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Preface

This preface introduces the ARM720T (Rev 4) processor and its reference 
documentation. It contains the following sections:

• About this document on page xiv

• Feedback on page xviii.
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Preface 
About this document

This document is a technical reference manual for the ARM720T (Rev 4) processor.

Intended audience

This document has been written for experienced hardware and software engineers who 
might or might not have experience of the architecture, configuration, integration, and 
instruction sets with reference to the ARM product range.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM720T processor.

Chapter 2 Programmer’s Model 

Read this chapter for a description of the 32-bit ARM and 16-bit Thumb 
instruction sets.

Chapter 3 Configuration 

Read this chapter for a description of how to use the system control 
coprocessor, CP15, to configure devices that are peripheral to the core.

Chapter 4 Instruction and Data Cache 

Read this chapter for an overview of the mixed instruction and data cache.

Chapter 5 Write Buffer 

Read this chapter for a description of how you can enhance the system 
performance of the ARM720T processor by using the write buffer.

Chapter 6 The Bus Interface 

Read this chapter for a description of the ARM720T processor bus 
interface.

Chapter 7 Memory Management Unit 

Read this chapter for a description of the functions and use of the memory 
management unit.

Chapter 8 Coprocessor Interface 

Read this chapter for information about connecting and using external 
coprocessors.
xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Preface 
Chapter 9 Debugging Your System 

Read this chapter for a description of the hardware extensions and 
integrated on-chip debug support for the ARM720T processor.

Chapter 10 ETM Interface 

Read this chapter for a description of the Embedded Trace Macrocell 
support for the ARM720T processor.

Chapter 11 Test Support 

Read this chapter for information about performing device-specific test 
operations.

Appendix A Signal Descriptions 

Read this appendix for a list of all ARM720T processor interface signals.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names, and interface elements 
such as menu names. Also used for terms in descriptive lists, 
where appropriate.

italic Highlights special terminology, cross-references, and citations.

monospace Denotes text that can be entered at the keyboard, such as 
commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

monospace italic Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

monospace bold  Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labeled when they occur. 
Therefore, no additional meaning must be attached unless specifically stated.
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. xv



Preface 
Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This document contains information that is specific to the ARM720T processor. Refer 
to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• AMBA Specification (Rev 2.0) (ARM IHI 0011)

• ETM7 (Rev 1) Technical Reference Manual (ARM DDI 0158)

• ARM7TDMI-S (Rev 4) Technical Reference Manual (ARM DDI 0234).

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
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Other publications

This section lists relevant documents published by third parties.

• Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 
1149.1.1990).
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Preface 
Feedback

ARM Limited welcomes feedback both on the ARM720T processor, and on the 
documentation.

Feedback on the ARM720T processor

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on the ARM720T documentation

If you have any comments about this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xviii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Chapter 1 
Introduction

This chapter provides an introduction to the ARM720T processor. It contains the 
following sections:

• About the ARM720T (Rev 4) macrocell on page 1-2

• Coprocessors on page 1-7

• About the instruction set on page 1-8.
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Introduction 
1.1 About the ARM720T (Rev 4) macrocell

The ARM720T (Rev 4) macrocell is a general-purpose 32-bit microprocessor with 8KB 
cache, enlarged write buffer, and Memory Management Unit (MMU) combined in a 
single chip. The CPU within the ARM720T macrocell is the ARM7TDMI-S processor. 
The ARM720T (Rev 4) macrocell is software-compatible with the ARM processor 
family.

The on-chip mixed data and instruction cache, together with the write buffer, 
substantially raise the average execution speed and reduce the average amount of 
memory bandwidth required by the processor. This enables the external memory to 
support additional processors or Direct Memory Access (DMA) channels with minimal 
performance loss.

The MMU supports a conventional two-level page-table structure and several 
extensions that make it ideal for embedded control, UNIX, and object-oriented systems.

The allocation of virtual addresses with different task IDs improves performance in task 
switching operations with the cache enabled. These relocated virtual addresses are 
monitored by the EmbeddedICE-RT block.

The memory interface enables the performance potential to be realized without 
incurring high costs in the memory system. Speed-critical control signals are pipelined 
to allow system control functions to be implemented in standard low-power logic. These 
control signals permit the exploitation of paged mode access offered by 
industry-standard DRAMs.

The ARM720T processor is provided with an Embedded Trace Macrocell (ETM) 
interface that brings out the required signals from the ARM core to the periphery of the 
ARM720T macrocell. This enables you to connect a standard ETM7 macrocell.

The ARM720T macrocell is a fully static part and has been designed to minimize power 
requirements. This makes it ideal for portable applications where low power 
consumption is essential.

The ARM720T processor architecture is based on Reduced Instruction Set Computer 
(RISC) principles. The instruction set and related decode mechanism are greatly 
simplified compared with microprogrammed Complex Instruction Set Computers 
(CISCs).

A block diagram of the ARM720T macrocell is shown in Figure 1-1 on page 1-3.
1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Introduction 
Figure 1-1 Block diagram

The functional signals on the ARM720T (Rev 4) processor are shown in Figure 1-2 on 
page 1-4.
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Introduction 
Figure 1-2 ARM720T (Rev 4) processor functional signals
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signals

JTAG

interface
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Introduction 
1.1.1 EmbeddedICE-RT logic

The EmbeddedICE-RT logic provides integrated on-chip debug support for the 
ARM720T core. It enables you to program the conditions under which a breakpoint or 
watchpoint can occur.

The EmbeddedICE-RT logic is an enhanced implementation of EmbeddedICE, and 
enables you to perform debugging in monitor mode. In monitor mode, the core takes an 
exception on a breakpoint or watchpoint, rather than entering debug state as it does in 
halt mode.

If the core does not enter debug state when it encounters a watchpoint or breakpoint, it 
can continue to service hardware interrupt requests as normal. Debugging in monitor 
mode is extremely useful if the core forms part of the feedback loop of a mechanical 
system, where stopping the core can potentially lead to system failure.

The EmbeddedICE-RT logic contains a Debug Communications Channel (DCC). The 
DCC is used to pass information between the target and the host debugger. The 
EmbeddedICE-RT logic is controlled through the Joint Test Action Group (JTAG) test 
access port.

Changes to the programmer’s model

To provide support for the EmbeddedICE-RT macrocell, the following changes have 
been made to the programmer’s model for the ARM720T (Rev 4) processor:

Debug control register 

There are two new bits in the debug control register:

Bit 4 Monitor mode enable. Use this to control how the 
device reacts on a breakpoint or watchpoint:

• When set, the core takes the instruction or data 
abort exception.

• When clear, the core enters debug state.

Bit 5 EmbeddedICE-RT disable. Use this when changing 
watchpoints and breakpoints:

• When set, this bit disables breakpoints and 
watchpoints, enabling the breakpoint or 
watchpoint registers to be programmed with new 
values. 

• When clear, the new breakpoint or watchpoint 
values become operational.

For more information, see Debug control register on page 9-62.
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Coprocessor register map 

A new register (R2) in the coprocessor register map indicates 
whether the processor entered the Prefetch or Data Abort 
exception because of a real abort, or because of a breakpoint or 
watchpoint. For more details, see Abort status register on 
page 9-61.

For more details, see Chapter 9 Debugging Your System.
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Introduction 
1.2 Coprocessors

The ARM720T macrocell has an internal coprocessor designated CP15 for internal 
control of the device (see Chapter 3 Configuration).

The ARM720T macrocell also includes a port for the connection of on-chip external 
coprocessors. This enables extension of the ARM720T functionality in an 
architecturally-consistent manner.
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1.3 About the instruction set

The instruction set comprises ten basic instruction types:

• Two types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to 
perform high-speed operations on the data in a bank of 31 registers, each 32 bits 
wide.

• Three types of instruction control the data transfer between memory and the 
registers:

— one optimized for flexibility of addressing

— one for rapid context switching

— one for swapping data.

• Two instructions control the flow and privilege level of execution.

• Three types are dedicated to the control of external coprocessors. These enable 
you to extend the functionality of the instruction set off-chip in an open and 
uniform way.

The ARM instruction set is a good target for compilers of many different high-level 
languages. Where required for critical code segments, assembly code programming is 
also straightforward, unlike some RISC processors that depend on sophisticated 
compiler technology to manage complicated instruction interdependencies.

1.3.1 Format summary

This section provides a summary of the ARM and Thumb instruction sets:

• ARM instruction set on page 1-9

• Thumb instruction set on page 1-18.

A key to the instruction set tables is shown in Table 1-1.

The ARM7TDMI-S core on the ARM720T macrocell is an implementation of the ARM 
architecture v4T. For a complete description of both instruction sets, see the ARM 
Architecture Reference Manual.

Table 1-1 Key to tables

Entry Description

{cond} Refer to Table 1-11 on page 1-18.

<Oprnd2> Refer to Table 1-9 on page 1-17.

{field} Refer to Table 1-10 on page 1-17.
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1.3.2 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of 
these instructions, refer to the ARM Architecture Reference Manual.

The ARM instruction set formats are shown in Figure 1-3 on page 1-10.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address translation. Cannot be used with 
pre-indexed addresses.

<a_mode2> Refer to Table 1-3 on page 1-13.

<a_mode2P> Refer to Table 1-4 on page 1-14.

<a_mode3> Refer to Table 1-5 on page 1-15.

<a_mode4L> Refer to Table 1-6 on page 1-16.

<a_mode4S> Refer to Table 1-7 on page 1-16.

<a_mode5> Refer to Table 1-8 on page 1-16.

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit 
value by an even number of bits.

<reglist> A comma-separated list of registers, enclosed in 
braces ( { and } ).

Table 1-1 Key to tables (continued)

Entry Description
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Figure 1-3 ARM instruction set formats
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The ARM instruction set summary is shown in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>

Move NOT MVN{cond}{S} Rd, <Oprnd2>

Move SPSR to register MRS{cond} Rd, SPSR

Move CPSR to register MRS{cond} Rd, CPSR

Move register to SPSR MSR{cond} SPSR{field}, Rm

Move register to CPSR MSR{cond} CPSR{field}, Rm

Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm

Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>

Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Compare CMP{cond} Rd, <Oprnd2>

Compare negative CMN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>

Test equivalence TEQ{cond} Rn, <Oprnd2>
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AND AND{cond}{S} Rd, Rn, <Oprnd2>

EOR EOR{cond}{S} Rd, Rn, <Oprnd2>

ORR ORR{cond}{S} Rd, Rn, <Oprnd2>

Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Branch, and exchange instruction set BX{cond} Rn

Load Word LDR{cond} Rd, <a_mode2>

Word with User Mode privilege LDR{cond}T Rd, <a_mode2P>

Byte LDR{cond}B Rd, <a_mode2>

Byte with User Mode privilege LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>

Halfword LDR{cond}H Rd, <a_mode3>

Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple block 
data operations

Increment before LDM{cond}IB Rd{!}, <reglist>{^}

Increment after LDM{cond}IA Rd{!}, <reglist>{^}

Decrement before LDM{cond}DB Rd{!}, <reglist>{^}

Decrement after LDM{cond}DA Rd{!}, <reglist>{^}

Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>

Stack operations, and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^

User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>^

Store Word STR{cond} Rd, <a_mode2>

Word with User Mode privilege STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Table 1-2 ARM instruction summary (continued)

Operation Assembler
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Addressing mode 2, <a_mode2>, is shown in Table 1-3.

Byte with User Mode privilege STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple block 
data operations

Increment before STM{cond}IB Rd{!}, <reglist>{^}

Increment after STM{cond}IA Rd{!}, <reglist>{^}

Decrement before STM{cond}DB Rd{!}, <reglist>{^}

Decrement after STM{cond}DA Rd{!}, <reglist>{^}

Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>^

Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>

Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software 
Interrupt

SWI 24bit_Imm

Table 1-2 ARM instruction summary (continued)

Operation Assembler

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]
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Addressing mode 2 (privileged), <a_mode2P>, is shown in Table 1-4.

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed immediate offset [Rn, #+/-12bit_Offset]!

Pre-indexed register offset [Rn, +/-Rm]!

Pre-indexed scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed immediate offset [Rn], #+/-12bit_Offset

Post-indexed register offset [Rn], +/-Rm

Post-indexed scaled register offset [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

Table 1-3 Addressing mode 2 (continued)

Operation Assembler
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Addressing mode 3 (signed byte, and halfword data transfer), <a_mode3>, is shown in 
Table 1-5.

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed immediate offset [Rn], #+/-12bit_Offset

Post-indexed register offset [Rn], +/-Rm

Post-indexed scaled register 
offset

[Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-5 Addressing mode 3

Operation Assembler

Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm

Table 1-4 Addressing mode 2 (privileged) (continued)

Operation Assembler
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Addressing mode 4 (load), <a_mode4L>, is shown in Table 1-6.

Addressing mode 4 (store), <a_mode4S>, is shown in Table 1-7.

Addressing mode 5 (coprocessor data transfer), <a_mode5>, is shown in Table 1-8.

Table 1-6 Addressing mode 4 (load)

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Table 1-7 Addressing mode 4 (store)

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Table 1-8 Addressing mode 5

Operation Assembler

Immediate offset [Rn, #+/-(8bit_Offset*4)]

Pre-indexed [Rn, #+/-(8bit_Offset*4)]!

Post-indexed [Rn], #+/-(8bit_Offset*4)
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Operand 2, <Oprnd2>, is shown in Table 1-9.

Fields, {field}, are shown in Table 1-10.

Table 1-9 Operand 2

Operation Assembler

Immediate value #32bit_Imm

Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Table 1-10 Fields

Suffix Sets

_c Control field mask bit (bit 3)

_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit (bit 2)
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Condition fields, {cond}, are shown in Table 1-11.

1.3.3 Thumb instruction set

This section gives an overview of the Thumb instructions available. For full details of 
these instructions, see the ARM Architecture Reference Manual.

The Thumb instruction set formats are shown in Figure 1-4 on page 1-19.

Table 1-11 Condition fields

Suffix Description Condition(s)

EQ Equal Z set

NE Not equal Z clear

CS Unsigned higher, or same C set

CC Unsigned lower C clear

MI Negative N set

PL Positive, or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C set, Z clear

LS Unsigned lower, or same C clear, Z set

GE Greater, or equal N=V (N and V set or N and V clear)

LT Less than N<>V (N set and V clear) or (N clear and V set)

GT Greater than Z clear, N=V (N and V set or N and V clear)

LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V 
set)

AL Always Always
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Figure 1-4 Thumb instruction set formats
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The Thumb instruction set summary is shown in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler

Move Immediate MOV Rd, #8bit_Imm

High to Low MOV Rd, Hs

Low to High MOV Hd, Rs

High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm

Add Low, and Low ADD Rd, Rs, Rn

Add High to Low ADD Rd, Hs

Add Low to High ADD Hd, Rs

Add High to High ADD Hd, Hs

Add Immediate ADD Rd, #8bit_Imm

Add Value to SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm

Add with carry ADC Rd, Rs

Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm

Subtract Immediate SUB Rd, #8bit_Imm

Subtract with carry SBC Rd, Rs

Negate NEG Rd, Rs

Multiply MUL Rd, Rs

Compare Low, and Low CMP Rd, Rs

Compare Low, and High CMP Rd, Hs

Compare High, and Low CMP Hd, Rs

Compare High, and High CMP Hd, Hs

Compare Negative CMN Rd, Rs

Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs
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EOR EOR Rd, Rs

OR ORR Rd, Rs

Bit clear BIC Rd, Rs

Move NOT MVN Rd, Rs

Test bits TST Rd, Rs

Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs

Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs

Rotate right ROR Rd, Rs

Branch Conditional

if Z set BEQ label

if Z clear BNE label

if C set BCS label

if C clear BCC label

if N set BMI label

if N clear BPL label

if V set BVS label

if V clear BVC label

if C set, and Z clear BHI label

if C clear, and Z set BLS label

if N set, and V set, or if N 
clear, and V clear

BGE label

if N set, and V clear, or if N 
clear, and V set

BLT label

if Z clear, and N, or V set, 
or if Z clear, and N, or V 
clear

BGT label

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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if Z set, or N set, and V 
clear, or N clear, and V set

BLE label

Unconditional B label

Long branch with link BL label

Optional state change

to address held in Lo reg BX Rs

to address held in Hi reg BX Hs

Load With immediate offset

word LDR Rd, [Rb, #7bit_offset]

halfword LDRH Rd, [Rb, #6bit_offset]

byte LDRB Rd, [Rb, #5bit_offset]

With register offset

word LDR Rd, [Rb, Ro]

halfword LDRH Rd, [Rb, Ro]

signed halfword LDRSH Rd, [Rb, Ro]

byte LDRB Rd, [Rb, Ro]

signed byte LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]

SP-relative LDR Rd, [SP, #10bit_Offset]

Address

using PC ADD Rd, PC, #10bit_Offset

using SP ADD Rd, SP, #10bit_Offset

Multiple LDMIA Rb!, <reglist>

Store With immediate offset

word STR Rd, [Rb, #7bit_offset]

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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halfword STRH Rd, [Rb, #6bit_offset]

byte STRB Rd, [Rb, #5bit_offset]

With register offset

word STR Rd, [Rb, Ro]

halfword STRH Rd, [Rb, Ro]

byte STRB Rd, [Rb, Ro]

SP-relative STR Rd, [SP, #10bit_offset]

Multiple STMIA Rb!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto 
stack

PUSH <reglist, LR>

Pop registers from stack POP <reglist>

Pop registers, and PC from 
stack

POP <reglist, PC>

Software 
Interrupt

SWI 8bit_Imm

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Chapter 2 
Programmer’s Model

This chapter describes the programmer’s model for the ARM720T processor . It 
contains the following sections:

• Processor operating states on page 2-2

• Memory formats on page 2-3

• Instruction length on page 2-5

• Data types on page 2-6

• Operating modes on page 2-7

• Registers on page 2-8

• Program status registers on page 2-13

• Exceptions on page 2-16

• Relocation of low virtual addresses by the FCSE PID on page 2-23

• Reset on page 2-24

• Implementation-defined behavior of instructions on page 2-25.
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Programmer’s Model 
2.1 Processor operating states

From the point of view of the programmer, the ARM720T processor can be in one of 
two states:

ARM state This executes 32-bit, word-aligned ARM instructions.

Thumb state This operates with 16-bit, halfword-aligned Thumb instructions. 
In this state, the PC uses bit 1 to select between alternate 
halfwords.

2.1.1 Switching between processor states

Transition between processor states does not affect the processor mode or the contents 
of the registers.

Entering Thumb state 

Entry into Thumb state can be achieved by executing a BX instruction with the state bit 
(bit 0) set in the operand register.

Transition to Thumb state also occurs automatically on return from an exception, for 
example, Interrupt ReQuest (IRQ), Fast Interrupt reQuest (FIQ), UNDEF, ABORT, and 
SoftWare Interrupt (SWI) if the exception was entered with the processor in Thumb 
state.

Entering ARM state

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception, for example, IRQ, FIQ, RESET, UNDEF, 
ABORT, and SWI. In this case, the PC is placed in the link register of the 
exception mode, and execution starts at the vector address of the exception.
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2.2 Memory formats

The ARM720T processor views memory as a linear collection of bytes numbered 
upwards from zero, as follows:

Bytes 0 to 3 Hold the first stored word.

Bytes 4 to 7 Hold the second stored word.

Bytes 8 to 11 Hold the third stored word.

Words are stored in memory as big or little-endian, as described in the following 
sections:

• Big-endian format

• Little-endian format on page 2-4.

The endianness used depends on the status of the big-end bit in the control register of 
the system control coprocessor. See Register 1, control register on page 3-5 for more 
information.

2.2.1 Big-endian format

In big-endian format, the most significant byte of a word is stored at the lowest 
numbered byte and the least significant byte at the highest numbered byte. Byte 0 of the 
memory system is therefore connected to data lines 31 to 24.

Big-endian format is shown in Figure 2-1.

Figure 2-1 Big-endian addresses of bytes with words
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address
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2.2.2 Little-endian format

In little-endian format, the lowest numbered byte in a word is considered the least 
significant byte of the word, and the highest numbered byte the most significant. Byte 
0 of the memory system is therefore connected to data lines 7 to 0. 

Little-endian format is shown in Figure 2-2.

Figure 2-2 Little-endian addresses of bytes with words
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2.3 Instruction length

Instructions are:

• 32 bits long in ARM state

• 16 bits long in Thumb state.
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2.4 Data types

The ARM720T processor supports the following data types:

• byte (8-bit)

• halfword (16-bit)

• word (32-bit).

You must align these as follows:

• word quantities to 4-byte boundaries

• halfwords quantities to 2-byte boundaries

• byte quantities can be placed on any byte boundary.
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2.5 Operating modes

The ARM720T processor supports seven modes of operation, as shown in Table 2-1.

2.5.1 Changing operating modes

Mode changes can be made under software control, by external interrupts or during 
exception processing. Most application programs execute in User mode. The non-User 
modes, known as privileged modes, are entered in order to service interrupts or 
exceptions, or to access protected resources.

Table 2-1 ARM720T modes of operation

Mode Type Description

User usr The normal ARM program execution mode

FIQ fiq Used for most performance-critical interrupts in a system

IRQ irq Used for general-purpose interrupt handling

Supervisor svc Protected mode for the operating system 

Abort mode abt Entered after a Data Abort or instruction Prefetch Abort

System sys A privileged User mode for the operating system

Undefined und Entered when an Undefined Instruction is executed
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2.6 Registers

The ARM720T processor has a total of 37 registers:

• 31 general-purpose 32-bit registers

• six program status registers.

These registers cannot all be seen at once. The processor state and operating mode 
dictate which registers are available to the programmer.

2.6.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are visible at any one 
time. In privileged (non-User) modes, mode-specific banked registers are switched in. 
Figure 2-3 on page 2-9 shows which registers are available in each mode. The banked 
registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers, R0 to R15. All of 
these, except R15, are general-purpose, and can be used to hold either data or address 
values. Registers R14 and R15 also have special roles, as follows:

Register 14 R14 is used as the subroutine link register. This receives a copy of 
R15 when a Branch and Link (BL) code instruction is executed. At 
all other times it can be treated as a general-purpose register. The 
corresponding banked registers R14_svc, R14_irq, R14_fiq, 
R14_abt, and R14_und are similarly used to hold the return values 
of R15 when interrupts and exceptions arise, or when BL 
instructions are executed within interrupt or exception routines.

Register 15 R15 holds the Program Counter (PC). In ARM state, bits [1:0] of 
R15 are zero and bits [31:2] contain the PC. In Thumb state, bit 0 
is zero and bits [31:1] contain the PC.

In addition to these, the Current Program Status Register (CPSR) is used to store status 
information. It contains condition code flags and the current mode bits.
2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Programmer’s Model 
Interrupt modes

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM 
state, many FIQ handlers can use these banked registers, to avoid having to save any 
registers onto a stack. User, IRQ, Supervisor, Abort, and Undefined modes each have 
two banked registers mapped to R13 and R14, allowing each of these modes to have a 
private stack pointer and link registers.

Figure 2-3 Register organization in ARM state
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2.6.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. You have direct access to:

• eight general registers, (R0–R7)

• the PC

• a Stack Pointer (SP) register

• a Link Register (LR)

• the CPSR.

There are banked SPs, LRs, and Saved Process Status Registers (SPSRs) for each 
privileged mode. This is shown in Figure 2-4.

Figure 2-4 Register organization in Thumb state
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2.6.3 The relationship between ARM and Thumb state registers 

The Thumb state registers relate to the ARM state registers in the following ways: 

• Thumb state R0–R7, and ARM state R0–R7 are identical

• Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical

• Thumb state SP maps onto ARM state R13

• Thumb state LR maps onto ARM state R14

• Thumb state PC maps onto ARM state PC (R15).

This relationship is shown in Figure 2-5.

Figure 2-5 Mapping of Thumb state registers onto ARM state registers
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A value can be transferred from a register in the range R0 – R7 (a low register) to a high 
register, and from a high register to a low register, using special variants of the MOV 
instruction. High register values can also be compared against or added to low register 
values with the CMP and ADD instructions. See the ARM Architecture Reference Manual 
for details on high register operations.
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2.7 Program status registers 

The ARM720T processor contains a CPSR, and five SPSRs for use by exception 
handlers. These registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format
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I and F bits These are the interrupt disable bits. When set, these disable the 
IRQ and FIQ interrupts respectively.

The T bit This reflects the operating state. When this bit is set, the processor 
is executing in Thumb state, otherwise it is executing in ARM 
state. This is reflected on the CPTBIT external signal. Software 
must never change the state of the CPTBIT in the CPSR. If this 
happens, the processor then enters an unpredictable state.

M[4:0] bits These are the mode bits. These determine the processor operating 
mode, as shown in Table 2-2 on page 2-15. Not all combinations 
of the mode bits define a valid processor mode. Only those 
explicitly described can be used. 

Note
 If you program any illegal value into the mode bits, M[4:0], then the processor enters 
an unrecoverable state. If this occurs, apply reset.
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2.7.3 Reserved bits 

The remaining bits in the PSRs are reserved. When changing flag or control bits of a 
PSR, you must ensure that these unused bits are not altered. Also, your program must 
not rely on them containing specific values, because in future processors they might 
read as one or zero.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User R7 to R0,

LR, SP

PC, CPSR

R14 to R0,

PC, CPSR

10001 FIQ R7 to R0,

LR_fiq, SP_fiq

PC, CPSR, SPSR_fiq

R7 to R0,

R14_fiq..R8_fiq,

PC, CPSR, SPSR_fiq

10010 IRQ R7 to R0,

LR_irq, SP_irq

PC, CPSR, SPSR_irq

R12 to R0,

R14_irq, R13_irq,

PC, CPSR, SPSR_irq

10011 Supervisor R7 to R0,

LR_svc, SP_svc,

PC, CPSR, SPSR_svc

R12 to R0,

R14_svc, R13_svc,

PC, CPSR, SPSR_svc

10111 Abort R7 to R0,

LR_abt, SP_abt,

PC, CPSR, SPSR_abt

R12 to R0,

R14_abt..R13_abt,

PC, CPSR, SPSR_abt

11011 Undefined R7 to R0

LR_und, SP_und,

PC, CPSR, SPSR_und

R12 to R0,

R14_und, R13_und,

PC, CPSR, SPSR_und

11111 System R7 to R0,

LR, SP

PC, CPSR

R14 to R0,

PC, CPSR
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2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily, 
for example to service an interrupt from a peripheral. Before an exception can be 
handled, the current processor state must be preserved so that the original program can 
resume when the handler routine has finished.

Several exceptions can arise at the same time. If this happens, they are dealt with in a 
fixed order. See Exception priorities on page 2-21.

Exception behavior is described in the following sections:

• Action on entering an exception

• Action on leaving an exception on page 2-17

• Exception entry and exit summary on page 2-17

• Fast interrupt request on page 2-18

• Interrupt request on page 2-19

• Abort on page 2-19

• Software interrupt on page 2-20

• Undefined instruction on page 2-20

• Exception vectors on page 2-21

• Exception priorities on page 2-21

• Exception restrictions on page 2-22.

2.8.1 Action on entering an exception 

When handling an exception, the ARM720T processor behaves as follows: 

1. It preserves the address of the next instruction in the appropriate LR.

a. If the exception has been entered from ARM state, the address of the next 
instruction is copied into the LR (that is, current PC+4 or PC+8 depending 
on the exception). See Table 2-3 on page 2-17 for details).

b. If the exception has been entered from Thumb state, the value written into 
the LR is the current PC, offset by a value so that the program resumes from 
the correct place on return from the exception. This means that the 
exception handler does not have to determine which state the exception was 
entered from. 

For example, in the case of SWI:

MOVS PC, R14_svc 

always returns to the next instruction regardless of whether the SWI was executed 
in ARM or Thumb state.

2. It copies the CPSR into the appropriate SPSR.
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3. It forces the CPSR mode bits to a value that depends on the exception.

4. It forces the PC to fetch the next instruction from the relevant exception vector.

It can also set the interrupt disable flags to prevent otherwise unmanageable nestings of 
exceptions.

If the processor is in Thumb state when an exception occurs, it automatically switches 
into ARM state when the PC is loaded with the exception vector address.

