
ARM DDI 0186A

ARM966E-S
(Rev 1)

Technical Reference Manual

ii Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM966E-S (Rev 1)
Technical Reference Manual
Copyright © ARM Limited 2000. All rights reserved.

Release information

Proprietary notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, and STRONG are
trademarks of ARM Limited.

Document confidentiality status

This document is Open Access. This means there is no restriction on the distribution of the information.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://www.arm.com

Change history

Date Issue Change

31st July 2000 A First Release

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. iii

Contents
ARM966E-S (Rev 1)
Technical Reference Manual

List of Tables...vii

List of Figures ..ix

Preface
About this document ...xii
Further reading..xv
Feedback ...xvi

 Chapter 1 Introduction
1.1 About the ARM966E-S..1-2
1.2 Microprocessor block diagram ..1-3

 Chapter 2 Programmer’s Model
2.1 About the programmer’s model...2-2
2.2 About the ARM9E-S programmer’s model..2-3
2.3 ARM966E-S CP15 registers ...2-4

 Chapter 3 Memory Map
3.1 About the ARM966E-S memory map..3-2
3.2 Tightly-coupled SRAM address space..3-3
3.3 Bufferable write address space...3-4

iv Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

 Chapter 4 Tightly-coupled SRAM
4.1 ARM966E-S SRAM requirements .. 4-2
4.2 SRAM stall cycles... 4-3
4.3 Enabling the SRAM .. 4-4
4.4 ARM966E-S SRAM wrapper .. 4-7

 Chapter 5 Direct Memory Access (DMA)
5.1 About the DMA interface .. 5-2
5.2 Timing interface .. 5-5
5.3 DMAENABLE setup and hold cycles.. 5-12
5.4 Summary of signal behavior ... 5-13

 Chapter 6 Bus Interface Unit
6.1 About the BIU and write buffer ... 6-2
6.2 Write buffer operation ... 6-3
6.3 AHB bus master interface... 6-8
6.4 AHB clocking .. 6-20

 Chapter 7 Coprocessor Interface
7.1 About the coprocessor interface... 7-2
7.2 LDC/STC .. 7-4
7.3 MCR/MRC .. 7-8
7.4 Interlocked MCR... 7-9
7.5 CDP.. 7-10
7.6 Privileged instructions... 7-11
7.7 Busy-waiting and interrupts .. 7-12

 Chapter 8 Debug Support
8.1 About the debug interface .. 8-2
8.2 Debug systems... 8-4
8.3 ARM966E-S scan chain 15 .. 8-7
8.4 Debug interface signals .. 8-9
8.5 ARM9E-S core clock domains.. 8-14
8.6 Determining the core and system state .. 8-15
8.7 About the EmbeddedICE-RT.. 8-16
8.8 Disabling EmbeddedICE-RT .. 8-18
8.9 The debug communications channel.. 8-19
8.10 Monitor mode debug... 8-24
8.11 Debug additional reading.. 8-26

 Chapter 9 Embedded Trace Macrocell Interface
9.1 About the ETM interface... 9-2
9.2 Enabling the ETM interface .. 9-3
9.3 ARM966E-S trace support features.. 9-4

 Chapter 10 Test Support
10.1 About the ARM966E-S test methodology... 10-2

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. v

10.2 Scan insertion and ATPG ...10-3
10.3 BIST of tightly-coupled SRAM...10-4

 Chapter 11 Instruction cycle timings
11.1 Introduction to instruction cycle timings ..11-2
11.2 When stall cycles do not occur..11-3
11.3 Tightly-coupled SRAM cycles ...11-4
11.4 AHB memory access cycles..11-6
11.5 Interrupt latency calculation .. 11-10

 Appendix A Signal Descriptions
A.1 Signal properties and requirements ..A-2
A.2 Clock interface signals ..A-3
A.3 AHB signals ..A-4
A.4 Coprocessor interface signals...A-6
A.5 Debug signals ...A-8
A.6 Miscellaneous signals ...A-10
A.7 ETM interface signals ...A-11
A.8 INTEST wrapper signals ...A-13
A.9 DMA Signals ...A-14

 Appendix B AC Parameters
B.1 Timing diagrams ...B-2
B.2 AC timing parameter definitions..B-12

 Appendix C SRAM Stall Cycles
C.1 About SRAM stall cycles.. C-2

Index

vi Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. vii

List of Tables
ARM966E-S (Rev 1)
Technical Reference Manual

Table 2-1 CP15 register map ..2-4
Table 2-2 Register 0, ID code ...2-5
Table 2-3 Register 1, Control register ...2-5
Table 2-4 Register 13, Trace process identifier ..2-9
Table 2-5 Register 15, Test register map..2-9
Table 2-6 Trace control register ..2-10
Table 2-7 BIST control register ...2-11
Table 2-8 BIST size encoding examples...2-12
Table 4-1 I-SRAM stall cycles ...4-3
Table 5-1 Simultaneous access behavior ...5-4
Table 5-2 DMAENABLE setup and hold cycles with respect to DMAnREQ.......5-12
Table 5-3 DMA signal behavior ...5-13
Table 7-1 Handshake encoding ..7-7
Table 8-1 Scan chain 15 addressing mode bit order...8-7
Table 8-2 Mapping of scan chain 15 address field to CP15 registers8-7
Table 8-3 Coprocessor 14 register map..8-19
Table 10-1 Instruction BIST address and general registers10-5
Table 10-2 Data BIST address and general registers ...10-6
Table 11-1 I-SRAM access ...11-4
Table 11-2 D-SRAM access..11-5
Table 11-3 Key to tables ...11-7
Table 11-4 AHB read and unbuffered write transfer cycles...................................11-7
Table 11-5 AHB buffered writes cycles ...11-9

viii Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Table 11-6 Interrupt latency cycle summary... 11-10
Table 11-7 Interrupt latency calculated examples .. 11-11
Table A-1 Clock interface signals ... A-3
Table A-2 AHB signals ... A-4
Table A-3 Coprocessor interface signals ... A-6
Table A-4 Debug signals .. A-8
Table A-5 Miscellaneous signals .. A-10
Table A-6 ETM interface signals .. A-11
Table A-7 INTEST wrapper signals .. A-13
Table 11-8 DMA signals ... A-14
Table B-1 AC parameters ... B-12

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. ix

List of Figures
ARM966E-S (Rev 1)
Technical Reference Manual

Figure 1-1 ARM966E-S block diagram...1-3
Figure 3-1 ARM966E-S memory map ..3-2
Figure 3-2 I-SRAM aliasing example..3-3
Figure 4-1 SRAM read cycle ..4-2
Figure 4-2 ARM966E-S SRAM hierarchy ...4-7
Figure 4-3 ONESEGX32 interface..4-8
Figure 4-4 FOURSEGX32 interface ...4-9
Figure 4-5 FOURSEGX8 interface ...4-10
Figure 5-1 Single-port RAM DMA interface ..5-3
Figure 5-2 Dual-port RAM DMA interface...5-4
Figure 5-3 Single-port RAM DMA reads...5-6
Figure 5-4 Single-port RAM DMA writes ..5-8
Figure 5-5 Dual-port DMA reads ..5-9
Figure 5-6 Dual-port RAM DMA writes ...5-10
Figure 5-7 Mixed DMA read and write..5-11
Figure 6-1 Write buffer FIFO content example ...6-4
Figure 6-2 Sequential instruction fetches, after being granted the bus6-9
Figure 6-3 Sequential instruction fetches, no AHB data access required6-10
Figure 6-4 Back-to-back LDR, no external instruction access..............................6-11
Figure 6-5 Simultaneous instruction and data requests6-12
Figure 6-6 Single STM, no instruction fetch ...6-13
Figure 6-7 Single LDM, no instruction access ..6-14
Figure 6-8 Single STM, followed by sequential instruction fetch6-15

x Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 6-9 Single LDM followed by sequential instruction fetch 6-16
Figure 6-10 Single STM, crossing a 1KB boundary... 6-17
Figure 6-11 Single LDM, crossing a 1KB boundary... 6-18
Figure 6-12 SWP instruction .. 6-19
Figure 6-13 AHB 3:1 clocking example.. 6-20
Figure 6-14 ARM966E-S CLK to AHB HCLK sampling ... 6-22
Figure 7-1 LDC/STC cycle timing .. 7-4
Figure 7-2 MCR/MRC transfer timing with busy-wait ... 7-8
Figure 7-3 Interlocked MCR/MRC timing with busy-wait 7-9
Figure 7-4 Late cancelled CDP.. 7-10
Figure 7-5 Privileged instructions... 7-11
Figure 7-6 Busy-waiting and interrupts .. 7-12
Figure 8-1 Clock synchronization... 8-3
Figure 8-2 Typical debug system... 8-4
Figure 8-3 ARM9E-S block diagram .. 8-6
Figure 8-4 Breakpoint timing.. 8-10
Figure 8-5 Watchpoint entry with data processing instruction 8-11
Figure 8-6 Watchpoint entry with branch ... 8-12
Figure 8-7 The ARM9E-S, TAP controller and EmbeddedICE-RT 8-16
Figure 8-8 Debug communications channel status register................................. 8-20
Figure 8-9 Coprocessor 14 debug status register format 8-21
Figure 9-1 ARM966E-S ETM interface .. 9-2
Figure B-1 Clock, reset and AHB enable timing .. B-2
Figure B-2 AHB bus request and grant related timing ... B-3
Figure B-3 AHB bus master timing .. B-4
Figure B-4 Coprocessor interface timing ... B-5
Figure B-5 Debug interface timing ... B-6
Figure B-6 JTAG interface timing .. B-7
Figure B-7 DBGSDOUT to DBGTDO timing ... B-8
Figure B-8 Exception and configuration timing .. B-8
Figure B-9 INTEST wrapper timing ... B-9
Figure B-10 ETM interface timing .. B-10
Figure B-11 DMA interface timing ... B-11
Figure C-1 SRAM write cycle ..C-2
Figure C-2 Read follows write ...C-3
Figure C-3 Simultaneous instruction fetch, data read ...C-4
Figure C-4 Data read from I-SRAM ...C-5
Figure C-5 Data read followed by instruction fetch ..C-6
Figure C-6 Simultaneous instruction fetch, data write ...C-7
Figure C-7 I-SRAM data write followed by instruction fetchC-8
Figure C-8 I-SRAM write followed by instruction fetch, data writeC-9
Figure C-9 I-SRAM write followed by instruction fetch, data readC-10

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. xi

Preface

This preface introduces the ARM966E-S and its reference documentation. It contains
the following sections:

• About this document on page xii

• Further reading on page xv

• Feedback on page xvi.

xii Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

About this document

This document is a reference manual for the ARM966E-S.

Intended audience

This document has been written for experienced hardware and software engineers who
might or might not have any experience of ARM products.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM966E-S.

Chapter 2 Programmer’s Model

Read this chapter for a description of the programmer’s model including
a summary of the ARM966E-S coprocessor registers.

Chapter 3 Memory Map

Read this chapter for a description of the ARM966E-S fixed memory
map implementation.

Chapter 4 Tightly-coupled SRAM

Read this chapter for a description of the requirements and operation of
the tightly-coupled SRAM.

Chapter 5 Direct Memory Access (DMA)

Read this chapter for a description of the optional DMA interface in the
ARM966E-S.

Chapter 6 Bus Interface Unit

Read this chapter for a description of the operation of the Bus Interface
Unit and write buffer.

Chapter 7 Coprocessor Interface

Read this chapter for a description of the coprocessor interface and the
operation of common coprocessor instructions.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. xiii

Chapter 8 Debug Support

Read this chapter for a description of the debug support for the
ARM966E-S and the EmbeddedICE-RT logic.

Chapter 9 Embedded Trace Macrocell Interface

Read this chapter for a description of the ETM interface, including details
of how to enable the interface.

Chapter 10 Test Support

Read this chapter for a description of the test methodology used for the
ARM966E-S synthesized logic and tightly-coupled SRAM.

Appendix A Signal Description

Read this appendix for a description of the ARM966E-S signals.

Appendix B AC Parameters

Read this appendix for a description of the timing parameters applicable
to the ARM966E-S.

Appendix C SRAM Stall Cycles

Read this appendix for a description of the tightly-coupled SRAM stall
cycle mechanism in the ARM966E-S.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. May also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

xiv Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

typewriter bold
Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labeled when they occur.
Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Valid (correct) sampling point

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. xv

Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact info@arm.com or visit our web site at
http://www.arm.com.

ARM publications

ARM Architecture Reference Manual (ARM DDI 0100).

ARM9E-S Technical Reference Manual (ARM DDI 0165).

AMBA Specification Rev 2.0 (ARM IHI 0011).

AHB Example AMBA System Technical Reference Manual (ARM DDI 0170).

Other publications

IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture.

xvi Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Feedback

ARM Limited welcomes feedback both on the ARM966E-S, and on the documentation.

Feedback on the ARM966E-S

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments

Feedback on the ARM966E-S

If you have any comments about this document, please send email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the ARM966E-S processor. It contains the following sections:

• About the ARM966E-S on page 1-2

• Microprocessor block diagram on page 1-3.

Introduction

1-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

1.1 About the ARM966E-S

The ARM966E-S is a synthesizable macrocell combining an ARM processor with
tightly-coupled SRAM memory. It is a member of the ARM9 Thumb family of
high-performance, 32-bit System-on-Chip (SoC) processor solutions and is targeted at
a wide range of embedded applications where high performance, low system cost, small
die size, and low power are all important.

The ARM966E-S processor macrocell provides a complete high-performance
processor subsystem, including an ARM9E-S RISC integer CPU, tightly-coupled
SRAM for each of the instruction and data CPU interfaces, write buffer and an AMBA
AHB bus interface. Providing this complete high-frequency subsystem frees the SoC
designer to concentrate on design issues unique to their system. The synthesizable
nature of the device eases integration into ASIC technologies.

The tightly-coupled SRAMs within the ARM966E-S macrocell allow high-speed
operation without incurring the performance and power penalties of accessing the
system bus, while having a lower area overhead than a cached memory system. The size
of both the instruction and data SRAM are implementor-configurable to allow tailoring
of the hardware to the embedded application. Additionally, You can configure the data
SRAM interface to allow Direct Memory Access (DMA) to this RAM.

The ARM9E-S core within the ARM966E-S macrocell executes both the 32-bit ARM
and 16-bit Thumb instruction sets, allowing trade off between high performance and
high code density. Additionally the ARM9E-S features:

• ARMv5T 32-bit instruction set with improved ARM/Thumb code interworking
and enhanced multiplier designed for improved DSP performance

• ARM debug architecture with additional support for real-time debug, which
allows critical exception handlers to execute while debugging the system.

The ARM966E-S includes support for external coprocessors allowing floating point or
other application-specific hardware acceleration to be added.

To minimize die size and power consumption the ARM966E-S does not provide virtual
to physical address mapping as this is not required by most embedded systems. A
simple fixed memory map is implemented for the close-coupled local RAM, ideally
suited to small, fast, real-time embedded control applications.

The ARM966E-S synthesizable implementation supports the use of a scan test
methodology for the standard cell logic and Built-In-Self-Test (BIST) for the
tightly-coupled SRAM.

Introduction

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 1-3

1.2 Microprocessor block diagram

The ARM966E-S block diagram is shown in Figure 1-1.

Figure 1-1 ARM966E-S block diagram

ARM9E-S

Instruction
SRAM

Data
SRAM System control

coprocessor
(CP15)

External
coprocessor

interface

AHB
Bus Interface Unit
and write buffer

System
controller

ETM
interface

IA DA

WDATA

RDATAINSTR

Addr Din Addr Din

Dout Dout

DMA
interface

AHB Peripherals

DMA Controller

ETM

Coprocessors

Introduction

1-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-1

Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM966E-S. It contains the
following sections:

• About the programmer’s model on page 2-2

• About the ARM9E-S programmer’s model on page 2-3

• ARM966E-S CP15 registers on page 2-4.

Programmer’s Model

2-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

2.1 About the programmer’s model

The programmer’s model for the ARM966E-S macrocell primarily consists of the
ARM9E-S core programmer’s model (see About the ARM9E-S programmer’s model on
page 2-3). Additions to this model are required to control the operation of the
ARM966E-S internal coprocessors, and any coprocessor connected to the external
coprocessor interface.

There are two internal coprocessors within the ARM966E-S:

• CP14 within the ARM9E-S core allows software access to the debug
communications channel

• CP15 allows configuration of the tightly-coupled SRAM and write buffer and
other ARM966E-S system options such as big or little-endian operation.

The registers defined in CP14 are accessible with MCR and MRC instructions. These are
described in The debug communications channel on page 8-19.

The registers defined in CP15 are accessible with MCR and MRC instructions. These are
described in ARM966E-S CP15 registers on page 2-4.

Any coprocessors registers and operations, attached to the external coprocessor
interface, are accessible with appropriate coprocessor instructions.

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-3

2.2 About the ARM9E-S programmer’s model

The ARM9E-S processor core implements the ARM architecture v5T, that includes the
32-bit ARM instruction set and the 16-bit Thumb instruction set. For a description of
both instruction sets, see the ARM Architecture Reference Manual. Contact ARM for
complete descriptions of both instruction sets.

2.2.1 Data Abort model

The ARM9E-S implements the base restored data abort model, that differs from the
base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating
system code, the Data Abort handler. It does not affect user code. With the base
restored data abort model, when a Data Abort exception occurs during the execution of
a memory access instruction, the base register is always restored by the processor
hardware to the value the register contained before the instruction was executed. This
removes the requirement for the Data Abort handler to unwind any base register update
that might have been specified by the aborted instruction.

The base restored data abort model significantly simplifies the software Data Abort
handler.

Programmer’s Model

2-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

2.3 ARM966E-S CP15 registers

CP15 allows configuration of the tightly-coupled SRAM and write buffer and other
ARM966E-S system options such as big or little-endian operation.

The ARM966E-S coprocessor 15 registers are described in the following sections:

• CP15 register map summary

• Register 0, ID code on page 2-5

• Register 1, Control register on page 2-5

• Register 7, Core control on page 2-8

• Register 15, Test on page 2-9.

2.3.1 CP15 register map summary

The ARM966E-S incorporates CP15 for system control. The register map for CP15 is
shown in Table 2-1.

Note

Register 15 provides access to more than one register. The register access depends on
the value of the opcode_2 field. See the register descriptions in this section for more
information.

Table 2-1 CP15 register map

Register Function Access

0 ID code Read-only

1 Control Read/write

2-6 Reserved Undefined

7 Core control Write-only

13 Trace process identifier Read/write

8-14 Reserved Undefined

15 Test Read/write

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-5

2.3.2 Register 0, ID code

This is a read-only register that returns a 32-bit device ID code. The ID code register is
accessed by reading CP15 register 0 with the opcode_2 field set to any value. For
example:
MRC p15, 0, rd, c0, c0, 0; returns ID register

The contents of the ID code are shown in Table 2-2.

2.3.3 Register 1, Control register

This register contains the global control bits of the ARM966E-S (see Table 2-3). All
reserved bits must either be written with zero or one, as indicated, or written using
read-modify-write. The reserved bits have an unpredictable value when read. To read
and write this register:
MRC p15, 0, rd, c1, c0, 0; read Control register

MCR p15, 0, rd, c1, c0, 0; write Control register

Table 2-2 Register 0, ID code

Register bits Function Value

31:24 Implementor 0x41

23:20 Variant 0x0

19:16 ARM architecture v5T 0x05

15:4 Part number 0x966

3:0 Version Version specific

Table 2-3 Register 1, Control register

Register
bit

Function

31:16 Reserved (should be zero)

15 Configure disable loading
TBIT

14 Reserved (should be zero)

13 Alternate vector select

12 Instruction SRAM enable

Programmer’s Model

2-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Bit 15, Configure disable loading TBIT

When HIGH the ARM9E-S core disables certain ARMv5T defined behavior involving
loading data to the PC. This bit is cleared LOW during reset to provide ARMv5T
compatibility.

Bit 13, Alternate vectors select

This bit controls the base address used for the exception vectors. When LOW, the base
address for the exception vectors is 0x0000 0000. When HIGH, the base address is
0xFFFF 0000.

Note

Bit 13 is initialized either HIGH or LOW during system reset, depending on the value
of the input pin, VINITHI. This allows the exception vector location to be defined
during reset to suit the boot mechanism of the application. You can then reprogram as
required following system reset.

11:8 Reserved (should be one)

7 Endian

6:4 Reserved (should be one)

3 Write buffer enable

2 Data SRAM enable

1:0 Reserved (should be zero)

Table 2-3 Register 1, Control register (continued)

Register
bit

Function

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-7

Bit 12, Instruction SRAM enable

This bit controls the behavior of the tightly-coupled instruction SRAM. When HIGH,
all accesses to the fixed instruction memory space as shown in Figure 3-1 on page 3-2,
access the instruction SRAM. When LOW, all accesses to the instruction memory space
access the AMBA AHB.

Note

Bit 12 is initialized either HIGH or LOW during system reset depending on the value
of the input pin INITRAM.

Bit 7, Endian

Selects the endian configuration of the ARM966E-S. When this bit is HIGH, big-endian
configuration is selected. When LOW, little-endian configuration is selected. This bit is
cleared LOW during reset.

Bit 3, Write buffer enable

This bit controls the use of the write buffer. When HIGH, all stores to the fixed
bufferable space of the AMBA AHB (as shown in Figure 3-1 on page 3-2) are treated
as buffered writes. When LOW, all stores to the AMBA AHB are treated as
nonbufferable.

If the write buffer is disabled having previously been enabled, any writes already in the
write buffer FIFO complete as buffered writes.

This bit is cleared LOW during reset.

Bit 2, Data SRAM enable

This bit controls the behavior of the tightly-coupled Data SRAM. When HIGH, all data
interface accesses to the fixed data memory space as shown in Figure 3-1 on page 3-2,
access the Data SRAM. When LOW, all accesses to the data memory space access the
AMBA AHB.

Note

Bit 2 is initialized either HIGH or LOW during system reset depending on the value of
the input pin INITRAM.

Programmer’s Model

2-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

2.3.4 Register 7, Core control

You can use a write to this register, to perform wait for interrupt and drain write buffer
operations.

Wait for interrupt

This operation allows the ARM966E-S to enter a low-power standby mode. When the
operation is invoked, the clock enable to the processor core is negated until either an
interrupt or a debug request occurs. This function is invoked by a write to Register 7.
The following ARM instruction causes this to occur:
MCR p15, 0, rd, c7, c0, 4; wait for interrupt

This is the preferred encoding that must be used by new software. For compatibility
with existing software, ARM966E-S also supports the following ARM instruction that
has the same affect:
MCR p15, 0, rd, c15, c8, 2; wait for interrupt

This stalls the processor from the time that the instruction is executed until nFIQ,
nIRQ, or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the
EmbeddedICE-RT control register then this causes the wait-for-interrupt condition to
terminate.

In the case of nFIQ and nIRQ, the processor core is woken up regardless of whether
the interrupts are enabled or disabled (that is, independent of the I and F bits in the
processor CPSR). The debug-related waking only occurs if DBGEN is HIGH, that is,
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before
executing the instruction after the wait for interrupt. If debug request is used to wake up
the system, the processor enters debug-state before executing any more instructions.

