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Preface

This preface introduces the ARM966E-S and its reference documentation. It contains
the following sections:

. About this document on page xii
. Further reading on page xv
. Feedback on page xvi.

ARM DDI 0186A
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About this document

Intended audience

Using this manual

This document is areference manual for the ARM966E-S.

This document has been written for experienced hardware and software engineers who
might or might not have any experience of ARM products.

This document is organized into the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction
Read this chapter for an introduction to the ARM966E-S.
Programmer’s Model

Read this chapter for a description of the programmer’s model including
a summary of the ARM966E-S coprocessor registers.

Memory Map

Read this chapter for a description of the ARM966E-S fixed memory
map implementation.

Tightly-coupled SRAM

Read this chapter for a description of the requirements and operation of
the tightly-coupled SRAM.

Direct Memory Access (DMA)

Read this chapter for a description of the optional DMA interface in the
ARMO966E-S.

Bus Interface Unit

Read this chapter for a description of the operation of the Bus Interface
Unit and write buffer.

Coprocessor Interface

Read this chapter for a description of the coprocessor interface and the
operation of common coprocessor instructions.

Xii
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Chapter 8

Chapter 9

Chapter 10

Appendix A

Appendix B

Appendix C

Typographical conventions

Debug Support

Read this chapter for a description of the debug support for the
ARMO966E-S and the Embedded| CE-RT logic.

Embedded Trace Macrocell Interface

Read this chapter for adescription of the ETM interface, including details
of how to enable the interface.

Test Support

Read this chapter for a description of the test methodology used for the
ARMO966E-S synthesized logic and tightly-coupled SRAM.

Sgnal Description
Read this appendix for a description of the ARM966E-S signals.
AC Parameters

Read this appendix for a description of the timing parameters applicable
to the ARM966E-S.

SRAM Sall Cycles

Read this appendix for a description of the tightly-coupled SRAM stall
cycle mechanism in the ARM966E-S.

The following typographical conventions are used in this document:

bold

italic

typewriter

typewriter

Highlights ARM processor signal nameswithin text, and interface
elements such as menu names. May also be used for emphasisin
descriptive lists where appropriate.

Highlights special terminology, cross-references and citations.

Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

typewiter italic

Denotes argumentsto commands or functionswhere the argument
isto be replaced by a specific value.

ARM DDI 0186A
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typewiter bold
Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the
components used inthese diagrams. Any variations are clearly labeled when they occur.
Therefore, no additional meaning should be attached unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance
Bus change

High impedance to stable bus

Valid (correct) sampling point

AN,

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Xiv Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A



Further reading

ARM publications

Other publications

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact i nf o@r m comor visit our web site at
http://ww. arm com

ARM Architecture Reference Manual (ARM DDI 0100).

ARMOE-S Technical Reference Manual (ARM DDI 0165).

AMBA Specification Rev 2.0 (ARM IHI 0011).

AHB Example AMBA System Technical Reference Manual (ARM DDI 0170).

|EEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture.
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Feedback
ARM Limited welcomesfeedback both onthe ARM966E-S, and on the documentation.

Feedback on the ARM966E-S

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments

Feedback on the ARM966E-S

If you have any comments about this document, please send email to
errata@rm comgiving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
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Chapter 1
Introduction

This chapter introduces the ARM966E-S processor. It contains the following sections:
. About the ARM966E-S on page 1-2
. Microprocessor block diagram on page 1-3.
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Introduction

1.1 About the ARM966E-S

The ARM966E-S is a synthesizable macrocell combining an ARM processor with
tightly-coupled SRAM memory. It isamember of the ARM9 Thumb family of
high-performance, 32-bit System-on-Chip (SoC) processor solutions and is targeted at
awide range of embedded applicationswhere high performance, low system cost, small
die size, and low power are all important.

The ARM966E-S processor macrocell provides a complete high-performance
processor subsystem, including an ARM9E-S RISC integer CPU, tightly-coupled
SRAM for each of the instruction and data CPU interfaces, write buffer and an AMBA
AHB bus interface. Providing this complete high-frequency subsystem frees the SoC
designer to concentrate on design issues unique to their system. The synthesizable
nature of the device eases integration into ASIC technologies.

The tightly-coupled SRAMs within the ARM966E-S macrocell allow high-speed
operation without incurring the performance and power penalties of accessing the
system bus, while having alower areaoverhead than acached memory system. Thesize
of both theinstruction and data SRAM are implementor-configurableto allow tailoring
of the hardware to the embedded application. Additionally, Y ou can configure the data
SRAM interface to allow Direct Memory Access (DMA) to this RAM.

The ARMOE-S core within the ARM966E-S macrocell executes both the 32-bit ARM
and 16-bit Thumb instruction sets, allowing trade off between high performance and
high code density. Additionally the ARM9E-S features:

. ARMV5T 32-bit instruction set with improved ARM/Thumb code interworking
and enhanced multiplier designed for improved DSP performance

. ARM debug architecture with additional support for real-time debug, which
allows critical exception handlers to execute while debugging the system.

The ARM966E-S includes support for external coprocessors allowing floating point or
other application-specific hardware acceleration to be added.

To minimize die size and power consumption the ARM966E-S does not provide virtual
to physical address mapping as this is not required by most embedded systems. A
simple fixed memory map is implemented for the close-coupled local RAM, ideally
suited to small, fast, real-time embedded control applications.

The ARM966E-S synthesizable implementation supports the use of a scan test
methodology for the standard cell logic @dlt-In-Salf-Test (BIST) for the
tightly-coupled SRAM.

1-2
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Introduction

1.2 Microprocessor block diagram

The ARM966E-S block diagram is shown in Figure 1-1.
DMA Controller

DMA
interface
AHB Peripherals ﬁ Coprocessors
D Instruction D Data
AHB —Dout” spAM —Dout  grRAM System control External
= Bus Interface Unit coprocessor coprocessor
and write buffer (CP15) interface
Addr Din Addr Din
7¥ 7y
|
\ / ;
i
1A DA
WDATA
ARMOE-S
INSTR RDATA — |_’
AN
L System |~ | ETM
vl controller |V interface :‘>ETM

Figure 1-1 ARM966E-S block diagram
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Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM966E-S. It contains the
following sections:

. About the programmer’s modeth page 2-2
. About the ARM9E-S programmer’s modelpage 2-3
. ARM966E-S CP15 registers on page 2-4.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-1



Programmer’s Model

2.1 About the programmer’s model

The programmer’s model for the ARM966E-S macrocell primarily consists of the
ARMOE-S core programmer’s model (s&lgout the ARM9E-S programmer’s mooke!
page 2-3). Additions to this model are required to control the operation of the
ARMO966E-S internal coprocessors, and any coprocessor connected to the external
coprocessor interface.

There are two internal coprocessors within the ARM966E-S:

. CP14 within the ARM9E-S core allows software access to the debug
communications channel

. CP15 allows configuration of the tightly-coupled SRAM and write buffer and
other ARM966E-S system options such as big or little-endian operation.

The registers defined in CP14 are accessible MithandVRC instructions. These are
described inThe debug communications channel on page 8-19.

The registers defined in CP15 are accessible MithandVRC instructions. These are
described ilMARM966E-S CP15 registers on page 2-4.

Any coprocessors registers and operations, attached to the external coprocessor
interface, are accessible with appropriate coprocessor instructions.

2-2
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Programmer’s Model

2.2 About the ARM9E-S programmer’s model

The ARM9E-S processor coreimplementsthe ARM architecture v5T, that includes the
32-bit ARM instruction set and the 16-bit Thumb instruction set. For a description of
both instruction sets, see the ARM Architecture Reference Manual. Contact ARM for
complete descriptions of both instruction sets.

221 Data Abort model

The ARMOYE-S implements the base restored data abort model, that differs from the
base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating
system code, the Data Abort handler. It does not affect user code. With the base
restored data abort model, when a Data Abort exception occurs during the execution of
amemory access instruction, the base register is always restored by the processor
hardware to the value the register contained before the instruction was executed. This
removes the requirement for the Data Abort handler to unwind any base register update
that might have been specified by the aborted instruction.

The base restored data abort model significantly simplifies the software Data Abort
handler.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-3



Programmer’s Model

2.3 ARMO966E-S CP15 registers

CP15 dlows configuration of the tightly-coupled SRAM and write buffer and other
ARMO966E-S system options such as big or little-endian operation.

The ARM966E-S coprocessor 15 registers are described in the following sections:

CP15 register map summary

Register 0, ID code on page 2-5
Register 1, Control register on page 2-5
Register 7, Core control on page 2-8
Register 15, Test on page 2-9.

2.3.1 CP15register map summary

The ARM966E-S incorporates CP15 for system control. The register map for CP15 is
shown in Table 2-1.

Table 2-1 CP15 register map

Register Function Access

0 ID code Read-only

1 Control Read/write
2-6 Reserved Undefined

7 Core control Write-only
13 Trace process identifier Read/write
8-14 Reserved Undefined

15 Test Read/write

Note

Register 15 provides access to more than one register. The register access depends on
the value of the opcode_2 field. See the register descriptions in this section for more
information.

2-4
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Programmer’s Model

2.3.2 Register 0, ID code

Thisisaread-only register that returns a 32-bit device ID code. The ID coderegister is
accessed by reading CP15 register 0 with the opcode 2 field set to any value. For
example:

MRC p15, 0, rd, cO, cO, O; returns ID register

The contents of the ID code are shown in Table 2-2.

Table 2-2 Register 0, ID code

Register bits Function Value

31:24 Implementor 0x41

23:20 Variant 0x0

19:16 ARM architecture v5T 0x05

15:4 Part number 0x966

30 Version Version specific

2.3.3 Register 1, Control register

Thisregister contains the global control bits of the ARM966E-S (see Table 2-3). All
reserved bits must either be written with zero or one, as indicated, or written using
read-modify-write. The reserved bits have an unpredictable value when read. To read
and write this register:

MRC p15, 0, rd, c1, cO, O; read Control register

MCR p15, 0, rd, c1, cO, O; wite Control register

Table 2-3 Register 1, Control register

Ei?gister Function

31:16 Reserved (should be zero)

15 Configure disable loading
TBIT

14 Reserved (should be zero)

13 Alternate vector select

12 Instruction SRAM enable

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-5



Programmer’s Model

Table 2-3 Register 1, Control register (continued)

bRi(:gister Function

11:8 Reserved (should be one)
7 Endian

6:4 Reserved (should be one)
3 Write buffer enable

2 Data SRAM enable

1.0 Reserved (should be zero)

Bit 15, Configure disable loading TBIT

When HIGH the ARM9E-S core disables certain ARMV5T defined behavior involving
loading datato the PC. This bit is cleared LOW during reset to provide ARMvV5T
compatibility.

Bit 13, Alternate vectors select

Thisbit controls the base address used for the exception vectors. When LOW, the base
address for the exception vectorsis 0x0000 0000. When HIGH, the base addressis
OxFFFF 0000.

Note

Bit 13isinitialized either HIGH or LOW during system reset, depending on the value
of the input pin, VINITHI. This allows the exception vector location to be defined
during reset to suit the boot mechanism of the application. Y ou can then reprogram as
required following system reset.
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Bit 12, Instruction SRAM enable

This bit controls the behavior of the tightly-coupled instruction SRAM. When HIGH,

all accessesto the fixed instruction memory space as shown in Figure 3-1 on page 3-2,
accesstheinstruction SRAM. When LOW, all accessesto theinstruction memory space
access the AMBA AHB.

Note

Bit 12 isinitialized either HIGH or LOW during system reset depending on the value
of theinput pin INITRAM.

Bit 7, Endian

Sel ectsthe endian configuration of the ARM966E-S. WhenthishitisHIGH, big-endian
configuration isselected. When LOW, little-endian configuration isselected. Thishitis
cleared LOW during reset.

Bit 3, Write buffer enable

This bit controls the use of the write buffer. When HIGH, all storesto the fixed
bufferable space of the AMBA AHB (as shown in Figure 3-1 on page 3-2) are treated
as buffered writes. When LOW, all storesto the AMBA AHB are treated as
nonbufferable.

If the write buffer is disabled having previously been enabled, any writes aready in the
write buffer FIFO complete as buffered writes.

Thisbit is cleared LOW during reset.

Bit 2, Data SRAM enable

Thisbit controlsthe behavior of thetightly-coupled Data SRAM. When HIGH, all data
interface accesses to the fixed data memory space as shown in Figure 3-1 on page 3-2,
access the Data SRAM. When LOW, all accesses to the data memory space access the
AMBA AHB.

Note

Bit 2 isinitialized either HIGH or LOW during system reset depending on the value of
the input pin INITRAM.

ARM DDI 0186A

Copyright © ARM Limited 2000. All rights reserved. 2-7



Programmer’s Model

2.3.4 Register 7, Core control

Y ou can use awriteto thisregister, to perform wait for interrupt and drain write buffer
operations.

Wait for interrupt

This operation alows the ARM966E-S to enter alow-power standby mode. When the
operation isinvoked, the clock enable to the processor core is negated until either an
interrupt or a debug request occurs. This function isinvoked by awrite to Register 7.
The following ARM instruction causes this to occur:

MCR p15, 0, rd, c7, c0, 4; wait for interrupt

Thisisthe preferred encoding that must be used by new software. For compatibility
with existing software, ARM966E-S a so supports the following ARM instruction that
has the same affect:

MCR p15, O, rd, c15, ¢8, 2; wait for interrupt

This stalls the processor from the time that the instruction is executed until nFI Q,
nIRQ, or EDBGRQ are asserted. Also, if the debugger setsthe debug request bit in the
EmbeddedI CE-RT control register then this causes the wait-for-interrupt condition to
terminate.

In the case of nFIQ and nIRQ, the processor core iswoken up regardless of whether
the interrupts are enabled or disabled (that is, independent of the | and F bitsin the
processor CPSR). The debug-related waking only occursif DBGEN isHIGH, that is,
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before
executing the instruction after the wait for interrupt. If debug request is used to wake up
the system, the processor enters debug-state before executing any more instructions.

Wait for interrupt does not prevent the write buffer from emptying.

Drain write buffer

This CP15 operation causes instruction execution to be stalled until the write buffer is
emptied. Thisoperation isuseful in real-time applications where the processor hasto be
surethat awrite to a peripheral has completed before program execution continues. An
exampleiswhere aperipheral in abufferable region isthe source of an interrupt. When
the interrupt has been serviced, the request must be removed before interrupts can be
re-enabled. This can be ensured if adrain write buffer operation separates the store to
the peripheral and the enable interrupt functions.

2-8
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Thedrain write buffer operation isinvoked by awriteto Register 7 using the following
ARM instruction:

MCR cpl15, 0, rd, c¢c7, cl10, 4; drain wite buffer

This stalls the processor core until any outstanding accesses in the write buffer have
been completed, that is, until al data has been written to external memory.

2.3.5 Register 13, Trace process identifier
This register provides a mechanism to allow the Real-time Trace tools to identify the
currently executing process in multi-tasking environments.
The contents of this register are replicated on the ETM PROCI D pins of the
ARMO966E-S. The ETMPROCIDWR signal is set HIGH for asingle clock cycle
whenever thisregister iswrittento. Table 2-4 showsthetrace processidentifier for read
and write.
Table 2-4 Register 13, Trace process identifier
Register Read Write
Trace Process |dentifier MRC p15,0,Rd,c13,c1,1 MCR p15,0,Rd,c13,c1,1
2.3.6  Register 15, Test
Thisregister provides access to:
. the tightly-coupled Instruction and Data SRAM test features
. the trace control features.
Both features are supported by the ARM966E-S.
The register map for CP15 register 15 is shown in Table 2-5.
Table 2-5 Register 15, Test register map
Register Read Write
Trace Control Register MRC p15, 1, Rd, c¢15, cl1l, 0 MR pl1l5, 1, Rd, ci15, c1, O
BIST control register MRC p15, 1, Rd, c¢15, c0, 1 MR pl1l5, 1, Rd, c15, cO, 1
Instruction BIST address register MRC p15, 1, Rd, c¢15, c0, 2 MR pl1l5, 1, Rd, c15, c0, 2

ARM DDI 0186A
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Table 2-5 Register 15, Test register map

Register Read Write

Instruction BIST general register MRC p15, 1, Rd, c¢15, c0, 3 MR pl5, 1, Rd, c15, c0, 3

Data BIST address register MRC p15, 1, Rd, c¢15, c0, 6 MR pl5, 1, Rd, cl15, cO0, 6

Data BIST general register MRC p15, 1, Rd, c¢15, c0, 7 MR pl5, 1, Rd, c15, cO0, 7
Note

Opcode _1isset HIGH when accessing Register 15. Opcode 2 isused toindex registers
within the Register 15 register map.

Trace control register

The trace control register allows the masking of interrupts during trace. This register
allows nlRQ and nFIQ interrupt priority over FIFOFULL to be programmed. Table
2-6 shows the bit assignments within the Trace control register.

Table 2-6 Trace control register

Register bit Content
0 Reserved (should be zero)
1 1=Mask nIRQ interrupts during trace

0= Do not mask nl RQ interrupts during trace
2 1=Mask nFIQ interrupts during trace

0= Do not mask nFI Q interrupts during trace
31:3 Reserved (should be zero)
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Programmer’s Model

Table 2-7 shows the bit assignments within the BIST control register.

Table 2-7 BIST control register

Register bit Meaning when written Meaning when read

3121 Instruction SRAM BIST size Instruction SRAM BIST size

20 Reserved (should be zero) Instruction SRAM BIST complete flag
19 Reserved (should be zero) Instruction SRAM BIST fail flag

18 Instruction SRAM BIST enable Instruction SRAM BIST enable

17 Instruction SRAM BIST pause Instruction SRAM BIST pause

16 Instruction SRAM BIST start strobe Instruction SRAM BIST running flag
15:5 Data SRAM BIST size Data SRAM BIST size

4 Reserved (should be zero) Data SRAM BIST complete flag

3 Reserved (should be zero) Data SRAM BIST fail flag

2 Data SRAM BIST enable Data SRAM BIST enable

1 Data SRAM BIST pause Data SRAM BIST pause

0 Data SRAM BIST start strobe Data SRAM BIST running flag

At reset, al bitsare cleared LOW. BIST must be enabled before a BIST operation is
started. When BIST is enabled to test one or both tightly-coupled SRAMSs, the SRAM
being tested isautomatically disabled by clearing its enable bitin CP15 Register 1. This
isto prevent the programmer inadvertently using the SRAM following aBIST
operation, because the BIST algorithm corrupts the SRAM contents.

The BIST sizefield determinesthe size of the BIST operation. The value writtento this

field N, is decoded as follows:

BIST sizein bytes = 2N +2

ARM DDI 0186A
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Some examples are shown in Table 2-8.

Table 2-8 BIST size encoding examples

Instruction RAM BIST size [31:21] N Size of test
000000 00001 (minimum) 1 8 bytes
000000 00100 4 64 bytes
000000 00111 7 512 bytes
000000 01000 8 1KB
000000 01010 10 4KB
000000 01111 15 128 KB
000000 11000 (maximum) 24 64 MB

Note

BIST size bits[31:26] should be zero.

Copyright © ARM Limited 2000. All rights reserved.
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Writing to the BIST control register with Bit[0] set initiates a Data SRAM BIST
operation.

Writing to the BIST control register with Bit[16] set initiates an Instruction SRAM
BIST operation.

Y ou can run Instruction and Data BIST operations individually or concurrently. Y ou
must set up the Size, Pause and Enable bits within the BIST control register prior to
initiating a BIST operation.

Reading the BIST control register returns the status of the BIST operations. See BIST
of tightly-coupled SRAM on page 10-4 for a detailed description of the BIST support
and the additional register 15 BIST registers.

ARM DDI 0186A
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Chapter 3
Memory Map

This chapter describes the ARM966E-S fixed memory map implementation.|t contains
the following sections:

. About the ARM966E-S memory map on page 3-2
. Tightly-coupled SRAM address space on page 3-3
. Bufferable write address space on page 3-4.
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3.1 About the ARM966E-S memory map

The ARM966E-S couples Instruction and Data SRAM memories of configurable size
to the ARM9E-S core. This alows high-speed operation without incurring the

performance and power penalties of accessing the system bus. A write buffer isused to
minimize traffic on the AHB bus.

To provide ssimple control over the SRAM and write buffer, afixed memory map is
implemented within the ARM966E-S. Figure 3-1 illustrates this map.

OXFFFF

0xFO000

0x2FFF

0x2000
0x1FFF

0x1000
0xOFFF

0x0800
0x07FF

0x0400
0x03FF

0x0000

FFFF

0000

FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000

256MB

256MB

256MB

128MB

64MB

64MB

AHB unbuffered

AHB buffered

AHB unbuffered

AHB buffered

D-SRAM

I-SRAM

A

A

AMBA AHB

A
Tightly-coupled
SRAM

/

Figure 3-1 ARM966E-S memory map
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3.2 Tightly-coupled SRAM address space

Thetightly-coupled Instruction SRAM (1-SRAM) and Data SRAM (D-SRAM) are
located at the bottom of the memory map. Each SRAM is allocated a 64MB address
space, the bottom 64MB space mapping to I-SRAM and the next 64MB range mapping
to D-SRAM.

In practice, each SRAM islikely to be much smaller than the 64MB allowable and the
address decode isimplemented so that each memory is aliased throughout its 64MB
range. See Figure 3-2 for an example of a 16KB I-SRAM aliased through the 64MB
address space.

D-SRAM space ¢

0x0400 0000
0x03FF FFFF

0x03FF C000

I-SRAM alias #4095
I

~ | ~
1

0x0000 BFFF

I-SRAM alias #2
BA8gs 5258

* I-SRAM alias #1
BA8gs 4258

* I-SRAM (16KB)

0x0000 0000

Figure 3-2 I-SRAM aliasing example

All accesses to addresses above the 128M B combined SRAM address space result in
AMBA AHB transfers controlled by the Bus Interface Unit (BIU).