2.8.2 Action on leaving an exception 

On completion, the exception handler:

1. Moves the LR, minus an offset where appropriate, to the PC. The offset varies 
depending on the type of exception.

2. Copies the SPSR back to the CPSR.

3. Clears the interrupt disable flags, if they were set on entry.

Note

 An explicit switch back to Thumb state is never necessary, because restoring the CPSR 
from the SPSR automatically sets the T bit to the value it held immediately prior to the 
exception.

2.8.3 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant R14 on exception entry, 
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception Return instruction Previous state

ARM R14_x Thumb R14_x

BLa MOV PC, R14 PC + 4 PC + 2

SWIa MOVS PC, R14_svc PC + 4 PC + 2

UDEFa MOVS PC, R14_und PC + 4 PC + 2

FIQb SUBS PC, R14_fiq, #4 PC + 4 PC + 4

IRQb SUBS PC, R14_irq, #4 PC + 4 PC + 4
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2.8.4 Fast interrupt request

The FIQ exception is used for most performance-critical interrupts in a system. In ARM 
state it has sufficient private registers to remove the necessity for register saving, 
minimizing the overhead of context switching.

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are 
considered asynchronous, and a cycle delay for synchronization is incurred before the 
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ 
handler must leave the interrupt by executing:

SUBS PC, R14_fiq, #4

FIQ can be disabled by setting the F flag in the CPSR.

Note

 This is not possible from User mode. 

If the F flag is clear, the ARM720T processor checks for a LOW level on the output of 
the FIQ synchronizer at the end of each instruction.

PABTa SUBS PC, R14_abt, #4 PC + 4 PC + 4

DABTc SUBS PC, R14_abt, #8 PC + 8 PC + 8

RESETd NA - -

a. PC is the address of the BL, SWI, Undefined Instruction, or Fetch, that had the Prefetch Abort.

b. PC is the address of the instruction that was not executed because the FIQ or IRQ took priority.

c. PC is the address of the Load or Store instruction that generated the Data Abort.

d. The value saved in R14_svc upon reset is unpredictable.

Table 2-3 Exception entry and exit (continued)

Exception Return instruction Previous state

ARM R14_x Thumb R14_x
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2.8.5 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ 
has a lower priority than FIQ and is masked out when a FIQ sequence is entered. It can 
be disabled at any time by setting the I bit in the CPSR, though this can only be done 
from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ 
handler must return from the interrupt by executing:

SUBS PC, R14_irq, #4

2.8.6 Abort

An abort indicates that the current memory access cannot be completed. It can be 
signaled either by the protection unit, or by the HRESP bus. The ARM720T core 
checks for the abort exception during memory access cycles.

There are two types of abort, as follows:

Prefetch Abort This occurs during an instruction prefetch. The prefetched 
instruction is marked as invalid, but the exception is not taken until 
the instruction reaches the head of the pipeline. If the instruction 
is not executed, for example because a branch occurs while it is in 
the pipeline, the abort does not take place.

Data Abort This occurs during a data access. The action taken depends on the 
instruction type:

• Single data transfer instructions (LDR, STR) write-back 
modified base registers. The Abort handler must be aware of 
this.

• The swap instruction (SWP) is aborted as though it had not 
been executed.

• Block data transfer instructions (LDM, STM) complete. If 
write-back is set, the base is updated. If the instruction 
attempts to overwrite the base with data (that is, it has the 
base in the transfer list), the overwriting is prevented. All 
register overwriting is prevented after an abort is indicated. 
This means, in particular, that R15 (always the last register 
to be transferred) is preserved in an aborted LDM instruction.

After fixing the reason for the abort, the handler must execute the following irrespective 
of the processor state (ARM or Thumb):

SUBS PC, R14_abt, #4   for a Prefetch Abort
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SUBS PC, R14_abt, #8   for a Data Abort

This restores both the PC and the CPSR, and retries the aborted instruction.

Note

 There are restrictions on the use of the external abort signal. See External aborts on 
page 7-27.

2.8.7 Software interrupt 

The SWI instruction is used for entering Supervisor mode, usually to request a 
particular supervisor function. A SWI handler must return by executing the following 
irrespective of the state (ARM or Thumb):

MOV PC, R14_svc 

This restores the PC and CPSR, and returns to the instruction following the SWI.

2.8.8 Undefined instruction 

When the ARM720T processor encounters an instruction that it cannot handle, it takes 
the undefined instruction trap. This mechanism can be used to extend either the Thumb 
or ARM instruction set by software emulation. 

After emulating the failed instruction, the trap handler must execute the following 
irrespective of the state (ARM or Thumb):

MOVS PC, R14_und 

This restores the CPSR and returns to the instruction following the Undefined 
Instruction.
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2.8.9 Exception vectors 

The ARM720T processor can have exception vectors mapped to either low or high 
addresses, controlled by the V bit in the control register of the system control 
coprocessor (See Register 1, control register on page 3-5). Table 2-4 shows the 
exception vector addresses.

Note
 The low addresses are the defaults.

2.8.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the 
order in which they are handled: 

1. Reset (highest priority).

2. Data Abort.

3. FIQ.

4. IRQ.

5. Prefetch Abort.

6. Undefined Instruction, SWI (lowest priority).

Table 2-4 Exception vector addresses

High address  Low address  Exception Mode on entry

0xFFFF0000 0x00000000 Reset Supervisor

0xFFFF0004 0x00000004 Undefined instruction Undefined

0xFFFF0008 0x00000008 Software interrupt Supervisor 

0xFFFF000C 0x0000000C Abort (prefetch) Abort

0xFFFF0010 0x00000010 Abort (data) Abort

0xFFFF0014 0x00000014 Reserved Reserved

0xFFFF0018 0x00000018 IRQ IRQ 

0xFFFF001C 0x0000001C FIQ FIQ
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2.8.11 Exception restrictions

Undefined Instruction and SWI are mutually exclusive, because they each correspond 
to particular (non-overlapping) decodings of the current instruction.

If a Data Abort occurs at the same time as an FIQ, and FIQs are enabled, the CPSR F 
flag is clear, the ARM720T processor enters the Data Abort handler and then 
immediately proceeds to the FIQ vector. A normal return from FIQ causes the Data 
Abort handler to resume execution. Placing Data Abort at a higher priority than FIQ is 
necessary to ensure that the transfer error does not escape detection. The time for this 
exception entry must be added to worst-case FIQ latency calculations.
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2.9 Relocation of low virtual addresses by the FCSE PID

The ARM720T processor provides a mechanism, Fast Context Switch Extension 
(FCSE), to translate virtual addresses to physical addresses based on the current value 
of the FCSE Process IDentifier (PID).

The virtual address produced by the processor core going to the IDC and MMU can be 
relocated if it lies in the bottom 32MB of the virtual address. That is, virtual address bits 
[31:25] = b0000000 by the substitution of the seven bits [31:25] of the FCSE PID 
register in the CP15 coprocessor. 

A change to the FCSE PID exhibits similar behavior to a delayed branch if:

• the two instructions fetched immediately following an instruction to change the 
FCSE PID are fetched with a relocation to the previous FCSE PID

• the addresses of the instructions being fetched lie within the range of addresses to 
be relocated.

On reset, the FCSE PID register bits [31:25] are set to b0000000, disabling all 
relocation. For this reason, the low address reset exception vector is effectively never 
relocated by this mechanism. 

Note

 All addresses produced by the processor core undergo this translation if they lie in the 
appropriate address range. This includes the exception vectors if they are configured to 
lie in the bottom of the virtual memory map. This configuration is determined by the 
V bit in the CP15 control register (CP15 register 1).
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2.10 Reset

When the HRESETn signal goes LOW, the ARM720T processor:

1. Abandons the executing instruction.

2. Flushes the cache and Translation Lookaside Buffer (TLB).

3. Disables the Write Buffer (WB), cache, and MMU.

4. Resets the FCSE PID.

5. Continues to fetch instructions from incrementing word addresses.

When HRESETn is LOW, the processor samples the VINITHI external input and 
stores the result in the V bit in CP15 register 1.

When HRESETn goes HIGH again, the ARM720T processor: 

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and 
CPSR into them. The value of the saved PC and SPSR is not defined.

2. Forces M[4:0] to b10011 (Supervisor mode), sets the I and F bits in the CPSR, 
and clears the CPSR T bit.

3. Forces the PC to fetch the next instruction from the reset exception vector. 
Exception vectors are located at either high or low addresses depending on the 
state of the V bit in CP15 register 1 (LOW = low addresses, HIGH = high 
addresses).

4. Resumes execution in ARM state.
2-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Programmer’s Model 
2.11 Implementation-defined behavior of instructions

The ARM Architectural Reference Manual defines the instruction set of the ARM720T 
processor:

• See Indexed Addressing on a Data Abort for the behavior of instructions that are 
identified as implementation-defined in the ARM Architectural Reference 
Manual.

• See Early termination for those features that define signed and unsigned early 
termination on the ARM720T processor.

2.11.1 Indexed Addressing on a Data Abort

In the event of a Data Abort with pre-indexed or post-indexed addressing, the value left 
in Rn is defined to be the updated base register value for the following instructions:

• LDC

• LDM

• LDR

• LDRB

• LDRBT

• LDRH

• LDRSB

• LDRSH

• LDRT

• STC

• STM

• STR

• STRB

• STRBT

• STRH

• STRT.

2.11.2 Early termination

On the ARM720T, early termination is defined as:

MLA, MUL Signed early termination.

SMULL, SMLAL Signed early termination.

UMULL, UMLAL Unsigned early termination.
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Chapter 3 
Configuration

This chapter describes the configuration of the ARM720T processor. It contains the 
following sections.

• About configuration on page 3-2

• Internal coprocessor instructions on page 3-3

• Registers on page 3-4.
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3.1 About configuration

The operation and configuration of ARM720T is controlled:

• directly using coprocessor instructions to CP15, the system control coprocessor

• indirectly using the MMU page tables.

The coprocessor instructions manipulate a number of on-chip registers that control the 
configuration of the following:

• cache

• write buffer

• MMU

• other configuration options.

3.1.1 Compatibility

To ensure backwards compatibility of future CPUs:

• all reserved or unused bits in registers and coprocessor instructions must be 
programmed to 0

• invalid registers must not be read or written

• the following bits must be programmed to 0:

— Register 1, bits[31:14] and bits [12:10]

— Register 2, bits[13:0]

— Register 5, bits[31:9]

— Register 7, bits[31:0]

— Register 13 FCSE PID, bits[24:0].

3.1.2 Notation

Throughout this section, the following terms and abbreviations are used:

Unpredictable (UNP) 

If specified for reads, the data returned when reading from this 
location is unpredictable. It can have any value. If specified for 
writes, writing to this location causes unpredictable behavior or 
change in device configuration.

Should Be Zero (SBZ) 

When writing to this location, all bits of this field should be zero.
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3.2 Internal coprocessor instructions

The instruction set for the ARM720T macrocell enables you to implement specialized 
additional instructions using coprocessors. These are separate processing units that are 
coupled to the ARM720T processor, although CP15 is built into the ARM720T (Rev 4) 
macrocell. 

Note

 The CP15 register map might change in future ARM processors. You are strongly 
recommended to structure software so that any code accessing CP15 is contained in a 
single module. It can then be updated easily.

CP15 registers can only be accessed with MRC and MCR instructions in a privileged mode. 
The instruction bit pattern of the MRC and MCR instructions is shown in Figure 3-1.

Figure 3-1 MRC and MCR bit pattern

CDP, LDC, and STC instructions, as well as unprivileged MRC and MCR instructions to CP15 
cause the Undefined Instruction trap to be taken. 

The CRn field of MRC and MCR instructions specifies the coprocessor register to access. 
The CRm field and opcode_2 fields specify a particular action when addressing some 
registers. 

In all instructions accessing CP15:

• the opcode_1 field should be zero (SBZ)

• the opcode_2 and CRm fields should be zero except when accessing registers 7, 
8, and 13 when the specified values must be used to select the desired cache, TLB, 
or process identifier operations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 1 1 opcode_1 L CRn CRm0 1 1 1 1 opcode_2 1RdCond
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3.3 Registers

The ARM720T processor contains registers that control the cache and MMU operation. 
These registers are accessed using MCR and MRC instructions to CP15 with the processor 
in a privileged mode. 

Only some of registers R0 to R15 are valid. An access to an invalid register causes 
neither the access nor an undefined instruction trap, and therefore must never be carried 
out.

3.3.1 Register 0, ID register

Reading from CP15 register 0 returns the value:

0x41807204

Note

 The final nibble represents the core revision.

Table 3-1 Cache and MMU control register

Register Register reads Register writes

0 ID register Reserved

1 Control Control

2 Translation table base Translation table base

3 Domain access control Domain access control

4 Reserved Reserved

5 Fault status Fault status

6 Fault address Fault address

7 Reserved Cache operations

8 Reserved TLB operations

9 – 12 Reserved Reserved

13 Process identifier Process identifier

14 – 15 Reserved Reserved
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The CRm and opcode_2 fields should be zero when reading CP15 register 0. This is 
shown in Figure 3-2.

Figure 3-2 ID register read

Writing to CP15 register 0 is unpredictable. ID register write is shown in Figure 3-3.

Figure 3-3 ID register write

3.3.2 Register 1, control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields 
should be zero when reading CP15 register 1. Register 1 read is shown in Figure 3-4.

Figure 3-4 Register 1 read

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields should 
be zero when writing to CP15 register 1. Register 1 write is shown in Figure 3-5.

Figure 3-5 Register 1 write

With the exception of the V bit, all defined control bits are set to zero on reset. The 
control bits have the following functions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 1 0 0 1 00 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP V UNP R S B L D P W C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ V
UNP/

SBZ
R S B L D P W C A M
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M Bit 0 MMU enable/disable: 

0 = MMU disabled 

1 = MMU enabled.

A Bit 1 Alignment fault enable/disable: 

0 = Address Alignment Fault Checking disabled 

1 = Address Alignment Fault Checking enabled.

C Bit 2 Cache enable/disable: 

0 = Instruction and/or Data Cache (IDC) disabled 

1 = Instruction and/or Data Cache (IDC) enabled.

W Bit 3 Write buffer enable/disable: 

0 = Write Buffer disabled 

1 = Write Buffer enabled.

P Bit 4 When read, returns 1. When written, is ignored.

D Bit 5 When read, returns 1. When written, is ignored.

L Bit 6 When read, returns 1. When written, is ignored.

B Bit 7 Big-endian/little-endian: 

0 = Little-endian operation 

1 = Big-endian operation.

S Bit 8 System protection: Modifies the MMU protection system.

R Bit 9 ROM protection: Modifies the MMU protection system.

Bits 12:10 When read, this returns an unpredictable value. When written, it 
should be zero, or a value read from these bits on the same 
processor.

Note

 Using a read-write-modify sequence when modifying this register provides the greatest 
future compatibility.

V Bit 13 Location of exception vectors: 

0 = low addresses 

1 = high addresses.
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The value of the V bit reflects the state of the VINITHI external 
input, sampled while HRESETn is LOW.

Bits 31:14 When read, this returns an unpredictable value. When written, it 
should be zero, or a value read from these bits on the same 
processor.

Enabling the MMU

You must take care if the translated address differs from the untranslated address, 
because the instructions following the enabling of the MMU are fetched using no 
address translation. Enabling the MMU can be considered as a branch with delayed 
execution. 

A similar situation occurs when the MMU is disabled. The correct code sequence for 
enabling and disabling the MMU is given Interaction of the MMU and cache on 
page 7-28.

Note
 If the cache and write buffer are enabled when the MMU is not enabled, the results are 
unpredictable.

3.3.3 Register 2, translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first-level 
translation table in bits [31:14] and an unpredictable value in bits [13:0]. The CRm and 
opcode_2 fields should be zero when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first-level 
translation table from the value in bits [31:14] of the written value. Bits [13:0] should 
be zero. The CRm and opcode_2 fields should be zero when writing CP15 register 2. 
Register 2 is shown in Figure 3-6.

Figure 3-6 Register 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Translation base table UNP/SBZ
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3.3.4 Register 3, domain access control register

Reading from CP15 register 3 returns the value of the domain access control register.

Writing to CP15 register 3 writes the value of the domain access control register.

The domain access control register consists of 16 2-bit fields, each of which defines the 
access permissions for one of the 16 domains (D15-D0).

The CRm and opcode_2 fields should be zero when reading or writing to CP15 
register 3. This is shown in Figure 3-7.

Figure 3-7 Register 3

3.3.5 Register 4, reserved

Register 4 is reserved. Reading CP15 register 4 is unpredictable. Writing to CP15 
register 4 is unpredictable. This is shown in Figure 3-8.

Figure 3-8 Register 4

3.3.6 Register 5, fault status register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR 
contains the source of the last fault. 

Note

 Only the bottom 9 bits are returned. The upper 23 bits are unpredictable. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP
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The FSR indicates the domain and type of access being attempted when an abort 
occurred:

Bit 8 This is always read as zero. Bit 8 is ignored on writes.

Bits [7:4] These specify which of the 16 domains (D15-D0) was being 
accessed when a fault occurred. 

Bits [3:1]  These indicate the type of access being attempted. 

The encoding of these bits is shown in Fault address and fault status registers on 
page 7-21. The FSR is always updated when a fault occurs.

Writing to CP15 register 5 sets the FSR to the value of the data written. This is useful 
when a debugger has to restore the value of the FSR. The upper 24 bits written should 
be zero. 

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 5. 
Register 5 is shown in Figure 3-9.

Figure 3-9 Register 5

3.3.7 Register 6, Fault Address Register 

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The 
FAR holds the virtual address of the access that was attempted when a fault occurred. 
The FAR is updated for data faults and prefetch faults.

Writing to CP15 register 6 sets the FAR to the value of the data written. This is useful 
when a debugger has to restore the value of the FAR.

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 6. 
Register 6 is shown in Figure 3-10.

Figure 3-10 Register 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ 0 Domain Status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Fault address
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Note
 Register 6 contains a modified virtual address if the FCSE PID register is nonzero.

3.3.8 Register 7, cache operations

Writing to CP15 register 7 manages the unified instruction and data cache of the 
ARM720T. Only one cache operation is defined using the following opcode_2 and CRm 
fields in the MCR instruction that writes the CP15 register 7.

Caution

 The Invalidate ID cache function invalidates all cache data. Use this with caution.

Register 7 is shown in Table 3-2.

Reading from CP15 register 7 is undefined.

3.3.9 Register 8, TLB operations

Writing to CP15 register 8 controls the Translation Lookaside Buffer (TLB). The 
ARM720T processor implements a unified instruction and data TLB.

Two TLB operations are defined. The function to be performed is selected by the 
opcode_2 and CRm fields in the MCR instruction used to write CP15 register 8.

Table 3-2 Cache operation

Function opcode_2 value CRm value Data Instruction

Invalidate ID cache 0b000 0b0111 SBZ MCR p15, 0, Rd, c7, c7, 0
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The TLB operations and the instructions that you can use are shown in Table 3-3.

In the instructions shown in Table 3-3, c7 is the preferred value for the CRn field, 
because it indicates a unified MMU.

Reading from CP15 register 8 is undefined.

The Invalidate TLB single entry function invalidates any TLB entry corresponding to 
the Modified Virtual Address (MVA) given in Rd.

3.3.10 Registers 9 to 12, reserved

Accessing any of these registers is undefined. Writing to any of these registers is 
undefined.

3.3.11 Register 13, process identifier

Two independent process identifier registers can be accessed using register 13:

• Fast context switch extension process identifier

• Trace process identifier on page 3-12.

Fast context switch extension process identifier

Reading from CP15 register 13 with opcode_2 = 0 returns the value of the FCSE PID. 
This is shown in Figure 3-11 on page 3-12.

Table 3-3 TLB operations

Function opcode_2 value CRm value Data Instruction

Invalidate TLB 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c6, 0

MCR p15, 0, Rd, c8, c7, 0

Invalidate TLB 
single entry

0b001 0b0111 Modified Virtual 
Address

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 1

MCR p15, 0, Rd, c8, c7, 1
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Figure 3-11 Register 13 with opcode_2=0

Note

 Only bits [31:25] are returned. The remaining 25 bits are unpredictable.

Writing to CP15 register 13 with opcode_2 = 0 updates the FCSE PID from the value 
in bits [31:25]. Bits [24:0] should be zero. The FCSE PID is set to b0000000 on Reset.

The CRm and opcode_2 should be zero when reading or writing the FCSE PID.

Changing FCSE PID

You must take care when changing the FCSE PID because the following instructions 
have been fetched with the previous FCSE PID. In this way, changing the FCSE PID 
has similarities with a branch with delayed execution. See Relocation of low virtual 
addresses by the FCSE PID on page 2-23.

Trace process identifier

A 32-bit read/write register is provided to hold a Trace PROCess IDentifier (PROCID) 
up to 32-bits in length visible to the ETM7. This is achieved by reading from or writing 
to the CP15 register 13 with opcode_2 = 1 as shown in Figure 3-12.

Figure 3-12 Register 13 with opcode_2=1

The PROCIDWR signal is exported to notify the ETM7 that the Trace PROCID has 
been written.

3.3.12 Register 14, reserved

Accessing this register is undefined. Writing to this register is undefined.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FCSE PID UNP/SBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Trace PROCID
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3.3.13 Register 15, test register

The CP15 register 15 is used for device-specific test operations. For more information, 
see Chapter 11 Test Support.
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Instruction and Data Cache

This chapter describes the instruction and data cache. It contains the following sections:

• About the instruction and data cache on page 4-2

• IDC validity on page 4-4

• IDC enable, disable, and reset on page 4-5.
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4.1 About the instruction and data cache

The cache only operates on a write-through basis with a read-miss allocation policy and 
a random replacement algorithm.

4.1.1 IDC operation

The ARM720T contains an 8KB mixed Instruction and Data Cache (IDC). 

The IDC has 512 lines of 32 bytes (eight words), arranged as a 4-way set-associative 
cache, and uses the virtual addresses generated by the processor core after relocation by 
the FCSE PID as appropriate. The IDC is always reloaded a line at a time (eight words). 
It can be enabled or disabled using the ARM720T control register and is disabled on 
HRESETn. 

Note
 The MMU must never be disabled when the cache is on. However, you can enable the 
two devices simultaneously with a single write to the control register (see Register 1, 
control register on page 3-5).

4.1.2 Cachable bit

The C bit determines whether data being read can be placed in the IDC and used for 
subsequent read operations. Typically, main memory is marked as cachable to improve 
system performance, and I/O space is marked as noncachable to stop the data being 
stored in the ARM720T cache. 

For example, if the processor is polling a hardware flag in I/O space, it is important that 
the processor is forced to read data from the external peripheral, and not a copy of the 
initial data held in the cache. The cachable bit can be configured for both pages and 
sections.

Cachable reads (C=1)

A line fetch of eight words is performed when a cache miss occurs in a cachable area of 
memory, and it is randomly placed in a cache bank.

Note
 Memory aborts are not supported on cache line fetches.
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Uncachable reads (C=0)

An external memory access is performed and the cache is not written.

4.1.3 Read-lock-write

The IDC treats the read-lock-write instruction as a special case:

Read phase Always forces a read of external memory, regardless of whether 
the data is contained in the cache. 

Write phase Is treated as a normal write operation. If the data is already in the 
cache, the cache is updated. 

Externally, the two phases are flagged as indivisible by asserting the HLOCK signal.
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4.2 IDC validity

The IDC operates with virtual addresses, so you must ensure that its contents remain 
consistent with the virtual to physical mappings performed by the MMU. If the memory 
mappings are changed, the IDC validity must be ensured.

4.2.1 Software IDC flush

The entire IDC can be marked as invalid by writing to the cache operations register R7. 
The cache is flushed immediately the register is written, but the following two 
instruction fetches can come from the cache before the register is written.

4.2.2 Doubly-mapped space

Because the cache works with virtual addresses, it is assumed that every virtual address 
maps to a different physical address. If the same physical location is accessed by more 
than one virtual address, the cache cannot maintain consistency. Each virtual address 
has a separate entry in the cache, and only one entry can be updated on a processor write 
operation. 

To avoid any cache inconsistencies, both doubly-mapped virtual addresses must be 
marked as uncachable.
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4.3 IDC enable, disable, and reset

The IDC is automatically disabled and flushed on HRESETn. When enabled, cachable 
read accesses cause lines to be placed in the cache.

To enable the IDC:

1. Make sure that the MMU is enabled first by setting bit 0 in the control register.

2. Enable the IDC by setting bit 2 in the control register. The MMU and IDC can be 
enabled simultaneously with a single write to the control register.

To disable the IDC:

1. Clear bit 2 in the control register.

2. Perform a flush by writing to the cache operations register.
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Write Buffer

This chapter describes the write buffer. It contains the following sections:

• About the write buffer on page 5-2

• Write buffer operation on page 5-3.
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5.1 About the write buffer

The write buffer of the ARM720T processor is provided to improve system 
performance. It can buffer up to:

• eight words of data

• eight independent addresses. 

You can enable and disable the write buffer using the W bit, bit 3, in the control register. 
The buffer is disabled and flushed on reset. 

The operation of the write buffer is further controlled by the Bufferable (B) bit, which 
is stored in the MMU page tables. For this reason, the MMU must be enabled before 
using the write buffer. The two functions can, however, be enabled simultaneously, with 
a single write to the control register. 

For a write to use the write buffer, both the W bit in the control register and the B bit in 
the corresponding page table must be set.

Note

 It is not possible to abort buffered writes externally. The error response on HRESP[1:0] 
is ignored. Areas of memory that can generate aborts must be marked as unbufferable 
in the MMU page tables.

5.1.1 Bufferable bit

This bit controls whether a write operation uses or does not use the write buffer. 
Typically, main memory is bufferable and I/O space unbufferable. The B bit can be 
configured for both pages and sections.
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5.2 Write buffer operation

You control the operation of the write buffer with CP15 register 1, the control register 
(see Register 1, control register on page 3-5).

When the CPU performs a write operation, the translation entry for that address is 
inspected and the state of the B bit determines the subsequent action. If the write buffer 
is disabled using the control register, buffered writes are treated in the same way as 
unbuffered writes. 

To enable the write buffer:

1. Ensure that the MMU is enabled by setting bit 0 in the control register.

2. Enable the write buffer by setting bit 3 in the control register. 

You can enable the MMU and write buffer simultaneously with a single write to 
the control register.

To disable the write buffer, clear bit 3 in the control register. Any writes already in the 
write buffer complete normally. The write buffer attempts a write operation as long as 
there is data present. 

5.2.1 Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area, the 
data is placed in the write buffer at the speed of HCLK, and the CPU continues 
execution. The write buffer then performs the external write in parallel. 

If the write buffer is full, the processor is stalled until there is an empty line in the buffer. 

5.2.2 Unbufferable write

If the write buffer is disabled or the CPU performs a write to an unbufferable area, 
the processor is stalled until the write buffer empties and the write completes externally. 
This might require synchronization and several external clock cycles. 

5.2.3 Read-lock-write

The write phase of a read-lock-write sequence (SWP instruction) is treated as an 
unbuffered write, even if it is marked as buffered. 

5.2.4 Reading from a noncachable area

If the CPU performs a read from a noncachable area, the write buffer is drained and the 
processor is stalled.
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5.2.5 Draining the write buffer

You can force a drain of the write buffer by performing a read from a noncachable 
location.

5.2.6 Multi-word writes

All accesses are treated as non-sequential, which means that writes require an address 
slot and a data slot for each word. For this reason, buffered STM accesses are less efficient 
than unbuffered STM accesses. You are advised to disable the write buffer (by clearing 
bit 3 in CP15 register 1) before moving large blocks of data.
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The Bus Interface

This chapter describes the signals on the bus interface of the ARM720T (Rev 4) 
processor. It contains the following sections:

• About the bus interface on page 6-2

• Bus interface signals on page 6-4

• Transfer types on page 6-6

• Address and control signals on page 6-9

• Slave transfer response signals on page 6-12

• Data buses on page 6-14

• Arbitration on page 6-17

• Bus clocking on page 6-18

• Reset on page 6-19.
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6.1 About the bus interface

The ARM720T (Rev 4) processor is an Advanced High-performance Bus (AHB) bus 
master. It is described fully in the AMBA Specification (Rev 2.0). 

