5-2

FPINST register 5-8

procedure 5-3

support code 5-3
Exceptions

arithmetic 5-3

checking 1-7

detection 1-5

division by zero 5-16

handlers 5-3

illegal instructions 5-3

imprecise 3-9

inexact 5-21

like-signed addition 5-23

overflow 5-17

trap enable bits 1-13

underflow 5-19

unlike-signed addition 5-23
Exceptions see also Trap enable hits,

Cumulative exception bits

Exponent 2-3, 2-4

F

FABS instruction 1-6, 5-13

FADD instruction 1-6, 4-7, 4-19

FCMPinstruction 1-7, 3-7, 4-4,5-28

FCPY instruction 1-7, 5-13, 5-28

FCVTSD instruction 1-7

FDIV instruction 1-8, 2-7, 4-6, 4-8,
4-9, 4-22, 4-23, 5-27,5-28

FLD instruction 1-10, 2-3, 4-6, 4-8,
4-15, 4-16, 4-17, 4-19, 4-22

FLDM instruction 1-10
Floating-point comparisons
condition flags 3-23
Flush-to-zero mode
controlling 3-24
FMAC ingtruction 1-6, 1-7, 1-18, 4-23,
5-14, 5-24, 5-26
FMAC pipeline
diagram 1-6
FMDHR instruction 1-11, 2-7
FMDLRinstruction 1-11, 3-17, 4-23,
5-6, 5-8
FMDRR instruction 1-11, 2-8, 3-11
FMRDH instruction 1-11, 1-17, 1-18,
2-7,3-7,4-8
FMRDL instruction 1-11, 2-7
FMRRD instruction 1-11, 2-8, 3-12
FMRRS ingtruction 1-11, 2-8, 3-15
FMRSinstruction 1-11, 1-17
FMRX instruction 1-11, 3-17, 3-19,
4-2,4-4
FMSR ingtruction 1-11, 1-18, 2-7, 3-7
FMUL instruction 1-6, 2-14, 4-23,
5-13, 5-25, 5-27
FMXRinstruction 1-11, 2-7, 3-17, 4-4,
4-23,5-6, 5-8
FNEG instruction 1-6
Forwarding
examples 4-6
FPEXC register
bouncing 3-18
EX 3-17, 3-18, 3-19, 5-3, 5-6, 5-8,
5-10, 5-14, 5-17
exception bits 3-19
format 3-18

support code 5-4
system control register 3-17
trigger instructions 5-8

FPINST2 register

AL in condition code 5-10
bouncing 3-18, 5-4

load and store instructions 3-17
pre-trigger slot 5-7

RunFast mode 1-13

serializing operations 4-4
system control register 3-17
withinvalid data 5-11

FPSCR register

comparisons 3-7

controlling flush-to zero mode 3-24

controlling the rounding mode 3-24

DZE bit 3-26, 5-16, 5-17, 5-27

format 3-23

FTZ mode 3-24

FZ bit 1-12, 3-9, 3-24,5-12, 5-19

IDChit 3-3,3-10

IXCbitset 5-18

LEN field settings 2-2, 2-13

OFC bit set 5-18

potentially exceptional conditions
3-19,5-2,5-8

serializing operations 4-4

STRIDE 2-2,3-25

subnormal input exception bit 3-2

system control register 3-17

UFE bit 3-2

using ARM comparison operations
1-17,3-7

FPSID register

format 3-21

FPv2 bit 5-4

FTZ mode 3-19

illegal instructions 5-6

not atrigger instruction 5-7
pipeline stalls 4-4

support code 3-17,5-3
system control register 3-17

FPINST register

bouncing 5-4

exception processing 5-8

not atrigger instructions 5-8

potentially exceptional instruction
5-3

serializing operations 4-4

FPv2 bit
FPEXC register 5-4
FSITO ingtruction 1-6
FSQRT instruction 1-8
FST instruction 1-10, 2-3, 4-6, 4-15,
4-16
FSTM ingtruction 1-10, 2-3, 3-13, 4-6,
5-8
FSUB instruction 1-6, 5-23
FTOSIZD instruction 3-24
FTOSIZSinstruction 3-24
FTOUI instruction 1-6
FTOUIZD instruction 3-24
FTOUIZS instruction 3-24

Index-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

FTZ 3-3

FTZ mode
controlling 3-24
description 3-9
FPEXC 3-19
in Non-RunFast mode 1-12
in RunFast mode 1-13, 3-5
modification to Invalid trap 3-2
modificationsfromRev 0 1-21
modificationsto IXC bit 3-3
subnormal input 5-16
subnormal operands 5-22
underflowed results 3-8