Aninstruction fetch from the ARM9E-S core to the D-SRAM address space goesto the
AHB, regardless of whether the D-SRAM isenabled. A datainterface access from the
ARMOE-S core can access both the D-SRAM and the [-SRAM. The ability to
additionally accessthel-SRAM isrequired to allow thefetching of inlineliteralswithin
code, for programming of the instruction [-SRAM, and for debugging purposes.

When an SRAM isdisabled, all accessesto its address space go to the AHB. When
enabled, the SRAM must be programmed before use. The tightly-coupled SRAMs can
be enabled or disabled during reset depending on the value of theinput pin INITRAM.
Several boot options are available using INITRAM and the exception vectors location
pin VINITHI. These are discussed in Using INITRAM input pin on page 4-4.
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3.3 Bufferable write address space

The use of the ARM966E-S write buffer is controlled by both the CP15 control register
and the fixed address map.

When the ARM966E-S comes out of reset, the write buffer is disabled by default. All
datawritesto the AHB are performed as unbuffered. The ARM9E-Sis stalled until the
BIU has performed the write on the AHB interface.

When the write buffer is enabled by writing to CP15 control register bit 3 (see
ARMO966E-S CP15 registers on page 2-4), the data address (DA[31:0]) from the
ARMO9E-S core controlswhether the write buffer isused. If bit 28 of DA is set, thewrite
is treated as un-buffered. If bit 28 is clear however, the write is treated as a buffered
write and the BIU write buffer FIFO isused. Buffered writes allow the core to continue
program execution while the write is performed on the AHB. If the write buffer isfull
the coreisstalled until space becomes availableinthe FIFO. See Write buffer operation
on page 6-3 for details of the BIU and write buffer behavior.

Note

Writesto tightly-coupled SRAM address space do not get sent to the AHB if the SRAM
being accessed is enabled (the SRAMs do not write-through). If either SRAM is
disabled and awrite is performed to its address space, the write is performed as a
buffered AHB write if the write buffer is enabled. If not, the writeis un-buffered.

3-4
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Chapter 4
Tightly-coupled SRAM

This chapter describes the tightly-coupled SRAM in the ARM966E-S. It contains the
following sections:

. ARM9I66E-S SRAM requirements on page 4-2
. SRAM stall cycles on page 4-3

. Enabling the SRAM on page 4-4

. ARMO966E-S SRAM wrapper on page 4-7.

For details of the ARM9E-S interface signals referenced in this section, refer to the
ARMOE-S Technical Reference Manual.
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4.1 ARMOY966E-S SRAM requirements

The ARM966E-Stightly-coupled SRAM isbuilt from blocks of ASIC library compiled
SRAM. The Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) can each be any
sizefrom 0 bytesto 64MB, although to ease implementation the size must be an integer
power of two. The |-SRAM and D-SRAM can have different sizes.

To alow the-SRAM to be initialized and for accessto literal tables during execution,
the data interface of the ARM9E-S core must be able to access the I-SRAM. This
requires that the instruction and data addresses are multiplexed before entering the
[-SRAM and the instruction datais routed both to the instruction and data interfaces of
the core. See Figure 1-1 on page 1-3 for details of this data and address multiplexing.

ARM966E-S supports the use of synchronous SRAM. The SRAM control has been
implemented in away that expects the compiled SRAM memory cells to return read
datato ARMOE-S in asingle-cycle. Thisrequirement appliesto both the I-SRAM and
D-SRAMs. See Figure 4-1 for atypical read cycle (I-SRAM shown).

SRAM
access time

| |
| |
| |
INMREQ B | /) 1
| | |
| | |
IA[31:1] i X AddrAi X/ i
! ! \ INSTR (A)
INSTR[31:0] | | |
| | |

Figure 4-1 SRAM read cycle

During normal program execution, the instruction and datainterfaces of the ARM9E-S
can be active simultaneously. In this case both SRAMs can be simultaneously accessed
allowing the core to continue execution without any stall cycles. There are cases
however, where stall cycles are encountered when accessing the SRAM.

4-2
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4.2 SRAM stall cycles

Stall cycles can occur in both the I-SRAM and D-SRAMs. The two RAMs share a
common stall mechanism. Because memory write in an ARM9E-S systemisa
two-cycle operation, CPU memory access during the second cycle must be stalled. The
[-SRAM, has additional stall cycles asit can be accessed by both the instruction and
datainterfaces of the ARM9E-S. In order to maximize memory interface frequency
performance, data read requests to the I-SRAM are pipelined by one clock cycle. Any
stall requirement is detected by the SRAM control and factored into its response to the
ARM966E-S system controller. The ARM9E-S SY SCLKEN input isthen de-asserted
until the SRAM has performed the access.

Table 4-1 shows the number of stall cycles added for different stall mechanismsfor the
[-SRAM.

Table 4-1 I-SRAM stall cycles

Number of

added cycles Stall mechanism

1 Data read.
1 Data read followed by write.
1 Data write followed by instruction fetch or data read.
1 Dataread followed by instruction fetch.
1 Simultaneous instruction fetch and data read.
2 Simultaneous instruction fetch and data write.
2 Dataread or write followed by simultaneous instruction fetch and data
read or write.
Note

Datareads from the |-SRAM incur asingle-cycle stall for each read instruction and not
each separate RAM read. LDMand LDR operations both incur asingle stall cycle.

The D-SRAM stall mechanism iswritefollowed by read, and the number of stall cycles
added is one.

For adetailed description of SRAM stall cycles, see Appendix C SRAM Sall Cycles.
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4.3 Enabling the SRAM

There are two mechanisms for controlling the enable of the SRAM:

. both I-SRAM and D-SRAM can be enabled or disabled during reset by the input
pin INITRAM

. the I-SRAM and D-SRAM can be individually enabled or disabled through
softwareMCR instructions to CP15.

4.3.1 Using INITRAM input pin

Two resets are described in the following sections:
. Reset with INITRAM LOW
. Reset with INITRAM HIGH.

Reset with INITRAM LOW

TheINITRAM pin is provided to allow the ARM966E-S to boot with both SRAM
blocks either enabled or disabledl Nl TRAM is held LOW during reset, the
ARMO966E-S comes out of reset with both SRAMs disabled. All accesses to I-SRAM
and D-SRAM space go to the AHB. The SRAM can then be individually or jointly
enabled by writing to the CP15 control register (register 1).

Reset with INITRAM HIGH

If however,INITRAM is held HIGH during reset, both SRAM blocks are enabled
when the ARM966E-S comes out of reset. This is normally used for a warm reset where
the SRAM has already been programmed before the applicatidRESET to the
ARMO966E-S. In this case, the SRAM contents are preserved and the ARM966E-S can
run directly from the tightly-coupled SRAM following reset. Either one or both SRAM
can be further disabled or enabled by writing to the CP15 control register.

Note

If INITRAM is held HIGH during a cold reset (the SRAM has not previously been
initialized), theVINITHI pin must be set HIGH to ensure that the ARM966E-S boots
from OxFFFF 0000, that is in AHB address space and is substantially outside the
SRAM address space. This is necessary becausHIifTHI is LOW, the ARM966E-S
attempts to boot frorax0000 0000, and this selects the uninitialized I-SRAM.

4-4
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4.3.2 Using CP15 control register

When out of reset, the behavior of the tightly-coupled SRAM is controlled by the state
of CP15 control register.

Enabling the I-SRAM

Y ou can enable the I-SRAM by setting bit 12 of the CP15 control register. Thisregister
must be accessed in aread-modify-write fashion, to preserve the contents of the bits not
being modified. See ARM966E-S CP15 registers on page 2-4 for details of how to read
and write the CP15 control register. When the I-SRAM has been enabled, all future
ARMOE-Sinstruction fetches and data accessesto the I-SRAM address space as shown
in Figure 3-1 on page 3-2 causes the I-SRAM to be accessed.

Enabling the I-SRAM greatly increases the performance of the ARM966E-S as the
majority of accessesto it can be performed with no stall cycles, whereas accessing the
AHB might cause severa stall cyclesfor each access.

——— Caution

Care must be taken to ensure that the I-SRAM is appropriately initialized before it is
enabled and used to supply instructions to the ARM9E-S core. If the coretriesto
execute instructions from uninitialized 1-SRAM, the behavior is unpredictable.

Disabling the I-SRAM

Y ou can disable the I-SRAM by clearing bit 12 of the CP15 control register. When the
[-SRAM has been disabled, all further ARM9E-S instruction fetches access the AHB.
If the core performs a data access to the -SRAM address space as shown in Figure 3-1
on page 3-2, an AHB accessis performed.

Note

The contents of the SRAM are preserved whenitisdisabled. If itisre-enabled, accesses
to previoudly initialized SRAM locations returns the preserved data.

Enabling the D-SRAM

Y ou can enable the D-SRAM by setting bit 2 of the CP15 control register. See
ARMO966E-S CP15 registers on page 2-4 for details of how to read and write this
register. When the D-SRAM has been enabled, all future read and write accessesto the
D-SRAM address space, as shown in Figure 3-1 on page 3-2, cause the D-SRAM to be
accessed.

ARM DDI 0186A
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Disabling the D-SRAM

Y ou can disable the D-SRAM by clearing bit 2 of the CP15 control register. When the
D-SRAM isdisabled, all further reads and writes to the D-SRAM address space, as
shown in Figure 3-1 on page 3-2, access the AHB. Read and write accessesto |-SRAM
address space uses the I-SRAM or accesses the AHB depending onif it is enabled.
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4.4 ARM966E-S SRAM wrapper

The ARM966E-S alowsyou to have control over the size of the |-SRAM and D-SRAM
(up to amaximum of 64M Bytes each). It is not possible to have a single generic
interface between the ARM 966E-S and the SRAM, dueto the large number of differing
compiled SRAM that can be integrated into an ARM966E-S system, potentially each
with a unique interface.

To ease the task of integrating differing SRAM into the ARM966E-S, an interface
wrapper block has been devel oped to ensure that when wrapped, the SRAM providesa
standard interface to the ARM966E-S SRAM control. ARM provides an example
SRAM wrapper containing three example interfaces, see Example SRAM interfaces on
page 4-8. Y ou must study these examples and decide which is most appropriate for the
type of SRAM available. A script is provided which automates any required changes.

The RAM interface RTL allows you to trade off speed against power performance so
that you can tailor the ARM966E-S to suit a particular requirement.

There arefive SRAM modulesinstantiated at the top-level of the ARM966E-S. Figure
4-2 shows the structure of these three modules.

RamcCtrl.v IRAM.v
IRamlIF.v
ICtrl.v - '<¢—p| INSIrRAM.V
BIST.v
DRAM.v
DRamlF.v
DCtrl.v P <« p» DataRAM.V |-aDMA
BIST.v

Figure 4-2 ARM966E-S SRAM hierarchy

RantCtr| . v containsthe RAM control logic that is partner-independent. Thislogicis
fixed.
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I Raml F. v and DRam F. v generate the SRAM specific ChipSelect, WriteEnable, and
ByteWrite signals. Your own library RAMs are instantiated inside | nst r RAM v and
Dat aRAM v .

44.1 Example SRAM interfaces

The examplewrapper supplied by ARM containsthree RAM interface examples. All of
theinterface modifications are doneinthel Ram F. v and the DRani F. v blocksfor the
[-SRAM and D-SRAM respectively. The example SRAM interfaces are:

. ONESEGX32
. FOURSEGX32 on page 4-9
. FOURSEGXS8 on page 4-10

Note

The examples shown here are for 32KByte I-SRAM (8K words x 4bytes). The interface
for D-SRAM is identical.

ONESEGX32

Figure 4-3 shows the simplest interface I-SRAM. To use this, the SRAM must consist
of a single word-wide RAM that has byte-write control.

Only single ChipSelect and WriteEnable signals are required.

ByteWrite[3:0]
ICtrl.v
RamAddr[12:0]
WriteEnable > 8Kx32
IRamlIF.v i
ChipSelect
IRData[31:0]

Figure 4-3 ONESEGX32 interface
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FOURSEGX32

Y ou can use the example shown in Figure 4-4 when it is not possible to construct the
SRAM from asingle physical block due to either layout constraints or generator
constraints, or because a single SRAM segment does not meet timing constraints.

ByteWrite[3:0]
ICtrl.v

RamAddr[10:0]

A A A

WriteEnable | okxa2  [w  2Kx32  »  2Kx32  |»|  2Kx32
oy LChipSelect[3:0] f[O] f[ﬂ f[z] f[a]
amir.v B31.0] 16332 [95:64] T127:96]

OutputSelect[1:0] \

l IRData[31:0]

Figure 4-4 FOURSEGX32 interface

Separate chip select signals are required for each SRAM block.

Note

. The generation of separate chip select signals for each SRAM block ensures goo
power performance, because only the segment being accessed is enabled.

. The SRAM address is 11 bits in this example (compared with the 13 bit address
in ONESEGX32 on page 4-8)RamAddr[12:11] are used to generate separate
chip selects for each segment.

If it is not possible to have separate chip select signals for each block of RAM, for
example if the RAM is asynchronous, then separate write enable signals are required
for each segment. The use of asynchronous RAMs is not recommended due to the
increased power consumption of this solution.

Note
The wrapper RTL does not support asynchronous RAMs.
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FOURSEGXS8

Figure 4-5 shows that the SRAM needsto be split into four-byte wide segments where
an SRAM does not support byte-writes. In order to give an example of the most
complex interface possible, Figure 4-5 assumes that each byte-wide SRAM needsto be
split into four blocks (see word-wide SRAM in FOURSEGX32 on page 4-9).

In FOURSEGX32 on page 4-9 the SRAM Addressis 11 hits. Bits[12:11] of the address
are used to decode which of the four word-wide RAMs is selected.

InFigure4-5ByteWrite[3:0] isused (inside | Raml F.v) to decode each word-wide chip
select into four separate chip select signals, one for each byte of the word.

ByteWrite[3:0]

Byte 3

32

ByteWrite[3:0] oy
ICtrl.v
RamAddr[10:0]
| | | )
> 2Kx8 2Kx8 2Kx8 2Kx8
?[3] ?[7] ?[11] ?[15] 8
> 2Kx8 2Kx8 2Kx8 2Kx8
?[2] ?[6] ?[10] ?[14]
> 2Kx8 2Kx8 2Kx8 2Kx8
?[1] ?[5] ?[9] ?[13]
WriteEnable > 2Kx8 2Kx8 2Kx8 2Kx8
Ry LChipSelect]15:0] f[O] f[zq ﬁ[gl f[12]
¥ | ]

Byte 1

Byte 0

OutputSelect[1:0]

B e e Y
Byte 2

lIRData[31:0]

Figure 4-5 FOURSEGX8 interface
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Chapter 5

Direct Memory Access (DMA)

This chapter describes the optional DMA interface in the ARM966E-S. It contains the
following sections:

About the DMA interface on page 5-2

Timing interface on page 5-5

DMAENABLE setup and hold cycles on page 5-12
Summary of signal behavior on page 5-13

ARM DDI 0186A
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5.1

51.1

About the DMA interface

A DMA port is provided on the ARM966E-S. Y ou can connect this port to the
D-SRAM inthe ARM966E-S. This allows direct access to the D-SRAM from outside
the ARM966E-S boundary. If thisfeatureisnot required the DMA portistied off inthe
RTL and made redundant. Y ou have the option of interfacing the DMA port to a
dual-port RAM or asingle-port RAM, providing the ability to choose the solution that
best meets area, performance, and software requirements.

The DMA port enables direct access to the data RAM, bypassing the CPU core. The

ARMO966E-S provides the control logic to access the RAM. The implementation of a
DMA controller is application-specific and so any DMA control logic isinstantiated

outside of the ARM966E-S macrocell boundary.

Figure 3-1 on page 3-2 shows DMA addresses directly map to the RAM location in the
data RAM 64MB address space. The RAM controller in the ARM966E-S uses bits
[31:26] of the CPU data address to decode Data RAM address space access. Bits
[31:26], however, are not required to be driven by the DMA controller because DMA
access is always to this address space. RAM aliasing occurs for DMA access in the
same way as aliasing occurs for CPU accesses. See Tightly-coupled SRAM address
space on page 3-3 for more information.

Note

The decision to connect to the DM A port, and to aparticular type of RAM, ismade prior
to synthesis.

Single-port RAM DMA solution

DMA accesses to asingle-port RAM must be done through the same interface that the
CPU usesto accessthe RAM. CPU accessesto the RAM must be prevented while DMA
transfers are taking place. Thisis done by stalling the core for the duration of the DMA
transfer. The DMA controller requests access to the D-RAM by asserting DM AW ait.
When the CPU has been stalled on the next instruction boundary, the ARM966E-S
asserts DM AReady to notify to the DMA controller that it now has ownership of the
RAM and can proceed with the transfer.

The single-port RAM DMA solution must be used where the die area of a dual-port
RAM is not acceptable and the performance impact of stalling the core during DMA
transfersis acceptable.

5-2
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Figure 5-1 shows how the ARM966E-S DMA port interfaces to asingle-port RAM.

CPU RAM access

SP DMA access

CPU read data

CLK

5.1.2  Dual-port RAM DMA solution

ARMO966E-S
< DMA Inputs
A 1
Y
Addr
WriteEnable
ChipSelect
R Dataln
> ;’Byteert Single Port [Ig'l\(:lr/;\
»o RAM
A
Q
RAMRData \
< » » DMA Outputs
/\
FZD—T
»
< DMAEnable
44\

Figure 5-1 Single-port RAM DMA interface

If the data RAM isimplemented using dual-port RAM, the second port is used
exclusively for DMA. The CPU and DMA can access the data RAM simultaneously so
the core does not need to be stalled. A dual-port RAM DMA solution provides higher
performance than the single-port solution, but uses alarger die area. The programmer
must ensure that DMA and CPU do not access the same memory locations
simultaneously. The behavior of accessing the same memory locations simultaneously

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved.
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iseither undefined or illegal. Simultaneous access behavior issummarized in Table 5-1.

Table 5-1 Simultaneous access behavior

Core DMA .
behavior

access access

Read Read Valid

Read Write Undefined

Write Read Undefined

Write Write Illega

Figure 5-2 shows how the ARM966E-S DMA port interfaces to a dual-port RAM. For
modelling purposes, the dual-port DMA solution al so supports the single-port access
route. Single-port access reduces performance in the dual-port solution and is unlikely
to be used, so to prevent the core from being stalled, DM AWait must be tied LOW.

ARM966E-S

Addr
WriteEnable
ChipSelect
Dataln

A,

CPU RAM Access —»|0
74

SP DMA Access

RAMRData1
CPU Read Data «

1| ByteWrite

CLK

< DMA Inputs
A
DMACLK
Dual Port
RAM
Portt  portz e [{—
DP DMA Access| DMA
Port
Q1 Q2
] RAMRData2
A
0 SP DMA Access
v
» DMA Outputs
> DMACLK
< DMAEnable

Figure 5-2 Dual-port RAM DMA interface
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5.2 Timing interface

To ease the system integration task and to provide RAM independent timings, the
ARMO966E-Sregistersall DMA inputs and outputs. This section details the behavior of
the ARM966E-S for DMA read and writes to single and dual-port RAMs.

Note

The dual-port RAM DMA solution also supports the single-port operation and so the
single-port diagrams are also applicable to dual-port RAMSs.

ARM DDI 0186A
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521

|
DMAENABLE / ‘
|
DMANREQ \
|
DMAWait / ;
|
DMARRW \
|
DMAReady \
|
|
DMAAddr ] ><

DMARData

Single-port RAM reads

Figure 5-3 shows DMA read operation from a single-port RAM.

DMAread request | 'Read latency |
| —

\ \

N

/ Core Stalled \

A1 iX Ai X |

\
\ \ \
\
\

| |

B T3 K3

Figure 5-3 Single-port RAM DMA reads

The DMA controller makes a read request by taking DMANREQ LOW and asserting
DM AW ait. DM AReady isasserted by the ARM966E-S when the core has been stalled
on the next instruction boundary and informs the DMA controller that it can proceed
with its transfer.

Figure 5-3 also shows the minimum latency between DM AW ait being registered
HIGH and DM AReady being asserted is two clock cycles, when DM AWait is
registered on an instruction boundary. The maximum latency occurs when DM AW ait
is asserted on thefirst cycle of an LDMor unbuffered STMAHB access. The latency in
this case can be cal culated from the information in Instruction cycle timings on

page 11-1.

The DMA controller can increment the read address on the next rising clock edge after
DM AReady isasserted. Read dataisdriven on DM ARData in the third cycle after the
read addressis sampled by the ARM966E-S (one cycleto register the address, onecycle

5-6
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for the RAM read and one cycle for registering the RAM read data). The first read
address, DM AAddr, is registered by the ARM966E-S on the next rising clock edge
after DM AReady is asserted.

The DMA controller has ownership of the RAM from DM AReady being asserted until
it takesDM AW ait LOW. When DM AW ait has been taken LOW, the DMA controller
loses ownership of the RAM. DM AWait must be taken LOW at the end of aDMA
access to allow CPU flow to continue.

DMAENABLE must be asserted one cycle prior to arequest being made and can be
deasserted one cycle prior to the last read data being returned.

Note

If DM AWait is not asserted, the ARM966E-S does not respond to single-port RAM
DMA requests.

ARM DDI 0186A
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5.2.2

Single-port RAM writes

Figure 5-4 shows DMA write operation to a single-port RAM.

The DMA controller requests write access to the RAM in the same way as single-port
RAM reads except that DMANRW is HIGH. Because data writes are single cycle
operations, data to be written must be present in the same cycle asthe address. Thefirst
write address, DM AAddr, is registered by the ARM966E-S on the next rising clock
edge after DM AReady is asserted. The write to the RAM happensin the following
cycle, dueto the single cycle latency of the input registers. The first write address,
DM AAddr, and data, DM AWData, isregistered by the ARM966E-S on thenext rising
clock edge after DM AReady is asserted.

The behavior of DM AWait is as for single-port RAM reads.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted when DM ANREQ istaken HIGH &fter the last request.