Wait for interrupt does not prevent the write buffer from emptying.

Drain write buffer

This CP15 operation causes instruction execution to be stalled until the write buffer is
emptied. This operation is useful in real-time applications where the processor has to be
sure that a write to a peripheral has completed before program execution continues. An
example is where a peripheral in a bufferable region is the source of an interrupt. When
the interrupt has been serviced, the request must be removed before interrupts can be
re-enabled. This can be ensured if a drain write buffer operation separates the store to
the peripheral and the enable interrupt functions.

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-9

The drain write buffer operation is invoked by a write to Register 7 using the following
ARM instruction:
MCR cp15, 0, rd, c7, c10, 4; drain write buffer

This stalls the processor core until any outstanding accesses in the write buffer have
been completed, that is, until all data has been written to external memory.

2.3.5 Register 13, Trace process identifier

This register provides a mechanism to allow the Real-time Trace tools to identify the
currently executing process in multi-tasking environments.

The contents of this register are replicated on the ETMPROCID pins of the
ARM966E-S. The ETMPROCIDWR signal is set HIGH for a single clock cycle
whenever this register is written to. Table 2-4 shows the trace process identifier for read
and write.

2.3.6 Register 15, Test

This register provides access to:

• the tightly-coupled Instruction and Data SRAM test features

• the trace control features.

Both features are supported by the ARM966E-S.

The register map for CP15 register 15 is shown in Table 2-5.

Table 2-4 Register 13, Trace process identifier

Register Read Write

Trace Process Identifier MRC p15,0,Rd,c13,c1,1 MCR p15,0,Rd,c13,c1,1

Table 2-5 Register 15, Test register map

Register Read Write

Trace Control Register MRC p15, 1, Rd, c15, c1, 0 MCR p15, 1, Rd, c15, c1, 0

BIST control register MRC p15, 1, Rd, c15, c0, 1 MCR p15, 1, Rd, c15, c0, 1

Instruction BIST address register MRC p15, 1, Rd, c15, c0, 2 MCR p15, 1, Rd, c15, c0, 2

Programmer’s Model

2-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Note

Opcode_1 is set HIGH when accessing Register 15. Opcode_2 is used to index registers
within the Register 15 register map.

Trace control register

The trace control register allows the masking of interrupts during trace. This register
allows nIRQ and nFIQ interrupt priority over FIFOFULL to be programmed. Table
2-6 shows the bit assignments within the Trace control register.

Instruction BIST general register MRC p15, 1, Rd, c15, c0, 3 MCR p15, 1, Rd, c15, c0, 3

Data BIST address register MRC p15, 1, Rd, c15, c0, 6 MCR p15, 1, Rd, c15, c0, 6

Data BIST general register MRC p15, 1, Rd, c15, c0, 7 MCR p15, 1, Rd, c15, c0, 7

Table 2-5 Register 15, Test register map

Register Read Write

Table 2-6 Trace control register

Register bit Content

0 Reserved (should be zero)

1 1 = Mask nIRQ interrupts during trace
0= Do not mask nIRQ interrupts during trace

2 1 = Mask nFIQ interrupts during trace
0 = Do not mask nFIQ interrupts during trace

31:3 Reserved (should be zero)

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-11

BIST control register

Table 2-7 shows the bit assignments within the BIST control register.

At reset, all bits are cleared LOW. BIST must be enabled before a BIST operation is
started. When BIST is enabled to test one or both tightly-coupled SRAMs, the SRAM
being tested is automatically disabled by clearing its enable bit in CP15 Register 1. This
is to prevent the programmer inadvertently using the SRAM following a BIST
operation, because the BIST algorithm corrupts the SRAM contents.

The BIST size field determines the size of the BIST operation. The value written to this
field N, is decoded as follows:

Table 2-7 BIST control register

Register bit Meaning when written Meaning when read

31:21 Instruction SRAM BIST size Instruction SRAM BIST size

20 Reserved (should be zero) Instruction SRAM BIST complete flag

19 Reserved (should be zero) Instruction SRAM BIST fail flag

18 Instruction SRAM BIST enable Instruction SRAM BIST enable

17 Instruction SRAM BIST pause Instruction SRAM BIST pause

16 Instruction SRAM BIST start strobe Instruction SRAM BIST running flag

15:5 Data SRAM BIST size Data SRAM BIST size

4 Reserved (should be zero) Data SRAM BIST complete flag

3 Reserved (should be zero) Data SRAM BIST fail flag

2 Data SRAM BIST enable Data SRAM BIST enable

1 Data SRAM BIST pause Data SRAM BIST pause

0 Data SRAM BIST start strobe Data SRAM BIST running flag

BIST size in bytes 2N 2+=

Programmer’s Model

2-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Some examples are shown in Table 2-8.

Note

BIST size bits [31:26] should be zero.

Table 2-8 BIST size encoding examples

Instruction RAM BIST size [31:21] N Size of test

000000 00001 (minimum) 1 8 bytes

000000 00100 4 64 bytes

000000 00111 7 512 bytes

000000 01000 8 1 KB

000000 01010 10 4 KB

000000 01111 15 128 KB

000000 11000 (maximum) 24 64 MB

Programmer’s Model

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 2-13

Writing to the BIST control register with Bit[0] set initiates a Data SRAM BIST
operation.

Writing to the BIST control register with Bit[16] set initiates an Instruction SRAM
BIST operation.

You can run Instruction and Data BIST operations individually or concurrently. You
must set up the Size, Pause and Enable bits within the BIST control register prior to
initiating a BIST operation.

Reading the BIST control register returns the status of the BIST operations. See BIST
of tightly-coupled SRAM on page 10-4 for a detailed description of the BIST support
and the additional register 15 BIST registers.

Programmer’s Model

2-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 3-1

Chapter 3
Memory Map

This chapter describes the ARM966E-S fixed memory map implementation.It contains
the following sections:

• About the ARM966E-S memory map on page 3-2

• Tightly-coupled SRAM address space on page 3-3

• Bufferable write address space on page 3-4.

Memory Map

3-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

3.1 About the ARM966E-S memory map

The ARM966E-S couples Instruction and Data SRAM memories of configurable size
to the ARM9E-S core. This allows high-speed operation without incurring the
performance and power penalties of accessing the system bus. A write buffer is used to
minimize traffic on the AHB bus.

To provide simple control over the SRAM and write buffer, a fixed memory map is
implemented within the ARM966E-S. Figure 3-1 illustrates this map.

Figure 3-1 ARM966E-S memory map

256MB

256MB

256MB

128MB

64MB

64MB

AHB unbuffered

AHB buffered

AHB unbuffered

AHB buffered

D-SRAM

I-SRAM

Tightly-coupled
SRAM

AMBA AHB

0xFFFF FFFF

0xF000 0000

0x2FFF FFFF

0x2000 0000

0x1FFF FFFF

0x1000 0000

0x0FFF FFFF

0x0800 0000

0x07FF FFFF

0x0400 0000

0x03FF FFFF

0x0000 0000

Memory Map

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 3-3

3.2 Tightly-coupled SRAM address space

The tightly-coupled Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) are
located at the bottom of the memory map. Each SRAM is allocated a 64MB address
space, the bottom 64MB space mapping to I-SRAM and the next 64MB range mapping
to D-SRAM.

In practice, each SRAM is likely to be much smaller than the 64MB allowable and the
address decode is implemented so that each memory is aliased throughout its 64MB
range. See Figure 3-2 for an example of a 16KB I-SRAM aliased through the 64MB
address space.

Figure 3-2 I-SRAM aliasing example

All accesses to addresses above the 128MB combined SRAM address space result in
AMBA AHB transfers controlled by the Bus Interface Unit (BIU).

An instruction fetch from the ARM9E-S core to the D-SRAM address space goes to the
AHB, regardless of whether the D-SRAM is enabled. A data interface access from the
ARM9E-S core can access both the D-SRAM and the I-SRAM. The ability to
additionally access the I-SRAM is required to allow the fetching of inline literals within
code, for programming of the instruction I-SRAM, and for debugging purposes.

When an SRAM is disabled, all accesses to its address space go to the AHB. When
enabled, the SRAM must be programmed before use. The tightly-coupled SRAMs can
be enabled or disabled during reset depending on the value of the input pin INITRAM.
Several boot options are available using INITRAM and the exception vectors location
pin VINITHI. These are discussed in Using INITRAM input pin on page 4-4.

D-SRAM space

I-SRAM alias #1

I-SRAM (16KB)

0x0400 0000

0x03FF FFFF

0x03FF C000

0x0000 BFFF

0x0000 8000

0x0000 7FFF

0x0000 4000

0x0000 3FFF

0x0000 0000

I-SRAM alias #2

I-SRAM alias #4095

Memory Map

3-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

3.3 Bufferable write address space

The use of the ARM966E-S write buffer is controlled by both the CP15 control register
and the fixed address map.

When the ARM966E-S comes out of reset, the write buffer is disabled by default. All
data writes to the AHB are performed as unbuffered. The ARM9E-S is stalled until the
BIU has performed the write on the AHB interface.

When the write buffer is enabled by writing to CP15 control register bit 3 (see
ARM966E-S CP15 registers on page 2-4), the data address (DA[31:0]) from the
ARM9E-S core controls whether the write buffer is used. If bit 28 of DA is set, the write
is treated as un-buffered. If bit 28 is clear however, the write is treated as a buffered
write and the BIU write buffer FIFO is used. Buffered writes allow the core to continue
program execution while the write is performed on the AHB. If the write buffer is full
the core is stalled until space becomes available in the FIFO. See Write buffer operation
on page 6-3 for details of the BIU and write buffer behavior.

Note

Writes to tightly-coupled SRAM address space do not get sent to the AHB if the SRAM
being accessed is enabled (the SRAMs do not write-through). If either SRAM is
disabled and a write is performed to its address space, the write is performed as a
buffered AHB write if the write buffer is enabled. If not, the write is un-buffered.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 4-1

Chapter 4
Tightly-coupled SRAM

This chapter describes the tightly-coupled SRAM in the ARM966E-S. It contains the
following sections:

• ARM966E-S SRAM requirements on page 4-2

• SRAM stall cycles on page 4-3

• Enabling the SRAM on page 4-4

• ARM966E-S SRAM wrapper on page 4-7.

For details of the ARM9E-S interface signals referenced in this section, refer to the
ARM9E-S Technical Reference Manual.

Tightly-coupled SRAM

4-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

4.1 ARM966E-S SRAM requirements

The ARM966E-S tightly-coupled SRAM is built from blocks of ASIC library compiled
SRAM. The Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) can each be any
size from 0 bytes to 64MB, although to ease implementation the size must be an integer
power of two. The I-SRAM and D-SRAM can have different sizes.

To allow the I-SRAM to be initialized and for access to literal tables during execution,
the data interface of the ARM9E-S core must be able to access the I-SRAM. This
requires that the instruction and data addresses are multiplexed before entering the
I-SRAM and the instruction data is routed both to the instruction and data interfaces of
the core. See Figure 1-1 on page 1-3 for details of this data and address multiplexing.

ARM966E-S supports the use of synchronous SRAM. The SRAM control has been
implemented in a way that expects the compiled SRAM memory cells to return read
data to ARM9E-S in a single-cycle. This requirement applies to both the I-SRAM and
D-SRAMs. See Figure 4-1 for a typical read cycle (I-SRAM shown).

Figure 4-1 SRAM read cycle

During normal program execution, the instruction and data interfaces of the ARM9E-S
can be active simultaneously. In this case both SRAMs can be simultaneously accessed
allowing the core to continue execution without any stall cycles. There are cases
however, where stall cycles are encountered when accessing the SRAM.

CLK

InMREQ

IA[31:1]

INSTR[31:0]

SRAM

access time

Addr A

INSTR (A)

Tightly-coupled SRAM

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 4-3

4.2 SRAM stall cycles

Stall cycles can occur in both the I-SRAM and D-SRAMs. The two RAMs share a
common stall mechanism. Because memory write in an ARM9E-S system is a
two-cycle operation, CPU memory access during the second cycle must be stalled. The
I-SRAM, has additional stall cycles as it can be accessed by both the instruction and
data interfaces of the ARM9E-S. In order to maximize memory interface frequency
performance, data read requests to the I-SRAM are pipelined by one clock cycle. Any
stall requirement is detected by the SRAM control and factored into its response to the
ARM966E-S system controller. The ARM9E-S SYSCLKEN input is then de-asserted
until the SRAM has performed the access.

Table 4-1 shows the number of stall cycles added for different stall mechanisms for the
I-SRAM.

Note

Data reads from the I-SRAM incur a single-cycle stall for each read instruction and not
each separate RAM read. LDM and LDR operations both incur a single stall cycle.

The D-SRAM stall mechanism is write followed by read, and the number of stall cycles
added is one.

For a detailed description of SRAM stall cycles, see Appendix C SRAM Stall Cycles.

Table 4-1 I-SRAM stall cycles

Number of
added cycles

Stall mechanism

1 Data read.

1 Data read followed by write.

1 Data write followed by instruction fetch or data read.

1 Data read followed by instruction fetch.

1 Simultaneous instruction fetch and data read.

2 Simultaneous instruction fetch and data write.

2 Data read or write followed by simultaneous instruction fetch and data
read or write.

Tightly-coupled SRAM

4-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

4.3 Enabling the SRAM

There are two mechanisms for controlling the enable of the SRAM:

• both I-SRAM and D-SRAM can be enabled or disabled during reset by the input
pin INITRAM

• the I-SRAM and D-SRAM can be individually enabled or disabled through
software MCR instructions to CP15.

4.3.1 Using INITRAM input pin

Two resets are described in the following sections:

• Reset with INITRAM LOW

• Reset with INITRAM HIGH.

Reset with INITRAM LOW

The INITRAM pin is provided to allow the ARM966E-S to boot with both SRAM
blocks either enabled or disabled. If INITRAM is held LOW during reset, the
ARM966E-S comes out of reset with both SRAMs disabled. All accesses to I-SRAM
and D-SRAM space go to the AHB. The SRAM can then be individually or jointly
enabled by writing to the CP15 control register (register 1).

Reset with INITRAM HIGH

If however, INITRAM is held HIGH during reset, both SRAM blocks are enabled
when the ARM966E-S comes out of reset. This is normally used for a warm reset where
the SRAM has already been programmed before the application of nRESET to the
ARM966E-S. In this case, the SRAM contents are preserved and the ARM966E-S can
run directly from the tightly-coupled SRAM following reset. Either one or both SRAM
can be further disabled or enabled by writing to the CP15 control register.

Note

If INITRAM is held HIGH during a cold reset (the SRAM has not previously been
initialized), the VINITHI pin must be set HIGH to ensure that the ARM966E-S boots
from 0xFFFF 0000, that is in AHB address space and is substantially outside the
SRAM address space. This is necessary because if VINITHI is LOW, the ARM966E-S
attempts to boot from 0x0000 0000, and this selects the uninitialized I-SRAM.

Tightly-coupled SRAM

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 4-5

4.3.2 Using CP15 control register

When out of reset, the behavior of the tightly-coupled SRAM is controlled by the state
of CP15 control register.

Enabling the I-SRAM

You can enable the I-SRAM by setting bit 12 of the CP15 control register. This register
must be accessed in a read-modify-write fashion, to preserve the contents of the bits not
being modified. See ARM966E-S CP15 registers on page 2-4 for details of how to read
and write the CP15 control register. When the I-SRAM has been enabled, all future
ARM9E-S instruction fetches and data accesses to the I-SRAM address space as shown
in Figure 3-1 on page 3-2 causes the I-SRAM to be accessed.

Enabling the I-SRAM greatly increases the performance of the ARM966E-S as the
majority of accesses to it can be performed with no stall cycles, whereas accessing the
AHB might cause several stall cycles for each access.

Caution
Care must be taken to ensure that the I-SRAM is appropriately initialized before it is
enabled and used to supply instructions to the ARM9E-S core. If the core tries to
execute instructions from uninitialized I-SRAM, the behavior is unpredictable.

Disabling the I-SRAM

You can disable the I-SRAM by clearing bit 12 of the CP15 control register. When the
I-SRAM has been disabled, all further ARM9E-S instruction fetches access the AHB.
If the core performs a data access to the I-SRAM address space as shown in Figure 3-1
on page 3-2, an AHB access is performed.

Note

The contents of the SRAM are preserved when it is disabled. If it is re-enabled, accesses
to previously initialized SRAM locations returns the preserved data.

Enabling the D-SRAM

You can enable the D-SRAM by setting bit 2 of the CP15 control register. See
ARM966E-S CP15 registers on page 2-4 for details of how to read and write this
register. When the D-SRAM has been enabled, all future read and write accesses to the
D-SRAM address space, as shown in Figure 3-1 on page 3-2, cause the D-SRAM to be
accessed.

Tightly-coupled SRAM

4-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Disabling the D-SRAM

You can disable the D-SRAM by clearing bit 2 of the CP15 control register. When the
D-SRAM is disabled, all further reads and writes to the D-SRAM address space, as
shown in Figure 3-1 on page 3-2, access the AHB. Read and write accesses to I-SRAM
address space uses the I-SRAM or accesses the AHB depending on if it is enabled.

Tightly-coupled SRAM

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 4-7

4.4 ARM966E-S SRAM wrapper

The ARM966E-S allows you to have control over the size of the I-SRAM and D-SRAM
(up to a maximum of 64MBytes each). It is not possible to have a single generic
interface between the ARM966E-S and the SRAM, due to the large number of differing
compiled SRAM that can be integrated into an ARM966E-S system, potentially each
with a unique interface.

To ease the task of integrating differing SRAM into the ARM966E-S, an interface
wrapper block has been developed to ensure that when wrapped, the SRAM provides a
standard interface to the ARM966E-S SRAM control. ARM provides an example
SRAM wrapper containing three example interfaces, see Example SRAM interfaces on
page 4-8. You must study these examples and decide which is most appropriate for the
type of SRAM available. A script is provided which automates any required changes.

The RAM interface RTL allows you to trade off speed against power performance so
that you can tailor the ARM966E-S to suit a particular requirement.

There are five SRAM modules instantiated at the top-level of the ARM966E-S. Figure
4-2 shows the structure of these three modules.

Figure 4-2 ARM966E-S SRAM hierarchy

RamCtrl.v contains the RAM control logic that is partner-independent. This logic is
fixed.

IRamIF.v

BIST.v

IRAM.v

InstrRAM.v

BIST.v

DRAM.v

DRamIF.v

DataRAM.v

RamCtrl.v

ICtrl.v

DCtrl.v DMA

Tightly-coupled SRAM

4-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

IRamIF.v and DRamIF.v generate the SRAM specific ChipSelect, WriteEnable, and
ByteWrite signals. Your own library RAMs are instantiated inside InstrRAM.v and
DataRAM.v .

4.4.1 Example SRAM interfaces

The example wrapper supplied by ARM contains three RAM interface examples. All of
the interface modifications are done in the IRamIF.v and the DRamIF.v blocks for the
I-SRAM and D-SRAM respectively. The example SRAM interfaces are:

• ONESEGX32

• FOURSEGX32 on page 4-9

• FOURSEGX8 on page 4-10

Note

The examples shown here are for 32KByte I-SRAM (8K words x 4bytes). The interface
for D-SRAM is identical.

ONESEGX32

Figure 4-3 shows the simplest interface I-SRAM. To use this, the SRAM must consist
of a single word-wide RAM that has byte-write control.

Only single ChipSelect and WriteEnable signals are required.

Figure 4-3 ONESEGX32 interface

8Kx32

ICtrl.v

IRamIF.v

ChipSelect

WriteEnable

RamAddr[12:0]

ByteWrite[3:0]

IRData[31:0]

Tightly-coupled SRAM

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 4-9

FOURSEGX32

You can use the example shown in Figure 4-4 when it is not possible to construct the
SRAM from a single physical block due to either layout constraints or generator
constraints, or because a single SRAM segment does not meet timing constraints.

Figure 4-4 FOURSEGX32 interface

Separate chip select signals are required for each SRAM block.

Note

• The generation of separate chip select signals for each SRAM block ensures good
power performance, because only the segment being accessed is enabled.

• The SRAM address is 11 bits in this example (compared with the 13 bit address
in ONESEGX32 on page 4-8). RamAddr[12:11] are used to generate separate
chip selects for each segment.

If it is not possible to have separate chip select signals for each block of RAM, for
example if the RAM is asynchronous, then separate write enable signals are required
for each segment. The use of asynchronous RAMs is not recommended due to the
increased power consumption of this solution.

Note

The wrapper RTL does not support asynchronous RAMs.

2Kx32

ICtrl.v

IRamIF.v
ChipSelect[3:0]

WriteEnable

RamAddr[10:0]

ByteWrite[3:0]

IRData[31:0]

2Kx32 2Kx32 2Kx32

OutputSelect[1:0]

[0] [1] [2] [3]

[31:0] [63:32] [95:64] [127:96]

Tightly-coupled SRAM

4-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

FOURSEGX8

Figure 4-5 shows that the SRAM needs to be split into four-byte wide segments where
an SRAM does not support byte-writes. In order to give an example of the most
complex interface possible, Figure 4-5 assumes that each byte-wide SRAM needs to be
split into four blocks (see word-wide SRAM in FOURSEGX32 on page 4-9).

In FOURSEGX32 on page 4-9 the SRAM Address is 11 bits. Bits [12:11] of the address
are used to decode which of the four word-wide RAMs is selected.

In Figure 4-5 ByteWrite[3:0] is used (inside IRamIF.v) to decode each word-wide chip
select into four separate chip select signals, one for each byte of the word.

Figure 4-5 FOURSEGX8 interface

ICtrl.v

IRamIF.v
ChipSelect[15:0]

WriteEnable

RamAddr[10:0]

ByteWrite[3:0]

IRData[31:0]

OutputSelect[1:0]

[0] [4] [8] [12]

[1] [5] [9] [13]

[2] [6] [10] [14]

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

2Kx8

[3] [7] [11] [15]

B
y
te

1
B

y
te

0
B

y
te

2
B

y
te

3

8

32

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-1

Chapter 5
Direct Memory Access (DMA)

This chapter describes the optional DMA interface in the ARM966E-S. It contains the
following sections:

• About the DMA interface on page 5-2

• Timing interface on page 5-5

• DMAENABLE setup and hold cycles on page 5-12

• Summary of signal behavior on page 5-13

Direct Memory Access (DMA)

5-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

5.1 About the DMA interface

A DMA port is provided on the ARM966E-S. You can connect this port to the
D-SRAM in the ARM966E-S. This allows direct access to the D-SRAM from outside
the ARM966E-S boundary. If this feature is not required the DMA port is tied off in the
RTL and made redundant. You have the option of interfacing the DMA port to a
dual-port RAM or a single-port RAM, providing the ability to choose the solution that
best meets area, performance, and software requirements.

The DMA port enables direct access to the data RAM, bypassing the CPU core. The
ARM966E-S provides the control logic to access the RAM. The implementation of a
DMA controller is application-specific and so any DMA control logic is instantiated
outside of the ARM966E-S macrocell boundary.