FZ hit
FPSCR register 1-12, 3-9, 3-24,

5-12,5-19

G

GCLK
signa 6-10
timing 6-10

H

Hazard detection
Non-RunFast mode 4-11
RunFast mode 4-11

Hazards
defined 4-3
examples 4-14
read-after-read 1-18
read-after-write 1-18

ID numbers
VFP10 coprocessor 1-4
IDC
cumulative exception bit 1-13,
1-22,3-2,5-12
FPSCR register 3-3, 3-10
subnormal input exception bit 3-2
IDE
trap enable bit 1-22, 3-2, 5-12
Illegal instructions

FPEXC register 5-6
Inexact
exceptions 5-21
Input exceptions
NaNs 5-22
Instructions
bouncing 5-3
branch 1-17
CDP 1-9,1-12,1-16, 2-12, 3-6, 3-9,
3-10, 4-6, 4-11, 4-18, 4-21, 4-23,
5-7,5-10,5-21
executed in hardware 1-6, 1-8
FABS 1-6,5-13
FADD 1-6,4-7,4-19
FCMP 1-7,3-7,4-4,5-28
FCPY 1-7,5-13,5-28
FCVTSD 1-7
FDIV 1-8, 2-7, 4-6, 4-8, 4-9, 4-22,
4-23,5-27,5-28
FLD 1-10, 2-3, 4-6, 4-8, 4-15, 4-186,
4-17, 4-19, 4-22
FLDM 1-10
FLMDMX 2-3
FMAC 1-6,1-7, 1-18, 4-23, 5-14,
5-24,5-26
FMDHR 1-11, 2-7
FMDLR 1-11, 3-17, 4-23, 5-6, 5-8
FMDRR 1-11, 2-8, 3-11
FMRDH 1-11, 1-17, 1-18, 2-7, 3-7,
4-8
FMRDL 1-11, 2-7
FMRRD 1-11, 2-8, 3-12
FMRRS 1-11, 2-8, 3-15
FMRS 1-11, 1-17
FMRX 1-11, 3-17, 3-19, 4-2, 4-4
FMSR 1-11,1-18, 2-7, 3-7
FMSTAT 1-17
FMUL 1-6, 2-14, 4-23, 5-13, 5-25,
5-27
FMXR 1-11, 2-7, 3-17, 4-4, 4-23,
5-6, 5-8
FNEG 1-6
FSITO 1-6
FSQRT 1-8
FST 1-10, 2-3, 4-6, 4-15, 4-16
FSTM 1-10, 2-3, 3-13, 4-6, 5-8
FSTMX 2-3
FSUB 1-6,5-23
FTOSIZD 3-24

Index

FTOSIZS 3-24
FTOUI 1-6
FTOUIZD 3-24
FTOUIZS 3-24
illegal 5-6
MCR 1-9, 2-7
MRC 1-9, 2-7,4-6
MRCC 1-9, 2-7
MRRC 1-21, 2-8, 3-2
Invalid operations
NaNs 5-13
10C
cumulative exception bit 3-2, 3-6
IOE
trap enable bit 1-12, 3-2, 3-7, 3-26,
5-14
IXC
cumulative exception bit 3-3, 3-9,
3-26, 5-18, 5-19, 5-20, 5-21
modifications 3-3
IXE
trap enable bit 1-12, 5-21

L

LEN
FPSCR bits 2-13
Like-signed addition 5-23

M

Mantissa 2-4
overflow 5-24
MCR instruction 1-9, 2-7
Modes
Default NaN 1-13, 1-14, 1-21, 3-10,
3-24
Non-RunFast 1-12, 1-18, 3-5, 3-6,
4-11, 4-12, 4-16, 5-2, 5-13, 5-19
RunFast 1-2, 1-13, 1-22, 3-5, 3-6,
4-9, 4-17,5-2,5-13
Modifications
Default NaN mode 1-21
IXC 3-3
UFC 3-2
MRC instruction 1-9, 2-7, 4-6
MRCC instruction 1-9, 2-7

ARM DDI 0178B

Copyright © 2001 ARM Limited. All rights reserved.

