ARM720T

(Rev 4)

Technical Reference Manual

ARM

Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0229A

ARM720T
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change

22 November 2001 A ARM720T (Rev 4) first release

Proprietary Notice

Words and logos marked with © or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any materia form except with the prior written permission of the copyright
hol der.

The product described in this document is subject to continuous devel opments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure 9-8 on page 9-27 reprinted with permission |EEE Std. 1149.1-1990. | EEE Standard Test Access Port
and Boundary Scan Architecture Copyright 2001, by IEEE. The |EEE disclaims any responsibility or liability
resulting from the placement and use in the described manner.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

The information in this document is final (information on a developed product).
Web Address

http://www.arm. com

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Contents

ARM720T Technical Reference Manual

Chapter 1

Chapter 2

Preface

About this document

[0 | 1= Tod PR
Introduction
11 About the ARM720T (ReV 4) MacroCellcccoovvviiiiiiiiiieiiiie e 1-2
1.2 COPIOCESSOIS ...t ettt ee e ettt ee e ettt e s ettt e s s n e e e e et reee e s et nneeeeenne 1-7
1.3 AbOUL the INSITUCTION SET ..ovveiiiee e e 1-8

Programmer’s Model
2.1 Processor operating states
2.2 Memory formatsccccceveeiiieiiinnn.

23 Instruction length

2.4 Data typescccovveenes

25 OPEratiNng MOUEScoiuvieeiitieietees ettt et s
2.6 REGISIEIS ittt e
2.7 Program status registers

2.8 Exceptions

2.9 Relocation of low virtual addresses by the FCSE PID
2.10 RESEL ..
2.11 Implementation-defined behavior of iNnStructionsc.cccceevivie e,

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. iii

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Configuration

3.1 ADOUL CONFIGUIALION ..ottt et 3-2
3.2 Internal coprocessor instructions ... 3-8
3.3 REGISIEIS .ttt 3-4
Instruction and Data Cache

4.1 About the instruction and data cacheouveieieieeiieiiieeeeee e, 4-2
4.2 IDC Validityoocvveeeeiiie e

4.3 IDC enable, disable, and reset

Write Buffer
51 About the Write BUFfEruveeiiei e 5-2
5.2 Write buffer OPErationoccviiiiiiiiiie e e 5-3

The Bus Interface

6.1 About the bUS INtErfaceoooi i
6.2 BUS INterface SIgNalSocveiiiiiiiii e
6.3 Transfer typesccccvevveeviveninnnn,

6.4 Address and control signals

6.5 Slave transfer response signals

6.6 DAta DUSES ...ttt et e e e et ae e
6.7 ATDITFALION ..o e et e s
6.8 Bus clocking

6.9 Resetcccovvvviieiinennn.

Memory Management Unit

7.1 ADOUL the MMU ..o et e e e e aeaees 7-2
7.2 MMU program-accessible regiStersccouviiiiviriiie e 7-4
7.3 AdAress tranSIatioNoooiiiiiiiee e 7-5
7.4 MMU faults and CPU abortsccccvvveveeennen. ... 7-20
7.5 Fault address and fault status registers e 7721
7.6 Domain access controlccccvveeeeeeeeneennn. .. 1-22
7.7 Fault checking SEQUENCEcuiiiiiiiiiiee et 7-24
7.8 (S = LI o o] N 7-27
7.9 Interaction of the MMU and Cacheooovviiiiii e 7-28

Coprocessor Interface

8.1 ADOUL COPIOCESSOIS ...ttt sttt etk et en e ee et e e e e

8.2 Coprocessor interface signals

8.3 Pipeline-following SIgNaAIScciiioiiiiiiie e

8.4 Coprocessor interface handshakingcccoceeiiiiiiii e 8-6
8.5 CONNECLING COPIOCESSOIS ..uieeiieieetaieiteas e sttt e aasaeee e aas e teaeaeaaaannaeaeaaaaens 8-11
8.6 Not using an external COPrOCESSONuiiiiiieiiieerieeeentieeerre e eesariee e 8-13
8.7 STC operations

8.8 Undefined INSIUCLIONScooueiiiiiie it 8-15
8.9 Privileged INSIIUCHIONSoouiiiiiiie e 8-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 9

Chapter 10

Chapter 11

Contents

Debugging Your System

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27

About debugging YOUr SYSIEMciiiiiiiiiiieiiiee e 9-3
Controlling debugging
Entry into debug state

Debug interfacecccccovvvveiinennnne

ARM720T core CloCK dOMAINSoooviviiiiieiciiie et 9-13
The EmbeddedICE-RT MacroCellccccouiiiiiiiiiiiiieisiie e 9-14
Disabling EmbeddedICE-RT

EmbeddedICE-RT register map
Monitor mode debuggingccceeeieiiiieinneennn
The debug communications channel
Scan chains and the JTAG interfacecccooovviiiiie i 9-24
The TAP controllerccccoovvviviiieiiieee e

Public JTAG instructions
TeSt data FEQISIEIS ...viiiiiieii ettt
SCAN TIMING <ot ettt re s se e nn e e
Examining the core and the system in debug stateccccccoveiiieennen. 9-40
Exit from debug state
The program counter during debugcccooiviiiiiiiiiiiiene e
Priorities and eXCEPLIONScuviiirieriiiieee et
Watchpoint unit registers
Programming breakpoints
Programming watchpoints
ADOIt STALUS FEQISTETieieiiiie et et e e e aee e
Debug CONIOl FEGISLETcoviiieiiie et
Debug status registerccovvveevverieveniieeens
Coupling breakpoints and watchpoints
EmbeddedICE-RT tiMiNGcooiiiiiieeiiiee et

ETM Interface

101
10.2
10.3

104
10.5
10.6

About the ETM iNterfacecccoouviiiiiiiieiessie e 10-2
Enabling and disabling the ETM7 interfacecccoovviiiiiecniie e, 10-3
Connections between the ETM7 macrocell and the ARM720T (Rev 4)
PPrOCESSOT vttt et et et e ettt e eteeeae e sbbe e et en etk bt e b eees bt eb b e et en bt e e aeeenbeeaeeas

Clocks and resets
Debug request wiring
TAP interface wiring

Test Support

111
11.2
11.3
11.4
115

About the ARM720T (RevV 4) test regiStersooioiiieieeriiiiiieeeeiniiiieeeee
Automatic Test Pattern Generation (ATPG)cccoovviiieeiiiiieenie e
Test state register
Cache test registers and Operationsccccceveiiiiieriiieens

MMU test registers and OPErationscccoeoceerieeeennieee e s

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. \Y

Contents

Appendix A Signal Descriptions

Al AMBA interface signalsc..cccccvieeiiiiennnnn

A2 Coprocessor interface signals

A3 JTAG and teSt SIgNAIScocvviiiiiiii et e

A4 DebUQGQEr SIGNAISoiieiiiiiieie e e

A5 Embedded trace macrocell interface Signalsccocceeeriiieiiiieniie e A-7
A.6 MiISCEllanEOoUS SIGNAISccouiiiiiiie i e A-9
Glossary

Vi

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

List of Tables
ARM720T Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 3-3
Table 6-1
Table 6-2
Table 6-3

ChANGE NISTOTY ..ttt et n bt sn e nn s ii
KEY 10 tADIES ... s 1-8
ARM INSLIUCHION SUMMEAIYeiiitiiieitie ettt ettt et ee s an e n e 1-11
AdAresSiNg MOAE 2 ..ooeeiiiiiie ettt e nr e 1-13
Addressing mode 2 (Privileged)oioiiiiiiie e 1-14
AdAressing MOAE 3 ...ciiiii ittt 1-15
Addressing Mode 4 (10Ad)oueeiiiiiii e 1-16
Addressing MOAE 4 (SOM)viiirreiiiiiieiiiee ettt e 1-16
AdAressing MOAE 5 ...coviiiiiiii et 1-16
(0] 01T = 1 [0 12 PSP OO PP RS TPPPPRPPPPPPRRN 1-17
FIEIAS . et et e 1-17
COoNAIION fIEIASveieeeii e e e 1-18
Thumb INSrUCLION SUMMAIY ...eeeiiiiie et 1-20
ARMT720T MOdeS Of OPETAtIONcocuiiiiiiiiiiiiie ettt 2-7
PSR MOAE DIt VAIUES ...t 2-15
EXCEPLioN ENtry and ©XItcc.viiiiiiieieiee e e 2-17
EXCeption VECIOr AdUIrESSESoccoiiiiiiiee ettt e e 2-21
Cache and MMU CONrol FEQISTETeeeiiiii et 3-4
CACNE OPETALION ...eiiiiiiiici ettt e e s nreee e 3-10
TLB OPEIALIONS ...t ettt ettt ettt ettt ns e e r e e e e e b e enn e e e en e e anneean 3-11
Transfer type €NCOUINGooveiiiieieie e 6-7
Transfer Size @NCOUINGSvviiiiie i e 6-10
BUISE tYPE ENCOAINGS o.vieieieie ettt ettt se e nn e e 6-10

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. vii

List of Tables

Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 7-11
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 9-8
Table 9-9
Table 9-10
Table 9-11
Table 10-1

Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6

Protection control @NCOTINGSccoiviiiiiiiiie et 6-11
RESPONSE ENCOAINGS ..vviiieiii ittt ettt ettt et e e et e re e see s 6-13
Active byte lanes for a 32-bit little-endian data buscccooiiiiiii 6-15

Active byte lanes for a 32-bit big-endian data bus
CP15 register functions
Level one descriptor bits

Interpreting level one descriptor bits [1:0]ccooiviiiiieiiiiie e
SeCtion deSCrPLOr DItS ...ooiiiiiie e
Coarse page table descriptor DItScccoooiiiiiiiiii e

Fine page table descriptor DItSc.occiiiiiie i
Level two deSCriPtOr DItSieiiiiiiie et
Interpreting page table entry bitS [1:0]ccvveiiiieiiiiiie e
Priority encoding Of fault StAtUSccoviiiiie i
Interpreting access control bits in domain access control registerccccooeeee. 7-22
Interpreting access permission (AP) DItScoccii i 7-23
Coprocessor AVAIIADITILYoceeeeiiiie e 8-3
Handshaking SIGNalSccciiiiiie et s 8-6
Handshake signal CONNECHIONSoooiiiiiiie e 8-12
CPNTRANS Signal MEANINGS ...coeiiieie ettt e e seeaee e s 8-16
Function and mapping of EmbeddedICE-RT registerscccccoiviiiiiiieeiiniiniennnins 9-17
DCC control register bit @SSIGNMENTSccoiiiiiiiiii e 9-21
Instruction encodings for scan chain 15 ... 9-25
PUDIC INSIIUCHIONS ..ottt e e e e s 9-29
Scan chain NUMbBEr AllOCALIONcviiiiiiiiieee e 9-34
SCaAN ChaIN L CEIIS ...oiiiiiie e 9-37
Determining the cause of entry to debug Statecceeeiiiiiiiiiic e 9-49
SIZE[1:0] signal encodingcoooeueiieeiiiiiiieeeeiiiieeeeene

Debug control register bit assignments

Interrupt signal controlcocciieiiiiiee e

Debug status register bit assignments
Connections between the ETM7 macrocell and

the ARM720T (REV 4) PrOCESSON ...eeiiuieeeiiieieeeiees it est ettt nre s e e nnre e aneee s
Test State regiSter OPEratiONSeeerriiriirier e e ee st ee s
Summary of CP15 register 7, 9, and 15 operations
Write cache victim and lockdown operations
CAM, RAM1, and RAM2 register 15 operations
Register 2, 3, 5, 6, 8, 10, and 15 OPErationSccccoeerieeriiiirieaaiiiir e e esiieeee e
CAM MEMOTY FEION SIZE ..viiiieieei ettt ee e s een e sn e e nrieeenn
Access permission Dit SEHINGvveeriiriiee e
Miss and fault ENCOAINGcoouviiiiiie e e e
RAM2 memory region size .
AMBA interface signalscccooieriie i
Coprocessor interface signal descriptions
JTAG and test signal deSCrPLONS cccoviiiiieeeri e e
Debugger signal deSCrPLIONS ...ccvviiiieii e e
ETM interface signal desSCriptionsSccoiviioiiiie e
Miscellaneous signal deSCrPLIONScoiiiiiiiiiinie e e e

viii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

List of Figures
ARM720T Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12

Key to timing diagram CONVENLIONSoiiiveiiiiie et Xvi
BIOCK GIAGIAM ..ttt ettt ettt ee et n e e s 1-3
ARM720T (Rev 4) processor functional Signalscccceveriiiiiiiiiiiieni e 1-4
ARM instruction set formats

Thumb INStruction SEt FOIMALSc.eiiiiiieiiie e e
Big-endian addresses of bytes With WOrdsccccooiiiiiiiiiiiiiens e
Little-endian addresses of bytes with words ...
Register organization in ARM state
Register organization in Thumb statecccceoviiiiiiiniiciieen,

Mapping of Thumb state registers onto ARM state registerscccccccveeeeiineeenn. 2-11
Program status register format
MRC and MCR bit pattern
ID register read
ID register write
Register 1 read
Register 1 write
Register 2ccoceeenee

Register 3ccocveeee

Register 4c.coo.....