Figure 3-1 on page 3-2 shows DMA addresses directly map to the RAM location in the
data RAM 64MB address space. The RAM controller in the ARM966E-S uses bits
[31:26] of the CPU data address to decode Data RAM address space access. Bits
[31:26], however, are not required to be driven by the DMA controller because DMA
access is always to this address space. RAM aliasing occurs for DMA access in the
same way as aliasing occurs for CPU accesses. See Tightly-coupled SRAM address
space on page 3-3 for more information.

Note

The decision to connect to the DMA port, and to a particular type of RAM, is made prior
to synthesis.

5.1.1 Single-port RAM DMA solution

DMA accesses to a single-port RAM must be done through the same interface that the
CPU uses to access the RAM. CPU accesses to the RAM must be prevented while DMA
transfers are taking place. This is done by stalling the core for the duration of the DMA
transfer. The DMA controller requests access to the D-RAM by asserting DMAWait.
When the CPU has been stalled on the next instruction boundary, the ARM966E-S
asserts DMAReady to notify to the DMA controller that it now has ownership of the
RAM and can proceed with the transfer.

The single-port RAM DMA solution must be used where the die area of a dual-port
RAM is not acceptable and the performance impact of stalling the core during DMA
transfers is acceptable.

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-3

Figure 5-1 shows how the ARM966E-S DMA port interfaces to a single-port RAM.

Figure 5-1 Single-port RAM DMA interface

5.1.2 Dual-port RAM DMA solution

If the data RAM is implemented using dual-port RAM, the second port is used
exclusively for DMA. The CPU and DMA can access the data RAM simultaneously so
the core does not need to be stalled. A dual-port RAM DMA solution provides higher
performance than the single-port solution, but uses a larger die area. The programmer
must ensure that DMA and CPU do not access the same memory locations
simultaneously. The behavior of accessing the same memory locations simultaneously

Addr
WriteEnable

ChipSelect
DataIn

ByteWrite

SP DMA access

CPU RAM access

DMA Outputs

DMAEnable

DMA
Port

CPU read data
RAMRData

CLK

DMA Inputs

0

1
Single Port

RAM

Q

ARM966E-S

Direct Memory Access (DMA)

5-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

is either undefined or illegal. Simultaneous access behavior is summarized in Table 5-1.

Figure 5-2 shows how the ARM966E-S DMA port interfaces to a dual-port RAM. For
modelling purposes, the dual-port DMA solution also supports the single-port access
route. Single-port access reduces performance in the dual-port solution and is unlikely
to be used, so to prevent the core from being stalled, DMAWait must be tied LOW.

Figure 5-2 Dual-port RAM DMA interface

Table 5-1 Simultaneous access behavior

Core
access

DMA
access

behavior

Read Read Valid

Read Write Undefined

Write Read Undefined

Write Write Illegal

CPU RAM Access

SP DMA Access

CPU Read Data
RAMRData1

CLK DMACLK

SP DMA Access

RAMRData2

DP DMA Access

DMACLK

Dual Port
RAM

DMA Outputs

DMA
Port

DMA Inputs

ARM966E-S

Addr
WriteEnable

ChipSelect
DataIn

ByteWrite
Port1 Port2

Q1 Q2

01

1

0

DMAEnable

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-5

5.2 Timing interface

To ease the system integration task and to provide RAM independent timings, the
ARM966E-S registers all DMA inputs and outputs. This section details the behavior of
the ARM966E-S for DMA read and writes to single and dual-port RAMs.

Note

The dual-port RAM DMA solution also supports the single-port operation and so the
single-port diagrams are also applicable to dual-port RAMs.

Direct Memory Access (DMA)

5-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

5.2.1 Single-port RAM reads

Figure 5-3 shows DMA read operation from a single-port RAM.

Figure 5-3 Single-port RAM DMA reads

The DMA controller makes a read request by taking DMAnREQ LOW and asserting
DMAWait. DMAReady is asserted by the ARM966E-S when the core has been stalled
on the next instruction boundary and informs the DMA controller that it can proceed
with its transfer.

Figure 5-3 also shows the minimum latency between DMAWait being registered
HIGH and DMAReady being asserted is two clock cycles, when DMAWait is
registered on an instruction boundary. The maximum latency occurs when DMAWait
is asserted on the first cycle of an LDM or unbuffered STM AHB access. The latency in
this case can be calculated from the information in Instruction cycle timings on
page 11-1.

The DMA controller can increment the read address on the next rising clock edge after
DMAReady is asserted. Read data is driven on DMARData in the third cycle after the
read address is sampled by the ARM966E-S (one cycle to register the address, one cycle

CLK

DMAENABLE

DMAnREQ

DMAWait

DMAnRW

DMAReady

DMAAddr

DMARData

DMA read request Read latency

Core Stalled

A1 A2

D1 D2

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-7

for the RAM read and one cycle for registering the RAM read data). The first read
address, DMAAddr, is registered by the ARM966E-S on the next rising clock edge
after DMAReady is asserted.

The DMA controller has ownership of the RAM from DMAReady being asserted until
it takes DMAWait LOW. When DMAWait has been taken LOW, the DMA controller
loses ownership of the RAM. DMAWait must be taken LOW at the end of a DMA
access to allow CPU flow to continue.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted one cycle prior to the last read data being returned.

Note

If DMAWait is not asserted, the ARM966E-S does not respond to single-port RAM
DMA requests.

Direct Memory Access (DMA)

5-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

5.2.2 Single-port RAM writes

Figure 5-4 shows DMA write operation to a single-port RAM.

The DMA controller requests write access to the RAM in the same way as single-port
RAM reads except that DMAnRW is HIGH. Because data writes are single cycle
operations, data to be written must be present in the same cycle as the address. The first
write address, DMAAddr, is registered by the ARM966E-S on the next rising clock
edge after DMAReady is asserted. The write to the RAM happens in the following
cycle, due to the single cycle latency of the input registers. The first write address,
DMAAddr, and data, DMAWData, is registered by the ARM966E-S on the next rising
clock edge after DMAReady is asserted.

The behavior of DMAWait is as for single-port RAM reads.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted when DMAnREQ is taken HIGH after the last request.

Figure 5-4 Single-port RAM DMA writes

CLK

DMAENABLE

DMAnREQ

DMAWait

DMAnRW

DMAReady

DMAAddr

DMAWData

Write1

A1 A2

D1 D2

Write2

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-9

5.2.3 Dual-port RAM reads

Figure 5-5 shows DMA read operations to a dual-port RAM.

A read request is initiated by taking DMAnREQ and DMAnRW both LOW. The
address, DMAAddr, must be valid in the same cycle. The read data, DMARData, is
returned in the third cycle after the request is registered by the ARM966E-S (one cycle
to register the request, one cycle to read the RAM, and one cycle to register the output
data).

Note

Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses,
the DMA controller can access the data RAM continuously. DMAWait must be tied
LOW otherwise the DMA access is by the first port of the RAM and the interface
behaves as described in Single-port RAM reads on page 5-6.

DMAReady is redundant for dual-port RAM accesses and does not need to be sampled
by the DMA controller.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted one cycle prior to the last read data being returned.

Figure 5-5 Dual-port DMA reads

CLK

DMAENABLE

DMAnREQ

DMAWait

DMAnRW

DMAReady

DMAAddr

DMARData

Read1 Read2

A1 A2

D1 D2

Direct Memory Access (DMA)

5-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

5.2.4 Dual-port RAM writes

Figure 5-6 shows dual-port write operations to a dual-port RAM.

A write request is initiated by taking DMAnREQ LOW and DMAnRW HIGH. The
address, DMAAddr, and write data, DMAWData, must be valid in the same cycle. The
write to the RAM happens in the following cycle, due to the one cycle latency of the
input registers.

Note

Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses,
the DMA controller can access the data RAM continuously. DMAWait must be tied
LOW otherwise the DMA access is by the first port of the RAM and the interface
behaves as described in Single-port RAM writes on page 5-8.

DMAReady is redundant for dual-port RAM accesses and does not need to be sampled
by the DMA controller.

DMAENABLE must be asserted one cycle prior to a request being made and can be
deasserted when DMAnREQ is taken HIGH after the last request.

Figure 5-6 Dual-port RAM DMA writes

CLK

DMAENABLE

DMAnREQ

DMAWait

DMAnRW

DMAReady

DMAAddr

DMAWData

Write1

A1 A2

D1 D2

Write2

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-11

5.2.5 Mixed read and writes

Figure 5-7 shows:

• an example of intermingled DMA read and write operations

• that reads and writes can be performed back-to-back.

The behavior is the same for both single and dual-port RAMs. Depending on whether
the RAM was single or dual-port, the behavior of DMAENABLE, DMAWait, and
DMAReady is described in sections Single-port RAM reads on page 5-6 to Dual-port
RAM writes on page 5-10.

Figure 5-7 Mixed DMA read and write

CLK

DMAnREQ

DMAnRW

DMAAddr

DMAWData

DMARData

A1 A2 A3 A4

WD_A2 WD_A4

RD_A1 RD_A3

Direct Memory Access (DMA)

5-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

5.3 DMAENABLE setup and hold cycles

Table 5-2 shows the minimum number of setup cycles and hold cycles for
DMAENABLE with respect to DMAnREQ for both single and dual-port RAMs.

To reduce power consumption, DMAENABLE must be taken LOW when DMA
accesses are not taking place or if DMA is not implemented.

Table 5-2 DMAENABLE setup and hold cycles with respect to DMAnREQ

Operation Setup Hold

Dual-port RAM DMA read 1 1

Dual-port RAM DMA write 1 0

Single-port RAM DMA read 1 1

Single-port RAM DMA write 1 0

Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-13

5.4 Summary of signal behavior

Table 5-3 summarizes the behavior of DMAENABLE, DMAWait, DMAnREQ, and
DMAReady for single and dual-port RAM solutions in addition to the required
connections of these signals if no DMA is implemented.

Table 5-3 DMA signal behavior

Signal
Dual-port RAM
DMA

Single-port RAM
DMA

No DMA

DMAENABLE
(Input)

See Table 5-2 See Table 5-2 Must be tied LOW
external to the
ARM966E-S.

DMAWait
(Input)

The DMA controller
does not need to stall
the ARM966E-S and
so this signal must be
tied LOW external to
the ARM966E-S.

The DMA controller
must drive this signal
HIGH whenever it
requires access to the
data RAM.

Must be tied LOW
external to the
ARM966E-S.

DMAnREQ
(Input)

Must be driven LOW
by the DMA
controller whenever it
requires access to the
data RAM

Must be driven LOW
by the DMA controller
whenever it requires
access to the data RAM.

Must be tied HIGH
external to the
ARM966E-S.

DMAReady
(Output)

Can be ignored by the
DMA controller
because it always has
access to the RAM.

Must be registered by
the DMA controller so
that it knows when the
ARM966E-S has been
stalled.

Do not care.

Direct Memory Access (DMA)

5-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-1

Chapter 6
Bus Interface Unit

This chapter describes the ARM966E-S Bus Interface Unit (BIU) and write buffer. It
contains the following sections:

• About the BIU and write buffer on page 6-2

• Write buffer operation on page 6-3

• AHB bus master interface on page 6-8

• AHB clocking on page 6-20.

Bus Interface Unit

6-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

6.1 About the BIU and write buffer

The ARM966E-S supports an Advanced Microprocessor Bus Architecture (AMBA)
Advanced High-performance Bus (AHB) interface. The AHB is a new generation of
AMBA interface that addresses the requirements of high-performance synthesizable
designs, including:

• single clock edge operation (rising edge)

• unidirectional (nontristate) buses

• burst transfers

• split transactions

• single-cycle bus master handover.

See the AMBA Rev 2.0 AHB specification for full details of this bus architecture.

The ARM966E-S BIU implements a fully-compliant AHB bus master interface and
incorporates a write buffer to increase system performance. The BIU is the link between
the ARM9E-S core with its tightly-coupled SRAM and the external AHB memory. The
AHB memory must be accessed to initialize the tightly-coupled SRAM. The AHB
memory must also be accessed to access code and data that are not assigned to the
tightly-coupled SRAM address space (or if the SRAM is disabled).

When an external AHB access is performed, the BIU and the system controller
handshake to ensure that the ARM9E-S core is stalled. If the write buffer is used, it
might be possible to allow the core to continue program execution. The BIU is
responsible for controlling the write buffer and related stall behavior (see Write buffer
operation on page 6-3).

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-3

6.2 Write buffer operation

The ARM966E-S implements a 12-entry write buffer, where the entries can be address
or data depending on the nature of the writes being executed by the ARM9E-S core. The
write buffer helps to decouple the core from the wait cycles incurred when accessing
the AHB. If a write is sent to the write buffer, the core is able to continue program
execution without having to wait for the write to complete on the AHB. More writes can
be committed to the write buffer without stalling if spare entries are available.

If the write buffer becomes full, the ARM9E-S core must be stalled until an AHB access
occurs and some write data is written, therefore freeing up the necessary FIFO entries.

Alternatively, if the core performs a read from or unbuffered write to the AHB address
space, the core is stalled until all write buffer entries have been written (the write buffer
is drained). The write buffer is drained to ensure data coherency, in that the core might
try to read from a location that it has recently modified and is still in the write buffer
awaiting AHB access.

6.2.1 Committing write data to the write buffer

The write buffer is used when the following conditions are met:

• the write buffer is enabled

• the address is in a bufferable region

• the address is in AHB external memory, or the address selects a tightly-coupled
SRAM that is disabled.

For details on write buffer enable and the ARM966E-S fixed address map, see

• Register 1, Control register on page 2-5

• About the ARM966E-S memory map on page 3-2.

When a write is performed by the core and conforms to the above conditions, the
address for the write is put into the first available entry of the write buffer FIFO. The
next available entry is used for the write data. If the write is a store multiple (STM),
subsequent entries are used for each word of the STM. It is therefore possible for the
FIFO to contain 11 words of a STM where the first entry contains the address and the
remaining 11 entries contain the write data.

Alternatively, if several shorter bufferable STM or single writes (STR) instructions are
performed, one address entry is used for each write instruction. The worst case is that
only six data words fill the FIFO caused by six STR writes. In this case the FIFO holds
six address entries and six data entries.

Bus Interface Unit

6-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 6-1 shows an example where the BIU FIFO is being filled by the following write
instructions:
STMIA r13!,{r2-r4} ; store three registers to the stack

STRB r5,[r6] ; store byte

STMIA r13!,{r3-r4} ; store two registers to the stack

STR r7,[r2] ; single store

Figure 6-1 Write buffer FIFO content example

Data

Address

Data

Data

Address

Data

Address

Data

Data

Data

Address

r7

r2

r4

r3

r13

r5

r6

r4

r3

r2

r13

A
Word

A
Word

A
Byte

A
Word

S

S

S

From ARM9E-S CLK domain

Address and size marker

Sequentiality marker

To AHB HCLK domain

To BIU control

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-5

6.2.2 Draining write data from the write buffer

The write buffer can drain naturally where AHB writes occur whenever data is
committed to the FIFO. The core is only stalled, if the write buffer overflows. However,
there are times when a complete drain of the write buffer is enforced.

Natural write buffer drain

When a write is being committed to the write buffer FIFO, a signal is sent to the BIU to
initiate an AHB write. The BIU then pops the address for the write from the FIFO
followed by the data and starts an AHB transfer (assuming the ARM966E-S is the
granted bus master). This process might take several cycles because the slave being
accessed for the write might have a multi-wait cycle response. Additionally, the AHB
can be run at a lower rate than the ARM966E-S system introducing extra delay to the
buffered write process. This can lead to the core trying to commit data at a higher rate
than the FIFO can be drained, resulting in the FIFO becoming full. The ARM9E-S core
is stalled until an entry becomes available.

When an address is placed in the write buffer, a marker is also stored to indicate if the
size of the write is, byte, halfword or word. If a STM is performed, a sequentiality marker
is stored with the data, to indicate to the BIU that the address incrementer must be used
to produce the AHB address for the second and following writes of the STM. This
mechanism allows only one FIFO entry to be used for the address, leaving more room
for data (see Figure 6-1 on page 6-4).

If a STM crosses a 1KB boundary, the AHB specification requires that the first access in
the new 1KB region is a nonsequential access. This allows the BIU to have a small 1KB
incrementer, because the ARM9E-S data address can be resampled during the
nonsequential cycle. For this reason, the write buffer must also break up accesses that
cross a 1KB region, by forcing the sequentiality marker LOW for the preceding data
location and committing an extra address entry at the start of the new region.

Note

Because the ARM9E-S core is free to continue program execution following a buffered
write, without having to wait for the write to complete on the AHB, external Data
Aborts can not be returned by buffered writes.

Bus Interface Unit

6-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Enforced write buffer drain

There are two situations where the core is stalled and the write buffer is forced to drain
completely before program execution can continue:

• an instruction fetch, data load, or unbuffered write to the AHB is being requested

• a drain write buffer instruction is being executed.

AHB read access requested

To ensure data coherency, you must prevent the core from reading data from a location
that has recently been modified (by the core or an external coprocessor STC instruction)
and is still in the write buffer awaiting AHB access. If the AHB read access is allowed
to occur before the write buffer is drained, the old version of data at that location is
fetched causing a data coherency failure.

For this reason, whenever an AHB read is requested, as an ARM9E-S instruction fetch
or a data load or load multiple, the core must be stalled until the write buffer is drained.
No special logic is used to force a write buffer drain as this process is occurring
whenever data is present within the buffer. However, special logic is required to stall
the core until the last buffered write has completed on the AHB.

Drain write buffer instruction

You can use an MCR instruction to CP15 register 7 to force the core to be stalled until
the write buffer is empty and the final write is completed on the AHB. This instruction
is described in Register 7, Core control on page 2-8. This instruction is useful when the
software requires that a write is completed before program execution continues.

6.2.3 Enabling the write buffer

The write buffer can be enabled by setting bit 3 of the CP15 control register. When this
bit is set, all writes to bufferable address locations use the write buffer. If a slave
peripheral in a bufferable region returns an AHB Data Abort, the abort is ignored when
the write buffer is enabled.

Note

For debugging purposes, you can disable the write buffer to allow AHB Data Aborts to
be returned from bufferable regions.

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-7

6.2.4 Disabling the write buffer

When data is committed to the write buffer it is always written to the AHB. If the write
buffer is disabled by clearing bit 3 of the CP15 control register, any existing write data
in the write buffer is completed. Additionally, if the core is sent to sleep by the wait for
interrupt command, any writes in the write buffer FIFO are also completed.

If the programmer requires no more buffered writes to occur following write buffer
disable or a wait for interrupt instruction, the write buffer must first be drained with a
drain write buffer command.

Bus Interface Unit

6-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

6.3 AHB bus master interface

The ARM966E-S implements a fully-compliant AHB bus master interface and is
defined in the AMBA Rev 2.0 Specification. You must refer to this document for a
detailed description of the AHB protocol.

6.3.1 Overview of AHB

The AHB architecture is based on separate cycles for address and data (rather than the
phase of the clock in the ASB architecture). The address and control for an access are
broadcast from the rising edge of HCLK in the cycle before the data is expected to be
read or written. During this data cycle, the address and control for the next cycle are
driven out. This leads to a fully pipelined address architecture.

When an access is in its data cycle, a slave can wait the access by driving the HREADY
response LOW. This has the effect of stretching the current data cycle and therefore the
pipelined address and control for the next access is also stretched. This creates a system
where all AHB masters and slaves sample HREADY on the rising edge of the HCLK
to determine whether an access has completed and a new address can be sampled or
driven out.

6.3.2 ARM966E-S transfer descriptions

The ARM966E-S BIU performs a subset of the possible AHB bus transfers available.
This section describes the transfers that can be performed and some back-to-back
transfer cases:

• Burst transfers on page 6-9

• Bus request on page 6-9

• Sequential instruction fetch on page 6-10

• Back-to-back LDR or STR accesses on page 6-11

• Simultaneous instruction and data request on page 6-11

• STM timing on page 6-13

• LDM timing on page 6-14

• STM followed by instruction fetch on page 6-15

• LDM followed by instruction fetch on page 6-16

• STM crossing a 1KB boundary on page 6-17

• LDM crossing a 1KB boundary on page 6-18

• SWP instruction on page 6-19.

All timing examples assume one-to-one clocking where the ARM966E-S and AHB
share the same clock. See AHB clocking on page 6-20 for details of AHB clocking
modes.

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-9

Burst transfers

Because the ARM966E-S does not implement cache memory, burst transfers of fixed
length commonly used for cache linefill and data cache writeback, are not supported.
All burst accesses are defined to be INCRemental (HBURST[2:0] = 001), because the
only indication to the ARM966E-S about the sequentiality of the access is the DMORE
output from the ARM9E-S core. This output indicates that there is at least one more
access following the current access, but does not indicate how many more sequential
accesses can be expected.

Bus request

At the start of every AHB access, the ARM966E-S requests access to the bus by
asserting HBUSREQ to the arbiter. It must then wait for an acknowledge signal from
the arbiter (HGRANT), before beginning the transfer on the next rising edge of HCLK.
In Figure 6-2, the slave being addressed has a single-cycle response to the read access
and therefore the HREADY response is driven HIGH and fed to the
ARM966E-S BIU.

Figure 6-2 Sequential instruction fetches, after being granted the bus

CLK

HTRANS NONSEQ IDLE NONSEQ IDLE NONSEQ

HADDR IA-1

HBUSREQ

HGRANT

HWRITE

HREADY

HRDATA ID-1 ID-2

IA-2

Bus Interface Unit

6-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Sequential instruction fetch

When the ARM9E-S fetches instructions from the AHB address space or if the
tightly-coupled I-SRAM is disabled, AHB read transfers are initiated by the BIU. The
instruction interface does not have the benefit of a pipelined MORE signal, so the BIU
cannot detect a sequential access and use an address incrementer to perform
back-to-back sequential cycles. All instruction fetches are treated as non-sequential
accesses.

Figure 6-3 shows a series of sequential instruction fetches where any data access being
performed by the ARM9E-S is using the tightly-coupled SRAM. Therefore, data
accesses do not interfere with the instruction fetches.

Figure 6-3 Sequential instruction fetches, no AHB data access required

HTRANS IDLE NONSEQ IDLE NONSEQ

HADDR

HREADY

HRDATA

CLK

IDLE NONSEQIDLE NONSEQ

ID-3 ID-4ID-2ID-1

IA-4 IA-5IA-3IDLE IA-2

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-11

Back-to-back LDR or STR accesses

Figure 6-4 shows ARM966E-S bus activity when a sequence of LDR instructions is
executed.

Figure 6-4 Back-to-back LDR, no external instruction access

A series of NONSEQ/IDLE transfers is indicated for each access.

Even though the transfers are to sequential addresses, each access is treated as a separate
nonsequential transfer. Figure 6-4 assumes that all instruction fetches from the
ARM9E-S core are being serviced by the I-SRAM.

Note

An identical series of NONSEQ or IDLE transfers is seen if executing a sequence of
back-to-back STR instructions.

Simultaneous instruction and data request

When the ARM9E-S makes a simultaneous instruction and data request, both resident
in AHB memory, the BIU must arbitrate between the two accesses. The data access is
always completed first, stalling the ARM9E-S until the instruction fetch completes.