Index-3

Index

MRRC instruction 1-21, 2-8, 3-2

NaNs

compare with exception operands
37

default definition 3-6

handling in RunFast mode 3-6

input exceptions 5-22

invalid operations 5-13

IOE bitset 3-7

quiet 3-6

signaling 2-3, 3-6, 5-13

Non-RunFast mode 1-12, 1-18, 3-5,

3-6,4-11, 4-12, 4-16, 5-2, 5-13,
5-19
FTZ mode 1-12
hazard detection 4-11
read-after-read hazard 1-18

OFC

cumulative exception bit 3-19,
3-26, 5-17,5-18

OFE

trap enable bit 1-12, 3-26, 5-17

Operations

scalar-only 2-13
seridizing 4-4
vector-only 2-13

Overflow

exceptions 5-17

Pipelines

bouncing 5-8

DS 1-8,1-16,1-18, 1-21, 4-9, 4-18,
4-21

FMAC 1-5, 1-6, 1-16, 1-21, 4-21

FMAC diagram 1-6

FPEXC register and stalls 4-4

LS 1-5,1-9,1-16, 4-2,4-9,4-21

operating in parallel 1-5, 4-21

stages 1-5,5-8
Potentially exceptional conditions
description 5-2
detailed conditions 5-8
FPSCR 3-19
Potentially exceptiond instructions
FPINST register 5-3
Pre-trigger slot
FPINST2 register 5-7

R

Read-after-read
hazard 1-18
Non-RunFast mode 1-18

Read-after-write
hazards 1-18

Register file
banks 2-12
consistency in usage 2-9
dataformats 2-3
details 2-2
double-precision items 2-2
ingtructions 2-2
internal formats 2-2
single-precisionitems 2-2
suitability for vector operations

2-12

Rounding modes
controlling 3-24

RunFast
mode 4-9, 5-13

RunFast mode 1-2, 1-13, 1-22, 3-5,

3-6,4-17,5-2

bouncing 4-13
FTZ mode 1-13, 3-5
hazard detection 4-11

S

SCANMUX12
signa 6-4
SCANMUX6
signas 6-4
Scoreboard
description 4-9
SCORETEST

signa 6-9
Serializing operations 4-4
Short vectors
defined 1-15
Signals
CPBOUNCEE 3-19
GCLK 6-10
SCANMUX12 6-4
SCANMUX6 6-4
SCORETEST 6-9
VFP1ODFTCKEN 6-9
VFP1ODFTRESET 6-3, 6-8
VFP1ORSTSAFE 6-10
VFP10SAFE 6-10
VFP10WCLK 6-3, 6-4, 6-9
VFP1IOWMUXINSEL 6-8
VFP1IOWMUXSELOUT 6-8, 6-9
STRIDE
2-15
field settings 3-25, 4-15, 4-16, 4-17,
4-19
FPSCR bits 3-25
scalar mode 3-25
Subnormal input
FTZ mode 5-16
Subnormal operands
FTZ mode 5-22
Support code
arithmetic exceptions 5-23
components 1-2, 1-7, 1-12, 1-13,
5-3
determining exceptional state 3-19,
5-4
determining trigger instructions 5-7
exception processing 5-3
FPEXC register 3-17,5-3
FPINST register 54
IEEE 754 compliance 3-4
library functions 3-4
Non-RunFast mode operation 5-13
overflow 5-17
RunFast mode operation 5-13
system control registers 3-17
UFC bit 5-19
underflow 5-19
System control registers
FPEXC 3-17
FPINST 3-17
FPINST2 1-13, 3-17

Index-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0178B

FPINST2 register 5-11
FPSCR 3-17
FPSID 3-17,3-21, 4-4,5-7

T

Test pins
configurations 6-13
list 6-11
Timing
GCLK 6-10
Trap enable bits
DZE 3-26,5-16
IDE 1-22,3-2,5-12
IOE 1-12, 3-2,3-7, 3-26, 5-14
IXE 1-12,5-21
OFE 1-12, 3-26, 5-17
UFE 1-22,3-2
Trap enable bits see also Exceptions,
Cumulative exception bits

U

UFC
cumulative exception bit 1-13,
1-22, 3-2, 3-3, 3-8, 3-10, 3-18,
5-19
modificationsto 3-2
set in support code 5-19
UFE
trap enable bit 1-22, 3-2
Underflow
exceptions 5-2, 5-19
pessimistic determination 5-19
Underflowed results
FTZ mode 3-8
Unlike-signed addition
exceptions 5-23

V

VECITR
FPEXC bit field 1-17, 3-20, 5-4,
5-8, 5-9, 5-10, 5-16, 5-19
Vectors
short 1-5, 1-15

VFPv2

vector floating-point architecture

1-2

VFP10

vector floating-point coprocessor ix
VFP10 coprocessor

ID numbers 1-4
VFP10 pipeline

stages 5-8
VFP10DFTCKEN

clock gating signa 6-9

signas 6-9
VFP10DFTRESET

signd 6-3,6-8
VFP10DFTWCKEN

clock gating signal 6-9

signas 6-9
VFP10RSTSAFE

signa 6-10
VFP10SAFE

signa 6-10
VFP10WCLK

signa 6-3, 6-4, 6-9
VFP1O0WMUXINSEL

signa 6-8
VFPIOWMUXSELOUT

signad 6-8, 6-9

w

Wrapper cells
dedicated input wrapper cells 6-6
dedicated output wrapper cells 6-6
reset dedicated output wrapper cells
6-7

Index

ARM DDI 0178B Copyright © 2001 ARM Limited. All rights reserved.