6.1.1 Summary of the AHB transfer mechanism

An AHB transfer comprises the following:

Address phase This lasts only a single cycle. The address cannot be extended, so 
all slaves must sample the address during the address phase. 

Data phase This phase can be extended using the HREADY signal. When 
LOW, HREADY causes wait states to be inserted into the transfer 
and allows extra time for a slave to provide or sample data.

A write data bus is used to move data from the master to a slave.

A read data bus is used to move data from a slave to the master.

Figure 6-1 shows a transfer with no wait states (this is the simplest type of transfer). 

Figure 6-1 Simple AHB transfer
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A granted bus master starts an AHB transfer by driving the address and control signals. 
These signals provide the following information about the transfer:

• address

• direction 

• width of the transfer

• whether the transfer forms part of a burst

• the type of burst.

A burst is a series of transfers. The ARM720T (Rev 4) processor performs the following 
types of burst:

• incrementing burst of unspecified length

• 8-beat incrementing burst.

Incrementing bursts do not wrap at address boundaries. The address of each 
transfer in the burst is an increment of the address of the previous transfer in the 
burst. 

For more information, see Address and control signals on page 6-9.

For a complete description of the AHB transfer mechanism, see the AMBA Specification 
(Rev 2.0). 
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6.2 Bus interface signals

The signals in the ARM720T (Rev 4) processor bus interface can be grouped into the 
following categories:

Transfer type HTRANS[1:0]

See Transfer types on page 6-6.

Address and control 

HADDR[31:0]

HWRITE

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

See Address and control signals on page 6-9.

Slave transfer response 

HREADY

HRESP[1:0]

See Slave transfer response signals on page 6-12.

Data HRDATA[31:0]

HWDATA[31:0]

See Data buses on page 6-14.

Arbitration HBUSREQ

HGRANT

HLOCK

See Arbitration on page 6-17.

Clock HCLK

HCLKEN

See Bus clocking on page 6-18.

Reset HRESETn

See Reset on page 6-19.

Each of these signal groups shares a common timing relationship to the bus interface 
cycle. All signals in the ARM720T (Rev 4) processor bus interface are generated from 
or sampled by the rising edge of HCLK. 
6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



The Bus Interface 
The AHB bus master interface signals are shown in Figure 6-2.

Figure 6-2 AHB bus master interface
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ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-5



The Bus Interface 
6.3 Transfer types 

The ARM720T processor bus interface is pipelined, so the address-class signals and the 
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which 
they refer. This gives the maximum time for a memory cycle to decode the address and 
respond to the access request. 

A single memory cycle is shown in Figure 3-1.

Figure 6-3 Simple memory cycle

Address

Cycle type

Write data

Bus cycle

HCLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)
Read data
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There are three types of transfer. The transfer type is indicated by the HTRANS[1:0] 
signal as shown in Table 6-1.

Note

 In the AMBA Specification (Rev 2.0), HTRANS[1:0] = 01 indicates a BUSY cycle, but 
these are never inserted by the ARM720T (Rev 4) processor.

Figure 6-4 on page 6-8 shows some examples of different transfer types.

Table 6-1 Transfer type encoding

HTRANS[1:0] Transfer type Description

00 IDLE Indicates that no data transfer is required. The IDLE 
transfer type is used when a bus master is granted the 
bus, but does not wish to perform a data transfer.

Slaves must always provide a zero wait state OKAY 
response to IDLE transfers and the transfer must be 
ignored by the slave.

10 NONSEQ Indicates the first transfer of a burst or a single 
transfer. The address and control signals are unrelated 
to the previous transfer. 

Single transfers on the bus are treated as bursts that 
comprise one transfer.

11 SEQ In a burst, all transfers apart from the first are 
SEQUENTIAL.

The address is related to the previous transfer. The 
address is equal to the address of the previous transfer 
plus the size (in bytes). In the case of a wrapping 
burst, the address of the transfer wraps at the address 
boundary equal to the size (in bytes) multiplied by the 
number of beats in the transfer (either 4, 8, or 16).

The control information is identical to the previous 
transfer. 
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Figure 6-4 Transfer type examples

In Figure 6-4:

• The first transfer is the start of a burst and is therefore NONSEQUENTIAL.

• The master performs the second transfer of the burst immediately.

• The master performs the third transfer of the burst immediately, but this time the 
slave is unable to complete and uses HREADY to insert a single wait state. 

• The final transfer of the burst completes with zero wait states.

NONSEQ SEQ SEQ

0x20 0x24 0x28 0x2C

Data

0x280x20

Data

0x24

SEQ

Data Data

0x2C

INCR

Data

0x280x20

Data

0x24

Data Data

0x2C

HCLK

HTRANS[1:0]

HWDATA[31:0]

HBURST[2:0]

HADDR[31:0]

HRDATA[31:0]

HREADY
6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



The Bus Interface 
6.4 Address and control signals

The address and control signals are described in the following sections:

• HADDR[31:0]

• HWRITE

• HSIZE[2:0]

• HBURST[2:0] on page 6-10

• HPROT[3:0] on page 6-10.

6.4.1 HADDR[31:0]

HADDR[31:0] is the 32-bit address bus that specifies the address for the transfer. All 
addresses are byte addresses, so a burst of word accesses results in the address bus 
incrementing by four for each cycle.

The address bus provides 4GB of linear addressing space. This means that:

• when a word access is signalled, the memory system must ignore the bottom two 
bits, HADDR[1:0]

• when a halfword access is signalled the memory system must ignore the bottom 
bit, HADDR[0].

6.4.2 HWRITE

HWRITE specifies the direction of the transfer as follows:

HWRITE HIGH Indicates an ARM720T processor write cycle. 

HWRITE LOW Indicates an ARM720T processor read cycle.

A burst of S cycles is always either a read burst or a write burst. The direction cannot 
be changed in the middle of a burst.

6.4.3 HSIZE[2:0]

The SIZE[2:0] bus encodes the size of the transfer. The ARM720T processor can 
transfer word, halfword, and byte quantities. This is encoded on SIZE[2:0] as shown in 
Table 6-2 on page 6-10.
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Note
 To use the C compiler and the ARM debug tool chain, your system must support the 
writing of arbitrary bytes and halfwords. You must provide write enables down to the 
level of every individual byte to ensure support for all possible transfer sizes, up to the 
bus width. 

6.4.4 HBURST[2:0]

HBURST[2:0] indicates the type of burst, as shown in Table 6-3.

For more details of burst operation, see the AMBA Specification (Rev 2.0).

6.4.5 HPROT[3:0]

HPROT[3:0] is the protection control bus. These signals provide additional 
information about a bus access and are primarily intended to enable a module to 
implement an access permission scheme. 

These signals indicate whether the transfer is:

• an opcode fetch or data access

• a privileged-mode access or User-mode access.

Table 6-2 Transfer size encodings

HSIZE[2:0] Size Transfer width

000 8 bits Byte

001 16 bits Halfword

010 32 bits Word

Table 6-3 Burst type encodings

HBURST[2:0] Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

101 INCR8 8-beat incrementing burst
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For bus masters with a memory management unit, these signals also indicate whether 
the current access is cachable or bufferable. 

Table 6-4 shows the protection control encodings.

Some bus masters are not capable of generating accurate protection information, so it is 
recommended that slaves do not use the HPROT[3:0] signals unless strictly necessary.

Table 6-4 Protection control encodings

HPROT[3]
cachable

HPROT[2]
bufferable

HPROT[1]
privileged

HPROT[0]
data/opcode

Description

- - - 0 Opcode fetch

- - - 1 Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Not bufferable

- 1 - - Bufferable

0 - - - Not cachable

1 - - - Cachable
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6.5 Slave transfer response signals

After a master has started a transfer, the slave determines how the transfer progresses. 
No provision is made in the AHB specification for a bus master to cancel a transfer after 
it has begun.

Whenever a slave is accessed it must provide a response using the following signals:

HRESP[1:0] Indicates the status of the transfer.

HREADY Used to extend the transfer. This signal works in combination with 
HRESP[1:0].

The slave can complete the transfer in a number of ways. It can:

• complete the transfer immediately

• insert one or more wait states to allow time to complete the transfer

• signal an error to indicate that the transfer has failed

• delay the completion of the transfer, but allow the master and slave to back off the 
bus, leaving it available for other transfers.

6.5.1 HREADY

The HREADY signal is used to extend the data portion of an AHB transfer, as follows:

HREADY LOW  Indicates that the transfer data is to be extended. It causes wait 
states to be inserted into the transfer and allows extra time for the 
slave to provide or sample data.

HREADY HIGH  Indicates that the transfer can complete.

Every slave must have a predetermined maximum number of wait states that it inserts 
before it backs off the bus, in order to allow the calculation of the latency of accessing 
the bus. To prevent any single access locking the bus for a large number of clock cycles, 
it is recommended that slaves do not insert more than 16 wait states.

6.5.2 HRESP[1:0]

HRESP[1:0] is used by the slave to show the status of a transfer. The HRESP[1:0] 
encodings are shown in Table 6-5 on page 6-13.
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For a full description of the slave transfer responses, see the AMBA Specification (Rev 
2.0).

Table 6-5 Response encodings

HRESP[1:0] Response Description

00 OKAY When HREADY is HIGH, this response indicates that the transfer has 
completed successfully.
The OKAY response is also used for any additional cycles that are 
inserted, with HREADY LOW, prior to giving one of the three other 
responses.

01 ERROR This response indicates that a transfer error has occurred and the transfer 
has been unsuccessful. Typically this is used for a protection error, such 
as an attempt to write to a read-only memory location.The error condition 
must be signalled to the bus master so that it is aware the transfer has been 
unsuccessful.
A two-cycle response is required for an error condition.

10 RETRY The RETRY response shows the transfer has not yet completed, so the bus 
master should retry the transfer. The master should continue to retry the 
transfer until it completes. 
A two-cycle RETRY response is required.

11 SPLIT The transfer has not yet completed successfully. The bus master must retry 
the transfer when it is next granted access to the bus. The slave will request 
access to the bus on behalf of the master when the transfer can complete. 
A two-cycle SPLIT response is required.
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-13



The Bus Interface 
6.6 Data buses

To enable you to implement an AHB system without the use of tristate drivers, separate 
32-bit read and write data buses are required.

6.6.1 HWDATA[31:0]

The write data bus is driven by the bus master during write transfers. If the transfer is 
extended, the bus master must hold the data valid until the transfer completes, as 
indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size of the transfer. 
For example, word transfers must be aligned to word address boundaries (that is 
A[1:0] = 00), and halfword transfers must be aligned to halfword address boundaries 
(that is A[0] = 0).

The bus master drives all byte lanes regardless of the size of the transfer:

• For halfword transfers, for example 0x1234, HWDATA[31:0] is driven with the 
value 0x12341234, regardless of endianness.

• For byte transfers, for example 0x12, HWDATA[31:0] is driven with the value 
0x12121212, regardless of endianness.

6.6.2 HRDATA[31:0]

The read data bus is driven by the appropriate slave during read transfers. If the slave 
extends the read transfer by holding HREADY LOW, the slave has to provide valid data 
only at the end of the final cycle of the transfer, as indicated by HREADY HIGH.

For transfers that are narrower than the width of the bus, the slave only has to provide 
valid data on the active byte lanes. The bus master is responsible for selecting the data 
from the correct byte lanes. The following tables identify active byte lanes:

• Table 6-6 on page 6-15 shows active byte lanes for little-endian systems

• Table 6-7 on page 6-16 shows active byte lanes for big-endian systems.

A slave has to provide valid data only when a transfer completes with an OKAY 
response on HRESP[1:0]. SPLIT, RETRY, and ERROR responses do not require valid 
read data.

6.6.3 Endianness

It is essential that all modules are of the same endianness and also that any data routing 
or bridges are of the same endianness.
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Dynamic endianness is not supported, because in most embedded systems, this leads to 
a significant silicon overhead that is redundant.

It is recommended that only modules that will be used in a wide variety of applications 
are made bi-endian, with either a configuration pin or internal control bit to select the 
endianness. For more application-specific blocks, fixing the endianness to either 
little-endian or big-endian results in a smaller, lower power, higher performance 
interface.

Table 6-6 shows active byte lanes for little-endian systems.

Table 6-7 on page 6-16 shows active byte lanes for big-endian systems.

Table 6-6 Active byte lanes for a 32-bit little-endian data bus

Transfer size
Address 
offset

DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 ✔ ✔ ✔ ✔

Halfword 0 - - ✔ ✔

Halfword 2 ✔ ✔ - -

Byte 0 - - - ✔

Byte 1 - - ✔ -

Byte 2 - ✔ - -

Byte 3 ✔ - - -
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Table 6-7 Active byte lanes for a 32-bit big-endian data bus

Transfer size
Address 
offset DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 ✔ ✔ ✔ ✔

Halfword 0 ✔ ✔ - -

Halfword 2 - - ✔ ✔

Byte 0 ✔ - - -

Byte 1 - ✔ - -

Byte 2 - - ✔ -

Byte 3 - - - ✔
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6.7 Arbitration

The arbitration mechanism is described fully in the AMBA Specification (Rev 2.0). This 
mechanism is used to ensure that only one master has access to the bus at any one time. 
The arbiter performs this function by observing a number of different requests to use 
the bus and deciding which is currently the highest priority master requesting the bus. 
The arbiter also receives requests from slaves that want to complete SPLIT transfers.

Any slaves that are not capable of performing SPLIT transfers do not have to be aware 
of the arbitration process, except that they need to observe the fact that a burst of 
transfers might not complete if the ownership of the bus is changed.

6.7.1 HBUSREQ

The bus request signal is used by a bus master to request access to the bus. Each bus 
master has its own HBUSREQ signal to the arbiter and there can be up to 16 separate 
bus masters in any system.

6.7.2 HLOCK

The lock signal is asserted by a master at the same time as the bus request signal. This 
indicates to the arbiter that the master is performing a number of indivisible transfers 
and the arbiter must not grant any other bus master access to the bus once the first 
transfer of the locked transfers has commenced. HLOCK must be asserted at least a 
cycle before the address to which it refers, to prevent the arbiter from changing the grant 
signals.

6.7.3 HGRANT

The grant signal is generated by the arbiter and indicates that the appropriate master is 
currently the highest priority master requesting the bus, taking into account locked 
transfers and SPLIT transfers.

A master gains ownership of the address bus when HGRANT is HIGH and HREADY 
is HIGH at the rising edge of HCLK.
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6.8 Bus clocking

There are two clock inputs on the ARM720T (Rev 4) processor bus interface.

6.8.1 HCLK

The bus is clocked by the system clock, HCLK. This clock times all bus transfers. All 
signal timings are related to the rising edge of HCLK.

6.8.2 HCLKEN

HCLK is enabled by the HCLKEN signal. You can use HCLKEN to slow the bus 
transfer rate by dividing HCLK for the bus interface.

Note

 HCLKEN is not a clock enable for the CPU itself, but only for the bus. Use HREADY 
to insert wait states on the bus.
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6.9 Reset

The bus reset signal is HRESETn. This signal is the global reset, used to reset the 
system and the bus. It can be asserted asynchronously, but is deasserted synchronously 
after the rising edge of HCLK.

During reset, all masters must ensure the following:

• the address and control signals are at valid levels 

• HTRANS[1:0] indicates IDLE.

HRESETn is the only active LOW signal in the AMBA AHB specification.
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Chapter 7 
Memory Management Unit

This chapter describes the Memory Management Unit (MMU). It contains the following 
sections:

• About the MMU on page 7-2

• MMU program-accessible registers on page 7-4

• Address translation on page 7-5

• MMU faults and CPU aborts on page 7-20

• Fault address and fault status registers on page 7-21

• Domain access control on page 7-22

• Fault checking sequence on page 7-24

• External aborts on page 7-27

• Interaction of the MMU and cache on page 7-28.
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7.1 About the MMU

The ARM720T processor implements an enhanced ARM architecture v4 MMU to 
provide translation and access permission checks for the instruction and data address 
ports of the core. The MMU is controlled from a single set of two-level page tables 
stored in main memory, that are enabled by the M bit in CP15 register 1, providing a 
single address translation and protection scheme. 

The MMU features are:

• standard ARMv4 MMU mapping sizes, domains, and access protection scheme

• mapping sizes are 1MB (sections), 64KB (large pages), 4KB (small pages), and 
1KB (tiny pages)

• access permissions for sections

• access permissions for large pages and small pages can be specified separately for 
each quarter of the page (these quarters are called subpages)

• 16 domains implemented in hardware

• 64-entry TLB

• hardware page table walks

• round-robin replacement algorithm (also called cyclic) 

• invalidate whole TLB, using CP15 register 8

• invalidate TLB entry, selected by Modified Virtual Address (MVA), using CP15 
register 8.

7.1.1 Access permissions and domains

For large and small pages, access permissions are defined for each subpage (1KB for 
small pages, 16KB for large pages). Sections and tiny pages have a single set of access 
permissions. 

All regions of memory have an associated domain. A domain is the primary access 
control mechanism for a region of memory. It defines the conditions necessary for an 
access to proceed. The domain determines if:

• the access permissions are used to qualify the access

• the access is unconditionally allowed to proceed

• the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored. 
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There are 16 domains. These are configured using the domain access control register.

7.1.2 Translated entries

The TLB caches 64 translated entries. During CPU memory accesses, the TLB provides 
the protection information to the access control logic. 

If the TLB contains a translated entry for the MVA, the access control logic determines 
if access is permitted:

• if access is permitted and an off-chip access is required, the MMU outputs the 
appropriate physical address corresponding to the MVA 

• if access is permitted and an off-chip access is not required, the cache services the 
access 

• if access is not permitted, the MMU signals the CPU core to abort.

If the TLB misses (it does not contain an entry for the VA) the translation table walk 
hardware is invoked to retrieve the translation information from a translation table in 
physical memory. When retrieved, the translation information is written into the TLB, 
possibly overwriting an existing value. 

The entry to be written is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off, as happens on reset, no address mapping occurs and all 
regions are marked as noncachable and nonbufferable. 
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7.2 MMU program-accessible registers

Table 7-1 lists the CP15 registers that are used in conjunction with page table 
descriptors stored in memory to determine the operation of the MMU.

All the CP15 MMU registers, except register 8, contain state. You can read them using 
MRC instructions, and write to them using MCR instructions. Registers 5 and 6 are also 
written by the MMU during all aborts. Writing to register 8 causes the MMU to perform 
a TLB operation, to manipulate TLB entries. This register cannot be read. 

CP15 is described in Chapter 3 Configuration, with details of register formats and the 
coprocessor instructions you can use to access them.

Table 7-1 CP15 register functions

Register Number Bits Register description

Control register 1 M, A, S, R Contains bits to enable the MMU (M bit), enable data address 
alignment checks (A bit), and to control the access protection 
scheme (S bit and R bit).

Translation table 
base register

2 31:14 Holds the physical address of the base of the translation table 
maintained in main memory. This base address must be on a 16KB 
boundary.

Domain access 
control register

3 31:0 Comprises 16 2-bit fields. Each field defines the access control 
attributes for one of 16 domains (D15–D0). 

Fault status 
register

5 7:0 Indicates the cause of a Data or Prefetch Abort, and the domain 
number of the aborted access, when an abort occurs. Bits 7:4 specify 
which of the 16 domains (D15–D0) was being accessed when a fault 
occurred. Bits 3:0 indicate the type of access being attempted. The 
value of all other bits is unpredictable. The encoding of these bits is 
shown in Table 7-9 on page 7-21.

Fault address 
register

6 31:0 Holds the MVA associated with the access that caused the abort. See 
Table 7-9 on page 7-21 for details of the address stored for each type 
of fault. 

You can use banked register 14 to determine the VA associated with 
a Prefetch Abort.

TLB operations 
register

8 31:0 You can write to this register to make the MMU perform TLB 
maintenance operations. These are:

• invalidating all the entries in the TLB

• invalidating a specific entry.
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7.3 Address translation

The MMU translates VAs generated by the CPU core, and by CP15 register 13, into 
physical addresses to access external memory. It also derives and checks the access 
permission, using the TLB.

The MMU table walking hardware is used to add entries to the TLB. The translation 
information, that comprises both the address translation data and the access permission 
data, resides in a translation table located in physical memory. The MMU provides the 
logic for you to traverse this translation table and load entries into the TLB. 

There are one or two stages in the hardware table walking, and permission checking, 
process. The number of stages depends on whether the address is marked as a 
section-mapped access or a page-mapped access. 

There are three sizes of page-mapped accesses and one size of section-mapped access. 
The page-mapped accesses are for:

• large pages

• small pages

• tiny pages.

The translation process always starts out in the same way, with a level one fetch. A 
section-mapped access requires only a level one fetch, but a page-mapped access 
requires a subsequent level two fetch.

7.3.1 Translation table base

The hardware translation process is initiated when the TLB does not contain a 
translation for the requested MVA. The Translation Table Base (TTB) register points to 
the base address of a table in physical memory that contains section or page descriptors, 
or both. The 14 low-order bits of the TTB register are set to zero on a read, and the table 
must reside on a 16KB boundary. Figure 7-1 shows the format of the TTB register.

Figure 7-1 Translation table base register

The translation table has up to 4096 x 32-bit entries, each describing 1MB of virtual 
memory. This allows up to 4GB of virtual memory to be addressed. Figure 7-2 on 
page 7-6 shows the table walk process.

31 14 13 0

Translation table base
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Figure 7-2 Translating page tables
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7.3.2 Level one fetch

Bits [31:14] of the TTB register are concatenated with bits [31:20] of the MVA to 
produce a 30-bit address as shown in Figure 7-3. 

Figure 7-3 Accessing translation table level one descriptors

This address selects a 4-byte translation table entry. This is a level one descriptor for 
either a section or a page table.

7.3.3 Level one descriptor

The level one descriptor returned is either a section descriptor, a coarse page table 
descriptor, or a fine page table descriptor, or is invalid. Figure 7-4 on page 7-8 shows 
the format of a level one descriptor.

31 20 19 0

Table index

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

31 0

Level one descriptor

Modified virtual address

Translation table base
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Figure 7-4 Level one descriptor

A section descriptor provides the base address of a 1MB block of memory. 

The page table descriptors provide the base address of a page table that contains level 
two descriptors. There are two sizes of page table:

• coarse page tables have 256 entries, splitting the 1MB that the table describes into 
4KB blocks

• fine page tables have 1024 entries, splitting the 1MB that the table describes into 
1KB blocks.

Level one descriptor bit assignments are shown in Table 7-2. 

31 20 19 12 11 10 9 8 5 4 3 2 1 0

0 0

Coarse page table base address Domain 1 0 1

Section base address AP Domain 1 C B 1 0

Fine page table base address Domain 1 1 1

Fault

Coarse
page table

Section

Fine
page table

Table 7-2 Level one descriptor bits

Bits
Description

Section Coarse Fine

31:20 31:10 31:12 These bits form the corresponding bits of the physical 
address

19:12 - - Should be zero

11:10 - - Access permission bits. Domain access control on 
page 7-22 and Fault checking sequence on page 7-24 
show how to interpret the access permission bits

9 9 11:9 Should be zero

8:5 8:5 8:5 Domain control bits
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The two least significant bits of the level one descriptor indicate the descriptor type as 
shown in Table 7-3.

7.3.4 Section descriptor

A section descriptor provides the base address of a 1MB block of memory. Figure 7-5 
shows the format of a section descriptor.

Figure 7-5 Section descriptor

4 4 4 Must be 1

3:2 - - These bits, C and B, indicate whether the area of 
memory mapped by this page is treated as cachable or 
noncachable, and bufferable or nonbufferable. (The 
system is always write-through.)

- 3:2 3:2 Should be zero

1:0 1:0 1:0 These bits indicate the page size and validity and are 
interpreted as shown in Table 7-3

Table 7-3 Interpreting level one descriptor bits [1:0]

Value Meaning Description

0 0 Invalid Generates a section translation fault

0 1 Coarse page table Indicates that this is a coarse page table descriptor

1 0 Section Indicates that this is a section descriptor

1 1 Fine page table Indicates that this is a fine page table descriptor

Table 7-2 Level one descriptor bits (continued)

Bits
Description

Section Coarse Fine

SBZ

31 20 19 12 11 10 9 8 5 4 3 2 1 0

Section base address AP Domain 1 C B 1 0SBZ
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Section descriptor bit assignments are described in Table 7-4.

7.3.5 Coarse page table descriptor

A coarse page table descriptor provides the base address of a page table that contains 
level two descriptors for either large page or small page accesses. Coarse page tables 
have 256 entries, splitting the 1MB that the table describes into 4KB blocks. Figure 7-6 
shows the format of a coarse page table descriptor.

Figure 7-6 Coarse page table descriptor

Note

 If a coarse page table descriptor is returned from the level one fetch, a level two fetch is 
initiated.

Table 7-4 Section descriptor bits

Bits Description

31:20 Form the corresponding bits of the physical address for a section

19:12 Always written as 0

11:10 (AP) Specify the access permissions for this section

9 Always written as 0

8:5 Specify one of the 16 possible domains (held in the domain access control register) 
that contain the primary access controls

4 Should be written as 1, for backward compatibility

3:2 These bits, C and B, indicate whether the area of memory mapped by this page is 
treated as cachable or noncachable, and bufferable or nonbufferable. (The system is 
always write-through.)

1:0 These bits must be 10 to indicate a section descriptor

31 10 9 8 5 4 3 2 1 0

Coarse page table base address Domain 1 0 1SBZ

SBZ
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Coarse page table descriptor bit assignments are described in Table 7-5.

7.3.6 Fine page table descriptor

A fine page table descriptor provides the base address of a page table that contains level 
two descriptors for large page, small page, or tiny page accesses. Fine page tables have 
1024 entries, splitting the 1MB that the table describes into 1KB blocks. Figure 7-7 
shows the format of a fine page table descriptor.

Figure 7-7 Fine page table descriptor

Note

 If a fine page table descriptor is returned from the level one fetch, a level two fetch is 
initiated.

Table 7-5 Coarse page table descriptor bits

Bits Description

31:10 These bits form the base for referencing the level two descriptor (the 
coarse page table index for the entry is derived from the MVA)

9 Always written as 0

8:5 These bits specify one of the 16 possible domains (held in the domain 
access control registers) that contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be 01 to indicate a coarse page table descriptor

31 12 11 9 8 5 4 3 2 1 0

Fine page table base address Domain 1 1 1SBZ SBZ
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Fine page table descriptor bit assignments are described in Table 7-6.

7.3.7 Translating section references

Figure 7-8 on page 7-13 shows the complete section translation sequence.

Table 7-6 Fine page table descriptor bits

Bits Description

31:12 These bits form the base for referencing the level two descriptor (the 
fine page table index for the entry is derived from the MVA)

11:9 Always written as 0

8:5 These bits specify one of the 16 possible domains (held in the domain 
access control registers) that contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be 11 to indicate a fine page table descriptor
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Figure 7-8 Section translation

Note
 You must check access permissions contained in the level one descriptor before 
generating the physical address.

7.3.8 Level two descriptor

If the level one fetch returns either a coarse page table descriptor or a fine page table 
descriptor, this provides the base address of the page table to be used. The page table is 
then accessed and a level two descriptor is returned. Figure 7-9 on page 7-14 shows the 
format of level two descriptors.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Section index

31 20 19 0

Section indexSection base address

Section level one descriptor

Physical address

31 20 19 0

Section base address AP Domain 1 C B 1 0

2 134589101112
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Figure 7-9 Level two descriptor

A level two descriptor defines a tiny, a small, or a large page descriptor, or is invalid:

• a large page descriptor provides the base address of a 64KB block of memory

• a small page descriptor provides the base address of a 4KB block of memory

• a tiny page descriptor provides the base address of a 1KB block of memory.

Coarse page tables provide base addresses for either small or large pages. Large page 
descriptors must be repeated in 16 consecutive entries. Small page descriptors must be 
repeated in each consecutive entry.