HTRANS NONSEQ IDLE NONSEQ IDLE NONSEQ

HADDR DA-2

HWRITE

HREADY

HRDATA DD-1 DD-3

CLK

DD-2

DA-1 DA-3 DA-4

NONSEQ IDLE

Bus Interface Unit

6-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 6-5 shows an example of an STR instruction causing a simultaneous instruction
and data request.

Figure 6-5 Simultaneous instruction and data requests

During the cycle that [IA-3] is first driven onto HADDR, the BIU detects a
simultaneous data request. [IA-3] fetch is suspended until the data access has
completed.

HTRANS NONSEQ IDLE NOSEQ IDLE

HADDR IA-4

CLK

IDLE NONSEQIDLE NONSEQ

HRDATA ID-3ID-2ID-1

HREADY

DA-1

HWRITE

DD-1HWDATA

IA-3IA-3

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-13

STM timing

Figure 6-6 shows the timing for an STM instruction, transferring three words. Outputs to
the AHB are not driven during IDLE cycles, and so hold their previous value. This
includes the HBURST output, continuing to indicate INCRemental until the next
nonsequential transfer. This should not cause any confusion to other AHB components
as HTRANS indicates IDLE cycles.

Figure 6-6 Single STM, no instruction fetch

Note

If an STM is not immediately followed by an external instruction access one IDLE cycle
is inserted, and HBUSREQ is driven LOW. An STM, immediately followed by any
other AHB data access, also results in one IDLE cycle being inserted between the two
accesses.

HGRANT

HTRANS SEQ

HBURST

NONSEQ SEQ IDLE

001

CLK

HBUSREQ

HWRITE

HREADY

HWDATA

HADDR DA-1 DA-2 DA-3

DD-1 DD-2 DD-3

Bus Interface Unit

6-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

LDM timing

Figure 6-7 shows the timing for an LDM instruction, transferring three words.

Figure 6-7 Single LDM, no instruction access

Note

HBUSREQ is driven LOW after two IDLE cycles which are inserted after a LDM that
is immediately followed by an external instruction access. An LDM, immediately
followed by any other AHB data access, also results in two IDLE cycles being inserted
between the two accesses.

HGRANT

HTRANS NONSEQ SEQ IDLE

CLK

HBUSREQ

HWRITE

HREADY

HWDATA

HADDR DA-1 DA-2 DA-3

DD-1 DD-2 DD-3

SEQ

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-15

STM followed by instruction fetch

Figure 6-8 shows an example of an STM transferring three words, immediately followed
by an instruction fetch. The instruction read begins with a NONSEQ/IDLE sequence
after the final sequential data access. In this example, subsequent instruction fetches are
sequential.

Figure 6-8 Single STM, followed by sequential instruction fetch

Note

The single IDLE cycle that normally occurs at the end of an STM is filled by the
NONSEQ cycle for the instruction fetch.

ID-1

DD-3

HTRANS NONSEQ SEQ IDLE

HWRITE

HREADY

HWDATA

HADDR DA-1 DA-2

SEQ NONSEQ IDLE NONSEQ

DA-3 IA-1 IA-2

CLK

DA-2 DA-3

ID-2HRDATA

Bus Interface Unit

6-16 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

LDM followed by instruction fetch

Figure 6-9 shows an example of a LDM transferring three words, immediately followed
by an instruction fetch. A single IDLE cycle is inserted after the final sequential data
access, and instruction fetch begins with a NONSEQ/IDLE sequence.

Figure 6-9 Single LDM followed by sequential instruction fetch

Note

The NONSEQ cycle of the instruction fetch replaces the second IDLE cycle that occurs
when an AHB data access is required following the LDM.

HTRANS NONSEQ SEQ SEQ

HWRITE

HREADY

HWDATA

HADDR DA-1 DA-2 IA-3

DD-1 DD-2 DD-3

SEQ

CLK

IDLE NONSEQ IDLE

DA-3 IA-1

ID-1

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-17

STM crossing a 1KB boundary

AMBA Rev.2 Specification states that sequential accesses must not cross 1KB
boundaries. The ARM966E-S splits sequential accesses that cross a 1KB boundary into
two sets of separate accesses.

Figure 6-10 shows bus activity when a STM writing four words, crosses a 1KB
boundary. DA-3 is the first address in a new 1KB region. The two sets of transfers each
begin with a nonsequential access type, and are separated by an IDLE cycle.

Figure 6-10 Single STM, crossing a 1KB boundary

HTRANS NONSEQ SEQ IDLE

HWRITE

HWDATA

HADDR DA-1

IDLE NONSEQ SEQ

DA-3DA-2 DA-4

CLK

DD-1 DD-2 DD-4DD-3

HREADY

Bus Interface Unit

6-18 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

LDM crossing a 1KB boundary

Figure 6-11 shows bus activity when a LDM reading four words, crosses a 1KB
boundary. The two sets of transfers each begin with a nonsequential access type, and
are separated by two IDLE cycles.

Figure 6-11 Single LDM, crossing a 1KB boundary

HTRANS NONSEQ SEQ IDLE

HWRITE

HRDATA

HADDR DA-1

NONSEQ

DA-3DA-2 DA-4

CLK

HREADY

IDLE SEQ

DD-1 DD-2 DD-4DD-3

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-19

SWP instruction

The ARM SWP instruction performs an atomic read-modify-write operation. It is
commonly used with semaphores to guarantee that another process cannot modify a
semaphore when it is being read by the current process.

If the ARM966E-S performs a SWP operation to an AHB address location, the access is
always unbuffered to ensure that the core is stalled until the write has occurred on the
AHB. The BIU asserts the HLOCK output to prevent the AHB arbiter from granting a
different master, ensuring that the read-modify-write is atomic.

Figure 6-12 shows a SWP instruction.

Figure 6-12 SWP instruction

HTRANS IDLE NONSEQ IDLE

HWRITE

HRDATA

HADDR A_SWP

CLK

HWDATA SWP_D2

HLOCK

IDLE NONSEQ

A_SWP

Bus Interface Unit

6-20 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

6.4 AHB clocking

The ARM966E-S design uses a single rising edge clock CLK to time all internal
activity. In many systems where the ARM966E-S is embedded, it is desirable to run the
AHB at a lower rate. To support this requirement, the ARM966E-S requires a clock
enable, HCLKEN, to time AHB transfers.

The HCLKEN input is driven HIGH around a rising edge of the ARM966E-S CLK to
indicate that this rising edge is also a rising edge of HCLK. This requires that HCLK
is synchronous to the ARM966E-S CLK.

When the ARM9E-S is running from tightly-coupled SRAM or performing writes using
the write buffer, the ARM966E-S HCLKEN and HREADY inputs are ignored in terms
of generating the SYSCLKEN core stall signal. The core is only stalled by SRAM stall
cycles or if the write buffer overflows. This means that the ARM9E-S is executing
instructions at the faster CLK rate and is effectively decoupled from the HCLK domain
AHB system.

If however, an AHB read access or unbuffered write is required, the core is stalled until
the AHB transfer has completed. Because the AHB system is being clocked by the
lower rate HCLK, it is necessary to examine HCLKEN to detect when to drive out the
AHB address and control to start an AHB transfer. HCLKEN is then required to detect
the following rising edges of HCLK so that the BIU knows the access has completed.
Figure 6-13 shows an example of an AHB read access where there is a 3:1 ratio of CLK
to HCLK.

Figure 6-13 AHB 3:1 clocking example

CLK

HCLKEN

HADDR[31:0]

HREADY

HTRANS

HRDATA[31:0]

HCLK

Addr A

NONSEQIDLE IDLE

Read data (A)

SYSCLKEN

Bus Interface Unit

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 6-21

If the slave being accessed at the HCLK rate has a multi-cycle response, the HREADY
input to the ARM966E-S is driven LOW until the data is ready to be returned. The BIU
must therefore perform a logical AND on the HREADY response with HCLKEN to
detect that the AHB transfer has completed. When this is the case, the ARM9E-S core
can then be enabled by reasserting SYSCLKEN.

Note

When an AHB access is required, the core must be stalled until the next HCLKEN
pulse is received, before it can start the access, and then until the access has completed.
This stall before the start of the access is a synchronization penalty and the worst case
can be expressed in CLK cycles as the CLK to CLK ratio minus one.

6.4.1 CLK to HCLK skew

The ARM966E-S drives out the AHB address on the rising edge of CLK when the
HCLKEN input is true. The AHB outputs have output hold and delay values relative
to CLK. However, these outputs are used in the AHB system where HCLK is used to
time the transfers. Similarly, inputs to the ARM966E-S are timed relative to HCLK but
are sampled within the ARM966E-S with CLK. This leads to hold time issues from
CLK to HCLK on outputs and from HCLK to CLK on inputs. In order to minimize
this effect the skew between HCLK and CLK must be minimized.

Clock tree insertion at top level

Considering the skew issue in more detail, the ARM966E-S has a clock tree inserted to
allow an evenly distributed clock to be driven to all the registers in the design. The
registers that drive out AHB outputs and sample AHB inputs are timed off CLK’ at the
bottom of the inserted clock tree and subject to the clock tree insertion delay. To
maximize performance, when the ARM966E-S is embedded in an AHB system, the
clock generation logic to produce HCLK must be constrained so that it matches the
insertion delay of the clock tree within the ARM966E-S. This can easily be achieved by
a clock tree insertion tool if the clock tree is inserted for the ARM966E-S and the
embedded system at the same time (top level insertion).

Bus Interface Unit

6-22 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 6-14 shows an example of an AHB slave connected to the ARM966E-S.

Figure 6-14 ARM966E-S CLK to AHB HCLK sampling

In this example, the slave peripheral has an input setup and hold, and an output hold and
valid time relative to HCLK. The ARM966E-S has an input setup and hold, and an
output hold and valid relative to CLK’ , the clock at the bottom of the clock tree. Clock
tree insertion must be used to position the HCLK to match CLK’ for optimal
performance.

Hierarchical clock tree insertion

If the ARM966E-S has clock tree insertion performed before embedding it, buffers are
added on input data to match the clock tree so that the setup and hold is relative to the
top level CLK . This is guaranteed to be safe at the expense of extra buffers in the data
input path.

The HCLK domain AHB peripherals must still meet the ARM966E-S input setup and
hold requirements. Because the ARM966E-S inputs and outputs are now relative to
CLK , the outputs do appear comparatively later by the value of the insertion delay. This
ultimately leads to lower AHB performance.

ARM966E-S

CLK'

HRDATA[31:0]

AHB slave mux

AHB
slave

HADDR[31:0]

HCLK

HCLKEN

Clock tree

÷ N

CLK

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-1

Chapter 7
Coprocessor Interface

This chapter describes the ARM966E-S pipelined coprocessor interface. It contains the
following sections:

• About the coprocessor interface on page 7-2

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• Interlocked MCR on page 7-9

• CDP on page 7-10

• Privileged instructions on page 7-11

• Busy-waiting and interrupts on page 7-12.

Coprocessor Interface

7-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.1 About the coprocessor interface

ARM966E-S fully supports the connection of on-chip coprocessors through the
external coprocessor interface and supports all classes of coprocessor instructions.

The interface differs from the basic ARM9E-S coprocessor interface. To ease
integration of an external coprocessor, the interface from the ARM966E-S to the
coprocessor has been pipelined by a single clock cycle.

This ensures that ARM966E-S interface outputs, which otherwise arrive late in the
clock cycle, are driven out directly from registers to the external coprocessor. This
significantly eases the implementation task for an external coprocessor.

7.1.1 Synchronizing the external coprocessor pipeline

A coprocessor connected to the ARM966E-S determines which instructions it needs to
execute by implementing a pipeline follower in the coprocessor. Because each
instruction arrives from instruction memory (either from the I-SRAM or AHB
interface) it enters both the ARM9E-S pipeline and the coprocessor pipeline follower.
Because the interface is itself pipelined, the coprocessor pipeline follower operates one
cycle behind the ARM9E-S, sampling the CPINSTR[31:0] output bus from the
ARM966E-S interface.

In order to hide the pipeline delay, a mechanism inside the interface block stalls the
ARM9E-S for a cycle by internally modifying the coprocessor handshake signals
whenever an external coprocessor instruction is decoded. This allows the external
coprocessor to catch up with the ARM9E-S core.

After this initial stall cycle, the two pipelines can be considered synchronized. The
ARM9E-S then informs the coprocessor when instructions move from Decode into
Execute, and whether the instruction has passed its condition codes and is to be
executed.

Note

Because the ARM966E-S hides the synchronization of the coprocessor pipeline
follower, its coprocessor handshake interface is similar to that of the native ARM9E-S.
This implies that an ARM9E-S designed pipeline follower can interface to the
ARM966E-S without modification. The data path of the coprocessor differs however,
due to the ARM966E-S pipelined output data CPDOUT[31:0].

Coprocessor Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-3

7.1.2 External coprocessor clocking

The coprocessor data processing instruction (CDP) is used for coprocessor instructions
that do not operate on values in ARM registers or in main memory. One example is a
floating-point multiply instruction for a floating-point accelerator processor.

To enable coprocessors to continue execution of CDP instructions while the ARM9E-S
core pipeline is stalled (for instance while waiting for an AHB transfer to complete), the
coprocessor receives the free-running system clock CLK, and a clock enable signal
CPCLKEN. If CPCLKEN is LOW around the rising edge of CLK then the ARM9E-S
core pipeline is stalled and the coprocessor pipeline follower must not advance.

This prevents any new instructions entering Execute within the coprocessor but allows
a CDP instruction in Execute to continue execution. The coprocessor is only stalled
when the current instruction leaves Execute and new instructions are required from the
ARM966E-S interface.This goes some way towards decoupling the external
coprocessor from the ARM9E-S memory interface.

There are three classes of coprocessor instructions:
• LDC/STC

• MCR/MRC

• CDP.

Examples of how a coprocessor executes these instruction classes are given in the
following sections:

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• CDP on page 7-10

Coprocessor Interface

7-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.2 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from external
coprocessor registers and memory. In the case of the ARM966E-S, the memory can be
either tightly-coupled SRAM or AHB depending on the address range of the access and
SRAM enable.

The cycle timing for these operations is shown in Figure 7-1.

Figure 7-1 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM9E-S performs the main decode off the rising
edge of the clock during the Decode stage. From this, the core commits to executing the
instruction and so performs an instruction fetch. The coprocessor instruction pipeline
keeps in step with ARM9E-S core by monitoring nCPMREQ, which is a registered
version of the ARM9E-S core instruction memory request signal InMREQ.

At the rising edge of CLK, if CPCLKEN is HIGH, and nCPMREQ is LOW, an
instruction fetch is taking place, and CPINSTR[31:0] contains the fetched instruction
on the next rising edge of the clock, when CPCLKEN is HIGH.

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

CPDIN[31:0]

STC

Fetch Decode Execute

(GO)

Execute

(GO)

Execute

(GO)

Execute

(LAST)

Memory Write

LDC/STC

GO

GO GO LAST Ignored

CPDOUT[31:0]

LDC

Coprocessor

pipeline

Coprocessor Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-5

This means that:

• the last instruction fetched must enter the Decode stage of the coprocessor
pipeline

• the instruction in the Decode stage of the coprocessor pipeline must enter its
Execute stage

• the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline must
not advance.

During the Execute stage, the condition codes are compared with the flags to determine
whether the instruction really executes or not. The output CPPASS is asserted, HIGH,
if the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting,
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor
instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction when the
instruction preceding it caused a data abort. This is valid on the rising edge of CLK on
the cycle that follows the first Execute cycle of the coprocessor instructions. This is the
only cycle in which CPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor
handshake signals CHSDE[1:0] or CHSEX[1:0]:

• If a new instruction is entering the Execute stage in the next cycle, it examines
CHSDE[1:0].

• If the currently executing coprocessor instruction requires another Execute
cycle, it examines CHSEX[1:0].

Coprocessor Interface

7-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.2.1 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9E-S takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core must stall until the coprocessor can
catch up. This is known as the busy-wait condition. In this case, the
ARM9E-S processor core loops in an IDLE state waiting for
CHSEX[1:0] to be driven to another state, or for an interrupt to occur.
If CHSEX[1:0] changes to ABSENT, the undefined instruction trap is
taken.
If CHSEX[1:0] changes to GO or LAST, the instruction proceeds as
described here.
If an interrupt occurs, the ARM9E-S processor is forced out of the
busy-wait state. This is indicated to the coprocessor by the CPPASS
signal going LOW. The instruction is restarted later and so the
coprocessor must not commit to the instruction (it must not change any
coprocessor state) until CPPASS is asserted HIGH, when the handshake
signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires at least another cycle of execution. Both
the ARM9E-S processor core and the coprocessor must also consider the
state of the CPPASS signal before actually committing to the instruction.
For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still need to be
transferred. When only one more word is to be transferred, the
coprocessor drives the handshake signals with LAST.
During the Execute stage, the ARM9E-S processor core outputs the
address for the LDC/STC. Also in this cycle, DnMREQ is driven LOW,
indicating to the ARM966E-S memory system that a memory access is
required at the data end of the device. The timing for the data on
CPDOUT and CPDIN is shown in Figure 7-1 on page 7-4.

LAST An LDC or STC can be used for more than one item of data. If this is the
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycle LAST (LAST indicating that the next transfer is the final one). If
there is only one transfer, the sequence is [WAIT,[WAIT,...]],LAST.
LAST is also usually driven for CDP instruction.

Coprocessor Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-7

7.2.2 Coprocessor handshake encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are
encoded.

Note

If an external coprocessor is not attached in the ARM966E-S embedded system, the
CHSDE[1:0] and CHSEX[1:0] handshake inputs must be tied off to indicate
ABSENT.

7.2.3 Multiple external coprocessors

If multiple external coprocessors are to be attached to the ARM966E-S interface, the
handshaking signals can be combined by ANDing bit1, and ORing bit0. In the case of
two coprocessors which have handshaking signals CHSDE1, CHSEX1 and CHSDE2,
CHSEX2 respectively:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]

CHSDE[0] = CHSDE1[0] OR CHSDE2[0]

CHSEX[1] = CHSEX1[1] AND CHSEX2[1]

CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

Table 7-1 Handshake encoding

[1:0] Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST

Coprocessor Interface

7-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.3 MCR/MRC

These cycles look very similar to STC/LDC. An example, with a busy-wait state, is
shown in Figure 7-2. First nCPMREQ is driven LOW to denote that the instruction on
CPINSTR[31:0] is entering the Decode stage of the pipeline. This causes the
coprocessor to decode the new instruction and drive CHSDE[1:0]. In the next cycle
nCPMREQ is driven LOW to denote that the instruction has now been issued to the
Execute stage. If the condition codes passes, and the instruction is to be executed, the
CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is examined (it is
ignored in all other cases).

Figure 7-2 MCR/MRC transfer timing with busy-wait

For any successive Execute cycles the CHSEX[1:0] handshake bus is examined. When
the LAST condition is observed, the instruction is committed. In the case of a MCR, the
CPDOUT[31:0] bus is driven with the registered data. In the case of a MRC,
CPDIN[31:0] is sampled at the end of the ARM9E-S core Memory stage and written
to the destination register during the next cycle.

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

CPDIN[31:0]

MRC

Fetch Decode Execute

(WAIT)

Execute

(LAST)

Memory Write

MCR/MRC

WAIT

LAST Ignored

CPDOUT[31:0]

MCR

Coprocessor

pipeline

Coproc to ARM

ARM to coproc

Coprocessor Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-9

7.4 Interlocked MCR

If the data for a MCR operation is not available inside the ARM9E-S core pipeline during
its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or more
cycles until the data is available. An example of this is where the register being
transferred is the destination from a preceding LDR instruction.

In this situation the MCR instruction enters the Decode stage of the coprocessor pipeline,
and then remains there for a number of cycles before entering the Execute stage. Figure
7-3 gives an example of an interlocked MCR that also has a busy-wait state.

Figure 7-3 Interlocked MCR/MRC timing with busy-wait

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

CPDIN[31:0]

MRC

Fetch Decode

(interlock)

Decode Execute

(WAIT)

Execute

(LAST)

Memory

MCR/MRC

WAIT

LAST Ignored

CPDOUT[31:0]

MCR

Coprocessor

pipeline

Write

WAIT

Coproc to ARM

ARM to coproc

Coprocessor Interface

7-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.5 CDP

CDP instructions normally execute in a single cycle. Like all the previous cycles,
nCPMREQ is driven LOW to signal when an instruction is entering the Decode and
then the Execute stage of the pipeline:

• if the instruction really is to be executed, the CPPASS signal is driven HIGH
during the Execute cycle

• if the coprocessor can execute the instruction immediately it drives
CHSDE[1:0] with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives
CHSDE[1:0] with WAIT and then CHSEX[1:0] with LAST.

Figure 7-4 shows a cancelled CDP due to the previous instruction causing a Data Abort.

Figure 7-4 Late cancelled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute
by CPASS. In the following cycle CPLATECANCEL is asserted. This causes the
coprocessor to terminate execution of the CDP instruction and for it to cause no state
changes to the coprocessor.

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

Fetch Decode Execute Memory

(late cancelled)

Instruction

aborted

CPRT

LAST

Ignored

Coprocessor

pipeline

Coprocessor Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 7-11

7.6 Privileged instructions

The coprocessor restricts certain instructions for use in privileged modes only. To do
this, the coprocessor tracks the nCPTRANS output. Figure 7-5 shows how
nCPTRANS changes after a mode change.

Figure 7-5 Privileged instructions

The first two CHSDE[1:0] responses are ignored by the ARM9E-S because it is only
the final CHSDE[1:0] response, as the instruction moves from Decode into Execute,
that counts. This allows the coprocessor to change its response when nCPTRANS
changes.

CLK

CPINSTR[31:0]

nCPMREQ

Fetch Decode Decode Decode Execute Memory

CPRT

Coprocessor

pipeline

Write

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0] Ignored

Ignored

Ignored

Old mode New modenCPTRANS

LAST

Coprocessor Interface

7-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute
stage of the pipeline, the coprocessor drives WAIT onto CHSEX[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor might be interrupted while busy-waiting,
causing the instruction to be abandoned. Abandoning execution is done through
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait
cycle.

If it is HIGH, the instruction must still be executed. If it is LOW, the instruction must
be abandoned.

Figure 7-6 shows a busy-waited coprocessor instruction being abandoned due to an
interrupt.

Figure 7-6 Busy-waiting and interrupts

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

Fetch Decode Execute

(WAIT)

Execute

(WAIT)

Execute

(WAIT)

INSTR

WAIT

WAIT

Coprocessor

pipeline

Execute

(WAIT)

Abandoned

WAIT WAIT Ignored

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-1

Chapter 8
Debug Support

This chapter describes the ARM966E-S debug interface. It contains the following
sections:

• About the debug interface on page 8-2

• Debug systems on page 8-4

• ARM966E-S scan chain 15 on page 8-7

• Debug interface signals on page 8-9

• ARM9E-S core clock domains on page 8-14

• Determining the core and system state on page 8-15.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:

• About the EmbeddedICE-RT on page 8-16

• Disabling EmbeddedICE-RT on page 8-18

• The debug communications channel on page 8-19

• Monitor mode debug on page 8-24

• Debug additional reading on page 8-26.