Index-5

Index

Index-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0178B

	VFP10™ Vector Floating�point Coprocessor
	Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1 Introduction
	Introduction
	1.1 About the VFP10 coprocessor
	1.2 Coprocessor interface
	1.3 The VFP10 coprocessor pipeline
	1.4 Modes of operation
	1.5 Short vector instructions
	1.6 Parallel execution of instructions
	1.7 VFP10 coprocessor treatment of branch instructions
	1.8 Writing optimal VFP10 coprocessor code
	1.9 Clocking
	1.10 Testing
	1.11 Modifications from VFP10 coprocessor (Rev 0)

	Chapter 2 VFP10 Register File
	VFP10 Register File
	2.1 About the register file
	2.2 Register file internal formats
	2.3 Decoding the register file
	2.4 Loading operands from ARM registers
	2.5 Maintaining consistency in register precisions
	2.6 Data transfer between memory and VFP10 coprocessor registers
	2.7 Access to register banks in CDP operations
	Example�2�1 Register access example

	Chapter 3 VFP10 Programmer’s Model
	VFP10 Programmer’s Model
	3.1 About the programmer’s model
	3.2 Compliance with IEEE-754
	3.3 ARM v5TE coprocessor extensions
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes
	Architecture version
	Exceptions
	Operation
	Notes

	3.4 Summary of VFP coprocessor system control registers
	3.5 FPSCR register

	Chapter 4 Instruction Execution in the VFP10 Coprocessor
	Instruction Execution in the VFP10 Coprocessor
	4.1 About instruction execution in the VFP10 coprocessor
	4.2 Serializing instructions
	4.3 Interrupting VFP10 coprocessor instructions
	4.4 Forwarding
	Example�4�1 No forwarding with different precisions
	Example�4�2 Load data not forwarded
	Example�4�3 Store of a destination register of a double-precision FMULD
	Example�4�4 Store of a destination register of a single-precision FMULD
	Example�4�5 Second FADD dependent on result of first FADD
	Example�4�6 Reducing stall cycles
	Example�4�7 FADDS not forwarded
	Example�4�8 Condition codes and branches
	Example�4�9 Using the ARM10E core for comparisons
	Example�4�10 Last load causing a stall
	Example�4�11 FDIVS stall
	Example�4�12 Resource conflict in the DS pipeline

	4.5 Hazard and resource stall conditions
	Example�4�13 Read after write example 1
	Example�4�14 Read after write example 2
	Example�4�15 Vector FMULS example
	Example�4�16 Vector FMULS example
	Example�4�17 Vector FMULS RunFast mode example
	Example�4�18 Vector FMULS with a load of all registers in RunFast mode
	Example�4�19 Load multiple followed by a single FMULS and FADDS
	Example�4�20 Load multiple, vector FMULS followed by scalar FADDS

	4.6 Parallel execution of operations
	Example�4�21 Parallel execution in all 3 pipelines

	4.7 Execution timing

	Chapter 5 Exception Handling
	Exception Handling
	5.1 About exception processing
	5.2 Support code
	5.3 Illegal instructions
	5.4 Determination of the trigger instruction
	Example�5�1 FLDMD completes regardless of a subsequent exceptional CDP
	Example�5�2 Exceptional vector CDP followed by several load/store operations
	Example�5�3 Exceptional CDP with CDP in the pre-trigger slot
	Example�5�4 Exceptional vector CDP followed by scalar CDP with register conflict

	5.5 Input subnormal
	5.6 Invalid operation
	5.7 Division by zero
	5.8 Overflow
	5.9 Underflow
	5.10 Inexact result
	5.11 Input exceptions
	5.12 Arithmetic exceptions

	Chapter 6 Design for Test
	Design for Test
	6.1 About DFT
	6.2 VFP10 DFT
	6.3 VFP10 Core
	6.4 VFP10 test wrapper
	6.5 VFP10 clocking
	6.6 Test Pins

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