Fine page tables provide base addresses for large, small, or tiny pages. Large page 
descriptors must be repeated in 64 consecutive entries. Small page descriptors must be 
repeated in four consecutive entries and tiny page descriptors must be repeated in each 
consecutive entry.

Level two descriptor bit assignments are described in Table 7-7.

31 12 11 10 9 8 5 4 3 2 1 0

0 0

Large page base address 0 1

Small page base address C B 1 0

Tiny page base address 1 1

Fault

Large page

Small page

Tiny page

7 616 15

BC

C Bap0

ap0

ap

ap1ap2ap3

ap1ap2ap3

Table 7-7 Level two descriptor bits

Bits
Description

Large Small Tiny

31:16 31:12 31:10 These bits form the corresponding bits of the physical address

15:12 - 9:6 Should be zero
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The two least significant bits of the level two descriptor indicate the descriptor type as 
shown in Table 7-8.

Note

 Tiny pages do not support subpage permissions and therefore only have one set of 
access permission bits.

7.3.9 Translating large page references

Figure 7-10 on page 7-16 shows the complete translation sequence for a 64KB large 
page. 

11:4 11:4 5:4 Access permission bits. Domain access control on page 7-22 
and Fault checking sequence on page 7-24 show how to 
interpret the access permission bits

3:2 3:2 3:2 These bits, C and B, indicate whether the area of memory 
mapped by this page is treated as cachable or noncachable, and 
bufferable or nonbufferable. (The system is always 
write-through.)

1:0 1:0 1:0 These bits indicate the page size and validity and are interpreted 
as shown in Table 7-8

Table 7-8 Interpreting page table entry bits [1:0]

Value Meaning Description

0 0 Invalid Generates a page translation fault

0 1 Large page Indicates that this is a 64KB page

1 0 Small page Indicates that this is a 4KB page

1 1 Tiny page Indicates that this is a 1KB page

Table 7-7 Level two descriptor bits (continued)

Bits
Description

Large Small Tiny
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Figure 7-10 Large page translation from a coarse page table

Because the upper four bits of the page index and low-order four bits of the coarse page 
table index overlap, each coarse page table entry for a large page must be duplicated 16 
times (in consecutive memory locations) in the coarse page table. 

If a large page descriptor is included in a fine page table, the high-order six bits of the 
page index and low-order six bits of the fine page table index overlap. Each fine page 
table entry for a large page must therefore be duplicated 64 times.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

L2
table index

16 15 12 11

31 16 15 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 16 15 0

ap3Page base address

0

0

ap2 ap1 ap0 10C B

123456789101112
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7.3.10 Translating small page references

Figure 7-11 shows the complete translation sequence for a 4KB small page. 

Figure 7-11 Small page translation from a coarse page table

If a small page descriptor is included in a fine page table, the upper two bits of the page 
index and low-order two bits of the fine page table index overlap. Each fine page table 
entry for a small page must therefore be duplicated four times.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

Level 2
table index

12 11

31 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 0

ap3Page base address

0

0

ap2 ap1 ap0 01C B

123456789101112

1112
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7.3.11 Translating tiny page references

Figure 7-12 shows the complete translation sequence for a 1KB tiny page.

Figure 7-12 Tiny page translation from a fine page table

Page translation involves one additional step beyond that of a section translation. The 
level one descriptor is the fine page table descriptor and this is used to point to the level 
one descriptor. 

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Fine page table base address Domain 1 1

2 13458911

Level 2
table index

10 9

31 0

Page indexPage base address

Level two descriptor

31 0

Fine page table base address L2 table index 0

2 1

31 0

Page base address

1

0

ap 11C B

123456910

12

1112

910
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Note
 The domain specified in the level one description and access permissions specified in 
the level one description together determine whether the access has permissions to 
proceed. See section Domain access control on page 7-22 for details.

7.3.12 Subpages

You can define access permissions for subpages of small and large pages. If, during a 
page walk, a small or large page has a non-identical subpage permission, only the 
subpage being accessed is written into the TLB. For example, a 16KB (large page) 
subpage entry is written into the TLB if the subpage permission differs, and a 64KB 
entry is put in the TLB if the subpage permissions are identical.

When you use subpage permissions, and the page entry then has to be invalidated, you 
must invalidate all four subpages separately.
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7.4 MMU faults and CPU aborts

The MMU generates an abort on the following types of faults:

• alignment faults (data accesses only)

• translation faults 

• domain faults

• permission faults.

In addition, an external abort can be raised by the external system. This can happen only 
for access types that have the core synchronized to the external system:

• noncachable loads

• nonbufferable writes.

Alignment fault checking is enabled by the A bit in CP15 register 1. Alignment fault 
checking is not affected by whether or not the MMU is enabled. Translation, domain, 
and permission faults are only generated when the MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these 
faults. If a fault is detected as a result of a memory access, the MMU aborts the access 
and signals the fault condition to the CPU core. The MMU retains status and address 
information about faults generated by the data accesses in the fault status register and 
fault address register (see Fault address and fault status registers on page 7-21).

An access violation for a given memory access inhibits any corresponding external 
access, with an abort returned to the CPU core.
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7.5 Fault address and fault status registers

On an abort, the MMU places an encoded 4-bit value, FS[3:0], along with the 4-bit 
encoded domain number, in the data FSR, and the MVA associated with the abort is 
latched into the FAR. If an access violation simultaneously generates more than one 
source of abort, they are encoded in the priority given in Table 7-9.

7.5.1 Fault status

Table 7-9 describes the various access permissions and controls supported by the data 
MMU and details how these are interpreted to generate faults.

Note

 Alignment faults can write either b0001 or b0011 into FS[3:0]. Invalid values in 
domains [3:0] can occur because the fault is raised before a valid domain field has been 
read from a page table descriptor. Any abort masked by the priority encoding can be 
regenerated by fixing the primary abort and restarting the instruction. 

Table 7-9 Priority encoding of fault status

Priority Source Size Status Domain FAR

Highest Alignment - b00x1 Invalid MVA of access causing 
abort

Translation Section

Page

b0101

b0111

Invalid

Valid

MVA of access causing 
abort

Domain Section

Page

b1001

b1011

Valid

Valid

MVA of access causing 
abort

Permission Section

Page

b1101

b1111

Valid

Valid

MVA of access causing 
abort

Lowest External abort on noncachable nonbufferable 
access or noncachable bufferable read

Section

Page

b1000

b1010

Valid

Valid

MVA of access causing 
abort
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7.6 Domain access control

MMU accesses are primarily controlled through the use of domains. There are 16 
domains and each has a 2-bit field to define access to it. Two types of user are supported, 
clients and managers. The domains are defined in the domain access control register. 
Figure 7-13 shows how the 32 bits of the register are allocated to define the 16 2-bit 
domains.

Figure 7-13 Domain access control register format

Table 7-10 defines how the bits within each domain are interpreted to specify the access 
permissions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 7-10 Interpreting access control bits in domain access control register

Value Meaning Description

00 No access Any access generates a domain fault

01 Client Accesses are checked against the access permission bits in the section 
or page descriptor

10 Reserved Reserved. Currently behaves like the no access mode

11 Manager Accesses are not checked against the access permission bits so a 
permission fault cannot be generated
7-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Memory Management Unit 
 Table 7-11 shows how to interpret the Access Permission (AP) bits and how their 
interpretation is dependent on the S and R bits (control register bits 8 and 9).

Table 7-11 Interpreting access permission (AP) bits

AP S R
Supervisor
permissions

User 
permissions

Description

00 0 0 No access No access Any access generates a permission 
fault

00 1 0 Read-only No access Only Supervisor read permitted

00 0 1 Read-only Read-only Any write generates a permission fault

00 1 1 Reserved - -a

a. Do not use this encoding. [S:R] = 11 generates a fault for any access.

01 x x Read/write No access Access allowed only in Supervisor 
mode

10 x x Read/write Read-only Writes in User mode cause permission 
fault

11 x x Read/write Read/write All access types permitted in both 
modes

xx 1 1 Reserved - -a
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7.7 Fault checking sequence

The sequence the MMU uses to check for access faults is different for sections and 
pages. The sequence for both types of access is shown in Figure 7-14. 

Figure 7-14 Sequence for checking faults

The conditions that generate each of the faults are described in:

• Alignment fault on page 7-25

• Translation fault on page 7-25

Modified virtual address

Check address alignment Misaligned Alignment
fault

Get level one descriptorInvalid
Section

translation
fault

Section Page

Get page
table entry

Check domain status

Section Page

Invalid
Page

translation
fault

No access (00)
Reserved (10)

Page
domain

fault

Section
domain

fault

No access (00)
Reserved (10)

Client (01) Client (01)

Manager
(11)

Check
access

permissions

Check
access

permissions

Physical address

Violation
Page

permission
fault

Violation
Section

permission
fault
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• Domain fault

• Permission fault on page 7-26.

7.7.1 Alignment fault

If alignment fault is enabled (A bit in CP15 register 1 set), the MMU generates an 
alignment fault on any data word access, if the address is not word-aligned, or on any 
halfword access, if the address is not halfword-aligned, irrespective of whether the 
MMU is enabled or not. An alignment fault is not generated on any instruction fetch, 
nor on any byte access. 

Note

 If the access generates an alignment fault, the access sequence aborts without reference 
to more permission checks. 

7.7.2 Translation fault 

There are two types of translation fault:

Section A section translation fault is generated if the level one descriptor is 
marked as invalid. This happens if bits [1:0] of the descriptor are both 0.

Page A page translation fault is generated if the level two descriptor is marked 
as invalid. This happens if bits [1:0] of the descriptor are both 0.

7.7.3 Domain fault

There are two types of domain fault:

Section  The level one descriptor holds the 4-bit domain field, which selects one 
of the 16 2-bit domains in the domain access control register. The two bits 
of the specified domain are then checked for access permissions as 
described in Table 7-11 on page 7-23. The domain is checked when the 
level one descriptor is returned.

Page  The level one descriptor holds the 4-bit domain field, which selects one 
of the 16 2-bit domains in the domain access control register. The two bits 
of the specified domain are then checked for access permissions as 
described in Table 7-11 on page 7-23. The domain is checked when the 
level one descriptor is returned.

If the specified access is either no access (00) or reserved (10) then either a section 
domain fault or page domain fault occurs. 
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7.7.4 Permission fault

If the 2-bit domain field returns 01 (client) then access permissions are checked as 
follows:

Section If the level one descriptor defines a section-mapped access, the AP bits of 
the descriptor define whether or not the access is allowed, according to 
Table 7-11 on page 7-23. Their interpretation is dependent on the setting 
of the S and R bits (control register bits 8 and 9). If the access is not 
allowed, a section permission fault is generated.

Large page or small page 

If the level one descriptor defines a page-mapped access and the level two 
descriptor is for a large or small page, four access permission fields 
(ap3-ap0) are specified, each corresponding to one quarter of the page. 
For small pages ap3 is selected by the top 1KB of the page and ap0 is 
selected by the bottom 1KB of the page. For large pages, ap3 is selected 
by the top 16KB of the page and ap0 is selected by the bottom 16KB of 
the page. The selected AP bits are then interpreted in exactly the same 
way as for a section (see Table 7-11 on page 7-23). The only difference 
is that the fault generated is a page permission fault.

Tiny page If the level one descriptor defines a page-mapped access and the level two 
descriptor is for a tiny page, the AP bits of the level one descriptor define 
whether or not the access is allowed in the same way as for a section. The 
fault generated is a page permission fault.
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7.8 External aborts

In addition to the MMU-generated aborts, the ARM720T processor can be externally 
aborted by the AMBA bus. This can be used to flag an error on an external memory 
access. However, not all accesses can be aborted in this way and the Bus Interface Unit 
(BIU) ignores external aborts that cannot be handled.

The following accesses can be aborted:

• noncached reads

• unbuffered writes

• read-lock-write sequence, to noncachable memory.

In the case of a read-lock-write (SWP) sequence, if the read aborts, the write is never 
attempted.
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7.9 Interaction of the MMU and cache

The MMU is enabled and disabled using bit 0 of the CP15 control register as described 
in:

• Enabling the MMU

• Disabling the MMU.

7.9.1 Enabling the MMU

To enable the MMU:

1. Program the TTB and domain access control registers.

2. Program level 1 and level 2 page tables as required.

3. Enable the MMU by setting bit 0 in the control register.

You must take care if the translated address differs from the untranslated address 
because several instructions following the enabling of the MMU might have been 
prefetched with the MMU off (using physical = VA - flat translation). 

In this case, enabling the MMU can be considered as a branch with delayed execution. 
A similar situation occurs when the MMU is disabled. Consider the following code 
sequence:

MRC p15, 0, R1, c1, C0, 0 ; Read control register

ORR R1, #0x1

MCR p15,0,R1,C1, C0,0 ; Enable MMUS

Fetch Flat

Fetch Flat

Fetch Translated

7.9.2 Disabling the MMU

To disable the MMU, clear bit 0 in the control register. The data cache must be disabled 
prior to, or at the same time as, the MMU is disabled by clearing bit 2 of the control 
register. See Enabling the MMU regarding prefetch effects.

Note
 If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the 
TLB are preserved. If these are now invalid, you must invalidate the TLB before 
re-enabling the MMU. See Register 8, TLB operations on page 3-10.
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Coprocessor Interface

This chapter describes the coprocessor interface on the ARM720T processor. It contains 
the following sections:

• About coprocessors on page 8-2

• Coprocessor interface signals on page 8-4

• Pipeline-following signals on page 8-5

• Coprocessor interface handshaking on page 8-6

• Connecting coprocessors on page 8-11

• Not using an external coprocessor on page 8-13

• STC operations on page 8-14

• Undefined instructions on page 8-15

• Privileged instructions on page 8-16.
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8.1 About coprocessors

The instruction set for the ARM720T processor enables you to implement specialized 
additional instructions using coprocessors. These are separate processing units that are 
tightly coupled to the ARM720T processor. A typical coprocessor contains:

• an instruction pipeline

• instruction decoding logic

• handshake logic

• a register bank

• special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM720T processor in the 
system, and tracks the pipeline in the ARM720T core. This means that the coprocessor 
can decode the instructions in the instruction stream, and execute those that it supports. 
Each instruction progresses down both the ARM720T processor pipeline and the 
coprocessor pipeline at the same time. 

The execution of instructions is shared between the ARM720T core and the 
coprocessor, as follows: 

The ARM720T core 

1. Evaluates the condition codes to determine whether the 
instruction must be executed by the coprocessor, then 
signals this to any coprocessors in the system (using 
CPnCPI).

2. Generates any addresses that are required by the instruction, 
including prefetching the next instruction to refill the 
pipeline.

3. Takes the undefined instruction trap if no coprocessor 
accepts the instruction.

The coprocessor: 1. Decodes instructions to determine whether it can accept the 
instruction.

2. Indicates whether it can accept the instruction (by signaling 
on EXTCPA and EXTCPB).

3. Fetches any values required from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined 
instruction trap. You can choose whether to emulate coprocessor functions in software, 
or to design a dedicated coprocessor.
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8.1.1 Coprocessor availability

You can connect up to 16 coprocessors into a system, each with a unique coprocessor 
ID number. 

Some coprocessor numbers are reserved. For example, you cannot assign external 
coprocessors to coprocessor numbers 14 and 15, because these are internal to the 
ARM720T processor:

• CP14 is the communications channel coprocessor

• CP15 is the system control coprocessor for cache and MMU functions.

Coprocessor availability is shown in Table 8-1.

Note

 If you intend to design a coprocessor, send an E-mail with coprocessor in the subject 
line to info@arm.com for up to date information on coprocessor numbers that have 
already been allocated.

Table 8-1 Coprocessor availability

Coprocessor
number

Allocation

15 System control

14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved
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8.2 Coprocessor interface signals

The signals used to interface the ARM720T core to a coprocessor are grouped into four 
categories.

The clock and clock control signals include the main processor clock and bus reset:

• HCLK 

• EXTCPCLKEN
• HRESETn.

The pipeline-following signals are:

• CPnMREQ
• CPnTRANS
• CPnOPC
• CPTBIT.

The handshake signals are:

• CPnCPI
• EXTCPA
• EXTCPB.

The data signals are:

• EXTCPDIN[31:0]
• EXTCPDOUT[31:0]
• EXTCPDBE.

These signals and their use are described in:

• Pipeline-following signals on page 8-5

• Coprocessor interface handshaking on page 8-6

• Connecting coprocessors on page 8-11

• Not using an external coprocessor on page 8-13

• Undefined instructions on page 8-15

• Privileged instructions on page 8-16.
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8.3 Pipeline-following signals

Every coprocessor in the system must contain a pipeline follower to track the 
instructions executing in the ARM720T processor pipeline. The coprocessors connect 
to the ARM720T processor input data bus, RDATA[31:0], over which instructions are 
fetched, and to HCLK and EXTCPCLKEN.

It is essential that the two pipelines remain in step at all times. When designing a 
pipeline follower for a coprocessor, you must observe the following rules:

• At reset (HRESETn LOW), the pipeline must either be marked as invalid, or 
filled with instructions that do not decode to valid instructions for that 
coprocessor.

• The coprocessor state must only change when EXTCPCLKEN is HIGH (except 
for reset).

• An instruction must be loaded into the pipeline on the rising edge of HCLK, and 
only when CPnOPC, CPnMREQ, and CPTBIT were all LOW in the previous 
bus cycle.

These conditions indicate that this cycle is an ARM state opcode Fetch, so the 
new opcode must be sampled into the pipeline.

• The pipeline must be advanced on the rising edge of HCLK when CPnOPC, 
CPnMREQ, and CPTBIT are all LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete 
execution, because the first action of any instruction performing an instruction 
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM720T processor pipeline never signal on 
CPnCPI that they have entered Execute, so they are automatically flushed from the 
coprocessor pipeline by the prefetches required to refill the pipeline.

There are no coprocessor instructions in the Thumb instruction set, so coprocessors 
must monitor the state of the CPTBIT signal to ensure that they do not try to decode 
pairs of Thumb instructions as ARM instructions.
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8.4 Coprocessor interface handshaking

The ARM720T core and any coprocessors in the system perform a handshake using the 
signals shown in Table 8-2.

These signals are explained in more detail in Coprocessor signaling on page 8-7.

8.4.1 The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline 
and checks whether that instruction is a coprocessor instruction. A coprocessor 
instruction has a coprocessor number that matches the coprocessor ID of the 
coprocessor.

If the instruction currently in the Decode stage is a coprocessor instruction:

1. The coprocessor attempts to execute the instruction.

2. The coprocessor signals back to the ARM720T core using EXTCPA and 
EXTCPB.

8.4.2 The ARM720T core

Coprocessor instructions progress down the ARM720T processor pipeline in step with 
the coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. (It 
might not if it was preceded by a branch.)

2. The instruction has passed its conditional execution tests.

3. A coprocessor in the system has signalled on EXTCPA and EXTCPB that it is 
able to accept the instruction.

Table 8-2 Handshaking signals

Signal Direction Meaning

CPnCPI ARM720T core to 
coprocessor

Not coprocessor instruction

EXTCPA Coprocessor to ARM720T 
core

Coprocessor absent

EXTCPB Coprocessor to ARM720T 
core

Coprocessor busy
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If all these requirements are met, the ARM720T processor signals by taking CPnCPI 
LOW. This commits the coprocessor to the execution of the coprocessor instruction.

8.4.3 Coprocessor signaling

The coprocessor signals as follows:

Coprocessor absent 
If a coprocessor cannot accept the instruction currently in Decode 
it must leave EXTCPA and EXTCPB both HIGH.

Coprocessor present 
If a coprocessor can accept an instruction, and can start that 
instruction immediately, it must signal this by driving both 
EXTCPA and EXTCPB LOW.

Coprocessor busy (busy-wait)
 If a coprocessor can accept an instruction, but is currently unable 

to process that request, it can stall the ARM720T core by asserting 
busy-wait. This is signaled by driving EXTCPA LOW, but 
leaving EXTCPB HIGH. When the coprocessor is ready to start 
executing the instruction it signals this by driving EXTCPB 
LOW. This is shown in Figure 8-1.

Figure 8-1 Coprocessor busy-wait sequence

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

coprocessor busy-waiting

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI (from

core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

RDATA[31:0]
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8.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If a valid FIQ or IRQ occurs 
(the appropriate bit is cleared in the CSPR), the ARM720T processor abandons the 
coprocessor instruction, and signals this by taking CPnCPI HIGH. A coprocessor that 
is capable of busy-waiting must monitor CPnCPI to detect this condition. When the 
ARM720T core abandons a coprocessor instruction, the coprocessor also abandons the 
instruction and continues tracking the ARM720T processor pipeline. 

Caution

 It is essential that any action taken by the coprocessor while it is busy-waiting is 
idempotent. The actions taken by the coprocessor must not corrupt the state of the 
coprocessor, and must be repeatable with identical results. The coprocessor can only 
change its own state after the instruction has been executed.

8.4.5 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, transfer data between a 
register in the ARM720T processor register bank and a register in the coprocessor 
register bank. An example sequence for a coprocessor register transfer is shown in 
Figure 8-2.

Figure 8-2 Coprocessor register transfer sequence

ADD SWINETSTMCRSUB

TSTMCRSUBADD SWINE

MCRSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(MCR)

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI
(from core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

HRDATA[31:0]

Tx

A C

HWDATA[31:0]
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8.4.6 Coprocessor data operations

The coprocessor data processing instructions, CDP, perform processing operations on 
the data held in the coprocessor register bank. No information is transferred between the 
ARM720T core and the coprocessor as a result of this operation. An example sequence 
is shown in Figure 8-3.

Figure 8-3 Coprocessor data operation sequence

8.4.7 Coprocessor load and store operations

The coprocessor load and store instructions, LDC and STC, are used to transfer data 
between a coprocessor and memory. They can be used to transfer either a single word 
of data or a number of the coprocessor registers. There is no limit to the number of 
words of data that can be transferred by a single LDC or STC instruction, but by convention 
a coprocessor must not transfer more than 16 words of data in a single instruction. An 
example sequence is shown in Figure 8-4 on page 8-10.

Note

 If you transfer more than 16 words of data in a single instruction, the worst-case 
interrupt latency of the ARM720T processor increases.

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI
(from core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

HRDATA[31:0]
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Figure 8-4 Coprocessor load sequence

ADD SWINETSTLDCSUB

TSTLDCSUBADD SWINE

LDCSUBADD SWINETST

I Fetch I FetchI FetchI Fetch CP data I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

HCLK
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Decode
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Execute
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CPnCPI
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n=4
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8-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Coprocessor Interface 
8.5 Connecting coprocessors

A coprocessor in a system based on an ARM720T processor must have 32-bit 
connections to:

• transfer data from memory (instruction stream and LDC)

• write data from the ARM720T processor (MCR)

• read data to the ARM720T processor (MRC).

8.5.1 Connecting a single coprocessor

You can connect a single coprocessor directly to the coprocessor interface of the 
ARM720T processor without any additional logic, as shown in Figure 8-5. 
EXTCPDBE must be driven HIGH by the external coprocessor when it drives data on 
EXTCPDOUT.

Figure 8-5 Example coprocessor connections

Note
 If you are building a system with an ETM7 and an ARM720T core, you must directly 
connect the following buses:

• ETM7 input RDATA[31:0] to the ARM720T processor output 
ETMRDATA[31:0]

ARM720T (Rev 4)

processor

External coprocessor

Memory

A
M

B
A

in
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CPDOUT
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• ETM7 input WDATA[31:0] to the ARM720T processor output 
ETMWDATA[31:0]. 

This enables the ETM to correctly trace coprocessor instructions.

8.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as 
shown in Table 8-3.

You must also multiplex the output data from the coprocessors.

Table 8-3 Handshake signal connections

Signal Connection

CPnCPI Connect this signal to all coprocessors present in the system

CPA and CPB The individual CPA and CPB outputs from each coprocessor must be 
ANDed together, and connected to the EXTCPA and EXTCPB inputs on 
the ARM720T processor
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8.6 Not using an external coprocessor 

If you are implementing a system that does not include any external coprocessors, you 
must tie both EXTCPA and EXTCPB HIGH. This indicates that no external 
coprocessors are present in the system. If any coprocessor instructions are received, 
they take the undefined instruction trap so that they can be emulated in software if 
required.

The coprocessor-specific outputs from the ARM720T core must be left unconnected:

• CPnMREQ
• CPnTRANS
• CPnOPC
• CPnCPI
• CPTBIT.

You must tie off EXTCPDOUT.

You must tie the external coprocessor data bus enable, EXTCPDBE, LOW.
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-13



Coprocessor Interface 
8.7 STC operations

If you are using an external coprocessor, you can perform STC operations in cachable 
regions with the cache enabled. However, the STC operation is treated as a series of 
nonsequential transfers on the AMBA bus.
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8.8 Undefined instructions

The ARM720T processor implements full ARM architecture v4T undefined instruction 
handling. This means that any instruction defined in the ARM Architecture Reference 
Manual as UNDEFINED, automatically causes the ARM720T processor to take the 
undefined instruction trap. Any coprocessor instructions that are not accepted by a 
coprocessor also result in the ARM720T processor taking the undefined instruction 
trap.
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8.9 Privileged instructions

The output signal CPnTRANS enables you to implement coprocessors, or coprocessor 
instructions, that can only be accessed from privileged modes. The signal meanings are 
shown in Table 8-4.

The CPnTRANS signal is sampled at the same time as the instruction, and is factored 
into the coprocessor pipeline Decode stage. 

Note

 If a User-mode process (CPnTRANS LOW) tries to access a coprocessor instruction 
that can only be executed in a privileged mode, the coprocessor must respond with 
EXTCPA and EXTCPB HIGH. This causes the ARM720T processor to take the 
undefined instruction trap.

Table 8-4 CPnTRANS signal meanings

CPnTRANS Meaning

LOW User mode instruction

HIGH Privileged mode instruction
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Chapter 9 
Debugging Your System

This chapter describes how to debug a system based on an ARM720T (Rev 4) processor. 
It contains the following sections:

• About debugging your system on page 9-3

• Controlling debugging on page 9-5

• Entry into debug state on page 9-7

• Debug interface on page 9-12

• ARM720T core clock domains on page 9-13

• The EmbeddedICE-RT macrocell on page 9-14

• Disabling EmbeddedICE-RT on page 9-16

• EmbeddedICE-RT register map on page 9-17

• Monitor mode debugging on page 9-18

• The debug communications channel on page 9-20

• Scan chains and the JTAG interface on page 9-24

• The TAP controller on page 9-27

• Public JTAG instructions on page 9-29

• Test data registers on page 9-32

• Scan timing on page 9-37

• Examining the core and the system in debug state on page 9-40
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• The program counter during debug on page 9-46

• Priorities and exceptions on page 9-50

• Watchpoint unit registers on page 9-51

• Programming breakpoints on page 9-56

• Programming watchpoints on page 9-59

• Abort status register on page 9-61

• Debug control register on page 9-62

• Debug status register on page 9-65

• Coupling breakpoints and watchpoints on page 9-67

• EmbeddedICE-RT timing on page 9-70.
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9.1 About debugging your system

The advanced debugging features of the ARM720T (Rev 4) processor make it easier to 
develop application software, operating systems, and the hardware itself. 

9.1.1 A typical debug system

The ARM720T (Rev 4) processor forms one component of a debug system that 
interfaces from the high-level debugging that you perform to the low-level interface 
supported by the ARM720T processor. Figure 9-1 shows a typical debug system.

Figure 9-1 Typical debug system

A debug system usually has three parts:

 Debug host A computer that is running a software debugger such as the ARM 
Debugger for Windows (ADW). The debug host enables you to 
issue high-level commands such as setting breakpoints or 
examining the contents of memory.

Protocol converter This interfaces between the high-level commands issued by the 
debug host and the low-level commands of the ARM720T 
processor JTAG interface. Typically it interfaces to the host 
through an interface such as an enhanced parallel port.

Debug host

(host compiler

running ARM or

third party toolkit)

Protocol converter

(for example Multi-

ICE)

Debug target

(development

system containing

ARM720T

processor)
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Debug target The ARM720T (Rev 4) processor has hardware extensions that 
ease debugging at the lowest level. These extensions enable you 
to:

• halt program execution

• examine and modify the internal state of the core

• examine the state of the memory system

• execute abort exceptions, allowing real-time monitoring of 
the core

• resume program execution.