REGISTET 5 .ottt e et e ettt e s
REGISTET B ..o eie ettt et et e et e et et n e e e s
Register 13 with opcode_2=0
Register 13 with opcode_2=1

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. ix

List of Figures

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15
Figure 9-16
Figure 9-17
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7

SIMPIE AHB TTANSTEI .ot
AHB bUS MASLEr INLEITACEvviiieieiii e e
SIMPIE MEMOIY CYCIE ..t e s
Transfer type examples
Translation table base register
Translating page tablesccccocciieiiiininien e,

Accessing translation table level one desCriptorsccoocvveiiiieniiie e 7-7
LeVel ONE ESCHIPIOT ...ttt ettt ee et en e e ne s
SECHON AESCIIPION ...ttt et ee et een e aeeee s
Coarse page table deSCrIPLOroiiii i

Fine page table deSCHPIOrcoiiiii it
SECHON rANSIALION ..ot e

Level two deSCriPLOrcocveiiieeeiiiee e
Large page translation from a coarse page table
Small page translation from a coarse page table
Tiny page translation from a fine page tablecccccco e
Domain access control register fOrmatccceiviiiiiie e
Sequence for checking faults ..o
COoprocessor BUSY-Wat SEQUENCEccuuviiirieeriiiieiies et s e s
Coprocessor register transfer sequence
Coprocessor data operation sequence

Coprocessor [0ad SEQUENCEcevivvernneriieieniieeenns

Example cOprocesSSOr CONNECHIONSociiieeiriiieeiie et s
Typical deDUQG SYSEM ..ot e
ARM720T (Rev 4) processor block diagramccccoovireiieeiieeenniee e 9-5
DEDUQ SEAE ENIY ..ottt e e e 9-8
ClOCK SYNCNIONIZALIONeeeeiiii ittt ee s an e e 9-11
The ARM720T (Rev 4) core, TAP controller, and EmbeddedICE-RT macrocell 9-14
DCC CONIOI FEUISLET ..ttt ettt st enn e 9-20
ARM720T processor scan chain arrangementsccccoouviiieeriieeenniee e 9-24
Test access port controller state tranSitioNScoovviriiieer e 9-27
ID cOde regiSter FOrMALiueieiiiie et s

SCAN TIMING ettt ettt e st e e ne e san e e s areeeenre e ennn e
Debug exit sequence
EmbeddedICE-RT block diagram
Watchpoint control value, and mask format
Debug abort StatUS FEQISTETcciiiii it
Debug control register fOrmatooooviiiiie e
Debug status register fOrmMatooooiiiiiieeii e e
Debug control and status register structure
CP15 MRC and MCR bit pattern
Rd format, CAM read
Rd format, CAM write
Rd format, RAM read
Rd format, RAM write
Rd format, CAM mMatCh RAM FEAMcouueiiiieieee et e e e e e
Data format, CAM FEAMcoiieiiee et eee et e e e e e e e e e e e e e e e aeaeeseaeenens

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Figure 11-8

Figure 11-9

Figure 11-10
Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16

List of Figures

Data format, RAM FEAMuuuiiiiieiiieie et e et ettt e e e e e e ee e ettt eeeeeaeaeeaeees
Data format, CAM mMatch RAM F€aAUouuiiiee it
Rd format, write cache victim and lockdown basecccooeeeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeae
Rd format, write cache Victimccccevvvvvvvvvnnnnn.
Rd format, CAM write and data format, CAM read ..
Rd format, RAML WHtecovvvvrecieeeeeeeieeeeeieeen
Data format, RAMI AUoueeiiiiiiie et e e e e et e e e e et e e e s aaaeas

Rd format, RAM2 write and data format, RAM2 readcccooovviiiiieeeiiiie s 11-16
Rd format, Write TLB IOCKAOWNcccoiiiiiiiitiee et e et ee e aee e 11-17

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. Xi

List of Figures

Xii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Preface

This preface introduces the ARM720T (Rev 4) processor and its reference
documentation. It contains the following sections:

. About this document on page xiv
. Feedback on page xviii.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. Xiii

Preface

About this document

Intended audience

Using this manual

This document is atechnical reference manua for the ARM720T (Rev 4) processor.

This document has been written for experienced hardware and software engineers who
might or might not have experience of the architecture, configuration, integration, and
instruction sets with reference to the ARM product range.

This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM720T processor.

Chapter 2 Programmer’s Model
Read this chapter for a description of the 32-bit ARM and 16-bit Thumb
instruction sets.
Chapter 3 Configuration
Read this chapter for a description of how to use the system control
coprocessor, CP15, to configure devices that are peripheral to the core.
Chapter 4 Instruction and Data Cache
Read this chapter for an overview of the mixed instruction and data cache.

Chapter 5 Write Buffer
Read this chapter for a description of how you can enhance the system
performance of the ARM720T processor by using the write buffer.
Chapter 6 The Bus Interface
Read this chapter for a description of the ARM720T processor bus
interface.
Chapter 7 Memory Management Unit
Read this chapter for adescription of the functions and use of the memory
management unit.
Chapter 8 Coprocessor | nterface

Read this chapter for information about connecting and using external
COProCessors.

Xiv

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Preface

Chapter 9 Debugging Your System
Read this chapter for a description of the hardware extensions and
integrated on-chip debug support for the ARM720T processor.
Chapter 10 ETM Interface
Read this chapter for a description of the Embedded Trace Macrocell
support for the ARM720T processor.
Chapter 11 Test Support
Read this chapter for information about performing device-specific test
operations.
Appendix A Signal Descriptions
Read this appendix for alist of all ARM720T processor interface signals.

Typographical conventions
The following typographical conventions are used in this document:

bold Highlights ARM processor signal names, and interface elements
such as menu names. Also used for terms in descriptive lists,
where appropriate.

italic Highlights special terminology, cross-references, and citations.

monospace Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotesargumentsto commands or functionswhere the argument
isto be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagram conventions

Thismanua contains one or more timing diagrams. The following key explains the
components used inthese diagrams. Any variationsare clearly labeled when they occur.
Therefore, no additional meaning must be attached unless specifically stated.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. XV

Preface

Further reading

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

s

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This document contains information that is specific to the ARM720T processor. Refer
to the following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)

. AMBA Specification (Rev 2.0) (ARM IHI 0011)

. ETM7 (Rev 1) Technical Reference Manual (ARM DDI 0158)

. ARM7TDMI-S (Rev 4) Technical Reference Manual (ARM DDI 0234).

XVi

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Preface

Other publications
This section lists relevant documents published by third parties.

. Standard Test Access Port and Boundary Scan Architecture (IEEE Std.
1149.1.1990).

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. Xvii

Preface

Feedback

ARM Limited welcomes feedback both on the ARM720T processor, and on the
documentation.

Feedback on the ARM720T processor

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on the ARM720T documentation

If you have any comments about this document, please send email to errata@arm. com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Xviii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 1
Introduction

This chapter provides an introduction to the ARM720T processor. It contains the
following sections:

. About the ARM720T (Rev 4) macrocell on page 1-2
. Coprocessors on page 1-7
. About the instruction set on page 1-8.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

1-1

Introduction

1.1 About the ARM720T (Rev 4) macrocell

The ARM720T (Rev 4) macrocell isageneral-purpose 32-bit microprocessor with 8K B
cache, enlarged write buffer, and Memory Management Unit (MMU) combined in a
single chip. The CPU withinthe ARM720T macrocell isthe ARM7TDMI-S processor.
The ARM720T (Rev 4) macrocell is software-compatible with the ARM processor
family.

The on-chip mixed dataand instruction cache, together with the write buffer,
substantially raise the average execution speed and reduce the average amount of
memory bandwidth required by the processor. This enables the externa memory to
support additional processorsor Direct Memory Access (DMA) channelswith minimal
performance loss.

The MMU supports a conventiona two-level page-table structure and several
extensions that makeit ideal for embedded control, UNIX, and object-oriented systems.

Theallocation of virtual addresseswith different task | Dsimproves performancein task
switching operations with the cache enabled. These relocated virtual addresses are
monitored by the Embedded CE-RT block.

The memory interface enables the performance potential to be realized without
incurring high costs in the memory system. Speed-critical control signals are pipelined
to allow system control functionsto beimplemented in standard low-power logic. These
control signals permit the exploitation of paged mode access offered by
industry-standard DRAMSs.

The ARM720T processor is provided with an Embedded Trace Macrocell (ETM)
interface that brings out the required signals from the ARM core to the periphery of the
ARM720T macrocell. This enables you to connect astandard ETM7 macrocell.

The ARM720T macrocell isafully static part and has been designed to minimize power
requirements. This makes it ideal for portable applications where low power
consumption is essential.

The ARM720T processor architecture is based on Reduced Instruction Set Computer
(RISC) principles. Theinstruction set and related decode mechanism are greatly
simplified compared with microprogrammed Complex Instruction Set Computers
(CISCs).

A block diagram of the ARM720T macrocell is shown in Figure 1-1 on page 1-3.

1-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Virtual address bus

v v
MMU 8KB cache ARM720T core
< >
A A A
Internal data bus
\ 4 \ 4 v
Data and
address CI%ZE};O' ;’i)n?c System control
buffers g log coprocessor
AMBA
interface
A
v
AMBA AHB

bus interface

Introduction

JTAG debug
interface

ETM interface

Coprocessor
interface

Figure 1-1 Block diagram

The functional signals onthe ARM720T (Rev 4) processor are shown in Figure 1-2 on

page 1-4.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

1-3

Introduction

AMBA
interface <

Coprocessor
interface <

Debug
interface <

Miscellaneous
signals <

(~ <4—HADDR[31:0]—
<«—HTRANS[1:0]—
<«—HBURST[2:0]—
<+——HWRITE——
«—HSIZE[2:0]——
«—HPROT[3:0] —
——HGRANT —»
— HREADY —»
——HRESP[1:0]—p
<€~HWDATA[31:0]—
—HRDATA[31:0] =
<«—HBUSREQ——
<+——HLOCK
———HCLKEN—»

<«—EXTCPCLKEN—
<EXTCPDIN[31:0] —
~EXTCPDOUT[31:0]»
——EXTCPA—»
— EXTCPB—»
<«——CPnCPI

A

<4——CPnOPC—
<+——CPTBIT
<4—CPnTRANS —
<4+—CPnMREQ—
——EXTCPDBE —p
<4—COMMRX—
<4+—COMMTX —
<+—DBGACK—
DBGEN—»
DBGRQ—»
— DBGEXT[1:0] =)
4—DBGRNG[1:0]—
__ ——DBGBREAK —p

7~ 4—BIGENDOUT —
nFIQ——
nIRQ———»
VINITHI—»
——HRESETn—p

Al

HCLK—

N

ARM720T
processor

L DBGIR[3:0]—»)
- DBGSREG[3:0]
- DBGSDIN—»
«—DBGSDOUT —
—DBGTAPSM[3:0]»
- DBGCAPTURE —»
- DBGSHIFT—»
- DBGUPDATE —»
- DBGINTEST—»
- DBGEXTEST —»
- DBGNTDOEN—»
«—DBGNTRST——
«—DBGTCKEN —
«——DBGTDI——
- DBGTDO—»
<+—DBGTMS——
«——ETMEN)
- ETMBIGEND—»
- ETMHIVECS —»
- ETMRMREQ—»
L ETMnOPC—»
- ETMSEQ—»
- ETMnEXEC —p»
- ETMINSTRVALID »
- ETMnCPI—»
— ETMADDRI[31:0] %
- ETMnRW—»
- ETMCLKEN—»
- ETMSIZE[1:0] =
- ETMDBGACK—»
- ETMRDATA[31:0]p
- ETMWDATA[31:0]»
- ETMABORT —p
- ETMCPA—»
- ETMCPB—»
- ETMTBIT—»

\

>

~ETMPROCID[31:0]»
—ETMPROCIDWR» __/

JTAG
interface

ETM
interface

Figure 1-2 ARM720T (Rev 4) processor functional signals

1-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Introduction

1.1.1 EmbeddedICE-RT logic

The EmbeddedI CE-RT logic provides integrated on-chip debug support for the
ARMT720T core. It enables you to program the conditions under which a breakpoint or
watchpoint can occur.

