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Preface

This preface introduces the ARM966E-S and its reference documentation. It contains 
the following sections:

• About this document on page xii

• Further reading on page xv

• Feedback on page xvi.
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About this document

This document is a reference manual for the ARM966E-S.

Intended audience

This document has been written for experienced hardware and software engineers who 
might or might not have any experience of ARM products.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM966E-S.

Chapter 2 Programmer’s Model

Read this chapter for a description of the programmer’s model including 
a summary of the ARM966E-S coprocessor registers.

Chapter 3 Memory Map

Read this chapter for a description of the ARM966E-S fixed memory 
map implementation.

Chapter 4 Tightly-coupled SRAM

Read this chapter for a description of the requirements and operation of 
the tightly-coupled SRAM.

Chapter 5 Direct Memory Access (DMA)

Read this chapter for a description of the optional DMA interface in the 
ARM966E-S.

Chapter 6 Bus Interface Unit

Read this chapter for a description of the operation of the Bus Interface 
Unit and write buffer.

Chapter 7 Coprocessor Interface

Read this chapter for a description of the coprocessor interface and the 
operation of common coprocessor instructions.
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Chapter 8 Debug Support

Read this chapter for a description of the debug support for the 
ARM966E-S and the EmbeddedICE-RT logic.

Chapter 9 Embedded Trace Macrocell Interface

Read this chapter for a description of the ETM interface, including details 
of how to enable the interface.

Chapter 10 Test Support

Read this chapter for a description of the test methodology used for the 
ARM966E-S synthesized logic and tightly-coupled SRAM.

Appendix A Signal Description

Read this appendix for a description of the ARM966E-S signals.

Appendix B AC Parameters

Read this appendix for a description of the timing parameters applicable 
to the ARM966E-S.

Appendix C SRAM Stall Cycles

Read this appendix for a description of the tightly-coupled SRAM stall 
cycle mechanism in the ARM966E-S.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface 
elements such as menu names. May also be used for emphasis in 
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as 
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or 
option name.

typewriter italic
Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.
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typewriter bold
Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labeled when they occur. 
Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Valid (correct) sampling point
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Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not 
answered by this document, please contact info@arm.com or visit our web site at 
http://www.arm.com.

ARM publications

ARM Architecture Reference Manual (ARM DDI 0100).

ARM9E-S Technical Reference Manual (ARM DDI 0165).

AMBA Specification Rev 2.0 (ARM IHI 0011).

AHB Example AMBA System Technical Reference Manual (ARM DDI 0170).

Other publications

IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture.
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Feedback

ARM Limited welcomes feedback both on the ARM966E-S, and on the documentation.

Feedback on the ARM966E-S

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments

Feedback on the ARM966E-S

If you have any comments about this document, please send email to 
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
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Chapter 1
Introduction

This chapter introduces the ARM966E-S processor. It contains the following sections:

• About the ARM966E-S on page 1-2

• Microprocessor block diagram on page 1-3.
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1.1 About the ARM966E-S

The ARM966E-S is a synthesizable macrocell combining an ARM processor with 
tightly-coupled SRAM memory. It is a member of the ARM9 Thumb family of 
high-performance, 32-bit System-on-Chip (SoC) processor solutions and is targeted at 
a wide range of embedded applications where high performance, low system cost, small 
die size, and low power are all important.

The ARM966E-S processor macrocell provides a complete high-performance 
processor subsystem, including an ARM9E-S RISC integer CPU, tightly-coupled 
SRAM for each of the instruction and data CPU interfaces, write buffer and an AMBA 
AHB bus interface. Providing this complete high-frequency subsystem frees the SoC 
designer to concentrate on design issues unique to their system. The synthesizable 
nature of the device eases integration into ASIC technologies.

The tightly-coupled SRAMs within the ARM966E-S macrocell allow high-speed 
operation without incurring the performance and power penalties of accessing the 
system bus, while having a lower area overhead than a cached memory system. The size 
of both the instruction and data SRAM are implementor-configurable to allow tailoring 
of the hardware to the embedded application. Additionally, You can configure the data 
SRAM interface to allow Direct Memory Access (DMA) to this RAM.

The ARM9E-S core within the ARM966E-S macrocell executes both the 32-bit ARM 
and 16-bit Thumb instruction sets, allowing trade off between high performance and 
high code density. Additionally the ARM9E-S features:

• ARMv5T 32-bit instruction set with improved ARM/Thumb code interworking 
and enhanced multiplier designed for improved DSP performance

• ARM debug architecture with additional support for real-time debug, which 
allows critical exception handlers to execute while debugging the system.

The ARM966E-S includes support for external coprocessors allowing floating point or 
other application-specific hardware acceleration to be added.

To minimize die size and power consumption the ARM966E-S does not provide virtual 
to physical address mapping as this is not required by most embedded systems. A 
simple fixed memory map is implemented for the close-coupled local RAM, ideally 
suited to small, fast, real-time embedded control applications.

The ARM966E-S synthesizable implementation supports the use of a scan test 
methodology for the standard cell logic and Built-In-Self-Test (BIST) for the 
tightly-coupled SRAM.



Introduction

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 1-3

1.2 Microprocessor block diagram

The ARM966E-S block diagram is shown in Figure 1-1.

Figure 1-1 ARM966E-S block diagram
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Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM966E-S. It contains the 
following sections:

• About the programmer’s model on page 2-2

• About the ARM9E-S programmer’s model on page 2-3

• ARM966E-S CP15 registers on page 2-4.
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2.1 About the programmer’s model

The programmer’s model for the ARM966E-S macrocell primarily consists of the 
ARM9E-S core programmer’s model (see About the ARM9E-S programmer’s model on 
page 2-3). Additions to this model are required to control the operation of the 
ARM966E-S internal coprocessors, and any coprocessor connected to the external 
coprocessor interface.

There are two internal coprocessors within the ARM966E-S:

• CP14 within the ARM9E-S core allows software access to the debug 
communications channel

• CP15 allows configuration of the tightly-coupled SRAM and write buffer and 
other ARM966E-S system options such as big or little-endian operation.

The registers defined in CP14 are accessible with MCR and MRC instructions. These are 
described in The debug communications channel on page 8-19.

The registers defined in CP15 are accessible with MCR and MRC instructions. These are 
described in ARM966E-S CP15 registers on page 2-4.

Any coprocessors registers and operations, attached to the external coprocessor 
interface, are accessible with appropriate coprocessor instructions.
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2.2 About the ARM9E-S programmer’s model

The ARM9E-S processor core implements the ARM architecture v5T, that includes the 
32-bit ARM instruction set and the 16-bit Thumb instruction set. For a description of 
both instruction sets, see the ARM Architecture Reference Manual. Contact ARM for 
complete descriptions of both instruction sets.

2.2.1 Data Abort model

The ARM9E-S implements the base restored data abort model, that differs from the 
base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating 
system code, the Data Abort handler. It does not affect user code. With the base 
restored data abort model, when a Data Abort exception occurs during the execution of 
a memory access instruction, the base register is always restored by the processor 
hardware to the value the register contained before the instruction was executed. This 
removes the requirement for the Data Abort handler to unwind any base register update 
that might have been specified by the aborted instruction.

The base restored data abort model significantly simplifies the software Data Abort 
handler.
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2.3 ARM966E-S CP15 registers

CP15 allows configuration of the tightly-coupled SRAM and write buffer and other 
ARM966E-S system options such as big or little-endian operation.

The ARM966E-S coprocessor 15 registers are described in the following sections:

• CP15 register map summary

• Register 0, ID code on page 2-5

• Register 1, Control register on page 2-5

• Register 7, Core control on page 2-8

• Register 15, Test on page 2-9.

2.3.1 CP15 register map summary

The ARM966E-S incorporates CP15 for system control. The register map for CP15 is 
shown in Table 2-1.

Note

Register 15 provides access to more than one register. The register access depends on 
the value of the opcode_2 field. See the register descriptions in this section for more 
information.

Table 2-1 CP15 register map

Register Function Access

0 ID code Read-only

1 Control Read/write

2-6 Reserved Undefined

7 Core control Write-only

13 Trace process identifier Read/write

8-14 Reserved Undefined

15 Test Read/write
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2.3.2 Register 0, ID code

This is a read-only register that returns a 32-bit device ID code. The ID code register is 
accessed by reading CP15 register 0 with the opcode_2 field set to any value. For 
example:
MRC p15, 0, rd, c0, c0, 0; returns ID register

The contents of the ID code are shown in Table 2-2.

2.3.3 Register 1, Control register

This register contains the global control bits of the ARM966E-S (see Table 2-3). All 
reserved bits must either be written with zero or one, as indicated, or written using 
read-modify-write. The reserved bits have an unpredictable value when read. To read 
and write this register:
MRC p15, 0, rd, c1, c0, 0; read Control register

MCR p15, 0, rd, c1, c0, 0; write Control register

Table 2-2 Register 0, ID code

Register bits Function Value

31:24 Implementor 0x41

23:20 Variant 0x0

19:16 ARM architecture v5T 0x05

15:4 Part number 0x966

3:0 Version Version specific

Table 2-3 Register 1, Control register

Register 
bit

Function

31:16 Reserved (should be zero)

15 Configure disable loading 
TBIT

14 Reserved (should be zero)

13 Alternate vector select

12 Instruction SRAM enable
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Bit 15, Configure disable loading TBIT 

When HIGH the ARM9E-S core disables certain ARMv5T defined behavior involving 
loading data to the PC. This bit is cleared LOW during reset to provide ARMv5T 
compatibility.

Bit 13, Alternate vectors select

This bit controls the base address used for the exception vectors. When LOW, the base 
address for the exception vectors is 0x0000 0000. When HIGH, the base address is 
0xFFFF 0000.

Note

Bit 13 is initialized either HIGH or LOW during system reset, depending on the value 
of the input pin, VINITHI. This allows the exception vector location to be defined 
during reset to suit the boot mechanism of the application. You can then reprogram as 
required following system reset.

11:8 Reserved (should be one)

7 Endian

6:4 Reserved (should be one)

3 Write buffer enable

2 Data SRAM enable

1:0 Reserved (should be zero)

Table 2-3 Register 1, Control register (continued)

Register 
bit

Function
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Bit 12, Instruction SRAM enable

This bit controls the behavior of the tightly-coupled instruction SRAM. When HIGH, 
all accesses to the fixed instruction memory space as shown in Figure 3-1 on page 3-2, 
access the instruction SRAM. When LOW, all accesses to the instruction memory space 
access the AMBA AHB.

Note

Bit 12 is initialized either HIGH or LOW during system reset depending on the value 
of the input pin INITRAM.

Bit 7, Endian

Selects the endian configuration of the ARM966E-S. When this bit is HIGH, big-endian 
configuration is selected. When LOW, little-endian configuration is selected. This bit is 
cleared LOW during reset.

Bit 3, Write buffer enable

This bit controls the use of the write buffer. When HIGH, all stores to the fixed 
bufferable space of the AMBA AHB (as shown in Figure 3-1 on page 3-2) are treated 
as buffered writes. When LOW, all stores to the AMBA AHB are treated as 
nonbufferable. 

If the write buffer is disabled having previously been enabled, any writes already in the 
write buffer FIFO complete as buffered writes.

This bit is cleared LOW during reset.

Bit 2, Data SRAM enable

This bit controls the behavior of the tightly-coupled Data SRAM. When HIGH, all data 
interface accesses to the fixed data memory space as shown in Figure 3-1 on page 3-2, 
access the Data SRAM. When LOW, all accesses to the data memory space access the 
AMBA AHB.

Note

Bit 2 is initialized either HIGH or LOW during system reset depending on the value of 
the input pin INITRAM.



Programmer’s Model

2-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

2.3.4 Register 7, Core control

You can use a write to this register, to perform wait for interrupt and drain write buffer 
operations.

Wait for interrupt

This operation allows the ARM966E-S to enter a low-power standby mode. When the 
operation is invoked, the clock enable to the processor core is negated until either an 
interrupt or a debug request occurs. This function is invoked by a write to Register 7. 
The following ARM instruction causes this to occur:
MCR p15, 0, rd, c7, c0, 4; wait for interrupt

This is the preferred encoding that must be used by new software. For compatibility 
with existing software, ARM966E-S also supports the following ARM instruction that 
has the same affect:
MCR p15, 0, rd, c15, c8, 2; wait for interrupt

This stalls the processor from the time that the instruction is executed until nFIQ, 
nIRQ, or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the 
EmbeddedICE-RT control register then this causes the wait-for-interrupt condition to 
terminate.

In the case of nFIQ and nIRQ, the processor core is woken up regardless of whether 
the interrupts are enabled or disabled (that is, independent of the I and F bits in the 
processor CPSR). The debug-related waking only occurs if DBGEN is HIGH, that is, 
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before 
executing the instruction after the wait for interrupt. If debug request is used to wake up 
the system, the processor enters debug-state before executing any more instructions.

Wait for interrupt does not prevent the write buffer from emptying.

Drain write buffer

This CP15 operation causes instruction execution to be stalled until the write buffer is 
emptied. This operation is useful in real-time applications where the processor has to be 
sure that a write to a peripheral has completed before program execution continues. An 
example is where a peripheral in a bufferable region is the source of an interrupt. When 
the interrupt has been serviced, the request must be removed before interrupts can be 
re-enabled. This can be ensured if a drain write buffer operation separates the store to 
the peripheral and the enable interrupt functions.
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The drain write buffer operation is invoked by a write to Register 7 using the following 
ARM instruction:
MCR cp15, 0, rd, c7, c10, 4; drain write buffer 

This stalls the processor core until any outstanding accesses in the write buffer have 
been completed, that is, until all data has been written to external memory.

2.3.5 Register 13, Trace process identifier

This register provides a mechanism to allow the Real-time Trace tools to identify the 
currently executing process in multi-tasking environments.

The contents of this register are replicated on the ETMPROCID pins of the 
ARM966E-S. The ETMPROCIDWR signal is set HIGH for a single clock cycle 
whenever this register is written to. Table 2-4 shows the trace process identifier for read 
and write. 

2.3.6 Register 15, Test

This register provides access to:

• the tightly-coupled Instruction and Data SRAM test features 

• the trace control features.

Both features are supported by the ARM966E-S.

The register map for CP15 register 15 is shown in Table 2-5.

Table 2-4 Register 13, Trace process identifier

Register Read Write

Trace Process Identifier MRC p15,0,Rd,c13,c1,1 MCR p15,0,Rd,c13,c1,1

Table 2-5 Register 15, Test register map

Register Read Write

Trace Control Register MRC p15, 1, Rd, c15, c1, 0 MCR p15, 1, Rd, c15, c1, 0

BIST control register MRC p15, 1, Rd, c15, c0, 1 MCR p15, 1, Rd, c15, c0, 1

Instruction BIST address register MRC p15, 1, Rd, c15, c0, 2 MCR p15, 1, Rd, c15, c0, 2
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Note

Opcode_1 is set HIGH when accessing Register 15. Opcode_2 is used to index registers 
within the Register 15 register map.

Trace control register

The trace control register allows the masking of interrupts during trace. This register 
allows nIRQ and nFIQ interrupt priority over FIFOFULL to be programmed. Table 
2-6 shows the bit assignments within the Trace control register.

Instruction BIST general register MRC p15, 1, Rd, c15, c0, 3 MCR p15, 1, Rd, c15, c0, 3

Data BIST address register MRC p15, 1, Rd, c15, c0, 6 MCR p15, 1, Rd, c15, c0, 6

Data BIST general register MRC p15, 1, Rd, c15, c0, 7 MCR p15, 1, Rd, c15, c0, 7

Table 2-5 Register 15, Test register map

Register Read Write

Table 2-6 Trace control register

Register bit Content

0 Reserved (should be zero)

1 1 = Mask nIRQ interrupts during trace
0= Do not mask nIRQ interrupts during trace

2 1 = Mask nFIQ interrupts during trace
0 = Do not mask nFIQ interrupts during trace

31:3 Reserved (should be zero)
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BIST control register

Table 2-7 shows the bit assignments within the BIST control register.

At reset, all bits are cleared LOW. BIST must be enabled before a BIST operation is 
started. When BIST is enabled to test one or both tightly-coupled SRAMs, the SRAM 
being tested is automatically disabled by clearing its enable bit in CP15 Register 1. This 
is to prevent the programmer inadvertently using the SRAM following a BIST 
operation, because the BIST algorithm corrupts the SRAM contents.

The BIST size field determines the size of the BIST operation. The value written to this 
field N, is decoded as follows:

Table 2-7 BIST control register

Register bit Meaning when written Meaning when read

31:21 Instruction SRAM BIST size Instruction SRAM BIST size

20 Reserved (should be zero) Instruction SRAM BIST complete flag

19 Reserved (should be zero) Instruction SRAM BIST fail flag

18 Instruction SRAM BIST enable Instruction SRAM BIST enable

17 Instruction SRAM BIST pause Instruction SRAM BIST pause 

16 Instruction SRAM BIST start strobe Instruction SRAM BIST running flag

15:5 Data SRAM BIST size Data SRAM BIST size

4 Reserved (should be zero) Data SRAM BIST complete flag

3 Reserved (should be zero) Data SRAM BIST fail flag

2 Data SRAM BIST enable Data SRAM BIST enable

1 Data SRAM BIST pause Data SRAM BIST pause 

0 Data SRAM BIST start strobe Data SRAM BIST running flag

BIST size in bytes 2N 2+=



Programmer’s Model

2-12 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

Some examples are shown in Table 2-8.

Note

BIST size bits [31:26] should be zero. 

Table 2-8 BIST size encoding examples

Instruction RAM BIST size [31:21] N Size of test

000000 00001 (minimum) 1 8 bytes

000000 00100 4 64 bytes

000000 00111 7 512 bytes

000000 01000 8 1 KB

000000 01010 10 4 KB

000000 01111 15 128 KB

000000 11000 (maximum) 24 64 MB
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Writing to the BIST control register with Bit[0] set initiates a Data SRAM BIST 
operation. 