The debug host and the protocol converter are system-dependent.
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9.2 Controlling debugging

The major blocks of the ARM720T (Rev 4) processor are:

ARM CPU core This has hardware support for debug.

 EmbeddedICE-RT macrocell 

A set of registers and comparators that you use to generate debug 
exceptions (such as breakpoints). This unit is described in The 
EmbeddedICE-RT macrocell on page 9-14.

 TAP controller Controls the action of the scan chains using a JTAG serial 
interface. For more details, see The TAP controller on page 9-27.

These blocks are shown in Figure 9-2.

Figure 9-2 ARM720T (Rev 4) processor block diagram
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9.2.1 Debug modes

You can perform debugging in either of the following modes:

Halt mode When the system is in halt mode, the core enters debug state when 
it encounters a breakpoint or a watchpoint. In debug state, the core 
is stopped and isolated from the rest of the system. When debug 
has completed, the debug host restores the core and system state, 
and program execution resumes.

For more information, see Entry into debug state on page 9-7.

Monitor mode When the system is in monitor mode, the core does not enter 
debug state on a breakpoint or watchpoint. Instead, an Instruction 
Abort or Data Abort is generated and the core continues to receive 
and service interrupts as normal. You can use the abort status 
register to establish whether the exception was due to a breakpoint 
or watchpoint, or to a genuine memory abort.

For more information, see Monitor mode debugging on page 9-18. 

9.2.2 Examining system state during debugging

In both halt mode and monitor mode, the JTAG-style serial interface enables you to 
examine the internal state of the core and the external state of the system while system 
activity continues. 

In halt mode, this enables instructions to be inserted serially into the core pipeline 
without using the external data bus. For example, when in debug state, a Store Multiple 
(STM) can be inserted into the instruction pipeline to export the contents of the 
ARM720T processor registers. This data can be serially shifted out without affecting 
the rest of the system. For more information, see Examining the core and the system in 
debug state on page 9-40.

In monitor mode, the JTAG interface is used to transfer data between the debugger and 
a simple monitor program running on the ARM720T core.

For detailed information about the scan chains and the JTAG interface, see Scan chains 
and the JTAG interface on page 9-24.
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9.3 Entry into debug state

If the system is in halt mode, any of the following types of interrupt force the processor 
into debug state:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

Note

 In monitor mode, the processor continues to execute instructions in real time, and will 
take an abort exception. The abort status register enables you to establish whether the 
exception was due to a breakpoint or watchpoint, or to a genuine memory abort.

You can use the EmbeddedICE-RT logic to program the conditions under which a 
breakpoint or watchpoint can occur. Alternatively, you can use the DBGBREAK signal 
to enable external logic to flag breakpoints or watchpoints and monitor the following:

• address bus

• data bus

• control signals.

The timing is the same for externally-generated breakpoints and watchpoints. Data must 
always be valid around the rising edge of HCLK. When this data is an instruction to be 
breakpointed, the DBGBREAK signal must be HIGH around the rising edge of 
HCLK. Similarly, when the data is for a load or store, asserting DBGBREAK around 
the rising edge of HCLK marks the data as watchpointed. 

When a breakpoint or watchpoint is generated, there might be a delay before the 
ARM720T core enters debug state. When it enters debug state, the DBGACK signal is 
asserted. The timing for an externally-generated breakpoint is shown in Figure 9-3 on 
page 9-8.
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Figure 9-3 Debug state entry

9.3.1 Entry into debug state on breakpoint

The ARM720T (Rev 4) processor marks instructions as being breakpointed as they 
enter the instruction pipeline, but the core does not enter debug state until the instruction 
reaches the Execute stage. 

Breakpointed instructions are not executed. Instead, the ARM720T core enters debug 
state. When you examine the internal state, you see the state before the breakpointed 
instruction. When your examination is complete, remove the breakpoint. Program 
execution restarts from the previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline, 
the breakpoint is always taken if the system is in halt mode. The ARM720T core enters 
debug state regardless of whether the instruction condition is met.

A breakpointed instruction does not cause the ARM720T core to enter debug state 
when:

• A branch or a write to the PC precedes the breakpointed instruction. In this case, 
when the branch is executed, the ARM720T processor flushes the instruction 
pipeline, so canceling the breakpoint. 

• An exception occurs, causing the ARM720T processor to flush the instruction 
pipeline, and cancel the breakpoint. In normal circumstances, on exiting from an 
exception, the ARM720T core branches back to the instruction that would have 
been executed next before the exception occurred. In this case, the pipeline is 
refilled and the breakpoint is reflagged.

HCLK

Internal cyclesMemory cycles

HADDR[31:0]
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DATA[31:0]

DBGBREAK
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9.3.2 Entry into debug state on watchpoint

Watchpoints occur on data accesses. In halt mode, the core processing stops. In monitor 
mode, an abort exception is executed (see Abort on page 2-19). A watchpoint is always 
taken, but a core in halt mode might not enter debug state immediately because the 
current instruction always completes. If the current instruction is a multiword load or 
store (an LDM or STM), many cycles can elapse before the watchpoint is taken.

On a watchpoint, the following sequence occurs:

1. The current instruction completes.

2. All changes to the core state are made. 

3. Load data is written into the destination registers. 

4. Base write-back is performed.

Note

 Watchpoints are similar to Data Aborts. The difference is that when a Data Abort 
occurs, although the instruction completes, the ARM720T core prevents all subsequent 
changes to the ARM720T processor state. This action enables the abort handler to cure 
the cause of the abort, so the instruction can be re-executed. 

If a watchpoint occurs when an exception is pending, the core enters debug state in the 
same mode as the exception.

9.3.3 Entry into debug state on debug request

An ARM720T core in halt mode can be forced into debug state on debug request in 
either of the following ways:

• through EmbeddedICE-RT programming (see Programming breakpoints on 
page 9-56, and Programming watchpoints on page 9-59.)

• by asserting the DBGRQ pin.

When the DBGRQ pin has been asserted, the core normally enters debug state at the 
end of the current instruction. However, when the current instruction is a busy-waiting 
access to a coprocessor, the instruction terminates, and the ARM720T core enters debug 
state immediately. This is similar to the action of nIRQ and nFIQ.

9.3.4 Action of the ARM720T processor in debug state

When the ARM720T processor enters debug state, the core forces HTRANS[1:0] to 
indicate internal cycles. This action enables the rest of the memory system to ignore the 
ARM720T core and to function as normal. Because the rest of the system continues to 
operate, the ARM720T core is forced to ignore aborts and interrupts.
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Caution
 Do not reset the core while debugging, otherwise the debugger loses track of the core.

Note

 The system must not change the ETMBIGEND signal during debug. From the point of 
view of the programmer, if ETMBIGEND changes, the ARM720T processor changes, 
with the debugger unaware that the core has reset. You must also ensure that HRESETn 
is held stable during debug. When the system applies reset to the ARM720T processor 
(that is, HRESETn is driven LOW), the ARM720T processor state changes with the 
debugger unaware that the core has reset.

9.3.5 Clocks

The system and test clocks must be synchronized externally to the macrocell. The ARM 
Multi-ICE debug agent directly supports one or more cores within an ASIC design. 
Synchronizing off-chip debug clocking with the ARM720T macrocell requires a 
three-stage synchronizer. The off-chip device (for example, Multi-ICE) issues a TCK 
signal and waits for the RTCK (Returned TCK) signal to come back. Synchronization 
is maintained because the off-chip device does not progress to the next TCK until after 
RTCK is received. 

Figure 9-4 on page 9-11 shows this synchronization.
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Figure 9-4 Clock synchronization

Note

 All the D-types shown in Figure 9-4 are reset by DBGnTRST.
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9.4 Debug interface

The ARM720T processor debug interface is based on IEEE Std. 1149.1- 1990, Standard 
Test Access Port and Boundary-Scan Architecture. Refer to this standard for an 
explanation of the terms used in this chapter, and for a description of the TAP controller 
states.

9.4.1 Debug interface signals

There are three primary external signals associated with the debug interface:

• DBGBREAK and DBGRQ are system requests for the ARM720T core to enter 
debug state

Note

 Both DBGRQ and DBBREAK must be LOW when the core has entered debug 
state. If they are not, these signals affect the use of the DBGBREAK flag on scan 
chain 1, which controls the way the core goes into and out of debug. The result is 
that the core performs an unexpected series of debug and system speed accesses, 
and the debugger loses control of the core.

• DBGACK is used by the ARM720T core to flag back to the system that it is in 
debug state.
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9.5 ARM720T core clock domains

The ARM720T processor has a single clock, HCLK, that is qualified by two clock 
enables:

• HCLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

When the ARM720T processor is in debug state, DBGTCKEN conditions HCLK to 
clock the core.
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9.6 The EmbeddedICE-RT macrocell

The ARM720T processor EmbeddedICE-RT macrocell module provides integrated 
on-chip debug support for the ARM720T core. 

The EmbeddedICE-RT module is connected directly to the core and therefore functions 
on the virtual address of the processor after relocation by the FCSE PID. You program 
the EmbeddedICE-RT macrocell serially using the ARM720T processor TAP 
controller. 

Figure 9-5 shows the relationship between the core, EmbeddedICE-RT, and the TAP 
controller, showing only the signals that are pertinent to EmbeddedICE-RT.

Figure 9-5 The ARM720T (Rev 4) core, TAP controller, and EmbeddedICE-RT macrocell
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The EmbeddedICE-RT logic comprises the following:

Two real-time watchpoint units 

You can program one or both watchpoint units to halt the 
execution of instructions by the core. Execution halts when the 
values programmed into the EmbeddedICE-RT logic match the 
values currently appearing on the address bus, data bus, and 
various control signals. You can mask any bit so that its value does 
not affect the comparison. 

You can configure each watchpoint unit to be either a watchpoint 
(monitoring data accesses) or a breakpoint (monitoring instruction 
fetches). Watchpoints and breakpoints can be data-dependent.

For more details, see Watchpoint unit registers on page 9-51.

Abort status register 

This register identifies whether an abort exception entry was 
caused by a breakpoint, a watchpoint, or a real abort. For more 
information, see Abort status register on page 9-61.

Debug Communications Channel (DCC) 

The DCC passes information between the target and the host 
debugger. For more information, see The debug communications 
channel on page 9-20.

In addition, two independent registers provide overall control of EmbeddedICE-RT 
operation. These are described in the following sections:

• Debug control register on page 9-62

• Debug status register on page 9-65.

The locations of the EmbeddedICE-RT registers are given in EmbeddedICE-RT register 
map on page 9-17.
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9.7 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT in two ways:

Permanently By wiring the DBGEN input LOW.

When DBGEN is LOW:

• DBGBREAK and DBGRQ are ignored by the core

• DBGACK is forced LOW by the ARM720T core

• the IFEN input to the core is forced HIGH, so interrupts 
pass through to the processor uninhibited

• the EmbeddedICE-RT logic enters low-power mode.

Caution

 Hard-wiring the DBGEN input LOW permanently disables debug 
access. However, you must not rely on this for system security.

Temporarily By setting bit 5 in the debug control register (described in Debug 
control register on page 9-62). Bit 5 is also known as the 
EmbeddedICE-RT disable bit. 

You must set bit 5 before doing either of the following:

• programming breakpoint or watchpoint registers

• changing bit 4 of the debug control register.

9.7.1 EmbeddedICE-RT timing

EmbeddedICE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the falling 
edge of HCLK. This means that you must allow sufficient set-up and hold time for these 
signals.
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9.8 EmbeddedICE-RT register map

The locations of the EmbeddedICE-RT registers are shown in Table 9-1.

Table 9-1 Function and mapping of EmbeddedICE-RT registers

Address Width Function

b00000 6 Debug control

b00001 5 Debug status

b00100 32 Debug Communications Channel 
(DCC) control register

b00101 32 Debug Communications Channel 
(DCC) data register

b01000 32 Watchpoint 0 address value

b01001 32 Watchpoint 0 address mask

b01010 32 Watchpoint 0 data value

b01011 32 Watchpoint 0 data mask

b01100 9 Watchpoint 0 control value

b01101 8 Watchpoint 0 control mask

b10000 32 Watchpoint 1address value

b10001 32 Watchpoint 1 address mask

b10010 32 Watchpoint 1 data value

b10011 32 Watchpoint 1 data mask

b10100 9 Watchpoint 1 control value

b10101 8 Watchpoint 1 control mask
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9.9 Monitor mode debugging

The ARM720T (Rev 4) processor contains logic that enables the debugging of a system 
without stopping the core entirely. This means that critical interrupt routines continue 
to be serviced while the core is being interrogated by the debugger. 

9.9.1 Enabling monitor mode

The debugging mode is controlled by bit 4 of the debug control register (described in 
Debug control register on page 9-62). Bit 4 of this register is also known as the monitor 
mode enable bit:

Bit 4 set  Enables the monitor mode features of the ARM720T processor. When 
this bit is set, the EmbeddedICE-RT logic is configured so that a 
breakpoint or watchpoint causes the ARM720T core to enter abort mode, 
taking the Prefetch or Data Abort vectors respectively. 

Bit 4 clear Monitor mode debugging is disabled and the system is placed into halt 
mode. In halt mode, the core enters debug state when it encounters a 
breakpoint or watchpoint.

9.9.2 Restrictions on monitor-mode debugging

There are several restrictions you must be aware of when the ARM core is configured 
for monitor-mode debugging:

• Breakpoints and watchpoints cannot be data-dependent in monitor mode. No 
support is provided for use of the range functionality. Breakpoints and 
watchpoints can only be based on the following:

— instruction or data addresses

— external watchpoint conditioner (DBGEXT[0] or DBGEXT[1])

— User or privileged mode access (CPnTRANS)

— read/write access for watchpoints (HWRITE)

— access size (watchpoints SIZE[1:0]).

• External breakpoints or watchpoints are not supported.

• No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort 
status register in coprocessor 14 (see Abort status register on page 9-61).
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The monitor mode enable bit does not put the ARM720T processor into debug state. For 
this reason, it is necessary to change the contents of the watchpoint registers while 
external memory accesses are taking place, rather than changing them when in debug 
state where the core is halted. 

If there is a possibility of false matches occurring during changes to the watchpoint 
registers (caused by old data in some registers and new data in others) you must:

1. Disable the watchpoint unit by setting bit 5 in the debug control register (also 
known as the EmbeddedICE-RT disable bit).

2. Poll the debug control register until the EmbeddedICE-RT disable bit is read back 
as set.

3. Change the other registers.

4. Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the 
debug control register.

See Debug control register on page 9-62 for more information about controlling core 
behavior at breakpoints and watchpoints.
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9.10 The debug communications channel

The ARM720T (Rev 4) EmbeddedICE-RT macrocell contains a Debug Communication 
Channel (DCC) for passing information between the target and the host debugger. This 
is implemented as coprocessor 14.

The DCC comprises two registers, as follows:

DCC control register 

A 32-bit register, used for synchronized handshaking between the 
processor and the asynchronous debugger. For more details, see 
DCC control register.

DCC data register 

A 32-bit register, used for data transfers between the debugger and 
the processor. For more details, see Communications through the 
DCC on page 9-22.

These registers occupy fixed locations in the EmbeddedICE-RT memory map, as shown 
in Table 9-1 on page 9-17. They are accessed from the processor using MCR and MRC 
instructions to coprocessor 14.

The registers are accessed as follows:

By the debugger Through scan chain 2 in the usual way.

By the processor Through coprocessor register transfer instructions.

9.10.1 DCC control register

The DCC control register is read-only and enables synchronized handshaking between 
the processor and the debugger. The register format is shown in Figure 9-6.

Figure 9-6 DCC control register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 RW100
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The DCC control register bit assignments are shown in Table 9-2.

Note

 If execution is halted, bit 0 might remain asserted. The debugger can clear it by writing 
to the DCC control register.

Writing to this register is rarely necessary, because in normal operation the processor 
clears bit 0 after reading it.

Instructions

The following instructions must be used:

MRC CP14, 0, Rd, C0, C0 

Returns the value from the DCC control register into the 
destination register Rd.

MCR CP14, 0, Rn, C1, C0 

Writes the value in the source register Rn to the DCC data write 
register.

Table 9-2 DCC control register bit assignments

Bit Function

31:28 Contain a fixed pattern that denotes the 
EmbeddedICE-RT version number, in this case 
b0001.

27:2 Reserved.

1 The write control bit.

If this bit is clear, the DCC data write register is ready 
to accept data from the processor.

If this bit is set, there is data in the DCC data write 
register and the debugger can scan it out. 

0 The read control bit.

If this bit is clear, the DCC data read register is ready 
to accept data from the debugger. 

If this bit is set, the DCC data read register contains 
new data that has not been read by the processor, and 
the debugger must wait.
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MRC CP14, 0, Rd, C1, C0 

Returns the value from the DCC data read register into the 
destination register Rd.

Note
 The Thumb instruction set does not contain coprocessor instructions, so it is 
recommended that these are accessed using SWI instructions when in Thumb state.

9.10.2 Communications through the DCC

Messages can be sent and received through the DCC.

Sending a message to the debugger

Messages are sent from the processor to the debugger as follows:

1. When the processor wishes to send a message to EmbeddedICE-RT, it first checks 
that the communications data write register is free for use. The processor does this 
by reading the DCC control register to check the status of the W bit:

a. If the W bit is clear, the DCC data write register is empty and a message is 
written by a register transfer to the coprocessor.

b. If the W bit is set, this implies that previously-written data has not been read 
by the debugger. The processor must repeatedly read the DCC control 
register until the W bit is clear.

2. When the W bit is clear, a message is written by a register transfer to coprocessor 
14. The data transfer occurs from the processor to the DCC data write register, so 
the W bit is set in the DCC control register. 

3. When the debugger reads the DCC control register through the JTAG interface, it 
sees a synchronized version of both the R and W bits:

a. When the debugger sees that the W bit is set, it can read the 
communications data write register and scan the data out. 

b. The action of reading this data register clears the W bit of the DCC control 
register. At this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message from the processor to the debugger. In this case, the debugger reads the R bit 
of the debug comms control register.
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The sequence for receiving messages from the debugger is as follows:

1. The debugger reads the R bit of the DCC control register:

a. If the R bit is clear, the data read register is free, and data can be placed there 
for the processor to read. 

b. If the R bit is set, previously-deposited data has not yet been collected, so 
the debugger must wait.

2. When the communications data read register is free, data is written there using the 
JTAG interface. The action of this write sets the R bit in the DCC control register.

3. The processor reads the DCC control register:

a. If the R bit is set, there is data that can be read using an MRC instruction to 
coprocessor 14. The action of this load clears the R bit in the debug comms 
control register. 

b. If the R bit is clear, this indicates that the data has been taken and the 
process can now be repeated.
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9.11 Scan chains and the JTAG interface

There are three JTAG-style scan chains within the ARM720T (Rev 4) processor. These 
allow debugging and EmbeddedICE-RT programming.

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For more 
details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test 
Access Port and Boundary-Scan Architecture.

9.11.1 Scan chain implementation

The three scan paths on the ARM720T (Rev 4) processor are referred to as scan chain 
1, scan chain 2, and scan chain 15. They are shown in Figure 9-7.

Debug scan chain 0 is not implemented in the ARM720T (Rev 4) processor, but all the 
control signals are provided at the macrocell boundary. This enables you to design your 
own boundary scan chain wrapper if required. 

Figure 9-7 ARM720T processor scan chain arrangements
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Scan chain 1

Scan chain 1 provides serial access to the core data bus HRDATA/HWDATA and the 
DBGBREAK signal.

There are 33 bits in this scan chain, the order being (from serial data in to out): 

• data bus bits 0 through 31

• the DBGBREAK bit (the first to be shifted out).

Scan chain 2

Scan chain 2 enables access to the EmbeddedICE-RT registers. See Test data registers 
on page 9-32 for details.

Scan chain 15

Scan chain 15 is dedicated to the system control coprocessor registers (the CP15 
registers).

There are 37 bits in scan chain 15. From DBGTDI to DBGTDO, the order of the bits is: 

• read/write bit

• instruction encoding bits [3:0] (see Table 9-3)

• data bus bits 31 through 0.

Bit 0 of the data field is the first bit to be scanned in and the first to be scanned out.

The 4-bit instruction encodings for scan chain 15 are shown in Table 9-3.

Table 9-3 Instruction encodings for scan chain 15

Encoding Instruction

b0000 ID register access (read only)

b0001 Control register access (read/write)

b0010 TTB register access (read/write)

b0011 DAC register access (read/write)

b0100 FSR register access (read/write)

b0101 FAR register access (read/write)

b0110 FCSE PID register access (read/write)

b0111 TRACE PROCID register access (read/write)
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Note
 The instructions shown in Table 9-3 on page 9-25 are only executed during update. To 
perform a read, the processor must return to capture state and then shift the result out. 
In the capture stage, the instruction field of scan chain 15 is RAZ.

9.11.2 Controlling the JTAG interface

The JTAG interface is driven by the currently-loaded instruction in the instruction 
register (described in Instruction register on page 9-33). The loading of instructions is 
controlled by the Test Access Port (TAP) controller.

For more information about the TAP controller, see The TAP controller on page 9-27.

b1000 Invalidate cache (write only)

b1001 Invalidate TLB (write only)

b1010 Invalidate TLB single entry (write only)

Table 9-3 Instruction encodings for scan chain 15 (continued)

Encoding Instruction
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9.12 The TAP controller

The TAP controller is a state machine that determines the state of the boundary-scan test 
signals DBGTDI and DBGTDO. Figure 9-8 shows the state transitions that occur in 
the TAP controller.

Figure 9-8 Test access port controller state transitions

From IEEE Std 1149.1-1990. Copyright 2001 IEEE. All rights reserved.
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9.12.1 Resetting the TAP controller

To force the TAP controller into the correct state after power-up, you must apply a reset 
pulse to the DBGnTRST signal:

• When the boundary-scan interface is to be used, DBGnTRST must be driven 
LOW and then HIGH again. 

• When the boundary-scan interface is not to be used, you can tie the DBGnTRST 
input LOW.

The action of reset is as follows:

1. System mode is selected. This means that the boundary-scan cells do not intercept 
any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state and HCLK is pulsed 
while enabled by DBGTCKEN, the contents of the ID register are clocked out of 
DBGTDO.
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9.13 Public JTAG instructions

Table 9-4 shows the public JTAG instructions.

In the following descriptions, the ARM720T (Rev 4) processor samples DBGTDI and 
DBGTMS on the rising edge of HCLK with DBGTCKEN HIGH. The TAP controller 
states are shown in Figure 9-8 on page 9-27.

9.13.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and 
DBGTDO:

• In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register.

• In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between DBGTDI and DBGTDO, and remains connected until a subsequent 
SCAN_N instruction is issued.

• On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite 
length is specified.

9.13.2 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between DBGTDI and 
DBGTDO.

Table 9-4 Public instructions

Instruction Binary code

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

RESTART 0100
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• When the INTEST instruction is loaded into the instruction register, all the scan 
cells are placed in their test mode of operation.

• In the CAPTURE-DR state, the value of the data applied from the core logic to 
the output scan cells, and the value of the data applied from the system logic to 
the input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the scan 
chain through the DBGTDO pin, while new test data is shifted in through the 
DBGTDI pin.

Single-step operation of the core is possible using the INTEST instruction.

9.13.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or 
ID register) between DBGTDI and DBGTDO. The ID register is a 32-bit register that 
enables the manufacturer, part number, and version of a component to be read through 
the TAP. See ARM720T processor device identification (ID) code register on page 9-32 
for the details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID 
register.

• In the SHIFT-DR state, the previously captured device identification code is 
shifted out of the ID register through the DBGTDO pin, while data is shifted into 
the ID register through the DBGTDI pin.

• In the UPDATE-DR state, the ID register is unaffected.

9.13.4 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between 
DBGTDI and DBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells 
assume their normal (system) mode of operation. The BYPASS instruction has no effect 
on the system pins:

• In the CAPTURE-DR state, a logic 0 is captured the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register through 
DBGTDI and shifted out on DBGTDO after a delay of one HCLK cycle. The 
first bit to shift out is a zero. 
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• The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

9.13.5 RESTART (0100)

The RESTART instruction restarts the processor on exit from debug state. The 
RESTART instruction connects the bypass register between DBGTDI and DBGTDO. 
The TAP controller behaves as if the BYPASS instruction had been loaded. 

The processor exits debug state when the RUN-TEST/IDLE state is entered.

For more information, see Exit from debug state on page 9-44.
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9.14 Test data registers

The six test data registers that can connect between DBGTDI and DBGTDO are 
described in the following sections: 

• Bypass register

• ARM720T processor device identification (ID) code register

• Instruction register on page 9-33

• Scan path select register on page 9-33

• Scan chain 1 on page 9-35

• Scan chain 2 on page 9-35.

In the following descriptions, data is shifted during every HCLK cycle when 
DBGTCKEN enable is HIGH.

9.14.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path 
between DBGTDI and DBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the 
instruction register, serial data is transferred from DBGTDI to 
DBGTDO in the SHIFT-DR state with a delay of one HCLK 
cycle enabled by DBGTCKEN.
There is no parallel output from the bypass register.
A logic 0 is loaded from the parallel input of the bypass register in 
the CAPTURE-DR state.

9.14.2 ARM720T processor device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable 
supplementary identification code is provided.

Length 32 bits. The format of the ID code register is as shown in 
Figure 9-9.

Figure 9-9 ID code register format

011112272831

Version Part number Manufacturer identity 1
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The default device identification code is 0x7f1f0f0f.

Operating mode When the IDCODE instruction is current, the ID register is 
selected as the serial path between DBGTDI and DBGTDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register 
from its parallel inputs during the CAPTURE-DR state.

9.14.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the 
serial path between DBGTDI, and DBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded 
into this register. This value is shifted out during SHIFT-IR (least 
significant bit first), while a new instruction is shifted in (least 
significant bit first).

During the UPDATE-IR state, the value in the instruction register 
becomes the current instruction. 

On reset, IDCODE becomes the current instruction.

There is no parity bit.

9.14.4 Scan path select register

Purpose Changes the current active scan chain.

Length 4 bits.

Operating mode  SCAN_N as the current instruction in the SHIFT-DR state selects 
the scan path select register as the serial path between DBGTDI, 
and DBGTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded 
into this register. This value is loaded out during SHIFT-DR (least 
significant bit first), while a new value is loaded in (least 
significant bit first). During the UPDATE-DR state, the value in 
the register selects a scan chain to become the currently active 
scan chain. All additional instructions, such as INTEST, then 
apply to that scan chain.
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The currently-selected scan chain changes only when a SCAN_N 
instruction is executed, or when a reset occurs. On reset, scan 
chain 0 is selected as the active scan chain.

Table 9-5 shows the scan chain number allocation.

9.14.5 Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the EmbeddedICE-RT 
hardware for programming purposes. Each scan chain cell is simple and comprises a 
serial register and a multiplexor. 

The scan cells perform three basic functions:

• capture

• shift

• update.

For input cells, the capture stage involves copying the value of the system input to the 
core into the serial register. During shift, this value is output serially. The value applied 
to the core from an input cell is either the system input, or the contents of the parallel 
register (loads from the shift register after UPDATE-DR state) under multiplexor 
control.

For output cells, capture involves placing the value of a core output into the serial 
register. During shift, this value is serially output as before. The value applied to the 
system from an output cell is either the core output, or the contents of the serial register.

Table 9-5 Scan chain number allocation

Scan chain number Function

0 (User-implemented)

1 Debug

2 EmbeddedICE-RT 
programming

3 Reserveda

a. When selected, reserved scan chains scan out 
zeros.

4 Reserveda

8 Reserveda
9-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Debugging Your System 
All the control signals for the scan cells are generated internally by the TAP controller. 
The action of the TAP controller is determined by current instruction and the state of the 
TAP state machine.

Scan chain 1

Purpose Scan chain 1 is used for communication between the debugger, 
and the ARM720T core. It is used to read and write data, and to 
scan instructions into the pipeline. The SCAN_N TAP instruction 
can be used to select scan chain 1.