The Embeddedl CE-RT logic is an enhanced implementation of EmbeddedI| CE, and
enablesyou to perform debugging in monitor mode. In monitor mode, the coretakes an
exception on a breakpoint or watchpoint, rather than entering debug state asit doesin
halt mode.

If the core does not enter debug state when it encounters a watchpoint or breakpoint, it
can continue to service hardware interrupt requests as normal. Debugging in monitor
mode is extremely useful if the core forms part of the feedback loop of a mechanica
system, where stopping the core can potentially lead to system failure.

The Embeddedl CE-RT logic contains a Debug Communications Channel (DCC). The
DCC is used to pass information between the target and the host debugger. The
Embedded| CE-RT logic is controlled through the Joint Test Action Group (JTAG) test
access port.

Changes to the programmer’s model

To provide support for the EmbeddedI CE-RT macrocell, the following changes have
been made to the programmer’s model for the ARM720T (Rev 4) processor:

Debug control register
There are two new bits in the debug control register:
Bit 4 Monitor mode enable. Use this to control how the
device reacts on a breakpoint or watchpoint:
. When set, the core takes the instruction or data
abort exception.
. When clear, the core enters debug state.

Bit 5 Embedded| CE-RT disable. Use this when changing
watchpoints and breakpoints:

. When set, this bit disables breakpoints and
watchpoints, enabling the breakpoint or
watchpoint registersto be programmed with new
values.

. When clear, the new breakpoint or watchpoint
values become operational .

For more information, see Debug control register on page 9-62.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 1-5

Introduction

Coprocessor register map

A new register (R2) in the coprocessor register map indicates
whether the processor entered the Prefetch or Data Abort
exception because of areal abort, or because of a breakpoint or
watchpoint. For more details, see Abort status register on

page 9-61.

For more details, see Chapter 9 Debugging Your System.

1-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Introduction

1.2 Coprocessors

The ARM720T macrocell has an internal coprocessor designated CP15 for internal
control of the device (see Chapter 3 Configuration).

The ARM720T macrocell aso includes a port for the connection of on-chip external
coprocessors. This enables extension of the ARM720T functionality in an
architecturally-consistent manner.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 1-7

Introduction

1.3 About the instruction set

Theinstruction set comprises ten basic instruction types:

. Two types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to
perform high-speed operations on the data in a bank of 31 registers, each 32 bits
wide.

. Three types of instruction control the data transfer between memory and the
registers:
— oneoptimized for flexibility of addressing
— onefor rapid context switching
— onefor swapping data.

. Two instructions control the flow and privilege level of execution.

. Three types are dedicated to the control of external coprocessors. These enable
you to extend the functionality of the instruction set off-chip in an open and
uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is
also straightforward, unlike some RISC processors that depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

13.1 Format summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction set on page 1-9
. Thumb instruction set on page 1-18.

A key to the instruction set tables is shown in Table 1-1.

The ARM7TDMI-Scoreonthe ARM720T macrocell isanimplementation of the ARM
architecture v4T. For a complete description of both instruction sets, see the ARM
Architecture Reference Manual.

Table 1-1 Key to tables

Entry Description

{cond} Refer to Table 1-11 on page 1-18.
<Oprnd2> Refer to Table 1-9 on page 1-17.
{field} Refer to Table 1-10 on page 1-17.

1-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Introduction

Table 1-1 Key to tables (continued)

Entry

Description

Sets condition codes (optional).

Byte operation (optional).

Halfword operation (optional).

Forces address trand ation. Cannot be used with
pre-indexed addresses.

<a_mode2>

Refer to Table 1-3 on page 1-13.

<a_mode2P>

Refer to Table 1-4 on page 1-14.

<a_mode3>

Refer to Table 1-5 on page 1-15.

<a_modedL>

Refer to Table 1-6 on page 1-16.

<a_mode4S>

Refer to Table 1-7 on page 1-16.

<a_mode5>

Refer to Table 1-8 on page 1-16.

#32bit_Imm

A 32-bit constant, formed by right-rotating an 8-bit
value by an even number of bits.

<reglist>

A comma-separated list of registers, enclosed in
braces({ and}).

1.3.2 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of
these instructions, refer to the ARM Architecture Reference Manual.

The ARM instruction set formats are shown in Figure 1-3 on page 1-10.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 1-9

Introduction

313029 28 27 26 25 24 23 22212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Data ‘T;f;isdsl;g cond |[0|0|1 op S Rn Rd rotate immediate
D eeets | cond 0/0| opcode [S| Rn Rd |shiftimmediate| shift |0 | Rm
Dataprocessingeger | cond | 0| 0| 0| opcode |S Rn Rd Rs 0| shift | 1 Rm
Mutiply| cond | 0|0|0|0|0|0|A|S| Rd Rn Rs [1/0]0[1| Rm
Multiply long cond 0/0/0|0|1T|U|A|S RdHi RdLo Rn 11001 Rm
Move from status register| cond |00 |0[1/0|R|0|0| SBO Rd SBZ
Move immediatet0 Sefe| cond |0/ 0|1|1/0|R|1/0| Mask SBO rotate ‘ immediate
Moveregisterto el cond | 0|0|0|1/0|R|1/0| Mask SBO SBZ 0| Rm
B oxorandl cond |0|0/0|1]0[0|1|0| SBO SBO SBO ‘o‘o‘o 1| Rm
Loadstoreimmed@® | cond | 0|1|0|P|U/B|W|L| Rn Rd immediate
Load/store register offset| cond 0|1/1|P|UIBW|L Rn Rd shift immediate| shift | O Rm
L°ad’s‘°§g':$3”§yrf; cond |0]0[|0|P|U|1 /WL Rn Rd High offset | 1S |H| 1| Low offset
o e cond | 0[00|P|UO|WIL| Rn Rd SBZ |1|S/H|1| Rm
Swap/swap byte| cond ojojoj1/0(B|0|0O Rn Rd SBZ 1/0/01 Rm
Load/store multiple cond 1/0|0|P|U|S|W|L Rn Register list
C°pr°°§jfc°e;§?n‘g cond |1[1]1]0 op1 CRn CRd co_num | op2 |0| CRm
Coprocessorreg®erl cond [1[1[1/0| op1 |L| CRn Rd cp_num | op2 |1| CRm
Coprocessorloadad| cond |1 |1|0|P U‘N‘W Ll Rn CRd | cp_num 8_bit_offset
Branchandbranch i cond |10 1L 24_bit_offset
Software interrupt cond 111711 swi_number
Undefined cond 0111 xx‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘1‘x‘x‘x‘x

31302928 27 26 2524 23 2221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Figure 1-3 ARM instruction set formats

Note
Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for example, a multiply instruction with bit 6 set. You must not use these
instructions, as their action might change in future ARM implementations.

1-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Introduction

The ARM instruction set summary is shown in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR{field}, Rm
Move register to CPSR MSR{cond} CPSR{field}, Rm
Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm
Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>
Multiply MUL{cond}{S} Rd, Rm, Rs
Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn
Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Compare CMP{cond} Rd, <Oprnd2>
Compare negative (MN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 1-11

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembler
AND AND{cond}{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} Tabel
Branch with link BL{cond} Tabel
Branch, and exchange instruction set BX{cond} Rn
L oad Word LDR{cond} Rd, <a_mode2>
Word with User Mode privilege LDR{cond}T Rd, <a_mode2P>
Byte LDR{cond}B Rd, <a_mode2>
Byte with User Mode privilege LDR{cond}BT Rd, <a_mode2P>
Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>
Multiple block Increment before LDM{cond}IB Rd{!}, <reglist>{A}

data operations

Increment after

LDM{cond}IA Rd{!}, <reglist>{A}

Decrement before

LDM{cond}DB Rd{!}, <reglist>{A}

Decrement after

LDM{cond}DA Rd{!}, <reglist>{A}

Stack operations

LDM{cond}<a_mode4L> Rd{!}, <reglist>

Stack operations, and restore CPSR

LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>A

User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>A
Store Word STR{cond} Rd, <a_mode2>
Word with User Mode privilege STR{cond}T Rd, <a_mode2P>
Byte STR{cond}B Rd, <a_mode2>
1-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembler
Byte with User Mode privilege STR{cond}BT Rd, <a_mode2P>
Halfword STR{cond}H Rd, <a_mode3>

M ultiple block Increment before STM{cond}IB Rd{!}, <reglist>{A}

data operations

Increment after

STM{cond}IA Rd{!}, <reglist>{A}

Decrement before

STM{cond}DB Rd{!}, <reglist>{A}

Decrement after

STM{cond}DA Rd{!}, <reglist>{A}

Stack operations

STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>A

Swap Word SwWP{cond} Rd, Rm, [Rn]
Byte SwWP{cond}B Rd, Rm, [Rn]

Coprocessors Data operations CDP{cond} p<cpnum>, <opl>, CRd, CRn, CRm, <op2>
Move to ARM reg from coproc MRC{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>
Move to coproc from ARM reg MCR{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>
Load LDC{cond} p<cpnum>, CRd, <a_mode5>
Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software SWI 24bit_Imm

Interrupt

Addressing mode 2, <a_mode2>, is shown in Table 1-3.

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 1-13

Introduction

Table 1-3 Addressing mode 2 (continued)

Operation

Assembler

[Rn,

+/-Rm, ASR #5bit_shift_imm]

[Rn,

+/-Rm, ROR #5bit_shift_imm]

[Rn,

+/-Rm, RRX]

Pre-indexed immediate offset

[Rn,

#+/-12bit_Offset]!

Pre-indexed register offset

[Rn,

+/-Rm] !

Pre-indexed scaled register offset

[Rn,

+/-Rm, LSL #5bit_shift_imm]!

[Rn,

+/-Rm, LSR #5bit_shift_imm]!

[Rn,

+/-Rm, ASR #5bit_shift_imm]!

[Rn,

+/-Rm, ROR #5bit_shift_imm]!

[Rn,

+/-Rm, RRX]!

Post-indexed immediate offset

[Rn]

, #+/-12bit_Offset

Post-indexed register offset

[Rn]

, +/-Rm

Post-indexed sca ed register offset

[Rn]

, +/-Rm, LSL #5bit_shift_imm

[Rn]

, +/-Rm, LSR #5bit_shift_imm

[Rn]

, +/-Rm, ASR #5bit_shift_imm

[Rn]

, +/-Rm, ROR #5bit_shift_imm

[Rn,

+/-Rm, RRX]

Addressing mode 2 (privileged), <a_mode2P>, is shown in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn,

+/-Rm, LSR #5bit_shift_imm]

1-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Table 1-4 Addressing

Introduction

mode 2 (privileged) (continued)

Operation Assembler

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed immediate offset [Rn],

#+/-12bit_Offset

+/-Rm

+/-Rm, LSL #5bit_shift_imm

+/-Rm, LSR #5bit_shift_imm

+/-Rm, ASR #5bit_shift_imm

Post-indexed register offset [Rn],
Post-indexed scaled register [Rn],
offset
[Rn],
[Rn],
[Rn],

+/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Addressing mode 3 (signed byte, and halfword data transfer), <a_mode3>, is shown in

Table 1-5.

Table 1-5 Addressing mode 3

Operation Assembler
Immediate offset [Rn, #+/-8bit_Offset]
Pre-indexed [Rn, #+/-8bit_Offset]!
Post-indexed [Rn], #+/-8bit_Offset
Register [Rn, +/-Rm]
Pre-indexed [Rn, +/-Rm]!
Post-indexed [Rn], +/-Rm

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

1-15

Introduction

Addressing mode 4 (load), <a_mode4L>, is shown in Table 1-6.

Table 1-6 Addressing mode 4 (load)

Addressing mode Stack type

IA Increment after FD Full descending
1B Increment before ED Empty descending
DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Addressing mode 4 (store), <a_mode4S>, is shown in Table 1-7.

Table 1-7 Addressing mode 4 (store)

Addressing mode Stack type

IA Increment after EA Empty ascending
1B Increment before FA Full ascending

DA Decrement after ED Empty descending
DB Decrement before FD Full descending

Addressing mode 5 (coprocessor data transfer), <a_mode5>, is shown in Table 1-8.

Table 1-8 Addressing mode 5

Operation Assembler

Immediate offset [Rn, #+/-(8bit_Offset* 4)]
Pre-indexed [Rn, #+/-(8bit_Offset* 4)]!
Post-indexed [Rn], #+/-(8bit_Offset*4)

1-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Operand 2, <0prnd2>, is shown in Table 1-9.