Writing to the BIST control register with Bit[16] set initiates an Instruction SRAM 
BIST operation.

You can run Instruction and Data BIST operations individually or concurrently. You 
must set up the Size, Pause and Enable bits within the BIST control register prior to 
initiating a BIST operation.

Reading the BIST control register returns the status of the BIST operations. See BIST 
of tightly-coupled SRAM on page 10-4 for a detailed description of the BIST support 
and the additional register 15 BIST registers.
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Chapter 3
Memory Map

This chapter describes the ARM966E-S fixed memory map implementation.It contains 
the following sections:

• About the ARM966E-S memory map on page 3-2

• Tightly-coupled SRAM address space on page 3-3

• Bufferable write address space on page 3-4.
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3.1 About the ARM966E-S memory map

The ARM966E-S couples Instruction and Data SRAM memories of configurable size 
to the ARM9E-S core. This allows high-speed operation without incurring the 
performance and power penalties of accessing the system bus. A write buffer is used to 
minimize traffic on the AHB bus.

To provide simple control over the SRAM and write buffer, a fixed memory map is 
implemented within the ARM966E-S. Figure 3-1 illustrates this map.

Figure 3-1 ARM966E-S memory map
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3.2 Tightly-coupled SRAM address space

The tightly-coupled Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) are 
located at the bottom of the memory map. Each SRAM is allocated a 64MB address 
space, the bottom 64MB space mapping to I-SRAM and the next 64MB range mapping 
to D-SRAM. 

In practice, each SRAM is likely to be much smaller than the 64MB allowable and the 
address decode is implemented so that each memory is aliased throughout its 64MB 
range. See Figure 3-2 for an example of a 16KB I-SRAM aliased through the 64MB 
address space.

Figure 3-2 I-SRAM aliasing example

All accesses to addresses above the 128MB combined SRAM address space result in 
AMBA AHB transfers controlled by the Bus Interface Unit (BIU).

An instruction fetch from the ARM9E-S core to the D-SRAM address space goes to the 
AHB, regardless of whether the D-SRAM is enabled. A data interface access from the 
ARM9E-S core can access both the D-SRAM and the I-SRAM. The ability to 
additionally access the I-SRAM is required to allow the fetching of inline literals within 
code, for programming of the instruction I-SRAM, and for debugging purposes.

When an SRAM is disabled, all accesses to its address space go to the AHB. When 
enabled, the SRAM must be programmed before use. The tightly-coupled SRAMs can 
be enabled or disabled during reset depending on the value of the input pin INITRAM. 
Several boot options are available using INITRAM and the exception vectors location 
pin VINITHI. These are discussed in Using INITRAM input pin on page 4-4.
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3.3 Bufferable write address space

The use of the ARM966E-S write buffer is controlled by both the CP15 control register 
and the fixed address map.

When the ARM966E-S comes out of reset, the write buffer is disabled by default. All 
data writes to the AHB are performed as unbuffered. The ARM9E-S is stalled until the 
BIU has performed the write on the AHB interface. 

When the write buffer is enabled by writing to CP15 control register bit 3 (see 
ARM966E-S CP15 registers on page 2-4), the data address (DA[31:0]) from the 
ARM9E-S core controls whether the write buffer is used. If bit 28 of DA is set, the write 
is treated as un-buffered. If bit 28 is clear however, the write is treated as a buffered 
write and the BIU write buffer FIFO is used. Buffered writes allow the core to continue 
program execution while the write is performed on the AHB. If the write buffer is full 
the core is stalled until space becomes available in the FIFO. See Write buffer operation 
on page 6-3 for details of the BIU and write buffer behavior.

Note

Writes to tightly-coupled SRAM address space do not get sent to the AHB if the SRAM 
being accessed is enabled (the SRAMs do not write-through). If either SRAM is 
disabled and a write is performed to its address space, the write is performed as a 
buffered AHB write if the write buffer is enabled. If not, the write is un-buffered.
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Chapter 4
Tightly-coupled SRAM

This chapter describes the tightly-coupled SRAM in the ARM966E-S. It contains the 
following sections:

• ARM966E-S SRAM requirements on page 4-2

• SRAM stall cycles on page 4-3

• Enabling the SRAM on page 4-4

• ARM966E-S SRAM wrapper on page 4-7.

For details of the ARM9E-S interface signals referenced in this section, refer to the 
ARM9E-S Technical Reference Manual.



Tightly-coupled SRAM

4-2 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

4.1 ARM966E-S SRAM requirements

The ARM966E-S tightly-coupled SRAM is built from blocks of ASIC library compiled 
SRAM. The Instruction SRAM (I-SRAM) and Data SRAM (D-SRAM) can each be any 
size from 0 bytes to 64MB, although to ease implementation the size must be an integer 
power of two. The I-SRAM and D-SRAM can have different sizes.

To allow the I-SRAM to be initialized and for access to literal tables during execution, 
the data interface of the ARM9E-S core must be able to access the I-SRAM. This 
requires that the instruction and data addresses are multiplexed before entering the 
I-SRAM and the instruction data is routed both to the instruction and data interfaces of 
the core. See Figure 1-1 on page 1-3 for details of this data and address multiplexing.

ARM966E-S supports the use of synchronous SRAM. The SRAM control has been 
implemented in a way that expects the compiled SRAM memory cells to return read 
data to ARM9E-S in a single-cycle. This requirement applies to both the I-SRAM and 
D-SRAMs. See Figure 4-1 for a typical read cycle (I-SRAM shown).

Figure 4-1 SRAM read cycle

During normal program execution, the instruction and data interfaces of the ARM9E-S 
can be active simultaneously. In this case both SRAMs can be simultaneously accessed 
allowing the core to continue execution without any stall cycles. There are cases 
however, where stall cycles are encountered when accessing the SRAM.
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4.2 SRAM stall cycles

Stall cycles can occur in both the I-SRAM and D-SRAMs. The two RAMs share a 
common stall mechanism. Because memory write in an ARM9E-S system is a 
two-cycle operation, CPU memory access during the second cycle must be stalled. The 
I-SRAM, has additional stall cycles as it can be accessed by both the instruction and 
data interfaces of the ARM9E-S. In order to maximize memory interface frequency 
performance, data read requests to the I-SRAM are pipelined by one clock cycle. Any 
stall requirement is detected by the SRAM control and factored into its response to the 
ARM966E-S system controller. The ARM9E-S SYSCLKEN input is then de-asserted 
until the SRAM has performed the access.

Table 4-1 shows the number of stall cycles added for different stall mechanisms for the 
I-SRAM.

Note

Data reads from the I-SRAM incur a single-cycle stall for each read instruction and not 
each separate RAM read. LDM and LDR operations both incur a single stall cycle.

The D-SRAM stall mechanism is write followed by read, and the number of stall cycles 
added is one.

For a detailed description of SRAM stall cycles, see Appendix C SRAM Stall Cycles.

Table 4-1 I-SRAM stall cycles

Number of
added cycles

Stall mechanism

1 Data read.

1 Data read followed by write.

1 Data write followed by instruction fetch or data read.

1 Data read followed by instruction fetch.

1 Simultaneous instruction fetch and data read.

2 Simultaneous instruction fetch and data write.

2 Data read or write followed by simultaneous instruction fetch and data 
read or write.
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4.3 Enabling the SRAM

There are two mechanisms for controlling the enable of the SRAM: 

• both I-SRAM and D-SRAM can be enabled or disabled during reset by the input 
pin INITRAM

• the I-SRAM and D-SRAM can be individually enabled or disabled through 
software MCR instructions to CP15.

4.3.1 Using INITRAM input pin

Two resets are described in the following sections:

• Reset with INITRAM LOW

• Reset with INITRAM HIGH.

Reset with INITRAM LOW

The INITRAM pin is provided to allow the ARM966E-S to boot with both SRAM 
blocks either enabled or disabled. If INITRAM is held LOW during reset, the 
ARM966E-S comes out of reset with both SRAMs disabled. All accesses to I-SRAM 
and D-SRAM space go to the AHB. The SRAM can then be individually or jointly 
enabled by writing to the CP15 control register (register 1).

Reset with INITRAM HIGH

If however, INITRAM is held HIGH during reset, both SRAM blocks are enabled 
when the ARM966E-S comes out of reset. This is normally used for a warm reset where 
the SRAM has already been programmed before the application of nRESET to the 
ARM966E-S. In this case, the SRAM contents are preserved and the ARM966E-S can 
run directly from the tightly-coupled SRAM following reset. Either one or both SRAM 
can be further disabled or enabled by writing to the CP15 control register.

Note

If INITRAM is held HIGH during a cold reset (the SRAM has not previously been 
initialized), the VINITHI pin must be set HIGH to ensure that the ARM966E-S boots 
from 0xFFFF 0000, that is in AHB address space and is substantially outside the 
SRAM address space. This is necessary because if VINITHI is LOW, the ARM966E-S 
attempts to boot from 0x0000 0000, and this selects the uninitialized I-SRAM.
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4.3.2 Using CP15 control register

When out of reset, the behavior of the tightly-coupled SRAM is controlled by the state 
of CP15 control register.

Enabling the I-SRAM

You can enable the I-SRAM by setting bit 12 of the CP15 control register. This register 
must be accessed in a read-modify-write fashion, to preserve the contents of the bits not 
being modified. See ARM966E-S CP15 registers on page 2-4 for details of how to read 
and write the CP15 control register. When the I-SRAM has been enabled, all future 
ARM9E-S instruction fetches and data accesses to the I-SRAM address space as shown 
in Figure 3-1 on page 3-2 causes the I-SRAM to be accessed. 

Enabling the I-SRAM greatly increases the performance of the ARM966E-S as the 
majority of accesses to it can be performed with no stall cycles, whereas accessing the 
AHB might cause several stall cycles for each access.

Caution
Care must be taken to ensure that the I-SRAM is appropriately initialized before it is 
enabled and used to supply instructions to the ARM9E-S core. If the core tries to 
execute instructions from uninitialized I-SRAM, the behavior is unpredictable.

Disabling the I-SRAM

You can disable the I-SRAM by clearing bit 12 of the CP15 control register. When the 
I-SRAM has been disabled, all further ARM9E-S instruction fetches access the AHB. 
If the core performs a data access to the I-SRAM address space as shown in Figure 3-1 
on page 3-2, an AHB access is performed.

Note

The contents of the SRAM are preserved when it is disabled. If it is re-enabled, accesses 
to previously initialized SRAM locations returns the preserved data.

Enabling the D-SRAM

You can enable the D-SRAM by setting bit 2 of the CP15 control register. See 
ARM966E-S CP15 registers on page 2-4 for details of how to read and write this 
register. When the D-SRAM has been enabled, all future read and write accesses to the 
D-SRAM address space, as shown in Figure 3-1 on page 3-2, cause the D-SRAM to be 
accessed.
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Disabling the D-SRAM

You can disable the D-SRAM by clearing bit 2 of the CP15 control register. When the 
D-SRAM is disabled, all further reads and writes to the D-SRAM address space, as 
shown in Figure 3-1 on page 3-2, access the AHB. Read and write accesses to I-SRAM 
address space uses the I-SRAM or accesses the AHB depending on if it is enabled.
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4.4 ARM966E-S SRAM wrapper

The ARM966E-S allows you to have control over the size of the I-SRAM and D-SRAM 
(up to a maximum of 64MBytes each). It is not possible to have a single generic 
interface between the ARM966E-S and the SRAM, due to the large number of differing 
compiled SRAM that can be integrated into an ARM966E-S system, potentially each 
with a unique interface. 

To ease the task of integrating differing SRAM into the ARM966E-S, an interface 
wrapper block has been developed to ensure that when wrapped, the SRAM provides a 
standard interface to the ARM966E-S SRAM control. ARM provides an example 
SRAM wrapper containing three example interfaces, see Example SRAM interfaces on 
page 4-8. You must study these examples and decide which is most appropriate for the 
type of SRAM available. A script is provided which automates any required changes.

The RAM interface RTL allows you to trade off speed against power performance so 
that you can tailor the ARM966E-S to suit a particular requirement.

There are five SRAM modules instantiated at the top-level of the ARM966E-S.  Figure 
4-2 shows the structure of these three modules. 

Figure 4-2 ARM966E-S SRAM hierarchy
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IRamIF.v and DRamIF.v generate the SRAM specific ChipSelect, WriteEnable, and 
ByteWrite signals. Your own library RAMs are instantiated inside InstrRAM.v and 
DataRAM.v .

4.4.1 Example SRAM interfaces

The example wrapper supplied by ARM contains three RAM interface examples. All of 
the interface modifications are done in the IRamIF.v and the DRamIF.v blocks for the 
I-SRAM and D-SRAM respectively. The example SRAM interfaces are:

• ONESEGX32

• FOURSEGX32 on page 4-9

• FOURSEGX8 on page 4-10

Note

The examples shown here are for 32KByte I-SRAM (8K words x 4bytes). The interface 
for D-SRAM is identical.

ONESEGX32

Figure 4-3 shows the simplest interface I-SRAM. To use this, the SRAM must consist 
of a single word-wide RAM that has byte-write control. 

Only single ChipSelect and WriteEnable signals are required.

Figure 4-3 ONESEGX32 interface
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FOURSEGX32

You can use the example shown in Figure 4-4 when it is not possible to construct the 
SRAM from a single physical block due to either layout constraints or generator 
constraints, or because a single SRAM segment does not meet timing constraints.

Figure 4-4 FOURSEGX32 interface

Separate chip select signals are required for each SRAM block.

Note

• The generation of separate chip select signals for each SRAM block ensures good 
power performance, because only the segment being accessed is enabled.

• The SRAM address is 11 bits in this example (compared with the 13 bit address 
in ONESEGX32 on page 4-8). RamAddr[12:11] are used to generate separate 
chip selects for each segment. 

If it is not possible to have separate chip select signals for each block of RAM, for 
example if the RAM is asynchronous, then separate write enable signals are required 
for each segment. The use of asynchronous RAMs is not recommended due to the 
increased power consumption of this solution. 

Note

The wrapper RTL does not support asynchronous RAMs.
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FOURSEGX8

Figure 4-5 shows that the SRAM needs to be split into four-byte wide segments where 
an SRAM does not support byte-writes. In order to give an example of the most 
complex interface possible, Figure 4-5 assumes that each byte-wide SRAM needs to be 
split into four blocks (see word-wide SRAM in FOURSEGX32 on page 4-9).

In FOURSEGX32 on page 4-9 the SRAM Address is 11 bits. Bits [12:11] of the address 
are used to decode which of the four word-wide RAMs is selected.

In Figure 4-5 ByteWrite[3:0] is used (inside IRamIF.v) to decode each word-wide chip 
select into four separate chip select signals, one for each byte of the word.

Figure 4-5 FOURSEGX8 interface
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Chapter 5
Direct Memory Access (DMA)

This chapter describes the optional DMA interface in the ARM966E-S. It contains the 
following sections:

• About the DMA interface on page 5-2

• Timing interface on page 5-5

• DMAENABLE setup and hold cycles on page 5-12

• Summary of signal behavior on page 5-13
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5.1 About the DMA interface

A DMA port is provided on the ARM966E-S. You can connect this port to the 
D-SRAM in the ARM966E-S. This allows direct access to the D-SRAM from outside 
the ARM966E-S boundary. If this feature is not required the DMA port is tied off in the 
RTL and made redundant. You have the option of interfacing the DMA port to a 
dual-port RAM or a single-port RAM, providing the ability to choose the solution that 
best meets area, performance, and software requirements.

The DMA port enables direct access to the data RAM, bypassing the CPU core. The 
ARM966E-S provides the control logic to access the RAM. The implementation of a 
DMA controller is application-specific and so any DMA control logic is instantiated 
outside of the ARM966E-S macrocell boundary.

Figure 3-1 on page 3-2 shows DMA addresses directly map to the RAM location in the 
data RAM 64MB address space. The RAM controller in the ARM966E-S uses bits 
[31:26] of the CPU data address to decode Data RAM address space access. Bits 
[31:26], however, are not required to be driven by the DMA controller because DMA 
access is always to this address space. RAM aliasing occurs for DMA access in the 
same way as aliasing occurs for CPU accesses. See Tightly-coupled SRAM address 
space on page 3-3 for more information.

Note

The decision to connect to the DMA port, and to a particular type of RAM, is made prior 
to synthesis.

5.1.1 Single-port RAM DMA solution

DMA accesses to a single-port RAM must be done through the same interface that the 
CPU uses to access the RAM. CPU accesses to the RAM must be prevented while DMA 
transfers are taking place. This is done by stalling the core for the duration of the DMA 
transfer. The DMA controller requests access to the D-RAM by asserting DMAWait. 
When the CPU has been stalled on the next instruction boundary, the ARM966E-S 
asserts DMAReady to notify to the DMA controller that it now has ownership of the 
RAM and can proceed with the transfer.

The single-port RAM DMA solution must be used where the die area of a dual-port 
RAM is not acceptable and the performance impact of stalling the core during DMA 
transfers is acceptable.
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Figure 5-1 shows how the ARM966E-S DMA port interfaces to a single-port RAM.

Figure 5-1 Single-port RAM DMA interface

5.1.2 Dual-port RAM DMA solution
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is either undefined or illegal. Simultaneous access behavior is summarized in Table 5-1.

Figure 5-2 shows how the ARM966E-S DMA port interfaces to a dual-port RAM. For 
modelling purposes, the dual-port DMA solution also supports the single-port access 
route. Single-port access reduces performance in the dual-port solution and is unlikely 
to be used, so to prevent the core from being stalled, DMAWait must be tied LOW.