DMAENABLE ]

DMANREQ ’

DMAWait ’

: :
DMARRW | ; ; |
[ [
| |

DMAReady ’

DMAAddr | X At

DMAWData | X o1, X b2, X |

Figure 5-4 Single-port RAM DMA writes
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5.2.3  Dual-port RAM reads

DMAReady

DMARData

DMAWait \

DMANRW \

DMAAddr >< A1

Figure 5-5 shows DMA read operations to a dual-port RAM.

A read request isinitiated by taking DM ANREQ and DMANRW both LOW. The
address, DMAAddr, must be valid in the same cycle. The read data, DM ARData, is
returned in the third cycle after the request isregistered by the ARM966E-S (one cycle
to register the request, one cycle to read the RAM, and one cycle to register the output
data).

Note

Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses,
the DMA controller can access the data RAM continuously. DM AW ait must be tied
L OW otherwise the DMA accessis by the first port of the RAM and the interface
behaves as described in Single-port RAM reads on page 5-6.

DM AReady isredundant for dual-port RAM accesses and does not need to be sampled
by the DMA controller.

DMAENABLE must be asserted one cycle prior to arequest being made and can be
deasserted one cycle prior to the last read data being returned.

Read1 Read?2
| |

DMAENABLE /

DMANREQ \

\

/

X_r2 X

X D1 X D2 )

Figure 5-5 Dual-port DMA reads

/
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5.2.4

Dual-port RAM writes
Figure 5-6 shows dual-port write operations to a dual-port RAM.

A writerequest isinitiated by taking DMANREQ LOW and DM ANRW HIGH. The
address, DM AAddr, and writedata, DM AW Data, must bevalidinthe samecycle. The
write to the RAM happens in the following cycle, due to the one cycle latency of the
input registers.

Note
Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses,
the DMA controller can access the data RAM continuously. DM AW ait must be tied
LOW otherwise the DMA accessis by the first port of the RAM and the interface
behaves as described in Single-port RAM writes on page 5-8.

DM AReady isredundant for dual-port RAM accesses and does not need to be sampled
by the DMA controller.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted when DM ANREQ istaken HIGH after the last request.

DMAENABLE ’

DMANREQ |

DMAWait ’

: :
DMARRW | ; ; |
[ [
| |

DMAReady ]

DMAAddr | X Al

DMAWData ] >< D1

Figure 5-6 Dual-port RAM DMA writes
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5.25 Mixed read and writes

Figure 5-7 shows:
. an example of intermingled DMA read and write operations
. that reads and writes can be performed back-to-back.

The behavior is the same for both single and dual-port RAMs. Depending on whether
the RAM was single or dual-port, the behaviobdfl AENABLE, DMAWait, and

DM AReady is described in sectiorgngle-port RAM reads on page 5-6 t®ual-port

RAM writes on page 5-10.

DMANREQ |\ / |
— A e \

DMAAddr | oAt ) a2 ) a3 ) a4 ) |
DMAWData | Jwp_n2) \wp_ad) |
DMARData | J(RD_ATY \(RD_A3) |

Figure 5-7 Mixed DMA read and write
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5.3 DMAENABLE setup and hold cycles

Table 5-2 shows the minimum number of setup cycles and hold cycles for
DMAENABL E with respect to DMANREQ for both single and dual-port RAMSs.

Table 5-2 DMAENABLE setup and hold cycles with respect to DMANREQ

Operation Setup Hold
Dual-port RAM DMA read 1 1
Dual-port RAM DMA write 1 0
Single-port RAM DMA read 1 1
Single-port RAM DMA write 1 0

To reduce power consumption, DM AENABL E must be taken LOW when DMA
accesses are not taking place or if DMA is not implemented.
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5.4 Summary of signal behavior

Direct Memory Access (DMA)

Table 5-3 summarizes the behavior of DMAENABLE, DMAWait, DMANREQ, and
DM AReady for single and dual-port RAM solutions in addition to the required
connections of these signalsif no DMA isimplemented.

Table 5-3 DMA signal behavior

Dual-port RAM

Single-port RAM

Signal DMA DMA No DMA
DMAENABLE SeeTable5-2 See Table 5-2 Must be tied LOW
(Input) externa to the
ARM966E-S.
DM AWait The DMA controller The DMA controller Must betied LOW
(Input) does not need to stall must drive this signal externa to the
the ARM966E-S and HIGH whenever it ARMO966E-S.
sothissignal mustbe  requires accessto the
tied LOW externd to data RAM.
the ARM966E-S.
DMANREQ Must be driven LOW Must be driven LOW Must be tied HIGH
(Input) by the DMA by the DMA controller external to the
controller whenever it~ whenever it requires ARMO66E-S.
requiresaccesstothe  accessto the dataRAM.
data RAM
DMAReady Canbeignored by the  Must be registered by Do not care.
(Output) DMA controller the DMA controller so

because it dways has
access to the RAM.

that it knows when the
ARMO966E-S has been
stalled.

ARM DDI 0186A
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Chapter 6

Bus Interface Unit

This chapter describes the ARM966E-S Bus Interface Unit (BIU) and write buffer. It
contains the following sections:

About the BIU and write buffer on page 6-2
Write buffer operation on page 6-3

AHB bus master interface on page 6-8
AHB clocking on page 6-20.
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6.1 About the BIU and write buffer

The ARM966E-S supports an Advanced Microprocessor Bus Architecture (AMBA)
Advanced High-performance Bus (AHB) interface. The AHB is anew generation of
AMBA interface that addresses the requirements of high-performance synthesizable
designs, including:

. single clock edge operation (rising edge)

. unidirectional (nontristate) buses

. burst transfers

. split transactions

. single-cycle bus master handover.

See theAMBA Rev 2.0 AHB specification for full details of this bus architecture.

The ARM966E-S BIU implements a fully-compliant AHB bus master interface and
incorporates a write buffer to increase system performance. The BIU is the link between
the ARM9E-S core with its tightly-coupled SRAM and the external AHB memory. The
AHB memory must be accessed to initialize the tightly-coupled SRAM. The AHB
memory must also be accessed to access code and data that are not assigned to the
tightly-coupled SRAM address space (or if the SRAM is disabled).

When an external AHB access is performed, the BIU and the system controller
handshake to ensure that the ARM9E-S core is stalled. If the write buffer is used, it
might be possible to allow the core to continue program execution. The BIU is
responsible for controlling the write buffer and related stall behavioi{siéebuffer
operation on page 6-3).

6-2
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6.2 Write buffer operation

The ARM966E-S implements a 12-entry write buffer, where the entries can be address
or data depending on the nature of the writes being executed by the ARM9E-Score. The
write buffer helps to decoupl e the core from the wait cycles incurred when accessing
the AHB. If awriteis sent to the write buffer, the core is able to continue program
execution without having to wait for the write to complete onthe AHB. Morewritescan
be committed to the write buffer without stalling if spare entries are available.

If thewrite buffer becomesfull, the ARMOE-S core must be stalled until an AHB access
occurs and some write data is written, therefore freeing up the necessary FIFO entries.

Alternatively, if the core performs aread from or unbuffered write to the AHB address
space, thecoreisstalled until all write buffer entries have been written (the write buffer
isdrained). Thewrite buffer is drained to ensure data coherency, in that the core might
try to read from alocation that it has recently modified and is still in the write buffer
awaiting AHB access.

6.2.1 Committing write data to the write buffer

The write buffer is used when the following conditions are met:
. the write buffer is enabled
. the address is in a bufferable region

. the address is in AHB external memory, or the address selects a tightly-coupled
SRAM that is disabled.

For details on write buffer enable and the ARM966E-S fixed address map, see
. Register 1, Control register on page 2-5
. About the ARM966E-S memory map on page 3-2.

When a write is performed by the core and conforms to the above conditions, the
address for the write is put into the first available entry of the write buffer FIFO. The
next available entry is used for the write data. If the write is a store muSipnNg (
subsequent entries are used for each word &Thkelt is therefore possible for the
FIFO to contain 11 words of@Mwhere the first entry contains the address and the
remaining 11 entries contain the write data.

Alternatively, if several shorter bufferal#@Mor single writes$TR) instructions are
performed, one address entry is used for each write instruction. The worst case is tha
only six data words fill the FIFO caused by SibR writes. In this case the FIFO holds

six address entries and six data entries.

ARM DDI 0186A
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Figure 6-1 shows an example where the BIU FIFO isbeing filled by thefollowing write

instructions:

STM A r13!, {r2-r4} ; store three registers to the stack
STRB r5,[r6] ; store byte

STM A r13!, {r3-r4} ; store two registers to the stack
STR r7,[r2] ; single store

From ARM9E-S CLK domain
Address and size marker

l Sequentiality marker

Data r7
A
Address r2 Word
Data r4
Data r3 S
A
Address r13 Word
Data 5
A
Address ré Byte
Data r4
Data r3 S
Data r2 S
A
Address r13 Word
el >

To AHB HCLK domain

To BIU control

Figure 6-1 Write buffer FIFO content example
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6.2.2  Draining write data from the write buffer

The write buffer can drain naturally where AHB writes occur whenever datais
committed to the FIFO. Thecoreisonly staled, if thewrite buffer overflows. However,
there are times when a complete drain of the write buffer is enforced.

Natural write buffer drain

When awriteisbeing committed to the write buffer FIFO, asignal is sent to the BIU to
initiate an AHB write. The BIU then pops the address for the write from the FIFO
followed by the data and starts an AHB transfer (assuming the ARM966E-S isthe
granted bus master). This process might take several cycles because the slave being
accessed for the write might have a multi-wait cycle response. Additionally, the AHB
can be run at alower rate than the ARM966E-S system introducing extra delay to the
buffered write process. This can lead to the core trying to commit data at a higher rate
than the FIFO can be drained, resulting in the FIFO becoming full. The ARM9E-S core
isstalled until an entry becomes available.

When an address is placed in the write buffer, amarker is aso stored to indicate if the
sizeof thewriteis, byte, halfword or word. If aSTMis performed, asequentiality marker
is stored with the data, to indicate to the BIU that the address incrementer must be used
to produce the AHB address for the second and following writes of the STM This
mechanism allows only one FIFO entry to be used for the address, |eaving more room
for data (see Figure 6-1 on page 6-4).

If aSTMcrosses a 1K B boundary, the AHB specification requiresthat thefirst accessin
the new 1KB regionisanonsequential access. Thisallowsthe BIU to haveasmall 1KB
incrementer, because the ARM9E-S data address can be resampled during the
nonsequential cycle. For this reason, the write buffer must also break up accesses that
cross a 1KB region, by forcing the sequentiality marker LOW for the preceding data
location and committing an extra address entry at the start of the new region.

Note

Becausethe ARM9E-S core isfreeto continue program execution following abuffered
write, without having to wait for the write to complete on the AHB, external Data
Aborts can not be returned by buffered writes.
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Enforced write buffer drain

There are two situations where the coreis stalled and the write buffer isforced to drain
completely before program execution can continue:

. an instruction fetch, data load, or unbuffered write to the AHB is being requested
. a drain write buffer instruction is being executed.

AHB read access requested

To ensure data coherency, you must prevent the core from reading data from a location
that has recently been modified (by the core or an external coprog&ssostruction)

and is still in the write buffer awaiting AHB access. If the AHB read access is allowed
to occur before the write buffer is drained, the old version of data at that location is
fetched causing a data coherency failure.

For this reason, whenever an AHB read is requested, as an ARM9E-S instruction fetch
or a data load or load multiple, the core must be stalled until the write buffer is drained.
No special logic is used to force a write buffer drain as this process is occurring
whenever data is present within the buffer. However, special logic is required to stall
the core until the last buffered write hasnpleted on the AHB.

Drain write buffer instruction

You can use aRrCR instruction to CP15 register 7 to force the core to be stalled until
the write buffer is empty and the final write is completed on the AHB. This instruction
is described ifRegister 7, Core control on page 2-8. This instruction is useful when the
software requires that a write is completed before program execution continues.

6.2.3  Enabling the write buffer

The write buffer can be enabled by setting bit 3 of the CP15 control register. When this
bit is set, all writes to bufferable address locations use the write buffer. If a slave
peripheral in a bufferable region returns an AHB Data Abort, the abort is ignored when
the write buffer is enabled.

Note

For debugging purposes, you can disable the write buffer to allow AHB Data Aborts to
be returned from bufferable regions.

6-6
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6.2.4  Disabling the write buffer

When datais committed to the write buffer it isalways written to the AHB. If the write
buffer is disabled by clearing bit 3 of the CP15 control register, any existing write data
inthe write buffer is completed. Additionally, if the coreis sent to sleep by the wait for
interrupt command, any writes in the write buffer FIFO are also completed.

If the programmer requires no more buffered writesto occur following write buffer
disable or await for interrupt instruction, the write buffer must first be drained with a
drain write buffer command.

ARM DDI 0186A
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6.3 AHB bus master interface

The ARM966E-S implements a fully-compliant AHB bus master interface and is
defined in the AMBA Rev 2.0 Specification. Y ou must refer to this document for a
detailed description of the AHB protocol.

6.3.1 Overview of AHB

The AHB architecture is based on separate cycles for address and data (rather than the
phase of the clock in the ASB architecture). The address and control for an access are
broadcast from the rising edge of HCLK in the cycle before the data is expected to be
read or written. During this data cycle, the address and control for the next cycle are
driven out. Thisleadsto afully pipelined address architecture.

When an accessisinitsdatacycle, aslave can wait the access by drivingtheHREADY
response LOW. This hasthe effect of stretching the current data cycle and therefore the
pipelined address and control for the next accessis also stretched. This creates a system
where all AHB masters and slaves sample HREADY on the rising edge of the HCLK
to determine whether an access has completed and a new address can be sampled or
driven out.

6.3.2 ARMO966E-S transfer descriptions

The ARM966E-S BIU performs a subset of the possible AHB bus transfers available.
This section describes the transfers that can be performed and some back-to-back
transfer cases:

. Burst transfers on page 6-9

. Busrequest on page 6-9

. Sequential instruction fetch on page 6-10

. Back-to-back LDR or STR accesses on page 6-11
. Smultaneous instruction and data request on page 6-11
. STM timing on page 6-13

. LDM timing on page 6-14

. STM followed by instruction fetch on page 6-15
. LDM followed by instruction fetch on page 6-16
. STM crossing a 1KB boundary on page 6-17

. LDM crossing a 1KB boundary on page 6-18

. SWP instruction on page 6-19.

All timing examples assume one-to-one clocking where the ARM966E-S and AHB
share the same clock. S&dB clocking on page 6-20 for details of AHB clocking
modes.

6-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A



CLK

HBUSREQ

HGRANT

HTRANS

HADDR

HWRITE

HRDATA

HREADY

Bus Interface Unit

Burst transfers

Because the ARM966E-S does not implement cache memory, burst transfers of fixed
length commonly used for cache linefill and data cache writeback, are not supported.
All burst accesses are defined to be INCRemental (HBURST[2:0] = 001), because the
only indication to the ARM966E-S about the sequentiality of theaccessisthe DM ORE
output from the ARM9E-S core. This output indicates that there is at least one more
access following the current access, but does not indicate how many more sequential
accesses can be expected.

Bus request

At the start of every AHB access, the ARM966E-S requests access to the bus by
asserting HBUSREQ to the arbiter. It must then wait for an acknowledge signal from
thearbiter (HGRANT), before beginning thetransfer on the next rising edgeof HCLK.
In Figure 6-2, the slave being addressed has a single-cycle response to the read access
and therefore the HREADY responseis driven HIGH and fed to the

ARMO966E-S BIU.

_ /N S S SN\

Y o o [ me | Yrovees
- s

| o N 1) )

/ v v

Figure 6-2 Sequential instruction fetches, after being granted the bus
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CLK

HTRANS

HADDR

HRDATA

HREADY

Sequential instruction fetch

When the ARM9E-S fetches instructions from the AHB address space or if the
tightly-coupled I-SRAM is disabled, AHB read transfers areinitiated by the BIU. The
instruction interface does not have the benefit of a pipelined M ORE signal, so the BIU
cannot detect a sequential access and use an address incrementer to perform
back-to-back sequential cycles. All instruction fetches are treated as non-sequential
acCcesses.

Figure 6-3 shows a series of sequential instruction fetches where any data access being
performed by the ARMOE-S is using the tightly-coupled SRAM. Therefore, data
accesses do not interfere with the instruction fetches.

B aan N N N S N 2 N S N s N

iDLE J Nonseq; L | X Nonseq X iLe | X NonsEq J  IDLE | ) NONSEQ
I I I I I I I

Figure 6-3 Sequential instruction fetches, no AHB data access required
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Back-to-back LDR or STR accesses

Figure 6-4 shows ARM966E-S bus activity when a sequence of LDR instructionsis
executed.

CLK_X\X\Y\J/\k\;/\

| | |
NONSEQ:X IDLE NONSEQ:X IDLE NONSEQ:X IDLE

| | |
| | | |
| | | |

HTRANS B X X Y nonsea
| | | | | | |
| | | | | | |

HADDR X DAt X DA2 X oA Y oa4
| | | | | T |
| | | | | | |
HWRITE \ 1 1 1 1 | l
| | | | | | |
| | | | | | |
HRDATA ! 1 Y oo-1 1) 1 \( ooz 1 N

| | | | | | |
HREADY | 7 Y | v |
| | | | | | |

Figure 6-4 Back-to-back LDR, no external instruction access
A series of NONSEQ/IDLE transfersisindicated for each access.

Even though thetransfers areto sequential addresses, each accessistreated asaseparate
nonsequential transfer. Figure 6-4 assumes that all instruction fetches from the
ARMOE-S core are being serviced by the I-SRAM.

Note

An identical series of NONSEQ or IDLE transfersis seen if executing a sequence of
back-to-back STRinstructions.

Simultaneous instruction and data request

When the ARM9E-S makes a simultaneous instruction and data request, both resident
in AHB memory, the BIU must arbitrate between the two accesses. The data accessis
always completed first, stalling the ARM9E-S until the instruction fetch completes.
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CLK

HTRANS

HADDR

HWRITE

HRDATA

HWDATA

HREADY

Figure 6-5 shows an example of an STRinstruction causing a simultaneous instruction

and data request.

) o N N o NV 2 N o N N N

.DL%X vonseal J i | J nonseal J nonseal J e |} wosea  J i
—
e EE———e
e —
v T

Figure 6-5 Simultaneous instruction and data requests

During the cycle that [IA-3] isfirst driven onto HADDR, the BIU detects a
simultaneous data request. [1A-3] fetch is suspended until the data access has

compl eted.
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STM timing

Figure 6-6 showsthe timing for an STMinstruction, transferring three words. Outputsto
the AHB are not driven during IDLE cycles, and so hold their previous value. This
includes the HBURST output, continuing to indicate INCRemental until the next
nonsequential transfer. This should not cause any confusion to other AHB components
asHTRANS indicates IDLE cycles.

ok NSNS\

| | | | | |
| | | | | |
HBUSREQ } ! | | \ |
| | | | | |
| | | | | |

HGRANT | } } ; | M\
| | | | | |
| | | | | |
HTRANS | X nonseq) X sea | X sea | ) | IDLE |
T
| | | | | 1
HBURST X % % 001 ; i
| | | | | |
| | | | | |
HADDR " oat Y paz 1Y | DA |
| | | | | |
| | | | | |
HWRITE J } } ! | i

| | | | |
| | | | | |
HWDATA 1 'Y oo1 7Y ooz ) T Dbs |
I I T T T T
| | | | | |
HREADY } Y V ! ;
|
l l l l l ‘
Figure 6-6 Single STM, no instruction fetch
Note

If an STMis not immediately followed by an external instruction accessone IDLE cycle
isinserted, and HBUSREQ isdriven LOW. An STM immediately followed by any
other AHB data access, also resultsin one IDLE cycle being inserted between the two
accesses.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-13



Bus Interface Unit

LDM timing

Figure 6-7 shows the timing for an LDMinstruction, transferring three words.

ck _ / N/ /S /J S S S

HBUSREQ

HGRANT

m

|
HTRANS NONSEQ/ X SEQ

HADDR DA-3

HWRITE \

HWDATA

HREADY

I[%L

Figure 6-7 Single LDM, no instruction access

Note
HBUSREQ isdriven LOW after two IDLE cycles which are inserted after a LDMthat
isimmediately followed by an external instruction access. An LDM, immediately
followed by any other AHB data access, also resultsin two IDLE cycles being inserted
between the two accesses.
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STM followed by instruction fetch

Figure 6-8 shows an example of an STMtransferring three words, immediately followed
by an instruction fetch. The instruction read begins with a NONSEQ/IDLE sequence
after thefinal sequential dataaccess. Inthisexample, subsequent instruction fetchesare
sequential.

CLK_/\);/\);/\

L
—~
>
—~
>
—~

|
|
HTRANS . X nonseq) ' sea | f  sea | f nonseq; ¥ mbLe | X Nonseql X IDLE
T T T T T T T
I I I | | | I
n ; ; |
HADDR | X oat X pa2 ) ba3 | | IA-1 X A2
1 1 1 1 1 | |
I I ! ! | | |
HWRITE L : : : \ ! ! :
I I I | | | I
| | ! | | | !
HWDATA } ) oaz | [ a3 | | ohs ;
I
| | | | | | |
HRDATA | | | | DR \ 02
T T T T I T T
| | | | | | |
HREADY ! ] vV vV v Vv
| | | | | | |

Figure 6-8 Single STM, followed by sequential instruction fetch

Note

The single IDLE cycle that normally occurs at the end of an STMisfilled by the
NONSEQ cycle for the instruction fetch.
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LDM followed by instruction fetch

Figure 6-9 shows an example of aLDMtransferring three words, immediately followed
by an instruction fetch. A single IDLE cycleisinserted after the final sequential data
access, and instruction fetch begins with a NONSEQ/IDL E sequence.

| | | | |
| | | | |
CLK /N . S S S S __

| | | | | | |

| | | | | | |
HTRANS | X nonsea) X sea | X sEQ | IDLE | X NONSEQ pLE | ) sEQ

| | | | | | |

| | | | | | |
HADDR DEESE DA2 | 'DA3 ) = Y as

I I I I | T T

| | | | | | |
HWRITE A | | | | | |

1 1 1 1 1 i ‘

| | ! ! ! | |
wwoata [0 I S § ST ) T S

| | | | | | |

| | | | | | |
HREADY | VAV -V

| | | | |

Figure 6-9 Single LDM followed by sequential instruction fetch
Note

The NONSEQ cycle of theinstruction fetch replacesthe second IDLE cyclethat occurs
when an AHB data access is required following the LDM
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STM crossing a 1KB boundary

AMBA Rev.2 Specification states that sequential accesses must not cross 1KB
boundaries. The ARM966E-S splits sequential accessesthat crossa1KB boundary into
two sets of separate accesses.