Length 33 bits, 32 bits a for the data value and 1 bit for the scan cell on 
the DBGBREAK core input.

Scan chain order From DBGTDI to DBGTDO, the ARM720T processor data bits, 
bits 0 to 31, then the 33rd bit, the DBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:

• Under normal INTEST test conditions, it enables a known value to be scanned 
into the DBGBREAK input. 

• While debugging, the value placed in the 33rd bit determines whether the 
ARM720T core synchronizes back to system speed before executing the 
instruction. See System speed access on page 9-48 for more details.

• After the ARM720T core has entered debug state, the value of the 33rd bit on the 
first occasion that it is captured, and scanned out tells the debugger whether the 
core entered debug state from a breakpoint (bit 33 LOW), or from a watchpoint 
(bit 33 HIGH).

Scan chain 2

Purpose Scan chain 2 provides access to the EmbeddedICE-RT registers. 
To do this, scan chain 2 must be selected using the SCAN_N TAP 
controller instruction, and then the TAP controller must be put in 
INTEST mode.

Length 38 bits. 

Scan chain order From DBGTDI to DBGTDO, the read/write bit, the register 
address bits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR. 

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify 
the address of the EmbeddedICE-RT register to be accessed. 
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During UPDATE-DR, this register is either read or written depending on the value of 
bit 37 (0 = read, 1 = write). See Figure 9-12 on page 9-52 for more details.
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9.15 Scan timing

Figure 9-10 provides general scan timing information.

Figure 9-10 Scan timing

9.15.1 Scan chain 1 cells

The ARM720T (Rev 4) processor provides data for scan chain 1 cells as shown in 
Table 9-6.
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Table 9-6 Scan chain 1 cells

Number Signal Type

1 DATA[0] Input/output

2 DATA[1] Input/output

3 DATA[2] Input/output

4 DATA[3] Input/output

5 DATA[4] Input/output

6 DATA[5] Input/output

7 DATA[6] Input/output
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8 DATA[7] Input/output

9 DATA[8] Input/output

10 DATA[9] Input/output

11 DATA[10] Input/output

12 DATA[11] Input/output

13 DATA[12] Input/output

14 DATA[13] Input/output

15 DATA[14] Input/output

16 DATA[15] Input/output

17 DATA[16] Input/output

18 DATA[17] Input/output

19 DATA[18] Input/output

20 DATA[19] Input/output

21 DATA[20] Input/output

22 DATA[21] Input/output

23 DATA[22] Input/output

24 DATA[23] Input/output

25 DATA[24] Input/output

26 DATA[25] Input/output

27 DATA[26] Input/output

28 DATA[27] Input/output

29 DATA[28] Input/output

30 DATA[29] Input/output

Table 9-6 Scan chain 1 cells (continued)

Number Signal Type
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31 DATA[30] Input/output

32 DATA[31] Input/output

33 DBGBREAK Input

Table 9-6 Scan chain 1 cells (continued)

Number Signal Type
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9.16 Examining the core and the system in debug state

When the ARM720T (Rev 4) processor is in debug state, you can examine the core and 
system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug state from Thumb state or ARM state, by 
examining bit 4 of the EmbeddedICE-RT debug status register, as follows:

Bit 4 HIGH The core has entered debug from Thumb state.

Bit 4 LOW The core has entered debug from ARM state.

9.16.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of 
action is for the debugger to force the core back into ARM state. The debugger can then 
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb 
instructions on the core:

STR R0, [R0]; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0]; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

Note

 Because all Thumb instructions are only 16 bits long, you can repeat the instruction 
when shifting scan chain 1. For example, the encoding for BX R0 is 0x4700, so when 
0x47004700 shifts into scan chain 1, the debugger does not have to keep track of the half 
of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions below to determine the state of the 
processor.

With the processor in the ARM state, the first instruction to execute is typically:

STM R0, {R0-R15}
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This instruction causes the contents of the registers to appear on the data bus. You can 
then sample and shift out these values.

Note

 The use of r0 as the base register for the STM is only for illustration, any register can 
be used.

After you have determined the values in the current bank of registers, you might wish 
to access the banked registers. To do this, you must change mode. Normally, a mode 
change can occur only if the core is already in a privileged mode. However, while in 
debug state, a mode change from one mode into any other mode can occur. 

The debugger must restore the original mode before exiting debug state. For example, 
if the debugger was requested to return the state of the User mode registers, and FIQ 
mode registers, and debug state was entered in Supervisor mode, the instruction 
sequence might be:

STM R0, {R0-R15}; Save current registers

MRS R0, CPSR

STR R0, R0; Save CPSR to determine current mode

BIC R0, 0x1F; Clear mode bits

ORR R0, 0x10; Select user mode

MSR CPSR, R0; Enter USER mode

STM R0, {R13,R14}; Save register not previously visible

ORR R0, 0x01; Select FIQ mode

MSR CPSR, R0; Enter FIQ mode

STM R0, {R8-R14}; Save banked FIQ registers

All these instructions execute at debug speed. Debug speed is much slower than system 
speed. This is because between each core clock, 33 clocks occur in order to shift in an 
instruction, or shift out data. Executing instructions this slowly is acceptable for 
accessing the core state because the ARM720T processor is fully static. However, you 
cannot use this method for determining the state of the rest of the system.
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While in debug state, only the following instructions can be scanned into the instruction 
pipeline for execution:

• all data processing operations

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.

9.16.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access 
system state must occur with the clock qualified by HCLKEN. To perform a memory 
access, HCLKEN must be used to force the ARM720T processor to run in normal 
operating mode. This is controlled by bit 33 of scan chain 1.

An instruction placed in scan chain 1 with bit 33, the DBGBREAK bit, LOW executes 
at debug speed. To execute an instruction at system speed, the instruction prior to it must 
be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the 
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART 
causes the ARM720T processor to:

1. Switch automatically to HCLKEN control.

2. Execute the instruction at system speed.

3. Reenter debug state.

When the instruction has completed, DBGACK is HIGH and the core reverts to 
DBGTCKEN control. It is now possible to select INTEST in the TAP controller and 
resume debugging.

The debugger must look at both DBGACK and HTRANS[1:0] to determine whether a 
system speed instruction has completed. To access memory, the ARM720T core drives 
both bits of HTRANS[1:0] LOW after it has synchronized back to system speed. This 
transition is used by the memory controller to arbitrate whether the ARM720T core can 
have the bus in the next cycle. If the bus is not available, the ARM720T processor might 
have its clock stalled indefinitely. The only way to determine whether the memory 
access has completed is to examine the state of both HTRANS[1:0] and DBGACK. 
When both are HIGH, the access has completed.

The debugger usually uses EmbeddedICE-RT to control debugging, and so the state of 
HTRANS[1:0] and DBGACK can be determined by reading the EmbeddedICE-RT 
status register. See Debug status register on page 9-65 for more details.

The state of the system memory can be fed back to the debug host by using system speed 
load multiples and debug speed store multiples.
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There are restrictions on which instructions can have bit 33 set. The valid instructions 
on which to set this bit are:

• loads

• stores

• load multiple

• store multiple.

See also Exit from debug state on page 9-44. 

When the ARM720T processor returns to debug state after a system speed access, bit 
33 of scan chain 1 is set HIGH. The state of bit 33 gives the debugger information about 
why the core entered debug state the first time this scan chain is read.
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9.17 Exit from debug state

Leaving debug state involves:

• restoring the ARM720T processor internal state

• causing the execution of a branch to the next instruction

• returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline. 
See The program counter during debug on page 9-46 for details on calculating the 
branch.

Bit 33 of scan chain 1 forces the ARM720T processor to resynchronize back to 
HCLKEN, clock enable. The penultimate instruction of the debug sequence is scanned 
in with bit 33 set HIGH. The final instruction of the debug sequence is the branch, which 
is scanned in with bit 33 LOW. The core is then clocked to load the branch instruction 
into the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back 
to System mode. The ARM720T processor then resumes normal operation, fetching 
instructions from memory. This delay, until the state machine is in the 
RUN-TEST/IDLE state, enables conditions to be set up in other devices in a 
multiprocessor system without taking immediate effect. When the state machine enters 
the RUN-TEST/IDLE state, all the processors resume operation simultaneously.

DBGACK informs the rest of the system when the ARM720T processor is in debug 
state. This information can be used to inhibit peripherals, such as watchdog timers, that 
have real-time characteristics. DBGACK can also mask out memory accesses caused 
by the debugging process. 

For example, when the ARM720T processor enters debug state after a breakpoint, the 
instruction pipeline contains the breakpointed instruction, and two other instructions 
that have been prefetched. On entry to debug state the pipeline is flushed. On exit from 
debug state the pipeline must therefore revert to its previous state. 

Because of the debugging process, more memory accesses occur than are expected 
normally. DBGACK can inhibit any system peripheral that might be sensitive to the 
number of memory accesses. For example, a peripheral that counts the number of 
memory cycles must return the same answer after a program has been run with and 
without debugging. Figure 9-11 on page 9-45 shows the behavior of the ARM720T 
processor on exit from the debug state.
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Figure 9-11 Debug exit sequence

Figure 9-3 on page 9-8 shows that the final memory access occurs in the cycle after 
DBGACK goes HIGH. This is the point at which the cycle counter must be disabled. 
Figure 9-11 shows that the first memory access that the cycle counter has not previously 
seen occurs in the cycle after DBGACK goes LOW. This is the point at which to 
re-enable the counter.

Note

 When a system speed access from debug state occurs, the ARM720T processor 
temporarily drops out of debug state, so DBGACK can go LOW. If there are peripherals 
that are sensitive to the number of memory accesses, they must be led to believe that the 
ARM720T processor is still in debug state. You can do this by programming the 
EmbeddedICE-RT control register to force the value on DBGACK to be HIGH. See 
Debug status register on page 9-65 for more details.
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9.18 The program counter during debug

The debugger must keep track of what happens to the PC, so that the ARM720T core 
can be forced to branch back to the place at which program flow was interrupted by 
debug. Program flow can be interrupted by any of the following:

• Breakpoints

• Watchpoints

• Watchpoint with another exception on page 9-47

• Debug request on page 9-47

• System speed access on page 9-48.

9.18.1 Breakpoints

Entry into debug state from a breakpoint advances the PC by four addresses or 16 bytes. 
Each instruction executed in debug state advances the PC by one address or 4 bytes. 

The usual way to exit from debug state after a breakpoint is to remove the breakpoint 
and branch back to the previously-breakpointed address.

For example, if the ARM720T processor entered debug state from a breakpoint set on 
a given address, and two debug speed instructions were executed, a branch of –7 
addresses must occur (4 for debug entry, plus 2 for the instructions, plus 1 for the final 
branch).

The following sequence shows the data scanned into scan chain 1, most significant bit 
first. The value of the first digit goes to the DBGBREAK bit, and then the instruction 
data into the remainder of scan chain 1:

0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2’s complement)

After the ARM720T processor enters debug state, it must execute a minimum of two 
instructions before the branch, although these can both be NOPs (MOV R0, R0). For small 
branches, you can replace the final branch with a subtract, with the PC as the destination 
(SUB PC, PC, #28 in the above example).

9.18.2 Watchpoints

The return to program execution after entry to debug state from a watchpoint is made in 
the same way as the procedure described in Breakpoints.
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Debug entry adds four addresses to the PC, and every instruction adds one address. The 
difference from breakpoint is that the instruction that caused the watchpoint has 
executed, and the program must return to the next instruction.

9.18.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a Data Abort, the ARM720T processor 
enters debug state in abort mode. Entry into debug is held off until the core changes into 
abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a 
watchpointed memory access. The ARM720T processor enters debug state in the mode 
of the exception. The debugger must check to see whether an exception has occurred by 
examining the current and previous mode (in the CPSR, and SPSR), and the value of 
the PC. When an exception has taken place, you are given the choice of servicing the 
exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented 
by three instructions rather than four, and this must be considered in return branch 
calculation when exiting debug state. For example, suppose that an abort occurs on a 
watchpointed access, and ten instructions have been executed to determine this 
eventuality. You can use the following sequence to return to program execution.

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16

This code forces a branch back to the abort vector, causing the instruction at that 
location to be refetched and executed.

Note

 After the abort service routine, the instruction that caused the abort, and watchpoint is 
refetched and executed. This triggers the watchpoint again and the ARM720T processor 
reenters debug state.

9.18.4 Debug request

Entry into debug state using a debug request is similar to a breakpoint. However, unlike 
a breakpoint, the last instruction has completed execution and so must not be refetched 
on exit from debug state. Therefore, you can assume that entry to debug state adds three 
addresses to the PC and every instruction executed in debug state adds one address.
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For example, suppose you have invoked a debug request, and decide to return to 
program execution straight away. You could use the following sequence:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

9.18.5 System speed access

When a system speed access is performed during debug state, the value of the PC 
increases by three addresses. System speed instructions access the memory system and 
so it is possible for aborts to take place. If an abort occurs during a system speed 
memory access, the ARM720T processor enters abort mode before returning to debug 
state.

This scenario is similar to an aborted watchpoint, but the problem is much harder to fix 
because the abort was not caused by an instruction in the main program, and so the PC 
does not point to the instruction that caused the abort. An abort handler usually looks at 
the PC to determine the instruction that caused the abort and also the abort address. In 
this case, the value of the PC is invalid, but because the debugger can determine which 
location was being accessed, the debugger can be written to help the abort handler fix 
the memory system.

9.18.6 Summary of return address calculations

To determine whether entry to debug state was due to a breakpoint, watchpoint, or 
debug request (DBGRQ), bit 33 (DBGBREAK) of scan chain 1 must be consulted 
together with bit 12 (DBGMOE) of the debug status register (register 1 of scan 
chain 2). 

Table 9-7 on page 9-49 shows how DBGMOE and DBGBREAK vary according to the 
reason for entry to debug state.

Note

  DBGMOE and DBGBREAK must be read after entry into debug state and before any 
other accesses to scan chain 1.
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The calculation of the branch return address is as follows:

• for normal breakpoint and watchpoint, the branch is:

- (4 + N + 3S)

• for entry through debug request (DBGRQ) or watchpoint with exception, the 
branch is:

- (3 + N + 3S)

where N is the number of debug speed instructions executed (including the final branch) 
and S is the number of system speed instructions executed.

Table 9-7 Determining the cause of entry to debug state

DBGMOE DBGBREAK Description

0 0 Breakpoint

0 1 Watchpoint

1 X Debug Request 
(DBGRQ)
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9.19 Priorities and exceptions

When a breakpoint, or a debug request occurs, the normal flow of the program is 
interrupted. Therefore, debug can be treated as another type of exception. The 
interaction of the debugger with other exceptions is described in The program counter 
during debug on page 9-46. This section covers the following priorities:

• Breakpoint with Prefetch Abort

• Interrupts

• Data Aborts.

9.19.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken, and 
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an 
access is made to a virtual address that does not physically exist, and the returned data 
is therefore invalid. In such a case, the normal action of the operating system is to swap 
in the page of memory, and to return to the previously-invalid address. This time, when 
the instruction is fetched, and providing the breakpoint is activated (it can be 
data-dependent), the ARM720T processor enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

9.19.2 Interrupts

When the ARM720T processor enters debug state, interrupts are automatically 
disabled.

If an interrupt is pending during the instruction prior to entering debug state, the 
ARM720T processor enters debug state in the mode of the interrupt. On entry to debug 
state, the debugger cannot assume that the ARM720T processor is in the mode expected 
by the program of the user. The ARM720T core must check the PC, the CPSR, and the 
SPSR to determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM720T processor 
does remember that an interrupt has occurred.

9.19.3 Data Aborts

When a Data Abort occurs on a watchpointed access, the ARM720T processor enters 
debug state in abort mode. The watchpoint, therefore, has higher priority than the abort, 
but the ARM720T processor remembers that the abort happened.
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9.20 Watchpoint unit registers

There are two watchpoint units, known as watchpoint 0 and watchpoint 1. You can 
configure either to be a watchpoint (monitoring data accesses) or a breakpoint 
(monitoring instruction fetches). You can make watchpoints and breakpoints 
data-dependent. 

Each watchpoint unit contains three pairs of registers:

• address value and address mask

• data value and data mask

• control value and control mask.

Each register is independently programmable and has a unique address. The function 
and mapping of the watchpoint unit register is shown in Table 9-1 on page 9-17.

9.20.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE-RT scan 
chain (scan chain 2). The scan chain is a 38-bit shift register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This setup is shown in Figure 9-12 on page 9-52.
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-51



Debugging Your System 
Figure 9-12 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit data field, the address of the register is 
shifted into the 5-bit address field, and the read/write bit is set.
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The data to be written is scanned into the 32-bit data field, the address of the register is 
scanned into the 5-bit address field, and the read/write bit is set.

A register is read by shifting its address into the address field, and by shifting a 0 into 
the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table 9-1 on page 9-17.

Note
 A read or write takes place when the TAP controller enters the UPDATE-DR state.

9.20.2 Using the data, and address mask registers

For each value register in a register pair, there is a mask register of the same format. 
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in 
the value register disregarded in the comparison.

For example, when a watchpoint is required on a particular memory location, but the 
data value is irrelevant, the data mask register can be programmed to 0xffffffff (all bits 
set) to ignore the entire data bus field.

Note
 The mask is an XNOR mask rather than a conventional AND mask. When a mask bit is 
set to 1, the comparator for that bit position always matches, irrespective of the value 
register or the input value.

Clearing the mask bit means that the comparator matches only if the input value 
matches the value programmed into the value register.

9.20.3 The watchpoint unit control registers

The control value and control mask registers are mapped identically in the lower eight 
bits, as shown in Figure 9-13.

Figure 9-13 Watchpoint control value, and mask format

ENABLE CHAINRANGE DBGEXT PROT[0]PROT[1] SIZE[1] WRITESIZE[0]

8 67 5 34 2 01
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Bit 8 of the control value register is the ENABLE bit and cannot be masked.

The bits have the following functions:

WRITE  Compares against the write signal from the core in order to detect 
the direction of bus activity. WRITE is 0 for a read cycle, and 1 
for a write cycle.

SIZE[1:0]  Compares against the HSIZE[1:0] signal from the core in order 
to detect the size of bus activity.

The encoding is shown in Table 9-8.

PROT[0] Is used to detect whether the current cycle is an instruction fetch 
(PROT[0] = 0), or a data access (PROT[0] = 1).

PROT[1] Is used to compare against the not translate signal from the core in 
order to distinguish between user mode (PROT[1] = 0), and 
non-User mode (PROT[1] = 1) accesses.

DBGEXT[1:0] Is an external input to EmbeddedICE-RT logic that enables the 
watchpoint to be dependent on some external condition. 

The DBGEXT input for Watchpoint 0 is labeled DBGEXT[0].

The DBGEXT input for Watchpoint 1 is labeled DBGEXT[1].

CHAIN Can be connected to the chain output of another watchpoint in 
order to implement, for example, debugger requests of the form 
breakpoint on address YYY only when in process XXX.

In the ARM720T processor EmbeddedICE-RT macrocell, the 
CHAINOUT output of Watchpoint 1 is connected to the CHAIN 
input of Watchpoint 0. 

Table 9-8 SIZE[1:0] signal encoding

bit 1 bit 0 Data size

0 0 Byte

0 1 Halfword

1 0 Word

1 1 (Reserved)
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The CHAINOUT output is derived from a register. The 
address/control field comparator drives the write enable for the 
register. The input to the register is the value of the data field 
comparator.

The CHAINOUT register is cleared when the control value 
register is written, or when DBGnTRST is LOW.

RANGE In the ARM720T processor EmbeddedICE-RT logic, the 
DBGRNG output of Watchpoint 1 is connected to the RANGE 
input of Watchpoint 0. Connection enables the two watchpoints to 
be coupled for detecting conditions that occur simultaneously, for 
example in range checking.

ENABLE When a watchpoint match occurs, the internal DBGBREAK 
signal is asserted only when the ENABLE bit is set. This bit exists 
only in the value register. It cannot be masked.

For each of the bits [7:0] in the control value register, there is a corresponding bit in the 
control mask register. This removes the dependency on particular signals.
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9.21 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

• Hardware breakpoints typically monitor the address value and can be set in any 
code, even in code that is in ROM or code that is self-modifying. See Hardware 
breakpoints for more details.

• Software breakpoints monitor a particular bit pattern being fetched from any 
address. One EmbeddedICE-RT watchpoint can therefore be used to support any 
number of software breakpoints. See Software breakpoints on page 9-57 for more 
details.

Software breakpoints can usually be set only in RAM because a special bit pattern 
chosen to cause a software breakpoint has to replace the instruction.

9.21.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints (on instruction fetches):

1. Program its address value register with the address of the instruction to be 
breakpointed.

2. Program the breakpoint bits for each state as follows:

For an ARM-state breakpoint 
Set bits [1:0] of the address mask register.

For a Thumb state breakpoint 
Set bit 0 of the address mask register.

In either case, clear the remaining bits.

3. Program the data value register only when you require a data-dependent 
breakpoint, that is only when you have to match the actual instruction code 
fetched as well as the address. If the data value is not required, program the data 
mask register to 0xFFFFFFFF (all bits set). Otherwise program it to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0]= 0, all other bits set.

6. When you have to make the distinction between User and non-User mode 
instruction fetches, program the PROT[1] value and mask bits appropriately.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

8. Set the mask bits for all unused control values.
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Note
 In monitor mode, you must set the EmbeddedICE-RT disable bit (bit 5 in the 

debug control register) before changing the register values, and clear it on 
completion of the programming.

9.21.2 Software breakpoints

To make a watchpoint unit cause software breakpoints (on instruction fetches of a 
particular bit pattern):

1. Program the address mask register of the watchpoint unit to 0xFFFFFFFF (all bits 
set) so that the address is disregarded.

2. Program the data value register with the particular bit pattern that has been chosen 
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern 
in both halves of the data value register. For example, if the bit pattern is 0xDFFF, 
program 0xDFFFDFFF. When a 16-bit instruction is fetched, EmbeddedICE-RT 
compares only the valid half of the data bus against the contents of the data value 
register. In this way, you can use a single watchpoint register to catch software 
breakpoints on both the upper and lower halves of the data bus.

3. Program the data mask register to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0] = 0 and all other bits set.

6. If you want to make the distinction between User and non-User mode instruction 
fetches, program the PROT[1] bit in the control value register and control mask 
register accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

Note

 You do not have to program the address value register.

Setting the breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address and store it.

2. Write the special bit pattern representing a software breakpoint at the address.
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Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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9.22 Programming watchpoints

This section contains examples of how to program the watchpoint unit to generate 
breakpoints and watchpoints. Many other ways of programming the watchpoint unit 
registers are possible. For example, simple range breakpoints can be provided by setting 
one or more of the address mask bits.

To make a watchpoint unit cause watchpoints (on data accesses):

1. Program its address value register with the address of the data access to be 
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the data value register only if you require a data-dependent watchpoint, 
that is, only if you have to match the actual data value read or written as well as 
the address. If the data value is irrelevant, program the data mask register to 
0xFFFFFFFF (all bits set). Otherwise program the data mask register to 0x00000000.

4. Program the control value register as follows:

PROT[0] Set.

HWRITE Clear for a read.

Set for a write.

SIZE[1:0] Program with the value corresponding to the appropriate 
data size.

5. Program the control mask register as follows:

PROT[0] Clear.

HWRITE Clear.

Note

 You can set this bit if both reads and writes are to be 
watchpointed.

 SIZE[1:0] Clear.

Note

 You can set these bits if data size accesses are to be 
watchpointed.

All other bits Set.
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6. If you have to make the distinction between User and non-User mode data 
accesses, program the PROT[1] bit in the control value and control mask registers 
accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.
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9.23 Abort status register

Only bit 0 of this 32 bit read/write register is used. It determines whether an abort 
exception entry was caused by a breakpoint, a watchpoint, or a real abort. The format is 
shown in Figure 9-14.

Figure 9-14 Debug abort status register

Bit 0 is set when the ARM720T core takes a Prefetch or Data Abort as a result of a 
breakpoint or watchpoint. If, on a particular instruction or data fetch, both the Debug 
Abort and the external Abort signal are asserted, the external Abort takes priority, and 
the DbgAbt bit is not set. Once set, DbgAbt remains set until reset by the user. The 
register is accessed by MRC and MCR instructions. 

DbgAbt

0

SBZ/RAZ

31:1
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9.24 Debug control register

The debug control register is six bits wide. Writes to the debug control register occur 
when a watchpoint unit register is written. Reads of the debug control register occur 
when a watchpoint unit register is read. See Watchpoint unit registers on page 9-51 for 
more information.

Figure 9-15 shows the function of each bit in the debug control register.

Figure 9-15 Debug control register format

The debug control register bit assignments are shown in Table 9-9.

INTDIS DBGRQ DBGACK

2 1 0

EmbeddedICE-RT

disable

Monitor mode

enable
SBZ/RAZ

5 4 3

Table 9-9 Debug control register bit assignments

Bit Function

5 Used to disable the EmbeddedICE-RT comparator outputs while the watchpoint and 
breakpoint registers are being programmed. This bit can be read and written through 
JTAG.

Set bit 5 when:

• programming breakpoint or watchpoint registers

• changing bit 4 of the debug control register.

You must clear bit 5 after you have made the changes, to re-enable the 
EmbeddedICE-RT logic and make the new breakpoints and watchpoints operational.

4 Used to determine the behavior of the core when breakpoints or watchpoints are 
reached:

• If clear, the core enters debug state when a breakpoint or watchpoint is reached.

• If set, the core performs an abort exception when a breakpoint or watchpoint is 
reached.

This bit can be read and written from JTAG.

3 This bit must be clear.
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9.24.1 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:

• during debugging (DBGACK HIGH)

• when the INTDIS bit is set. 

The core interrupt enable signal, IFEN, is driven as shown in Table 9-10.

9.24.2 Forcing DBGRQ

Figure 9-17 on page 9-66 shows that the value stored in bit 1 of the debug control 
register is synchronized and then ORed with the external DBGRQ before being applied 
to the processor. The output of this OR gate is the signal DBGRQI which is brought out 
externally from the macrocell.

The synchronization between debug control register bit 1 and DBGRQI assists in 
multiprocessor environments. The synchronization latch only opens when the TAP 
controller state machine is in the RUN-TEST-IDLE state. This enables an enter-debug 

2 Used to disable interrupts:

• If set, the interrupt enable signal of the core (IFEN) is forced LOW. The IFEN 
signal is driven as shown in Table 9-10.

• If clear, interrupts are enabled.

1 Used to force the value on DBGRQ.

0 Used to force the value on DBGACK.

Table 9-9 Debug control register bit assignments  (continued)

Bit Function

Table 9-10 Interrupt signal control

DBGACK INTDIS IFEN Interrupts

0 0 1 Permitted

1 x 0 Inhibited

x 1 0 Inhibited
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condition to be set up in all the processors in the system while they are still running. 
When the condition is set up in all the processors, it can be applied to them 
simultaneously by entering the RUN-TEST-IDLE state.

9.24.3 Forcing DBGACK

Figure 9-17 on page 9-66 shows that the value of the internal signal DBGACKI from 
the core is ORed with the value held in bit 0 of the debug control register, to generate 
the external value of DBGACK seen at the periphery of the ARM720T core. This 
enables the debug system to signal to the rest of the system that the core is still being 
debugged even when system-speed accesses are being performed (when the internal 
DBGACK signal from the core is LOW).
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9.25 Debug status register

The debug status register is 13 bits wide. If it is accessed for a write (with the read/write 
bit set), the status bits are written. If it is accessed for a read (with the read/write bit 
clear), the status bits are read. The format of the debug status register is shown in 
Figure 9-16.

Figure 9-16 Debug status register format

The function of each bit in this register is shown in Table 9-11.

The structure of the debug control and status registers is shown in Figure 9-17 on 
page 9-66.

12 11 4

TBIT

3

TRANS[1]

2

IFEN

1

DBGRQ

0

DBGACK

5

DBGMOE

Table 9-11 Debug status register bit assignments

Bit Function

12 Enables the debugger to determine whether the core has entered 
debug state due to the assertion of DBGRQ.

4 Enables TBIT to be read. This enables the debugger to determine 
what state the processor is in, and which instructions to execute.