Debug Support

8-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.1 About the debug interface

The ARM966E-S debug interface is based on IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation
of the terms used in this chapter and for a description of the TAP controller states.

The ARM9E-S processor core within the ARM966E-S contains hardware extensions
for advanced debugging features. These make it easier to develop application software,
operating systems, and the hardware itself.

The debug extensions allow you to force the core into debug state. In debug state, the
core and ARM966E-S memory system are effectively stopped, and isolated from the
rest of the system. This is known as halt mode operation and allows the internal state of
the ARM9E-S core, ARM966E-S system, and external state of the AHB to be examined
while all other system activity continues as normal. When debug is complete, the
ARM9E-S restores the core and system state, and resumes program execution.

In addition, the ARM9E-S supports a real-time debug mode, where instead of
generating a breakpoint or watchpoint, an internal Instruction Abort or Data Abort is
generated. This is known as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort
exception entry, You can debug the ARM966E-S while allowing the execution of
critical interrupt service routines. The debug monitor program typically communicates
with the debug host over the ARM966E-S debug communication channel. Monitor
mode debug is described in Monitor mode debug on page 8-24.

8.1.1 Stages of debug

A request on one of the external debug interface signals, or on an internal functional unit
known as the EmbeddedICE-RT logic, forces the ARM9E-S into debug state. The
interrupts that activate debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

The internal state of the ARM9E-S is examined using a JTAG-style serial interface,
allowing instructions to be serially inserted into the core pipeline without using the
external data bus. For example, when in debug state, a STore Multiple (STM) can be
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S
registers. This data can be serially shifted out without affecting the rest of the system.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-3

8.1.2 Clocks

The system and test clocks must be synchronized externally to the ARM966E-S
macrocell. The ARM Multi-ICE debug agent directly supports one or more cores within
an ASIC design. To synchronize off-chip debug clocking with the ARM966E-S
macrocell requires a three-stage synchronizer. The off-chip device (for example,
Multi-ICE) issues a TCK signal, and waits for the RTCK (Returned TCK) signal to
come back. Synchronization is maintained because the off-chip device does not
progress to the next TCK until after RTCK is received.

Figure 8-1 shows this synchronization.

Figure 8-1 Clock synchronization

D Q D QD Q

D Q

D Q

TDO

RTCK

TCK

TMS

TDI

DBGTDO

CLK

DBGTDI

DBGTMS

DBGTCKEN

CLK

CLK

A
R

M
9
6
6
E

-S

CLK

TCK Synchronizer

Multi-ICE
interface
pads

Input sample and hold

DBGnTRST

Debug Support

8-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.2 Debug systems

The ARM966E-S forms one component of a debug system that interfaces from the
high-level debugging performed by you to the low-level interface supported by the
ARM966E-S. Figure 8-2 shows a typical debug system.

Figure 8-2 Typical debug system

A debug system typically has three parts:

• The debug host

• The protocol converter

• ARM966E-S debug target.

The debug host and the protocol converter are system-dependent.

8.2.1 The debug host

The debug host is a computer that is running a software debugger, such as armsd. The
debug host allows you to issue high-level commands such as setting breakpoints or
examining the contents of memory.

Host computer running ARM or third party toolkitDebug
host

Protocol
converter

Debug
host

Debug
target

For example, Multi-ICE

Development system containing ARM966E-S

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-5

8.2.2 The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM966E-S
development system. The messages broadcast over this connection must be converted
to the interface signals of the ARM966E-S. The protocol converter performs the
conversion.

8.2.3 ARM966E-S debug target

The ARM9E-S core within the ARM966E-S has hardware extensions that ease
debugging at the lowest level. The debug extensions:

• allow you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The following major blocks of the ARM9E-S debug model are shown in Figure 8-3 on
page 8-6.

ARM9E-S CPU core
This includes hardware support for debug.

EmbeddedICE-RT logic
This is a set of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is described in About
the EmbeddedICE-RT on page 8-16.

TAP controller This controls the action of the scan chains using a JTAG serial
interface.

Debug Support

8-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 8-3 ARM9E-S block diagram

The ARM9E-S debug model is extended within the ARM966E-S by the addition of
scan chain 15. This is used for debug access to the CP15 register bank, to allow the
system state within the ARM966E-S to be configured while in debug state, for instance
to enable or disable the SRAM before performing a debug load or store.

The rest of this chapter describes the ARM9E-S and ARM966E-S hardware debug
extensions.

ARM9E-S
TAP controller

ARM9E-S
ARM9E-S

EmbeddedICE-RT

Scan chain 2

Scan chain 1

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-7

8.3 ARM966E-S scan chain 15

Scan chain 15 is provided to allow debug access to the CP15 register bank, to allow the
system state within the ARM966E-S to be configured while in debug state.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown
in Table 8-1.

The CP15 register address field of scan chain 15 provides debug access to the CP15
registers is shown in Table 8-2.

Table 8-1 Scan chain 15 addressing mode bit order

Bits Contents

38 Read = 0, write = 1

37:32 CP15 register address

31:0 CP15 register value

Table 8-2 Mapping of scan chain 15 address field to CP15 registers

Bit [38] Bits[37:32] Bits[31:30] CP15 reg number Meaning

0 0 0000 0 xx C0 Read ID register

0 0 0001 0 xx C1 Read control register

1 0 0001 0 xx C1 Write control register

0 1 1111 1 00 C15 Read BIST control register

1 1 1111 1 00 C15 Write BIST control register

0 1 1111 0 01 C15 Read IBIST address

1 1 1111 0 01 C15 Write IBIST address

0 1 1111 1 01 C15 Read IBIST General

1 1 1111 1 01 C15 Write IBIST general

0 1 1111 0 11 C15 Read DBIST address

1 1 1111 0 11 C15 Write DBIST address

0 1 1111 1 11 C15 Read DBIST general

1 1 1111 1 11 C15 Write DBIST general

Debug Support

8-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

The scan address decode overloads the existing functional decode logic that is used to
access the CP15 registers during MCR and MRC instructions (see ARM966E-S CP15
registers on page 2-4.

The decode overload is performed as the follows:

Bit [37] Corresponds to Opcode 1 of an MCR or MRC instruction.

Bit [36:33] Correspond to the CRn field of an MCR or MRC instruction.

Bit [32] Corresponds to bit 0 of the Opcode 2 field of an MCR or MRC instruction.

Bits [2:1] Of opcode 2 are tied to 00 during debug state.

The debug scan chain, SC15, only allows access to bit[0] of the OpCode2 field by
default. To allow access to the Address and General BIST registers within CP15
Register 15, bits [31:30] of SC15 are overloaded as shown in Table 8-2. There are
certain restrictions with the overloading; when writing to the BIST General registers
(i.e. writing a new seed), bits[31:30] of the seed are restricted to those values shown in
Table 8-2. These bits are not used in the BIST Address registers and so there are no
debug restrictions when accessing these registers.

The ability to control the ARM966E-S system state through scan chain 15 provides
extra debug visibility. For example, if the debugger wishes to compare the contents of
an address that maps to the I-SRAM or D-SRAM, with the same address in external
memory, the debugger can:

1. Load from the address with the SRAM enabled to return the SRAM data.

2. Disable the SRAM.

3. Perform the load again. The second load now accesses the AHB because the
SRAM is disabled, returning the value from AHB memory.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-9

8.4 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the
ARM966E-S to enter debug state

• DBGACK is used by the ARM966E-S to flag back to the system that it is in
debug state.

8.4.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply
a breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
same cycle. This is shown in Figure 8-4 on page 8-10.

You can build External logic, such as additional breakpoint comparators, to extend the
breakpoint functionality of the EmbeddedICE-RT logic. These outputs must be applied
to the DBGIEBKPT input. This signal is ORed with the internally-generated
breakpoint signal before being applied to the ARM9E-S core control logic. The timing
of the input makes it unlikely that data-dependent external breakpoints are possible.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the
breakpointed instruction. The latched breakpoint signal forces the processor to start the
debug sequence.

Debug Support

8-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Figure 8-4 shows breakpoint timing.

Figure 8-4 Breakpoint timing

8.4.2 Breakpoints and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint is ignored. (If there is a prefetch abort,
instruction data might have been invalid, the breakpoint might have been
data-dependent, and as the data might be incorrect, the breakpoint might have been
triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt is being serviced, the execution flow is returned to the original
program. This means that the instruction that was previously breakpointed is fetched
again, and if the breakpoint is still set, the processor enters debug state when it reaches
the Execute stage of the pipeline.

When the processor enters halt mode debug state, it is important that further interrupts
do not affect the instructions executed. For this reason, as soon as the processor enters
stop-mode debug state, interrupts are disabled, although the state of the I and F bits in
the Program Status Register (PSR) are not affected.

CLK

INSTR[31:0] 1

M1E1 W1D1

IA[31:1]

2 3 4

DBGIEBKPT

DBGACK

F1

M2E2 W2D2F2

M1E1 W1D1F1

Edebug1Ddebug Edebug2

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-11

8.4.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is
necessary because of the nature of the pipeline.

External logic, such as external watchpoint comparators, can be built to extend the
functionality of the EmbeddedICE-RT logic. Their output must be applied to the
DBGDEWPT input. This signal is simply ORed with the internally-generated
Watchpoint signal before being applied to the ARM9E-S core control logic. The
timing of the input makes it unlikely that data-dependent external watchpoints are
possible.

After a watchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Where this instruction is a single-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following a watchpointed load in this case is
shown in Figure 8-5.

Figure 8-5 Watchpoint entry with data processing instruction

Note

Although instruction 5 enters the Execute stage, it is not executed, and there is no state
update as a result of this instruction. When the debugging session is complete, normal
continuation involves a return to instruction 5, the next instruction in the code sequence
to be executed.

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

1

M1E1 W1D1

WDATA[31:0]

DA[31:0]

2 LDR Dp 5 6

F1

M2E2 W2D2F2

MldrEldr WldrDldrFldr

MDpEDp WDpDDpFDp

M5E5 W5D5F5

Edebug1Ddebug Edebug2

7 8

DBGDEWPT

DBGACK

Debug Support

8-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

The instruction following the instruction that generated the watchpoint might have
modified the Program Counter (PC). If this happens, it is not possible to determine the
instruction that caused the watchpoint. A timing diagram showing debug entry after a
watchpoint where the next instruction is a branch is shown in Figure 8-6. However, it
is always possible to restart the processor.

When the processor enters debug state, the ARM9E-S core is interrogated to determine
its state. In the case of a watchpoint, the PC contains a value that is five instructions on
from the address of the next instruction to be executed. Therefore, if on entry to debug
state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the processor
restarted, execution flow returns to the next instruction in the code sequence.

Figure 8-6 Watchpoint entry with branch

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

LDR

WDATA[31:0]

DA[31:0]

B X X T T+4

MldrEldr WldrDldrFldr

MBEB WBDBFB

ETDTFT

Edebug1Ddebug Edebug2

T+8 T+C

DBGDEWPT

DBGACK

IA[31:1]

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-13

8.4.4 Watchpoints and exceptions

If there is an abort with the data access as well as a watchpoint, the watchpoint condition
is latched, the exception entry sequence performed, and then the processor enters debug
state. If there is an interrupt pending, again the ARM9E-S allows the exception entry
sequence to occur and then enters debug state.

8.4.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
enters debug state when the instruction at the Execute stage of the pipeline is completed
(when Memory and Write stages of the pipeline have completed). While waiting for the
instruction to finish executing, no more instructions are issued to the Execute stage of
the pipeline.

Caution
Asserting EDBGRQ in monitor mode results in unpredictable behavior.

8.4.6 Actions of the ARM9E-S in debug state

When the ARM9E-S is in debug state, both memory interfaces indicate internal cycles.
This ensures that both the tightly-coupled SRAM within the ARM966E-S and the AHB
interface are quiescent, allowing the rest of the AHB system to ignore the ARM9E-S
and function as normal. Since the rest of the system continues operation, the ARM9E-S
ignores aborts and interrupts.

The nRESET signal must be held stable during debug. If the system applies reset to the
ARM966E-S (nRESET is driven LOW), the ARM9E-S changes state without the
knowledge of the debugger.

Debug Support

8-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.5 ARM9E-S core clock domains

The ARM966E-S single clock, CLK, is qualified by two clock enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, SYSCLKEN conditions CLK to clock the core. When the
ARM966E-S is in debug state, DBGTCKEN conditions CLK to clock the core.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-15

8.6 Determining the core and system state

When the ARM966E-S is in debug state, you can examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the EmbeddedICE-RT debug status register. When bit 4 is HIGH, the core
enters debug from Thumb state.

Debug Support

8-16 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.7 About the EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for
the ARM9E-S core within the ARM966E-S.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. Figure
8-7 illustrates the relationship between the core, EmbeddedICE-RT, and the TAP
controller, showing only the signals that are pertinent to EmbeddedICE-RT.

Figure 8-7 The ARM9E-S, TAP controller and EmbeddedICE-RT

The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers, the debug control register and the debug status
register

• debug communications channel.

TAP

EmbeddedICE-RTProcessor

DBGTCKEN
DBGTMS
DBGTDI

DBGTDO

CLK

DBGIEBKPT

EDBGRQ

DBGACK

DBGEN

DBGRNG[1:0]

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGDEWPT

DBGnTRST

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-17

The debug control register and the debug status register provide overall control of
EmbeddedICE-RT operation.

You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedICE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note

Any bit can be masked so that its value does not affect the comparison.

Each watchpoint unit can be configured to be either a watchpoint (monitoring data
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent.

Debug Support

8-18 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.8 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution
Hard-wiring the DBGEN input LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to
the core, and DBGACK from the ARM966E-S is always LOW.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-19

8.9 The debug communications channel

The ARM9E-S EmbeddedICE-RT logic contains a communications channel for
passing information between the target and the host debugger. This is implemented as
coprocessor 14.

The communications channel comprises:

• a 32-bit communications data read register

• a 32-bit wide communications data write register

• a 6-bit wide communications control register for synchronized handshaking
between the processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE-RT logic register
map and are accessed from the processor using MCR and MRC instructions to
coprocessor 14.

In addition to the communications channel registers, the processor can access a 1-bit
debug status register for use in the real-time debug configuration.

8.9.1 Debug communication channel registers

CP14 contains four registers, that have the following register allocations in
coprocessor 14 as shown in Table 8-3.

Table 8-3 Coprocessor 14 register map

Register name Register number Notes

Communications channel status C0 Read-only

Communications channel data read C1 For reads

Communications channel data write C1 For writes

Communications channel monitor mode debug
status

C2 Read or write

Debug Support

8-20 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.9.2 Debug communications channel status register

The debug communications channel status register is read-only. It controls
synchronized handshaking between the processor and the debugger. The debug
communications channel status register is shown in Figure 8-8.

Figure 8-8 Debug communications channel status register

The function of each register bit is described here:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE-RT
version number (in this case 0011).

Bits 27:2 Are reserved.

Bit 1 Denotes whether the communications data write register is
available (from the viewpoint of the processor).
If, from the viewpoint of the processor, the communications data
write register is free (W=0), new data can be written.
If the register is not free (W=1), the processor must poll until
W=0.
From the viewpoint of the debugger, when W=1, new data is
written that can be scanned out.

Bit 0 Denotes whether there is new data in the communications data
read register.
If, from the viewpoint of the processor, R=1, there is some new
data that can be read using an MRC instruction.
From the viewpoint of the debugger, if R=0, the communications
data read register is free, and new data can be placed there through
the scan chain. If R=1, this denotes that data previously placed
there through the scan chain is not collected by the processor, and
so the debugger must wait.

From the viewpoint of the debugger, the registers are accessed using the scan chain in
the usual way. From the viewpoint of the processor, these registers are accessed using
coprocessor register transfer instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 W R

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-21

You must use the following instructions:

MRC p14, 0, Rd, c0, c0

This returns the debug communications control register into Rd.

MCR p14, 0, Rn, c1, c0

This writes the value in Rn to the communications data write register.

MRC p14, 0, Rd, c1, c0

This returns the debug data read register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data using SWI instructions when in Thumb state.

8.9.3 Communications channel monitor mode debug status register

The coprocessor 14 debug status register is provided for use by a debug monitor when
the ARM9E-S is configured into monitor mode.

The coprocessor 14 debug status register is a 1-bit wide read or write register having the
format shown in Figure 8-9.

Figure 8-9 Coprocessor 14 debug status register format

Bit 0 of the register, the DbgAbt bit, indicates whether the processor took a Prefetch or
Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core
takes a Prefetch Abort as a result of a breakpoint or watchpoint, then the bit is set. If on
a particular instruction or data fetch, both the debug abort and external abort signals are
asserted, the external abort takes priority and the DbgAbt bit is not set. You can read or
write the DbgAbt bit by means of MRC or MCR instructions.

This bit can be used by a real-time debug aware abort handler. This examines the
DbgAbt bit to determine whether the abort is externally or internally generated. If the
DbgAbt bit is set, the abort handler initiates communication with the debugger over the
communications channel.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

DbgAbt bit

Debug Support

8-22 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.9.4 Communications via the communications channel

Messages can be sent and received using the communications channel as described in:

• Sending a message to the debugger

• Receiving a message from the debugger

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the
communications data write register is free for use by finding out whether the W bit of
the debug communications control register is clear.

The processor reads the debug communications control register to check status of the
W bit.

• If W bit is clear, the communications data write register is clear.

• If the W bit is set, previously written data is not read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14.
Because the data transfer occurs from the processor to the communications data write
register, the W bit is set in the debug communications control register.

The debugger sees both the R and W bits when it polls the debug communications
control register through the JTAG interface. When the debugger sees that the W bit is
set, it can read the communications data write register, and scan the data out. The action
of reading this data register clears the debug communications control register W bit. At
this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug
communications control register.

• if the R bit is LOW, the communications data read register is free, and data can
be placed there for the processor to read

• if the R bit is set, previously deposited data is not yet collected, so the debugger
must wait.

When the communications data read register is free, data is written there using the
JTAG interface. The action of this write sets the R bit in the debug communications
control register.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-23

The processor polls the debug communications control register. If the R bit is set, there
is data that can be read using an MRC instruction to coprocessor 14. The action of this
load clears the R bit in the debug communications control register. When the debugger
polls this register and sees that the R bit is clear, the data is taken, and the process can
be repeated.

Debug Support

8-24 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.10 Monitor mode debug

The ARM9E-S within ARM966E-S contains logic that allows the debugging of a
system without stopping the core entirely. This allows the continued servicing of
critical interrupt routines while the core is being interrogated by the debugger. Setting
bit 4 of the debug control register enables the real-time debug features of ARM9E-S.
When this bit is set, the EmbeddedICE-RT logic is configured so that a breakpoint or
watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort or Data
Abort vectors respectively. When the ARM is configured for real-time debugging you
must be aware of the following restrictions:

• Breakpoints or watchpoints might not be data dependent. No support is provided
for use of the range and chain functionality. Breakpoints or watchpoints can only
be based on:

— instruction or data addresses

— external watchpoint conditioner (DBGEXTERN)

— user or privileged mode access (DnTRANS and InTRANS)

— read or write access (watchpoints)

— access size (breakpoints, ITBIT, and watchpoints, DMAS[1:0]).

• The single-step hardware is not enabled.

• External breakpoints and watchpoints are not supported.

• The vector catching hardware can be used but must not be configured to catch
the Prefetch or Data Abort exceptions.

Caution
No support is provided to mix halt mode and monitor mode debug functionality. When
the core is configured into the monitor mode, asserting the external EDBGRQ signal
results in unpredictable behavior. Setting the internal EDBGRQ bit results in
unpredictable behavior.

When an abort is generated by the monitor mode it is recorded in the debug status
register in coprocessor 14 (see Communications channel monitor mode debug status
register on page 8-21).

Because the monitor mode debug does not put the ARM9E-S into debug state, it is
necessary to change the contents of the watchpoint registers while external memory
accesses are taking place, rather than being changed when in debug state. If the
watchpoint registers are written to during an access, all matches from the affected
watchpoint unit using the register being updated are disabled for the cycle of the update.

Debug Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 8-25

If there is a possibility of false matches occurring during changes to the watchpoint
registers, caused by old data in some registers and new data in others, then you must:

1. Disable that watchpoint unit using the control register for that watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.

Debug Support

8-26 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

8.11 Debug additional reading

A more detailed description of the ARM9E-S debug features and JTAG interface is
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 9-1

Chapter 9
Embedded Trace Macrocell Interface

This chapter describes the ARM966E-S Embedded Trace Macrocell (ETM) interface.
It contains the following sections:

• About the ETM interface on page 9-2

• Enabling the ETM interface on page 9-3.

Embedded Trace Macrocell Interface

9-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

9.1 About the ETM interface

The ARM966E-S supports the connection of an external Embedded Trace Module
(ETM) to provide real time code tracing of the ARM966E-S in an embedded system.

The ETM interface is primarily one way. In order to provide code tracing, the ETM
block must be able to monitor various ARM9E-S inputs and outputs. The required
ARM9E-S inputs and outputs are collected and driven out from the ARM966E-S from
the ETM interface registers, as shown in Figure 9-1.

Figure 9-1 ARM966E-S ETM interface

The ETM interface outputs are pipelined by a single clock cycle to provide early output
timing and to isolate any ETM input load from the critical ARM966E-S signals. The
latency of the pipelined outputs does not effect ETM trace behavior, as all outputs are
delayed by the same amount.

ETM

ARM9E-S
To/from
ARM966E-S
logic

To/from
ARM966E-S
logic

ETM interface registersCLK nRESET

ARM966E-S
ETMEN

En

FIFOFULL

Embedded Trace Macrocell Interface

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 9-3

9.2 Enabling the ETM interface

The ETM interface on the ARM966E-S is enabled by the top-level pin ETMEN. When
this input is HIGH, the ETM interface is enabled and the outputs are driven so that an
external ETM can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their
last value before the interface was disabled. At reset, all ETM interface outputs are reset
LOW.

The ETMEN input is usually driven by the ETM, and driven HIGH once the ETM is
programmed using its TAP controller.

Note

If an ETM is not used in an embedded ARM966E-S design, the ETMEN input must be
tied LOW to save power.

Embedded Trace Macrocell Interface

9-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

9.3 ARM966E-S trace support features

The trace support uses the following features:

• FIFOFULL

• Register 15, trace control register

• Register 1, Trace process identifier.

9.3.1 FIFOFULL

The signal, FIFOFULL, is an input to the ARM966E-S driven by the ETM9.
Whenever the programmed upper watermark of the ETM FIFO is filled, FIFOFULL
is asserted. The ARM966E-S uses FIFOFULL to stall the ARM9E-S core, preventing
trace loss. The ARM9E-S core remains stalled until FIFOFULL is deasserted.

The ARM966E-S can only stall on instruction boundaries enabling any current AHB
transfers to complete. You must take this into consideration when programming the
ETM FIFO watermark. If the current instruction is either a LDM or a STM, the FIFO
might have to accept up to 16 words after the assertion of FIFOFULL.

Note

Using FIFOFULL to stall the ARM966E-S affects real-time operating performance.