Figure 6-10 shows bus activity when a STMwriting four words, crosses a 1KB
boundary. DA-3isthefirst addressin anew 1KB region. The two sets of transfers each
begin with a nonsequential access type, and are separated by an IDLE cycle.

T\

CLK_/i(\/i/\/i/\/i/\

|

HTRANS ; X NONSEQE \ sea 1 X oe 1 X NONSEQE X sea : ) III?)LE
o SN SN NN TR
———— T
| | | | | | |

HWDATA 3 3 J__ oo 3 DD-2 3 X 3 oo : \ Djo.4
I I T T I T T
| |
HREADY : : ] ; V ; ; V  V i
| | | | | | |

Figure 6-10 Single STM, crossing a 1KB boundary
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CLK

HTRANS

HADDR

HWRITE

HRDATA

HREADY

LDM crossing a 1KB boundary

Figure 6-11 shows bus activity when aLDMreading four words, crosses a 1KB
boundary. The two sets of transfers each begin with a nonsequential access type, and
are separated by two IDLE cycles.

I\

o

NONSEQ:X seQ | ) | IDLE

X NONSEQ. X SEQ | X IDLE

X

Figure 6-11 Single LDM, crossing a 1KB boundary
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SWP instruction

The ARM SWP instruction performs an atomic read-modify-write operation. It is
commonly used with semaphores to guarantee that another process cannot modify a
semaphore when it is being read by the current process.

If the ARM966E-S performs a SWP operation to an AHB addresslocation, the accessis
always unbuffered to ensure that the coreis stalled until the write has occurred on the
AHB. The BIU assertsthe HL OCK output to prevent the AHB arbiter from granting a
different master, ensuring that the read-modify-write is atomic.

Figure 6-12 shows a SWP instruction.

CLK_/‘(\/:(\/:(\);/\);/\)\_

| |
| |

HTRANS ' X e | X nNonsea; ) be | X nonseq; X IDLE
S O S S
HADDR B | A_SWP | X |
1 1 l 1 1 |
HRDATA 1 : Y Aswe ) 1 |
| | | | | |
| | | | | |
HWRITE -\ | 1 L/ o\ |
|
| | | | | |

HWDATA 1 1 1 1 X sweoz )
T T T T I T
| | | | | |
| I I I I |
HLocK __ |/ | | | A |
| | | | |

Figure 6-12 SWP instruction
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6.4 AHB clocking

CLK

HCLKEN

HCLK

HADDR([31:0]

HTRANS

HRDATA[31:0]

HREADY

SYSCLKEN

The ARM966E-S design uses asingle rising edge clock CLK to time all internal
activity. In many systemswhere the ARM966E-Sisembedded, itisdesirableto runthe
AHB at alower rate. To support this requirement, the ARM966E-S requires a clock
enable, HCLKEN, to time AHB transfers.

The HCLKEN input isdriven HIGH around arising edge of the ARM966E-SCLK to
indicate that thisrising edge is also arising edge of HCLK. Thisrequiresthat HCLK
is synchronous to the ARM966E-S CLK.

When the ARM9E-Sisrunning from tightly-coupled SRAM or performing writesusing
thewrite buffer, the ARM966E-SHCL K EN and HREADY inputsareignoredinterms
of generating the SY SCLKEN core stall signal. The coreisonly stalled by SRAM stall
cycles or if the write buffer overflows. This means that the ARMOE-S is executing
instructionsat thefaster CLK rateand iseffectively decoupled fromthe HCL K domain
AHB system.

If however, an AHB read access or unbuffered writeisrequired, the coreisstalled until
the AHB transfer has completed. Because the AHB system is being clocked by the
lower rate HCLK, it is necessary to examine HCL KEN to detect when to drive out the
AHB address and control to start an AHB transfer. HCL K EN isthen required to detect
the following rising edges of HCLK so that the BIU knows the access has completed.
Figure 6-13 shows an exampl e of an AHB read accesswherethereisa3:1ratio of CLK
toHCLK.

Figure 6-13 AHB 3:1 clocking example

6-20
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If the slave being accessed at theHCL K rate hasamulti-cycle response, the HREADY
input to the ARM966E-S is driven LOW until the dataisready to be returned. The BIU
must therefore perform alogical AND on the HREADY response with HCLKEN to
detect that the AHB transfer has completed. When thisis the case, the ARM9E-S core
can then be enabled by reasserting SY SCLKEN.

Note

When an AHB access is required, the core must be stalled until the next HCLKEN
pulseisreceived, beforeit can start the access, and then until the access has completed.
This stall before the start of the accessis a synchronization penalty and the worst case
can be expressed in CLK cyclesasthe CLK to CLK ratio minus one.

6.4.1 CLK to HCLK skew

The ARM966E-S drives out the AHB address on the rising edge of CLK when the
HCLKEN input istrue. The AHB outputs have output hold and delay valuesrelative
to CLK. However, these outputs are used in the AHB system where HCLK isused to
timethetransfers. Similarly, inputsto the ARM966E-S aretimed relativeto HCLK but
are sampled within the ARM966E-S with CLK. This leads to hold time issues from
CLK to HCLK on outputs and from HCLK to CLK on inputs. In order to minimize
this effect the skew between HCLK and CLK must be minimized.

Clock tree insertion at top level

Considering the skew issuein more detail, the ARM966E-S has a clock tree inserted to
allow an evenly distributed clock to be driven to al the registersin the design. The
registersthat drive out AHB outputs and sample AHB inputs aretimed off CLK’ at the
bottom of the inserted clock tree and subject to the clock tree insertion delay. To
maximize performance, when the ARM966E-S is embedded in an AHB system, the
clock generation logic to produce HCLK must be constrained so that it matches the
insertion delay of the clock tree within the ARM966E-S. This can easily be achieved by
aclock treeinsertion tool if the clock tree isinserted for the ARM966E-S and the
embedded system at the same time (top level insertion).
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Figure 6-14 shows an example of an AHB slave connected to the ARM966E-S.

ARMO966E-S
CLK > > CLK'
Clock tree J/ P Ej‘
A HRDATA[31:0]
HCLKEN —\ AHB slave mux
— N A A A
| HcLK ——— W

> AHB
HADDR[31:0]

Figure 6-14 ARM966E-S CLK to AHB HCLK sampling

Inthisexample, the slave peripheral has an input setup and hold, and an output hold and
valid time relative to HCLK . The ARM966E-S has an input setup and hold, and an
output hold and valid relativeto CLK’ , the clock at the bottom of the clock tree. Clock
tree insertion must be used to position the HCLK to match CLK’ for optimal
performance.

Hierarchical clock tree insertion

If the ARM966E-S has clock tree insertion performed before embedding it, buffers are
added on input data to match the clock tree so that the setup and hold isrelative to the
top level CLK . Thisis guaranteed to be safe at the expense of extra buffersin the data
input path.

The HCLK domain AHB peripherals must still meet the ARM966E-S input setup and
hold requirements. Because the ARM966E-S inputs and outputs are now relative to
CLK, theoutputsdo appear comparatively later by the value of theinsertion delay. This
ultimately leads to lower AHB performance.

6-22
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Chapter 7
Coprocessor Interface

This chapter describesthe ARM966E-S pipelined coprocessor interface. It containsthe
following sections:

. About the coprocessor interface on page 7-2
. LDC/STC on page 7-4

. MCR/MRC on page 7-8

. Interlocked MCR on page 7-9

. CDP on page 7-10

. Privileged instructions on page 7-11

. Busy-waiting and interrupts on page 7-12.
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7.1 About the coprocessor interface

ARMI66E-S fully supports the connection of on-chip coprocessors through the
external coprocessor interface and supports all classes of coprocessor instructions.

Theinterface differs from the basic ARM9E-S coprocessor interface. To ease
integration of an external coprocessor, the interface from the ARM966E-S to the
coprocessor has been pipelined by a single clock cycle.

This ensures that ARM966E-S interface outputs, which otherwise arrive late in the
clock cycle, are driven out directly from registers to the external coprocessor. This
significantly eases the implementation task for an external coprocessor.

7.1.1  Synchronizing the external coprocessor pipeline

A coprocessor connected to the ARM 966E-S determines which instructionsit needs to
execute by implementing a pipeline follower in the coprocessor. Because each
instruction arrives from instruction memory (either from the I-SRAM or AHB
interface) it enters both the ARM9E-S pipeline and the coprocessor pipeline follower.
Becausetheinterfaceisitself pipelined, the coprocessor pipeline follower operates one
cycle behind the ARM9E-S, sampling the CPINSTR[31:0] output bus from the
ARM966E-S interface.

In order to hide the pipeline delay, a mechanism inside the interface block stalls the
ARMOE-S for acycle by internally modifying the coprocessor handshake signals
whenever an external coprocessor instruction is decoded. This allows the external
coprocessor to catch up with the ARM9E-S core.

After thisinitial stall cycle, the two pipelines can be considered synchronized. The
ARMO9E-S then informs the coprocessor when instructions move from Decode into
Execute, and whether the instruction has passed its condition codes and is to be
executed.

Note

Because the ARM966E-S hides the synchronization of the coprocessor pipeline
follower, its coprocessor handshake interfaceis similar to that of the native ARM9E-S.
Thisimplies that an ARM9E-S designed pipeline follower can interface to the
ARM966E-S without modification. The data path of the coprocessor differs however,
due to the ARM966E-S pipelined output data CPDOUT([31:0].

7-2
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7.1.2  External coprocessor clocking

The coprocessor data processing instruction (CDP) is used for coprocessor instructions
that do not operate on valuesin ARM registers or in main memory. One exampleis a
floating-point multiply instruction for a floating-point accelerator processor.

To enable coprocessors to continue execution of CDP instructions while the ARM9E-S
corepipelineisstaled (for instance while waiting for an AHB transfer to complete), the
coprocessor receives the free-running system clock CLK, and a clock enable signal
CPCLKEN. If CPCLKEN isLOW around therising edge of CLK thenthe ARM9E-S
core pipelineis stalled and the coprocessor pipeline follower must not advance.

This prevents any new instructions entering Execute within the coprocessor but allows
a CDP instruction in Execute to continue execution. The coprocessor is only stalled
when the current instruction |eaves Execute and new instructions are required from the
ARMO966E-S interface. This goes some way towards decoupling the external
coprocessor from the ARM9E-S memory interface.

There are three classes of coprocessor instructions:

. LDC/STC
. MCR/MRC
. CDP.

Examples of how a coprocessor executes these instruction classes are given in the
following sections:

. LDC/STC on page 7-4
. MCR/MRC on page 7-8
. CDP on page 7-10
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7.2 LDC/STC

Coprocessor

pipeline

CLK
CPINSTR[31:0]
nCPMREQ
CPPASS
CPLATECANCEL
CHSDE[1:0]

CHSEX[1:0]

CPDIN[31:0]
STC
CPDOUT[31:0]
LDC

TheLDCand STCinstructions are used respectively to transfer datato and from external
coprocessor registers and memory. In the case of the ARM966E-S, the memory can be
either tightly-coupled SRAM or AHB depending on the address range of the accessand
SRAM enable.

The cycle timing for these operationsis shown in Figure 7-1.

Execute | Execute | . Execute | Execute
“—G0) "‘ Go) "™ (Go) "‘ (AsT) ™

Decode Memory \ Write
e e -

= 4
———— | e
e e
-_—___"
e M S
ey e
—————

Figure 7-1 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

Aswith al other instructions, the ARM9E-S performs the main decode off therising
edge of the clock during the Decode stage. From this, the core commitsto executing the
instruction and so performs an instruction fetch. The coprocessor instruction pipeline
keeps in step with ARM9E-S core by monitoring n"CPM REQ, which isaregistered
version of the ARM9E-S core instruction memory request signal InMREQ.

At therising edge of CLK, if CPCLKEN isHIGH, and n\CPMREQ isLOW, an
instruction fetch is taking place, and CPINSTR[31:0] contains the fetched instruction
on the next rising edge of the clock, when CPCLKEN isHIGH.

7-4
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This means that:

. the last instruction fetched must enter the Decode stage of the coprocessor
pipeline

. the instruction in the Decode stage of the coprocessor pipeline must enter its
Execute stage

. the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline mus
not advance.

During the Execute stage, the condition codes are compared with the flags to determin
whether the instruction really executes or not. The o @PIRASS is asserted, HIGH,

if the instruction in the Execute stage of the coprocessor pipeline:

. is a coprocessor instruction

. has passed its condition codes.

If a coprocessor instruction busy-wai@?PASS s asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting,
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor
instruction.

Another outputCPLATECANCEL, cancels a coprocessor instruction when the
instruction preceding it caused a data abort. This is valid on the rising edg& afn

the cycle that follows the first Execute cycle of the coprocessor instructions. This is the
only cycle in whichCPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor
handshake signatSHSDE[1:0] or CHSEX[1:0Q]:

. If a new instruction is entering the Execute stage in the next cycle, it examines
CHSDE[1:0].
. If the currently executing coprocessor instruction requires another Execute

cycle, it examine€HSEX[1:0].
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7.2.1

Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT

WAIT

GO

LAST

If thereis no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARMOE-S takes the undefined instruction trap.

If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core must stall until the coprocessor can
catch up. Thisis known as the busy-wait condition. In this case, the
ARMOE-S processor core loopsin an IDLE state waiting for
CHSEX[1:0] to be driven to another state, or for an interrupt to occur.
If CHSEX[1:0] changesto ABSENT, the undefined instruction trap is
taken.

If CHSEX[1:0] changesto GO or LAST, the instruction proceeds as
described here.

If an interrupt occurs, the ARM9E-S processor is forced out of the
busy-wait state. Thisisindicated to the coprocessor by the CPPASS
signal going LOW. The instruction is restarted later and so the
coprocessor must not commit to the instruction (it must not change any
coprocessor state) until CPPASS is asserted HIGH, when the handshake
signalsindicate the GO or LAST condition.

The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires at |east another cycle of execution. Both
the ARM9E-S processor core and the coprocessor must also consider the
state of the CPPASS signal before actually committing to theinstruction.
For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still need to be
transferred. When only one more word is to be transferred, the
coprocessor drives the handshake signals with LAST.

During the Execute stage, the ARM9E-S processor core outputs the
addressfor the LDC/STC. Also inthiscycle, DnMREQ isdriven LOW,
indicating to the ARM966E-S memory system that a memory accessis
required at the data end of the device. The timing for the data on
CPDOUT and CPDIN is shown in Figure 7-1 on page 7-4.

An LDC or STC can be used for more than one item of data. If thisisthe
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycle LAST (LAST indicating that the next transfer is the final one). If
there is only one transfer, the sequence is [WAIT,[WAIT,...]], LAST.
LAST isaso usually driven for CDP instruction.

7-6
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Coprocessor Interface

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are

encoded.
Table 7-1 Handshake encoding

[2:0] Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST

Note

If an external coprocessor is not attached in the ARM966E-S embedded system, the
CHSDE[1:0] and CHSEX]1:0] handshake inputs must be tied off to indicate

ABSENT.

7.2.3  Multiple external coprocessors

If multiple external coprocessors are to be attached to the ARM966E-S interface, the
handshaking signals can be combined by ANDing bit1, and ORing hitO. In the case of
two coprocessors which have handshaking signals CHSDE1, CHSEX1 and CHSDE?2,

CHSEX2 respectively:

CHSDE[1] = CHSDE1[1] AND CHSDEZ2[1]
CHSDE[0] = CHSDE1[0] OR CHSDEZ2[(]
CHSEX[1] = CHSEX1[1] AND CHSEX2[1]
CHSEX][0] = CHSEX1[0] OR CHSEX2[(].

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved.
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7.3 MCR/MRC

These cycleslook very similar to STC/LDC. An example, with a busy-wait state, is
shown in Figure 7-2. Firss NCPM REQ isdriven LOW to denote that the instruction on
CPINSTR[31:0] is entering the Decode stage of the pipeline. This causes the
coprocessor to decode the new instruction and drive CHSDE[1:0]. In the next cycle
NCPMREQ isdriven LOW to denote that the instruction has now been issued to the
Execute stage. If the condition codes passes, and the instruction is to be executed, the
CPPASSsignal isdriven HIGH and the CHSDE[ 1: 0] handshake busisexamined (itis
ignored in al other cases).

| Fetch | Decode Execute Execute Memory Write |

<—>,<—>

Coprocessor ,<—>,<—> (WAIT) {AST) :
|

cak /N S S S

|

| |

| |

| | ‘ |
| | | |

CPINSTR[31:0] i J_MCRMRC PO( 90( P(

| | | |
! A ‘ |
|

|

|

|

|

|

|

|
|
pipeline |
|
|

nCPMREQ | \ [

/

CPPASS

\

CPLATECANCEL

X

CHSDE[1:0]

-1 1T T —1  —1T | |

CHSEX[1:0]

|
|
T
|
T
|
LAST XX Ignored X

1 Coproc to AR

CPDIN[31:0]
MRC

CPDOUTI[31:0]
MCR

ARM to copro

—

| |
L L
| |
‘ ‘
| |
| |
[ [
| |
| |
| |
T

| WAIT X
T 1
| |
\ \
\ \
L L
| |
‘ ‘
| |
| |
[ [
| |
| |

0y
X

Figure 7-2 MCR/MRC transfer timing with busy-wait

For any successive Execute cyclesthe CHSEX[1:0] handshake busis examined. When
the LAST condition is observed, the instruction is committed. In the case of aMCR, the
CPDOUT[31:0] busisdriven with the registered data. In the case of aMRC,
CPDIN[31:0] issampled at the end of the ARM9E-S core Memory stage and written
to the destination register during the next cycle.
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7.4 Interlocked MCR

Coprocessor

pipeline

CPINSTR([31:0]

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDIN[31:0]
MRC

CPDOUT[31:0]
MCR

If thedatafor aMCR operation is not available inside the ARM9E-S core pipeline during
its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or more
cyclesuntil the datais available. An example of this is where the register being
transferred is the destination from a preceding LDR instruction.

In this situation the MCRinstruction enters the Decode stage of the coprocessor pipeline,
and then remains there for anumber of cycles before entering the Execute stage. Figure
7-3 gives an example of an interlocked MCR that also has a busy-wait state.
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. . . .
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[ [ [

Figure 7-3 Interlocked MCR/MRC timing with busy-wait
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7.5 CDP

CDP instructions normally execute in asingle cycle. Like al the previous cycles,
NCPMREQ isdriven LOW to signal when an instruction is entering the Decode and
then the Execute stage of the pipeline:

. if the instruction really is to be executed, @BPASS signal is driven HIGH
during the Execute cycle

. if the coprocessor can execute the instruction immediately it drives
CHSDE[1:0] with LAST

. if the instruction requires a busy-wait cycle, the coprocessor drives
CHSDE[1:0] with WAIT and thenCHSEX][1:0] with LAST.

Figure 7-4 shows a cancelledP due to the previous instruction causing a Data Abort.

Decode Instruction

Coprocessor aborted

pipeline

|
|
|
|
CLK /N \
|
|
CPINSTR[31:0] }
|
|
|

nCPMREQ \

CPPASS

Execute | Memory
|

ate cancellea
| |
|
A A A
|
|

X

== N Tk

—

\

/

CPLATECANCEL

CHSDE[1:0] J_ tasT

X Ignored X

CHSEX[1:0]

\

B s ek il il Hh Mty b Sl

Figure 7-4 Late cancelled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute
by CPASS. In the following cycleCPLATECANCEL is asserted. This causes the
coprocessor to terminate execution of @@ instruction and for it to cause no state
changes to the coprocessor.
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7.6 Privileged instructions

The coprocessor restricts certain instructions for use in privileged modes only. To do
this, the coprocessor tracks the nCPTRANS output. Figure 7-5 shows how
NCPTRANS changes after a mode change.

Fetch | Decode Decode | Decode Execute Memory | Write
Coprocessor

|
|
pipeline }
l
|

ak /NS S S

CPINSTR[31:0]

/

nCPMREQ \

Old mode New mode

nCPTRANS

/ \

CPPASS

\ R

CPLATECANCEL

CHSDE[1:0]

|
|
|
l
|
|
i
f
|
|
;

| | |

| | |

[l [l [l

I I I

| | !

| | |

T T T

| | |

T T T

| | !

| | !

T T

| | |

L L I}

1 1 i X Ignored XX Ignored LAST X

| | | | | |

| | | | | |

I I I I I I

| | | | | |

| | | | | |

X Ignored K

CHSEX[1:0]

Figure 7-5 Privileged instructions

Thefirst two CHSDE[1:0] responses are ignored by the ARM9E-S because it is only
the final CHSDE[1:0] response, as the instruction moves from Decode into Execute,
that counts. This allows the coprocessor to change its response when nCPTRANS
changes.
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7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute
stage of the pipeline, the coprocessor drives WAIT onto CHSEX[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor might be interrupted while busy-waiting,
causing the instruction to be abandoned. Abandoning execution is done through
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait

cycle.
If it isHIGH, theinstruction must still be executed. If it is LOW, the instruction must
be abandoned.
Figure 7-6 shows a busy-waited coprocessor instruction being abandoned due to an
interrupt.
T O S e SR e S e SR
CPINSTR[31:0] i i J__mstR :50( :DO( :D( i i i i
e DR ) —
s I —
| | | | | | | | |
CPLATECANCEL i | | | 3 | J | |
| | | | | ‘ | | |
s
T s s s | S ST WY I

Figure 7-6 Busy-waiting and interrupts
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Chapter 8

Debug Support

This chapter describes the ARM966E-S debug interface. It contains the following
sections:

. About the debug interface on page 8-2

. Debug systems on page 8-4

. ARM966E-S scan chain 15 on page 8-7

. Debug interface signals on page 8-9

. ARMOE-S core clock domains on page 8-14

. Determining the core and system state on page 8-15.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:
. About the Embedded| CE-RT on page 8-16

. Disabling Embedded CE-RT on page 8-18

. The debug communi cations channel on page 8-19

. Monitor mode debug on page 8-24

. Debug additional reading on page 8-26.