Introduction

Table 1-9 Operand 2

Operation

Assembler

Immediate value

#32bit_Imm

Logical shift left

Rm LSL #5bit_Imm

Logical shift right

Rm LSR #5bit_Imm

Arithmetic shift right

Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm
Register Rm
Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs
Arithmetic shift right Rm ASR Rs
Rotate right Rm ROR Rs
Rotate right extended Rm RRX
Fields, {field}, are shown in Table 1-10.
Table 1-10 Fields
Suffix Sets

Control field mask bit (bit 3)

Flags field mask bit (bit O)

Status field mask bit (bit 1)

Extension field mask bit (bit 2)

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 1-17

Introduction

Condition fields, {cond}, are shown in Table 1-11.

Table 1-11 Condition fields

Suffix Description Condition(s)
EQ Equal Z set
NE Not equal Z clear
csS Unsigned higher, or same C set
cC Unsigned lower Cclear
MI Negative N set
PL Positive, or zero N clear
VS Overflow V set
VC No overflow V clear
HI Unsigned higher C set, Z clear
LS Unsigned lower, or same Cclear, Z set
GE Greater, or equal N=V (N andV setor N and V clear)
LT Lessthan N<>V (N set and V clear) or (N clear and V set)
GT Greater than Z clear, N=V (N and V set or N and V clear)
LE Less than, or equal Z setor N<>V (N set and V clear) or (N clear and V
set)
AL Always Always
1.3.3 Thumb instruction set
This section gives an overview of the Thumb instructions available. For full details of
these instructions, see the ARM Architecture Reference Manual.
The Thumb instruction set formats are shown in Figure 1-4 on page 1-19.
1-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Move shifted register

Add and subtract

Move, compare, add, and subtract
immediate

ALU operation

High register operations and branch
exchange

PC-relative load

Load and store with relative offset

Load and store sign-extended byte and
halfword

Load and store with immediate offset
Load and store halfword

SP-relative load and store

Load address

Add offset to stack pointer

Push and pop registers

Multiple load and store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

Introduction

15141312 11 10 09 08 07 06 05 04 03 02 01 00

0|00 Op Offset5 Rs Rd
0/0|0|1[1|10p ofzrgts Rs Rd
0/0|1| Op Rd Offset8
0(1/0(0|0|0 Op Rs Rd
0/1/0/0|0|1| Op H1H2| Rs/Hs | RdHd
0(1/0|0/1 Rd Word8
0(1/0(1|L|B|0| Ro Rb Rd
0|1|0[1|H|S|1 Ro Rb Rd
0|1|1|B|L Offset5 Rb Rd
1/0/0|0|L Offset5 Rb Rd
1/0/0|1|L| Rd Word8
1/0/1|0SP| Rd Word8
1/0/1|1/0/0|0|0|S SWord7
1/0/1|1|L|1|0|R Rlist
1/1/0|0|L| Rb Rlist
111101 Cond Softset8
111/0(1/1]1]1]1 Value8
1111100 Offset11
111111 |H Offset

1514131211 10 09 08 07 06 05 04 03 02 01 00

Figure 1-4 Thumb instruction set formats

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

1-19

Introduction

The Thumb instruction set summary is shown in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Imm
High to Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low, and Low ADD Rd, Rs, Rn
Add Highto Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Imm
Add Valueto SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low, and Low CMP Rd, Rs
Compare Low, and High CMP Rd, Hs
Compare High, and Low CMP Hd, Rs
Compare High, and High CMP Hd, Hs
Compare Negative CMN Rd, Rs
Compare Immediate CMP Rd, #8bit_Imm
Logical AND AND Rd, Rs

1-20

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional
if Z set BEQ label
if Z clear BNE Tabel
if Csat BCS Tabel
if Cclear BCC Tabel
if N set BMI label
if N clear BPL Tabel
if V set BVS label
if V clear BVC label
if C set, and Z clear BHI Tabel
if C clear, and Z set BLS Tabel
if N set,and V set, orif N BGE Tabel
clear, and V clear
if Nset,andV clear,orif N BLT Tlabel
clear, and V set
if Z clear, and N, or V set, BGT Tabel

orif Z clear,and N, or V

clear

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

1-21

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler

if Z set, or N set, and V BLE Tabel
clear, or N clear, and V set

Unconditional B Tabel
Long branch with link BL Tabel
Optional state change
to addressheld in Lo reg BX Rs
to address held in Hi reg BX Hs

Load With immediate offset

word LDR Rd, [Rb, #7bit_offset]
halfword LDRH Rd, [Rb, #6bit_offset]
byte LDRB Rd, [Rb, #5bit_offset]

With register offset
word LDR Rd, [Rb, Ro]
halfword LDRH Rd, [Rb, Ro]
signed halfword LDRSH Rd, [Rb, Rol]
byte LDRB Rd, [Rb, Ro]
signed byte LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-rdlative LDR Rd, [SP, #10bit_Offset]

Address
using PC ADD Rd, PC, #1@bit_Offset
using SP ADD Rd, SP, #1@bit_Offset
Multiple LDMIA Rb!, <reglist>

Store With immediate offset

word

STR Rd, [Rb, #7bit_offset]

1-22

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
halfword STRH Rd, [Rb, #6bit_offset]
byte STRB Rd, [Rb, #5bit_offset]
With register offset
word STR Rd, [Rb, Ro]
halfword STRH Rd, [Rb, Ro]
byte STRB Rd, [Rb, Ro]
SP-rdlative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>
PushLR, andregistersonto ~ PUSH <reglist, LR>
stack
Pop registers from stack POP <reglist>
Pop registers, and PC from POP <reglist, PG>
stack
Software SWI 8bit_Imm
Interrupt

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 1-23

Introduction

1-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM720T processor . It
contains the following sections:

. Processor operating states on page 2-2

. Memory formats on page 2-3

. Instruction length on page 2-5

. Data types on page 2-6

. Operating modes on page 2-7

. Registers on page 2-8

. Program status registers on page 2-13

. Exceptions on page 2-16

. Relocation of low virtual addresses by the FCSE PID on page 2-23
. Reset on page 2-24

. I mplementation-defined behavior of instructions on page 2-25.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

Programmer’s Model

2.1 Processor operating states

From the point of view of the programmer, the ARM720T processor can be in one of
two states:

ARM state This executes 32-bit, word-aligned ARM instructions.

Thumb state This operates with 16-bit, halfword-aligned Thumb instructions.
In this state, the PC uses bit 1 to select between aternate
halfwords.

2.1.1 Switching between processor states

Transition between processor states does not affect the processor mode or the contents
of the registers.
Entering Thumb state

Entry into Thumb state can be achieved by executing a BX instruction with the state bit
(bit 0) set in the operand register.

Transition to Thumb state also occurs automatically on return from an exception, for
example, Interrupt ReQuest (IRQ), Fast Interrupt reQuest (FIQ), UNDEF, ABORT, and
SoftWare Interrupt (SW1) if the exception was entered with the processor in Thumb
state.

Entering ARM state
Entry into ARM state happens:

. On execution of the BX instruction with the state bit clear in the operand register.

. On the processor taking an exception, for example, IRQ, FIQ, RESET, UNDEF,
ABORT, and SWI. In this case, the PC is placed in the link register of the
exception mode, and execution starts at the vector address of the exception.

2-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

Memory formats

The ARM720T processor views memory as a linear collection of bytes numbered
upwards from zero, as follows:

BytesOto 3 Hold thefirst stored word.
Bytes4to7 Hold the second stored word.
Bytes8to 11 Hold the third stored word.

Words are stored in memory as big or little-endian, as described in the following
sections:

. Big-endian format
. Little-endian format on page 2-4.

The endianness used depends on the status of the big-end bit in the control register of
the system control coprocessor. See Register 1, control register on page 3-5 for more
information.

Big-endian format

In big-endian format, the most significant byte of aword is stored at the lowest
numbered byte and the least significant byte at the highest numbered byte. Byte 0 of the

memory system is therefore connected to datalines 31 to 24.

Big-endian format is shown in Figure 2-1.

31 24 23 16 15 8 7 Word

address
Higher address 8 9 10 11 8
4 5 6 7 4
Lower address 0 1 2 3 0

OMost significant byte is at lowest address

OWord is addressed by byte address of most significant byte

Figure 2-1 Big-endian addresses of bytes with words

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

2-3

Programmer’s Model

2.2.2 Little-endian format

In little-endian format, the lowest numbered bytein aword is considered the |east
significant byte of the word, and the highest numbered byte the most significant. Byte

0 of the memory system is therefore connected to datalines 7 to 0.

Little-endian format is shown in Figure 2-2.

Higher address

Lower address

OLeast significant byte is at lowest address

3 24 23 16 15 8 7 Word
address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

OWord is addressed by byte address of least significant byte

Figure 2-2 Little-endian addresses of bytes with words

2-4 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Programmer’s Model

2.3 Instruction length

Instructions are:
. 32 bitslong in ARM state
. 16 bitslong in Thumb state.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 2-5

Programmer’s Model

24 Data types

The ARM720T processor supports the following data types:

. byte (8-hit)
. halfword (16-bit)
. word (32-bit).

You must align these as follows:

. word quantities to 4-byte boundaries

. halfwords quantities to 2-byte boundaries

. byte quantities can be placed on any byte boundary.

2-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

25 Operating modes

Programmer’s Model

The ARM720T processor supports seven modes of operation, as shown in Table 2-1.

Table 2-1 ARM720T modes of operation

Mode Type Description

User usr The norma ARM program execution mode

FIQ fiq Used for most performance-critical interruptsin a system
IRQ irq Used for general-purpose interrupt handling

Supervisor sve Protected mode for the operating system

Abort mode abt

Entered after a Data Abort or instruction Prefetch Abort

System sys

A privileged User mode for the operating system

Undefined und

Entered when an Undefined Instruction is executed

25.1 Changing operating modes

M ode changes can be made under software control, by externa interrupts or during
exception processing. Most application programs execute in User mode. The non-User
modes, known as privileged modes, are entered in order to service interrupts or
exceptions, or to access protected resources.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 2-7

Programmer’s Model

2.6

26.1

Registers

The ARM720T processor has atotal of 37 registers:
. 31 general-purpose 32-bit registers
. Six program status registers.

These registers cannot all be seen at once. The processor state and operating mode
dictate which registers are avail abl e to the programmer.

The ARM state register set

In ARM state, 16 general registersand one or two status registersarevisible at any one
time. In privileged (non-User) modes, mode-specific banked registers are switched in.
Figure 2-3 on page 2-9 shows which registers are available in each mode. The banked
registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers, RO to R15. All of
these, except R15, are general-purpose, and can be used to hold either data or address
values. Registers R14 and R15 also have special roles, asfollows:

Register 14 R14 isused asthe subroutinelink register. Thisreceivesa copy of
R15when aBranch and Link (BL) code instruction is executed. At
all other timesit can be treated as a general -purpose register. The
corresponding banked registers R14_svc, R14 _irg, R14 fiq,

R14 abt, and R14_und aresimilarly used to hold thereturn values
of R15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Register 15 R15 holdsthe Program Counter (PC). In ARM state, bits[1:0] of
R15 are zero and bits[31:2] contain the PC. In Thumb state, bit 0
is zero and bits[31:1] contain the PC.

In addition to these, the Current Program Status Register (CPSR) is used to store status
information. It contains condition code flags and the current mode bits.

2-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Interrupt modes

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14 fig). In ARM
state, many FIQ handlers can use these banked registers, to avoid having to save any
registers onto a stack. User, IRQ, Supervisor, Abort, and Undefined modes each have
two banked registers mapped to R13 and R14, allowing each of these modesto have a
private stack pointer and link registers.

ARM state general registers and program counter

Programmer’s Model

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 1 r1 r1 r r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 5 r5 r5
ré r6 r6 r6 r6 r6
r7 7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 r11 r11 r11
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

k = banked register

Figure 2-3 Register organization in ARM state

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

2-9

Programmer’s Model

2.6.

2 The Thumb state register set

The Thumb state register set is asubset of the ARM state set. You have direct accessto:
. eight general registers, (RO-R7)
. the PC

. a Stack Pointer (SP) register

. alLink Register (LR)
. the CPSR.

There are banked SPs, LRs, and Saved Process Status Registers (SPSRs) for each
privileged mode. Thisis shown in Figure 2-4.