Figure 5-2 Dual-port RAM DMA interface
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5.2 Timing interface

To ease the system integration task and to provide RAM independent timings, the 
ARM966E-S registers all DMA inputs and outputs. This section details the behavior of 
the ARM966E-S for DMA read and writes to single and dual-port RAMs.

Note

The dual-port RAM DMA solution also supports the single-port operation and so the 
single-port diagrams are also applicable to dual-port RAMs.
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5.2.1 Single-port RAM reads

Figure 5-3 shows DMA read operation from a single-port RAM. 

Figure 5-3 Single-port RAM DMA reads
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for the RAM read and one cycle for registering the RAM read data). The first read 
address, DMAAddr, is registered by the ARM966E-S on the next rising clock edge 
after DMAReady is asserted.

The DMA controller has ownership of the RAM from DMAReady being asserted until 
it takes DMAWait LOW. When DMAWait has been taken LOW, the DMA controller 
loses ownership of the RAM. DMAWait must be taken LOW at the end of a DMA 
access to allow CPU flow to continue.

DMAENABLE must be asserted one cycle prior to a request being made and can be 
deasserted one cycle prior to the last read data being returned.

Note

If DMAWait is not asserted, the ARM966E-S does not respond to single-port RAM 
DMA requests.
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5.2.2 Single-port RAM writes

Figure 5-4 shows DMA write operation to a single-port RAM.

The DMA controller requests write access to the RAM in the same way as single-port 
RAM reads except that DMAnRW is HIGH. Because data writes are single cycle 
operations, data to be written must be present in the same cycle as the address. The first 
write address, DMAAddr, is registered by the ARM966E-S on the next rising clock 
edge after DMAReady is asserted. The write to the RAM happens in the following 
cycle, due to the single cycle latency of the input registers. The first write address, 
DMAAddr, and data, DMAWData, is registered by the ARM966E-S on the next rising 
clock edge after DMAReady is asserted.

The behavior of DMAWait is as for single-port RAM reads.

DMAENABLE must be asserted one cycle prior to a request being made and can be 
deasserted when DMAnREQ is taken HIGH after the last request.

Figure 5-4 Single-port RAM DMA writes

CLK

DMAENABLE

DMAnREQ

DMAWait

DMAnRW

DMAReady

DMAAddr

DMAWData

Write1

A1 A2

D1 D2

Write2



Direct Memory Access (DMA)

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. 5-9

5.2.3 Dual-port RAM reads

Figure 5-5 shows DMA read operations to a dual-port RAM.

A read request is initiated by taking DMAnREQ and DMAnRW both LOW. The 
address, DMAAddr, must be valid in the same cycle. The read data, DMARData, is 
returned in the third cycle after the request is registered by the ARM966E-S (one cycle 
to register the request, one cycle to read the RAM, and one cycle to register the output 
data). 

Note

Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses, 
the DMA controller can access the data RAM continuously. DMAWait must be tied 
LOW otherwise the DMA access is by the first port of the RAM and the interface 
behaves as described in Single-port RAM reads on page 5-6.

DMAReady is redundant for dual-port RAM accesses and does not need to be sampled 
by the DMA controller.

DMAENABLE must be asserted one cycle prior to a request being made and can be 
deasserted one cycle prior to the last read data being returned.

Figure 5-5 Dual-port DMA reads
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5.2.4 Dual-port RAM writes

Figure 5-6 shows dual-port write operations to a dual-port RAM.

A write request is initiated by taking DMAnREQ LOW and DMAnRW HIGH. The 
address, DMAAddr, and write data, DMAWData, must be valid in the same cycle. The 
write to the RAM happens in the following cycle, due to the one cycle latency of the 
input registers.

Note

Because the ARM966E-S core does not need to be stalled for dual-port DMA accesses, 
the DMA controller can access the data RAM continuously. DMAWait must be tied 
LOW otherwise the DMA access is by the first port of the RAM and the interface 
behaves as described in Single-port RAM writes on page 5-8.

DMAReady is redundant for dual-port RAM accesses and does not need to be sampled 
by the DMA controller.

DMAENABLE must be asserted one cycle prior to a request being made and can be 
deasserted when DMAnREQ is taken HIGH after the last request.

Figure 5-6 Dual-port RAM DMA writes
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5.2.5 Mixed read and writes

Figure 5-7 shows:

• an example of intermingled DMA read and write operations

• that reads and writes can be performed back-to-back. 

The behavior is the same for both single and dual-port RAMs. Depending on whether 
the RAM was single or dual-port, the behavior of DMAENABLE, DMAWait, and 
DMAReady is described in sections Single-port RAM reads on page 5-6 to Dual-port 
RAM writes on page 5-10.

Figure 5-7 Mixed DMA read and write
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5.3 DMAENABLE setup and hold cycles

Table 5-2 shows the minimum number of setup cycles and hold cycles for 
DMAENABLE with respect to DMAnREQ for both single and dual-port RAMs.

To reduce power consumption, DMAENABLE must be taken LOW when DMA 
accesses are not taking place or if DMA is not implemented.

Table 5-2 DMAENABLE setup and hold cycles with respect to DMAnREQ

Operation Setup Hold

Dual-port RAM DMA read 1 1

Dual-port RAM DMA write 1 0

Single-port RAM DMA read 1 1

Single-port RAM DMA write 1 0
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5.4 Summary of signal behavior

Table 5-3 summarizes the behavior of DMAENABLE, DMAWait, DMAnREQ, and 
DMAReady for single and dual-port RAM solutions in addition to the required 
connections of these signals if no DMA is implemented.

Table 5-3 DMA signal behavior

Signal
Dual-port RAM 
DMA

Single-port RAM 
DMA

No DMA

DMAENABLE
(Input)

See Table 5-2 See Table 5-2 Must be tied LOW 
external to the 
ARM966E-S.

DMAWait
(Input)

The DMA controller 
does not need to stall 
the ARM966E-S and 
so this signal must be 
tied LOW external to 
the ARM966E-S.

The DMA controller 
must drive this signal 
HIGH whenever it 
requires access to the 
data RAM.

Must be tied LOW 
external to the 
ARM966E-S.

DMAnREQ
(Input)

Must be driven LOW 
by the DMA 
controller whenever it 
requires access to the 
data RAM

Must be driven LOW 
by the DMA controller 
whenever it requires 
access to the data RAM.

Must be tied HIGH 
external to the 
ARM966E-S.

DMAReady
(Output)

Can be ignored by the 
DMA controller 
because it always has 
access to the RAM.

Must be registered by 
the DMA controller so 
that it knows when the 
ARM966E-S has been 
stalled.

Do not care.
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Chapter 6
Bus Interface Unit

This chapter describes the ARM966E-S Bus Interface Unit (BIU) and write buffer. It 
contains the following sections:

• About the BIU and write buffer on page 6-2

• Write buffer operation on page 6-3

• AHB bus master interface on page 6-8

• AHB clocking on page 6-20.
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6.1 About the BIU and write buffer

The ARM966E-S supports an Advanced Microprocessor Bus Architecture (AMBA) 
Advanced High-performance Bus (AHB) interface. The AHB is a new generation of 
AMBA interface that addresses the requirements of high-performance synthesizable 
designs, including:

• single clock edge operation (rising edge)

• unidirectional (nontristate) buses

• burst transfers

• split transactions

• single-cycle bus master handover.

See the AMBA Rev 2.0 AHB specification for full details of this bus architecture.

The ARM966E-S BIU implements a fully-compliant AHB bus master interface and 
incorporates a write buffer to increase system performance. The BIU is the link between 
the ARM9E-S core with its tightly-coupled SRAM and the external AHB memory. The 
AHB memory must be accessed to initialize the tightly-coupled SRAM. The AHB 
memory must also be accessed to access code and data that are not assigned to the 
tightly-coupled SRAM address space (or if the SRAM is disabled).

When an external AHB access is performed, the BIU and the system controller 
handshake to ensure that the ARM9E-S core is stalled. If the write buffer is used, it 
might be possible to allow the core to continue program execution. The BIU is 
responsible for controlling the write buffer and related stall behavior (see Write buffer 
operation on page 6-3).
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6.2 Write buffer operation

The ARM966E-S implements a 12-entry write buffer, where the entries can be address 
or data depending on the nature of the writes being executed by the ARM9E-S core. The 
write buffer helps to decouple the core from the wait cycles incurred when accessing 
the AHB. If a write is sent to the write buffer, the core is able to continue program 
execution without having to wait for the write to complete on the AHB. More writes can 
be committed to the write buffer without stalling if spare entries are available.

If the write buffer becomes full, the ARM9E-S core must be stalled until an AHB access 
occurs and some write data is written, therefore freeing up the necessary FIFO entries.

Alternatively, if the core performs a read from or unbuffered write to the AHB address 
space, the core is stalled until all write buffer entries have been written (the write buffer 
is drained). The write buffer is drained to ensure data coherency, in that the core might 
try to read from a location that it has recently modified and is still in the write buffer 
awaiting AHB access.

6.2.1 Committing write data to the write buffer

The write buffer is used when the following conditions are met:

• the write buffer is enabled 

• the address is in a bufferable region 

• the address is in AHB external memory, or the address selects a tightly-coupled 
SRAM that is disabled.

For details on write buffer enable and the ARM966E-S fixed address map, see 

• Register 1, Control register on page 2-5 

• About the ARM966E-S memory map on page 3-2.

When a write is performed by the core and conforms to the above conditions, the 
address for the write is put into the first available entry of the write buffer FIFO. The 
next available entry is used for the write data. If the write is a store multiple (STM), 
subsequent entries are used for each word of the STM. It is therefore possible for the 
FIFO to contain 11 words of a STM where the first entry contains the address and the 
remaining 11 entries contain the write data. 

Alternatively, if several shorter bufferable STM or single writes (STR) instructions are 
performed, one address entry is used for each write instruction. The worst case is that 
only six data words fill the FIFO caused by six STR writes. In this case the FIFO holds 
six address entries and six data entries.
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Figure 6-1 shows an example where the BIU FIFO is being filled by the following write 
instructions:
STMIA r13!,{r2-r4}      ; store three registers to the stack

STRB  r5,[r6]      ; store byte

STMIA r13!,{r3-r4}       ; store two registers to the stack

STR  r7,[r2]      ; single store

Figure 6-1 Write buffer FIFO content example
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6.2.2 Draining write data from the write buffer

The write buffer can drain naturally where AHB writes occur whenever data is 
committed to the FIFO. The core is only stalled, if the write buffer overflows. However, 
there are times when a complete drain of the write buffer is enforced.

Natural write buffer drain

When a write is being committed to the write buffer FIFO, a signal is sent to the BIU to 
initiate an AHB write. The BIU then pops the address for the write from the FIFO 
followed by the data and starts an AHB transfer (assuming the ARM966E-S is the 
granted bus master). This process might take several cycles because the slave being 
accessed for the write might have a multi-wait cycle response. Additionally, the AHB 
can be run at a lower rate than the ARM966E-S system introducing extra delay to the 
buffered write process. This can lead to the core trying to commit data at a higher rate 
than the FIFO can be drained, resulting in the FIFO becoming full. The ARM9E-S core 
is stalled until an entry becomes available.

When an address is placed in the write buffer, a marker is also stored to indicate if the 
size of the write is, byte, halfword or word. If a STM is performed, a sequentiality marker 
is stored with the data, to indicate to the BIU that the address incrementer must be used 
to produce the AHB address for the second and following writes of the STM. This 
mechanism allows only one FIFO entry to be used for the address, leaving more room 
for data (see Figure 6-1 on page 6-4).

If a STM crosses a 1KB boundary, the AHB specification requires that the first access in 
the new 1KB region is a nonsequential access. This allows the BIU to have a small 1KB 
incrementer, because the ARM9E-S data address can be resampled during the 
nonsequential cycle. For this reason, the write buffer must also break up accesses that 
cross a 1KB region, by forcing the sequentiality marker LOW for the preceding data 
location and committing an extra address entry at the start of the new region.

Note

Because the ARM9E-S core is free to continue program execution following a buffered 
write, without having to wait for the write to complete on the AHB, external Data 
Aborts can not be returned by buffered writes.
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Enforced write buffer drain

There are two situations where the core is stalled and the write buffer is forced to drain 
completely before program execution can continue:

• an instruction fetch, data load, or unbuffered write to the AHB is being requested

• a drain write buffer instruction is being executed.

AHB read access requested

To ensure data coherency, you must prevent the core from reading data from a location 
that has recently been modified (by the core or an external coprocessor STC instruction) 
and is still in the write buffer awaiting AHB access. If the AHB read access is allowed 
to occur before the write buffer is drained, the old version of data at that location is 
fetched causing a data coherency failure.

For this reason, whenever an AHB read is requested, as an ARM9E-S instruction fetch 
or a data load or load multiple, the core must be stalled until the write buffer is drained. 
No special logic is used to force a write buffer drain as this process is occurring 
whenever data is present within the buffer. However, special logic is required to stall 
the core until the last buffered write has completed on the AHB.

Drain write buffer instruction

You can use an MCR instruction to CP15 register 7 to force the core to be stalled until 
the write buffer is empty and the final write is completed on the AHB. This instruction 
is described in Register 7, Core control on page 2-8. This instruction is useful when the 
software requires that a write is completed before program execution continues.

6.2.3 Enabling the write buffer

The write buffer can be enabled by setting bit 3 of the CP15 control register. When this 
bit is set, all writes to bufferable address locations use the write buffer. If a slave 
peripheral in a bufferable region returns an AHB Data Abort, the abort is ignored when 
the write buffer is enabled. 

Note

For debugging purposes, you can disable the write buffer to allow AHB Data Aborts to 
be returned from bufferable regions.
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6.2.4 Disabling the write buffer

When data is committed to the write buffer it is always written to the AHB. If the write 
buffer is disabled by clearing bit 3 of the CP15 control register, any existing write data 
in the write buffer is completed. Additionally, if the core is sent to sleep by the wait for 
interrupt command, any writes in the write buffer FIFO are also completed.

If the programmer requires no more buffered writes to occur following write buffer 
disable or a wait for interrupt instruction, the write buffer must first be drained with a 
drain write buffer command.
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6.3 AHB bus master interface

The ARM966E-S implements a fully-compliant AHB bus master interface and is 
defined in the AMBA Rev 2.0 Specification. You must refer to this document for a 
detailed description of the AHB protocol. 

6.3.1 Overview of AHB

The AHB architecture is based on separate cycles for address and data (rather than the 
phase of the clock in the ASB architecture). The address and control for an access are 
broadcast from the rising edge of HCLK in the cycle before the data is expected to be 
read or written. During this data cycle, the address and control for the next cycle are 
driven out. This leads to a fully pipelined address architecture. 

When an access is in its data cycle, a slave can wait the access by driving the HREADY 
response LOW. This has the effect of stretching the current data cycle and therefore the 
pipelined address and control for the next access is also stretched. This creates a system 
where all AHB masters and slaves sample HREADY on the rising edge of the HCLK 
to determine whether an access has completed and a new address can be sampled or 
driven out.

6.3.2 ARM966E-S transfer descriptions

The ARM966E-S BIU performs a subset of the possible AHB bus transfers available. 
This section describes the transfers that can be performed and some back-to-back 
transfer cases:

• Burst transfers on page 6-9

• Bus request on page 6-9

• Sequential instruction fetch on page 6-10

• Back-to-back LDR or STR accesses on page 6-11

• Simultaneous instruction and data request on page 6-11

• STM timing on page 6-13

• LDM timing on page 6-14

• STM followed by instruction fetch on page 6-15

• LDM followed by instruction fetch on page 6-16

• STM crossing a 1KB boundary on page 6-17

• LDM crossing a 1KB boundary on page 6-18

• SWP instruction on page 6-19.

All timing examples assume one-to-one clocking where the ARM966E-S and AHB 
share the same clock. See AHB clocking on page 6-20 for details of AHB clocking 
modes.
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Burst transfers

Because the ARM966E-S does not implement cache memory, burst transfers of fixed 
length commonly used for cache linefill and data cache writeback, are not supported. 
All burst accesses are defined to be INCRemental (HBURST[2:0] = 001), because the 
only indication to the ARM966E-S about the sequentiality of the access is the DMORE 
output from the ARM9E-S core. This output indicates that there is at least one more 
access following the current access, but does not indicate how many more sequential 
accesses can be expected.

Bus request

At the start of every AHB access, the ARM966E-S requests access to the bus by 
asserting HBUSREQ to the arbiter. It must then wait for an acknowledge signal from 
the arbiter (HGRANT), before beginning the transfer on the next rising edge of HCLK. 
In Figure 6-2, the slave being addressed has a single-cycle response to the read access 
and therefore the HREADY response is driven HIGH and fed to the 
ARM966E-S BIU.

Figure 6-2 Sequential instruction fetches, after being granted the bus
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Sequential instruction fetch

When the ARM9E-S fetches instructions from the AHB address space or if the 
tightly-coupled I-SRAM is disabled, AHB read transfers are initiated by the BIU. The 
instruction interface does not have the benefit of a pipelined MORE signal, so the BIU 
cannot detect a sequential access and use an address incrementer to perform 
back-to-back sequential cycles. All instruction fetches are treated as non-sequential 
accesses.

Figure 6-3 shows a series of sequential instruction fetches where any data access being 
performed by the ARM9E-S is using the tightly-coupled SRAM. Therefore, data 
accesses do not interfere with the instruction fetches.

Figure 6-3 Sequential instruction fetches, no AHB data access required
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Back-to-back LDR or STR accesses

Figure 6-4 shows ARM966E-S bus activity when a sequence of LDR instructions is 
executed. 

Figure 6-4 Back-to-back LDR, no external instruction access
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Figure 6-5 shows an example of an STR instruction causing a simultaneous instruction 
and data request. 