ARM DDI 0186A

Copyright © ARM Limited 2000. All rights reserved. 8-1



Debug Support

8.1 About the debug interface

The ARM966E-S debug interface is based on |EEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation
of the terms used in this chapter and for a description of the TAP controller states.

The ARMOE-S processor core within the ARM966E-S contains hardware extensions
for advanced debugging features. These make it easier to devel op application software,
operating systems, and the hardware itself.

The debug extensions allow you to force the core into debug state. In debug state, the
core and ARM966E-S memory system are effectively stopped, and isolated from the
rest of the system. Thisisknown as halt mode operation and allowstheinternal state of
the ARMO9E-S core, ARM966E-S system, and external state of the AHB to be examined
while all other system activity continues as normal. When debug is complete, the
ARMOE-S restores the core and system state, and resumes program execution.

In addition, the ARM9E-S supports a real-time debug mode, where instead of
generating a breakpoint or watchpoint, an internal Instruction Abort or Data Abort is
generated. Thisisknown as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort
exception entry, Y ou can debug the ARM966E-S while allowing the execution of
critical interrupt service routines. The debug monitor program typically communicates
with the debug host over the ARM966E-S debug communication channel. Monitor
mode debug is described in Monitor mode debug on page 8-24.

8.1.1 Stages of debug

A request on one of the external debug interface signals, or onaninternal functional unit
known as the EmbeddedI CE-RT logic, forces the ARM9E-S into debug state. The
interrupts that activate debug are:

. a breakpoint (a given instruction fetch)

. a watchpoint (a data access)

. an external debug request.

The internal state of the ARM9E-S is examined using a JTAG-style serial interface,
allowing instructions to be serially inserted into the core pipeline without using the
external data bus. For example, when in debug st&fmra Multiple (STM can be
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S
registers. This data can be serially shifted out without affecting the rest of the system.

8-2
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8.1.2 Clocks

The system and test clocks must be synchronized externally to the ARM966E-S
macrocell. The ARM Multi-1CE debug agent directly supportsone or more coreswithin
an ASIC design. To synchronize off-chip debug clocking with the ARM966E-S
macrocell requires a three-stage synchronizer. The off-chip device (for example,
Multi-1CE) issues aTCK signal, and waits for the RTCK (Returned TCK) signal to
come back. Synchronization is maintained because the off-chip device does not
progress to the next TCK until after RTCK is received.

Figure 8-1 shows this synchronization.

DBGNnTRST
DO 1 DBGTDO
N
RTCK j \ DBGTCKEN,, |
\[ ‘J
)
TCK N J
1> D Q D Q D Q L/
< ?
[ [ ul
CLK | [ &
i (<]
TMS [~ TCK Synchronizer > o DBGTMS E
<
CLK:
TDI N b qDBGTDI |
CLK
Multi-ICE
interface Input sample and hold
pads _ CLK |

Figure 8-1 Clock synchronization
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8.2 Debug systems

The ARM966E-S forms one component of a debug system that interfaces from the
high-level debugging performed by you to the low-level interface supported by the
ARMO966E-S. Figure 8-2 shows atypical debug system.

Debug

host Host computer running ARM or third party toolkit

>

Protocol

For example, Multi-ICE
converter

>

Debug

target Development system containing ARM966E-S

Figure 8-2 Typical debug system

A debug system typically has three parts:
. The debug host

. The protocol converter

. ARM966E-S debug target.

The debug host and the protocol converter are system-dependent.

8.2.1 The debug host

The debug host is a computer that is running a software debugger, sunischshe
debug host allows you to issue high-level commands such as setting breakpoints or
examining the contents of memory.
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8.2.2  The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM966E-S
development system. The messages broadcast over this connection must be converted
to the interface signals of the ARM966E-S. The protocol converter performsthe
conversion.

8.2.3 ARMO966E-S debug target

The ARMO9E-S core within the ARM966E-S has hardware extensions that ease
debugging at the lowest level. The debug extensions:

. allow you to stall the core from program execution
. examine the core internal state

. examine the state of the memory system

. resume program execution.

The following major blocks of the ARM9E-S debug model are shown in Figure 8-3 on
page 8-6.

ARMOYE-S CPU core
This includes hardware support for debug.

EmbeddedI CE-RT logic
This is a set of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is describAldut
the EmbeddedI CE-RT on page 8-16.

TAP controller This controls the action of the scan chains using a JTAG serial
interface.
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ARMYE-S _
EmbeddedICE-RT Scan chain 1 ARMOE-S

Scan chain 2 b——
A

A

ARMO9E-S
TAP controller

Figure 8-3 ARM9E-S block diagram

The ARMOYE-S debug model is extended within the ARM966E-S by the addition of
scan chain 15. Thisis used for debug access to the CP15 register bank, to allow the
system state within the ARM966E-S to be configured while in debug state, for instance
to enable or disable the SRAM before performing a debug load or store.

Therest of this chapter describes the ARM9E-S and ARM966E-S hardware debug
extensions.

8-6
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8.3 ARMO966E-S scan chain 15

Scan chain 15 is provided to allow debug access to the CP15 register bank, to allow the
system state within the ARM966E-S to be configured while in debug state.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown
in Table 8-1.

Table 8-1 Scan chain 15 addressing mode bit order

Bits Contents

38 Read =0, write=1
37:32 CP15 register address
310 CP15 register value

The CP15 register address field of scan chain 15 provides debug access to the CP15
registersis shown in Table 8-2.

Table 8-2 Mapping of scan chain 15 address field to CP15 registers

Bit [38] Bits[37:32] Bits[31:30] CP15 reg number Meaning

0 000000 XX (60] Read ID register

0 000010 XX C1 Read control register

1 000010 XX Cl Write control register

0 111111 00 C15 Read BIST control register
1 111111 00 C15 Write BIST control register
0 111110 01 C15 Read IBIST address

1 111110 01 C15 Write IBIST address

0 111111 01 C15 Read IBIST General

1 111111 01 C15 Write IBIST genera

0 111110 11 C15 Read DBIST address

1 111110 11 C15 Write DBIST address

0 111111 11 C15 Read DBIST general

1 111111 11 C15 Write DBIST genera

ARM DDI 0186A
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The scan address decode overloads the existing functional decode logic that is used to
access the CP15 registers during MCR and MRC instructions (see ARM966E-S CP15
registers on page 2-4.

The decode overload is performed as the follows:

Bit [37] Corresponds to Opcode 1 of an MCR or MRC instruction.

Bit [36:33] Correspond to the CRn field of an MCR or MRC instruction.

Bit [32] Correspondsto bit 0 of the Opcode 2 field of an MCR or MRCinstruction.
Bits[2:1]  Of opcode 2 are tied to 00 during debug state.

The debug scan chain, SC15, only alows access to bit[0] of the OpCode2 field by
default. To allow accessto the Address and General BIST registers within CP15
Register 15, bits [31:30] of SC15 are overloaded as shown in Table 8-2. There are
certain restrictions with the overloading; when writing to the BIST General registers
(i.e. writing anew seed), bitg[31:30] of the seed are restricted to those values shown in
Table 8-2. These bits are not used in the BIST Address registers and so there are no
debug restrictions when accessing these registers.

The ability to control the ARM966E-S system state through scan chain 15 provides
extradebug visibility. For example, if the debugger wishes to compare the contents of
an address that maps to the I-SRAM or D-SRAM, with the same address in external
memory, the debugger can:

1. Load from the address with the SRAM enabled to return the SRAM data.
2.  Disablethe SRAM.

3. Perform the load again. The second load now accesses the AHB because the
SRAM is disabled, returning the value from AHB memory.

8-8
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8.4 Debug interface signals

There are four primary external signals associated with the debug interface:

. DBGIEBKPT, DBGDEWPT, andEDBGRQ are system requests for the
ARMO966E-S to enter debug state

. DBGACK is used by the ARM966E-S to flag back to the system that it is in
debug state.

8.4.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply
a breakpoint to that instruction, the breakpoint signal must be asserted by the end of th
same cycle. This is shown in Figure 8-4 on page 8-10.

You can build External logic, such as additional breakpoint comparators, to extend the
breakpoint functionality of the EmbeddedICE-RT logic. These outputs must be applied
to theDBGIEBKPT input. This signal is ORed with the internally-generated
breakpoint signal before being applied to the ARM9E-S core control logic. The timing
of the input makes it unlikely that data-dependent external breakpoints are possible.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of th
breakpointed instruction. The latched breakpoint signal forces the processor to start th
debug sequence.

ARM DDI 0186A
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8.4.2

CLK

IA[31:1]

INSTR[31:0]

DBGIEBKPT

DBGACK

Figure 8-4 shows breakpoint timing.

Ddebug Edebug1 Edebug2
F1 D1 E1 M1 w1
F2 D2 E2 M2 W2
F1 D1 E1 M1 w1
\ \ \ \ \ \ \ [
X X
[h) [ 5 ) [T\ {57} )
'/ £ ./ P T/
[ T\
/7

Figure 8-4 Breakpoint timing

Breakpoints and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint isignored. (If thereisaprefetch abort,
instruction data might have been invalid, the breakpoint might have been
data-dependent, and as the data might be incorrect, the breakpoint might have been
triggered incorrectly.)

SW and undefined instructions are treated in the same way as any other instruction that
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SW
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt is being serviced, the execution flow is returned to the original
program. This means that the instruction that was previously breakpointed is fetched
again, and if the breakpoint is still set, the processor enters debug state when it reaches
the Execute stage of the pipeline.

When the processor enters halt mode debug state, it isimportant that further interrupts
do not affect the instructions executed. For this reason, as soon as the processor enters
stop-mode debug state, interrupts are disabled, although the state of the | and F bitsin
the Program Status Register (PSR) are not affected.

8-10
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8.4.3  Watchpoints

F1

Entry into debug state following a watchpointed memory accessisimprecise. Thisis
necessary because of the nature of the pipeline.

External logic, such as external watchpoint comparators, can be built to extend the
functionality of the EmbeddedI CE-RT logic. Their output must be applied to the
DBGDEWPT input. This signal is simply ORed with the internally-generated
Watchpoint signal before being applied to the ARM9E-S core control logic. The
timing of the input makes it unlikely that data-dependent external watchpoints are
possible.

After awatchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Where thisinstruction is asingle-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following awatchpointed load in this case is
shown in Figure 8-5.

D1 E1 M1 W1

Flidr Didr Eldr Midr Widr
FDp DDp EDp MDp WDp
F5 D5 E5 M5 W5
Ddebug Edebug1 Edebug2

Clk N\
INMREQ A\ A\ A\ A\ A\ i
INSTR[31:0]  ——(f } {2 {L0R} (e} {5 {6} {1 {3}
DA[31:0] X X
WDATA[31:0] X Y
RDATA[31:0] an
DBGDEWPT [T\

DBGACK

—

Figure 8-5 Watchpoint entry with data processing instruction

Note

Although instruction 5 enters the Execute stage, it is not executed, and thereis no state
update as aresult of thisinstruction. When the debugging session is complete, normal
continuation involves areturn to instruction 5, the next instruction in the code sequence
to be executed.
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Theinstruction following the instruction that generated the watchpoint might have
modified the Program Counter (PC). If this happens, it is not possible to determine the
instruction that caused the watchpoint. A timing diagram showing debug entry after a
watchpoint where the next instruction is a branch is shown in Figure 8-6. However, it
is always possible to restart the processor.

When the processor enters debug state, the ARM9E-S coreisinterrogated to determine
its state. In the case of awatchpoint, the PC contains avalue that isfiveinstructions on
from the address of the next instruction to be executed. Therefore, if on entry to debug
state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the processor
restarted, execution flow returns to the next instruction in the code sequence.

Fldr Didr Eldr Midr Widr
FB DB EB MB wB
FT DT ET
Ddebug Edebug1 Edebug2
ok o\
INMREQ A\ A\ A\ A\ A\ A\ JA\ i
IA[31:1] XX XX )i XX X XX XX
INSTR[31:0] ~ ——{LbR} (8 ) ) ) {Tpe) {(Tt8) {T}c)
DA[31:0] Y )(
WDATA[31:0] X X
RDATA([31:0] {1
DBGDEWPT [ T\
DBGACK [

Figure 8-6 Watchpoint entry with branch
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8.4.4  Watchpoints and exceptions

If thereisan abort with the dataaccess aswell asawatchpoint, the watchpoint condition
islatched, the exception entry sequence performed, and then the processor enters debug
state. If there is an interrupt pending, again the ARM9E-S allows the exception entry
seguence to occur and then enters debug state.

8.4.5 Debug request

A debug request can take place through the Embeddedl CE-RT logic or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
enters debug state when the instruction at the Execute stage of the pipelineis completed
(when Memory and Write stages of the pipeline have completed). Whilewaiting for the
instruction to finish executing, no more instructions are issued to the Execute stage of
the pipeline.

Caution
Asserting EDBGRQ in monitor mode results in unpredictable behavior.

8.4.6  Actions of the ARM9YE-S in debug state

When the ARMOE-S isin debug state, both memory interfacesindicate internal cycles.
Thisensuresthat both thetightly-coupled SRAM within the ARM966E-S and the AHB
interface are quiescent, allowing the rest of the AHB system to ignore the ARM9E-S
and function as normal. Sincetherest of the system continues operation, the ARM9E-S
ignores aborts and interrupts.

ThenRESET signal must be held stable during debug. If the system appliesreset to the
ARMO966E-S (NRESET isdriven LOW), the ARM9E-S changes state without the
knowledge of the debugger.

ARM DDI 0186A
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8.5 ARMO9E-S core clock domains

The ARM966E-S single clock, CLK, isqualified by two clock enables:
. SYSCLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatior§Y SCLKEN conditionsCLK to clock the core. When the
ARMO966E-S is in debug statBBGTCKEN conditionsCLK to clock the core.
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8.6 Determining the core and system state

When the ARM966E-S isin debug state, you can examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the Embeddedl CE-RT debug status register. When bit 4 is HIGH, the core
enters debug from Thumb state.
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8.7 About the EmbeddedICE-RT

The ARM9E-S Embedded| CE-RT logic providesintegrated on-chip debug support for
the ARMOE-S core within the ARM966E-S.

Embeddedl CE-RT is programmed serially using the ARM9E-S TAP controller. Figure
8-7 illustrates the relationship between the core, Embedded CE-RT, and the TAP
controller, showing only the signals that are pertinent to Embedded| CE-RT.

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRNG[1:0]

Processor EmbeddedICE-RT DBGACK=

DBGIEBKPT

A

EDBGRQ

A

DBGDEWPT

A

DBGEN

A

DBGTCKEN

DBGTMS

DBGTDI
DBGTDO >

AAA

TAP

CLK

DBGNTRST

Figure 8-7 The ARM9E-S, TAP controller and EmbeddedICE-RT

The Embeddedl CE-RT logic comprises:

. two real-time watchpoint units

. two independent registers, the debug control register and the debug status
register

. debug communications channel.
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The debug control register and the debug status register provide overall control of
Embedded| CE-RT operation.

Y ou can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into Embeddedl CE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note
Any bit can be masked so that its value does not affect the comparison.

Each watchpoint unit can be configured to be either a watchpoint (monitoring data
accesses) or abreakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent.

ARM DDI 0186A
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8.8 Disabling EmbeddedICE-RT
Y ou can disable EmbeddedI CE-RT by setting the DBGEN input LOW.

——— Caution
Hard-wiring the DBGEN input LOW permanently disables debug access.

When DBGEN isLOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to
the core, and DBGACK from the ARM966E-Sis always LOW.
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8.9 The debug communications channel

The ARM9E-S Embeddedl CE-RT logic contains a communications channel for
passing information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel comprises:
. a 32-bit communications data read register
. a 32-bit wide communications data write register

. a 6-bit wide communications control register for synchronized handshaking
between the processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE-RT logic register
map and are accessed from the processor MsiR@ndMRC instructions to
coprocessor 14.

In addition to the communications channel registers, the processor can access a 1-bit
debug status register for use in the real-time debug configuration.
8.9.1 Debug communication channel registers

CP14 contains four registers, that have the following register allocations in
coprocessor 14 as shown in Table 8-3.

Table 8-3 Coprocessor 14 register map

Register name Register number  Notes
Communications channel status Cco Read-only
Communications channel data read C1 For reads
Communications channel datawrite C1 For writes
Communications channel monitor mode debug Cc2 Read or write
status
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8.9.2 Debug communications channel status register

The debug communications channel status register is read-only. It controls
synchronized handshaking between the processor and the debugger. The debug
communications channel status register is shown in Figure 8-8.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

o/0j1/10/0/0/0/O|O|O|OfO/O|O|O|O|O|OO|O|O|0O|O|O|O[O0O|O|O0|O0|W|R

Figure 8-8 Debug communications channel status register

The function of each register bit is described here:

Bits 31:28 Contain afixed pattern that denotes the EmbeddedI CE-RT
version number (in this case 0011).

Bits 27:2 Arereserved.

Bit 1 Denotes whether the communications data write register is

available (from the viewpoint of the processor).

If, from the viewpoint of the processor, the communications data
write register is free (W=0), new data can be written.

If the register is not free (W=1), the processor must poll until
W=0.

From the viewpoint of the debugger, when W=1, new datais
written that can be scanned out.

Bit 0 Denotes whether there is new data in the communications data
read register.
If, from the viewpoint of the processor, R=1, there is some new
data that can be read using an MRC instruction.
From the viewpoint of the debugger, if R=0, the communications
dataread register isfree, and new data can be placed there through
the scan chain. If R=1, this denotes that data previously placed
there through the scan chain is not collected by the processor, and
so the debugger must wait.

From the viewpoint of the debugger, the registers are accessed using the scan chain in
the usual way. From the viewpoint of the processor, these registers are accessed using
coprocessor register transfer instructions.
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Y ou must use the following instructions:

VMRC p14, 0, Rd, cO, cO

This returns the debug communications control register into Rd.

MCR p14, 0, Rn, cl1, cO

Thiswrites the value in Rn to the communications data write register.
VMRC p14, 0, Rd, c1, cO

This returns the debug data read register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data using SW instructions when in Thumb state.

8.9.3 Communications channel monitor mode debug status register

The coprocessor 14 debug status register is provided for use by a debug monitor when
the ARMOE-Sis configured into monitor mode.

The coprocessor 14 debug statusregister isal-bit wideread or write register having the
format shown in Figure 8-9.

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

00/00/000OO0OOO0OOOOO|O/O|O|O|OfO|O|O|O|O|O|O|O|O|O]|O

DbgAbt bit J

Figure 8-9 Coprocessor 14 debug status register format

Bit O of the register, the DbgAbt bit, indicates whether the processor took a Prefetch or
Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core
takes a Prefetch Abort as aresult of abreakpoint or watchpoint, then the bit isset. If on
aparticular instruction or datafetch, both the debug abort and external abort signalsare
asserted, the external abort takes priority and the DbgAbt bit isnot set. Y ou can read or
write the DbgAbt bit by means of MRC or MCR instructions.

This bit can be used by a real-time debug aware abort handler. This examines the
DbgAbt bit to determine whether the abort is externally or internally generated. If the
DbgAbt bit is set, the abort handler initiates communication with the debugger over the
communications channel.
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8.9.4 Communications via the communications channel

M essages can be sent and received using the communications channel as described in:
. Sending a message to the debugger
. Receiving a message from the debugger

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the
communications data write register is free for use by finding out whether the W bit of
the debug communications control register is clear.

The processor reads the debug communications control register to check status of the
W bit.

. If W bit is clear, the communications data write register is clear.

. If the W bit is set, previously written data is not read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14.
Because the data transfer occurs from the processor to the communications data write
register, the W bit is set in the debug communications control register.

The debugger sees both the R and W bits when it polls the debug communications
control register through the JTAG interface. When the debugger sees that the W bit is
set, it can read the communications data write register, and scan the data out. The action
of reading this data register clears the debug communications control register W bit. At
this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug
communications control register.

. if the R bit is LOW, the communications data read register is free, and data can
be placed there for the processor to read

. if the R bit is set, previously deposited data is not yet collected, so the debugger
must wait.

When the communications data read register is free, data is written there using the
JTAG interface. The action of this write sets the R bit in the debug communications
control register.
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The processor pollsthe debug communications control register. If the R bit is set, there
is data that can be read using an MRC instruction to coprocessor 14. The action of this
load clearsthe R hit in the debug communi cations control register. When the debugger

polls this register and sees that the R bit is clear, the data is taken, and the process can
be repeated.
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8.10 Monitor mode debug

The ARM9E-S within ARM966E-S contains logic that allows the debugging of a
system without stopping the core entirely. This allows the continued servicing of
critical interrupt routines while the core is being interrogated by the debugger. Setting
bit 4 of the debug control register enables the real-time debug features of ARM9E-S.
When this bit is set, the EmbeddedI CE-RT logic is configured so that a breakpoint or
watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort or Data
Abort vectors respectively. When the ARM is configured for real-time debugging you
must be aware of the following restrictions:

. Breakpoints or watchpoints might not be data dependent. No support is provided
for use of the range and chain functionality. Breakpoints or watchpoints can only
be based on:

— instruction or data addresses

— external watchpoint conditioneDBGEXTERN)

— user or privileged mode accen{T RANS andInTRANS)

— read or write access (watchpoints)

— access size (breakpoint3,BI T, and watchpointd) M AS[1:0]).

. The single-step hardware is not enabled.
. External breakpoints and watchpoints are not supported.

. The vector catching hardware can be used but must not be configured to catch
the Prefetch or Data Abort exceptions.

——— Caution

No support is provided to mix halt mode and monitor mode debug functionality. When
the core is configured into the monitor mode, asserting the exEDBGRQ signal
results in unpredictable behavior. Setting the inteBRBGRQ bit results in
unpredictable behavior.