Thumb state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 ro ro r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
r6 ré ré ré ré ré
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR fiq LR_svc LR_abt LR _irq LR_und
PC PC PC PC PC PC
Thumb state program status registers
B CPSR CPSR CPSR CPSR CPSR
SPSR _fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state

2-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Programmer’s Model

2.6.3 Therelationship between ARM and Thumb state registers

The Thumb state registersrelate to the ARM state registers in the following ways:

Thumb state RO—R7, and ARM state RO-R7 are identical

Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical
Thumb state SP maps onto ARM state R13

Thumb state LR maps onto ARM state R14

Thumb state PC maps onto ARM state PC (R15).

Thisrelationship is shown in Figure 2-5.

Thumb state ARM state
ro > r0 ™
r1 r1
r2 r2
r3 r3 Low
r4 r4 registers
r5 rd5
ré > ré
r7 > r7 I
r8 T\
r9
r10
r11 High
r12 registers
SP SP (r13)
LR LR (r14)
PC > PC (r15) I
CPSR ———» CPSR
SPSR > SPSR

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

2.6.4 Accessing high registers in Thumb state

In Thumb state, ARM registers R8—R15 (the high registers) are not part of the standard
register set. However, the assembly language programmer has limited access to them,
and can use them for fast temporary storage.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 2-11

Programmer’s Model

A value can betransferred from aregister in therange RO—R7 (alow register) to ahigh
register, and from a high register to alow register, using specia variants of the MOV
instruction. High register values can also be compared against or added to low register
vaues with the CMP and ADD instructions. See the ARM Architecture Reference Manual
for details on high register operations.

2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

2.7 Program status registers

The ARM720T processor contains a CPSR, and five SPSRs for use by exception
handlers. These registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bitsis shown in Figure 2-6.

Condition
code flags Reserved Control bits
\ | | | | | \
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 10
N|z|c|v|D|lojo ojo O 1| F| T |M4M3M2 M1 MO
Overflow Mode bits
——— Carry or borrow or extend —— State bit
Zero —— FIQ disable
Negative or less than IRQ disable

Figure 2-6 Program status register format

2.7.1 The condition code flags

TheN, Z, C, and V bits are the condition code flags. These can be changed as a result
of arithmetic and logical operations, and tested to determine whether an instruction
executes.

In ARM state, al instructions can be executed conditionally. In Thumb state, only the
Branch instruction is capable of conditional execution. See the ARM Architecture
Reference Manual for details.

2.7.2 The control bits

The bottom eight bits of a PSR (incorporating |, F, T, and M[4:0]) are known
collectively asthe control bits. These change when an exception arises. If the processor
is operating in a privileged mode, they can also be manipulated by software:

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 2-13

Programmer’s Model

| and F bits

TheT bit

M[4:0] bits

These are the interrupt disable bits. When set, these disable the
IRQ and FIQ interrupts respectively.

Thisreflectsthe operating state. When thisbit is set, the processor
is executing in Thumb state, otherwise it is executing in ARM
state. Thisisreflected onthe CPTBIT external signal. Software
must never change the state of the CPTBI T in the CPSR. If this
happens, the processor then enters an unpredictable state.

These arethe mode bits. These determine the processor operating
mode, as shown in Table 2-2 on page 2-15. Not al combinations
of the mode bits define avalid processor mode. Only those
explicitly described can be used.

Note

If you program any illegal value into the mode bits, M[4:0], then the processor enters
an unrecoverable state. If this occurs, apply reset.

2-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

2.7.3 Reserved bits
The remaining bits in the PSRs are reserved. When changing flag or control bits of a
PSR, you must ensure that these unused bits are not altered. Also, your program must
not rely on them containing specific values, because in future processors they might
read as one or zero.
Table 2-2 PSR mode bit values
M[4:0] Mode Visible Thumb state registers Visible ARM state registers
10000 User R7 to RO, R14 to RO,
LR, SP PC, CPSR
PC, CPSR
10001 FIQ R7 to RO, R7 to RO,
LR_fig, SP_fiq R14 fiq..R8_fiq,
PC, CPSR, SPSR _fiq PC, CPSR, SPSR fiq
10010 IRQ R7 to RO, R12 to RO,
LR_irg, SP_irq R14 irg, R13_irg,
PC, CPSR, SPSR _irq PC, CPSR, SPSR _irq
10011 Supervisor R7 to RO, R12to RO,
LR_svc, SP_svc, R14 svc, R13 svc,
PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
10111 Abort R7 to RO, R12 to RO,
LR_abt, SP_aht, R14 abt..R13_aht,
PC, CPSR, SPSR_abt PC, CPSR, SPSR_aht
11011 Undefined R7 to RO R12 to RO,
LR_und, SP_und, R14_und, R13_und,
PC, CPSR, SPSR_und PC, CPSR, SPSR_und
11111 System R7 to RO, R14 to RO,
LR, SP PC, CPSR
PC, CPSR

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 2-15

Programmer’s Model

2.8 Exceptions
Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so that the original program can
resume when the handler routine has finished.
Several exceptions can arise at the same time. If this happens, they are dealt with in a
fixed order. See Exception priorities on page 2-21.
Exception behavior is described in the following sections:
. Action on entering an exception
. Action on leaving an exception on page 2-17
. Exception entry and exit summary on page 2-17
. Fast interrupt request on page 2-18
. Interrupt request on page 2-19
. Abort on page 2-19
. Software interrupt on page 2-20
. Undefined instruction on page 2-20
. Exception vectors on page 2-21
. Exception priorities on page 2-21
. Exception restrictions on page 2-22.
2.8.1 Action on entering an exception
When handling an exception, the ARM720T processor behaves as follows:
1. It preserves the address of the next instruction in the appropriate LR.

a If theexception has been entered from ARM state, the address of the next
instruction is copied into the L R (that is, current PC+4 or PC+8 depending
on the exception). See Table 2-3 on page 2-17 for details).

b. If the exception has been entered from Thumb state, the value written into
the LR isthe current PC, offset by avalue so that the program resumes from
the correct place on return from the exception. This means that the
exception handler does not have to determinewhich state the exception was
entered from.

For example, in the case of SWI:

MOVS PC, R14_svc

alwaysreturnsto the next instruction regardl ess of whether the SWI was executed

in ARM or Thumb state.

2. It copiesthe CPSR into the appropriate SPSR.
2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

3. Itforcesthe CPSR mode bits to a value that depends on the exception.

4. Itforcesthe PC to fetch the next instruction from the relevant exception vector.

It can aso set the interrupt disable flagsto prevent otherwise unmanageabl e nestings of

exceptions.

If the processor isin Thumb state when an exception occurs, it automatically switches
into ARM state when the PC is loaded with the exception vector address.

2.8.2 Action on leaving an exception

On completion, the exception handler:

1. Movesthe LR, minus an offset where appropriate, to the PC. The offset varies

depending on the type of exception.
2. Copiesthe SPSR back to the CPSR.

3. Clearstheinterrupt disable flags, if they were set on entry.

Note

An explicit switch back to Thumb state is never necessary, because restoring the CPSR
from the SPSR automatically setsthe T bit to the value it held immediately prior to the

exception.

2.8.3 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant R14 on exception entry,
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception Return instruction Previous state
ARM R14_x Thumb R14_x
BLa MOV PC, R14 PC+4 PC+2
Swia MOVS PC, R14_svc PC+4 PC+2
UDEF2 MOVS PC, R14_und PC+4 PC+2
FIQP SUBS PC, R14_fiq, #4 PC+4 PC+4
IRQb SUBS PC, Rl4_irq, #4 PC+4 PC+4

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 2-17

Programmer’s Model

Table 2-3 Exception entry and exit (continued)

Exception Return instruction Previous state

ARMR14 x Thumb R14 x

PABT?2 SUBS PC, R14_abt, #4 PC+4 PC+4
DABT¢ SUBS PC, R14_abt, #8 PC+8 PC+8
RESETd NA - -

a. PCisthe address of the BL, SWI, Undefined Instruction, or Fetch, that had the Prefetch Abort.
b. PCistheaddress of theinstruction that was not executed becausethe FIQ or IRQ took priority.
¢. PCisthe address of the Load or Store instruction that generated the Data Abort.

d. Thevalue saved in R14_svc upon reset is unpredictable.

2.8.4 Fastinterrupt request

TheFIQ exceptionisused for most performance-critical interruptsin asystem. INnARM
state it has sufficient private registers to remove the necessity for register saving,
minimizing the overhead of context switching.

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are
considered asynchronous, and a cycle delay for synchronization is incurred before the
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ
handler must leave the interrupt by executing:

SUBS PC, R14_fiq, #4

FIQ can be disabled by setting the F flag in the CPSR.

Note
Thisis not possible from User mode.

If the F flag is clear, the ARM720T processor checks for aLOW level on the output of
the FIQ synchronizer at the end of each instruction.

2-18

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

2.8.5 Interrupt request

ThelRQ exceptionisanormal interrupt caused by aL OW level onthenl RQ input. IRQ
has alower priority than FIQ and is masked out when a FIQ sequenceis entered. It can
be disabled at any time by setting the | bit in the CPSR, though this can only be done
from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ
handler must return from the interrupt by executing:

SUBS PC, R1l4_irq, #4

2.8.6 Abort

An abort indicates that the current memory access cannot be completed. It can be
signaled either by the protection unit, or by the HRESP bus. The ARM720T core
checks for the abort exception during memory access cycles.

There are two types of abort, as follows:

Prefetch Abort This occurs during an instruction prefetch. The prefetched
instructionismarked asinvalid, but the exception isnot taken until
the instruction reaches the head of the pipeline. If the instruction
is not executed, for example because abranch occurswhileitisin
the pipeline, the abort does not take place.

Data Abort This occurs during a data access. The action taken depends on the
instruction type:

. Single data transfer instructions (LDR, STR) write-back
modified baseregisters. The Abort handler must be aware of
this.

. The swap instruction (SWP) is aborted as though it had not
been executed.

. Block datatransfer instructions (LDM, STM) complete. If
write-back is set, the base is updated. If the instruction
attempts to overwrite the base with data (that is, it hasthe
base in the transfer list), the overwriting is prevented. All
register overwriting is prevented after an abort isindicated.
Thismeans, in particular, that R15 (always the last register
to be transferred) is preserved in an aborted LDM instruction.

After fixing thereason for the abort, the handler must execute thefollowing irrespective
of the processor state (ARM or Thumb):

SUBS PC, R14_abt, #4 for a Prefetch Abort

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 2-19

Programmer’s Model

2.8.7

2.8.8

SUBS PC, R14_abt, #8 for a Data Abort

Thisrestores both the PC and the CPSR, and retries the aborted instruction.

Note

There are restrictions on the use of the external abort signal. See External abortson
page 7-27.

Software interrupt

The SWI instruction is used for entering Supervisor mode, usually to request a
particular supervisor function. A SWI handler must return by executing the following
irrespective of the state (ARM or Thumb):

MOV PC, R14_svc

Thisrestores the PC and CPSR, and returns to the instruction following the SWI.

Undefined instruction

When the ARM720T processor encounters an instruction that it cannot handle, it takes
the undefined instruction trap. This mechanism can be used to extend either the Thumb
or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler must execute the following
irrespective of the state (ARM or Thumb):

MOVS PC, R14_und

Thisrestores the CPSR and returns to the instruction following the Undefined
Instruction.

2-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

2.8.9 Exception vectors

The ARM720T processor can have exception vectors mapped to either low or high
addresses, controlled by the V bit in the control register of the system control
coprocessor (See Register 1, control register on page 3-5). Table 2-4 shows the
exception vector addresses.

Table 2-4 Exception vector addresses

High address Low address Exception Mode on entry
OxFFFF0000 0x00000000 Reset Supervisor
OxFFFF0004 0x00000004 Undefined instruction Undefined
OxFFFF0008 0x00000008 Software interrupt Supervisor
OxFFFFo00C 0x0000000C Abort (prefetch) Abort
OxFFFF0010 0x00000010 Abort (data) Abort
OxFFFFo014 0x00000014 Reserved Reserved
OxFFFF0Q18 0x00000018 IRQ IRQ
OxFFFF0Q1C 0x0000001C FIQ FIQ

Note

The low addresses are the defaults.

2.8.10 Exception priorities

When multiple exceptions arise at the sametime, afixed priority system determinesthe
order in which they are handled:

1 Reset (highest priority).
2 Data Abort.

3. FIQ.

4. IRQ.

5 Prefetch Abort.

6

Undefined Instruction, SWI (lowest priority).

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 2-21

Programmer’s Model

2.8.11 Exception restrictions

Undefined Instruction and SWI are mutually exclusive, because they each correspond
to particular (non-overlapping) decodings of the current instruction.