3 Enables the state of the HTRANS[1] signal from the core to be 
read. This enables the debugger to determine whether a memory 
access from the debug state has completed.

2 Enables the state of the core interrupt enable signal, IFEN, to be 
read. 

1 Enables the values on the synchronized version of DBGRQ to be 
read. 

0 Enables the values on the synchronized versions of DBGACK to 
be read. 
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Figure 9-17 Debug control and status register structure

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 0

Bit 2

Bit 1

Debug

control

register
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status

register

TBIT
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TRANS[1]
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+

+

+

+

DBGACKI
(from core)

Interrupt mask enable

(to core)

DBGRQ
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DBGACKI
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DBGACK
(to ARM720T processor
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9.26 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE 
inputs. The use of CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 
has previously matched. The use of RANGE enables simple range checking to be 
performed by combining the outputs of both watchpoints.

9.26.1 Breakpoint and watchpoint coupling example 

Let:

Av[31:0] Be the value in the address value register

Am[31:0] Be the value in the address mask register

A[31:0] Be the address bus from the ARM720T (Rev 4) processor

Dv[31:0] Be the value in the data value register

Dm[31:0] Be the value in the data mask register

D[31:0] Be the data bus from the ARM720T (Rev 4) processor

Cv[8:0] Be the value in the control value register

Cm[7:0] Be the value in the control mask register

C[9:0] Be the combined control bus from the ARM720T core, other watchpoint 
registers, and the DBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)

CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to 
Watchpoint 0. This CHAIN input enables you to use quite complicated configurations 
of breakpoints and watchpoints.

Note
 There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.
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For example, consider the request by a debugger to breakpoint on the instruction at 
location YYY when running process XXX in a multiprocess system. If the current 
process ID is stored in memory, you can implement the above function with a 
watchpoint and breakpoint chained together. The watchpoint address points to a known 
memory location containing the current process ID, the watchpoint data points to the 
required process ID and the ENABLE bit is cleared.

The address comparator output of the watchpoint is used to drive the write enable for 
the CHAINOUT latch. The input to the latch is the output of the data comparator from 
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint 
comparator. The address YYY is stored in the breakpoint register, and when the 
CHAIN input is asserted, the breakpoint address matches and the breakpoint triggers 
correctly.

9.26.2 DBGRNG signal

The DBGRNG signal is derived as follows:

DBGRNG = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND 
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR 
Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The DBGRNG output of watchpoint register 1 provides the RANGE input to 
watchpoint register 0. This RANGE input enables you to couple two breakpoints 
together to form range breakpoints.

Note
 Selectable ranges are restricted to being powers of 2. 

For example, if a breakpoint is to occur when the address is in the first 256 bytes of 
memory, but not in the first 32 bytes, program the watchpoint registers as follows:

For Watchpoint 1: 

1. Program Watchpoint 1 with an address value of 0x00000000 and an address mask 
of 0x0000001F. 

2. Clear the ENABLE bit. 

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH but 
does not trigger the breakpoint.
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For Watchpoint 0:

1. Program Watchpoint 0 with an address value of 0x00000000, and an address mask 
of 0x000000FF. 

2. Set the ENABLE bit. 

3. Program the RANGE bit to match a 0. 

4. Program all other Watchpoint 0 registers as normal for a breakpoint. 

If Watchpoint 0 matches but Watchpoint 1 does not (that is, the RANGE input to 
Watchpoint 0 is 0), the breakpoint is triggered.
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9.27 EmbeddedICE-RT timing

EmbeddedICE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the rising 
edge of HCLK.
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ETM Interface

This chapter describes the ETM interface that is provided on the ARM720T (Rev 4) 
processor. It contains the following sections:

• About the ETM interface on page 10-2

• Enabling and disabling the ETM7 interface on page 10-3

• Connections between the ETM7 macrocell and the ARM720T (Rev 4) processor 
on page 10-4

• Clocks and resets on page 10-6

• Debug request wiring on page 10-7

• TAP interface wiring on page 10-8.
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10.1 About the ETM interface

You can connect an external Embedded Trace Macrocell (ETM) to the ARM720T 
processor, so that you can perform real-time tracing of the code that the processor is 
executing. 

In general, little or no glue logic is required to connect the ETM7 to the ARM720T (Rev 
4) processor. You program the ETM through a JTAG interface. The interface is an 
extension of the ARM TAP controller, and is assigned scan chain 6. 

Note
 If you have more than one ARM processor in your system, each processor must have its 
own dedicated ETM.

See the ETM7 (Rev 1) Technical Reference Manual for detailed information about 
integrating an ETM7 with an ARM720T processor.
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10.2 Enabling and disabling the ETM7 interface

Under the control of the ARM debug tools, the ETM7 PWRDOWN output is used to 
enable and disable the ETM. When PWRDOWN is HIGH, this indicates that the ETM 
is not currently enabled, so you can stop the CLK input and hold the other ETM signals 
stable. This enables you to reduce power consumption when you are not performing 
tracing. 

When a TAP reset (nTRST) occurs, PWRDOWN is forced HIGH until the ETM7 
control register has been programmed (see the Embedded Trace Macrocell 
Specification for details of this register). 

PWRDOWN is automatically cleared at the start of a debug session.

On the ARM720T processor, the ETM interface pins are gated by the ETMEN input. 
This means that if the ETMEN input is LOW, all the output pins of the ETM interface 
remain stable. You can control this ETMEN input by connecting it with either of the 
following:

• the ETMEN output on the ETM7

• the inverted PWRDOWN output on the ETM7.
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10.3 Connections between the ETM7 macrocell and the ARM720T (Rev 4) processor

Table 10-1 shows the connections that you must make between the ETM7 macrocell 
and the ARM720T processor.

Table 10-1 Connections between the ETM7 macrocell and
the ARM720T (Rev 4) processor

ETM7 macrocell 
signal name

ARM720T (Rev 4) 
processor signal name

A[31:0] ETMADDR[31:0]

ABORT ETMABORT

ARMTDO DBGTDO 

BIGEND ETMBIGEND

CLKa HCLKa

CLKEN ETMCLKEN

CPA ETMCPA

CPB ETMCPB

DBGACK ETMDBGACK

DBGRQb DBGRQb

nMREQ ETMnMREQ

SEQ ETMSEQ

MAS[1:0] ETMSIZE[1:0]

nCPI ETMnCPI

nEXEC ETMnEXEC

nOPC ETMnOPC

nRESET HRESETn

nRW ETMnRW

nTRSTa DBGnTRSTa

PROCID[31:0] ETMPROCID[31:0]
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PROCIDWR ETMPROCIDWR

ETMEN or inverted 
PWRDOWN

ETMENc

- ETMHIVECSd

RANGEOUT[0] DBGRNG[0]

RANGEOUT[1] DBGRNG[1]

RDATA[31:0] ETMRDATA[31:0]

TBIT ETMTBIT

TCKa HCLKa

TCKEN DBGTCKEN

TDI DBGTDI

TDOe DBGTDO

TMS DBGTMS

WDATA[31:0] ETMWDATA[31:0]

INSTRVALID ETMINSTRVALID

a. See Clocks and resets on page 10-6.

b. See Debug request wiring on page 10-7.

c. See Enabling and disabling the ETM7 interface 
on page 10-3.

d. Leave this pin unconnected.
e. See TAP interface wiring on page 10-8.

Table 10-1 Connections between the ETM7 macrocell and
the ARM720T (Rev 4) processor (continued)

ETM7 macrocell 
signal name

ARM720T (Rev 4) 
processor signal name
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10.4 Clocks and resets

The ARM720T (Rev 4) processor uses a single clock, HCLK, as both the main system 
clock and the JTAG clock. You must connect the processor clock to both HCLK and 
TCK on the ETM. You can then use TCKEN to control the JTAG interface.

To trace through a warm reset of the ARM720T processor, use the TAP reset (connect 
nTRST to DBGnTRST) to reset the ETM7 state. 

For more information about ETM7 clocks and resets, see the ETM7 Technical Reference 
Manual.
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10.5 Debug request wiring

It is recommended that you connect together the DBGRQ output of the ETM7 to the 
DBGRQ input of the ARM720T processor. If this input is already in use, you can OR 
the DBGRQ inputs together. See the ETM7 Technical Reference Manual for more 
details.
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 10-7



ETM Interface 
10.6 TAP interface wiring

The ARM720T (Rev 4) processor does not provide a scan chain expansion input. ARM 
Limited recommends that you connect the ARM720T processor and the ETM7 TAP 
controllers in parallel. For more details, see the ETM7 (Rev 1) Technical Reference 
Manual.
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Test Support

This chapter describes the test methodology and the CP15 test registers for the 
ARM720T (Rev 4) processor synthesized logic and TCM. It contains the following 
sections:

• About the ARM720T (Rev 4) test registers on page 11-2

• Automatic Test Pattern Generation (ATPG) on page 11-3

• Test state register on page 11-4

• Cache test registers and operations on page 11-5

• MMU test registers and operations on page 11-12.
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11.1 About the ARM720T (Rev 4) test registers

Coprocessor 15 register 15 (c15) of the ARM720T processor is used to provide 
device-specific test operations. You can use it to access and control the following:

• Test state register on page 11-4

• Cache test registers and operations on page 11-5

• MMU test registers and operations on page 11-12.

You must only use these operations for test. The ARM Architecture Reference Manual 
describes this register as implementation defined.

The format of the CP15 test operations is:

MCR/MRC  p15,opcode_1,Rd,c15,CRm,opcode_2

Figure 11-1 CP15 MRC and MCR bit pattern

The L bit distinguishes between an MCR (L = 1) and an MRC (L = 0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 1 1 opcode_1 L CRn CRm0 1 1 1 1 opcode_2 1RdCond
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11.2 Automatic Test Pattern Generation (ATPG)

Scan insertion is already performed and fixed for the ARM720T (Rev 4) processor. You 
can use Automatic Test Pattern Generation (ATPG) tools to create the necessary scan 
patterns to test the logic outputs from all registers.

11.2.1 ARM720T (Rev 4) processor INTEST/EXTEST wrapper

In addition to the auto-inserted scan chains, the ARM720T (Rev 4) macrocell includes 
all the signals for an optional INTEST/EXTEST scan chain, scan chain 0.

ATPG

Seven balanced scan chains are provided for ATPG, along with a test enable and a single 
scan enable.
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11.3 Test state register

The test state register contains only one bit, bit 0:

Bit 0 set Enable MMU and cache test.

Bit 0 clear Disable MMU and cache test.

At reset (HRESETn LOW), bit 0 is cleared.

The test state register operations are shown in Table 11-1.

Table 11-1 Test state register operations

Operation Instruction

Write test register MCR p15, 7, Rd, c15, c15, 7

Read test register MRC p15, 7, Rd, c15, c15, 7
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11.4 Cache test registers and operations

The cache is maintained using MCR and MRC instructions to CP15 registers 7 and 9, 
defined by the ARM v4T programmer’s model. Additional operations are available 
using MCR and MRC instructions to CP15 register 15. These operations are combined with 
those using registers 7 and 9 to enable testing of the caches entirely in software.

CP15 register 7 (c7) is write-only, and provides only one function:

• invalidate cache.

The CP15 register 9 (c9) operations are read and write. The operations available are: 

• write victim and lockdown base

• write victim.

The CP15 register 15 (c15) operations are:

• write to register C15.C

• read from register C15.C

• CAM read to C15.C

• CAM write

• RAM read to C15.C

• RAM write from C15.C

• CAM match, RAM read to C15.C.

Note

 For the CAM Match, RAM Read operation the respective MMU does not perform a 
lookup and a cache miss does not cause a linefill.

The register 15 operations are all issued as MCR. The Rd field defines the address for the 
operation. Therefore, the data is either supplied from, or latched into, CP15.C in CP15. 
These 32-bit registers are accessed with CP15 MCR and MRC instructions.

Table 11-2 summarizes c7, c9, and c15 operations.

Table 11-2 Summary of CP15 register 7, 9, and 15 operations

Function Rd Instruction

Invalidate cache SBZ MCR p15,0,Rd,c7,c7,0

Write cache victim and lockdown 
base

Victim=Base MCR p15,0,Rd,c9,c0,0

Write cache victim Victim, Seg MCR p15,0,Rd,c9,c1,0
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The CAM read format for Rd is shown in Figure 11-2.

Figure 11-2 Rd format, CAM read

The CAM write format for Rd is shown in Figure 11-3.

Figure 11-3 Rd format, CAM write

CAM read to C15.C Seg MCR p15,2,Rd,c15,c7,2 

CAM write Tag, Seg, Dirty MCR p15,2,Rd,c15,c7,6 

RAM read to C15.C Seg, Word MCR p15,2,Rd,c15,c11,2 

RAM write from C15.C Seg, Word MCR p15,2,Rd,c15,c11,6 

CAM match, RAM read to C15.C Tag, Seg, Word MCR p15,2,Rd,c15,c7,5 

Write to register C15.C Data MCR p15,3,Rd,c15,c3,0 

Read from register C15.C Data read MRC p15,3,Rd,c15,c3,0 

Table 11-2 Summary of CP15 register 7, 9, and 15 operations (continued)

Function Rd Instruction

SBZSeg

31 7 6 5 4 0

SBZ

31 7 6 5 4 0

MVA TAG

De

Seg

Do
WB

V

123

SBZ
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In Figure 11-3 on page 11-6, bit labels have the following meanings:

V Valid.

De Dirty even (words [3:0]).

Do Dirty odd (words [7:4]).

WB Writeback.

The RAM read format for Rd is shown in Figure 11-4.

Figure 11-4 Rd format, RAM read

The RAM write format for Rd is shown in Figure 11-5.

Figure 11-5 Rd format, RAM write

The CAM match, RAM read format for Rd is shown in Figure 11-6.

Figure 11-6 Rd format, CAM match RAM read

SBZWordSeg

31 7 6 5 4 0

SBZ

2 1

SBZSeg

31 7 6 5 4 0

SBZ

2 1

Word

SBZSeg

31 7 6 5 4 0

MVA TAG

2 1

Word
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The CAM read format for data is shown in Figure 11-7.

Figure 11-7 Data format, CAM read

The RAM read format for data is shown in Figure 11-8.

Figure 11-8 Data format, RAM read

The CAM match, RAM read format for data is shown in Figure 11-9.

Figure 11-9 Data format, CAM match RAM read

0

31 7 6 5 4 0

MVA TAG

De
Do

WB

0

123

LFSR[6]

V

31 0

RAM data word [31:0]

Miss

31 0

RAM data word [29:0]

2930

Hit
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11.4.1 Addressing the CAM and RAM

For the CAM read or write, and RAM read or write operations you must specify the 
segment, index, and word (for the RAM operations). The CAM and RAM operations 
use the value in the victim pointer for that segment, so you must ensure that the value is 
written in the victim pointer before any CAM or RAM operation.

If the MCR write victim and lockdown base is used, then the victim pointer is incremented 
after every CAM read or write, and every RAM read or write. If the MCR write victim is 
used, then the victim pointer is only incremented after every CAM read or write. This 
enables efficient reading or writing of the CAM and RAM for an entire segment. The 
write cache victim and lockdown operations are shown in Table 11-3.

The write cache victim and lockdown base format for Rd is shown in Figure 11-10.

Figure 11-10 Rd format, write cache victim and lockdown base

The write cache victim format for Rd is shown in Figure 11-11.

Figure 11-11 Rd format, write cache victim

Table 11-3 Write cache victim and lockdown operations

Operation Instructions

Write cache victim and lockdown base MCR p15,0,Rd,c9,c0,0
MCR p15,0,Rd,c9,c0,1

Write cache victim MCR p15,0,Rd,c9,c1,0
MCR p15,0,Rd,c9,c1,1

31 0

SBZIndex

2526

Seg

31 7 6 5 4 0

SBZ SBZIndex

26 25
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Another cache test register, C15.C, is written with the current victim of the addressed 
segment whenever an MCR CAM read is executed. This is intended for use in debug to 
establish the value of the current victim pointer of each segment before reading the 
values of the CAM and RAM, so that the value can be restored afterwards. 

Example 11-1 shows sample code for performing software test of the cache. It contains 
typical operations with register C15.C. 

Example 11-1 Cache test operations

; CAM write, read and check for segment 2

; Write cache victim pointer with index 0, segment 2
MOV r0,#0
ORR r1,r0,#2 :SHL: 0x5
MCR p15,0,r1,c9,c1,0

; Write pattern in 0xFFFFFF9E in all 64 CAM lines
MVN r2,#1 ; bit 0 should be ‘0’
BIC r2,r2,#0x20 ; write segment 2
MOV r8,#64

loop0 MCR p15,2,r2,c15,c7,6 ; write CAM, index auto-incremented
SUBS r8,r8,#1
BNE loop0

; Now read and check
; Reset victim pointer to index 0, segment 2

MOV r0,#0
ORR r1,r0 :SHL: 0x5
MCR p15,0,r1,c9,c1,0
MOV r8,#64
MOV r3,#0x40 ; read segment 2
BIC r2,r2,#0x60 ; clear bit 5 and 6 (always read as ‘0’)

loop1 MCR p15,3,r0,c15,c3,0 ; write C15.C to ‘0’
MCR p15,2,r3,c15,c7,2 ; read CAM to C15.C
MRC p15,3,r4,c15,c3,0 ; read C15.C to R4
BIC r4,r4,#1 ; clear LFSR bit
CMP r4,r2
BNE TEST_FAIL
SUBS r8,r8,#1
BNE loop1
B TEST_PASS

; RAM write, read and check for segment 1

; Write cache victim pointer with index 0, segment 1
MOV r0,#0
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ORR r1,r0,#1 :SHL: 0x5
MCR p15,0,r1,c9,c1,0

; Write pattern 0x5A5A5A5A in RAM line (eight words)
LDR r0,=0x5A5A5A5A
MOV r8,#8
MOV r2,#0x20 ; write segment 2, word 0
MCR p15,3,r0,c15,c3,0 ; write RAM data in C15.C

loop0 MCR p15,2,r2,c15,c11,6 ; write RAM
ADD r2,r2,#0x04 ; next word
SUBS r8,r8,#1
BNE loop0

; Now read and check

MOV r8,#8
MOV r2,#0x20
MOV r1,#0

loop1 MCR p15,3,r1,c15,c3,0 ; write C15.C to ‘0’
MCR p15,2,r2,c15,c11,2 ; read RAM to C15.C
MRC p15,3,r5,c15,c3,0 ; read C15.C to R4
CMP r5,r0
BNE TEST_FAIL
SUBS r8,r8,#1
BNE loop1
B TEST_PASS
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11.5 MMU test registers and operations

The TLB is maintained using MCR and MRC instructions to CP15 registers 2, 3, 5, 6, 8, and 
10, defined by the ARM v4T programmer’s model. 

The CP15 register 2 (c2) operations control the Translation Table Base (TTB). These 
operations are:

• write TTB registers

• read TTB register.

The CP15 register 3 (c3) operations control the Domain Access Control (DAC) register. 
These operations are:

• write DAC registers

• read DAC register.

The CP15 register 5 (c5) operations control the Fault Status Register (FSR). These 
operations are:

• write FSR

• read FSR.

The CP15 register 6 (c6) operations control the Fault Address Register (FAR). These 
operations are:

• write FAR

• read FAR.

The CP15 register 8 (c8) operations control the TLB and are all write-only. These 
operations are:

• invalidate TLB

• invalidate single entry using MVA.

The CP15 register 10 (c10) operations control TLB lockdown. These operations are:

• read victim, lockdown base and preserve bit

• write victim, lockdown base and preserve bit.
11-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A



Test Support 
The CP15 register 15 (c15) operations that operate on the CAM, RAM1, and RAM2 are 
shown in Table 11-4.

Note

 For the CAM match, RAM1 read operation a TLB miss will not cause a page walk.

These register 15 operations are all issued as MCR, which means that the read and match 
operations have to be latched into register CP15.M in CP15. This is a 32-bit register that 
is read with the following CP15 MRC instruction:

Read from register CP15.M

Table 11-5 summarizes c2, c3, c5, c6, c8, c10, and c15 operations.

Table 11-4 CAM, RAM1, and RAM2 register 15 operations

Function Rd Data

CAM read to C15.M SBZ Tag, Size, V, P

CAM write Tag, Size, V, P

RAM1 read to C15.M SBZ Protection

RAM1 write Protection

RAM2 read to C15.M SBZ PA Tag, Size

RAM2 write PA Tag, Size PA Tag, Size

CAM match RAM1 read to C15.M MVA Fault, Miss, Protection

Table 11-5 Register 2, 3, 5, 6, 8, 10, and 15 operations

Function Rd Instruction(s)

Read TTB register TTB MRC p15,0,Rd,c2,c0,0

Write TTB register TTB MCR p15,0,Rd,c2,c0,0

Read domain [15:0] access control DAC MRC p15,0,Rd,c3,c0,0 

Write domain [15:0] access control DAC MCR p15,0,Rd,c3,c0,0

Read FSR FSR MRC p15,0,Rd,c5,c0,0

Write FSR FSR MCR p15,0,Rd,c5,c0,0

Read FAR FAR MRC p15,0,Rd,c6,c0,0
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Figure 11-12 shows the format of Rd for CAM writes and data for CAM reads.

Figure 11-12 Rd format, CAM write and data format, CAM read

Write FAR FAR MCR p15,0,Rd,c6,c0,0

Invalidate TLB SBZ MCR p15,0,Rd,c8,c5,0
MCR p15,0,Rd,c8,c6,0
MCR p15,0,Rd,c8,c7,0

Invalidate TLB single entry (using 
MVA)

MVA format MCR p15,0,Rd,c8,c5,1
MCR p15,0,Rd,c8,c6,1
MCR p15,0,Rd,c8,c7,1

Read TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,0

Write TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,0

CAM read to C15.M SBZ MCR p15,4,Rd,c15,c7,4 

CAM write Tag, Size, V, P MCR p15,4,Rd,c15,c7,0 

RAM1 read to C15.M SBZ MCR p15,4,Rd,c15,c11,4 

RAM1 write Protection MCR p15,4,Rd,c15,c11,0 

RAM2 read to C15.M SBZ MCR p15,4,Rd,c15,c3,5 

RAM2 write PA Tag, Size MCR p15,4,Rd,c15,c3,1 

CAM match, RAM1 read to C15.M MVA MCR p15,4,Rd,c15,c13,4 

Read C15.M Data MRC p15,4,Rd,c15,c3,0 

Table 11-5 Register 2, 3, 5, 6, 8, 10, and 15 operations (continued)

Function Rd Instruction(s)

31 6 5 4 0

MVA TAG V P

12310 9

SBZSIZE_C
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In Figure 11-12 on page 11-14, V is the Valid bit, P is the Preserve bit, and SIZE_C sets 
the memory region size. The allowed values of SIZE_C are shown in Table 11-6. 

Figure 11-13 shows the format of Rd for RAM1 writes.

Figure 11-13 Rd format, RAM1 write

In Figure 11-13, AP[3:0] determines the setting of the access permission bits for a 
memory region. The allowed values are shown in Table 11-7.

Table 11-6 CAM memory region size

SIZE_C[3:0] Memory region size

0b1111 1MB

0b0111 64KB

0b0011 16KB

0b0001 4KB

0b0000 1KB

31 6 5 4 0

SBZ

3

APDOMAIN (one hot encoding)

D15

22 21

D0

nC nB

Table 11-7 Access permission bit setting

AP[3:0] Access permission bits

0b1000 0b11

0b0100 0b10

0b0010 0b01

0b0001 0b00
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Figure 11-14 shows the data format for RAM1 reads.

Figure 11-14 Data format, RAM1 read

In Figure 11-14, bits [24:22] are only valid for a match operation. In this case the values 
shown in Table 11-8 apply.

Figure 11-15 shows the Rd format for RAM2 writes, and the data format for RAM2 
reads.

Figure 11-15 Rd format, RAM2 write and data format, RAM2 read

31 6 5 4 0

SBZ

3

APDOMAIN (one hot encoding)

D15

22 21

D0

nC nB

25 24 23

TLB miss

Domain fault

Prot fault

Table 11-8 Miss and fault encoding

Prot fault Domain fault TLB miss Function

0 0 0 Hit, OK

0 1 0 Hit, domain fault

1 0 0 Hit, protection fault

1 1 0 Hit, protection and domain fault

- - 1 TLB miss

31 6 0

PA TAG SBZSIZE_R2

10 9 5
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In Figure 11-15 on page 11-16, SIZE_R2 sets the memory region size. The allowed 
values of SIZE_R2 are shown in Table 11-9. 

Note

 The encoding for SIZE_R2 is different from SIZE_C.

11.5.1 Addressing the CAM, RAM1, and RAM2

For the CAM read or write, RAM1 read or write, and RAM2 read or write operations, 
you must specify the index. The CAM and RAM1 operations use the value in the victim 
pointer, so you must write this before any CAM or RAM1 operation. RAM2 uses a 
pipelined version of the victim pointer used for the CAM or RAM1 operation. This 
means that to read from index N in the RAM2 array, you must first perform an access 
to index N in either the CAM or RAM1.

The write TLB lockdown operation is:

MCR p15,0,Rd,c10,c0,0

The write TLB lockdown format for Rd is shown in Figure 11-16.

Figure 11-16 Rd format, write TLB lockdown

Example 11-2 on page 11-18 shows sample code for performing software test of the 
MMU. It contains typical operations with C15.M. 

Table 11-9 RAM2 memory region size

SIZE_R2[3:0] Memory region size

0b1111 1MB

0b0111 64KB

0b0011 16KB

0b0000 4KB

0b0001 1KB

P

31 0

Base SBZ

2526 20 19 1

Victim
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Example 11-2 MMU test operations

; MMU write, read and check for CAM, RAM1 and RAM2

; Load victim pointer with 0
MOV r0,#0
MCR p15,0,r0,c10,c0,0

; Write pattern 0x5A5A5A50 in CAM
; Write pattern 0x0025A5A5 in RAM1
; Write pattern 0xF0F0F0C0 in RAM2

LDR r2,=0x5A5A5A50
LDR r3,=0x0025A5A5
LDR r4,=0xF0F0F0C0
MOV r5,#64

; Write all 64 lines
loop0 MCR p15,4,r2,c15,c7,0 ; write CAM

MCR p15,4,r3,c15,c11,0 ; write RAM1
MCR p15,4,r4,c15,c3,1 ; write RAM2, pointer auto-incremented here
SUBS r5,r5,#1
BNE loop0

; Now read and check
; Reset victim pointer

MOV r0,#0
MCR p15,0,r0,c10,c0,0
MOV r8,#64

loop1 MCR p15,4,r5,c15,c7,4 ; read CAM to C15.M
MRC p15,4,r5,c15,c3,6 ; read C15.M to R5
MCR p15,4,r6,c15,c11,4
MRC p15,4,r6,c15,c3,6 ; read RAM1 to R6
BIC r5,r5,#0x01c00000 ; mask fault/miss bits

MCR p15,4,r7,c15,c3,5
MRC p15,4,r7,c15,c3,6 ; read RAM2 to R7

CMP r5,r2
CMP r6,r3
CMP r7,r4
BNE TEST_FAIL

SUBS r8,r8,#1
BNE loop1
B TEST_PASS
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Appendix A 
Signal Descriptions

This chapter describes the interface signals of the ARM720T processor. It contains the 
following sections:

• AMBA interface signals on page A-2

• Coprocessor interface signals on page A-3

• JTAG and test signals on page A-4

• Debugger signals on page A-6

• Embedded trace macrocell interface signals on page A-7

• Miscellaneous signals on page A-9.
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A.1 AMBA interface signals

The AMBA interface signals are shown in Table A-1.

Table A-1 AMBA interface signals

Signal name Type Description

HCLK Input Bus clock. This is the only 
clock on the ARM720T 
(Rev 4) macrocell.

HADDR[31:0] Output 32-bit system address bus.

HTRANS[1:0] Output Indicates type of current 
transfer.

HBURST[2:0] Output Indicates burst length of 
current transfer.

HWRITE Output Indicates direction of 
current transfer.