Figure 6-5 Simultaneous instruction and data requests
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STM timing

Figure 6-6 shows the timing for an STM instruction, transferring three words. Outputs to 
the AHB are not driven during IDLE cycles, and so hold their previous value. This 
includes the HBURST output, continuing to indicate INCRemental until the next 
nonsequential transfer. This should not cause any confusion to other AHB components 
as HTRANS indicates IDLE cycles.

Figure 6-6 Single STM, no instruction fetch

Note

If an STM is not immediately followed by an external instruction access one IDLE cycle 
is inserted, and HBUSREQ is driven LOW. An STM, immediately followed by any 
other AHB data access, also results in one IDLE cycle being inserted between the two 
accesses.
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LDM timing

Figure 6-7 shows the timing for an LDM instruction, transferring three words. 

Figure 6-7 Single LDM, no instruction access

Note

HBUSREQ is driven LOW after two IDLE cycles which are inserted after a LDM that 
is immediately followed by an external instruction access. An LDM, immediately 
followed by any other AHB data access, also results in two IDLE cycles being inserted 
between the two accesses.
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STM followed by instruction fetch

Figure 6-8 shows an example of an STM transferring three words, immediately followed 
by an instruction fetch. The instruction read begins with a NONSEQ/IDLE sequence 
after the final sequential data access. In this example, subsequent instruction fetches are 
sequential.

Figure 6-8 Single STM, followed by sequential instruction fetch

Note

The single IDLE cycle that normally occurs at the end of an STM is filled by the 
NONSEQ cycle for the instruction fetch.
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LDM followed by instruction fetch

Figure 6-9 shows an example of a LDM transferring three words, immediately followed 
by an instruction fetch. A single IDLE cycle is inserted after the final sequential data 
access, and instruction fetch begins with a NONSEQ/IDLE sequence.

Figure 6-9 Single LDM followed by sequential instruction fetch

Note

The NONSEQ cycle of the instruction fetch replaces the second IDLE cycle that occurs 
when an AHB data access is required following the LDM.
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STM crossing a 1KB boundary

AMBA Rev.2 Specification states that sequential accesses must not cross 1KB 
boundaries. The ARM966E-S splits sequential accesses that cross a 1KB boundary into 
two sets of separate accesses.

Figure 6-10 shows bus activity when a STM writing four words, crosses a 1KB 
boundary. DA-3 is the first address in a new 1KB region. The two sets of transfers each 
begin with a nonsequential access type, and are separated by an IDLE cycle. 

Figure 6-10 Single STM, crossing a 1KB boundary
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LDM crossing a 1KB boundary

Figure 6-11 shows bus activity when a LDM reading four words, crosses a 1KB 
boundary. The two sets of transfers each begin with a nonsequential access type, and 
are separated by two IDLE cycles.

Figure 6-11 Single LDM, crossing a 1KB boundary
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SWP instruction

The ARM SWP instruction performs an atomic read-modify-write operation. It is 
commonly used with semaphores to guarantee that another process cannot modify a 
semaphore when it is being read by the current process. 

If the ARM966E-S performs a SWP operation to an AHB address location, the access is 
always unbuffered to ensure that the core is stalled until the write has occurred on the 
AHB. The BIU asserts the HLOCK output to prevent the AHB arbiter from granting a 
different master, ensuring that the read-modify-write is atomic.

Figure 6-12 shows a SWP instruction.

Figure 6-12 SWP instruction
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6.4 AHB clocking

The ARM966E-S design uses a single rising edge clock CLK to time all internal 
activity. In many systems where the ARM966E-S is embedded, it is desirable to run the 
AHB at a lower rate. To support this requirement, the ARM966E-S requires a clock 
enable, HCLKEN, to time AHB transfers.

The HCLKEN input is driven HIGH around a rising edge of the ARM966E-S CLK to 
indicate that this rising edge is also a rising edge of HCLK. This requires that HCLK 
is synchronous to the ARM966E-S CLK.

When the ARM9E-S is running from tightly-coupled SRAM or performing writes using 
the write buffer, the ARM966E-S HCLKEN and HREADY inputs are ignored in terms 
of generating the SYSCLKEN core stall signal. The core is only stalled by SRAM stall 
cycles or if the write buffer overflows. This means that the ARM9E-S is executing 
instructions at the faster CLK rate and is effectively decoupled from the HCLK domain 
AHB system.

If however, an AHB read access or unbuffered write is required, the core is stalled until 
the AHB transfer has completed. Because the AHB system is being clocked by the 
lower rate HCLK, it is necessary to examine HCLKEN to detect when to drive out the 
AHB address and control to start an AHB transfer. HCLKEN is then required to detect 
the following rising edges of HCLK so that the BIU knows the access has completed. 
Figure 6-13 shows an example of an AHB read access where there is a 3:1 ratio of CLK 
to HCLK. 

Figure 6-13 AHB 3:1 clocking example
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If the slave being accessed at the HCLK rate has a multi-cycle response, the HREADY 
input to the ARM966E-S is driven LOW until the data is ready to be returned. The BIU 
must therefore perform a logical AND on the HREADY response with HCLKEN to 
detect that the AHB transfer has completed. When this is the case, the ARM9E-S core 
can then be enabled by reasserting SYSCLKEN.

Note

When an AHB access is required, the core must be stalled until the next HCLKEN 
pulse is received, before it can start the access, and then until the access has completed. 
This stall before the start of the access is a synchronization penalty and the worst case 
can be expressed in CLK cycles as the CLK to CLK ratio minus one.

6.4.1 CLK to HCLK skew

The ARM966E-S drives out the AHB address on the rising edge of CLK when the 
HCLKEN input is true. The AHB outputs have output hold and delay values relative 
to CLK. However, these outputs are used in the AHB system where HCLK is used to 
time the transfers. Similarly, inputs to the ARM966E-S are timed relative to HCLK but 
are sampled within the ARM966E-S with CLK. This leads to hold time issues from 
CLK to HCLK on outputs and from HCLK to CLK on inputs. In order to minimize 
this effect the skew between HCLK and CLK must be minimized.

Clock tree insertion at top level

Considering the skew issue in more detail, the ARM966E-S has a clock tree inserted to 
allow an evenly distributed clock to be driven to all the registers in the design. The 
registers that drive out AHB outputs and sample AHB inputs are timed off CLK’ at the 
bottom of the inserted clock tree and subject to the clock tree insertion delay. To 
maximize performance, when the ARM966E-S is embedded in an AHB system, the 
clock generation logic to produce HCLK  must be constrained so that it matches the 
insertion delay of the clock tree within the ARM966E-S. This can easily be achieved by 
a clock tree insertion tool if the clock tree is inserted for the ARM966E-S and the 
embedded system at the same time (top level insertion).
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Figure 6-14 shows an example of an AHB slave connected to the ARM966E-S.

Figure 6-14 ARM966E-S CLK to AHB HCLK sampling

In this example, the slave peripheral has an input setup and hold, and an output hold and 
valid time relative to HCLK. The ARM966E-S has an input setup and hold, and an 
output hold and valid relative to CLK’ , the clock at the bottom of the clock tree. Clock 
tree insertion must be used to position the HCLK  to match CLK’  for optimal 
performance. 

Hierarchical clock tree insertion

If the ARM966E-S has clock tree insertion performed before embedding it, buffers are 
added on input data to match the clock tree so that the setup and hold is relative to the 
top level CLK . This is guaranteed to be safe at the expense of extra buffers in the data 
input path.

The HCLK  domain AHB peripherals must still meet the ARM966E-S input setup and 
hold requirements. Because the ARM966E-S inputs and outputs are now relative to 
CLK , the outputs do appear comparatively later by the value of the insertion delay. This 
ultimately leads to lower AHB performance.
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Chapter 7
Coprocessor Interface

This chapter describes the ARM966E-S pipelined coprocessor interface. It contains the 
following sections:

• About the coprocessor interface on page 7-2

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• Interlocked MCR on page 7-9

• CDP on page 7-10

• Privileged instructions on page 7-11

• Busy-waiting and interrupts on page 7-12.
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7.1 About the coprocessor interface

ARM966E-S fully supports the connection of on-chip coprocessors through the 
external coprocessor interface and supports all classes of coprocessor instructions. 

The interface differs from the basic ARM9E-S coprocessor interface. To ease 
integration of an external coprocessor, the interface from the ARM966E-S to the 
coprocessor has been pipelined by a single clock cycle.

This ensures that ARM966E-S interface outputs, which otherwise arrive late in the 
clock cycle, are driven out directly from registers to the external coprocessor. This 
significantly eases the implementation task for an external coprocessor.

7.1.1 Synchronizing the external coprocessor pipeline

A coprocessor connected to the ARM966E-S determines which instructions it needs to 
execute by implementing a pipeline follower in the coprocessor. Because each 
instruction arrives from instruction memory (either from the I-SRAM or AHB 
interface) it enters both the ARM9E-S pipeline and the coprocessor pipeline follower. 
Because the interface is itself pipelined, the coprocessor pipeline follower operates one 
cycle behind the ARM9E-S, sampling the CPINSTR[31:0] output bus from the 
ARM966E-S interface. 

In order to hide the pipeline delay, a mechanism inside the interface block stalls the 
ARM9E-S for a cycle by internally modifying the coprocessor handshake signals 
whenever an external coprocessor instruction is decoded. This allows the external 
coprocessor to catch up with the ARM9E-S core. 

After this initial stall cycle, the two pipelines can be considered synchronized. The 
ARM9E-S then informs the coprocessor when instructions move from Decode into 
Execute, and whether the instruction has passed its condition codes and is to be 
executed.

Note

Because the ARM966E-S hides the synchronization of the coprocessor pipeline 
follower, its coprocessor handshake interface is similar to that of the native ARM9E-S. 
This implies that an ARM9E-S designed pipeline follower can interface to the 
ARM966E-S without modification. The data path of the coprocessor differs however, 
due to the ARM966E-S pipelined output data CPDOUT[31:0].
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7.1.2 External coprocessor clocking

The coprocessor data processing instruction (CDP) is used for coprocessor instructions 
that do not operate on values in ARM registers or in main memory. One example is a 
floating-point multiply instruction for a floating-point accelerator processor. 

To enable coprocessors to continue execution of CDP instructions while the ARM9E-S 
core pipeline is stalled (for instance while waiting for an AHB transfer to complete), the 
coprocessor receives the free-running system clock CLK, and a clock enable signal 
CPCLKEN. If CPCLKEN is LOW around the rising edge of CLK then the ARM9E-S 
core pipeline is stalled and the coprocessor pipeline follower must not advance. 

This prevents any new instructions entering Execute within the coprocessor but allows 
a CDP instruction in Execute to continue execution. The coprocessor is only stalled 
when the current instruction leaves Execute and new instructions are required from the 
ARM966E-S interface.This goes some way towards decoupling the external 
coprocessor from the ARM9E-S memory interface.

There are three classes of coprocessor instructions:
• LDC/STC

• MCR/MRC

• CDP.

Examples of how a coprocessor executes these instruction classes are given in the 
following sections:

• LDC/STC on page 7-4

• MCR/MRC on page 7-8

• CDP on page 7-10
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7.2 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from external 
coprocessor registers and memory. In the case of the ARM966E-S, the memory can be 
either tightly-coupled SRAM or AHB depending on the address range of the access and 
SRAM enable.

The cycle timing for these operations is shown in Figure 7-1.

Figure 7-1 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is 
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM9E-S performs the main decode off the rising 
edge of the clock during the Decode stage. From this, the core commits to executing the 
instruction and so performs an instruction fetch. The coprocessor instruction pipeline 
keeps in step with ARM9E-S core by monitoring nCPMREQ, which is a registered 
version of the ARM9E-S core instruction memory request signal InMREQ. 

At the rising edge of CLK, if CPCLKEN is HIGH, and nCPMREQ is LOW, an 
instruction fetch is taking place, and CPINSTR[31:0] contains the fetched instruction 
on the next rising edge of the clock, when CPCLKEN is HIGH. 
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This means that:

• the last instruction fetched must enter the Decode stage of the coprocessor 
pipeline

• the instruction in the Decode stage of the coprocessor pipeline must enter its 
Execute stage

• the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline must 
not advance.

During the Execute stage, the condition codes are compared with the flags to determine 
whether the instruction really executes or not. The output CPPASS is asserted, HIGH, 
if the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the 
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor 
instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction when the 
instruction preceding it caused a data abort. This is valid on the rising edge of CLK on 
the cycle that follows the first Execute cycle of the coprocessor instructions. This is the 
only cycle in which CPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor 
handshake signals CHSDE[1:0] or CHSEX[1:0]:

• If a new instruction is entering the Execute stage in the next cycle, it examines 
CHSDE[1:0].

• If the currently executing coprocessor instruction requires another Execute 
cycle, it examines CHSEX[1:0]. 
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7.2.1 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor 
instruction, the handshake signals indicate the ABSENT state. In this 
case, the ARM9E-S takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not 
immediately, the coprocessor handshake signals are driven to indicate 
that the ARM9E-S processor core must stall until the coprocessor can 
catch up. This is known as the busy-wait condition. In this case, the 
ARM9E-S processor core loops in an IDLE state waiting for 
CHSEX[1:0] to be driven to another state, or for an interrupt to occur. 
If CHSEX[1:0] changes to ABSENT, the undefined instruction trap is 
taken. 
If CHSEX[1:0] changes to GO or LAST, the instruction proceeds as 
described here. 
If an interrupt occurs, the ARM9E-S processor is forced out of the 
busy-wait state. This is indicated to the coprocessor by the CPPASS 
signal going LOW. The instruction is restarted later and so the 
coprocessor must not commit to the instruction (it must not change any 
coprocessor state) until CPPASS is asserted HIGH, when the handshake 
signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction 
immediately, and that it requires at least another cycle of execution. Both 
the ARM9E-S processor core and the coprocessor must also consider the 
state of the CPPASS signal before actually committing to the instruction. 
For an LDC or STC instruction, the coprocessor instruction drives the 
handshake signals with GO when two or more words still need to be 
transferred. When only one more word is to be transferred, the 
coprocessor drives the handshake signals with LAST.
During the Execute stage, the ARM9E-S processor core outputs the 
address for the LDC/STC. Also in this cycle, DnMREQ is driven LOW, 
indicating to the ARM966E-S memory system that a memory access is 
required at the data end of the device. The timing for the data on 
CPDOUT and CPDIN is shown in Figure 7-1 on page 7-4.

LAST An LDC or STC can be used for more than one item of data. If this is the 
case, possibly after busy waiting, the coprocessor drives the coprocessor 
handshake signals with a number of GO states, and in the penultimate 
cycle LAST (LAST indicating that the next transfer is the final one). If 
there is only one transfer, the sequence is [WAIT,[WAIT,...]],LAST. 
LAST is also usually driven for CDP instruction.
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7.2.2 Coprocessor handshake encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

Note

If an external coprocessor is not attached in the ARM966E-S embedded system, the 
CHSDE[1:0] and CHSEX[1:0] handshake inputs must be tied off to indicate 
ABSENT.

7.2.3 Multiple external coprocessors

If multiple external coprocessors are to be attached to the ARM966E-S interface, the 
handshaking signals can be combined by ANDing bit1, and ORing bit0. In the case of 
two coprocessors which have handshaking signals CHSDE1, CHSEX1 and CHSDE2, 
CHSEX2 respectively:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]

CHSDE[0] = CHSDE1[0] OR CHSDE2[0]

CHSEX[1] = CHSEX1[1] AND CHSEX2[1]

CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

Table 7-1 Handshake encoding

[1:0]  Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST



Coprocessor Interface

7-8 Copyright © ARM Limited 2000. All rights reserved. ARM DDI 0186A

7.3 MCR/MRC

These cycles look very similar to STC/LDC. An example, with a busy-wait state, is 
shown in Figure 7-2. First nCPMREQ is driven LOW to denote that the instruction on 
CPINSTR[31:0] is entering the Decode stage of the pipeline. This causes the 
coprocessor to decode the new instruction and drive CHSDE[1:0]. In the next cycle 
nCPMREQ is driven LOW to denote that the instruction has now been issued to the 
Execute stage. If the condition codes passes, and the instruction is to be executed, the 
CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is examined (it is 
ignored in all other cases). 

Figure 7-2 MCR/MRC transfer timing with busy-wait

For any successive Execute cycles the CHSEX[1:0] handshake bus is examined. When 
the LAST condition is observed, the instruction is committed. In the case of a MCR, the 
CPDOUT[31:0] bus is driven with the registered data. In the case of a MRC, 
CPDIN[31:0] is sampled at the end of the ARM9E-S core Memory stage and written 
to the destination register during the next cycle.
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7.4 Interlocked MCR

If the data for a MCR operation is not available inside the ARM9E-S core pipeline during 
its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or more 
cycles until the data is available. An example of this is where the register being 
transferred is the destination from a preceding LDR instruction.

In this situation the MCR instruction enters the Decode stage of the coprocessor pipeline, 
and then remains there for a number of cycles before entering the Execute stage. Figure 
7-3 gives an example of an interlocked MCR that also has a busy-wait state. 

Figure 7-3 Interlocked MCR/MRC timing with busy-wait
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7.5 CDP

CDP instructions normally execute in a single cycle. Like all the previous cycles, 
nCPMREQ is driven LOW to signal when an instruction is entering the Decode and 
then the Execute stage of the pipeline:

• if the instruction really is to be executed, the CPPASS signal is driven HIGH 
during the Execute cycle

• if the coprocessor can execute the instruction immediately it drives 
CHSDE[1:0] with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives 
CHSDE[1:0] with WAIT and then CHSEX[1:0] with LAST.

Figure 7-4 shows a cancelled CDP due to the previous instruction causing a Data Abort.