When an abort is generated by the monitor mode it is recorded in the debug status
register in coprocessor 14 (geemmunications channel monitor mode debug status
register on page 8-21).

Because the monitor mode debug does not put the ARM9E-S into debug state, it is
necessary to change the contents of the watchpoint registers while external memory
accesses are taking place, rather than being changed when in debug state. If the
watchpoint registers are written to during an access, all matches from the affected
watchpoint unit using the register being updated are disabled for the cycle of the update.
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If there is a possibility of false matches occurring during changes to the watchpoint
registers, caused by old datain some registers and new data in others, then you must:

1.  Disablethat watchpoint unit using the control register for that watchpoint unit.
2. Changethe other registers.

3. Re-enable the watchpoint unit by rewriting the control register.
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8.11 Debug additional reading

A more detailed description of the ARM9E-S debug features and JTAG interfaceis
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.
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Chapter 9
Embedded Trace Macrocell Interface

This chapter describes the ARM966E-S Embedded Trace Macrocell (ETM) interface.
It contains the following sections:

. About the ETM interface on page 9-2
. Enabling the ETM interface on page 9-3.
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9.1

About the ETM interface

The ARM966E-S supports the connection of an external Embedded Trace Module
(ETM) to provide real time code tracing of the ARM966E-S in an embedded system.

The ETM interfaceis primarily one way. In order to provide code tracing, the ETM
block must be able to monitor various ARM9E-S inputs and outputs. The required
ARMO9E-S inputs and outputs are collected and driven out from the ARM966E-S from

the ETM interface registers, as shown in Figure 9-1.

ETM

ARM966E-S

To/from
ARMO966E-S
logic

ETMEN

A

FIFOFULL

CLK

EN M

interface registers

I~

nRESET

N

T A A A A A T

\ 4

-
-t

ARMOE-S

» ) ARMOIGGE-S

To/from

logic

Figure 9-1 ARM966E-S ETM interface

The ETM interface outputs are pipelined by asingle clock cycleto provide early output
timing and to isolate any ETM input load from the critical ARM966E-S signals. The

latency of the pipelined outputs does not effect ETM trace behavior, as all outputs are
delayed by the same amount.
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9.2 Enabling the ETM interface

The ETM interface on the ARM966E-Sis enabled by thetop-level pin ETMEN. When
thisinput is HIGH, the ETM interface is enabled and the outputs are driven so that an
external ETM can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their
last value before theinterface was disabled. At reset, all ETM interface outputs are reset
LOW.

The ETMEN input is usually driven by the ETM, and driven HIGH oncethe ETM is
programmed using its TAP controller.

Note

If an ETM isnot used in an embedded ARM966E-S design, the ETM EN input must be
tied LOW to save power.
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9.3 ARMO966E-S trace support features

9.3.1

9.3.2

9.3.3

FIFOFULL

The trace support uses the following features:
. FIFOFULL

. Register 15, trace control register

. Register 1, Trace process identifier.

The signal FIFOFULL, is an input to the ARM966E-S driven by the ETM9.
Whenever the programmed upper watermark of the ETM FIFO is filldeDFULL

is asserted. The ARM966E-S usdsOFULL to stall the ARM9E-S core, preventing
trace loss. The ARM9E-S core remains stalled B#OFULL is deasserted.

The ARM966E-S can only stall on instruction boundaries enabling any current AHB
transfers to complete. You must take this into consideration when programming the
ETM FIFO watermark. If the current instruction is eitheémDMor aSTM the FIFO

might have to accept up to 16 words after the assertiBhF@FULL .

Note
UsingFIFOFULL to stall the ARM966E-S affects real-time operating performance.

Register 15, trace control register

The trace control register allows the masking of interrupts during trace. This register
allowsnlRQ andnFIQ interrupt priority ovelFl FOFULL to be programmed. The
operation of this register is describedReyister 15, Test on page 2-9.

Register 1, Trace process identifier

The ARM966E-S contains a trace process identifier register that allows Real-time
Trace tools to identify the currently executing process in multi-tasking environments.
The operation of this register is describedRagister 13, Trace process identifier on

page 2-9.
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Chapter 10
Test Support

Thischapter describesthe test methodol ogy employed for the ARM966E-S synthesi zed
logic and tightly-coupled SRAM. It contains the following sections:

. About the ARM966E-S test methodology on page 10-2
. Scan insertion and ATPG on page 10-3
. BIST of tightly-coupled SRAM on page 10-4.
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10.1 About the ARM966E-S test methodology

Toachieveahigh level of fault coverage, scan insertion and ATPG techniques are used
on the ARM9E-S core and ARM966E-S control logic as part of the synthesis flow.
BIST is used to provide high fault coverage of the compiled SRAM.
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10.2 Scan insertion and ATPG

Thistechniqueis covered in detail in the ARM966E-S I mplementation Guide. Scan

insertion requires that all register elements are replaced by scannable versions that are
then connected up into a number of large scan chains. These scan chains are used to set
up data patterns on the combinatorial logic between the registers, and capture the logic
outputs. Thelogic outputs arethen scanned out whilethe next datapatternis scanned in.

Automatic Test Pattern Generation (ATPG) tools are used to create the necessary scan
patterns to test the logic, when the scan insertion has been performed. This technique
enables very high fault coverage to be achieved for the standard cell combinatorial
logic, typically in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized
design, due to the larger scan register elements and the serial routing between them.
However, to minimize these effects, the scan insertion is performed early in the
synthesis cycle and the design re-optimized with the scan elementsin place.

10.2.1 ARMBO966E-S INTEST wrapper

To facilitate testing of the shadow logic between the ARM966E-S scan chains and the
scan chainsin an OEM ASIC, a synthesis option allows an INTEST wrapper to be
inserted into the ARM966E-S. The INTEST wrapper is a scan chain around the
boundary of the ARM966E-S, connecting to all input and output pins.

Note
. Shadow logic is logic that is not ordinarily tested.
. The INTEST wrapper is only required for embedded ARM966E-S.

. The order of this scan chain is predetermined and must be maintained through
synthesis and place and route of the macrocell.
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10.3 BIST of tightly-coupled SRAM

Adding asimple memory test controller allows an exhaustive test of the memory arrays
to be performed. BIST test is activated by an MCRto the CP15 BIST control register and
can be run on one or both of the I-SRAM and D-SRAM simultaneously.

When aBIST test is performed on an SRAM, the functional enable for that SRAM is
automatically disabled, forcing all memory accessesto that SRAM address space to go
to the AHB. This enables BIST tests to be run in the background. For instance, the
instruction SRAM can be BIST tested, while code is executed over the AHB.

Full programmer control over the BIST mechanism is achieved through five registers
that are mapped to CP15 register 15 address space. For details of the MCR or MRC
instructions used to access these registers, see Register 15, Test on page 2-9. Accessto
these registersis also available in debug mode, see ARM966E-S scan chain 15 on

page 8-7.

10.3.1 BIST control register

This controls the operation of the SRAM memory BIST. Beforeinitiating a BIST test,
aMCRisfirst performed to the BIST control register to set up the size of the test and
enable the SRAM to betested. A further MCRis required to initiate the test.

The current status of a BIST test and result of a completed test can be accessed by
performing an MRCto the BIST control register. Thisreturnsflagsto indicate that atest
is:

. running

. paused

. failed

. completed.

In addition to returning the state for the size of the test and SRAM enable status, having
completed a BIST test, the BIST enable must first be cleared by writing to the BIST
control register if the SRAM is to be used by you for functional operation. The SRAM
must then be re-enabled by writing to CP15 register 1. This is necessary as the BIST test
enable automatically clears the functional enable.
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Note

Clearing the functional SRAM enable when BIST is enabled prevents the programmer
from trying to run from tightly coupled SRAM following a BIST test, without having
first reprogrammed the SRAM. Thisis necessary as the BIST algorithm corrupts all
tested SRAM locations.

10.3.2 BIST address and general registers

The BIST control register enables standard BIST operations to be performed on each
SRAM and the size of the test to be specified. Additional registers are required
however, to provide the following functionality:

. testing of the BIST hardware

. changing the seed data for a BIST test

. providing a nonzero starting address for a BIST test
. peek and poke of the SRAM

. returning an address location for a failed BIST test

. returning failed data from the failing address location.

This additional functionality is most useful for debugging faulty silicon during
production test. The exception to this is the start address for a BIST test. It is possible
that BIST of the SRAM is performed periodically during program execution, the
memory being tested in smaller pieces rather than in one go. This requires a start
address that is incremented by the size of the test each time a test is activated.

Table 10-1 and Table 10-2 on page 10-6 show how the registers are used. The paus
bits from the BIST control register provide extra decode of these registers.

Table 10-1 Instruction BIST address and general registers

BIST register IpBaIUSSTe Read Write

IBIST address register 0 IBIST fail address IBIST start address
IBIST address register 1 IBIST fail address IBIST peek/poke address
IBIST general register 0 IBIST fail data IBIST seed data

IBIST general register 1 IBIST peek data IBIST poke data

ARM DDI 0186A
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Table 10-2 Data BIST address and general registers

BIST register gusge Read Write

DBIST address register 0 DBIST fail address DBIST start address
DBIST address register 1 DBIST fail address DBIST peek/poke address
DBIST general register 0 DBIST fail data DBIST seed data

DBIST generd register 1 DBIST peek data DBIST poke data

10.3.3 Pause modes
The suggested production test sequence for the SRAM is:
1.  Test each SRAM using afull test.
2. Testthe BIST hardware for each SRAM.

To allow testing of the BIST hardware, a pause mechanism enablesthe BIST test
to be halted and data within the SRAM to be corrupted. The sequence for thisis:

a  Writing the address for the location to be corrupted with a MCR to the
relevant BIST address register.

Writing the corrupted data using a MCR to the BIST general register.
Restarting the test by an MCR to the BIST control register.

d.  Checking that the corrupted data causes the test to fail by reading the
failed address and data from the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the
pause bit also controls the progression of the BIST algorithm as follows:

. Auto pause
. User pause on page 10-7

Auto pause

If the pause bit is set in the BIST control register before the test is activated, the test runs
in auto pause mode. The BIST test pauses at predetermined points of the BIST
algorithm, for instance when the algorithm has reached the top or the bottom of the
memory array being tested.
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The programmer can poll the BIST control register to detect when atest has paused (the
running flag is LOW). Data can then be corrupted as detailed above, before restarting
the BIST test.

User pause

If the pause bit isclear when thetest is activated, the test isrun in user pause mode. The
BIST algorithm is paused by an MCR to the BIST control register, setting the pause bit
for the SRAM being tested. The SRAM contents are then corrupted as previously. This
stopsthe BIST algorithm at apotentially unknown point, resulting in the possibility that
the corrupted data is overwritten by the BIST algorithm and therefore not cause a test
to fail.

Note

User pause mode is provided for production test debugging to shorten atest by pausing
the algorithm early. The auto pause mechanism is recommended to provide or BIST
hardware testing for all other occasions.
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Chapter 11
Instruction cycle timings

This chapter describestheinstruction cycletimingsfor the ARM966E-S. It containsthe
following sections:

. Introduction to instruction cycle timings on page 11-2
. When stall cycles do not occur on page 11-3

. Tightly-coupled SRAM cycles on page 11-4

. AHB memory access cycles on page 11-6

. Interrupt latency calculation on page 11-10
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11.1 Introduction to instruction cycle timings

The ARM9E-S corewithin the ARM966E-Simplements a pipelined architecture where
several instructionsin different pipeline stages overlap. The instruction cycle timing
tables in the ARM9E-S Technical Reference Manual show the number of cycles
required by an instruction, once it has reached the execute stage of the ARM9E-S core
pipeline.

Theinstruction cycle timing numbers quoted in the ARM9E-S Technical Reference
Manual assume that the ARM9E-Sis permanently enabled with the CL KEN input tied
HIGH. Thisimpliesthat both instruction and data memory connected to the ARM9E-S
are able to perform zero wait state responses to all accesses.

In a system such as the ARM966E-S, the CLKEN input to the ARM9E-S core might
be pulled LOW to stall the processor until the memory system is ableto respond to the
access. These stall cycles must be taken into account when calculating the
ARMO966E-S instruction cycle timings.

Stall cycles are introduced by the ARM966E-S system controller in the following
circumstances:

. the internal SRAM cannot always be accessed in a single cycle
. the access requires an AHB transfer
. the write buffer is full or being drained.

This chapter describes the cycle counts for both normal operation and the above
circumstances.

11-2
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11.2 When stall cycles do not occur

Before describing the various stall cycle scenarios, it is useful to consider the
circumstances where the ARM9E-S core can run within the ARM966E-S with no stall
cyclesintroduced by the system controller. When thisis the case, the ARM966E-Sis
running at peak efficiency and the instruction cycles exactly match those quoted in the
ARMOE-S Technical Reference Manual.

The fundamental requirement for no stall cyclesisthat the1-SRAM is enabled and the
necessary instructions have been previously programmed into it. Additionaly, if the
D-SRAM isenabled, it can be accessed for reads without incurring astall penalty, even
if the I-SRAM is being simultaneously accessed for an instruction fetch.

When awrite is performed, the access can be zero stall if the write buffer is used and
thereisspaceavailable. If thewriteistothe D-SRAM, thewriteisasingle cyclein most
circumstances, and any store multipleto the D-SRAM can be executed as one write per
cycle. Aslong asthese writes are not to the I-SRAM address space, instruction fetches
from the I-SRAM can be performed simultaneously without incurring a stall penalty.

To maximize performance, it is therefore desirable to ensure that frequently accessed
codeis preloaded into the I-SRAM and that data accesses map to the D-SRAM address
space. It isalso advisableto enable the write buffer and use bufferable areas of memory
where possible, when AHB writes are performed.

Note

If the datainterface of the ARM9E-S core accesses the I-SRAM memory, in most cases
stall cyclesare incurred. An example of where thistype of accessis unavoidable, isthe
fetching of inline code literals from the I-SRAM.
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11.3 Tightly-coupled SRAM cycles

This section describes the stall cycle counts for accesses to one or both of the SRAMSs.
The circumstances where the internal tightly-coupled SRAM can stall are detailed in

SRAM stall cycles on page 4-3.

Table 11-1 liststhe stall cyclesincurred when accessing the [-SRAM. In most casesthe
data accesses are to the D-SRAM so the stall penalties listed are not incurred.

Table 11-1 I-SRAM access

Instruction sequence Stalls Comment

Single instruction fetch 0 Assuming no data interface access to I-SRAM
Sequential instruction fetch 0 Assuming no data interface accessto I-SRAM
LDR, no instruction fetch 0 Assuming no previous |-SRAM store

LDR, simultaneous 1 Simultaneous instruction fetch request causes stall
instruction fetch of LDR for 1 cycle

LDM instruction fetchin 1 Simultaneous instruction fetch request at end of
paralel with fina load L DM causes stall

STR, noinstruction fetch 0 Assuming no previous ISRAM store

STR simultaneous 2 Two cycle write performed prior to instruction fetch
instruction fetch

STRfollowed by 1 Stall occurs due to second cycle of store
instruction fetch

STRfollowed by 1 Stall occurs due to second cycle of store
simultaneous, instruction

fetch LDR

STRfollowed by 2 Stall due to second cycle of second store plus
simultaneous instruction instruction fetch request

fetch, STR

STRfollowed by LDR/ 1 Stall due to second cycle of store

STR, noinstruction fetch

STM instruction fetch in 2 Simultaneous instruction fetch request must wait

paralel with fina store

for second cycle of final write to complete
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The D-SRAM can only be accessed by the ARMOE-S data interface so there are no
simultaneous access contentions as found in the I-SRAM. Table 11-2 shows the stall
cyclesthat can occur when accessing the D-SRAM.

Table 11-2 D-SRAM access

Data access Stalls Comment

LDR 0 D-SRAM provides single cycle response

LDM 0 D-SRAM provides single cycle response to each
word

LDR/ LDMfollowed by 0 D-SRAM provides single cycle response

any load or store

STR 0 Assuming no following load

ST™M 0 Assuming no following load

STR/ STMfollowed by 0 Pipelined addresses allow back-to-back stores or

STR/ STM store multiples

STR/ STMfollowed by 1 Second cycle of write causes stall before load can be

LDR/ LDM

performed

Note

All internal SRAM stall cycles are in terms of the CLK and are therefore not affected
by the speed of the external AHB interface.
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11.4 AHB memory access cycles

When aread or non-bufferable write access to the AHB is performed, stall cycles are
introduced. The number of CLK stall cyclesincurred depends on:

. the clocking ratio of the AHB interface
. the type of access being performed
. if there are further accesses to be performed.

Before an AHB transfer can be initiated, the ARM966E-S must be the granted bus
master. The cycle calculations in this section assume that the ARM966E-S is granted
and that it is the default bus master.

11.4.1 Synchronization penalty

At the start of an AHB access, the BIU within the ARM966E-S must wait for the first
rising edge oHCLK (theHCLKEN input is true) before it can broadcast the necessary
AHB control and address information for the access. This delay is the synchronization
penalty. The best case is that in the cycle when the AHB access is requested, the
HCLKEN input is HIGH, incurring a zero cycle synchronization penalty. The worst
case is where thdCLKEN is HIGH in the cycle before the AHB access is required.
The ARM966E-S must then wait until the next assertiod 6f. KEN which isR-1

cycles later, wher® is theCLK toHCLK ratio:

. Best case synchronization penalty i€I0K cycles

. Worst case synchronization penaltyRisl CLK cycles,
whereR=1, 2, 3, 4,5, 6, 7, 8 for example.

If the AHB must be accessed for two transfers that were requested simultaneously by
the ARM9E-S core (that is, a simultaneous instruction fetch and data load), the BIU
stays synchronized after the first transfer so that the penalty is only incurred for the first
access. If the transfer is part of a bugtM LDM) or a sequential instruction fetch
sequence, again the BIU stays synchronized between each transfer to minimize
synchronization penalty.

Note

If the clock ratioR=1 and theHCL KEN input to the ARM966E-S is tied HIGH then
no synchronization penalty is incurred when accessing the AHB.
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11.4.2 AHB transfer types

The ARM966E-S can perform IDLE, NONSEQ, and SEQ transfers. Depending on the
implementation of the AHB system to which the ARM966E-S is connected, avarying
number of HCLK cycles are required for the NONSEQ and SEQ transfers. Typically,
aNONSEQ cyclerequiresatwo-cycleresponse from the sel ected slave, whereasa SEQ
cycle can be handled in asingle cycle. The IDLE cycle takesoneHCLK cycle by
definition.

For each HCLK cyclerequired by the AHB transfer, R internal CLK cycles are taken.
The AHB transfer cycles are converted to CLK by multiplying by R, the CLK to
HCLK ratio, as shownin Table 11-3.

Table 11-3 Key to tables

Symbol Meaning in terms of CLK cycles

Sync Worst-case synchronization pendty (= R-1)

S HCLK cyclesrequired for a SEQ transfer x R

N HCLK cyclesrequired for aNONSEQ transfer x R

| HCLK cyclerequired for an IDLE cycle (=R)

n Number of words accessed by the transfer

Table 11-4 lists the types of AHB transfers performed by the ARM966E-S and the
number of CLK cycles required to perform them. Thistable indicates cycles where the
ARMOE-S core must be stalled until one or more AHB accesses have compl eted, that
is, for reads and unbuffered writes.

Table 11-4 AHB read and unbuffered write transfer cycles

AHB access Cycles Comment

Start of sequential instruction ~ Sync+N(n+l) Assumes no AHB load or store activity.
fetch of nwords

Nonsequential instruction Sync+N+| Assumes no AHB load or store activity.
fetch

Nonsequential instruction N+l Assumes no AHB load or store activity.
fetch follows sequential

instruction fetch

SingleLDR or STR Sync+N+l Assumes no AHB instruction fetch.

ARM DDI 0186A
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Table 11-4 AHB read and unbuffered write transfer cycles (continued)

AHB access Cycles Comment

Back-to-back LDR/ LDR, Sync+2(N+l) Assumes no AHB instruction fetch.

LDR/ STR, STR/ STR, STR/ Synchronization penalty for first transfer only.

LDR

Simultaneous LDR/ STRand Sync+2N+l Optimization replaces IDLE cycle after |oad/

instruction fetch store with NONSEQ of instruction fetch.

STMof nwords Sync+N+(n-1)S+l Assumes no AHB instruction fetch.

STMof nwords, simultaneous ~ Sync+2N+(n-1)S+l Optimization replaces IDLE cycle after final

instruction fetch at end stored word with NONSEQ of instruction
fetch.

STMof n words crosses 1KB Sync+2N+(n-2)S+2I Assumes no AHB instruction fetch,

region sequentiality broken on boundary.

LDMof nwords Sync+N+(n-1)S+2l Assumes no AHB instruction fetch. LDM

requires extraIDLE at end of transfer to re-
sample core interface.

LDMof nwords, smultaneous  Sync+2N+(n-1)S+2I Optimization replaces second IDLE cycle after

instruction fetch at end final loaded word with NONSEQ of
instruction fetch.

LDMof nwords crosses 1KB Sync+2N+(n-2)S+4l Assumes no AHB instruction fetch,

region sequentiality broken on boundary.

See AHB bus master interface on page 6-8 for diagrams of the cycleslisted in Table
11-4 on page 11-7.

Table 11-5 on page 11-9 shows the cycles required to perform buffered writes. These
writes usually take placein parallel with program execution and the ARM9E-S coreis
not stalled while the buffered writes take place. However, whenever aload or
instruction fetch to the AHB isrequired, the coreis stalled and the write buffer drained
before program execution can continue.
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Table 11-5 AHB buffered writes cycles

AHB access Cycles Comment

Single STR Sync+N+| Assumes no following AHB
instruction fetch

Back-to-back STR/ STR Sync+2(N+l) Assumes no following AHB

instruction fetch

ST™M

Sync+N+(n-1)S+l

Assumes no following AHB
instruction fetch

Last STRin write buffer drain 2(N+l) Core stalled until write buffer empty
followed by unbuffered data access and data access has been performed
Last STRin write buffer drain 2N+l Optimization replaces IDLE cycle

followed by instruction fetch

after store with NONSEQ of
instruction fetch

ARM DDI 0186A
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11.5 Interrupt latency calculation

The ARMOE-S has aworst-case interrupt latency figure that is listed in the
ARMOE-S Technical Reference Manual. The number quoted assumes that the CLKEN
input to the core is HIGH, ensuring no stall cycles.