If a Data Abort occurs at the same time as an FIQ, and FIQs are enabled, the CPSR F
flag isclear, the ARM720T processor enters the Data Abort handler and then
immediately proceeds to the FIQ vector. A normal return from FIQ causes the Data
Abort handler to resume execution. Placing Data Abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this
exception entry must be added to worst-case FIQ latency calculations.

2-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Programmer’s Model

2.9 Relocation of low virtual addresses by the FCSE PID

The ARM720T processor provides a mechanism, Fast Context Switch Extension
(FCSE), to translate virtual addresses to physical addresses based on the current value
of the FCSE Process | Dentifier (PID).

The virtua address produced by the processor core going to the IDC and MMU can be
relocated if it liesin the bottom 32MB of thevirtual address. That is, virtual addressbits
[31:25] = b000000O0 by the substitution of the seven bits [31:25] of the FCSE PID
register in the CP15 coprocessor.

A changeto the FCSE PID exhibits similar behavior to a delayed branch if:

. the two instructions fetched immediately following an instruction to change the
FCSE PID are fetched with a relocation to the previous FCSE PID

. the addresses of theinstructionsbeing fetched lie within the range of addressesto
be relocated.

On reset, the FCSE PID register bits [31:25] are set to bO000000, disabling all
relocation. For this reason, the low address reset exception vector is effectively never
relocated by this mechanism.

Note

All addresses produced by the processor core undergo this trandation if they liein the
appropriate address range. Thisincludes the exception vectors if they are configured to
lie in the bottom of the virtual memory map. This configuration is determined by the
V bit in the CP15 control register (CP15 register 1).

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 2-23

Programmer’s Model

2.10 Reset

When the HRESET n signal goes LOW, the ARM720T processor:

1. Abandonsthe executing instruction.

2. Flushesthe cache and Translation Lookaside Buffer (TLB).

3. Disablesthe Write Buffer (WB), cache, and MMU.

4. Resetsthe FCSE PID.

5. Continuesto fetch instructions from incrementing word addresses.

When HRESETn is LOW, the processor samplesthe VINITHI external input and

stores the result in the V bit in CP15 register 1.

When HRESETn goes HIGH again, the ARM720T processor:

1. OverwritesR14 _svcand SPSR_svc by copying the current values of the PC and
CPSR into them. The value of the saved PC and SPSR is not defined.

2. Forces M[4:0] to b10011 (Supervisor mode), setsthe |l and F bitsin the CPSR,
and clearsthe CPSR T bit.

3. Forcesthe PC to fetch the next instruction from the reset exception vector.
Exception vectors are located at either high or low addresses depending on the
state of the VV bit in CP15 register 1 (LOW = low addresses, HIGH = high
addresses).

4. Resumes executionin ARM state.

2-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

211 Implementation-defined behavior of instructions

2.11.1 Indexed Addressing on a Data Abort

2.11.2 Early termination

Programmer’s Model

The ARM Architectural Reference Manual definesthe instruction set of the ARM720T
processor:

See Indexed Addressing on a Data Abort for the behavior of instructions that are
identified as implementation-defined in the ARM Architectural Reference

Manual.

See Early termination for those features that define signed and unsigned early

termination on the ARM720T processor.

In the event of a Data Abort with pre-indexed or post-indexed addressing, the value | eft
in Rn is defined to be the updated base register value for the following instructions:

On the ARM720T, early termination is defined as:
MLA, MUL
SMULL, SMLAL Signed early termination.

UMULL, UMLAL Unsigned early termination.

LDC
LDM
LDR
LDRB
LDRBT
LDRH
LDRSB
LDRSH
LDRT
STC
STM
STR
STRB
STRBT
STRH
STRT.

Signed early termination.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

2-25

Programmer’s Model

2-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 3
Configuration

This chapter describes the configuration of the ARM720T processor. It contains the
following sections.

. About configuration on page 3-2
. Internal coprocessor instructions on page 3-3
. Registers on page 3-4.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 3-1

Configuration

3.1 About configuration
The operation and configuration of ARM720T is controlled:
. directly using coprocessor instructions to CP15, the system control coprocessor
. indirectly using the MMU page tables.
The coprocessor instructions manipulate a number of on-chip registersthat control the
configuration of the following:
. cache
. write buffer
. MMU
. other configuration options.
3.1.1 Compatibility
To ensure backwards compatibility of future CPUs:
. all reserved or unused bits in registers and coprocessor instructions must be
programmed to O
. invalid registers must not be read or written
. the following bits must be programmed to O:
— Register 1, bitg[31:14] and bits [12:10]
— Register 2, bitg[13:0]
— Register 5, bitg[31:9]
— Register 7, bitg[31:0]
— Register 13 FCSE PID, bitg[24:0].
3.1.2 Notation
Throughout this section, the following terms and abbreviations are used:
Unpredictable (UNP)
If specified for reads, the data returned when reading from this
location is unpredictable. It can have any value. If specified for
writes, writing to this location causes unpredictable behavior or
change in device configuration.
Should Be Zero (SBZ)
When writing to thislocation, al bits of this field should be zero.
3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

3.2 Internal coprocessor instructions

The instruction set for the ARM720T macrocell enables you to implement specialized
additional instructions using coprocessors. These are separate processing unitsthat are
coupled tothe ARM720T processor, although CP15 isbuilt into the ARM720T (Rev 4)
macrocell.

Note

The CP15 register map might change in future ARM processors. You are strongly
recommended to structure software so that any code accessing CP15 is contained in a
single module. It can then be updated easily.

CP15 registers can only be accessed with MRC and MCR instructionsin aprivileged mode.
The instruction bit pattern of the MRC and MCR instructions is shown in Figure 3-1.

313029 28 27 26 25 24 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cond 17 1 1 0|opcode 1|L CRn Rd 1 1 1 1 |opcode 2|1 CRm

Figure 3-1 MRC and MCR bit pattern

(DP, LDC, and STC instructions, as well as unprivileged MRC and MCR instructionsto CP15
cause the Undefined Instruction trap to be taken.

The CRn field of MRC and MCR instructions specifies the coprocessor register to access.
The CRm field and opcode 2 fields specify a particular action when addressing some
registers.

In all instructions accessing CP15:
. the opcode_1 field should be zero (SBZ)

. the opcode_2 and CRm fields should be zero except when accessing registers 7,
8, and 13 when the specified values must be used to sel ect the desired cache, TLB,
or process identifier operations.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 3-3

Configuration

3.3 Registers
The ARM720T processor containsregistersthat control the cache and MM U operation.
These registers are accessed using MCR and MRC instructions to CP15 with the processor
in aprivileged mode.
Only some of registers RO to R15 are valid. An access to an invalid register causes
neither the access nor an undefined instruction trap, and therefore must never be carried
out.
Table 3-1 Cache and MMU control register

Register Register reads Register writes

0 ID register Reserved

1 Control Control

2 Tranglation table base Translation table base

3 Domain access control Domain access control

4 Reserved Reserved

5 Fault status Fault status

6 Fault address Fault address

7 Reserved Cache operations

8 Reserved TLB operations

9-12 Reserved Reserved

13 Process identifier Process identifier

14-15 Reserved Reserved

3.3.1 Register O, ID register

Reading from CP15 register O returns the value:

0x41807204

Note
The fina nibble represents the core revision.

3-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

The CRm and opcode_2 fields should be zero when reading CP15 register 0. Thisis
shown in Figure 3-2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

01000O0OO0OT110O0O0O0O0OO0CO0O01711/0010/00O0O0O0100O0

Figure 3-2 ID register read

Writing to CP15 register O is unpredictable. 1D register write is shown in Figure 3-3.

3130292827 26252423222120191817 16151413 1211 10 09 08 07 06 05 04 03 02 01 00

UNP

Figure 3-3 ID register write

3.3.2 Register 1, control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields
should be zero when reading CP15 register 1. Register 1 read is shown in Figure 3-4.

3130292827 26252423222120191817 161514 13 1211 10 09 08 07 06 05 04 03 02 01 00

UNP ‘v‘ UNP ‘R‘S‘B‘L‘D‘P‘W‘C‘A‘M‘
Figure 3-4 Register 1 read

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields should
be zero when writing to CP15 register 1. Register 1 write is shown in Figure 3-5.

3130292827 26252423222120191817 161514 13 1211 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ V%’;;/RSBLDPWCAM

Figure 3-5 Register 1 write

With the exception of the V bit, al defined control bits are set to zero on reset. The
control bits have the following functions:

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 3-5

Configuration

M Bit 0

ABit1l

CBit2

W Bit 3

P Bit 4
D Bit 5
L Bit 6
B Bit 7

SBit 8
R Bit 9
Bits 12:10

Note

MMU enable/disable:
0=MMU disabled
1=MMU enabled.

Alignment fault enable/disable;
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled.

Cache enable/disable:
0 = Instruction and/or Data Cache (IDC) disabled
1 = Instruction and/or Data Cache (IDC) enabled.

Write buffer enable/disable:
0 = Write Buffer disabled
1 = Write Buffer enabled.

When read, returns 1. When written, isignored.
When read, returns 1. When written, isignored.
When read, returns 1. When written, isignored.

Big-endian/little-endian:
0 = Little-endian operation
1 = Big-endian operation.

System protection: Modifiesthe MMU protection system.
ROM protection: Modifiesthe MMU protection system.

When read, this returns an unpredictable value. When written, it
should be zero, or a value read from these bits on the same
processor.

Using aread-write-modify sequence when modifying thisregister providesthe greatest

future compatibility.

V Bit 13

L ocation of exception vectors:
0 = low addresses
1 = high addresses.

3-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

The value of the V bit reflects the state of the VINITHI external
input, sampled while HRESETn is LOW.

Bits 31:14 When read, this returns an unpredictable value. When written, it
should be zero, or a value read from these bits on the same
processor.

Enablingthe MM U

You must take care if the trandated address differs from the untrandlated address,
because the instructions following the enabling of the MMU are fetched using no
addresstranslation. Enabling the MMU can be considered as a branch with delayed
execution.

A similar situation occurs when the MMU is disabled. The correct code sequence for
enabling and disabling the MMU is given Interaction of the MMU and cache on
page 7-28.

Note

If the cache and write buffer are enabled when the MMU is not enabled, the results are
unpredictable.

3.3.3 Register 2, translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first-level
tranglation tablein bits [31:14] and an unpredictable value in bits [13:0]. The CRm and
opcode_2 fields should be zero when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first-level
tranglation table from the value in bits [31:14] of the written value. Bits [13:0] should
be zero. The CRm and opcode_2 fields should be zero when writing CP15 register 2.
Register 2 is shown in Figure 3-6.

31302928 27 262524 2322212019 1817 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Translation base table UNP/SBZ

Figure 3-6 Register 2

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 3-7

Configuration

3.3.4 Register 3, domain access control register
Reading from CP15 register 3 returns the value of the domain access control register.

Writing to CP15 register 3 writes the value of the domain access control register.

The domain access control register consistsof 16 2-bit fields, each of which definesthe
access permissions for one of the 16 domains (D15-DO0).

The CRm and opcode 2 fields should be zero when reading or writing to CP15
register 3. Thisis shown in Figure 3-7.

3130292827 26252423222120191817 16151413 1211 10 09 08 07 06 05 04 03 02 01 00

‘D15‘D14‘D13‘D12‘D11‘Dw‘ D9 ‘ D8 ‘ D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO ‘
Figure 3-7 Register 3

3.3.5 Register 4, reserved

Register 4 is reserved. Reading CP15 register 4 is unpredictable. Writing to CP15
register 4 is unpredictable. Thisis shown in Figure 3-8.

31302928 27 26 2524 2322212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

Figure 3-8 Register 4

3.3.6 Register 5, fault status register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR
contains the source of the last fault.

Note
Only the bottom 9 bits are returned. The upper 23 bits are unpredictable.

3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

The FSR indicates the domain and type of access being attempted when an abort
occurred:

Bit 8 Thisis alwaysread as zero. Bit 8 isignored on writes.

Bits[7:4] These specify which of the 16 domains (D15-D0) was being
accessed when a fault occurred.

Bits[3:1] These indicate the type of access being attempted.

The encoding of these bits is shown in Fault address and fault status registers on
page 7-21. The FSR is always updated when a fault occurs.

Writing to CP15 register 5 sets the FSR to the value of the data written. Thisis useful
when a debugger has to restore the value of the FSR. The upper 24 bits written should
be zero.

The CRm and opcode 2 fields should be zero when reading or writing CP15 register 5.
Register 5 is shown in Figure 3-9.

31302928 27 26 2524 23 2221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ 0| Domain Status

Figure 3-9 Register 5

3.3.7 Register 6, Fault Address Register

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The
FAR holds the virtual address of the access that was attempted when a fault occurred.
The FAR is updated for data faults and prefetch faults.