Figure 7-4 Late cancelled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute 
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7.6 Privileged instructions

The coprocessor restricts certain instructions for use in privileged modes only. To do 
this, the coprocessor tracks the nCPTRANS output. Figure 7-5 shows how 
nCPTRANS changes after a mode change.

Figure 7-5 Privileged instructions

The first two CHSDE[1:0] responses are ignored by the ARM9E-S because it is only 
the final CHSDE[1:0] response, as the instruction moves from Decode into Execute, 
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7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution 
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor 
instruction. To do so, the coprocessor associated with the Decode stage instruction 
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute 
stage of the pipeline, the coprocessor drives WAIT onto CHSEX[1:0] for as many 
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor might be interrupted while busy-waiting, 
causing the instruction to be abandoned. Abandoning execution is done through 
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait 
cycle. 

If it is HIGH, the instruction must still be executed. If it is LOW, the instruction must 
be abandoned.

Figure 7-6 shows a busy-waited coprocessor instruction being abandoned due to an 
interrupt.

Figure 7-6 Busy-waiting and interrupts
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Chapter 8
Debug Support

This chapter describes the ARM966E-S debug interface. It contains the following 
sections:

• About the debug interface on page 8-2

• Debug systems on page 8-4

• ARM966E-S scan chain 15 on page 8-7

• Debug interface signals on page 8-9

• ARM9E-S core clock domains on page 8-14

• Determining the core and system state on page 8-15.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:

• About the EmbeddedICE-RT on page 8-16

• Disabling EmbeddedICE-RT on page 8-18

• The debug communications channel on page 8-19

• Monitor mode debug on page 8-24

• Debug additional reading on page 8-26.
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8.1 About the debug interface

The ARM966E-S debug interface is based on IEEE Std. 1149.1- 1990, Standard Test 
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation 
of the terms used in this chapter and for a description of the TAP controller states.

The ARM9E-S processor core within the ARM966E-S contains hardware extensions 
for advanced debugging features. These make it easier to develop application software, 
operating systems, and the hardware itself.

The debug extensions allow you to force the core into debug state. In debug state, the 
core and ARM966E-S memory system are effectively stopped, and isolated from the 
rest of the system. This is known as halt mode operation and allows the internal state of 
the ARM9E-S core, ARM966E-S system, and external state of the AHB to be examined 
while all other system activity continues as normal. When debug is complete, the 
ARM9E-S restores the core and system state, and resumes program execution.

In addition, the ARM9E-S supports a real-time debug mode, where instead of 
generating a breakpoint or watchpoint, an internal Instruction Abort or Data Abort is 
generated. This is known as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort 
exception entry, You can debug the ARM966E-S while allowing the execution of 
critical interrupt service routines. The debug monitor program typically communicates 
with the debug host over the ARM966E-S debug communication channel. Monitor 
mode debug is described in Monitor mode debug on page 8-24.

8.1.1 Stages of debug

A request on one of the external debug interface signals, or on an internal functional unit 
known as the EmbeddedICE-RT logic, forces the ARM9E-S into debug state. The 
interrupts that activate debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

The internal state of the ARM9E-S is examined using a JTAG-style serial interface, 
allowing instructions to be serially inserted into the core pipeline without using the 
external data bus. For example, when in debug state, a STore Multiple (STM) can be 
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S 
registers. This data can be serially shifted out without affecting the rest of the system. 
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8.1.2 Clocks

The system and test clocks must be synchronized externally to the ARM966E-S 
macrocell. The ARM Multi-ICE debug agent directly supports one or more cores within 
an ASIC design. To synchronize off-chip debug clocking with the ARM966E-S 
macrocell requires a three-stage synchronizer. The off-chip device (for example, 
Multi-ICE) issues a TCK signal, and waits for the RTCK (Returned TCK) signal to 
come back. Synchronization is maintained because the off-chip device does not 
progress to the next TCK until after RTCK is received. 

Figure 8-1 shows this synchronization.

Figure 8-1 Clock synchronization
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8.2 Debug systems

The ARM966E-S forms one component of a debug system that interfaces from the 
high-level debugging performed by you to the low-level interface supported by the 
ARM966E-S. Figure 8-2 shows a typical debug system.

Figure 8-2 Typical debug system
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8.2.2 The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM966E-S 
development system. The messages broadcast over this connection must be converted 
to the interface signals of the ARM966E-S. The protocol converter performs the 
conversion.

8.2.3 ARM966E-S debug target

The ARM9E-S core within the ARM966E-S has hardware extensions that ease 
debugging at the lowest level. The debug extensions:

• allow you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The following major blocks of the ARM9E-S debug model are shown in Figure 8-3 on 
page 8-6.

ARM9E-S CPU core
This includes hardware support for debug.

EmbeddedICE-RT logic
This is a set of registers and comparators used to generate debug 
exceptions (such as breakpoints). This unit is described in About 
the EmbeddedICE-RT on page 8-16.

TAP controller This controls the action of the scan chains using a JTAG serial 
interface.
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Figure 8-3 ARM9E-S block diagram
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8.3 ARM966E-S scan chain 15

Scan chain 15 is provided to allow debug access to the CP15 register bank, to allow the 
system state within the ARM966E-S to be configured while in debug state.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown 
in  Table 8-1.

The CP15 register address field of scan chain 15 provides debug access to the CP15 
registers is shown in Table 8-2.

Table 8-1 Scan chain 15 addressing mode bit order

Bits Contents

38 Read = 0, write = 1

37:32 CP15 register address

31:0 CP15 register value

Table 8-2 Mapping of scan chain 15 address field to CP15 registers

Bit [38] Bits[37:32] Bits[31:30] CP15 reg number Meaning

0 0 0000 0 xx C0 Read ID register

0 0 0001 0 xx C1 Read control register

1 0 0001 0 xx C1 Write control register

0 1 1111 1 00 C15 Read BIST control register

1 1 1111 1 00 C15 Write BIST control register

0 1 1111 0 01 C15 Read IBIST address

1 1 1111 0 01 C15 Write IBIST address

0 1 1111 1 01 C15 Read IBIST General

1 1 1111 1 01 C15 Write IBIST general

0 1 1111 0 11 C15 Read DBIST address

1 1 1111 0 11 C15 Write DBIST address

0 1 1111 1 11 C15 Read DBIST general

1 1 1111 1 11 C15 Write DBIST general
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The scan address decode overloads the existing functional decode logic that is used to 
access the CP15 registers during MCR and MRC instructions (see ARM966E-S CP15 
registers on page 2-4.

The decode overload is performed as the follows:

Bit [37] Corresponds to Opcode 1 of an MCR or MRC instruction.

Bit [36:33] Correspond to the CRn field of an MCR or MRC instruction.

Bit [32] Corresponds to bit 0 of the Opcode 2 field of an MCR or MRC instruction.

Bits [2:1] Of opcode 2 are tied to 00 during debug state.

The debug scan chain, SC15, only allows access to bit[0] of the OpCode2 field by 
default. To allow access to the Address and General BIST registers within CP15 
Register 15, bits [31:30] of SC15 are overloaded as shown in Table 8-2. There are 
certain restrictions with the overloading; when writing to the BIST General registers 
(i.e. writing a new seed), bits[31:30] of the seed are restricted to those values shown in 
Table 8-2. These bits are not used in the BIST Address registers and so there are no 
debug restrictions when accessing these registers.

The ability to control the ARM966E-S system state through scan chain 15 provides 
extra debug visibility. For example, if the debugger wishes to compare the contents of 
an address that maps to the I-SRAM or D-SRAM, with the same address in external 
memory, the debugger can:

1. Load from the address with the SRAM enabled to return the SRAM data.

2. Disable the SRAM.

3. Perform the load again. The second load now accesses the AHB because the 
SRAM is disabled, returning the value from AHB memory. 
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8.4 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the 
ARM966E-S to enter debug state

• DBGACK is used by the ARM966E-S to flag back to the system that it is in 
debug state.

8.4.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply 
a breakpoint to that instruction, the breakpoint signal must be asserted by the end of the 
same cycle. This is shown in Figure 8-4 on page 8-10.

You can build External logic, such as additional breakpoint comparators, to extend the 
breakpoint functionality of the EmbeddedICE-RT logic. These outputs must be applied 
to the DBGIEBKPT input. This signal is ORed with the internally-generated 
breakpoint signal before being applied to the ARM9E-S core control logic. The timing 
of the input makes it unlikely that data-dependent external breakpoints are possible.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any 
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched breakpoint signal forces the processor to start the 
debug sequence.
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Figure 8-4 shows breakpoint timing.

Figure 8-4 Breakpoint timing
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8.4.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is 
necessary because of the nature of the pipeline. 

External logic, such as external watchpoint comparators, can be built to extend the 
functionality of the EmbeddedICE-RT logic. Their output must be applied to the 
DBGDEWPT input. This signal is simply ORed with the internally-generated 
Watchpoint signal before being applied to the ARM9E-S core control logic. The 
timing of the input makes it unlikely that data-dependent external watchpoints are 
possible.

After a watchpointed access, the next instruction in the processor pipeline is always 
allowed to complete execution. Where this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 8-5.

Figure 8-5 Watchpoint entry with data processing instruction
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The instruction following the instruction that generated the watchpoint might have 
modified the Program Counter (PC). If this happens, it is not possible to determine the 
instruction that caused the watchpoint. A timing diagram showing debug entry after a 
watchpoint where the next instruction is a branch is shown in Figure 8-6. However, it 
is always possible to restart the processor. 

When the processor enters debug state, the ARM9E-S core is interrogated to determine 
its state. In the case of a watchpoint, the PC contains a value that is five instructions on 
from the address of the next instruction to be executed. Therefore, if on entry to debug 
state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the processor 
restarted, execution flow returns to the next instruction in the code sequence.

Figure 8-6 Watchpoint entry with branch
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8.4.4 Watchpoints and exceptions

If there is an abort with the data access as well as a watchpoint, the watchpoint condition 
is latched, the exception entry sequence performed, and then the processor enters debug 
state. If there is an interrupt pending, again the ARM9E-S allows the exception entry 
sequence to occur and then enters debug state.

8.4.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the Execute stage of the pipeline is completed 
(when Memory and Write stages of the pipeline have completed). While waiting for the 
instruction to finish executing, no more instructions are issued to the Execute stage of 
the pipeline.

Caution
Asserting EDBGRQ in monitor mode results in unpredictable behavior.

8.4.6 Actions of the ARM9E-S in debug state

When the ARM9E-S is in debug state, both memory interfaces indicate internal cycles. 
This ensures that both the tightly-coupled SRAM within the ARM966E-S and the AHB 
interface are quiescent, allowing the rest of the AHB system to ignore the ARM9E-S 
and function as normal. Since the rest of the system continues operation, the ARM9E-S 
ignores aborts and interrupts.

The nRESET signal must be held stable during debug. If the system applies reset to the 
ARM966E-S (nRESET is driven LOW), the ARM9E-S changes state without the 
knowledge of the debugger.
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8.5 ARM9E-S core clock domains

The ARM966E-S single clock, CLK, is qualified by two clock enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, SYSCLKEN conditions CLK to clock the core. When the 
ARM966E-S is in debug state, DBGTCKEN conditions CLK to clock the core.
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8.6 Determining the core and system state

When the ARM966E-S is in debug state, you can examine the core and system state by 
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug from Thumb state or ARM state, by examining 
bit 4 of the EmbeddedICE-RT debug status register. When bit 4 is HIGH, the core 
enters debug from Thumb state.
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8.7 About the EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for 
the ARM9E-S core within the ARM966E-S.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. Figure 
8-7 illustrates the relationship between the core, EmbeddedICE-RT, and the TAP 
controller, showing only the signals that are pertinent to EmbeddedICE-RT. 

Figure 8-7 The ARM9E-S, TAP controller and EmbeddedICE-RT
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The debug control register and the debug status register provide overall control of 
EmbeddedICE-RT operation.

You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE-RT match 
the values currently appearing on the address bus, data bus, and various control signals.

Note

Any bit can be masked so that its value does not affect the comparison. 

Each watchpoint unit can be configured to be either a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints 
can be data-dependent.
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8.8 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution
Hard-wiring the DBGEN input LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to 
the core, and DBGACK from the ARM966E-S is always LOW.
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8.9 The debug communications channel

The ARM9E-S EmbeddedICE-RT logic contains a communications channel for 
passing information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel comprises:

• a 32-bit communications data read register 

• a 32-bit wide communications data write register

• a 6-bit wide communications control register for synchronized handshaking 
between the processor and the asynchronous debugger. 

These registers are located in fixed locations in the EmbeddedICE-RT logic register 
map and are accessed from the processor using MCR and MRC instructions to 
coprocessor 14.

In addition to the communications channel registers, the processor can access a 1-bit 
debug status register for use in the real-time debug configuration.

8.9.1 Debug communication channel registers

CP14 contains four registers, that have the following register allocations in 
coprocessor 14 as shown in Table 8-3.

Table 8-3 Coprocessor 14 register map

Register name Register number Notes

Communications channel status C0 Read-only

Communications channel data read C1 For reads

Communications channel data write C1 For writes

Communications channel monitor mode debug 
status

C2 Read or write
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8.9.2 Debug communications channel status register

The debug communications channel status register is read-only. It controls 
synchronized handshaking between the processor and the debugger. The debug 
communications channel status register is shown in Figure 8-8. 

Figure 8-8 Debug communications channel status register

The function of each register bit is described here:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE-RT 
version number (in this case 0011).

Bits 27:2 Are reserved.

Bit 1 Denotes whether the communications data write register is 
available (from the viewpoint of the processor).
If, from the viewpoint of the processor, the communications data 
write register is free (W=0), new data can be written.
If the register is not free (W=1), the processor must poll until 
W=0. 
From the viewpoint of the debugger, when W=1, new data is 
written that can be scanned out.

Bit 0 Denotes whether there is new data in the communications data 
read register.
If, from the viewpoint of the processor, R=1, there is some new 
data that can be read using an MRC instruction.
From the viewpoint of the debugger, if R=0, the communications 
data read register is free, and new data can be placed there through 
the scan chain. If R=1, this denotes that data previously placed 
there through the scan chain is not collected by the processor, and 
so the debugger must wait.

From the viewpoint of the debugger, the registers are accessed using the scan chain in 
the usual way. From the viewpoint of the processor, these registers are accessed using 
coprocessor register transfer instructions.
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You must use the following instructions:

MRC p14, 0, Rd, c0, c0

This returns the debug communications control register into Rd.

MCR p14, 0, Rn, c1, c0

This writes the value in Rn to the communications data write register.

MRC p14, 0, Rd, c1, c0

This returns the debug data read register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are 
advised to access this data using SWI instructions when in Thumb state.

8.9.3 Communications channel monitor mode debug status register

The coprocessor 14 debug status register is provided for use by a debug monitor when 
the ARM9E-S is configured into monitor mode.

The coprocessor 14 debug status register is a 1-bit wide read or write register having the 
format shown in Figure 8-9.

Figure 8-9 Coprocessor 14 debug status register format

Bit 0 of the register, the DbgAbt bit, indicates whether the processor took a Prefetch or 
Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core 
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write the DbgAbt bit by means of MRC or MCR instructions.
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DbgAbt bit to determine whether the abort is externally or internally generated. If the 
DbgAbt bit is set, the abort handler initiates communication with the debugger over the 
communications channel.
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8.9.4 Communications via the communications channel

Messages can be sent and received using the communications channel as described in:

• Sending a message to the debugger

• Receiving a message from the debugger

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the 
communications data write register is free for use by finding out whether the W bit of 
the debug communications control register is clear.

The processor reads the debug communications control register to check status of the 
W bit.

• If W bit is clear, the communications data write register is clear.

• If the W bit is set, previously written data is not read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14. 
Because the data transfer occurs from the processor to the communications data write 
register, the W bit is set in the debug communications control register. 

The debugger sees both the R and W bits when it polls the debug communications 
control register through the JTAG interface. When the debugger sees that the W bit is 
set, it can read the communications data write register, and scan the data out. The action 
of reading this data register clears the debug communications control register W bit. At 
this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the debug 
communications control register. 

• if the R bit is LOW, the communications data read register is free, and data can 
be placed there for the processor to read

• if the R bit is set, previously deposited data is not yet collected, so the debugger 
must wait.

When the communications data read register is free, data is written there using the 
JTAG interface. The action of this write sets the R bit in the debug communications 
control register. 
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The processor polls the debug communications control register. If the R bit is set, there 
is data that can be read using an MRC instruction to coprocessor 14. The action of this 
load clears the R bit in the debug communications control register. When the debugger 
polls this register and sees that the R bit is clear, the data is taken, and the process can 
be repeated.
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8.10 Monitor mode debug

The ARM9E-S within ARM966E-S contains logic that allows the debugging of a 
system without stopping the core entirely. This allows the continued servicing of 
critical interrupt routines while the core is being interrogated by the debugger. Setting 
bit 4 of the debug control register enables the real-time debug features of ARM9E-S. 
When this bit is set, the EmbeddedICE-RT logic is configured so that a breakpoint or 
watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort or Data 
Abort vectors respectively. When the ARM is configured for real-time debugging you 
must be aware of the following restrictions:

• Breakpoints or watchpoints might not be data dependent. No support is provided 
for use of the range and chain functionality. Breakpoints or watchpoints can only 
be based on:

— instruction or data addresses

— external watchpoint conditioner (DBGEXTERN)

— user or privileged mode access (DnTRANS and InTRANS)

— read or write access (watchpoints)

— access size (breakpoints, ITBIT, and watchpoints, DMAS[1:0]).

• The single-step hardware is not enabled.

• External breakpoints and watchpoints are not supported.

• The vector catching hardware can be used but must not be configured to catch 
the Prefetch or Data Abort exceptions.