9.3.2 Register 15, trace control register

The trace control register allows the masking of interrupts during trace. This register
allows nIRQ and nFIQ interrupt priority over FIFOFULL to be programmed. The
operation of this register is described in Register 15, Test on page 2-9.

9.3.3 Register 1, Trace process identifier

The ARM966E-S contains a trace process identifier register that allows Real-time
Trace tools to identify the currently executing process in multi-tasking environments.
The operation of this register is described in Register 13, Trace process identifier on
page 2-9.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 10-1

Chapter 10
Test Support

This chapter describes the test methodology employed for the ARM966E-S synthesized
logic and tightly-coupled SRAM. It contains the following sections:

• About the ARM966E-S test methodology on page 10-2

• Scan insertion and ATPG on page 10-3

• BIST of tightly-coupled SRAM on page 10-4.

Test Support

10-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

10.1 About the ARM966E-S test methodology

To achieve a high level of fault coverage, scan insertion and ATPG techniques are used
on the ARM9E-S core and ARM966E-S control logic as part of the synthesis flow.
BIST is used to provide high fault coverage of the compiled SRAM.

Test Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 10-3

10.2 Scan insertion and ATPG

This technique is covered in detail in the ARM966E-S Implementation Guide. Scan
insertion requires that all register elements are replaced by scannable versions that are
then connected up into a number of large scan chains. These scan chains are used to set
up data patterns on the combinatorial logic between the registers, and capture the logic
outputs. The logic outputs are then scanned out while the next data pattern is scanned in.

Automatic Test Pattern Generation (ATPG) tools are used to create the necessary scan
patterns to test the logic, when the scan insertion has been performed. This technique
enables very high fault coverage to be achieved for the standard cell combinatorial
logic, typically in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized
design, due to the larger scan register elements and the serial routing between them.
However, to minimize these effects, the scan insertion is performed early in the
synthesis cycle and the design re-optimized with the scan elements in place.

10.2.1 ARM966E-S INTEST wrapper

To facilitate testing of the shadow logic between the ARM966E-S scan chains and the
scan chains in an OEM ASIC, a synthesis option allows an INTEST wrapper to be
inserted into the ARM966E-S. The INTEST wrapper is a scan chain around the
boundary of the ARM966E-S, connecting to all input and output pins.

Note

• Shadow logic is logic that is not ordinarily tested.

• The INTEST wrapper is only required for embedded ARM966E-S.

• The order of this scan chain is predetermined and must be maintained through
synthesis and place and route of the macrocell.

Test Support

10-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

10.3 BIST of tightly-coupled SRAM

Adding a simple memory test controller allows an exhaustive test of the memory arrays
to be performed. BIST test is activated by an MCR to the CP15 BIST control register and
can be run on one or both of the I-SRAM and D-SRAM simultaneously.

When a BIST test is performed on an SRAM, the functional enable for that SRAM is
automatically disabled, forcing all memory accesses to that SRAM address space to go
to the AHB. This enables BIST tests to be run in the background. For instance, the
instruction SRAM can be BIST tested, while code is executed over the AHB.

Full programmer control over the BIST mechanism is achieved through five registers
that are mapped to CP15 register 15 address space. For details of the MCR or MRC
instructions used to access these registers, see Register 15, Test on page 2-9. Access to
these registers is also available in debug mode, see ARM966E-S scan chain 15 on
page 8-7.

10.3.1 BIST control register

This controls the operation of the SRAM memory BIST. Before initiating a BIST test,
a MCR is first performed to the BIST control register to set up the size of the test and
enable the SRAM to be tested. A further MCR is required to initiate the test.

The current status of a BIST test and result of a completed test can be accessed by
performing an MRC to the BIST control register. This returns flags to indicate that a test
is:

• running

• paused

• failed

• completed.

In addition to returning the state for the size of the test and SRAM enable status, having
completed a BIST test, the BIST enable must first be cleared by writing to the BIST
control register if the SRAM is to be used by you for functional operation. The SRAM
must then be re-enabled by writing to CP15 register 1. This is necessary as the BIST test
enable automatically clears the functional enable.

Test Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 10-5

Note

Clearing the functional SRAM enable when BIST is enabled prevents the programmer
from trying to run from tightly coupled SRAM following a BIST test, without having
first reprogrammed the SRAM. This is necessary as the BIST algorithm corrupts all
tested SRAM locations.

10.3.2 BIST address and general registers

The BIST control register enables standard BIST operations to be performed on each
SRAM and the size of the test to be specified. Additional registers are required
however, to provide the following functionality:

• testing of the BIST hardware

• changing the seed data for a BIST test

• providing a nonzero starting address for a BIST test

• peek and poke of the SRAM

• returning an address location for a failed BIST test

• returning failed data from the failing address location.

This additional functionality is most useful for debugging faulty silicon during
production test. The exception to this is the start address for a BIST test. It is possible
that BIST of the SRAM is performed periodically during program execution, the
memory being tested in smaller pieces rather than in one go. This requires a start
address that is incremented by the size of the test each time a test is activated.

Table 10-1 and Table 10-2 on page 10-6 show how the registers are used. The pause
bits from the BIST control register provide extra decode of these registers.

Table 10-1 Instruction BIST address and general registers

BIST register
IBIST
pause

Read Write

IBIST address register 0 IBIST fail address IBIST start address

IBIST address register 1 IBIST fail address IBIST peek/poke address

IBIST general register 0 IBIST fail data IBIST seed data

IBIST general register 1 IBIST peek data IBIST poke data

Test Support

10-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

10.3.3 Pause modes

The suggested production test sequence for the SRAM is:

1. Test each SRAM using a full test.

2. Test the BIST hardware for each SRAM.

To allow testing of the BIST hardware, a pause mechanism enables the BIST test
to be halted and data within the SRAM to be corrupted. The sequence for this is:

a. Writing the address for the location to be corrupted with a MCR to the
relevant BIST address register.

b. Writing the corrupted data using a MCR to the BIST general register.

c. Restarting the test by an MCR to the BIST control register.

d. Checking that the corrupted data causes the test to fail by reading the
failed address and data from the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the
pause bit also controls the progression of the BIST algorithm as follows:

• Auto pause

• User pause on page 10-7

Auto pause

If the pause bit is set in the BIST control register before the test is activated, the test runs
in auto pause mode. The BIST test pauses at predetermined points of the BIST
algorithm, for instance when the algorithm has reached the top or the bottom of the
memory array being tested.

Table 10-2 Data BIST address and general registers

BIST register
IBIST
pause

Read Write

DBIST address register 0 DBIST fail address DBIST start address

DBIST address register 1 DBIST fail address DBIST peek/poke address

DBIST general register 0 DBIST fail data DBIST seed data

DBIST general register 1 DBIST peek data DBIST poke data

Test Support

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 10-7

The programmer can poll the BIST control register to detect when a test has paused (the
running flag is LOW). Data can then be corrupted as detailed above, before restarting
the BIST test.

User pause

If the pause bit is clear when the test is activated, the test is run in user pause mode. The
BIST algorithm is paused by an MCR to the BIST control register, setting the pause bit
for the SRAM being tested. The SRAM contents are then corrupted as previously. This
stops the BIST algorithm at a potentially unknown point, resulting in the possibility that
the corrupted data is overwritten by the BIST algorithm and therefore not cause a test
to fail.

Note

User pause mode is provided for production test debugging to shorten a test by pausing
the algorithm early. The auto pause mechanism is recommended to provide or BIST
hardware testing for all other occasions.

Test Support

10-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-1

Chapter 11
Instruction cycle timings

This chapter describes the instruction cycle timings for the ARM966E-S. It contains the
following sections:

• Introduction to instruction cycle timings on page 11-2

• When stall cycles do not occur on page 11-3

• Tightly-coupled SRAM cycles on page 11-4

• AHB memory access cycles on page 11-6

• Interrupt latency calculation on page 11-10

Instruction cycle timings

11-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

11.1 Introduction to instruction cycle timings

The ARM9E-S core within the ARM966E-S implements a pipelined architecture where
several instructions in different pipeline stages overlap. The instruction cycle timing
tables in the ARM9E-S Technical Reference Manual show the number of cycles
required by an instruction, once it has reached the execute stage of the ARM9E-S core
pipeline.

The instruction cycle timing numbers quoted in the ARM9E-S Technical Reference
Manual assume that the ARM9E-S is permanently enabled with the CLKEN input tied
HIGH. This implies that both instruction and data memory connected to the ARM9E-S
are able to perform zero wait state responses to all accesses.

In a system such as the ARM966E-S, the CLKEN input to the ARM9E-S core might
be pulled LOW to stall the processor until the memory system is able to respond to the
access. These stall cycles must be taken into account when calculating the
ARM966E-S instruction cycle timings.

Stall cycles are introduced by the ARM966E-S system controller in the following
circumstances:

• the internal SRAM cannot always be accessed in a single cycle

• the access requires an AHB transfer

• the write buffer is full or being drained.

This chapter describes the cycle counts for both normal operation and the above
circumstances.

Instruction cycle timings

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-3

11.2 When stall cycles do not occur

Before describing the various stall cycle scenarios, it is useful to consider the
circumstances where the ARM9E-S core can run within the ARM966E-S with no stall
cycles introduced by the system controller. When this is the case, the ARM966E-S is
running at peak efficiency and the instruction cycles exactly match those quoted in the
ARM9E-S Technical Reference Manual.

The fundamental requirement for no stall cycles is that the I-SRAM is enabled and the
necessary instructions have been previously programmed into it. Additionally, if the
D-SRAM is enabled, it can be accessed for reads without incurring a stall penalty, even
if the I-SRAM is being simultaneously accessed for an instruction fetch.

When a write is performed, the access can be zero stall if the write buffer is used and
there is space available. If the write is to the D-SRAM, the write is a single cycle in most
circumstances, and any store multiple to the D-SRAM can be executed as one write per
cycle. As long as these writes are not to the I-SRAM address space, instruction fetches
from the I-SRAM can be performed simultaneously without incurring a stall penalty.

To maximize performance, it is therefore desirable to ensure that frequently accessed
code is preloaded into the I-SRAM and that data accesses map to the D-SRAM address
space. It is also advisable to enable the write buffer and use bufferable areas of memory
where possible, when AHB writes are performed.

Note

If the data interface of the ARM9E-S core accesses the I-SRAM memory, in most cases
stall cycles are incurred. An example of where this type of access is unavoidable, is the
fetching of inline code literals from the I-SRAM.

Instruction cycle timings

11-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

11.3 Tightly-coupled SRAM cycles

This section describes the stall cycle counts for accesses to one or both of the SRAMs.
The circumstances where the internal tightly-coupled SRAM can stall are detailed in
SRAM stall cycles on page 4-3.

Table 11-1 lists the stall cycles incurred when accessing the I-SRAM. In most cases the
data accesses are to the D-SRAM so the stall penalties listed are not incurred.

Table 11-1 I-SRAM access

Instruction sequence Stalls Comment

Single instruction fetch 0 Assuming no data interface access to I-SRAM

Sequential instruction fetch 0 Assuming no data interface access to I-SRAM

LDR, no instruction fetch 0 Assuming no previous I-SRAM store

LDR, simultaneous
instruction fetch

1 Simultaneous instruction fetch request causes stall
of LDR for 1 cycle

LDM, instruction fetch in
parallel with final load

1 Simultaneous instruction fetch request at end of
LDM causes stall

STR, no instruction fetch 0 Assuming no previous ISRAM store

STR simultaneous
instruction fetch

2 Two cycle write performed prior to instruction fetch

STR followed by
instruction fetch

1 Stall occurs due to second cycle of store

STR followed by
simultaneous, instruction
fetch LDR

1 Stall occurs due to second cycle of store

STR followed by
simultaneous instruction
fetch, STR

2 Stall due to second cycle of second store plus
instruction fetch request

STR followed by LDR/
STR, no instruction fetch

1 Stall due to second cycle of store

STM, instruction fetch in
parallel with final store

2 Simultaneous instruction fetch request must wait
for second cycle of final write to complete

Instruction cycle timings

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-5

The D-SRAM can only be accessed by the ARM9E-S data interface so there are no
simultaneous access contentions as found in the I-SRAM. Table 11-2 shows the stall
cycles that can occur when accessing the D-SRAM.

Note

All internal SRAM stall cycles are in terms of the CLK and are therefore not affected
by the speed of the external AHB interface.

Table 11-2 D-SRAM access

Data access Stalls Comment

LDR 0 D-SRAM provides single cycle response

LDM 0 D-SRAM provides single cycle response to each
word

LDR/LDM followed by
any load or store

0 D-SRAM provides single cycle response

STR 0 Assuming no following load

STM 0 Assuming no following load

STR/STM followed by
STR/STM

0 Pipelined addresses allow back-to-back stores or
store multiples

STR/STM followed by
LDR/LDM

1 Second cycle of write causes stall before load can be
performed

Instruction cycle timings

11-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

11.4 AHB memory access cycles

When a read or non-bufferable write access to the AHB is performed, stall cycles are
introduced. The number of CLK stall cycles incurred depends on:

• the clocking ratio of the AHB interface

• the type of access being performed

• if there are further accesses to be performed.

Before an AHB transfer can be initiated, the ARM966E-S must be the granted bus
master. The cycle calculations in this section assume that the ARM966E-S is granted
and that it is the default bus master.

11.4.1 Synchronization penalty

At the start of an AHB access, the BIU within the ARM966E-S must wait for the first
rising edge of HCLK (the HCLKEN input is true) before it can broadcast the necessary
AHB control and address information for the access. This delay is the synchronization
penalty. The best case is that in the cycle when the AHB access is requested, the
HCLKEN input is HIGH, incurring a zero cycle synchronization penalty. The worst
case is where the HCLKEN is HIGH in the cycle before the AHB access is required.
The ARM966E-S must then wait until the next assertion of HCLKEN which is R-1
cycles later, where R is the CLK to HCLK ratio:

• Best case synchronization penalty is 0 CLK cycles

• Worst case synchronization penalty is R-1 CLK cycles,
where R = 1, 2, 3, 4, 5, 6, 7, 8 for example.

If the AHB must be accessed for two transfers that were requested simultaneously by
the ARM9E-S core (that is, a simultaneous instruction fetch and data load), the BIU
stays synchronized after the first transfer so that the penalty is only incurred for the first
access. If the transfer is part of a burst (STM/LDM) or a sequential instruction fetch
sequence, again the BIU stays synchronized between each transfer to minimize
synchronization penalty.

Note

If the clock ratio R=1 and the HCLKEN input to the ARM966E-S is tied HIGH then
no synchronization penalty is incurred when accessing the AHB.

Instruction cycle timings

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-7

11.4.2 AHB transfer types

The ARM966E-S can perform IDLE, NONSEQ, and SEQ transfers. Depending on the
implementation of the AHB system to which the ARM966E-S is connected, a varying
number of HCLK cycles are required for the NONSEQ and SEQ transfers. Typically,
a NONSEQ cycle requires a two-cycle response from the selected slave, whereas a SEQ
cycle can be handled in a single cycle. The IDLE cycle takes one HCLK cycle by
definition.

For each HCLK cycle required by the AHB transfer, R internal CLK cycles are taken.
The AHB transfer cycles are converted to CLK by multiplying by R, the CLK to
HCLK ratio, as shown in Table 11-3.

Table 11-4 lists the types of AHB transfers performed by the ARM966E-S and the
number of CLK cycles required to perform them. This table indicates cycles where the
ARM9E-S core must be stalled until one or more AHB accesses have completed, that
is, for reads and unbuffered writes.

Table 11-3 Key to tables

Symbol Meaning in terms of CLK cycles

Sync Worst-case synchronization penalty (= R-1)

S HCLK cycles required for a SEQ transfer x R

N HCLK cycles required for a NONSEQ transfer x R

I HCLK cycle required for an IDLE cycle (=R)

n Number of words accessed by the transfer

Table 11-4 AHB read and unbuffered write transfer cycles

AHB access Cycles Comment

Start of sequential instruction
fetch of n words

Sync+N(n+I) Assumes no AHB load or store activity.

Nonsequential instruction
fetch

Sync+N+I Assumes no AHB load or store activity.

Nonsequential instruction
fetch follows sequential
instruction fetch

N+I Assumes no AHB load or store activity.

Single LDR or STR Sync+N+I Assumes no AHB instruction fetch.

Instruction cycle timings

11-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

See AHB bus master interface on page 6-8 for diagrams of the cycles listed in Table
11-4 on page 11-7.

Table 11-5 on page 11-9 shows the cycles required to perform buffered writes. These
writes usually take place in parallel with program execution and the ARM9E-S core is
not stalled while the buffered writes take place. However, whenever a load or
instruction fetch to the AHB is required, the core is stalled and the write buffer drained
before program execution can continue.

Back-to-back LDR/LDR,
LDR/STR, STR/STR, STR/
LDR

Sync+2(N+I) Assumes no AHB instruction fetch.
Synchronization penalty for first transfer only.

Simultaneous LDR/STR and
instruction fetch

Sync+2N+I Optimization replaces IDLE cycle after load/
store with NONSEQ of instruction fetch.

STM of n words Sync+N+(n-1)S+I Assumes no AHB instruction fetch.

STM of n words, simultaneous
instruction fetch at end

Sync+2N+(n-1)S+I Optimization replaces IDLE cycle after final
stored word with NONSEQ of instruction
fetch.

STM of n words crosses 1KB
region

Sync+2N+(n-2)S+2I Assumes no AHB instruction fetch,
sequentiality broken on boundary.

LDM of n words Sync+N+(n-1)S+2I Assumes no AHB instruction fetch. LDM
requires extra IDLE at end of transfer to re-
sample core interface.

LDM of n words, simultaneous
instruction fetch at end

Sync+2N+(n-1)S+2I Optimization replaces second IDLE cycle after
final loaded word with NONSEQ of
instruction fetch.

LDM of n words crosses 1KB
region

Sync+2N+(n-2)S+4I Assumes no AHB instruction fetch,
sequentiality broken on boundary.

Table 11-4 AHB read and unbuffered write transfer cycles (continued)

AHB access Cycles Comment

Instruction cycle timings

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-9

Table 11-5 AHB buffered writes cycles

AHB access Cycles Comment

Single STR Sync+N+I Assumes no following AHB
instruction fetch

Back-to-back STR/STR Sync+2(N+I) Assumes no following AHB
instruction fetch

STM Sync+N+(n-1)S+I Assumes no following AHB
instruction fetch

Last STR in write buffer drain
followed by unbuffered data access

2(N+I) Core stalled until write buffer empty
and data access has been performed

Last STR in write buffer drain
followed by instruction fetch

2N+I Optimization replaces IDLE cycle
after store with NONSEQ of
instruction fetch

Instruction cycle timings

11-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

11.5 Interrupt latency calculation

The ARM9E-S has a worst-case interrupt latency figure that is listed in the
ARM9E-S Technical Reference Manual. The number quoted assumes that the CLKEN
input to the core is HIGH, ensuring no stall cycles.

In the ARM966E-S, the best-case figure could match the latency quoted for the
ARM9E-S core, if the necessary data and instructions were already in the D-SRAM and
I-SRAM respectively. However, when calculating the worst-case figure, it must be
assumed that the necessary data and instructions are not in the tightly-coupled SRAM
and must therefore be accessed over the AHB.

In addition, the worst-case is where the write buffer is full when the interrupt occurs,
requiring that the buffer drain is added to the interrupt latency calculation. The
worst-case sequence for the write buffer is that five nonsequential words are to be
written.

For the ARM9E-S core, the worst-case interrupt latency occurs when the longest LDM
incurs a Data Abort. However, for the ARM966E-S, this is the longest LDM without a
Data Abort. The LDM that incurs a Data Abort takes extra CLK cycles in the core, but
the abort vector is usually in the tightly-coupled SRAM and can be returned without
introducing the extra stall cycles of an AHB access.

The longest LDM without the Data Abort is one that loads all the registers, including the
PC, that causes a branch to a destination anywhere in memory. The branch destination
must therefore be assumed to be outside of the tightly-coupled SRAM. The loads to the
PC address and (PC+1) cause additional AHB accesses to produce the worst-case
interrupt latency.

Using the symbols defined in Table 11-3, the worst-case interrupt latency can be
summarized in Table 11-6.

Table 11-6 Interrupt latency cycle summary

AHB access Cycles Comment

Write buffer drain Sync+ 5(N+I) FIQ asserted, first data transfer
requested, write buffer drain stalls core.

LDM (r0-pc) crosses 1KB
boundary

2N+14 S+4 I No instruction fetch at end due to core
pipeline bubble to calculate pc

Instruction fetch of (pc) Sync+N+I Synchronization lost due to core internal
cycle, no AHB request

Sequential instruction fetch
of (pc+1)

N+I Synchronization retained

Instruction cycle timings

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 11-11

The LDM (r0-pc) must complete before the interrupt vector is fetched. The write buffer
drain must be added to this, in addition to assuming that the LDM (r0-pc) crosses a 1KB
boundary.

The calculation assumes that once the interrupt has entered the Decode stage of the
ARM9E-S pipeline following the instruction fetch to (pc+1), the subsequent fetches to
the interrupt vector are serviced by the tightly-coupled SRAM, requiring a further three
CLK cycles for the FIQ handler to enter execute. (This is not the case if the interrupt
vector resides at the HIVECS location of 0xFFFF 0000. This requires AHB access.)

The cycles from Table 11-6 are added to the three CLK cycles from the tightly-coupled
SRAM to produce the interrupt latency equation:

Interrupt latency CLK = 2Sync+9N+14S+2B+11I+3

Rewriting in terms of R, NONSEQ, SEQ and IDLE the equation simplifies to:

Interrupt latency CLK =R (9 NONSEQ+14SEQ+13)+1

where IDLE=BUSY=R as this is a single HCLK cycle by definition.

The number of CLK cycles latency can now be derived for different AHB clocking
ratios and for the differing AHB slave responses that might exist in the AHB system to
which the ARM966E-S interfaces. Table 11-7 on page 11-11 gives examples of
interrupt latency for systems with different CLK to HCLK ratios. For each system,
slaves can have different response times to NONSEQ and SEQ transfers. Table 11-7
gives some examples of different slave responses and the resultant interrupt latency in
CLK cycles.

Table 11-7 Interrupt latency calculated examples

CLK to HCLK
Ratio - R

Latency when
NONSEQ = 1,
SEQ = 1

Latency when
NONSEQ= 2,
SEQ = 1

Latency when
NONSEQ = 2,
SEQ = 2

 1 37 46 60

 2 73 91 119

 3 109 136 178

 4 145 181 237

Instruction cycle timings

11-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-1

Appendix A
Signal Descriptions

This appendix describes the ARM966E-S signals. It contains the following sections:

• Signal properties and requirements on page A-2

• Clock interface signals on page A-3

• AHB signals on page A-4

• Coprocessor interface signals on page A-6

• Debug signals on page A-8

• Miscellaneous signals on page A-10

• ETM interface signals on page A-11

• INTEST wrapper signals on page A-13.

Signal Descriptions

A-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.1 Signal properties and requirements

In order to ensure ease of integration of the ARM966E-S into embedded applications
and to simplify synthesis flow, the following design techniques have been used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM966E-S signals because
all outputs change from the rising edge and all inputs are sampled with the rising edge
of the clock. In addition, all signals are either input or output only, as bidirectional
signals are not used.