HSIZE[2:0] Output Indicates size of current 
transfer.

HPROT[3:0] Output Protection control signals

HGRANT Input Bus transfer granted.

HREADY Input Indicates that the current 
transfer has finished.

HRESP[1:0] Input Indicates transfer status.

HWDATA[31:0] Output Write data bus.

HRDATA[31:0] Input Read data bus.

HBUSREQ Output Bus transfer request.

HLOCK Output Indicates locked access.

HCLKEN Input Bus clock enable.

HRESETn Input Global reset.
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A.2 Coprocessor interface signals 

The coprocessor interface signals are shown in Table A-2.

Table A-2 Coprocessor interface signal descriptions

Name Type Description

EXTCPA In External coprocessor absent.
This signal must be HIGH if no external coprocessor is present.

EXTCPB In External coprocessor busy.

EXTCPCLKEN Out External coprocessor clock enable.

EXTCPDIN[31:0] Out External coprocessor data in.

EXTCPDOUT[31:0] In External coprocessor data out.

CPnCPI Out Not coprocessor instruction.

When LOW, this signal indicates that the ARM720T processor is executing a 
coprocessor instruction.

CPnOPC Out Not opcode fetch.

When LOW, this signal indicates that the processor is fetching an instruction from 
memory. When HIGH, data, if present, is being transferred. This signal is used by the 
coprocessor to track the ARM pipeline.

CPTBIT Out Thumb state.

This signal, when HIGH, indicates that the processor is executing the THUMB 
instruction set. When LOW, the processor is executing the ARM instruction set.

CPnTRANS Out Not coprocessor translate.
When HIGH, the coprocessor interface is in a nonprivileged mode. When LOW, the 
coprocessor interface is in a privileged mode.
The coprocessor samples this signal on every cycle when determining the coprocessor 
response.

CPnMREQ Out Not coprocessor memory request.

EXTCPDBE In External coprocessor data bus enable.

This signal when HIGH, indicates that the coprocessor intends to drive the 
coprocessor data bus, CPDATA. If the coprocessor interface is not to be used then this 
signal must be tied LOW.
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A.3 JTAG and test signals

JTAG and test signal descriptions are shown in Table A-3.

Table A-3 JTAG and test signal descriptions

Name Type Description

DBGIR[3:0] Out TAP instruction register.

These signals reflect the current instruction loaded into the TAP controller instruction 
register. The signals change on the falling edge of HCLK when the TAP state machine is 
in the UPDATE-DR state. You can use these signals to enable more scan chains to be 
added using the ARM720T processor TAP controller.

DBGSREG[3:0] Out Scan chain register.

These signals reflect the ID number of the scan chain currently selected by the TAP 
controller. These signals change on the falling edge of XTCK when the TAP state 
machine is in the UPDATE-DR state.

DBGSDIN Out Boundary scan serial data in.

This signal is the serial data to be applied to an external scan chain.

DBGSDOUT In Boundary scan serial data out.

This signal is the serial data from an external scan chain. It enables a single DBGTDO 
port to be used. If an external scan chain is not connected, this input must be tied LOW.

DBGTAPSM[3:0] Out Tap controller status.

These signals represent the current state of the TAP controller machine. These signals 
change on the rising edge of XTCK and can be used to allow more scan chains to be 
added using the ARM720T processor TAP controller. 

DBGCAPTUREa Out CAPTURE state signal.

When HIGH, this indicates that the TAP controller state machine is in a CAPTURE state 
(see Figure 9-8 on page 9-27).

DBGSHIFTa Out SHIFT state signal.

When HIGH, this indicates that the TAP controller state machine is in a SHIFT state (see 
Figure 9-8 on page 9-27).

DBGUPDATEa Out UPDATE state signal.

When HIGH, this indicates that the TAP controller state machine is in an UPDATE state 
(see Figure 9-8 on page 9-27).

DBGINTESTa Out INTEST state signal.

DBGEXTESTa Out EXTEST state signal.
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DBGnTDOEN Out Test data out enable.

DBGnTRST In Not test reset.

When LOW, this signal resets the JTAG interface.

DBGTCKEN In Test clock enable.

DBGTDI In Test data in.

JTAG test data in signal.

DBGTDO Out Test data out.

JTAG test data out signal.

DBGTMS In Test mode select.

JTAG test mode select signal.

a. These signals are only active when scan chain 0 is selected.

Table A-3 JTAG and test signal descriptions  (continued)

Name Type Description
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A.4 Debugger signals

The debugger signal descriptions are shown in Table A-4.

Table A-4 Debugger signal descriptions

Name Type Description

DBGBREAK In Breakpoint.

This signal enables external hardware to halt execution of the processor for debug 
purposes. When HIGH, this causes the current memory access to be breakpointed. If 
memory access is an instruction Fetch, the core enters debug state if the instruction 
reaches the Execute stage of the core pipeline. If the memory access is for data, the core 
enters the debug state after the current instruction completes execution. This enables 
extension of the internal breakpoints provided by the EmbeddedICE-RT module.

In most systems, this input is tied LOW.

COMMRX Out Communication receive full.

When HIGH, this signal denotes that the comms channel receive buffer contains data for 
the core to read.

COMMTX Out Communication transmit empty.

When HIGH, this signal denotes that the comms channel transmit buffer is empty.

DBGACK Out Debug acknowledge.

When HIGH, this signal denotes that the ARM is in debug state.

DBGEN In Debug enable.

When DBGEN is LOW, it inhibits BREAKPOINT and DBGRQ to the core. DBGACK 
from the ARM720T processor is held LOW when DGBEN is LOW.

DBGEN must be HIGH to enable the EmbeddedICE-RT logic to be used.

DBGRQ In Debug request.

This signal causes the core to enter debug state after executing the current instruction. 
This enables external hardware to force the core into debug state, in addition to the 
debugging features provided by the EmbeddedICE-RT Logic.

In most systems, this input is tied LOW.

 DBGEXT[1:0] In External condition.

These signals allow breakpoints and watchpoints to depend on an external condition.

DBGRNG[1:0] Out Range out.

These signals indicate that the relevant EmbeddedICE-RT watchpoint register has 
matched the conditions currently present on the address, data, and control buses. These 
signals are independent of the state of the watchpoint enable control bits.
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A.5 Embedded trace macrocell interface signals

The ETM interface signals are shown in Table A-5.

Table A-5 ETM interface signal descriptions

Output name Type Description

ETMnMREQ Out Not memory request. When LOW, indicates that the processor requires memory access 
during the following cycle.

ETMSEQ Out Sequential address. When HIGH, indicates that the address of the next memory cycle 
is related to that of the last memory cycle. The new address is one of the following:

• the same as the previous one

• four greater in ARM state

• two greater in Thumb state.

This signal can be used, with the low order address lines, to indicate that the next cycle 
can use a fast memory mode and bypass the address translation system.

ETMnEXEC Out Not executed. When HIGH, indicates that the instruction in the execution unit is not 
being executed. For example it might have failed the condition check code.

ETMnCPI Out Not coprocessor instruction. When the ARM720T processor executes a coprocessor 
instruction, it takes the ETMnCPI LOW and waits for a response from the 
coprocessor. The actions taken depend on this response, which the coprocessor signals 
on the CPA and CPB inputs.

ETMADDR[31:0] Out Addresses. This is the retimed internal address bus.

ETMnOPC Out Not opcode fetch. When LOW, indicates that the processor is fetching an instruction 
from memory. When HIGH, indicates that data, if present, is being transferred.

ETMDBGACK Out Debug acknowledge. When HIGH, indicates that the processor is in debug state. When 
LOW, indicates that the processor is in normal system state.

ETMABORT Out Memory abort or bus error. Indicates that a requested access has been disallowed.

ETMCPA Out Coprocessor absent handshake. The coprocessor absent signal. It is a buffered version 
of the coprocessor absent signal.

ETMCPB Out Coprocessor busy handshake.

The coprocessor busy signal. It is a buffered version of the coprocessor absent signal.

ETMPROCID[31:0] Out Trace PROCID bus.

ETMPROCIDWR Out Trace PROCID write. Indicates to the ETM7 that the Trace PROCID, CP15 register 13, 
has been written.
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ETMTBIT Out Thumb state.

This signal, when HIGH, indicates that the processor is executing the THUMB 
instruction set. When LOW, the processor is executing the ARM instruction set.

ETMBIGEND Out Big-endian format.

When this signal is HIGH, the processor treats bytes in memory as being in big-endian 
format. When it is LOW, memory is treated as little-endian.

ETMEN In The ETM7 enable signal. 

ETMHIVECS Out When LOW, this signal indicates that the exception vectors start at address 0x00000000. 
When HIGH, the exception vectors start at address 0xFFFF0000.

ETMSIZE[1:0] Out The memory access size bus driven by the ARM720T (Rev 4) processor.

ETMRDATA[31:0] Out The processor read data bus.

ETMWDATA[31:0] Out The processor write data bus.

ETMINSTRVALID Out The instruction valid signal driven by the ARM720T processor. When HIGH, it 
indicates that the instruction in the Execute stage is valid and has not been flushed.

ETMnRW Out Not read/write. When HIGH, indicates a processor write cycle. When LOW, indicates 
a processor read cycle.

ETMCLKEN Out This signal is used to indicate to the ETM that the core is in a wait state. It is not a true 
clock enable for the ETM. 

Table A-5 ETM interface signal descriptions (continued)

Output name Type Description
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A.6 Miscellaneous signals

Miscellaneous signals used by the ARM720T processor are shown in Table A-6.

Table A-6 Miscellaneous signal descriptions

Name Type Description

BIGENDOUT Out Big-endian format.

When this signal is HIGH, the processor treats bytes in memory 
as being in big-endian format. When it is LOW, memory is 
treated as little-endian.

nFIQ In ARM fast interrupt request signal.

nIRQ In ARM interrupt request signal.

VINITHI In Determines the state of the V bit in CP15 register 1 at reset. 
When HIGH, the V bit is set coming out of rest. When LOW, the 
V bit is clear coming out of reset. 
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Glossary

This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort Is caused by an illegal memory access. Abort can be caused by the external memory 
system, an external MMU, or the EmbeddedICE-RT logic.

Addressing modes A procedure shared by many different instructions, for generating values used by the 
instructions. For four of the ARM addressing modes, the values generated are memory 
addresses (which is the traditional role of an addressing mode). A fifth addressing mode 
generates values to be used as operands by data-processing instructions.

Arithmetic Logic Unit 

The part of a computer that performs all arithmetic computations, such as addition and 
multiplication, and all comparison operations.

ALU See Arithmetic Logic Unit.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

Big-endian Memory organization where the least significant byte of a word is at a higher address 
than the most significant byte.
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Banked registers Register numbers whose physical register is defined by the current processor mode. The 
banked registers are registers R8 to R14, or R13 to R14, depending on the processor 
mode.

Breakpoint A location in the program. If execution reaches this location, the debugger halts 
execution of the code image.

See also Watchpoint.

CISC See Complex Instruction Set Computer.

Complex Instruction Set Computer 

A microprocessor that recognizes a large number of instructions.

See also Reduced Instruction Set Computer.

CPSR See Program Status Register.

Control bits The bottom eight bits of a program status register. The control bits change when an 
exception arises and can be altered by software only when the processor is in a 
privileged mode.

Current Program Status Register

See Program Status Register.

DCC Debug Communications Channel.

Debug state A condition that allows the monitoring and control of the execution of a processor. 
Usually used to find errors in the application program flow. A processor enters debug 
state from halt mode and not from monitor mode. 

Debugger A debugging system which includes a program, used to detect, locate, and correct 
software faults, together with custom hardware that supports software debugging.

EmbeddedICE The EmbeddedICE logic is controlled via the JTAG test access port, using a protocol 
converter such as MultiICE: an extra piece of hardware that allows software tools to 
debug code running on a target processor. 

See also ICE and JTAG.

EmbeddedICE-RT A version of EmbeddedICE logic that has improved support for real-time debugging.

Exception modes Privileged modes that are entered when specific exceptions occur.

Exception Handles an event. For example, an exception could handle an external interrupt or an 
undefined instruction.

External abort An abort that is generated by the external memory system.
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FIQ Fast interrupt.

Halt mode One of two debugging modes. When debugging is performed in halt mode, the core 
stops when it encounters a watchpoint or breakpoint, and is isolated from the rest of the 
system. See also Monitor mode.

ICE See In-circuit emulator.

Idempotent A mathematical quantity that when applied to itself under a given binary operation 
equals itself.

In-circuit emulator An In-Circuit Emulator (ICE), is a device that aids the debugging of hardware and 
software. Debuggable ARM processors such as the ARM720T (Rev 4) processor have 
extra hardware to assist this process. 

See also EmbeddedICE-RT.

IRQ Interrupt request.

Joint Test Action Group 

The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices.

JTAG See Joint Test Action Group.

Link register This register holds the address of the next instruction after a branch with link 
instruction.

Little-endian memory 

Memory organization where the most significant byte of a word is at a higher address 
than the least significant byte.

LR See Link register

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
will comprise several macrocells (such as an ARM7TDMI-S core, an ETM7, and a 
memory block) plus application-specific logic.

Memory Management Unit 

Allows control of a memory system. Most of the control is provided through translation 
tables held in memory. 

MMU See Memory Management Unit
ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. Glossary-3



Glossary 
Monitor mode One of two debugging modes. When debugging is performed in monitor mode, the core 
does not stop when it encounters a watchpoint or breakpoint, but enters an abort 
exception routine. See also Halt mode.

PC See Program Counter.

Privileged mode Any processor mode other than User mode. Memory systems typically check memory 
accesses from privileged modes against supervisor access permissions rather than the 
more restrictive user access permissions. The use of some instructions is also restricted 
to privileged modes.

Processor Status Register

See Program Status Register

Program Counter Register 15, the Program Counter, is used in most instructions as a pointer to the 
instruction that is two instructions after the current instruction.

Program Status Register 

Contains some information about the current program and some information about the 
current processor. Also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction between it and 
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current 
function was called, and which will be restored when control is returned. 

PSR See Program Status Register.

RAZ Read as zero.

Reduced Instruction Set Computer 

A type of microprocessor that recognizes a lower number of instructions in comparison 
with a Complex Instruction Set Computer. The advantages of RISC architectures are:

• they can execute their instructions very fast because the instructions are so simple

• they require fewer transistors, this makes them cheaper to produce and more 
power efficient.

See also Complex Instruction Set Computer.

RISC See Reduced Instruction Set Computer

Saved Program Status Register 

The Saved Program Status Register which is associated with the current processor mode 
and is undefined if there is no such Saved Program Status Register, as in User mode or 
System mode.
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See also Program Status Register.

SBO See Should Be One fields.

SBZ See Should Be Zero fields.

Should Be One fields 

Should be written as one (or all ones for bit fields) by software. Values other than one 
produces unpredictable results.

See also Should Be Zero fields.

Should Be Zero fields 

Should be written as zero (or all 0s for bit fields) by software. Values other than zero 
produce unpredictable results.

See also Should Be One fields.

Software Interrupt Instruction 

This instruction (SWI) enters Supervisor mode to request a particular operating system 
function.

SPSR See Saved Program Status Register.

Stack pointer A register or variable pointing to the top of a stack. If the stack is full stack the SP points 
to the most recently pushed item, else if the stack is empty, the SP points to the first 
empty location, where the next item will be pushed. 

Status registers See Program Status Register.

SP See Stack pointer

SWI See Software Interrupt Instruction.

TAP See Test access port.

Test Access Port The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST.

Thumb instruction A halfword which specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.

UND See Undefined.

Undefined Indicates an instruction that generates an undefined instruction trap.
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UNP See Unpredictable

Unpredictable Means the result of an instruction cannot be relied upon. Unpredictable instructions 
must not halt or hang the processor, or any parts of the system.

Unpredictable fields Do not contain valid data, and a value can vary from moment to moment, instruction to 
instruction, and implementation to implementation.

Watchpoint A location in the image that is monitored. If the value stored there changes, the debugger 
halts execution of the image.

See also Breakpoint.
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The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The 
references given are to page numbers.
A
Abort

Data   9-9, 9-47
handler   9-9
mode   2-7
Prefetch   9-50
vector   9-47

Abort status register   9-61
Aborted watchpoint   9-48
Aborts

Data   2-19
indexed addressing   2-25

prefetch   2-19
types   2-19

Access permission   7-2
bits   7-23

Address
translation   7-5

Address mask register   9-51, 9-53
Address value register   9-51
Alignment faults   7-20
AMBA interface

signals   A-2
Arbitration, AHB   6-17
ARM instruction set   1-9

addressing mode
five   1-16
four   1-16
three   1-15
two   1-13
two, privileged   1-14

condition fields   1-18
fields   1-17
operand two   1-17

ARM state
register organization   2-9

ARM720T
block diagram   1-3
description   1-2

B
Banked registers   9-41
Big endian. see memory format

Boundary-scan
chain cells   9-28
interface   9-28

Breakpoint
address mask   9-57
data-dependent   9-56
entry into debug state   9-8
externally-generated   9-7
hardware   9-56
programming   9-56

Breakpoints
programming   9-56
software   9-56

Bus interface
transfer types   6-6

Bus request
AHB   6-17

BYPASS instruction   9-30
Bypass register   9-31, 9-32
Byte (data type)   2-6
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C
Cache

test register   11-5
CAPTURE-DR state   9-29
CHAIN bit   9-54
Clock

domains   9-13
system   9-10
test   9-10

Coarse page table descriptor   7-10
Communications channel

message transfer from the debugger   
9-22

Condition code flags   2-13
Configuration

compatibility   3-2
description   3-2
notation   3-2

Connecting an ETM7 macrocell   10-4
Control mask   9-51, 9-53
Control mask register   9-51, 9-53
Control value

register   9-55
Control value register   9-51, 9-53
Coprocessor   1-7

about   8-2
busy-waiting   8-8
connecting   8-11–8-12
data operations   8-9
handshaking   8-6
interface handshaking   8-6
interface signals   8-4, A-3
load and store operations   8-9
not using   8-13

CPnCPI   8-8
CPSR (Current Processor Status 

Register)   2-13
format of   2-13

CPU aborts   7-20
CP15

test registers   11-2

D
Data

abort   9-9, 9-50
Data bus

AHB   6-14
Data mask register   9-51, 9-53
Data types   2-6

alignment   2-6
byte   2-6
halfword   2-6
word   2-6

Data value register   9-51
Debug

actions   9-9
breakpoints   9-8
control register   9-62
core state   9-40
entry into debug state from 

breakpoint/watchpoint   9-46
exceptions   9-50
host   9-3
interface   9-12
interface signals   9-12
Multi-ICE   9-10
priorities   9-50
request   9-7, 9-9, 9-46, 9-47
state   9-9
state, entry from a breakpoint   9-46
state, exit from   9-45
status register   9-40, 9-65
system state   9-40
target   9-3
watchpoint   9-9

Debugger
signals   A-6

Descriptor
coarse page table   7-10
fine page table   7-11
level one   7-7
level two   7-13
section   7-9

Device identification code   9-30, 9-32
Disabling EmbeddedICE-RT   9-16
Disabling the ETM interface   10-3
Domain   7-2

access control   7-22
faults   7-20, 7-25

E
Early termination

definition   2-25

EmbeddedICE-RT   1-5, 9-5
breakpoints

coupling with watchpoints   9-67
hardware   9-56
software   9-57

communications channel   9-20
control register   9-45
control registers   9-53
coupling breakpoints with 

watchpoints   9-67
debug status register   9-40, 9-65
disabling   9-16
overview   9-14
programming   9-7, 9-9, 9-24
registers   9-51
software breakpoints   9-57
TAP controller   9-53
timing   9-16, 9-70
watchpoint registers   9-51–9-55
watchpoints   9-56

ENABLE bit   9-55
Enabling the ETM interface   10-3
ETM interface

clocks and resets   10-6
connecting   10-4
enabling and disabling   10-3
signals   A-7

Exception
entering   2-16
entry and exit summary   2-17
leaving   2-17
priorities   2-21
restrictions   2-22
returning to THUMB state from   

2-17
vectors   2-21

addresses   2-21
watchpoint   9-47

External aborts   7-27

F
FAR   7-21
Fast Context Switch Extension   2-23
Fault

address register   7-21
domain   7-25
permission   7-26
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status register   7-21
translation   7-25

FCSE
relocation of low virtual addresses   

2-23
Fetch

instruction   9-54
Fine page table descriptor   7-11
FIQ mode   2-7

definition   2-18
FIQ valid   8-8
FSR   7-21

G
Grant signal, AHB   6-17

H
Halt mode   9-6, 9-7
Hardware breakpoints   9-56
HBUSREQx   6-17
HGRANTx   6-17
High register

accessing from THUMB state   2-11
description   2-11

HLOCKx   6-17
HRDATA   6-14
HRESP   6-12
HWDATA   6-14

I
ID register   9-28, 9-30, 9-32
IDC

cachable bit   4-2
disable   4-5
enable   4-5
operation   4-2
read-lock-write   4-3
reset   4-5
validity   4-4

double-mapped space   4-4
software IDC flush   4-4

IDCODE instruction   9-30
Identification register, See ID register

Instruction
fetch   9-54
register   9-30, 9-32, 9-33

Instruction set   1-8
ARM   1-9
Thumb   1-18

Instruction types   1-8
Interface

coprocessor   8-1
debug   9-12
JTAG   9-24

Internal coprocessor instructions   3-3
Interrupt

mask enable   9-66
Interrupts   9-50
INTEST

instruction   9-29
mode   9-35

INTEST wrapper   11-3
IRQ

valid   8-8
IRQ mode   2-7

definition   2-19

J
JTAG

BYPASS   9-30
IDCODE   9-30, 9-33
interface   9-5, 9-24
INTEST   9-29
public instructions (summary)   9-29
RESTART   9-31
SCAN_N   9-29

JTAG signals   A-4

L
Large page references, translating   7-15
Level one

descriptor   7-7
descriptor, accessing   7-7
fetch   7-7

Level two
descriptor   7-13

Little endian. see memory format
Lock signal, AHB   6-17

Low registers   2-12

M
Mask enable

interrupt   9-66
Memory

access from debugging state   9-42, 
9-44

formats
big endian

description   2-3
little endian

description   2-4
Memory management unit   7-2
Miscellaneous signals   A-9
MMU   7-2

enabling   3-7
enabling and disabling   7-28
faults   7-20
registers   7-4
test registers   11-12

Modes, privileged   8-16
Monitor mode   9-6, 9-18
Multi-ICE   9-10

O
Operating modes

Abort mode   2-7
changing   2-7
FIQ   2-7
IRQ mode   2-7
Supervisor mode   2-7
System mode   2-7
Undefined mode   2-7
User mode   2-7

Operating state
ARM   2-2
reading   2-14
switching   2-2

to ARM   2-2
to THUMB   2-2

THUMB   2-2
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P
Page tables   7-6
Permission faults   7-20, 7-26
Pipeline

follower   8-5
Privileged instructions   8-16
Privileged modes   8-16
Processor

state   9-40
Program status registers

control bits   2-13
mode bit values   2-15
reserved bits   2-15

Programming EmbeddedICE-RT   9-9
Programming watchpoints   9-59
PROT bits   9-54
Protocol converter   9-4
Public instructions   9-29

R
Range   9-55, 9-56, 9-57, 9-60, 9-67, 

9-68
RANGE bit   9-55
Read data bus

AHB   6-14
Register

cache test   11-5
control value   9-55
debug status   9-66
fault address   7-21
fault status   7-21
MMU test   11-12
test   11-2
test state   11-4
translation table base   7-5

Registers   3-4
ARM   2-8

interrupt modes   2-9
debug communications channel   

9-20
debug control

DBGACK   9-64
DBGRQ   9-63

instruction   9-30, 9-32, 9-33
register 0, ID register   3-4

register 13, process identifier register   
3-11
changing FCSE PID   3-12
FCSE PID   3-11

register 1, control register   3-5
register 2, translation table base 

register   3-7
register 3, domain access control 

register   3-8
register 4, reserved   3-8
register 5, fault status register   3-8
register 6, fault address register   3-9
register 7, cache operations register   

3-10
register 8, translation lookaside 

buffer register   3-10
register 9-12, reserved   3-11
relationship between ARM and 

Thumb   2-11
Thumb   2-10
watchpoint   9-51

programming and reading   9-51
Registers, debug

address mask   9-57
BYPASS   9-30
bypass   9-32
control mask   9-51, 9-53
control value   9-51, 9-53
data mask   9-51
data value   9-51
EmbeddedICE-RT   9-35

accessing   9-25, 9-34
debug status   9-40

ID   9-32
instruction   9-30, 9-32, 9-33
scan path select   9-32, 9-33
scan path select register   9-29
status   9-65
status register   9-40
test data   9-32
watchpoint address mask   9-51
watchpoint address value   9-51

Reset
action of processor on   2-24

Response encoding   6-13
RESTART

on exit from debug   9-31
RESTART instruction   9-31, 9-42, 9-44
Return address calculation   9-49

Returned TCK, See RTCK
RTCK   9-10
RUN-TEST/IDLE state   9-31, 9-44

S
Scan

input cells   9-30
interface timing   9-37
limitations   9-24
output cells   9-30
path   9-29
paths   9-24

Scan cells   9-30, 9-34
Scan chain

selected   9-29
Scan chain 1   9-24, 9-32, 9-35, 9-37, 

9-40, 9-42, 9-43, 9-46
Scan chain 1 cells   9-37
Scan chain 2   9-24, 9-32, 9-35, 9-51
Scan chains   9-24

number allocation   9-34
Scan path select register   9-29, 9-32, 

9-33
SCAN_N   9-29, 9-33, 9-35
Section

descriptor   7-9
references, translating   7-12

SHIFT-DR   9-28, 9-29, 9-30, 9-35
SHIFT-IR   9-33
Signals

AMBA interface   A-2
coprocessor interface   A-3
debugger   A-6
ETM interface   A-7
JTAG   A-4
miscellaneous   A-9

Single-step core operation   9-30
SIZE   6-9
SIZE bits   9-54
Slave

transfer response   6-12
Small page references, translating   7-17
Software breakpoints   9-56, 9-57

clearing   9-58
programming   9-57
setting   9-56, 9-57

Software Interrupt   2-20
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Software interrupt   2-20
SPSR (Saved Processor Status Register)   

2-13
format of   2-13

State
CAPTURE-DR   9-29, 9-30
processor   9-40
SHIFT-DR   9-28, 9-29, 9-30, 9-32
UPDATE-DR   9-29, 9-30, 9-31
UPDATE-IR   9-33

Subpages   7-19
Supervisor mode   2-7
SWI   2-20
System mode   2-7
System speed

instruction   9-42, 9-48
System state

determining   9-42

T
T bit (in CPSR)   2-14
TAP

controller   9-5, 9-14, 9-24, 9-27
controller state

transitions   9-27
instruction   9-33
state   9-35

Test
registers   11-2
state register   11-4

Test Access Port, See TAP
Test data registers   9-32
Thumb instruction set   1-18
Thumb state   2-2

register organization   2-10
Tiny page references, translating   7-18
Transfer response

AHB   6-12
Transitions

TAP controller state   9-27
Translating page tables   7-6
Translation faults   7-20, 7-25
Translation table base   7-5
TTB   7-5

U
Undefined instruction

handling   8-15
trap   8-2, 8-13, 8-15, 8-16

Undefined instruction trap   2-20
Undefined mode   2-7
UPDATE-DR   9-29
UPDATE-IR   9-33
User mode   2-7

W
Watchpoint   9-7, 9-9, 9-15, 9-35, 9-46, 

9-67
aborted   9-48
coupling   9-67
EmbeddedICE-RT   9-56
externally generated   9-7
programming   9-59
register   9-51, 9-57
registers   9-51

programming and reading   9-51
unit   9-59
with exception   9-49

Watchpoint 0   9-69
Watchpointed

access   9-47, 9-50
memory access   9-47

Watchpoints
programming   9-59

WRITE   9-54
Write buffer

bufferable bit   5-2
definition   5-2
operation   5-3

bufferable write   5-3
read-lock-write   5-3
unbufferable write   5-3

Write data bus
AHB   6-14
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