Caution
No support is provided to mix halt mode and monitor mode debug functionality. When 
the core is configured into the monitor mode, asserting the external EDBGRQ signal 
results in unpredictable behavior. Setting the internal EDBGRQ bit results in 
unpredictable behavior.

When an abort is generated by the monitor mode it is recorded in the debug status 
register in coprocessor 14 (see Communications channel monitor mode debug status 
register on page 8-21).

Because the monitor mode debug does not put the ARM9E-S into debug state, it is 
necessary to change the contents of the watchpoint registers while external memory 
accesses are taking place, rather than being changed when in debug state. If the 
watchpoint registers are written to during an access, all matches from the affected 
watchpoint unit using the register being updated are disabled for the cycle of the update.
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If there is a possibility of false matches occurring during changes to the watchpoint 
registers, caused by old data in some registers and new data in others, then you must: 

1. Disable that watchpoint unit using the control register for that watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.
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8.11 Debug additional reading

A more detailed description of the ARM9E-S debug features and JTAG interface is 
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.
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Chapter 9
Embedded Trace Macrocell Interface

This chapter describes the ARM966E-S Embedded Trace Macrocell (ETM) interface. 
It contains the following sections:

• About the ETM interface on page 9-2

• Enabling the ETM interface on page 9-3.
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9.1 About the ETM interface

The ARM966E-S supports the connection of an external Embedded Trace Module 
(ETM) to provide real time code tracing of the ARM966E-S in an embedded system.

The ETM interface is primarily one way. In order to provide code tracing, the ETM 
block must be able to monitor various ARM9E-S inputs and outputs. The required 
ARM9E-S inputs and outputs are collected and driven out from the ARM966E-S from 
the ETM interface registers, as shown in Figure 9-1.

Figure 9-1 ARM966E-S ETM interface

The ETM interface outputs are pipelined by a single clock cycle to provide early output 
timing and to isolate any ETM input load from the critical ARM966E-S signals. The 
latency of the pipelined outputs does not effect ETM trace behavior, as all outputs are 
delayed by the same amount.
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9.2 Enabling the ETM interface

The ETM interface on the ARM966E-S is enabled by the top-level pin ETMEN. When 
this input is HIGH, the ETM interface is enabled and the outputs are driven so that an 
external ETM can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their 
last value before the interface was disabled. At reset, all ETM interface outputs are reset 
LOW.

The ETMEN input is usually driven by the ETM, and driven HIGH once the ETM is 
programmed using its TAP controller.

Note

If an ETM is not used in an embedded ARM966E-S design, the ETMEN input must be 
tied LOW to save power.
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9.3 ARM966E-S trace support features

The trace support uses the following features:

• FIFOFULL

• Register 15, trace control register

• Register 1, Trace process identifier.

9.3.1 FIFOFULL

The signal, FIFOFULL, is an input to the ARM966E-S driven by the ETM9. 
Whenever the programmed upper watermark of the ETM FIFO is filled, FIFOFULL 
is asserted. The ARM966E-S uses FIFOFULL to stall the ARM9E-S core, preventing 
trace loss. The ARM9E-S core remains stalled until FIFOFULL is deasserted.

The ARM966E-S can only stall on instruction boundaries enabling any current AHB 
transfers to complete. You must take this into consideration when programming the 
ETM FIFO watermark. If the current instruction is either a LDM or a STM, the FIFO 
might have to accept up to 16 words after the assertion of FIFOFULL.

Note

Using FIFOFULL to stall the ARM966E-S affects real-time operating performance.

9.3.2 Register 15, trace control register

The trace control register allows the masking of interrupts during trace. This register 
allows nIRQ and nFIQ interrupt priority over FIFOFULL to be programmed. The 
operation of this register is described in Register 15, Test on page 2-9.

9.3.3 Register 1, Trace process identifier

The ARM966E-S contains a trace process identifier register that allows Real-time 
Trace tools to identify the currently executing process in multi-tasking environments. 
The operation of this register is described in Register 13, Trace process identifier on 
page 2-9.
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Chapter 10
Test Support

This chapter describes the test methodology employed for the ARM966E-S synthesized 
logic and tightly-coupled SRAM. It contains the following sections:

• About the ARM966E-S test methodology on page 10-2

• Scan insertion and ATPG on page 10-3

• BIST of tightly-coupled SRAM on page 10-4.
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10.1 About the ARM966E-S test methodology

To achieve a high level of fault coverage, scan insertion and ATPG techniques are used 
on the ARM9E-S core and ARM966E-S control logic as part of the synthesis flow. 
BIST is used to provide high fault coverage of the compiled SRAM.
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10.2 Scan insertion and ATPG

This technique is covered in detail in the ARM966E-S Implementation Guide. Scan 
insertion requires that all register elements are replaced by scannable versions that are 
then connected up into a number of large scan chains. These scan chains are used to set 
up data patterns on the combinatorial logic between the registers, and capture the logic 
outputs. The logic outputs are then scanned out while the next data pattern is scanned in. 

Automatic Test Pattern Generation (ATPG) tools are used to create the necessary scan 
patterns to test the logic, when the scan insertion has been performed. This technique 
enables very high fault coverage to be achieved for the standard cell combinatorial 
logic, typically in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized 
design, due to the larger scan register elements and the serial routing between them. 
However, to minimize these effects, the scan insertion is performed early in the 
synthesis cycle and the design re-optimized with the scan elements in place.

10.2.1 ARM966E-S INTEST wrapper

To facilitate testing of the shadow logic between the ARM966E-S scan chains and the 
scan chains in an OEM ASIC, a synthesis option allows an INTEST wrapper to be 
inserted into the ARM966E-S. The INTEST wrapper is a scan chain around the 
boundary of the ARM966E-S, connecting to all input and output pins. 

Note

• Shadow logic is logic that is not ordinarily tested.

• The INTEST wrapper is only required for embedded ARM966E-S.

• The order of this scan chain is predetermined and must be maintained through 
synthesis and place and route of the macrocell. 
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10.3 BIST of tightly-coupled SRAM

Adding a simple memory test controller allows an exhaustive test of the memory arrays 
to be performed. BIST test is activated by an MCR to the CP15 BIST control register and 
can be run on one or both of the I-SRAM and D-SRAM simultaneously.

When a BIST test is performed on an SRAM, the functional enable for that SRAM is 
automatically disabled, forcing all memory accesses to that SRAM address space to go 
to the AHB. This enables BIST tests to be run in the background. For instance, the 
instruction SRAM can be BIST tested, while code is executed over the AHB.

Full programmer control over the BIST mechanism is achieved through five registers 
that are mapped to CP15 register 15 address space. For details of the MCR or MRC 
instructions used to access these registers, see Register 15, Test on page 2-9. Access to 
these registers is also available in debug mode, see ARM966E-S scan chain 15 on 
page 8-7.

10.3.1 BIST control register

This controls the operation of the SRAM memory BIST. Before initiating a BIST test, 
a MCR is first performed to the BIST control register to set up the size of the test and 
enable the SRAM to be tested. A further MCR is required to initiate the test.

The current status of a BIST test and result of a completed test can be accessed by 
performing an MRC to the BIST control register. This returns flags to indicate that a test 
is:

• running

• paused

• failed

• completed.

In addition to returning the state for the size of the test and SRAM enable status, having 
completed a BIST test, the BIST enable must first be cleared by writing to the BIST 
control register if the SRAM is to be used by you for functional operation. The SRAM 
must then be re-enabled by writing to CP15 register 1. This is necessary as the BIST test 
enable automatically clears the functional enable.
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Note

Clearing the functional SRAM enable when BIST is enabled prevents the programmer 
from trying to run from tightly coupled SRAM following a BIST test, without having 
first reprogrammed the SRAM. This is necessary as the BIST algorithm corrupts all 
tested SRAM locations.

10.3.2 BIST address and general registers

The BIST control register enables standard BIST operations to be performed on each 
SRAM and the size of the test to be specified. Additional registers are required 
however, to provide the following functionality:

• testing of the BIST hardware

• changing the seed data for a BIST test

• providing a nonzero starting address for a BIST test 

• peek and poke of the SRAM

• returning an address location for a failed BIST test

• returning failed data from the failing address location.

This additional functionality is most useful for debugging faulty silicon during 
production test. The exception to this is the start address for a BIST test. It is possible 
that BIST of the SRAM is performed periodically during program execution, the 
memory being tested in smaller pieces rather than in one go. This requires a start 
address that is incremented by the size of the test each time a test is activated.

Table 10-1 and  Table 10-2 on page 10-6 show how the registers are used. The pause 
bits from the BIST control register provide extra decode of these registers.

Table 10-1 Instruction BIST address and general registers

BIST register
IBIST
pause

Read Write

IBIST address register 0 IBIST fail address IBIST start address

IBIST address register 1 IBIST fail address IBIST peek/poke address

IBIST general register 0 IBIST fail data IBIST seed data

IBIST general register 1 IBIST peek data IBIST poke data
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10.3.3 Pause modes

The suggested production test sequence for the SRAM is:

1. Test each SRAM using a full test.

2. Test the BIST hardware for each SRAM.

To allow testing of the BIST hardware, a pause mechanism enables the BIST test 
to be halted and data within the SRAM to be corrupted. The sequence for this is:

a. Writing the address for the location to be corrupted with a MCR to the 
relevant BIST address register.

b. Writing the corrupted data using a MCR to the BIST general register. 

c. Restarting the test by an MCR to the BIST control register.

d. Checking that the corrupted data causes the test to fail by reading the 
failed address and data from the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the 
pause bit also controls the progression of the BIST algorithm as follows:

• Auto pause

• User pause on page 10-7

Auto pause

If the pause bit is set in the BIST control register before the test is activated, the test runs 
in auto pause mode. The BIST test pauses at predetermined points of the BIST 
algorithm, for instance when the algorithm has reached the top or the bottom of the 
memory array being tested. 

Table 10-2 Data BIST address and general registers

BIST register
IBIST
pause

Read Write

DBIST address register 0 DBIST fail address DBIST start address

DBIST address register 1 DBIST fail address DBIST peek/poke address

DBIST general register 0 DBIST fail data DBIST seed data

DBIST general register 1 DBIST peek data DBIST poke data
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The programmer can poll the BIST control register to detect when a test has paused (the 
running flag is LOW). Data can then be corrupted as detailed above, before restarting 
the BIST test.

User pause

If the pause bit is clear when the test is activated, the test is run in user pause mode. The 
BIST algorithm is paused by an MCR to the BIST control register, setting the pause bit 
for the SRAM being tested. The SRAM contents are then corrupted as previously. This 
stops the BIST algorithm at a potentially unknown point, resulting in the possibility that 
the corrupted data is overwritten by the BIST algorithm and therefore not cause a test 
to fail. 

Note

User pause mode is provided for production test debugging to shorten a test by pausing 
the algorithm early. The auto pause mechanism is recommended to provide or BIST 
hardware testing for all other occasions.
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Chapter 11
Instruction cycle timings

This chapter describes the instruction cycle timings for the ARM966E-S. It contains the 
following sections:

• Introduction to instruction cycle timings on page 11-2

• When stall cycles do not occur on page 11-3

• Tightly-coupled SRAM cycles on page 11-4

• AHB memory access cycles on page 11-6

• Interrupt latency calculation on page 11-10
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11.1 Introduction to instruction cycle timings

The ARM9E-S core within the ARM966E-S implements a pipelined architecture where 
several instructions in different pipeline stages overlap. The instruction cycle timing 
tables in the ARM9E-S Technical Reference Manual show the number of cycles 
required by an instruction, once it has reached the execute stage of the ARM9E-S core 
pipeline.

The instruction cycle timing numbers quoted in the ARM9E-S Technical Reference 
Manual assume that the ARM9E-S is permanently enabled with the CLKEN input tied 
HIGH. This implies that both instruction and data memory connected to the ARM9E-S 
are able to perform zero wait state responses to all accesses. 

In a system such as the ARM966E-S, the CLKEN input to the ARM9E-S core might 
be pulled LOW to stall the processor until the memory system is able to respond to the 
access. These stall cycles must be taken into account when calculating the 
ARM966E-S instruction cycle timings.

Stall cycles are introduced by the ARM966E-S system controller in the following 
circumstances:

• the internal SRAM cannot always be accessed in a single cycle

• the access requires an AHB transfer

• the write buffer is full or being drained.

This chapter describes the cycle counts for both normal operation and the above 
circumstances.
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11.2 When stall cycles do not occur

Before describing the various stall cycle scenarios, it is useful to consider the 
circumstances where the ARM9E-S core can run within the ARM966E-S with no stall 
cycles introduced by the system controller. When this is the case, the ARM966E-S is 
running at peak efficiency and the instruction cycles exactly match those quoted in the 
ARM9E-S Technical Reference Manual.

The fundamental requirement for no stall cycles is that the I-SRAM is enabled and the 
necessary instructions have been previously programmed into it. Additionally, if the 
D-SRAM is enabled, it can be accessed for reads without incurring a stall penalty, even 
if the I-SRAM is being simultaneously accessed for an instruction fetch.

When a write is performed, the access can be zero stall if the write buffer is used and 
there is space available. If the write is to the D-SRAM, the write is a single cycle in most 
circumstances, and any store multiple to the D-SRAM can be executed as one write per 
cycle. As long as these writes are not to the I-SRAM address space, instruction fetches 
from the I-SRAM can be performed simultaneously without incurring a stall penalty.

To maximize performance, it is therefore desirable to ensure that frequently accessed 
code is preloaded into the I-SRAM and that data accesses map to the D-SRAM address 
space. It is also advisable to enable the write buffer and use bufferable areas of memory 
where possible, when AHB writes are performed.

Note

If the data interface of the ARM9E-S core accesses the I-SRAM memory, in most cases 
stall cycles are incurred. An example of where this type of access is unavoidable, is the 
fetching of inline code literals from the I-SRAM.
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11.3 Tightly-coupled SRAM cycles

This section describes the stall cycle counts for accesses to one or both of the SRAMs. 
The circumstances where the internal tightly-coupled SRAM can stall are detailed in 
SRAM stall cycles on page 4-3. 

Table 11-1 lists the stall cycles incurred when accessing the I-SRAM. In most cases the 
data accesses are to the D-SRAM so the stall penalties listed are not incurred.

Table 11-1 I-SRAM access

Instruction sequence Stalls Comment

Single instruction fetch 0 Assuming no data interface access to I-SRAM

Sequential instruction fetch 0 Assuming no data interface access to I-SRAM

LDR, no instruction fetch 0 Assuming no previous I-SRAM store

LDR, simultaneous 
instruction fetch

1 Simultaneous instruction fetch request causes stall 
of LDR for 1 cycle

LDM, instruction fetch in 
parallel with final load

1 Simultaneous instruction fetch request at end of 
LDM causes stall

STR, no instruction fetch 0 Assuming no previous ISRAM store

STR simultaneous 
instruction fetch

2 Two cycle write performed prior to instruction fetch

STR followed by 
instruction fetch

1 Stall occurs due to second cycle of store

STR followed by 
simultaneous, instruction 
fetch LDR

1 Stall occurs due to second cycle of store

STR followed by 
simultaneous instruction 
fetch, STR

2 Stall due to second cycle of second store plus 
instruction fetch request

STR followed by LDR/
STR, no instruction fetch

1 Stall due to second cycle of store

STM, instruction fetch in 
parallel with final store

2 Simultaneous instruction fetch request must wait 
for second cycle of final write to complete
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The D-SRAM can only be accessed by the ARM9E-S data interface so there are no 
simultaneous access contentions as found in the I-SRAM.  Table 11-2 shows the stall 
cycles that can occur when accessing the D-SRAM.

Note

All internal SRAM stall cycles are in terms of the CLK and are therefore not affected 
by the speed of the external AHB interface.

Table 11-2 D-SRAM access

Data access Stalls Comment

LDR 0 D-SRAM provides single cycle response

LDM 0 D-SRAM provides single cycle response to each 
word

LDR/LDM followed by 
any load or store

0 D-SRAM provides single cycle response

STR 0 Assuming no following load

STM 0 Assuming no following load

STR/STM followed by 
STR/STM

0 Pipelined addresses allow back-to-back stores or 
store multiples

STR/STM followed by 
LDR/LDM

1 Second cycle of write causes stall before load can be 
performed
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11.4 AHB memory access cycles

When a read or non-bufferable write access to the AHB is performed, stall cycles are 
introduced. The number of CLK stall cycles incurred depends on:

• the clocking ratio of the AHB interface

• the type of access being performed

• if there are further accesses to be performed. 

Before an AHB transfer can be initiated, the ARM966E-S must be the granted bus 
master. The cycle calculations in this section assume that the ARM966E-S is granted 
and that it is the default bus master.

11.4.1 Synchronization penalty

At the start of an AHB access, the BIU within the ARM966E-S must wait for the first 
rising edge of HCLK (the HCLKEN input is true) before it can broadcast the necessary 
AHB control and address information for the access. This delay is the synchronization 
penalty. The best case is that in the cycle when the AHB access is requested, the 
HCLKEN input is HIGH, incurring a zero cycle synchronization penalty. The worst 
case is where the HCLKEN is HIGH in the cycle before the AHB access is required. 
The ARM966E-S must then wait until the next assertion of HCLKEN which is R-1 
cycles later, where R is the CLK to HCLK ratio:

• Best case synchronization penalty is 0 CLK cycles

• Worst case synchronization penalty is R-1 CLK cycles,
where R = 1, 2, 3, 4, 5, 6, 7, 8 for example.

If the AHB must be accessed for two transfers that were requested simultaneously by 
the ARM9E-S core (that is, a simultaneous instruction fetch and data load), the BIU 
stays synchronized after the first transfer so that the penalty is only incurred for the first 
access. If the transfer is part of a burst (STM/LDM) or a sequential instruction fetch 
sequence, again the BIU stays synchronized between each transfer to minimize 
synchronization penalty.