Writing to CP15 register 6 setsthe FAR to the value of the data written. Thisis useful
when a debugger has to restore the value of the FAR.

The CRm and opcode_2 fields should be zero when reading or writing CP15 register 6.
Register 6 is shown in Figure 3-10.

31302928 27 26 2524 23 2221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Fault address

Figure 3-10 Register 6

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 3-9

Configuration

Note
Register 6 contains a modified virtual addressif the FCSE PID register is nonzero.

3.3.8 Register 7, cache operations

Writing to CP15 register 7 manages the unified instruction and data cache of the
ARM720T. Only one cache operation is defined using the following opcode_2 and CRm
fieldsin the MCR instruction that writes the CP15 register 7.

—— Caution
The Invalidate ID cache function invalidates all cache data. Use this with caution.

Register 7 is shown in Table 3-2.

Table 3-2 Cache operation

Function

opcode_2 value CRm value Data Instruction

Invalidate ID cache

0b000 0b0111 SBZ MCR p15, @, Rd, c7, c7, @

Reading from CP15 register 7 is undefined.

3.3.9 Register 8, TLB operations

Writing to CP15 register 8 controls the Translation Lookaside Buffer (TLB). The
ARM720T processor implements a unified instruction and data TLB.

Two TLB operations are defined. The function to be performed is selected by the
opcode_2 and CRm fieldsin the MCR instruction used to write CP15 register 8.

3-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

The TLB operations and the instructions that you can use are shown in Table 3-3.

Table 3-3 TLB operations

Function opcode_2value CRmvalue Data Instruction

Invalidate TLB 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c5, @
MCR p15, @, Rd, c8, c6, @

MCR p15, 0, Rd, c8, c7, 0

Invalidate TLB 0b001 0b0111 Modified Virtual ~ MCR p15, 0, Rd, c8, c5, 1

single entr Address
gieentry MCR p15, 0, Rd, 8, c6, 1

MCR p15, 0, Rd, c8, c7, 1

In the instructions shown in Table 3-3, c7 is the preferred va ue for the CRn field,
because it indicates a unified MMU.

Reading from CP15 register 8 is undefined.
The Invalidate TLB single entry function invalidates any TLB entry corresponding to
the Modified Virtual Address (MVA) given in Rd.

3.3.10 Registers 9to 12, reserved
Accessing any of these registersis undefined. Writing to any of these registersis
undefined.

3.3.11 Register 13, process identifier

Two independent process identifier registers can be accessed using register 13:
. Fast context switch extension process identifier
. Trace processidentifier on page 3-12.

Fast context switch extension process identifier

Reading from CP15 register 13 with opcode 2 = 0 returns the value of the FCSE PID.
Thisis shown in Figure 3-11 on page 3-12.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 3-11

Configuration

31302928 27 26 2524 2322212019 1817 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FCSE PID UNP/SBZ

Figure 3-11 Register 13 with opcode_2=0

Note
Only bits[31:25] are returned. The remaining 25 bits are unpredictable.

Writing to CP15 register 13 with opcode_2 = 0 updates the FCSE PID from the value
in bits [31:25]. Bits [24:0] should be zero. The FCSE PID is set to bO000000 on Reset.

The CRm and opcode_2 should be zero when reading or writing the FCSE PID.

Changing FCSE PID

You must take care when changing the FCSE PID because the following instructions
have been fetched with the previous FCSE PID. In this way, changing the FCSE PID
has similarities with a branch with delayed execution. See Relocation of low virtual
addresses by the FCSE PID on page 2-23.

Trace process identifier

A 32-bit read/write register is provided to hold a Trace PROCess IDentifier (PROCID)
up to 32-bitsin length visible to the ETM7. Thisis achieved by reading from or writing
to the CP15 register 13 with opcode_2 = 1 as shown in Figure 3-12.

313029 28 27 26 25 24 232221201918 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Trace PROCID

Figure 3-12 Register 13 with opcode_2=1

The PROCIDWR signal is exported to notify the ETM7 that the Trace PROCID has
been written.

3.3.12 Register 14, reserved

Accessing thisregister is undefined. Writing to this register is undefined.

3-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Configuration

3.3.13 Register 15, test register

The CP15 register 15 isused for device-specific test operations. For more information,
see Chapter 11 Test Support.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 3-13

Configuration

3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 4
Instruction and Data Cache

This chapter describestheinstruction and data cache. It contains the following sections:
. About the instruction and data cache on page 4-2

. IDC validity on page 4-4

. IDC enable, disable, and reset on page 4-5.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 4-1

Instruction and Data Cache

4.1 About the instruction and data cache

The cache only operates on awrite-through basiswith aread-miss alocation policy and
arandom replacement algorithm.

41.1 IDC operation
The ARM720T contains an 8KB mixed Instruction and Data Cache (IDC).

The IDC has 512 lines of 32 bytes (eight words), arranged as a 4-way set-associative
cache, and uses the virtual addresses generated by the processor core after relocation by
the FCSE PID asappropriate. TheIDC isalwaysreloaded aline at atime (eight words).
It can be enabled or disabled using the ARM720T control register and is disabled on
HRESETnN.

Note

The MMU must never be disabled when the cache is on. However, you can enable the
two devices simultaneously with a single write to the control register (see Register 1,
control register on page 3-5).

4.1.2 Cachable bit

The C bit determines whether data being read can be placed in the IDC and used for
subsequent read operations. Typically, main memory is marked as cachableto improve
system performance, and 1/O space is marked as honcachabl e to stop the data being
stored in the ARM720T cache.

For example, if the processor is polling ahardware flag in 1/0 space, it isimportant that
the processor isforced to read data from the external peripheral, and not a copy of the
initial data held in the cache. The cachable bit can be configured for both pages and
sections.

Cachable reads (C=1)

A linefetch of eight wordsis performed when a cache miss occursin acachable area of
memory, and it is randomly placed in a cache bank.

Note
Memory aborts are not supported on cache line fetches.

4-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Instruction and Data Cache

Uncachable reads (C=0)

An external memory access is performed and the cache is not written.

4.1.3 Read-lock-write

The IDC treats the read-lock-write instruction as a special case:

Read phase Always forces aread of external memory, regardless of whether
the data is contained in the cache.

Write phase Istreated as anormal write operation. If the datais already inthe
cache, the cache is updated.

Externally, the two phases are flagged asindivisible by asserting the HLOCK signal.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 4-3

Instruction and Data Cache

4.2

42.1

4.2.2

IDC validity

The IDC operates with virtual addresses, so you must ensure that its contents remain
consistent with thevirtual to physical mappings performed by the MM U. If the memory
mappings are changed, the IDC validity must be ensured.

Software IDC flush

The entire IDC can be marked as invalid by writing to the cache operations register R7.
The cache is flushed immediately the register iswritten, but the following two
instruction fetches can come from the cache before the register is written.

Doubly-mapped space

Because the cache workswith virtual addresses, it isassumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more
than one virtual address, the cache cannot maintain consistency. Each virtual address
has a separate entry in the cache, and only one entry can be updated on aprocessor write
operation.

To avoid any cache inconsistencies, both doubly-mapped virtual addresses must be
marked as uncachable.

4-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Instruction and Data Cache

4.3 IDC enable, disable, and reset

The IDCisautomatically disabled and flushed on HRESET n. When enabled, cachable
read accesses cause lines to be placed in the cache.

To enable the IDC:
1. Makesurethat the MMU isenabled first by setting bit O in the control register.

2. EnabletheDC by setting bit 2 in the control register. TheMMU and IDC can be
enabled simultaneously with a single write to the control register.

To disable the IDC:
1. Clear bit 2 inthe control register.

2. Perform aflush by writing to the cache operations register.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 4-5

Instruction and Data Cache

4-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Chapter 5
Write Buffer

This chapter describes the write buffer. It contains the following sections:
. About the write buffer on page 5-2
. Write buffer operation on page 5-3.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

5-1

Write Buffer

5.1 About the write buffer

The write buffer of the ARM720T processor is provided to improve system
performance. It can buffer up to:

. eight words of data

. eight independent addresses.

You can enable and disable thewrite buffer using the W bit, bit 3, in the control register.
The buffer is disabled and flushed on reset.

The operation of the write buffer is further controlled by the Bufferable (B) bit, which
is stored in the MM U page tables. For this reason, the MMU must be enabled before
using thewrite buffer. The two functions can, however, be enabled simultaneously, with
asingle writeto the control register.

For awrite to use the write buffer, both the W bit in the control register and the B bitin
the corresponding page table must be set.

Note

Itisnot possibleto abort buffered writes externally. Theerror responseon HRESP[1:0]
isignored. Areas of memory that can generate aborts must be marked as unbufferable
inthe MMU page tables.

51.1 Bufferable bit

This bit controls whether awrite operation uses or does not use the write buffer.
Typicaly, main memory is bufferable and 1/0 space unbufferable. The B bit can be
configured for both pages and sections.

5-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

5.2

5.2.1

5.2.2

5.2.3

5.2.4

Write Buffer

Write buffer operation

You control the operation of the write buffer with CP15 register 1, the control register
(see Register 1, control register on page 3-5).

When the CPU performs awrite operation, the translation entry for that addressis
inspected and the state of the B bit determines the subseguent action. If the write buffer
is disabled using the control register, buffered writes are treated in the same way as
unbuffered writes.

To enable the write buffer:
1. Ensurethat the MMU is enabled by setting bit 0 in the control register.

2. Enablethe write buffer by setting bit 3 in the control register.

You can enable the MMU and write buffer simultaneously with asingle writeto
the control register.

To disable the write buffer, clear bit 3 in the control register. Any writes already in the
write buffer complete normally. The write buffer attempts a write operation aslong as
thereis data present.

Bufferable write

If thewrite buffer is enabled and the processor performs awrite to abufferable area, the
datais placed in the write buffer at the speed of HCL K, and the CPU continues
execution. The write buffer then performs the external writein parald.

If thewrite buffer isfull, the processor isstalled until thereisan empty lineinthe buffer.

Unbufferable write

If the write buffer is disabled or the CPU performs a write to an unbufferable area,

the processor is stalled until the write buffer emptiesand the write completes externally.

This might reguire synchronization and several external clock cycles.
Read-lock-write

The write phase of a read-lock-write sequence (SWP instruction) istreated as an

unbuffered write, even if it is marked as buffered.

Reading from a noncachable area

If the CPU performs aread from a noncachable areg, the write buffer isdrained and the
processor is stalled.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 5-3

Write Buffer

5.2.,5 Draining the write buffer

You can force adrain of the write buffer by performing aread from a noncachable
location.

5.2.6 Multi-word writes

All accesses are treated as non-sequential, which means that writes require an address
slot and adata sl ot for each word. For thisreason, buffered STM accesses areless efficient
than unbuffered STM accesses. You are advised to disable the write buffer (by clearing
bit 3 in CP15 register 1) before moving large blocks of data.

5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 6
The Bus Interface

This chapter describes the signals on the bus interface of the ARM720T (Rev 4)
processor. It contains the following sections:

. About the bus interface on page 6-2

. Bus interface signals on page 6-4

. Transfer types on page 6-6

. Address and control signals on page 6-9

. Save transfer response signals on page 6-12
. Data buses on page 6-14

. Arbitration on page 6-17

. Bus clocking on page 6-18

. Reset on page 6-19.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

6-1

The Bus Interface

6.1 About the bus interface
The ARM720T (Rev 4) processor is an Advanced High-performance Bus (AHB) bus
master. It is described fully in the AMBA Specification (Rev 2.0).

6.1.1 Summary of the AHB transfer mechanism
An AHB transfer comprises the following:

Address phase Thislastsonly asingle cycle. The address cannot be extended, so
all slaves must sample the address during the address phase.

Data phase This phase can be extended using the HREADY signal. When
LOW, HREADY causeswait statesto be inserted into the transfer
and allows extratime for a slave to provide or sample data.

A write data bus is used to move data from the master to a slave.
A read data bus is used to move data from a slave to the master.

Figure 6-1 shows atransfer with no wait states (this is the simplest type of transfer).

Address Data
phase phase

HCLK | | |

HADDR[31:0] :)O(A)O(

Control) Control ¥

HWDATA[31:0] Y (Y Data
(

A)
HREADY X 1]
HRDATA[31:0] X)

Data

alislatsls

z

Figure 6-1 Simple AHB transfer

6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

A granted bus master starts an AHB transfer by driving the address and control signals.
These signals provide the following information about the transfer:

address

direction

width of the transfer

whether the transfer forms part of a burst
the type of burst.