Note

Asynchronous signals (for example interrupt sources) must first be synchronized by
external logic before being applied to the ARM966E-S macrocell.

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-3

A.2 Clock interface signals

Table A-1 describes the ARM966E-S clock interface signals.

Table A-1 Clock interface signals

Name Direction Description

CLK
System clock

Input This clock times all operations in the ARM966E-S
design. All outputs change from the rising edge and
all inputs are sampled on the rising edge. The clock
might be stretched in either phase.
Through the use of the HCLKEN signal, this clock
also times AHB operations.
Through the use of the DBGTCKEN signal, this
clock also times debug operations.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH
indicates that the next rising edge of CLK is also a
rising edge of HCLK in the AHB system in which
the ARM966E-S is embedded. HCLK must be tied
HIGH in systems where CLK and HCLK are
intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic accessed by the
JTAG interface. When HIGH on the rising edge of
CLK the debug logic is able to advance.

HRESETn
Not reset

Input Asynchronously asserted LOW input used to
initialize the ARM966E-S system state.
Synchronously de-asserted.

Signal Descriptions

A-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.3 AHB signals

Table A-2 describes the ARM966E-S AHB signals.

Table A-2 AHB signals

Name Direction Description

HADDR[31:0]
Address bus

Output The 32-bit AHB system address bus.

HTRANS[1:0]
Transfer type

Output Indicates the type of ARM966E-S transfer, which
can be IDLE (00), NONSEQ (10), or SEQ (11).

HWRITE
Transfer direction

Output When HIGH indicates a write transfer. When LOW
indicates a read transfer.

HSIZE[2:0]
Transfer size

Output Indicates the size of an ARM966E-S transfer, which
can be Byte (000), Half-word (001) or Word (010).

HBURST[2:0]
Burst type

Output Indicates if the transfer forms part of a burst. The
ARM966E-S supports SINGLE transfer (000) and
INCRemental burst of unspecified length (001).

HPROT[3:0]
Protection control

Output Indicates that the ARM966E-S transfer is
an opcode fetch (0--0) or a data access (0--1) or a
User mode access (0-0-) or a Supervisor mode
access (0-1-).
Also indicates that an access is not bufferable (00--)
or bufferable (01--). Bit [3] is driven to 0 indicating
not cacheable.

HWDATA[31:0]
Write data bus

Output The 32-bit write data bus is used to transfer data
from the ARM966E-S to a selected bus slave during
write operations.

HRDATA[31:0]
Read data bus

Input The 32-bit read data bus is used to transfer data from
a selected bus slave to the ARM966E-S during read
operations.

HREADY
Transfer done

Input When HIGH indicates that a transfer has finished on
the bus. This signal can be driven LOW by the
selected bus slave to extend a transfer.

HRESP[1:0]
Transfer response

Input The transfer response from the selected slave
provides additional information on the status of the
transfer. The response can be OKAY (00), ERROR
(01), RETRY (10), or SPLIT (11).

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-5

HBUSREQ
Bus request

Output Indicates that the ARM966E-S requires the bus.

HLOCK
Request locked
transfers

Output When HIGH, indicates that the ARM966E-S
requires locked access to the bus and no other master
is granted until this signal has gone LOW. Asserted
by the ARM966E-S when executing SWP
instructions to AHB address space.

HGRANT
Bus grant

Input Indicates that the ARM966E-S is currently the
highest priority master. Ownership of the address
and control signals changes at the end of a transfer
when HREADY is HIGH, so the ARM966E-S gets
access to the bus when both HREADY and
HGRANT are HIGH.

Table A-2 AHB signals (continued)

Name Direction Description

Signal Descriptions

A-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.4 Coprocessor interface signals

Table A-3 describes the ARM966E-S coprocessor interface signals.

Table A-3 Coprocessor interface signals

Name Direction Description

CPCLKEN
Coprocessor clock
enable

Output Synchronous enable for coprocessor pipeline
follower. When HIGH on the rising edge of CLK
the pipeline follower logic is able to advance.

CPINSTR[31:0]
Coprocessor
instruction data

Output The 32-bit coprocessor instruction bus over which
instructions are transferred to the coprocessor
pipeline follower.

CPDOUT[31:0]
Coprocessor read
data

Output The 32-bit coprocessor read data bus for transferring
data to the coprocessor.

CPDIN[31:0]
Coprocessor write
data

Input The 32-bit coprocessor write data bus for
transferring data from the coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in
the Execute stage of the pipeline, and it must be
executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a
coprocessor instruction, then the coprocessor must
cancel the instruction without changing any internal
state. This signal is only asserted in cycles where the
previous instruction caused a Data Abort to occur.

CHSDE[1:0]
Coprocessor
handshake decode

Input The handshake signals from the Decode stage of the
coprocessor’s pipeline follower. Indicates ABSENT
(10), WAIT (00), GO (01), or LAST (11).

CHSEX[1:0]
Coprocessor
handshake execute

Input The handshake signals from the Execute stage of the
coprocessor’s pipeline follower. Indicates ABSENT
(10), WAIT (00), GO (01), or LAST (11).

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-7

CPTBIT
Coprocessor
instruction Thumb
bit

Output When HIGH indicates that the ARM966E-S in is
Thumb state. When LOW indicates that the
ARM966E-S is in ARM state. Sampled by the
coprocessor pipeline follower.

nCPMREQ
Not coprocessor
instruction request

Output When LOW on the rising edge of CLK and
CPCLKEN is HIGH, the instruction on CPINSTR
must enter the coprocessor pipeline.

nCPTRANS
Not coprocessor
memory translate

Output When LOW indicates that the ARM966E-S is in
User mode. When HIGH indicates that the
ARM966E-S is in privileged mode. Sampled by the
coprocessor pipeline follower.

Table A-3 Coprocessor interface signals (continued)

Name Direction Description

Signal Descriptions

A-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.5 Debug signals

Table A-4 describes the ARM966E-S debug signals.

Table A-4 Debug signals

Name Direction Description

DBGIR[3:0]
TAP controller
instruction register

Output These four bits reflect the current instruction loaded
into the TAP controller control register. These bits
change when the TAP controller is in the
UPDATE-IR state.

DBGnTRST
Not test reset

Input This is the active low reset signal for the
EmbeddedICE internal state. This signal is a level
sensitive asychronous reset signal.

DBGnTDOEN
Not DBGTDO
enable

Output When LOW, this signal denotes that the serial data is
being driven out of the DBGTDO output. Normally
used as an output enable for a DBGTDO pin in a
packaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan
chain currently selected by the TAP controller.
These bits change when the TAP controller is in the
UPDATE-DR state.

DBGSDIN
External scan chain
serial input data

Output Contains the serial data to be applied to an external
scan chain.

DBGSDOUT
External scan chain
serial data output

Input Contains the serial data out of an external scan
chain. When an external scan chain is not connected,
this signal must be tied LOW.

DBGTAPSM[3:0]
TAP controller state
machine

Output This bus reflects the current state of the TAP
controller state machine.

DBGTDI Input Test data input for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

COMMRX
Communications
channel receive

Output When HIGH denotes that the communications
channel receive buffer contains valid data waiting to
be read.

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-9

COMMTX
Communications
channel transmit

Output When HIGH, denotes that the comms channel
transmit buffer is empty.

DBGACK
Debug acknowledge

Output When HIGH indicates that the processor is in debug
state.

DBGEN
Debug enable

Input Enables the debug features of the processor. This
signal must be tied LOW if debug is not required.

DBGRQI
Internal debug
request

Output Represents the debug request signal that is presented
to the core debug logic. This is a combination of
EDBGRQ and bit 1 of the debug control register.

EDBGRQ
External debug
request

Input An external debugger forces the processor into
debug state by asserting this signal.

DBGEXT[1:0]
EmbeddedICE
external input

Input Input to the EmbeddedICE-RT logic allows
breakpoints/watchpoints to be dependent on external
conditions.

DBGINSTREXEC
Instruction executed

Output Indicates that the instruction in the Execute stage of
the processor pipeline has been executed.

DBGRNG[1:0]
EmbeddedICE
Rangeout

Output Indicates that the corresponding EmbeddedICE-RT
watchpoint register has matched the conditions
currently present on the address, data and control
buses. This signal is independent of the state of the
watchpoint enable control bit.

TAPID[31:0]
Boundary scan ID
code

Input Specifies the ID code value shifted out on
DBGTDO when the IDCODE instruction is entered
into the TAP controller.

DBGIEBKPT
Instruction
breakpoint

Input Asserted by external hardware to halt execution of
the processor for debug purposes. If HIGH at the end
of an instruction fetch, it causes the ARM966E-S to
enter debug state if that instruction reaches the
Execute stage of the processor pipeline.

DBGDEWPT
Data watchpoint

Input Asserted by external hardware to halt execution of
the processor for debug purposes. If HIGH at the end
of a data memory request cycle, it causes the
ARM966E-S to enter debug state.

Table A-4 Debug signals (continued)

Name Direction Description

Signal Descriptions

A-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.6 Miscellaneous signals

Table A-5 describes the ARM966E-S miscellaneous signals.

Table A-5 Miscellaneous signals

Name Direction Description

nFIQ
Not fast interrupt
request

Input This is the Fast Interrupt Request signal. This signal
must be synchronous to CLK.

nIRQ
Not interrupt request

Input This is the Interrupt Request signal. This signal must
be synchronous to CLK.

VINITHI
Exception vector
location at reset

Input Determines the reset location of the exception
vectors. When LOW, the vectors are located at
0x00000000. When HIGH, the vectors are located
at 0xFFFF0000.

INITRAM
Tightly-coupled
SRAM enable at
reset

Input Determines the tightly-coupled SRAM reset
enable.When HIGH, the instruction and data SRAM
are both enabled during reset, when LOW, the
SRAM are disabled during reset.

BIGENDOUT Output When HIGH, the ARM966E-S treats bytes in
memory as being in big-endian format. When LOW,
memory is treated as little-endian.

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-11

A.7 ETM interface signals

Table A-6 describes the ARM966E-S ETM interface signals.

Table A-6 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. This signal
must be tied LOW if an ETM is not used.

FIFOFULL Input Asserted when ETM FIFO fills. This signal must be
tied LOW if an ETM is not used.

ETMBIGEND Output big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMInMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential data indication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read or write for the ETM.

ETMDSEQ Output Sequential data indication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARM9E-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMINSTRVALID Output Instruction valid indication for the ETM.

ETMRNGOUT[1:0] Output Watchpoint register match indication for the ETM.

Signal Descriptions

A-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ETMID31TO25[31:25] Output Instruction data field for the ETM.

ETMID15TO11[15:11] Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the
ETM.

ETMPASS Output Coprocessor instruction execute indication for the
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID Output Process ID for the ETM.

ETMPROCIDWR Output Asserted when ETMPROCID is written.

Table A-6 ETM interface signals (continued)

Name Direction Description

Signal Descriptions

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. A-13

A.8 INTEST wrapper signals

Table A-7 describes the ARM966E-S INTEST wrapper signals.

Table A-7 INTEST wrapper signals

Name Direction Description

SI Input Serial input data for the INTEST wrapper scan
chain.

SO Output Serial output data from the INTEST wrapper scan
chain.

SCANEN Input Enables scanning of data through the INTEST
wrapper scan chain.

TESTEN Input Selects the INTEST wrapper scan chain as the
source for ARM966E-S inputs.

SERIALEN Input Enables the INTEST wrapper BIST activation mode
where the scan chain is used to apply serialized
ARM instructions to the ARM966E-S to activate
BIST test of the tightly-coupled SRAM.

ICAPTUREEN Input 1 = INTEST wrapper in INTEST mode
0 = INTEST wrapper in EXTEST mode.

Signal Descriptions

A-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A.9 DMA Signals

DMA signals are listed in Table 11-8.

Table 11-8 DMA signals

Name Direction Description

DMAENABLE Input Enable ARM966E-S DMA port. Must be tied LOW
if DMA not required.

DMAnREQ Input DMA not memory request. Must be tied HIGH if
DMA not required.

DMAA[25:0] Input DMA address. Accesses up to 64Mbyte of memory.
Unused address bits must be tied LOW.

DMAnRW Input DMA write not read:
0 = read
1 = write.

DMAMAS[1:0] Input DMA Memory Access Size. Encodes the size of
writes. Reads are always word wide:
00 = byte
01 = halfword
10 = word
11 = reserved.

DMAD[31:0] Input DMA write data.

DMAWait Input DMA Wait. Used to stall the ARM966E-S to allow a
DMA access to take place. This functionality is only
required if the data RAM is single-port. This signal
must be tied LOW if the data RAM is dual-port.
This signal has the same functionality internal to the
ARM966E-S as FIFOFULL.

DMAReady Output DMA Ready. Asserted HIGH when the
ARM966E-S is stalled. Only needs to be sampled
when the data RAM is single port, for example when
the ARM966E-S stall was requested by DMAWait.

DMARData[31:0] Output DMA read data.

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-1

Appendix B
AC Parameters

This appendix describes the AC timing parameters for the ARM966E-S. It contains the
following sections:

• Timing diagrams on page B-2

• AC timing parameter definitions on page B-12.

AC Parameters

B-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

B.1 Timing diagrams

The timing diagrams in this section are:

• Clock, reset and AHB enable timing

• AHB bus request and grant related timing on page B-3

• AHB bus master timing on page B-4

• Coprocessor interface timing on page B-5

• Debug interface timing on page B-6

• JTAG interface timing on page B-7

• DBGSDOUT to DBGTDO timing on page B-8

• Exception and configuration timing on page B-8

• INTEST wrapper timing on page B-9

• ETM interface timing on page B-10.

Clock, reset and AHB enable timing parameters are shown in Figure B-1.

Figure B-1 Clock, reset and AHB enable timing

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-3

AHB bus request and grant related timing parameters are shown in Figure B-2.

Figure B-2 AHB bus request and grant related timing

AC Parameters

B-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

AHB bus master timing parameters are shown in Figure B-3.

Figure B-3 AHB bus master timing

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-5

Coprocessor interface timing parameters are shown in Figure B-4.

Figure B-4 Coprocessor interface timing

AC Parameters

B-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Debug interface timing parameters are shown in Figure B-5.

Figure B-5 Debug interface timing

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-7

JTAG interface timing parameters are shown in Figure B-6.

Figure B-6 JTAG interface timing

AC Parameters

B-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

A combinatorial path timing parameter exists from the DBGSDOUT input to the
DBGTDO output. This is shown in Figure B-7.

Figure B-7 DBGSDOUT to DBGTDO timing

Exception and configuration timing parameters are shown in Figure B-8.

Figure B-8 Exception and configuration timing

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-9

The INTEST wrapper timing parameters are shown in Figure B-9.

Figure B-9 INTEST wrapper timing

CLK

SO

SI

SCANEN

TESTEN

SERIALEN

ICAPTUREEN

TihcaptureenTiscapturee

Tihserialen

Tihtesten

Tihscanen

TihsiTissi

TohsoTovso

Tisscanen

Tistesten

Tisserialen

AC Parameters

B-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

The ETM interface timing parameters are shown in Figure B-10.

Figure B-10 ETM interface timing

CLK

ETMIA[31:1]
ETM31TO25[31:25]
ETM15TO11[15:11]

ETMInMREQ
ETMISEQ
ETMITBIT

ETMINSTREXEC
ETMINSTRVALID

ETMDA[31:0]
ETMRDATA[31:0]
ETMWDATA[31:0]

ETMMAS[31:0]

ETMnWAIT

ETMDMORE
ETMDnMREQ

ETMDnRW
ETMDABORT

ETMCHSD[1:0]
ETMPASS

ATMPLATECANCEL

ETMDBGACK
ATMRNGOUT[1:0]

ETMEN

FIFOFULL

ETMBIGEND
ETMHIVECS
ETMPROCID

ATMPRODCDWR

Tovtminst Tohetminst

Tovetmdata Tohetmdata

Tovetmstat Tohetmstat

Tovtmicti Tohetmiuctl

Tovetmnwait Tohetmnwait

Tovetmdctl Tohetmdctl

Tovetmcfg Tohetmcfg

Tovetmcpif Tohetmcpif

Tovetmdbg Tohetmdbg

Tihetmfifull

TihetmenTisetmen

Tisetmfifofull

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-11

The DMA interface timing parameters are shown in Figure B-11

Figure B-11 DMA interface timing

CLK

DMAReady
DMARData

DMAENABLE
DMAnREQ

DMAA
DMAMAS

DMAD
DMAWait

Tovdma Tohdma

Tisdma Tihdma

AC Parameters

B-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

B.2 AC timing parameter definitions

Table B-1 shows target AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency.

Note

The figures quoted are relative to the rising clock edge after the clock skew for internal
buffering has been added. Inputs given a 0% hold figure therefore require a positive
hold relative to the top- level clock input. The amount of hold required is equivalent to
the internal clock skew.

Table B-1 AC parameters

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup time to rising CLK 85% -

Tihhen HCLKEN input hold time from rising CLK - 0%

Tisrst HRESETn deassertion input setup time to rising CLK 90% -

Tihrst HRESETn deassertion input hold time from rising CLK - 0%

Tovreq Rising CLK to HBUSREQ valid - 30%

Tohreq HBUSREQ hold time from rising CLK >0% -

Tovlck Rising CLK to HLOCK valid - 30%

Tohlck HLOCK hold time from rising CLK >0% -

Tisgnt HGRANT input setup time to rising CLK 40% -

Tihgnt HGRANT input hold time from rising CLK - 0%

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK >0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK >0% -

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-13

Tovwd Rising CLK to HWDATA[31:0] valid - 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% -

Tisrdy HREADY input setup time to rising CLK 75% -

Tihrdy HREADY input hold time from rising CLK - 0%

Tisrsp HRESP[1:0] input setup time to rising CLK 50% -

Tihrsp HRESP[1:0] input hold time from rising CLK - 0%

Tisrd HRDATA[31:0] input setup time to rising CLK 40% -

Tihrd HRDATA[31:0] input hold time from rising CLK - 0%

Tovcpen Rising CLK to CPCLKEN valid - 30%

Tohcpen CPCLKEN hold time from rising CLK >0% -

Tovcpid Rising CLK to CPINSTR[31:0] valid - 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK >0% -

Tovcpctl Rising CLK to transaction control valid - 30%

Tohcpctl Transaction control hold time from rising CLK >0% -

Tiscphs Coprocessor handshake input setup time to rising CLK 50% -

Tihcphs Coprocessor handshake input hold time from rising CLK - 0%

Tovcplc Rising CLK to CPLATECANCEL valid - 30%

Tohcplc CPLATECANCEL hold time from rising CLK >0% -

Tovcpps Rising CLK to CPPASS valid - 30%

Tohcpps CPPASS hold time from rising CLK >0% -

Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK >0% -

Tiscpwr CPDIN[31:0] input setup time to rising CLK 40% -

Tihcpwr CPDIN[31:0] input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max

AC Parameters

B-14 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Tovdbgack Rising CLK to DBGACK valid - 60%

Tohdbgack DBGACK hold time from rising CLK >0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 60%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%

Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% -

Tovdbgcomm Rising CLK to communications channel outputs valid - 30%

Tohdbgcomm Communications channel outputs hold time from rising CLK >0% -

Tisdbgin Debug inputs setup time to rising CLK 30% -

Tihdbgin Debug inputs hold time from rising CLK - 0%

Tisiebkpt DBGIEBKPT input setup time to rising CLK 20% -

Tihiebkpt DBGIEBKPT input hold time from rising CLK - 0%

Tisdewpt DBGDEWPT input setup time to rising CLK 20% -

Tihdewpt DBGDEWPT input hold time from rising CLK - 0%

Tovdbgsm Rising CLK to debug state valid - 30%

Tohdbgsm Debug state hold time from rising CLK >0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% -

Tovsdin Rising CLK to DBGSDIN valid - 20%

Tohsdin DBGSDIN hold time from rising CLK >0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK >0% -

Table B-1 AC parameters (continued)

Symbol Parameter Min Max

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-15

Tisntrst DBGnTRST de-asserted input setup time to rising CLK 35% -

Tihntrst DBGnTRST input hold time from rising CLK - 0%

Tistdi Tap state control input setup time to rising CLK 25% -

Tihtdi Tap state control input hold time from rising CLK - 0%

Tistcken DBGTCKEN input setup time to rising CLK 50% -

Tihtcken DBGTCKEN input hold time from rising CLK - 0%

Tistapid TAPID[31:0] input setup time to rising CLK 20% -

Tihtapid TAPID[31:0] input hold time from rising CLK - 0%

Tdsd DBGTDO delay from DBGSDOUTBS changing - 30%

Tdsh DBGTDO hold time from DBGSDOUTBS changing >0% -

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% -

Tisint Interrupt input setup time to rising CLK 15% -

Tihint Interrupt input hold time from rising CLK - 0%

Tishivecs VINITHI input setup time to rising CLK 95% -

Tihhivecs VINITHI input hold time from rising CLK - 0%

Tisinitram INITRAM input setup time to rising CLK 95% -

Tihinitram INITRAM input hold time from rising CLK - 0%

Tovso Rising CLK to SO valid - 30%

Tohso SO hold time from rising CLK >0% -

Tissi SI input setup time to rising CLK 95% -

Tihsi SI input hold time from rising CLK - 0%

Tisscanen SCANEN input setup time to rising CLK 95% -

Tihscanen SCANEN input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max

AC Parameters

B-16 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Tistesten TESTEN input setup time to rising CLK 95% -

Tihtesten TESTEN input hold time from rising CLK - 0%

Tisserialen SERIALEN input setup time to rising CLK 95% -

Tihserialen SERIALEN input hold time from rising CLK - 0%

Tiscaptureen CAPTUREEN input setup time to rising CLK 95% -

Tihcaptureen CAPTUREEN input hold time from rising CLK - 0%

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% -

Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK >0% -

Tovetmnwait Rising CLK to ETMnWAIT valid - 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK >0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% -

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% -

Table B-1 AC parameters (continued)

Symbol Parameter Min Max

AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-17

Note

• The VINITHI and INITRAM pins are specified as 95% of the cycle as they are
for input configuration during reset and can be considered static.

• The INTEST wrapper inputs and outputs are specified as 95% of the cycle as they
are production test related and expected to operate at typically 50% of the
functional clock rate.

Tisetmen ETMEN input setup time to rising CLK 50% -

Tihetmen ETMEN input hold time from rising CLK - 0%

Tisfifofull FIFOFULL input setup time to rising CLK 50% -

Tihetmen FIFOFULL input hold time from rising CLK - 0%

Tovdma Rising CLK to DMA signals valid 50% -

Tohdma DMA signals hold time from rising CLK 0% -

Tisdma DMA input setup time to rising CLK 50% -

Tihdma DMA input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max

AC Parameters

B-18 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-1

Appendix C
SRAM Stall Cycles

This appendix describes the tightly-coupled SRAM in the ARM966E-S. It contains the
following section:

• About SRAM stall cycles on page C-2.

For details of the ARM9E-S interface signals referenced in this section, refer to the
ARM9E-S Technical Reference Manual.