Note

If the clock ratio R=1 and the HCLKEN input to the ARM966E-S is tied HIGH then 
no synchronization penalty is incurred when accessing the AHB.
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11.4.2 AHB transfer types

The ARM966E-S can perform IDLE, NONSEQ, and SEQ transfers. Depending on the 
implementation of the AHB system to which the ARM966E-S is connected, a varying 
number of HCLK cycles are required for the NONSEQ and SEQ transfers. Typically, 
a NONSEQ cycle requires a two-cycle response from the selected slave, whereas a SEQ 
cycle can be handled in a single cycle. The IDLE cycle takes one HCLK cycle by 
definition.

For each HCLK cycle required by the AHB transfer, R internal CLK cycles are taken. 
The AHB transfer cycles are converted to CLK by multiplying by R, the CLK to 
HCLK ratio, as shown in Table 11-3.

Table 11-4 lists the types of AHB transfers performed by the ARM966E-S and the 
number of CLK cycles required to perform them. This table indicates cycles where the 
ARM9E-S core must be stalled until one or more AHB accesses have completed, that 
is, for reads and unbuffered writes.

Table 11-3 Key to tables

Symbol Meaning in terms of CLK cycles

Sync Worst-case synchronization penalty (= R-1)

S HCLK cycles required for a SEQ transfer x R

N HCLK cycles required for a NONSEQ transfer x R

I HCLK cycle required for an IDLE cycle (=R)

n Number of words accessed by the transfer

Table 11-4 AHB read and unbuffered write transfer cycles

AHB access Cycles Comment

Start of sequential instruction 
fetch of n words

Sync+N(n+I) Assumes no AHB load or store activity.

Nonsequential instruction 
fetch

Sync+N+I Assumes no AHB load or store activity.

Nonsequential instruction 
fetch follows sequential 
instruction fetch

N+I Assumes no AHB load or store activity.

Single LDR or STR Sync+N+I Assumes no AHB instruction fetch.
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See AHB bus master interface on page 6-8 for diagrams of the cycles listed in Table 
11-4 on page 11-7.

Table 11-5 on page 11-9 shows the cycles required to perform buffered writes. These 
writes usually take place in parallel with program execution and the ARM9E-S core is 
not stalled while the buffered writes take place. However, whenever a load or 
instruction fetch to the AHB is required, the core is stalled and the write buffer drained 
before program execution can continue.

Back-to-back LDR/LDR, 
LDR/STR, STR/STR, STR/
LDR

Sync+2(N+I) Assumes no AHB instruction fetch. 
Synchronization penalty for first transfer only.

Simultaneous LDR/STR and 
instruction fetch

Sync+2N+I Optimization replaces IDLE cycle after load/
store with NONSEQ of instruction fetch.

STM of n words Sync+N+(n-1)S+I Assumes no AHB instruction fetch.

STM of n words, simultaneous 
instruction fetch at end

Sync+2N+(n-1)S+I Optimization replaces IDLE cycle after final 
stored word with NONSEQ of instruction 
fetch.

STM of n words crosses 1KB 
region

Sync+2N+(n-2)S+2I Assumes no AHB instruction fetch, 
sequentiality broken on boundary.

LDM of n words Sync+N+(n-1)S+2I Assumes no AHB instruction fetch. LDM 
requires extra IDLE at end of transfer to re-
sample core interface.

LDM of n words, simultaneous 
instruction fetch at end

Sync+2N+(n-1)S+2I Optimization replaces second IDLE cycle after 
final loaded word with NONSEQ of 
instruction fetch.

LDM of n words crosses 1KB 
region

Sync+2N+(n-2)S+4I Assumes no AHB instruction fetch, 
sequentiality broken on boundary.

Table 11-4 AHB read and unbuffered write transfer cycles (continued)

AHB access Cycles Comment
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Table 11-5 AHB buffered writes cycles

AHB access Cycles Comment

Single STR Sync+N+I Assumes no following AHB 
instruction fetch

Back-to-back STR/STR Sync+2(N+I) Assumes no following AHB 
instruction fetch

STM Sync+N+(n-1)S+I Assumes no following AHB 
instruction fetch

Last STR in write buffer drain 
followed by unbuffered data access

2(N+I) Core stalled until write buffer empty 
and data access has been performed

Last STR in write buffer drain 
followed by instruction fetch

2N+I Optimization replaces IDLE cycle 
after store with NONSEQ of 
instruction fetch
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11.5 Interrupt latency calculation

The ARM9E-S has a worst-case interrupt latency figure that is listed in the 
ARM9E-S Technical Reference Manual. The number quoted assumes that the CLKEN 
input to the core is HIGH, ensuring no stall cycles.

In the ARM966E-S, the best-case figure could match the latency quoted for the 
ARM9E-S core, if the necessary data and instructions were already in the D-SRAM and 
I-SRAM respectively. However, when calculating the worst-case figure, it must be 
assumed that the necessary data and instructions are not in the tightly-coupled SRAM 
and must therefore be accessed over the AHB.

In addition, the worst-case is where the write buffer is full when the interrupt occurs, 
requiring that the buffer drain is added to the interrupt latency calculation. The 
worst-case sequence for the write buffer is that five nonsequential words are to be 
written.

For the ARM9E-S core, the worst-case interrupt latency occurs when the longest LDM 
incurs a Data Abort. However, for the ARM966E-S, this is the longest LDM without a 
Data Abort. The LDM that incurs a Data Abort takes extra CLK cycles in the core, but 
the abort vector is usually in the tightly-coupled SRAM and can be returned without 
introducing the extra stall cycles of an AHB access. 

The longest LDM without the Data Abort is one that loads all the registers, including the 
PC, that causes a branch to a destination anywhere in memory. The branch destination 
must therefore be assumed to be outside of the tightly-coupled SRAM. The loads to the 
PC address and (PC+1) cause additional AHB accesses to produce the worst-case 
interrupt latency.

Using the symbols defined in Table 11-3, the worst-case interrupt latency can be 
summarized in Table 11-6.

Table 11-6 Interrupt latency cycle summary

AHB access Cycles Comment

Write buffer drain Sync+ 5(N+I) FIQ asserted, first data transfer 
requested, write buffer drain stalls core. 

LDM (r0-pc) crosses 1KB 
boundary

2N+14 S+4 I No instruction fetch at end due to core 
pipeline bubble to calculate pc

Instruction fetch of (pc) Sync+N+I Synchronization lost due to core internal 
cycle, no AHB request

Sequential instruction fetch 
of (pc+1)

N+I Synchronization retained
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The LDM (r0-pc) must complete before the interrupt vector is fetched. The write buffer 
drain must be added to this, in addition to assuming that the LDM (r0-pc) crosses a 1KB 
boundary.

The calculation assumes that once the interrupt has entered the Decode stage of the 
ARM9E-S pipeline following the instruction fetch to (pc+1), the subsequent fetches to 
the interrupt vector are serviced by the tightly-coupled SRAM, requiring a further three 
CLK cycles for the FIQ handler to enter execute. (This is not the case if the interrupt 
vector resides at the HIVECS location of 0xFFFF 0000. This requires AHB access.)

The cycles from  Table 11-6 are added to the three CLK cycles from the tightly-coupled 
SRAM to produce the interrupt latency equation:

Interrupt latency CLK = 2Sync+9N+14S+2B+11I+3

Rewriting in terms of R, NONSEQ, SEQ and IDLE the equation simplifies to:

Interrupt latency CLK =R (9 NONSEQ+14SEQ+13)+1

where IDLE=BUSY=R as this is a single HCLK cycle by definition.

The number of CLK cycles latency can now be derived for different AHB clocking 
ratios and for the differing AHB slave responses that might exist in the AHB system to 
which the ARM966E-S interfaces. Table 11-7 on page 11-11 gives examples of 
interrupt latency for systems with different CLK to HCLK ratios. For each system, 
slaves can have different response times to NONSEQ and SEQ transfers. Table 11-7 
gives some examples of different slave responses and the resultant interrupt latency in 
CLK cycles.

Table 11-7 Interrupt latency calculated examples

CLK to HCLK
Ratio - R

Latency when
NONSEQ = 1,
SEQ = 1

Latency when
NONSEQ= 2,
SEQ = 1

Latency when
NONSEQ = 2,
SEQ = 2

 1 37 46 60

 2 73 91 119

 3 109 136 178

 4 145 181 237
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Appendix A
Signal Descriptions

This appendix describes the ARM966E-S signals. It contains the following sections:

• Signal properties and requirements on page A-2

• Clock interface signals on page A-3

• AHB signals on page A-4

• Coprocessor interface signals on page A-6

• Debug signals on page A-8

• Miscellaneous signals on page A-10

• ETM interface signals on page A-11

• INTEST wrapper signals on page A-13.
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A.1 Signal properties and requirements

In order to ensure ease of integration of the ARM966E-S into embedded applications 
and to simplify synthesis flow, the following design techniques have been used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM966E-S signals because 
all outputs change from the rising edge and all inputs are sampled with the rising edge 
of the clock. In addition, all signals are either input or output only, as bidirectional 
signals are not used.

Note

Asynchronous signals (for example interrupt sources) must first be synchronized by 
external logic before being applied to the ARM966E-S macrocell. 
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A.2 Clock interface signals

Table A-1 describes the ARM966E-S clock interface signals.

Table A-1 Clock interface signals

Name Direction Description

CLK
System clock

Input This clock times all operations in the ARM966E-S 
design. All outputs change from the rising edge and 
all inputs are sampled on the rising edge. The clock 
might be stretched in either phase. 
Through the use of the HCLKEN signal, this clock 
also times AHB operations.
Through the use of the DBGTCKEN signal, this 
clock also times debug operations.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH 
indicates that the next rising edge of CLK is also a 
rising edge of HCLK in the AHB system in which 
the ARM966E-S is embedded. HCLK must be tied 
HIGH in systems where CLK and HCLK are 
intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic accessed by the 
JTAG interface. When HIGH on the rising edge of 
CLK the debug logic is able to advance.

HRESETn
Not reset

Input Asynchronously asserted LOW input used to 
initialize the ARM966E-S system state. 
Synchronously de-asserted.
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A.3 AHB signals

Table A-2 describes the ARM966E-S AHB signals.

Table A-2 AHB signals

Name Direction Description

HADDR[31:0]
Address bus

Output The 32-bit AHB system address bus.

HTRANS[1:0]
Transfer type

Output Indicates the type of ARM966E-S transfer, which 
can be IDLE (00), NONSEQ (10), or SEQ (11).

HWRITE
Transfer direction

Output When HIGH indicates a write transfer. When LOW 
indicates a read transfer.

HSIZE[2:0]
Transfer size

Output Indicates the size of an ARM966E-S transfer, which 
can be Byte (000), Half-word (001) or Word (010).

HBURST[2:0]
Burst type

Output Indicates if the transfer forms part of a burst. The 
ARM966E-S supports SINGLE transfer (000) and 
INCRemental burst of unspecified length (001).

HPROT[3:0]
Protection control

Output Indicates that the ARM966E-S transfer is 
an opcode fetch (0--0) or a data access (0--1) or a 
User mode access (0-0-) or a Supervisor mode 
access (0-1-). 
Also indicates that an access is not bufferable (00--) 
or bufferable (01--). Bit [3] is driven to 0 indicating 
not cacheable.

HWDATA[31:0]
Write data bus

Output The 32-bit write data bus is used to transfer data 
from the ARM966E-S to a selected bus slave during 
write operations.

HRDATA[31:0]
Read data bus

Input The 32-bit read data bus is used to transfer data from 
a selected bus slave to the ARM966E-S during read 
operations.

HREADY
Transfer done

Input When HIGH indicates that a transfer has finished on 
the bus. This signal can be driven LOW by the 
selected bus slave to extend a transfer.

HRESP[1:0]
Transfer response

Input The transfer response from the selected slave 
provides additional information on the status of the 
transfer. The response can be OKAY (00), ERROR 
(01), RETRY (10), or SPLIT (11).
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HBUSREQ
Bus request

Output Indicates that the ARM966E-S requires the bus.

HLOCK
Request locked 
transfers

Output When HIGH, indicates that the ARM966E-S 
requires locked access to the bus and no other master 
is granted until this signal has gone LOW. Asserted 
by the ARM966E-S when executing SWP 
instructions to AHB address space.

HGRANT
Bus grant

Input Indicates that the ARM966E-S is currently the 
highest priority master. Ownership of the address 
and control signals changes at the end of a transfer 
when HREADY is HIGH, so the ARM966E-S gets 
access to the bus when both HREADY and 
HGRANT are HIGH.

Table A-2 AHB signals (continued)

Name Direction Description
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A.4 Coprocessor interface signals

Table A-3 describes the ARM966E-S coprocessor interface signals.

Table A-3 Coprocessor interface signals

Name Direction Description

CPCLKEN
Coprocessor clock 
enable

Output Synchronous enable for coprocessor pipeline 
follower. When HIGH on the rising edge of CLK 
the pipeline follower logic is able to advance.

CPINSTR[31:0]
Coprocessor 
instruction data

Output The 32-bit coprocessor instruction bus over which 
instructions are transferred to the coprocessor 
pipeline follower.

CPDOUT[31:0]
Coprocessor read 
data

Output The 32-bit coprocessor read data bus for transferring 
data to the coprocessor.

CPDIN[31:0]
Coprocessor write 
data

Input The 32-bit coprocessor write data bus for 
transferring data from the coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in 
the Execute stage of the pipeline, and it must be 
executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a 
coprocessor instruction, then the coprocessor must 
cancel the instruction without changing any internal 
state. This signal is only asserted in cycles where the 
previous instruction caused a Data Abort to occur.

CHSDE[1:0]
Coprocessor 
handshake decode

Input The handshake signals from the Decode stage of the 
coprocessor’s pipeline follower. Indicates ABSENT 
(10), WAIT (00), GO (01), or LAST (11).

CHSEX[1:0]
Coprocessor 
handshake execute

Input The handshake signals from the Execute stage of the 
coprocessor’s pipeline follower. Indicates ABSENT 
(10), WAIT (00), GO (01), or LAST (11).
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CPTBIT
Coprocessor 
instruction Thumb 
bit

Output When HIGH indicates that the ARM966E-S in is 
Thumb state. When LOW indicates that the 
ARM966E-S is in ARM state. Sampled by the 
coprocessor pipeline follower.

nCPMREQ
Not coprocessor 
instruction request

Output When LOW on the rising edge of CLK and 
CPCLKEN is HIGH, the instruction on CPINSTR 
must enter the coprocessor pipeline.

nCPTRANS
Not coprocessor 
memory translate

Output When LOW indicates that the ARM966E-S is in 
User mode. When HIGH indicates that the 
ARM966E-S is in privileged mode. Sampled by the 
coprocessor pipeline follower.

Table A-3 Coprocessor interface signals (continued)

Name Direction Description
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A.5 Debug signals

Table A-4 describes the ARM966E-S debug signals.

Table A-4 Debug signals

Name Direction Description

DBGIR[3:0]
TAP controller 
instruction register

Output These four bits reflect the current instruction loaded 
into the TAP controller control register. These bits 
change when the TAP controller is in the 
UPDATE-IR state.

DBGnTRST
Not test reset

Input This is the active low reset signal for the 
EmbeddedICE internal state. This signal is a level 
sensitive asychronous reset signal.

DBGnTDOEN
Not DBGTDO 
enable

Output When LOW, this signal denotes that the serial data is 
being driven out of the DBGTDO output. Normally 
used as an output enable for a DBGTDO pin in a 
packaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan 
chain currently selected by the TAP controller. 
These bits change when the TAP controller is in the 
UPDATE-DR state.

DBGSDIN
External scan chain 
serial input data

Output Contains the serial data to be applied to an external 
scan chain.

DBGSDOUT
External scan chain 
serial data output

Input Contains the serial data out of an external scan 
chain. When an external scan chain is not connected, 
this signal must be tied LOW.

DBGTAPSM[3:0]
TAP controller state 
machine

Output This bus reflects the current state of the TAP 
controller state machine.

DBGTDI Input Test data input for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

COMMRX
Communications 
channel receive

Output When HIGH denotes that the communications 
channel receive buffer contains valid data waiting to 
be read.
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COMMTX
Communications 
channel transmit

Output When HIGH, denotes that the comms channel 
transmit buffer is empty.

DBGACK
Debug acknowledge

Output When HIGH indicates that the processor is in debug 
state.

DBGEN
Debug enable

Input Enables the debug features of the processor. This 
signal must be tied LOW if debug is not required.

DBGRQI
Internal debug 
request

Output Represents the debug request signal that is presented 
to the core debug logic. This is a combination of 
EDBGRQ and bit 1 of the debug control register.

EDBGRQ
External debug 
request

Input An external debugger forces the processor into 
debug state by asserting this signal.

DBGEXT[1:0]
EmbeddedICE 
external input

Input Input to the EmbeddedICE-RT logic allows 
breakpoints/watchpoints to be dependent on external 
conditions.

DBGINSTREXEC
Instruction executed

Output Indicates that the instruction in the Execute stage of 
the processor pipeline has been executed.

DBGRNG[1:0]
EmbeddedICE 
Rangeout

Output Indicates that the corresponding EmbeddedICE-RT 
watchpoint register has matched the conditions 
currently present on the address, data and control 
buses. This signal is independent of the state of the 
watchpoint enable control bit.

TAPID[31:0]
Boundary scan ID 
code

Input Specifies the ID code value shifted out on 
DBGTDO when the IDCODE instruction is entered 
into the TAP controller.

DBGIEBKPT
Instruction 
breakpoint

Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of an instruction fetch, it causes the ARM966E-S to 
enter debug state if that instruction reaches the 
Execute stage of the processor pipeline.

DBGDEWPT
Data watchpoint

Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of a data memory request cycle, it causes the 
ARM966E-S to enter debug state.