In the ARM966E-S, the best-case figure could match the latency quoted for the
ARMOE-Score, if the necessary dataand instructionswere already inthe D-SRAM and
[-SRAM respectively. However, when cal culating the worst-case figure, it must be
assumed that the necessary data and instructions are not in the tightly-coupled SRAM
and must therefore be accessed over the AHB.

In addition, the worst-case is where the write buffer is full when the interrupt occurs,
requiring that the buffer drain is added to the interrupt latency calculation. The
worst-case sequence for the write buffer is that five nonsequential words are to be
written.

For the ARMO9E-S core, the worst-case interrupt latency occurs when the longest LDM
incurs a Data Abort. However, for the ARM966E-S, thisis the longest LDMwithout a
Data Abort. The LDMthat incurs a Data Abort takes extra CLK cyclesin the core, but
the abort vector is usualy in the tightly-coupled SRAM and can be returned without
introducing the extra stall cycles of an AHB access.

Thelongest L DMwithout the Data Abort is one that loads all the registers, including the
PC, that causes a branch to a destination anywhere in memory. The branch destination
must therefore be assumed to be outside of thetightly-coupled SRAM. Theloadsto the
PC address and (PC+1) cause additional AHB accesses to produce the worst-case
interrupt latency.

Using the symbols defined in Table 11-3, the worst-case interrupt latency can be
summarized in Table 11-6.

Table 11-6 Interrupt latency cycle summary

AHB access Cycles Comment

Write buffer drain Sync+ 5(N+l) FIQ asserted, first data transfer
requested, write buffer drain stalls core.

LDM(rO-pc) crosses 1KB 2N+14 S+4 | No instruction fetch at end due to core

boundary pipeline bubble to calculate pc

Instruction fetch of (pc) Sync+N+l Synchronization lost dueto coreinternal
cycle, no AHB request

Sequential instruction fetch N+ Synchronization retained

of (pct+l)

11-10
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The LDM(rO-pc) must complete before the interrupt vector is fetched. The write buffer
drain must be added to this, in addition to assuming that the LDM (rO-pc) crossesa1KB
boundary.

The calculation assumes that once the interrupt has entered the Decode stage of the
ARMOE-S pipeline following the instruction fetch to (pc+1), the subsequent fetchesto
the interrupt vector are serviced by thetightly-coupled SRAM, requiring afurther three
CLK cyclesfor the FIQ handler to enter execute. (Thisis not the case if the interrupt
vector resides at the HIVECS location of 0xFFFF 0000. This requires AHB access.)

Thecyclesfrom Table 11-6 areadded to thethree CL K cyclesfrom thetightly-coupled
SRAM to produce the interrupt latency equation:

Interrupt latency ¢ k = 2Sync+9N+14S+2B+111+3

Rewriting in terms of R, NONSEQ, SEQ and IDLE the equation simplifies to:
Interrupt latency ¢ k =R (9 NONSEQ+14SEQ+13)+1

where IDLE=BUSY =R asthisisasingle HCLK cycle by definition.

The number of CLK cycles latency can now be derived for different AHB clocking
ratios and for the differing AHB slave responses that might exist in the AHB system to
which the ARM966E-S interfaces. Table 11-7 on page 11-11 gives examples of
interrupt latency for systems with different CLK to HCLK ratios. For each system,
slaves can have different response times to NONSEQ and SEQ transfers. Table 11-7
gives some examples of different slave responses and the resultant interrupt latency in

CLK cycles.
Table 11-7 Interrupt latency calculated examples
GLCONCK NONRQTL  Nowseo-r  Nowsea-s,
SEQ=1 SEQ=1 SEQ=2

! 37 46 60

2 3 91 119

3 109 136 178

4 145 181 237
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Appendix A
Signal Descriptions

This appendix describes the ARM966E-S signals. It contains the following sections:
. Sgnal properties and requirements on page A-2

. Clock interface signals on page A-3

. AHB signals on page A-4

. Coprocessor interface signals on page A-6

. Debug signals on page A-8

. Miscellaneous signals on page A-10

. ETM interface signals on page A-11

. INTEST wrapper signals on page A-13.
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Signal Descriptions

A.1 Signal properties and requirements

In order to ensure ease of integration of the ARM966E-S into embedded applications
and to simplify synthesis flow, the following design techniques have been used:

. a single rising edge clock times all activity
. all signals and buses are unidirectional
. all inputs are required to be synchronous to the single clock.

These technigues simplify the definition of the top-level ARM966E-S signals because
all outputs change from the rising edge and all inputs are sampled with the rising edge
of the clock. In addition, all signals are either input or output only, as bidirectional
signals are not used.

Note

Asynchronous signals (for example interrupt sources) must first be synchronized by
external logic before being applied to the ARM966E-S macrocell.

A-2
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A.2 Clock interface signals

Signal Descriptions

Table A-1 describes the ARM966E-S clock interface signals.

Table A-1 Clock interface signals

Name

Direction

Description

CLK
System clock

Input

This clock times al operationsin the ARM966E-S
design. All outputs change from the rising edge and
all inputs are sampled on therising edge. The clock
might be stretched in either phase.

Through the use of the HCLKEN signal, this clock
also times AHB operations.

Through the use of the DBGTCKEN signal, this
clock also times debug operations.

HCLKEN

Input

Synchronous enablefor AHB transfers. When HIGH
indicates that the next rising edge of CLK isaso a
rising edge of HCLK in the AHB system in which
the ARM966E-S is embedded. HCLK must betied
HIGH in systems where CLK and HCLK are
intended to be the same frequency.

DBGTCKEN

Input

Synchronous enable for debug logic accessed by the
JTAG interface. When HIGH on the rising edge of
CLK thedebug logic is able to advance.

HRESETN
Not reset

Input

Asynchronously asserted LOW input used to
initialize the ARM966E-S system state.
Synchronously de-asserted.

ARM DDI 0186A
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A.3 AHB signals

Table A-2 describes the ARM966E-S AHB signals.

Table A-2 AHB signals

Name Direction Description

HADDRJ[31:0] Output The 32-bit AHB system address bus.

Address bus

HTRANS[1:0] Output Indicates the type of ARM966E-S transfer, which

Transfer type can be IDLE (00), NONSEQ (10), or SEQ (11).

HWRITE Output When HIGH indicates awrite transfer. When LOW

Transfer direction indicates aread transfer.

HSIZE[2:0] Output Indicates the size of an ARM966E-S transfer, which

Transfer size can be Byte (000), Half-word (001) or Word (010).

HBURST[2:0] Output Indicates if the transfer forms part of aburst. The

Burst type ARM966E-S supports SINGLE transfer (000) and
INCRemental burst of unspecified length (001).

HPROTI[3:0] Output Indicates that the ARM966E-S transfer is

Protection control an opcode fetch (0--0) or a data access (0--1) or a
User mode access (0-0-) or a Supervisor mode
access (0-1-).
Also indicates that an accessis not bufferable (00--)
or bufferable (01--). Bit [3] isdriven to 0 indicating
not cacheable.

HWDATA[31:0] Output The 32-bit write data busis used to transfer data

Write data bus from the ARM966E-S to a selected bus slave during
write operations.

HRDATA[31:0] Input The 32-bit read data busis used to transfer datafrom
Read data bus a selected bus dave to the ARM966E-S during read
operations.

HREADY Input When HIGH indicates that atransfer has finished on

Transfer done the bus. Thissignal can be driven LOW by the
selected bus slave to extend a transfer.

HRESP[1:0] Input The transfer response from the selected dave

Transfer response provides additional information on the status of the

transfer. The response can be OKAY (00), ERROR
(01), RETRY (10), or SPLIT (11).

Copyright © ARM Limited 2000. All rights reserved.
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Table A-2 AHB signals (continued)

Name Direction Description

HBUSREQ Output Indicates that the ARM966E-S requires the bus.

Bus request

HLOCK Output When HIGH, indicates that the ARM966E-S

Request locked requires locked accessto the bus and no other master

transfers is granted until this signal has gone LOW. Asserted
by the ARM966E-S when executing SWP
instructions to AHB address space.

HGRANT Input Indicates that the ARM966E-S is currently the

Bus grant highest priority master. Ownership of the address

and control signals changes at the end of atransfer
when HREADY is HIGH, so the ARM966E-S gets
access to the bus when both HREADY and
HGRANT are HIGH.

ARM DDI 0186A
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A.4 Coprocessor interface signals
Table A-3 describes the ARM966E-S coprocessor interface signals.

Table A-3 Coprocessor interface signals

Name Direction Description

CPCLKEN Output Synchronous enable for coprocessor pipeline

Coprocessor clock follower. When HIGH on therising edge of CLK

enable the pipeline follower logic is able to advance.

CPINSTR[31:0] Output The 32-bit coprocessor instruction bus over which

Coprocessor instructions are transferred to the coprocessor

instruction data pipeline follower.

CPDOUT([31:0] Output The 32-bit coprocessor read data busfor transferring

Coprocessor read data to the coprocessor.

data

CPDIN[31:0] Input The 32-bit coprocessor write data bus for

Coprocessor write transferring data from the coprocessor.

data

CPPASS Output Indicates that there is a coprocessor instruction in
the Execute stage of the pipeline, and it must be
executed.

CPLATECANCEL  Output If HIGH during the first memory cycle of a

coprocessor instruction, then the coprocessor must
cancel the instruction without changing any internal
state. Thissignal isonly asserted in cycleswherethe
previous instruction caused a Data Abort to occur.

CHSDEJ1:0] Input The handshake signals from the Decode stage of the
Coprocessor coprocessor’s pipeline follower. Indicates ABSENT
handshake decode (10), WAIT (00), GO (01), or LAST (11).

CHSEX]1:0] Input The handshake signals from the Execute stage of the
Coprocessor coprocessor’s pipeline follower. Indicates ABSENT
handshake execute (20), WAIT (00), GO (01), or LAST (11).
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Table A-3 Coprocessor interface signals (continued)

Name Direction Description

CPTBIT Output When HIGH indicates that the ARM966E-Sinis
Coprocessor Thumb state. When LOW indicates that the
instruction Thumb ARMO966E-Sisin ARM state. Sampled by the

bit coprocessor pipeline follower.

nCPMREQ Output When LOW on therising edge of CLK and

Not coprocessor CPCLKEN isHIGH, theinstruction on CPINSTR
instruction request must enter the coprocessor pipeline.

NnCPTRANS Output When LOW indicates that the ARM966E-Sisin

Not coprocessor
memory trandate

User mode. When HIGH indicates that the
ARMO966E-Sisin privileged mode. Sampled by the
coprocessor pipeline follower.

ARM DDI 0186A
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A.5 Debug signals
Table A-4 describes the ARM966E-S debug signals.

Table A-4 Debug signals

Name Direction Description

DBGIR[3:0] Output These four bits reflect the current instruction loaded

TAP controller into the TAP controller control register. These bits

instruction register change when the TAP controller isin the
UPDATE-IR state.

DBGNnTRST Input Thisisthe active low reset signal for the

Not test reset Embedded| CE internal state. Thissignal isalevel
sensitive asychronous reset signal.

DBGNnTDOEN Output When LOW, thissignal denotesthat the serial datais

Not DBGTDO being driven out of the DBGTDO output. Normally

enable used as an output enable for aDBGTDO pinina
packaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan
chain currently selected by the TAP controller.
These bits change when the TAP controller isin the
UPDATE-DR state.

DBGSDIN Output Contains the serial datato be applied to an external

External scan chain scan chain.

seria input data

DBGSDOUT Input Contains the serial data out of an externa scan

External scan chain chain. When an external scan chain is not connected,

seria data output this signal must be tied LOW.

DBGTAPSM[3:0] Output This bus reflects the current state of the TAP

TAP controller state controller state machine.

machine

DBGTDI Input Test datainput for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

COMMRX Output When HIGH denotes that the communications

Communications
channel receive

channel receive buffer contains valid datawaiting to
be read.

Copyright © ARM Limited 2000. All rights reserved.
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Table A-4 Debug signals (continued)

Name Direction Description

COMMTX Output When HIGH, denotes that the comms channel

Communications transmit buffer is empty.

channel transmit

DBGACK Output When HIGH indicates that the processor isin debug

Debug acknowledge state.

DBGEN Input Enables the debug features of the processor. This

Debug enable signal must betied LOW if debug is not required.

DBGRQI Output Represents the debug request signal that is presented

Internal debug to the core debug logic. Thisis a combination of

request EDBGRQ and hit 1 of the debug control register.

EDBGRQ Input An external debugger forces the processor into

External debug debug state by asserting thissignal.

request

DBGEXT([1:0] Input Input to the EmbeddedI CE-RT logic allows

EmbeddedI CE breakpoints/watchpointsto be dependent on external

external input conditions.

DBGINSTREXEC  Output Indicates that the instruction in the Execute stage of

Instruction executed the processor pipeline has been executed.

DBGRNG[1:0] Output Indicates that the corresponding EmbeddedI CE-RT

EmbeddedI CE watchpoint register has matched the conditions

Rangeout currently present on the address, data and control
buses. This signal is independent of the state of the
watchpoint enable control bit.

TAPID[31:0] Input Specifies the ID code value shifted out on

Boundary scan ID DBGTDO when the IDCODE instruction is entered

code into the TAP controller.

DBGIEBKPT Input Asserted by external hardware to halt execution of

Instruction the processor for debug purposes. If HIGH at the end

breakpoint of an instruction fetch, it causes the ARM966E-S to
enter debug stateif that instruction reaches the
Execute stage of the processor pipeline.

DBGDEWPT Input Asserted by external hardware to halt execution of

Data watchpoint the processor for debug purposes. If HIGH at the end

of adata memory request cycle, it causesthe
ARMO966E-S to enter debug state.

ARM DDI 0186A
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A.6 Miscellaneous signals

Table A-5 describes the ARM966E-S miscellaneous signals.

Table A-5 Miscellaneous signals

Name Direction Description

nFlQ Input Thisisthe Fast Interrupt Request signal. Thissignal

Not fast interrupt must be synchronousto CLK.

request

nIRQ Input Thisisthe Interrupt Request signal. Thissignal must

Not interrupt request be synchronousto CLK.

VINITHI Input Determines the reset location of the exception

Exception vector vectors. When LOW, the vectors are located at

|ocation at reset 0x00000000. When HIGH, the vectors are located
at 0xFFFF0000.

INITRAM Input Determines the tightly-coupled SRAM reset

Tightly-coupled enable.When HIGH, the instruction and data SRAM

SRAM enable at are both enabled during reset, when LOW, the

reset SRAM are disabled during reset.

BIGENDOUT Output When HIGH, the ARM966E-S treats bytesin

memory as being in big-endian format. When LOW,
memory istreated as little-endian.

A-10
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A.7 ETM interface signals
Table A-6 describes the ARM966E-S ETM interface signals.

Table A-6 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. Thissignal
must betied LOW if an ETM is not used.

FIFOFULL Input Asserted when ETM FIFOfills. This signal must be
tied LOW if an ETM is not used.

ETMBIGEND Output big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMINMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential dataindication for the ETM.

ETMDnNMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read or write for the ETM.

ETMDSEQ Output Sequential dataindication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARMOE-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMINSTRVALID Output Instruction valid indication for the ETM.

ETMRNGOUTI[1:0] Output Watchpoint register match indication for the ETM.
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Table A-6 ETM interface signals (continued)

Name Direction Description

ETMID31TO25[31:25]  Output Instruction data field for the ETM.

ETMID15TO11[15:11]  Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the
ETM.

ETMPASS Output Coprocessor instruction execute indication for the
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID Output Process ID for the ETM.

ETMPROCIDWR Output Asserted when ETMPROCID is written.

A-12
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A.8 INTEST wrapper signals

Signal Descriptions

Table A-7 describes the ARM966E-S INTEST wrapper signals.

Table A-7 INTEST wrapper signals

Name Direction Description

Sl Input Serial input data for the INTEST wrapper scan
chain.

SO Output Serial output data from the INTEST wrapper scan
chain.

SCANEN Input Enables scanning of data through the INTEST
wrapper scan chain.

TESTEN Input Selects the INTEST wrapper scan chain as the
source for ARM966E-S inputs.

SERIALEN Input Enablesthe INTEST wrapper BIST activation mode
where the scan chain is used to apply serialized
ARM instructions to the ARM966E-S to activate
BIST test of the tightly-coupled SRAM.

ICAPTUREEN Input 1 =INTEST wrapper in INTEST mode

0=INTEST wrapper in EXTEST mode.

ARM DDI 0186A
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A.9 DMA Signals
DMA signals are listed in Table 11-8.

Table 11-8 DMA signals

Name

Direction

Description

DMAENABLE

Input

Enable ARM966E-S DMA port. Must betied LOW
if DMA not required.

DMANREQ

Input

DMA not memory reguest. Must betied HIGH if
DMA not required.

DMAA[25:0]

Input

DMA address. Accesses up to 64Mbyte of memory.
Unused address bits must be tied LOW.

DMANRW

Input

DMA write not read:
0=read
1 =write.

DMAMAS[1:0]

Input

DMA Memory Access Size. Encodes the size of
writes. Reads are always word wide:

00 = byte

01 = halfword

10 = word

11 = reserved.

DMAD[3L:0]

Input

DMA write data.

DM AWait

Input

DMA Wait. Used to stall the ARM966E-Sto allow a
DMA accessto take place. This functionality isonly
required if the data RAM is single-port. This signal
must betied LOW if the data RAM is dual-port.
Thissignal has the same functionality interna to the
ARMO966E-S as FIFOFULL.

DM AReady

Output

DMA Ready. Asserted HIGH when the
ARMO66E-S is stalled. Only needs to be sampled
when the dataRAM issingle port, for example when
the ARM966E-S stall was requested by DM AWait.

DMARData[31:0]

Output

DMA read data.
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Appendix B
AC Parameters

This appendix describesthe AC timing parameters for the ARM966E-S. It containsthe
following sections:

. Timing diagrams on page B-2
. AC timing parameter definitions on page B-12.
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B.1 Timing diagrams

CLK

HCLKEN

HRESETn

The timing diagrams in this section are:

Clock, reset and AHB enable timing

AHB bus request and grant related timing on page B-3
AHB bus master timing on page B-4

Coprocessor interface timing on page B-5

Debug interface timing on page B-6

JTAG interface timing on page B-7

DBGSDOUT to DBGTDO timing on page B-8
Exception and configuration timing on page B-8
INTEST wrapper timing on page B-9

ETM interface timing on page B-10.

Clock, reset and AHB enable timing parameters are shown in Figure B-1.
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Figure B-1 Clock, reset and AHB enable timing
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AHB bus request and grant related timing parameters are shown in Figure B-2.
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Figure B-2 AHB bus request and grant related timing
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CLK

HTRANS1:0]

HADDR(31:0]

HWRITE
HSIZE[2:0]
HBURST[2:0]
HPROT([3:0]

HWDATA[31:0]

HREADY

HRESP

HRDATA[31:0]

AHB bus master timing parameters are shown in Figure B-3.
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CLK
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nCPMREQ
nCPTRANS
CPTBIT

CHSDE
CHSEX
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CPPASS

CPDOUT[31:0]

CPDIN[31:0]

AC Parameters

Coprocessor interface timing parameters are shown in Figure B-4.
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g <_Tovcpctl g <_Tohcpctl
WAIT/GO
LAST/ABSENT
Tiscphs

g T ihcphs
™ Tovcplc > <—Tohcplc
—* Tovcpps > [ Tohcpps

LDC/MCR
Data
- Tovcprd > ohcprd

1

Data

STC/MRC

\

Tiscpwr

le—

T
ﬂ\?; T ihcpwr

Figure B-4 Coprocessor interface timing
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CLK

DBGACK

DBGRNGI[1:0]

DBGRQI

DBGINSTREXEC

COMMRX
COMMTX

DBGEN
EDBGRQ
DBGEXT[1:0]

DBGIEBKPT

DBGDEWPT

Debug interface timing parameters are shown in Figure B-5.

- [ Tovdbgack > - Tohdbgack
™ T ovdbgrng g T ohdbgrng
— [ Tovdbgrqi — = Tohdbgrqi
1 %Tovdbgstat > k-I-ohdbgst:an:
g T ovdbgcomm > T ohdbgcomm
T isdbgin

| = Tihdbgin

I T isiebkpt T

I - * lini ebkpt

|

| T isdewpt T

g e ihdewpt

Figure B-5 Debug interface timing
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CLK

DBGIR[3:0]
DBGSCREG[4:0]
DBGTAPSM[3:0]

DBGnTDOEN

DBGSDIN

DBGTDO

DBGnTRST

DBGTDI
DBGTMS

DBGTCLKEN

TAPID[31:0]

JTAG interface timing parameters are shown in Figure B-6.

AC Parameters

> [ Tovdbgsm > kTohdbgsm
> = Tovtdoen ™ - Tohtdoen
— <—Tovsdin - - Tohsdin
™ <_Tovtdo ™ 4_Tohtdo
Tihntrst _’J Tisntrst
Tistdi

| *Tincas

I Tistcken

I [ Tihtcken

|

I Tistapid T

- ihtapid

Figure B-6 JTAG interface timing
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DBGSDOUT

DBGTDO

CLK

BIGENDOUT

nFIQ
nIRQ

VINITHI

INITRAM

DBGTDO output. Thisis shown in Figure B-7.

A combinatorial path timing parameter exists from the DBGSDOUT input to the

Tidsd |
Ll

Figure B-7 DBGSDOUT to DBGTDO timing

Exception and configuration timing parameters are shown in Figure B-8.

X

— Tovbi gend ™ [ Tohbigend
|
| Tisint T
g = linint
<7-I-ishivecs T
I = ! ihhivecs
I Tisinitram
l—T.
1

ihinitram

Figure B-8 Exception and configuration timing
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The INTEST wrapper timing parameters are shown in Figure B-9.