SRAM Stall Cycles

C-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

C.1 About SRAM stall cycles

Stall cycles can occur in both the instruction and data SRAMs, with one stall
mechanism being shared between the SRAMs and additional stall mechanism attributed
to the I-SRAM only. Any stall requirement is detected by the SRAM control and
factored into its response to the ARM966E-S system controller. The ARM9E-S
SYSCLKEN input is then deasserted until the SRAM has performed the access.

C.1.1 Read-follows-write

This stall mechanism is shared by both instruction and data SRAM because of the
pipelined nature of write data from the ARM9E-S core. The write data appears on the
core interface in the cycle after the address, so that it is not possible to perform the write
until the next rising clock edge. The address from the core must therefore be pipelined
to line up with the write data. A write with pipelined address is shown in
Figure C-1.

Figure C-1 SRAM write cycle

Note

The write is performed on the second rising edge of the period marked D-SRAM write
cycle.

In the case of back-to-back writes, stalls do not occur because the pipelined address is
being used and this keeps in step with the data. However, if a read follows the write, the
write must first be allowed to complete before the lookup for the read can be performed.

Write data

Addr A (write)

Addr A

CLK

DnMREQ

DnRW

DA[31:1]

SRAM Addr

WDATA[31:0]

WEN

D-SRAM write

cycle

SRAM Stall Cycles

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-3

Figure C-2 shows this example and how the SRAM control must pipeline and select
between the write and read address. The ARM9E-S core is stalled for a cycle by the
system controller by deasserting SYSCLKEN.

Figure C-2 Read follows write

Note

The second rising edge of the SRAM write cycle is the same edge that is required for
the SRAM read (of Addr B). It is not possible to read and write concurrently so a stall
must occur before the read of Addr B.

C.1.2 Additional Instruction SRAM stalls

The I-SRAM has additional stall cycles that arise because of the following operations:

• data reads to the I-SRAM are pipeline

• simultaneous instruction fetches and data accesses can occur

• any access can occur during two cycle data reads and writes.

CLK

DnMREQ

DnRW

DA[31:1]

SRAM Addr

WDATA[31:0]

SYSCLKEN

RDATA[31:0] Read data (B)

Write data (A)

Addr A (write)

Addr A

SRAM write

cycle

Addr B (read)

Addr B

stall

cycle

SRAM read

cycle

SRAM Stall Cycles

C-4 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Simultaneous instruction fetch, data read

The ARM9E-S data interface is able to access the I-SRAM for programming purposes
and for access to literal tables during program execution.

It is possible for the ARM9E-S to issue a simultaneous instruction and data request, and
if the data request addresses the I-SRAM, a stall cycle is required (see Figure C-3).

Figure C-3 Simultaneous instruction fetch, data read

Note

In the case of simultaneous I-SRAM and D-SRAM read access requests from the
ARM9E-S core, the instruction fetch is always performed first, followed by the data
read. The core is disabled until both accesses have completed.

Addr B (I fetch)

Read Instr (B)

Read data (A)

Addr A (read)

CLK

DnMREQ

InMREQ

DA[31:1]

I-SRAM Addr

RDATA[31:0]

SYSCLKEN

stall

cycle

Addr B

INSTR[31:0]

inst. fetch

DnRW

IA[31:1]

Addr A

data read

SRAM Stall Cycles

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-5

Data read

To maximize the I-SRAM interface frequency performance, data read requests to this
RAM are pipelined. This adds a stall cycle for every data read instruction. An example
of a data read from the I-SRAM is shown in Figure C-4.

Figure C-4 Data read from I-SRAM

The stall cycle is only incurred for the first read of a read instruction. If an LDM is
performed, there is a stall cycle inserted only for the first read of the LDM. Back-to- back
LDRs will incur a stall cycle at the start of each LDR.

CLK

DnMREQ

DnRW

DA[31:0]

SRAM Addr

RDATA[31:0]

SYSCLKEN

SRAM
stall cycle

Addr A (read)

Addr A

Read data

SRAM
read cycle

SRAM Stall Cycles

C-6 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Data read followed by instruction fetch

Data reads to the I-SRAM are pipelined. An instruction fetch in the cycle after a data
read request coincides with the stalled data read and so the instruction fetch is stalled
for 1 cycle. This is shown in Figure C-5.

Figure C-5 Data read followed by instruction fetch

CLK

DnMREQ

InMREQ

DnRW

DA[31:0]

IA[31:0]

I-SRAM

Addr

RDATA[31:0]

INSTR[31:0]

SYSCLKEN

Addr A(read)

Addr A

Addr B(fetch)

Addr B

Readdata (A)

Readdata (B)

stall

cycle

data

read

instr

fetch

SRAM Stall Cycles

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-7

Simultaneous instruction fetch, data write

If the ARM9E-S performs a simultaneous data write and instruction fetch that both map
to I-SRAM address space, two stall cycles occur. The first cycle allows for the pipelined
write, the second cycle allows for the instruction fetch. The core cannot be enabled until
both accesses have completed (see Figure C-6).

Figure C-6 Simultaneous instruction fetch, data write

Addr B (I fetch)

Read Instr (B)

Write data (A)

Addr A (write)

CLK

DnMREQ

InMREQ

DA[31:1]

I-SRAM Addr

WDATA[31:0]

SYSCLKEN

stall

cycle

Addr B

INSTR[31:0]

I-SRAM

inst. fetch

DnRW

IA[31:1]

Addr A

I-SRAM

data write

stall

cycle

SRAM Stall Cycles

C-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

I-SRAM data write followed by instruction fetch

This class of stall occurs when a data write to the I-SRAM address space is performed,
followed by an instruction fetch request in the next cycle. It is similar to the generic read
follows write scenario of each SRAM except that the read is an instruction fetch rather
than a data load. The instruction fetch must be held off until the write has completed,
requiring that the ARM9E-S core is stalled for a cycle (see Figure C-7).

Figure C-7 I-SRAM data write followed by instruction fetch

Addr B (I fetch)

Read Instr (B)

Write data (A)

Addr A (write)

CLK

DnMREQ

DA[31:1]

I-SRAM Addr

WDATA[31:0]

SYSCLKEN

I-SRAM

write cycle

Addr B

INSTR[31:0]

I-SRAM

read cycle

DnRW

IA[31:1]

Addr A

stall

cycle

InMREQ

SRAM Stall Cycles

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-9

I-SRAM write followed by instruction fetch, data write

This case is where a write is taking place to the I-SRAM that is immediately followed
by both an instruction fetch and a data write. The second write is performed
immediately after the current write without penalty. However, the core must be stalled
until both the second write and instruction fetch have completed, so there are two stall
cycles (see Figure C-8).

Figure C-8 I-SRAM write followed by instruction fetch, data write

Addr A (write)

CLK

DnMREQ

DnRW

DA[31:1]

I-SRAM

write cycle

Addr B (write)

stall

cycle

SRAM read

cycle

Read instr (C)

Write data (A)

Addr AI-SRAM Addr

WDATA[31:0]

SYSCLKEN

Addr B

INSTR[31:0]

InMREQ

Addr C (Ifetch)
IA[31:1]

Addr C

Write data (B)

I-SRAM

write cycle

stall

cycle

SRAM Stall Cycles

C-10 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

I-SRAM write followed by instruction fetch, data read

This is where a write is taking place to the I-SRAM that is immediately followed by
both an instruction fetch and a data read. This has the same two-stall cycle response as
the previous scenario, although the I-SRAM control behaves differently. The first write
must complete before the data read can be performed. The instruction fetch can then be
performed in the next cycle (see Figure C-9).

Figure C-9 I-SRAM write followed by instruction fetch, data read

Addr B (I fetch)

Read Instr (B)

Read data (A)

Addr A (read)

CLK

DnMREQ

InMREQ

DA[31:1]

I-SRAM Addr

RDATA[31:0]

SYSCLKEN

stall

cycle

Addr B

INSTR[31:0]

I-SRAM

inst. fetch

DnRW

IA[31:1]

Addr A

I-SRAM

data read

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. Index-i

Index

The items in this index are listed in alphabetic order. The references given are to page numbers.

A
AHB signals A-4
ARM instruction set 1-2
ARM966E-S 1-2
ARM9E-S memory map 3-2

B
Base restored data abort model 2-3
Base updated data abort model 2-3
BIGENDOUT A-10
BIST

control register 2-11
size encoding 2-12

Block diagram 1-3
Breakpoints 8-9, 8-17

exceptions 8-10
instruction boundary 8-10
Prefetch Abort 8-10
timing 8-10

Bufferable write address space 3-4
Busy-wait 7-5, 7-6

abandoned 7-12
interrupted 7-12

C
CHSDE A-6
CHSEX A-6
CLK 8-14, A-3
Clock

domains 8-14
interface signals A-3
system 8-3
test 8-3

COMMRX A-8
COMMTX A-9
Control register 2-5

Coprocessor
handshake signals 7-5
handshake states 7-6
instruction, busy-wait 7-5, 7-6
interface signals A-6

Core control register 2-8
Core state, determining 8-15
CP14 2-2
CP15 2-2

registers 2-4
CPCLKEN A-6
CPDIN A-6
CPDOUT A-6
CPINSTR A-6
CPLATECANCEL 7-5, A-6
CPPASS A-6
CPTBIT A-7

Index

Index-ii Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

D
Data Abort model 2-3
Data SRAM 3-3

enable 2-7
DBGACK 8-9, 8-18, A-9
DBGDEWPT 8-18, A-9
DBGEN 8-18, A-9
DBGEXT A-9
DBGIEBKPR 8-18
DBGIEBKPT A-9
DBGINSTREXEC A-9
DBGIR A-8
DBGnTDOEN A-8
DBGnTRST A-8
DBGRNG A-9
DBGRQ A-9
DBGSCREG A-8
DBGSDIN A-8
DBGSDOUT A-8
DBGTAPSM A-8
DBGTCKEN 8-14, A-3
DBGTDI A-8
DBGTDO A-8
DBGTMS A-8
Debug

communcations data read
register 8-19

communications channel 8-22
communications channel

register 8-19
communications channel status

register 8-20
communications data write

register 8-19
communicationss channel 8-19
control register 8-17
extensions 8-2
hardware extensions 8-5
host 8-4
interface signals 8-2, 8-9
message transfer 8-22
Multi-ICE 8-3
request 8-13
signals A-8
state 8-2
status register 8-16
support 8-16
systems 8-4
target 8-4

Debug state
actions of ARM9E-S 8-13
breakpoints 8-9
watchpoints 8-11

Disabling EmbeddedICE-RT 8-18

DMA
interface 5-1

DMAA A-14
DMAD A-14
DMAENABLE A-14
DMAMAS A-14
DMAnREQ A-14
DMAnRW A-14
DMARData A-14
DMAReady A-14
DMAWait A-14
Drain write buffer 2-8
D-SRAM 3-3

E
EDBGRQ 8-18, A-9
EmbeddedICE-RT 8-5, 8-13

debug communications
channel 8-19

debug status register 8-15
disabling 8-18
macrocell 8-16
operation 8-17
overview 8-16

Endian bit 2-7
ETM interface signals A-11
ETMBIGEND A-11
ETMCHSD A-12
ETMCHSE A-12
ETMDA A-11
ETMDABORT A-11
ETMDBGACK A-11
ETMDMAS A-11
ETMDMORE A-11
ETMDnMREQ A-11
ETMDnRW A-11
ETMDSEQ A-11
ETMEN A-11
ETMHIVECS A-11
ETMIA A-11
ETMID15TO8 A-12
ETMID31TO24 A-12
ETMInMREQ A-11
ETMINSTREXEC A-11
ETMISEQ A-11
ETMITBIT A-11
ETMLATECANCEL A-12
ETMnWAIT A-11
ETMPASS A-12

ETMRDATA A-11
ETMRNGOUT A-11
ETMWDATA A-11
Exception vectors 2-6

F
FIFOFULL A-11

H
HADDR A-4
HBURST A-4
HBUSREQ A-5
HCLKEN A-3
HGRANT A-5
HLOCK A-5
HPROT A-4
HRDATA A-4
HREADY A-4
HRESETn A-3
HRESP A-4
HSIZE A-4
HTRANS A-4
HWDATA A-4
HWRITE A-4

I
ICAPTUREEN A-13
ID code register 2-5
INITRAM A-10
Instruction SRAM 3-3
INTEST wrapper signals A-13
I-SRAM 3-3

J
JTAG interface 8-2, 8-5

L
Low-power mode 2-8

M
Memory map 3-2
Miscellaneous signals A-10
Multi-ICE 8-3

Index

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. Index-iii

N
nCPMREQ A-7
nCPTRANS A-7
nFIQ A-10
nIRQ A-10

P
Programmer’s model 2-2
Protocol converter 8-4, 8-5

R
Register

BIST control 2-11
control 2-5
core control 2-8
debug communications

channel 8-19
debug communications channel

status 8-20
debug communications data

read 8-19
debug communications data

write 8-19
debug control 8-17
debug status 8-16
EmbeddedICE-RT debug

status 8-15
ID code 2-5
test 2-9

RTCK 8-3

S
SCANEN A-13
Serial interface, JTAG 8-2, 8-5
SERIALEN A-13
SI A-13
Signal

properties A-2
requirements A-2

Signal types
clock interface A-3
coprocessor interface A-6
debug A-8
debug interface 8-2, 8-9

Signals
BIGENDOUT A-10
CHSDE A-6
CHSEX A-6
CLK 8-14, A-3
COMMRX A-8
COMMTX A-9
CPCLKEN A-6
CPDIN A-6
CPDOUT A-6
CPINSTR A-6
CPLATECANCEL A-6
CPPASS A-6
CPTBIT A-7
DAMReady A-14
DBGACK 8-9, 8-18, A-9
DBGDEWPT 8-18, A-9
DBGEN 8-18, A-9
DBGEXT A-9
DBGIEBKPT 8-18, A-9
DBGINSTREXEC A-9
DBGIR A-8
DBGnTDOEN A-8
DBGnTRST A-8
DBGRNG A-9
DBGRQ A-9
DBGSCREG A-8
DBGSDIN A-8
DBGSDOUT A-8
DBGTAPSM A-8
DBGTCKEN 8-14, A-3
DBGTDI A-8
DBGTDO A-8
DBGTMS A-8
DMAA A-14
DMAD A-14
DMAENABLE A-14
DMAMAS A-14
DMAnREQ A-14
DMAnRW A-14
DMARData A-14
DMAWait A-14
EDBGRQ 8-18, A-9
ETMBIGEND A-11
ETMCHSD A-12
ETMCHSE A-12
ETMDA A-11
ETMDABORT A-11
ETMDBGACK A-11
ETMDMAS A-11
ETMDMORE A-11
ETMDnMREQ A-11
ETMDnRW A-11
ETMDSEQ A-11
ETMEN A-11
ETMHIVECS A-11
ETMIA A-11
ETMID15TO8 A-12
ETMID31TO24 A-12
ETMInMREQ A-11
ETMINSTREXEC A-11
ETMISEQ A-11
ETMITBIT A-11
ETMLATECANCEL A-12
ETMnWAIT A-11

ETMPASS A-12
ETMRDATA A-11
ETMRNGOUT A-11
ETMWDATA A-11
FIFOFULL A-11
HADDR A-4
HBURST A-4
HBUSREQ A-5
HCLKEN A-3
HGRANT A-5
HLOCK A-5
HPROT A-4
HRDATA A-4
HREADY A-4
HRESETn A-3
HRESP A-4
HTRANS A-4
HWDATA A-4
HWRITE A-4
ICAPTUREEN A-13
INITRAM A-10
nCPMREQ A-7
nCPTRANS A-7
nFIQ A-10
nIRQ A-10
RTCK 8-3
SCANEN A-13
SERIALEN A-13
SI A-13
SO A-13
SYSCLKEN 8-14
TAPID A-9
TCK 8-3
TESTEN A-13
VINITHI A-10

SO A-13
SRAM

address space 3-3
enable 2-7
requirements 4-2
synchronous 4-2

SRAM stall cycles 4-3
SRAM wrapper 4-7
Standby mode 2-8
State, debug 8-2
States, TAP controller 8-2
SYSCLKEN 8-14
System state, determining 8-15

T
TAP controller 8-5, 8-16

states 8-2
TAPID A-9
TBIT 2-6
TCK 8-3
Test

clock 8-3
register 2-9

Index

Index-iv Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Test Access Port 8-2
TESTEN A-13
Thumb instruction set 1-2

V
VINITHI A-10

W
Wait for interrupt 2-8
Watchpoints 8-11, 8-16, 8-17

exceptions 8-13
timing 8-11

Write address space 3-4
Write buffer enable 2-7

	ARM966E-S (Rev 1) Technical Reference Manual
	Preface
	1 Introduction
	1.1 About the ARM966E-S
	1.2 Microprocessor block diagram

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.2 About the ARM9E-S programmer’s model
	2.2.1 Data Abort model

	2.3 ARM966E-S CP15 registers
	2.3.1 CP15 register map summary
	2.3.2 Register 0, ID code
	2.3.3 Register 1, Control register
	Bit 15, Configure disable loading TBIT
	Bit 13, Alternate vectors select
	Bit 12, Instruction SRAM enable
	Bit 7, Endian
	Bit 3, Write buffer enable
	Bit 2, Data SRAM enable

	2.3.4 Register 7, Core control
	Wait for interrupt
	Drain write buffer

	2.3.5 Register 13, Trace process identifier
	2.3.6 Register 15, Test
	Trace control register
	BIST control register

	3 Memory Map
	3.1 About the ARM966E-S memory map
	3.2 Tightly-coupled SRAM address space
	3.3 Bufferable write address space

	4 Tightly-coupled SRAM
	4.1 ARM966E-S SRAM requirements
	4.2 SRAM stall cycles
	4.3 Enabling the SRAM
	4.3.1 Using INITRAM input pin
	Reset with INITRAM LOW
	Reset with INITRAM HIGH

	4.3.2 Using CP15 control register
	Enabling the I-SRAM
	Disabling the I-SRAM
	Enabling the D-SRAM
	Disabling the D-SRAM

	4.4 ARM966E-S SRAM wrapper
	4.4.1 Example SRAM interfaces
	ONESEGX32
	FOURSEGX32
	FOURSEGX8

	5 Direct Memory Access (DMA)
	5.1 About the DMA interface
	5.1.1 Single-port RAM DMA solution
	5.1.2 Dual-port RAM DMA solution

	5.2 Timing interface
	5.2.1 Single-port RAM reads
	5.2.2 Single-port RAM writes
	5.2.3 Dual-port RAM reads
	5.2.4 Dual-port RAM writes
	5.2.5 Mixed read and writes

	5.3 DMAENABLE setup and hold cycles
	5.4 Summary of signal behavior

	6 Bus Interface Unit
	6.1 About the BIU and write buffer
	6.2 Write buffer operation
	6.2.1 Committing write data to the write buffer
	6.2.2 Draining write data from the write buffer
	Natural write buffer drain
	Enforced write buffer drain
	AHB read access requested
	Drain write buffer instruction

	6.2.3 Enabling the write buffer
	6.2.4 Disabling the write buffer

	6.3 AHB bus master interface
	6.3.1 Overview of AHB
	6.3.2 ARM966E-S transfer descriptions
	Burst transfers
	Bus request
	Sequential instruction fetch
	Back-to-back LDR or STR accesses
	Simultaneous instruction and data request
	STM timing
	LDM timing
	STM followed by instruction fetch
	LDM followed by instruction fetch
	STM crossing a 1KB boundary
	LDM crossing a 1KB boundary
	SWP instruction

	6.4 AHB clocking
	6.4.1 CLK to HCLK skew
	Clock tree insertion at top level
	Hierarchical clock tree insertion

	7 Coprocessor Interface
	7.1 About the coprocessor interface
	7.1.1 Synchronizing the external coprocessor pipeline
	7.1.2 External coprocessor clocking

	7.2 LDC/STC
	7.2.1 Coprocessor handshake states
	7.2.2 Coprocessor handshake encoding
	7.2.3 Multiple external coprocessors

	7.3 MCR/MRC
	7.4 Interlocked MCR
	7.5 CDP
	7.6 Privileged instructions
	7.7 Busy-waiting and interrupts

	8 Debug Support
	8.1 About the debug interface
	8.1.1 Stages of debug
	8.1.2 Clocks

	8.2 Debug systems
	8.2.1 The debug host
	8.2.2 The protocol converter
	8.2.3 ARM966E�S debug target

	8.3 ARM966E-S scan chain 15
	8.4 Debug interface signals
	8.4.1 Entry into debug state on breakpoint
	8.4.2 Breakpoints and exceptions
	8.4.3 Watchpoints
	8.4.4 Watchpoints and exceptions
	8.4.5 Debug request
	8.4.6 Actions of the ARM9E�S in debug state

	8.5 ARM9E�S core clock domains
	8.6 Determining the core and system state
	8.7 About the EmbeddedICE-RT
	8.8 Disabling EmbeddedICE-RT
	8.9 The debug communications channel
	8.9.1 Debug communication channel registers
	8.9.2 Debug communications channel status register
	8.9.3 Communications channel monitor mode debug status register
	8.9.4 Communications via the communications channel
	Sending a message to the debugger
	Receiving a message from the debugger

	8.10 Monitor mode debug
	8.11 Debug additional reading

	9 Embedded Trace Macrocell Interface
	9.1 About the ETM interface
	9.2 Enabling the ETM interface
	9.3 ARM966E-S trace support features
	9.3.1 FIFOFULL
	9.3.2 Register 15, trace control register
	9.3.3 Register 1, Trace process identifier

	10 Test Support
	10.1 About the ARM966E-S test methodology
	10.2 Scan insertion and ATPG
	10.2.1 ARM966E-S INTEST wrapper

	10.3 BIST of tightly-coupled SRAM
	10.3.1 BIST control register
	10.3.2 BIST address and general registers
	10.3.3 Pause modes
	Auto pause
	User pause

	11 Instruction cycle timings
	11.1 Introduction to instruction cycle timings
	11.2 When stall cycles do not occur
	11.3 Tightly-coupled SRAM cycles
	11.4 AHB memory access cycles
	11.4.1 Synchronization penalty
	11.4.2 AHB transfer types

	11.5 Interrupt latency calculation

	Appendix A Signal Descriptions
	A.1 Signal properties and requirements
	A.2 Clock interface signals
	A.3 AHB signals
	A.4 Coprocessor interface signals
	A.5 Debug signals
	A.6 Miscellaneous signals
	A.7 ETM interface signals
	A.8 INTEST wrapper signals
	A.9 DMA Signals

	Appendix B AC Parameters
	B.1 Timing diagrams
	B.2 AC timing parameter definitions

	Appendix C SRAM Stall Cycles
	C.1 About SRAM stall cycles
	C.1.1 Read-follows-write
	C.1.2 Additional Instruction SRAM stalls
	Simultaneous instruction fetch, data read
	Data read
	Data read followed by instruction fetch
	Simultaneous instruction fetch, data write
	I-SRAM data write followed by instruction fetch
	I-SRAM write followed by instruction fetch, data write
	I-SRAM write followed by instruction fetch, data read

	Index