Table A-4 Debug signals (continued)

Name Direction Description
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A.6 Miscellaneous signals

Table A-5 describes the ARM966E-S miscellaneous signals.

Table A-5 Miscellaneous signals

Name Direction Description

nFIQ
Not fast interrupt 
request

Input This is the Fast Interrupt Request signal. This signal 
must be synchronous to CLK.

nIRQ
Not interrupt request

Input This is the Interrupt Request signal. This signal must 
be synchronous to CLK.

VINITHI
Exception vector 
location at reset

Input Determines the reset location of the exception 
vectors. When LOW, the vectors are located at 
0x00000000. When HIGH, the vectors are located 
at 0xFFFF0000.

INITRAM 
Tightly-coupled 
SRAM enable at 
reset

Input Determines the tightly-coupled SRAM reset 
enable.When HIGH, the instruction and data SRAM 
are both enabled during reset, when LOW, the 
SRAM are disabled during reset.

BIGENDOUT Output When HIGH, the ARM966E-S treats bytes in 
memory as being in big-endian format. When LOW, 
memory is treated as little-endian.
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A.7 ETM interface signals

Table A-6 describes the ARM966E-S ETM interface signals.

Table A-6 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. This signal 
must be tied LOW if an ETM is not used.

FIFOFULL Input Asserted when ETM FIFO fills. This signal must be 
tied LOW if an ETM is not used.

ETMBIGEND Output big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMInMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential data indication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read or write for the ETM.

ETMDSEQ Output Sequential data indication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARM9E-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMINSTRVALID Output Instruction valid indication for the ETM.

ETMRNGOUT[1:0] Output Watchpoint register match indication for the ETM.
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ETMID31TO25[31:25] Output Instruction data field for the ETM.

ETMID15TO11[15:11] Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the 
ETM.

ETMPASS Output Coprocessor instruction execute indication for the 
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID Output Process ID for the ETM.

ETMPROCIDWR Output Asserted when ETMPROCID is written.

Table A-6 ETM interface signals (continued)

Name Direction Description
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A.8 INTEST wrapper signals

Table A-7 describes the ARM966E-S INTEST wrapper signals.

Table A-7 INTEST wrapper signals

Name Direction Description

SI Input Serial input data for the INTEST wrapper scan 
chain.

SO Output Serial output data from the INTEST wrapper scan 
chain.

SCANEN Input Enables scanning of data through the INTEST 
wrapper scan chain.

TESTEN Input Selects the INTEST wrapper scan chain as the 
source for ARM966E-S inputs.

SERIALEN Input Enables the INTEST wrapper BIST activation mode 
where the scan chain is used to apply serialized 
ARM instructions to the ARM966E-S to activate 
BIST test of the tightly-coupled SRAM.

ICAPTUREEN Input 1 = INTEST wrapper in INTEST mode
0 = INTEST wrapper in EXTEST mode.
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A.9 DMA Signals

DMA signals are listed in Table 11-8.

Table 11-8 DMA signals

Name Direction Description

DMAENABLE Input Enable ARM966E-S DMA port. Must be tied LOW 
if DMA not required.

DMAnREQ Input DMA not memory request. Must be tied HIGH if 
DMA not required.

DMAA[25:0] Input DMA address. Accesses up to 64Mbyte of memory. 
Unused address bits must be tied LOW.

DMAnRW Input DMA write not read:
0 = read
1 = write.

DMAMAS[1:0] Input DMA Memory Access Size. Encodes the size of 
writes. Reads are always word wide:
00 = byte
01 = halfword
10 = word
11 = reserved.

DMAD[31:0] Input DMA write data.

DMAWait Input DMA Wait. Used to stall the ARM966E-S to allow a 
DMA access to take place. This functionality is only 
required if the data RAM is single-port. This signal 
must be tied LOW if the data RAM is dual-port.
This signal has the same functionality internal to the 
ARM966E-S as FIFOFULL.

DMAReady Output DMA Ready. Asserted HIGH when the 
ARM966E-S is stalled. Only needs to be sampled 
when the data RAM is single port, for example when 
the ARM966E-S stall was requested by DMAWait.

DMARData[31:0] Output DMA read data.
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Appendix B
AC Parameters

This appendix describes the AC timing parameters for the ARM966E-S. It contains the 
following sections:

• Timing diagrams on page B-2

• AC timing parameter definitions on page B-12.
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B.1 Timing diagrams

The timing diagrams in this section are:

• Clock, reset and AHB enable timing

• AHB bus request and grant related timing on page B-3

• AHB bus master timing on page B-4

• Coprocessor interface timing on page B-5

• Debug interface timing on page B-6

• JTAG interface timing on page B-7

• DBGSDOUT to DBGTDO timing on page B-8

• Exception and configuration timing on page B-8

• INTEST wrapper timing on page B-9

• ETM interface timing on page B-10.

Clock, reset and AHB enable timing parameters are shown in Figure B-1.

Figure B-1 Clock, reset and AHB enable timing



AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-3

AHB bus request and grant related timing parameters are shown in Figure B-2.

Figure B-2 AHB bus request and grant related timing
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AHB bus master timing parameters are shown in Figure B-3.

Figure B-3 AHB bus master timing
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Coprocessor interface timing parameters are shown in Figure B-4.

Figure B-4 Coprocessor interface timing
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Debug interface timing parameters are shown in Figure B-5.

Figure B-5 Debug interface timing
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JTAG interface timing parameters are shown in Figure B-6.

Figure B-6 JTAG interface timing
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A combinatorial path timing parameter exists from the DBGSDOUT input to the 
DBGTDO output. This is shown in Figure B-7.

Figure B-7 DBGSDOUT to DBGTDO timing

Exception and configuration timing parameters are shown in Figure B-8.

Figure B-8 Exception and configuration timing
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The INTEST wrapper timing parameters are shown in Figure B-9.

Figure B-9 INTEST wrapper timing
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The ETM interface timing parameters are shown in Figure B-10.

Figure B-10 ETM interface timing
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The DMA interface timing parameters are shown in Figure B-11

Figure B-11 DMA interface timing
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B.2 AC timing parameter definitions

Table B-1 shows target AC parameters. All figures are expressed as percentages of the 
CLK period at maximum operating frequency. 

Note

The figures quoted are relative to the rising clock edge after the clock skew for internal 
buffering has been added. Inputs given a 0% hold figure therefore require a positive 
hold relative to the top- level clock input. The amount of hold required is equivalent to 
the internal clock skew.

Table B-1 AC parameters

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup time to rising CLK 85% -

Tihhen HCLKEN input hold time from rising CLK - 0%

Tisrst HRESETn deassertion input setup time to rising CLK 90% -

Tihrst HRESETn deassertion input hold time from rising CLK - 0%

Tovreq Rising CLK to HBUSREQ valid - 30%

Tohreq HBUSREQ hold time from rising CLK >0% -

Tovlck Rising CLK to HLOCK valid - 30%

Tohlck HLOCK hold time from rising CLK >0% -

Tisgnt HGRANT input setup time to rising CLK 40% -

Tihgnt HGRANT input hold time from rising CLK - 0%

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK >0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK >0% -



AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-13

Tovwd Rising CLK to HWDATA[31:0] valid - 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% -

Tisrdy HREADY input setup time to rising CLK 75% -

Tihrdy HREADY input hold time from rising CLK - 0%

Tisrsp HRESP[1:0] input setup time to rising CLK 50% -

Tihrsp HRESP[1:0] input hold time from rising CLK - 0%

Tisrd HRDATA[31:0] input setup time to rising CLK 40% -

Tihrd HRDATA[31:0] input hold time from rising CLK - 0%

Tovcpen Rising CLK to CPCLKEN valid - 30%

Tohcpen CPCLKEN hold time from rising CLK >0% -

Tovcpid Rising CLK to CPINSTR[31:0] valid - 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK >0% -

Tovcpctl Rising CLK to transaction control valid - 30%

Tohcpctl Transaction control hold time from rising CLK >0% -

Tiscphs Coprocessor handshake input setup time to rising CLK 50% -

Tihcphs Coprocessor handshake input hold time from rising CLK - 0%

Tovcplc Rising CLK to CPLATECANCEL valid - 30%

Tohcplc CPLATECANCEL hold time from rising CLK >0% -

Tovcpps Rising CLK to CPPASS valid - 30%

Tohcpps CPPASS hold time from rising CLK >0% -

Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK >0% -

Tiscpwr CPDIN[31:0] input setup time to rising CLK 40% -

Tihcpwr CPDIN[31:0] input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max
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Tovdbgack Rising CLK to DBGACK valid - 60%

Tohdbgack DBGACK hold time from rising CLK >0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 60%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%

Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% -

Tovdbgcomm Rising CLK to communications channel outputs valid - 30%

Tohdbgcomm Communications channel outputs hold time from rising CLK >0% -

Tisdbgin Debug inputs setup time to rising CLK 30% -

Tihdbgin Debug inputs hold time from rising CLK - 0%

Tisiebkpt DBGIEBKPT input setup time to rising CLK 20% -

Tihiebkpt DBGIEBKPT input hold time from rising CLK - 0%

Tisdewpt DBGDEWPT input setup time to rising CLK 20% -

Tihdewpt DBGDEWPT input hold time from rising CLK - 0%

Tovdbgsm Rising CLK to debug state valid - 30%

Tohdbgsm Debug state hold time from rising CLK >0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% -

Tovsdin Rising CLK to DBGSDIN valid - 20%

Tohsdin DBGSDIN hold time from rising CLK >0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK >0% -

Table B-1 AC parameters (continued)

Symbol Parameter Min Max



AC Parameters

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. B-15

Tisntrst DBGnTRST de-asserted input setup time to rising CLK 35% -

Tihntrst DBGnTRST input hold time from rising CLK - 0%

Tistdi Tap state control input setup time to rising CLK 25% -

Tihtdi Tap state control input hold time from rising CLK - 0%

Tistcken DBGTCKEN input setup time to rising CLK 50% -

Tihtcken DBGTCKEN input hold time from rising CLK - 0%

Tistapid TAPID[31:0] input setup time to rising CLK 20% -

Tihtapid TAPID[31:0] input hold time from rising CLK - 0%

Tdsd DBGTDO delay from DBGSDOUTBS changing - 30%

Tdsh DBGTDO hold time from DBGSDOUTBS changing >0% -

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% -

Tisint Interrupt input setup time to rising CLK 15% -

Tihint Interrupt input hold time from rising CLK - 0%

Tishivecs VINITHI input setup time to rising CLK 95% -

Tihhivecs VINITHI input hold time from rising CLK - 0%

Tisinitram INITRAM input setup time to rising CLK 95% -

Tihinitram INITRAM input hold time from rising CLK - 0%

Tovso Rising CLK to SO valid - 30%

Tohso SO hold time from rising CLK >0% -

Tissi SI input setup time to rising CLK 95% -

Tihsi SI input hold time from rising CLK - 0%

Tisscanen SCANEN input setup time to rising CLK 95% -

Tihscanen SCANEN input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max
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Tistesten TESTEN input setup time to rising CLK 95% -

Tihtesten TESTEN input hold time from rising CLK - 0%

Tisserialen SERIALEN input setup time to rising CLK 95% -

Tihserialen SERIALEN input hold time from rising CLK - 0%

Tiscaptureen CAPTUREEN input setup time to rising CLK 95% -

Tihcaptureen CAPTUREEN input hold time from rising CLK - 0%

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% -

Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK >0% -

Tovetmnwait Rising CLK to ETMnWAIT valid - 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK >0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% -

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% -

Table B-1 AC parameters (continued)

Symbol Parameter Min Max
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Note

• The VINITHI and INITRAM pins are specified as 95% of the cycle as they are 
for input configuration during reset and can be considered static.

• The INTEST wrapper inputs and outputs are specified as 95% of the cycle as they 
are production test related and expected to operate at typically 50% of the 
functional clock rate.

Tisetmen ETMEN input setup time to rising CLK 50% -

Tihetmen ETMEN input hold time from rising CLK - 0%

Tisfifofull FIFOFULL input setup time to rising CLK 50% -

Tihetmen FIFOFULL input hold time from rising CLK - 0%

Tovdma Rising CLK to DMA signals valid 50% -

Tohdma DMA signals hold time from rising CLK 0% -

Tisdma DMA input setup time to rising CLK 50% -

Tihdma DMA input hold time from rising CLK - 0%

Table B-1 AC parameters (continued)

Symbol Parameter Min Max
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Appendix C
SRAM Stall Cycles

This appendix describes the tightly-coupled SRAM in the ARM966E-S. It contains the 
following section:

• About SRAM stall cycles on page C-2.

For details of the ARM9E-S interface signals referenced in this section, refer to the 
ARM9E-S Technical Reference Manual.
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C.1 About SRAM stall cycles

Stall cycles can occur in both the instruction and data SRAMs, with one stall 
mechanism being shared between the SRAMs and additional stall mechanism attributed 
to the I-SRAM only. Any stall requirement is detected by the SRAM control and 
factored into its response to the ARM966E-S system controller. The ARM9E-S 
SYSCLKEN input is then deasserted until the SRAM has performed the access.

C.1.1 Read-follows-write

This stall mechanism is shared by both instruction and data SRAM because of the 
pipelined nature of write data from the ARM9E-S core. The write data appears on the 
core interface in the cycle after the address, so that it is not possible to perform the write 
until the next rising clock edge. The address from the core must therefore be pipelined 
to line up with the write data. A write with pipelined address is shown in 
Figure C-1.

Figure C-1 SRAM write cycle
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The write is performed on the second rising edge of the period marked D-SRAM write 
cycle.

In the case of back-to-back writes, stalls do not occur because the pipelined address is 
being used and this keeps in step with the data. However, if a read follows the write, the 
write must first be allowed to complete before the lookup for the read can be performed.  
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Figure C-2 shows this example and how the SRAM control must pipeline and select 
between the write and read address. The ARM9E-S core is stalled for a cycle by the 
system controller by deasserting SYSCLKEN.

Figure C-2 Read follows write

Note

The second rising edge of the SRAM write cycle is the same edge that is required for 
the SRAM read (of Addr B). It is not possible to read and write concurrently so a stall 
must occur before the read of Addr B.

C.1.2 Additional Instruction SRAM stalls

The I-SRAM has additional stall cycles that arise because of the following operations:

• data reads to the I-SRAM are pipeline
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• any access can occur during two cycle data reads and writes.
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Simultaneous instruction fetch, data read

The ARM9E-S data interface is able to access the I-SRAM for programming purposes 
and for access to literal tables during program execution. 

It is possible for the ARM9E-S to issue a simultaneous instruction and data request, and 
if the data request addresses the I-SRAM, a stall cycle is required (see Figure C-3).

Figure C-3 Simultaneous instruction fetch, data read

Note

In the case of simultaneous I-SRAM and D-SRAM read access requests from the 
ARM9E-S core, the instruction fetch is always performed first, followed by the data 
read. The core is disabled until both accesses have completed.
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Data read

To maximize the I-SRAM interface frequency performance, data read requests to this 
RAM are pipelined. This adds a stall cycle for every data read instruction. An example 
of a data read from the I-SRAM is shown in Figure C-4.

Figure C-4 Data read from I-SRAM

The stall cycle is only incurred for the first read of a read instruction. If an LDM is 
performed, there is a stall cycle inserted only for the first read of the LDM. Back-to- back 
LDRs will incur a stall cycle at the start of each LDR.
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Data read followed by instruction fetch

Data reads to the I-SRAM are pipelined. An instruction fetch in the cycle after a data 
read request coincides with the stalled data read and so the instruction fetch is stalled 
for 1 cycle. This is shown in Figure C-5.

Figure C-5 Data read followed by instruction fetch

CLK

DnMREQ

InMREQ

DnRW

DA[31:0]

IA[31:0]

I-SRAM

Addr

RDATA[31:0]

INSTR[31:0]

SYSCLKEN

Addr A(read)

Addr A

Addr B(fetch)

Addr B

Readdata (A)

Readdata (B)

stall

cycle

data

read

instr

fetch



SRAM Stall Cycles

ARM DDI 0186A Copyright © ARM Limited 2000. All rights reserved. C-7

Simultaneous instruction fetch, data write

If the ARM9E-S performs a simultaneous data write and instruction fetch that both map 
to I-SRAM address space, two stall cycles occur. The first cycle allows for the pipelined 
write, the second cycle allows for the instruction fetch. The core cannot be enabled until 
both accesses have completed (see Figure C-6).

Figure C-6 Simultaneous instruction fetch, data write
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I-SRAM data write followed by instruction fetch

This class of stall occurs when a data write to the I-SRAM address space is performed, 
followed by an instruction fetch request in the next cycle. It is similar to the generic read 
follows write scenario of each SRAM except that the read is an instruction fetch rather 
than a data load. The instruction fetch must be held off until the write has completed, 
requiring that the ARM9E-S core is stalled for a cycle (see Figure C-7).

Figure C-7 I-SRAM data write followed by instruction fetch
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I-SRAM write followed by instruction fetch, data write

This case is where a write is taking place to the I-SRAM that is immediately followed 
by both an instruction fetch and a data write. The second write is performed 
immediately after the current write without penalty. However, the core must be stalled 
until both the second write and instruction fetch have completed, so there are two stall 
cycles (see Figure C-8).

Figure C-8 I-SRAM write followed by instruction fetch, data write
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I-SRAM write followed by instruction fetch, data read

This is where a write is taking place to the I-SRAM that is immediately followed by 
both an instruction fetch and a data read. This has the same two-stall cycle response as 
the previous scenario, although the I-SRAM control behaves differently. The first write 
must complete before the data read can be performed. The instruction fetch can then be 
performed in the next cycle (see Figure C-9).

Figure C-9 I-SRAM write followed by instruction fetch, data read
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