CLK —m

\ \
o | | X
| |
‘ Tovso ‘ Tohso
SI ’ ! >< ! X

* < >e
| Tissi | Tinsi

SCANEN ’ | >< | ><
\ < >
| Tisscanen | Tihscanen

TESTEN ’ \ >< ! ><
\ < pid
| Tistesten : Tihtesten
SERIALEN ’ ‘ >< ‘ \
| < >“<
‘ Tisserialen ‘ Tihserialen
T T
ICAPTUREEN ’ ‘ >< ‘ \

! ‘Tiscapturee 0 Tihcaptureen
|

Figure B-9 INTEST wrapper timing
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CLK

ETMIA[31:1]
ETM31T025[31:25]
ETM15TO11[15:11]

ETMINMREQ
ETMISEQ
ETMITBIT

ETMINSTREXEC
ETMINSTRVALID

ETMDA[31:0]
ETMRDATA[31:0]
ETMWDATA[31:0]

ETMMAS[31:0]

ETMnWAIT

ETMDMORE
ETMDnMREQ
ETMDnRW
ETMDABORT

ETMCHSDI[1:0]
ETMPASS
ATMPLATECANCEL

ETMDBGACK
ATMRNGOUTI[1:0]
ETMBIGEND
ETMHIVECS

ETMPROCID
ATMPRODCDWR

ETMEN

FIFOFULL

The ETM interface timing parameters are shown in Figure B-10.

2

Ei]ii

I
I
|
T
|
<+—P
| Tovtminst | Tohetminst
| I O<
Tovtmicti Tohetmiuctl
DY, XX
g >l 1
ovetmstat ohetmstat
Y, XX
o P
| ovetmdata | ohetmdata
1 1
0 0
<—>T <+—P T
| ovetmnwait | ohetmnwait
B AKX
<—>T 4P T
| ovetmdctl | ohetmdctl
Y, XX
Tovetmcfg Tohetmcfg
Y, XX
o P
) ovetmcpif ) ohetmcpif
By, X
|<—>T |4—> T
| ovetmdbg | ohetmdbg
T T
: A | .
« —>t—P
| Tisetmen | Tihetmen
L X X | X
« —>t—P
' Tisetmfifofull | Tihetmfifull

Figure B-10 ETM interface timing
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The DMA interface timing parameters are shown in Figure B-11

DMAReady ’ ‘
DMARData :

[
I Tovdma I Tohdma
| |
DMAENABLE ‘ ‘
DMANREQ I [
DMAA I
DMAMAS I
DMAD T. | T
DMAWait isdma ihdma

Figure B-11 DMA interface timing
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AC Parameters

B.2 AC timing parameter definitions

Table B-1 showstarget AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency.

Note

The figures quoted arerelative to therising clock edge after the clock skew for internal
buffering has been added. Inputs given a 0% hold figure therefore require a positive
hold relative to the top- level clock input. The amount of hold required is equivalent to
the internal clock skew.

Table B-1 AC parameters

Symbol Parameter Min Max
Teye CLK cycletime 100% -
Tishen HCLKEN input setup timeto rising CLK 85% -
Tihhen HCLKEN input hold time from rising CLK - 0%
Tisrst HRESETn deassertion input setup timeto rising CLK 90% -
Tinrst HRESETn deassertion input hold time from rising CLK - 0%
Tovreq Rising CLK to HBUSREQ valid - 30%
Tohreq HBUSREQ hold time from rising CLK >0% -
Tovick Rising CLK to HLOCK valid - 30%
Tohlck HLOCK hold time fromrising CLK >0% -
Tisgnt HGRANT input setup timeto rising CLK 40% -
Tihgnt HGRANT input hold time from rising CLK - 0%
Tovtr Rising CLK to HTRANS[1:0] valid - 30%
Tontr HTRANS[1:0] hold time from rising CLK >0% -
Tova Rising CLK to HADDR[31:0] valid - 30%
Toha HADDRJ[31:0] hold time from rising CLK >0% -
Tovctl Rising CLK to AHB control signalsvalid - 30%
Tohctl AHB control signals hold time from rising CLK >0% -

B-12
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AC Parameters

Table B-1 AC parameters (continued)

Symbol Parameter Min Max
Tovwd Rising CLK to HWDATA[31:0] valid - 30%
Tohwd HWDATA[31:0] hold time from rising CLK >0% -
Tisray HREADY input setup timetorising CLK 75% -
Tihrdy HREADY input hold time from rising CLK - 0%
Tisrsp HRESP[1:0] input setup time to rising CLK 50% -
Tihrsp HRESP[1:0] input hold time from rising CLK - 0%
Tisd HRDATA[31:0] input setup timeto rising CLK 40% -
Tihrd HRDATA[31:0] input hold time from rising CLK - 0%
Tovepen Rising CLK to CPCLKEN valid - 30%
Tohcpen CPCLKEN hold time from rising CLK >0% -
Tovepid Rising CLK to CPINSTR[31:0] vaid . 30%
Tohepid CPINSTR[31:0] hold time from rising CLK >0% -
Tovepet! Rising CLK to transaction control valid - 30%
Tohcpetl Transaction control hold time from rising CLK >0% -
Tiscphs Coprocessor handshake input setup timeto rising CLK 50% -
Tihcphs Coprocessor handshake input hold time from rising CLK - 0%
Toveplc Rising CLK to CPLATECANCEL valid ; 30%
Toncplc CPLATECANCEL hold time fromrising CLK >0% -
Tovepps Rising CLK to CPPASS valid - 30%
Tohepps CPPASS hold time from rising CLK >0% -
Toveprd Rising CLK to CPDOUTI[31:0] valid - 30%
Tohcprd CPDOUT][31:0] hold time from rising CLK >0% -
Tiscpwr CPDIN[31:0] input setup timeto rising CLK 40% -
Tihcpwr CPDIN[31:0] input hold time from rising CLK - 0%
ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-13
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Table B-1 AC parameters (continued)

Symbol Parameter Min Max
Tovdbgack Rising CLK to DBGACK valid y 60%
Tohdbgack DBGACK hold time from rising CLK >0% ;
Tovdbgrng Rising CLK to DBGRNGJ1:0] valid - 60%
Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -
Tovdogra Rising CLK to DBGRQI valid - 45%
Tohdbgra DBGRQI hold time fromrising CLK >0% -
Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%
Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% -
Tovdogcomm Rising CLK to communications channel outputs valid - 30%

Tohdogcomm Communications channel outputs hold time fromrising CLK ~ >0% -

Tisdbgin Debug inputs setup time to rising CLK 30% -
Tihdbgin Debug inputs hold time from rising CLK - 0%
Tisieokpt DBGIEBKPT input setup timeto rising CLK 20% -
Tiniebkpt DBGIEBKPT input hold time from rising CLK - 0%
Tisdewpt DBGDEWRPT input setup timeto rising CLK 20% -
Tihdewpt DBGDEWPT input hold time from rising CLK - 0%
Tovdbgsm Rising CLK to debug state valid - 30%
Tohdbgsm Debug state hold time from rising CLK >0% -
Tovtdoen Rising CLK to DBGNTDOEN valid - 40%
Tohtdoen DBGNTDOEN hold time from rising CLK >0% -
Tovsdin Rising CLK to DBGSDIN valid - 20%
Tohsdin DBGSDIN hold time from rising CLK >0% -
Tovtdo Rising CLK to DBGTDO valid - 65%
Tohtdo DBGTDO hold time fromrising CLK >0% -
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Table B-1 AC parameters (continued)

Symbol Parameter Min Max
Tisntrst DBGNTRST de-asserted input setup timeto rising CLK 35% -
Tibntrst DBGNTRST input hold time from rising CLK - 0%
Tistdi Tap state control input setup time to rising CLK 25% -
Tihtdi Tap state control input hold time from rising CLK - 0%
Tistcken DBGTCKEN input setup timeto rising CLK 50% -
Tihtcken DBGTCKEN input hold time from rising CLK - 0%
Tistapid TAPID[31:0] input setup timeto rising CLK 20% -
Tihtapid TAPID[31:0] input hold time from rising CLK - 0%
Tasd DBGTDO delay from DBGSDOUTBS changing - 30%
Tdsh DBGTDO hold time from DBGSDOUTBS changing >0% -
Tovbigend Rising CLK to BIGENDOUT valid : 30%
Tohbigend BIGENDOUT hold time from rising CLK >0% -
Tisint Interrupt input setup timeto rising CLK 15% -
Tihint Interrupt input hold time from rising CLK - 0%
Tishivecs VINITHI input setup timeto rising CLK 95% -
Tihhivecs VINITHI input hold time from rising CLK - 0%
Tisinitram INITRAM input setup timeto rising CLK 95% -
Tihinitram INITRAM input hold time from rising CLK - 0%
Tovso Rising CLK to SO valid - 30%
Tohso SO hold time from rising CLK >0% -
Tiss Sl input setup timeto rising CLK 95% -
Tihs Sl input hold time from rising CLK - 0%
Tisscanen SCANEN input setup time to rising CLK 95% -
Tihscanen SCANEN input hold time from rising CLK - 0%
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Table B-1 AC parameters (continued)

Symbol Parameter Min Max
Tistesten TESTEN input setup timetorising CLK 95% -
Tihtesten TESTEN input hold time from rising CLK - 0%
Tisserialen SERIALEN input setup timeto rising CLK 95% -
Tihserialen SERIALEN input hold time from rising CLK - 0%
Tiscaptureen CAPTUREEN input setup timeto rising CLK 95% -
Tihcaptureen CAPTUREEN input hold time from rising CLK - 0%
Tovetminst Rising CLK to ETM instruction interface valid - 30%
Tohetminst ETM instruction interface hold time from rising CLK >0% -
Tovetmictl Rising CLK to ETM instruction control valid - 30%
Tohetmictl ETM instruction control hold time from rising CLK >0% -
Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%
Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -
Tovetmdata Rising CLK to ETM datainterface valid - 30%
Tohetmdata ETM datainterface hold time from rising CLK >0% -
Tovetmnwait Rising CLK to ETMnWAIT valid - 30%
Tohetmnwait ETMnWAIT hold time from rising CLK >0% -
Tovetmdctl Rising CLK to ETM data control valid - 30%
Tohetmdct! ETM data control hold time from rising CLK >0% -
Tovetmcfg Rising CLK to ETM configuration valid - 30%
Tonetmcfg ETM configuration hold time from rising CLK >0% -
Tovetmepit Rising CLK to ETM coprocessor signals valid - 30%
Tohetmepit ETM coprocessor signals hold time from rising CLK >0% -
Tovetmdbg Rising CLK to ETM debug signals valid - 30%
Tonetmdbg ETM debug signals hold time from rising CLK >0% -
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Table B-1 AC parameters (continued)

Symbol Parameter Min Max
Tisetmen ETMEN input setup timeto rising CLK 50% -
Tinetmen ETMEN input hold timefromrising CLK - 0%
Tistifofull FIFOFULL input setup time to rising CLK 50% -
Tinetmen FIFOFULL input hold time from rising CLK - 0%
Tovdma Rising CLK to DMA signasvalid 50% -
Tohdma DMA signalshold time from rising CLK 0% R
Tisdma DMA input setup timeto rising CLK 50% -
Tihdma DMA input hold time from rising CLK - 0%
Note

. TheVINITHI andINITRAM pins are specified as 95% of the cycle as they are
for input configuration during reset and can be considered static.

. The INTEST wrapper inputs and outputs are specified as 95% of the cycle as the
are production test related and expected to operate at typically 50% of the
functional clock rate.
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Appendix C
SRAM Stall Cycles

This appendix describes the tightly-coupled SRAM inthe ARM966E-S. It containsthe
following section:
. About SRAM stall cycles on page C-2.

For details of the ARM9E-S interface signals referenced in this section, refer to the
ARMOE-S Technical Reference Manual.
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SRAM Stall Cycles

C.1 About SRAM stall cycles

Stall cycles can occur in both the instruction and data SRAMSs, with one stall
mechani sm being shared between the SRAMsand additional stall mechanism attributed
to the I-SRAM only. Any stall requirement is detected by the SRAM control and
factored into its response to the ARM966E-S system controller. The ARM9E-S
SYSCLKEN input is then deasserted until the SRAM has performed the access.

Cl1 Read-follows-write

This stall mechanism is shared by both instruction and data SRAM because of the
pipelined nature of write data from the ARM9E-S core. The write data appears on the
coreinterfaceinthe cycle after the address, so that it isnot possible to perform the write
until the next rising clock edge. The address from the core must therefore be pipelined
to line up with the write data. A write with pipelined addressis shown in
Figure C-1.

Q-SRAM writg

cycle

|
ck /N S

| |

| |

| | |

| |

DnMREQ 1\ ] 1

| | |

| | |

pRW 1/ -\ |

| | |

| | |

DA[31:1] T ) (Adar A (write) Y }

l l l

SRAM Addr | e )
1 1 1
WDATA[31:0] 1 Y write data )

| |
| |
[ |
|

WEN / i\ ——

Figure C-1 SRAM write cycle

Note

The writeis performed on the second rising edge of the period marked D-SRAM write
cycle.

In the case of back-to-back writes, stalls do not occur because the pipelined addressis
being used and thiskeepsin step with the data. However, if aread followsthewrite, the
writemust first be allowed to compl ete before the lookup for the read can be performed.

C-2
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SRAM Stall Cycles

Figure C-2 shows this example and how the SRAM control must pipeline and select
between the write and read address. The ARM9E-S core is stalled for a cycle by the
system controller by deasserting SY SCLK EN.

SRAM write stall SRAM read
cycle cycle cycle
CLK _/:/ \ /:/ \ /:/ \ : \ /:/ AN
| | | | |
DnMREQ 1 \ 3 /\ 3 / 1 \ i
| | | | |
omw 07 QW[ \\ |
| | | | |
DA[31:1] ‘ Y(adar A (writ{‘a)X:XAddr B (relrad)X i /} i
| | | | |
SRAM Addr : % Addr A % X Adars %X / %
WDATA([31:0] ‘ : Y write data %MX : / :
| | | | |
RDATA[31:0] | ; ; ; (\XRead da“:a D)
| | | | |
SYSCLKEN i / i i \ i / i \
Figure C-2 Read follows write
Note

The second rising edge of the SRAM write cycle isthe same edge that is required for
the SRAM read (of Addr B). It is not possible to read and write concurrently so a stall
must occur before the read of Addr B.

C.1.2 Additional Instruction SRAM stalls
The I-SRAM has additional stall cycles that arise because of the following operations:

. data reads to the I-SRAM are pipeline
. simultaneous instruction fetches and data accesses can occur
. any access can occur during two cycle data reads and writes.
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SRAM Stall Cycles

Simultaneous instruction fetch, data read

The ARMOE-S datainterfaceis able to access the [-SRAM for programming purposes
and for accessto literal tables during program execution.

Itispossiblefor the ARM9E-Sto issue asimultaneousinstruction and data request, and
if the data request addresses the I-SRAM, a stall cycle isrequired (see Figure C-3).

SYSCLKEN __ 1] 1\ f

| | |
" inst. fetch ™ data read |
~ ade ™
| | | |
cak /N AN A
| | | |
| | | |
DnMREQ | WA | \\ |
| | | |
| | | |
INMREQ | \ i / i \] i
| | | |
DnRW ! [T ]
i R
DA[31:1] | Y Addr A (reat) | 1 | 1
| W
IA[31:1] | Jadar (1 fetgn)(] } / }
| | | |
I-SRAM Addr i J AddrA i [b( Addr B i / i
| | | |
RDATA[31:0] | | 8Read data wX{ |
| |
INSTR[31:0] 1 RRead instr B)
i |
|
|
|

Figure C-3 Simultaneous instruction fetch, data read

Note

In the case of simultaneous I-SRAM and D-SRAM read access requests from the
ARMOE-S core, the instruction fetch is always performed first, followed by the data
read. The coreis disabled until both accesses have compl eted.
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SRAM Stall Cycles

Data read

To maximize the I-SRAM interface frequency performance, data read requeststo this
RAM are pipelined. Thisadds astall cyclefor every dataread instruction. An example
of adataread from the I-SRAM is shown in Figure C-4.

| . SRAM  SRAM
| stall cycle | read cycle

DnMREQ L\ /
/

I
1
I
[ I
I
I
I
T

Addr A (read)

Yo il
|
|

DnRW A\

1
I
|
|
|
I
|
|
|
|
|
T
|
I
T
|
T

|
DAB31:0] | | |

|
SRAM Addr | | AdarAl >< ‘ |
RDATA[31:0] ‘ ! ! >< Read dat:a >< |

|

| | |

1/ [ [ I\
SYSCLKEN | 1 |
[ [ [

Figure C-4 Data read from I-SRAM

The stall cycleisonly incurred for the first read of aread instruction. If an LDMis
performed, thereisastall cycleinserted only for thefirst read of the LDM Back-to- back
LDRswill incur astall cycle at the start of each LDR.

ARM DDI 0186A
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SRAM Stall Cycles

Data read followed by instruction fetch

Datareadsto the I-SRAM are pipelined. An instruction fetch in the cycle after a data
read reguest coincides with the stalled data read and so the instruction fetch is stalled
for 1 cycle. Thisis shown in Figure C-5.

. stall . data . instr
" cycle read#fetch :

!

CLK
DnMREQ
INMREQ
DnRW
DA[31:0]

IA[31:0]

I-SRAM
Addr

RDATA[31:0]

INSTR[31:0]

SYSCLKEN [] \ Y A

Figure C-5 Data read followed by instruction fetch
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SRAM Stall Cycles

Simultaneous instruction fetch, data write

If the ARM9E-S performs asimultaneous datawrite and instruction fetch that both map
to1-SRAM address space, two stall cyclesoccur. Thefirst cycleallowsfor the pipelined
write, the second cycle allowsfor theinstruction fetch. The core cannot be enabled until
both accesses have completed (see Figure C-6).

| IsrRam ! | IsrRaM !
| datawrite ™, | inst. fetch
| stall | stall |

cycle cycle

CLK_/\/\/\&\/\_
owrea T\ [T A
P ———
-
(. mammm———

somenser I
R
SYSCLKEN __ 1/ |\ / -

Figure C-6 Simultaneous instruction fetch, data write
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SRAM Stall Cycles

I-SRAM data write followed by instruction fetch

Thisclass of stall occurswhen adatawrite to the I-SRAM address spaceis performed,
followed by aninstruction fetch request in the next cycle. Itissimilar to the generic read
follows write scenario of each SRAM except that the read is an instruction fetch rather
than adataload. The instruction fetch must be held off until the write has completed,
requiring that the ARMO9E-S coreis stalled for acycle (see Figure C-7).

I I-SRAM _! stall I .SRAM _ !
| write cycle | cycle | read cycle |
| | | | |
ck _ / / J \ /L
| | |
| | |
DNMREQ N\ i '\ \\
| | |
| | |
DnRW i / i \ i \
| | |
DA[31:1] | Y Addr A (write) ‘
| | |
IA[31:1] i i Yadar B (1 fetcH:l)X I
|
|
[

INMREQ / i 0 i /

I-SRAM Addr

| |

X Adara (X Adars
T
|

XWrite data (AJ)X

*XRead Inst (B)X

[

INSTR[31:0]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

‘ 1
| |

1 ] 1

— :

WDATA[31:0] | | |
| | | |

1 1 1 "

— i

| | | |

| | |
| | |

SYSCLKEN /

v

Figure C-7 I-SRAM data write followed by instruction fetch
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SRAM Stall Cycles

I-SRAM write followed by instruction fetch, data write

This case iswhere awrite istaking place to the I-SRAM that isimmediately followed
by both an instruction fetch and a data write. The second write is performed
immediately after the current write without penalty. However, the core must be stalled
until both the second write and instruction fetch have completed, so there are two stall
cycles (see Figure C-8).

\5XRead instr (C)X
[

INSTR[31:0]

SYSCLKEN ___ | [ \

| I-SRAM _ | _ I-SRAM _| | _SRAM read
| write cycle | write cycle | : cycle
I I stall | stall |
| | | | | |
CLK /o N/ J S A S \
| | | | | |
| | | | | |
DNMREQ N\ A |/ | | \\ |
| | | | | |
| | | | | |
owe BNV O
| | | | | |
DA[31:1] \ XAddrA(writé)X:XAddrB(wn}ite)X | | j \
| | | | | / |
AB1] 3 3 XAddr c (Ife;tch)X 3 3 /} 3
| | | | | |
INMREQ ] B\ | e |
| | | | |
| | | | |
I-SRAM Addr X Adara | X AddrB [ Adarc X/ ]
: : : T
WDATA[31:0] w \ [ \
| | |
| | t
| | |
| | |
| | |
| | |
| | |

Figure C-8 I-SRAM write followed by instruction fetch, data write
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SRAM Stall Cycles

I-SRAM write followed by instruction fetch, data read

Thisiswhere awrite is taking place to the I-SRAM that isimmediately followed by

both an instruction fetch and a dataread. This has the same two-stall cycle response as
the previous scenario, although the I-SRAM control behaves differently. Thefirst write
must compl ete before the data read can be performed. The instruction fetch can then be

performed in the next cycle (see Figure C-9).

} I-SRAM ! |-srAM !
| data read | inst. fetch |
| stall | |
: cycle | :
| | | |
CLK / \_/\ / !
| | | |
| | | |
DnMREQ 1\ A | \\ |
| | | |
| | | |
INMREQ 2\ i / i \ i
| | | |
DnRW -\ 1 / /I | |
| | | |
DA[31:1] | YAddrA (read) ] ]
| ] ]
|A[31 :1] } XAddr B(l fet#h)X/ } , }
l l / l / l
I-SRAM Addr i \  Adara i (M Addr B i X / i
| | | |
RDATA[31:0] | | ) Read data WX( |
| | | |
INSTR[31:0] ! ! | YRead nstr )
| | | |
| | | |
SYSCLKEN ] A\ L/ P
| |

Figure C-9 I-SRAM write followed by instruction fetch, data read
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