A burstisaseriesof transfers. The ARM720T (Rev 4) processor performsthefollowing
types of burst:

incrementing burst of unspecified length
8-beat incrementing burst.

Incrementing bursts do not wrap at address boundaries. The address of each
transfer in the burst is an increment of the address of the previous transfer in the
burst.

For more information, see Address and control signals on page 6-9.

For acompl etedescription of the AHB transfer mechanism, seethe AMBA Specification
(Rev 2.0).

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 6-3

The Bus Interface

6.2

Bus interface signals

The signasinthe ARM720T (Rev 4) processor bus interface can be grouped into the
following categories:
Transfer type HTRANS[1:0]

See Transfer types on page 6-6.

Address and control
HADDRJ[31:0]
HWRITE
HSIZE[2:0]
HBURST[2:0]
HPROTI[3:0]
See Address and control signals on page 6-9.

Slavetransfer response
HREADY
HRESP[1:0]
See Save transfer response signals on page 6-12.

Data HRDATA[31:0]
HWDATA[31:0]
See Data buses on page 6-14.

Arbitration HBUSREQ
HGRANT
HLOCK
See Arbitration on page 6-17.

Clock HCLK
HCLKEN
See Bus clocking on page 6-18.

Reset HRESETN
See Reset on page 6-19.
Each of these signal groups shares a common timing relationship to the bus interface

cycle. All signalsinthe ARM720T (Rev 4) processor bus interface are generated from
or sampled by therising edge of HCLK.

6-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

The AHB bus master interface signals are shown in Figure 6-2.

Arbiter grant ———HGRANT —» HBUSREQ — Arbiter
HLOCK —»

——HREADY — ——HTRANS[1:0] —» Transfer type
—HRESP[1:0] —p>

Transfer response

- HADDR[31:0] =

Reset ——HRESETn—» AnB master | ——HWRITE—»
——HSIZE[2:0] — Address
and control
HCLK —» — HBURST[2:0] =
Clock
—HCLKEN —» — HPROT[3:0] —>
Data ——HRDATA[31:0] —HRDATA[31:0] Data

Figure 6-2 AHB bus master interface

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-5

The Bus Interface

6.3

Transfer types

The ARM720T processor businterfaceis pipelined, so the address-class signalsand the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for amemory cycle to decode the address and
respond to the access request.

A single memory cycle is shown in Figure 3-1.

HCLK | |

,AX Address X}
/
TRANS[1:0] ~ Cycle type/)

WDATA[31:0] -
(write) \DX Write data X

Address-class signals

—~ ~

RDATA[31:0] X X
(read) Read data

< >
Bus cycle

Figure 6-3 Simple memory cycle

6-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

There are three types of transfer. The transfer type isindicated by the HTRANS[1:0]
signal as shown in Table 6-1.

Table 6-1 Transfer type encoding

HTRANS[1:0] Transfer type Description

00 IDLE Indicates that no data transfer isrequired. The IDLE
transfer type is used when abus master is granted the
bus, but does not wish to perform a data transfer.
Slaves must always provide azero wait state OKAY
response to IDLE transfers and the transfer must be
ignored by the slave.

10 NONSEQ Indicates the first transfer of aburst or asingle
transfer. The address and control signalsare unrelated
to the previous transfer.

Single transfers on the bus are treated as bursts that
comprise one transfer.

11 SEQ Inaburst, al transfers apart from thefirst are
SEQUENTIAL.

The address is related to the previous transfer. The
addressisequal to the address of the previoustransfer
plusthe size (in bytes). In the case of awrapping
burst, the address of the transfer wraps at the address
boundary equd tothesize (in bytes) multiplied by the
number of beatsin the transfer (either 4, 8, or 16).
The control information isidentical to the previous
transfer.

Note

In the AMBA Specification (Rev 2.0), HTRANS[1:0] = Ol indicatesaBUSY cycle, but
these are never inserted by the ARM720T (Rev 4) processor.

Figure 6-4 on page 6-8 shows some examples of different transfer types.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-7

The Bus Interface

HTRANs[1:0] _ JNONseQ)) sEa Y} sEa XY SEQ XX
HADDR[31:0] () ox20 Y ox24 Y oxes
HBURST[2:0] | INCR X

HWDATA[31:0]

HREADY

HRDATA[31:0]

HCLK | | | | | |

x2C XX

=

alaNals

X:X Data X:X Data

0x20 0x24

X
V V A V
X Daté)(Datal @X Data)

0x20 0x24 0x28 0x2C

Data X:X Data

0x28 0x2C

= o =
2.

Figure 6-4 Transfer type examples

In Figure 6-4:

Thefirst transfer is the start of aburst and is therefore NONSEQUENTIAL.
The master performs the second transfer of the burst immediately.

The master performs the third transfer of the burst immediately, but thistime the
slave is unable to complete and uses HREADY to insert asingle wait state.

Thefinal transfer of the burst completes with zero wait states.

6-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

6.4 Address and control signals

641 HADDR[3L0]

6.4.2 HWRITE

643 HSIZE[2:0]

The address and control signals are described in the following sections:
« HADDR[31:0]

. HWRITE

. HSIZE[2:0]

. HBURST[2:0] on page 6-10

. HPROT[3:0] on page 6-10.

HADDR[31:0] isthe 32-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by four for each cycle.

The address bus provides 4GB of linear addressing space. This means that:

. when aword accessis signalled, the memory system must ignore the bottom two
bits, HADDR[1:0]

. when ahalfword accessis signalled the memory system must ignore the bottom
bit, HADDRJ[O].

HWRITE specifies the direction of the transfer asfollows:
HWRITEHIGH Indicates an ARM720T processor write cycle.
HWRITELOW Indicates an ARM720T processor read cycle.

A burst of S cyclesisaways either aread burst or awrite burst. The direction cannot
be changed in the middle of a burst.

The SIZE[2:0] bus encodes the size of the transfer. The ARM720T processor can
transfer word, halfword, and byte quantities. Thisisencoded on SIZE[2:0] asshownin
Table 6-2 on page 6-10.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 6-9

The Bus Interface

Note

To use the C compiler and the ARM debug tool chain, your system must support the
writing of arbitrary bytes and halfwords. You must provide write enables down to the
level of every individual byte to ensure support for all possible transfer sizes, up to the
bus width.

Table 6-2 Transfer size encodings

HSIZE[2:0] Size Transfer width
000 8 hits Byte
001 16 bits Halfword
010 32 bits Word
6.44 HBURST[2:0]
HBURST([2:0] indicates the type of burst, as shown in Table 6-3.
Table 6-3 Burst type encodings
HBURST[2:0] Type Description
000 SINGLE Single transfer
001 INCR Incrementing burst of unspecified length
101 INCRS8 8-beat incrementing burst
For more details of burst operation, see the AMBA Specification (Rev 2.0).
6.4.5 HPROT[3:0]
HPROT([3:0] is the protection control bus. These signals provide additional
information about a bus access and are primarily intended to enable a module to
implement an access permission scheme.
These signals indicate whether the transfer is:
. an opcode fetch or data access
. a privileged-mode access or User-mode access.
6-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

For bus masters with a memory management unit, these signals also indicate whether
the current accessis cachable or bufferable.

Table 6-4 shows the protection control encodings.

Table 6-4 Protection control encodings

HPROT[3] HPROT[2] HPROT[1] HPROTI[0]

cachable bufferable privileged data/opcode Description

- 0 Opcode fetch

- 1 Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Not bufferable

- 1 - - Bufferable

0 - - - Not cachable

1 - - - Cachable

Some bus masters are not capabl e of generating accurate protection information, soitis
recommended that slaves do not use the HPROT[3:0] signals unless strictly necessary.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-11

The Bus Interface

6.5

6.5.1

6.5.2

Slave transfer response signals

HREADY

HRESP[1:0]

After amaster has started a transfer, the slave determines how the transfer progresses.
No provision ismadein the AHB specification for abus master to cancel atransfer after
it has begun.

Whenever aslave isaccessed it must provide aresponse using the following signals:
HRESP[1:0] Indicates the status of the transfer.

HREADY Used to extend thetransfer. Thissignal worksin combination with
HRESP[1:0].

The slave can complete the transfer in a number of ways. It can:

. complete the transfer immediately

. insert one or more wait states to allow time to complete the transfer
. signal an error to indicate that the transfer has failed

. delay the completion of thetransfer, but allow the master and slave to back off the
bus, leaving it available for other transfers.

The HREADY signal is used to extend the data portion of an AHB transfer, as follows:

HREADY LOW Indicates that the transfer datais to be extended. It causes wait
statesto be inserted into the transfer and alows extratime for the
slave to provide or sample data.

HREADY HIGH Indicates that the transfer can complete.

Every slave must have a predetermined maximum number of wait statesthat it inserts
before it backs off the bus, in order to alow the calculation of the latency of accessing
the bus. To prevent any single access locking the bus for alarge number of clock cycles,
it is recommended that slaves do not insert more than 16 wait states.

HRESP[1:0] is used by the dave to show the status of atransfer. The HRESP[1:0]
encodings are shown in Table 6-5 on page 6-13.

6-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

Table 6-5 Response encodings

HRESP[1:0] Response Description

00 OKAY When HREADY is HIGH, this response indicates that the transfer has
completed successfully.
The OKAY responseis aso used for any additional cycles that are
inserted, with HREADY LOW, prior to giving one of the three other
responses.

01 ERROR Thisresponse indicates that a transfer error has occurred and the transfer
has been unsuccessful. Typically thisis used for a protection error, such
as an attempt to write to aread-only memory location. The error condition
must be signalled to the bus master so that it is aware the transfer has been
unsuccessful.

A two-cycle responseis required for an error condition.

10 RETRY The RETRY response showsthe transfer hasnot yet compl eted, so the bus
master should retry the transfer. The master should continue to retry the
transfer until it completes.

A two-cycle RETRY responseis required.

11 SPLIT Thetransfer hasnot yet completed successfully. The bus master must retry
thetransfer when it is next granted accessto the bus. The slavewill request
access to the bus on behalf of the master when the transfer can complete.
A two-cycle SPLIT response is required.

For afull description of the slave transfer responses, see the AMBA Specification (Rev
2.0).

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 6-13

The Bus Interface

6.6

6.6.1

6.6.2

6.6.3

Data buses

To enableyou to implement an AHB system without the use of tristate drivers, separate
32-bit read and write data buses are required.

HWDATA[31:0]

The write data busis driven by the bus master during write transfers. If the transfer is
extended, the bus master must hold the data valid until the transfer completes, as
indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size of the transfer.
For example, word transfers must be aligned to word address boundaries (that is
A[1:0] = 00), and halfword transfers must be aligned to halfword address boundaries
(that isA[Q] = 0).

The bus master drives all byte lanes regardless of the size of the transfer:

. For halfword transfers, for example 0x1234, HW DATA[31:0] is driven with the
value 0x12341234, regardless of endianness.

. For byte transfers, for example 0x12, HWDATA[31:0] isdriven with the value
0x12121212, regardless of endianness.

HRDATA[31:0]

Endianness

The read data busis driven by the appropriate slave during read transfers. If the slave
extendstheread transfer by holding HREADY LOW, theslave hasto providevalid data
only at the end of the final cycle of the transfer, as indicated by HREADY HIGH.

For transfers that are narrower than the width of the bus, the slave only hasto provide
valid data on the active byte lanes. The bus master is responsible for selecting the data
from the correct byte lanes. The following tables identify active byte lanes:

. Table 6-6 on page 6-15 shows active byte lanes for little-endian systems

. Table 6-7 on page 6-16 shows active byte lanes for big-endian systems.

A slave has to provide valid data only when atransfer completes with an OKAY
response on HRESP[1:0]. SPLIT, RETRY, and ERROR responses do not require valid
read data.

Itisessentia that al modules are of the same endianness and al so that any data routing
or bridges are of the same endianness.

6-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

The Bus Interface

Dynamic endianness is not supported, because in most embedded systems, thisleadsto

asignificant silicon overhead that is redundant.

It is recommended that only modules that will be used in awide variety of applications
are made bi-endian, with either a configuration pin or internal control bit to select the

endianness. For more application-specific blocks, fixing the endianness to either
little-endian or big-endian resultsin a smaller, lower power, higher performance

interface.

Table 6-6 shows active byte lanes for little-endian systems.

Table 6-6 Active byte lanes for a 32-bit little-endian data bus

Address

Transfer size offset DATA[31:24] DATA[23:16] DATA[7:0]
Word 0 O O

Halfword 0 - -

Halfword 2 O O

Byte 0 - -

Byte 1 - -

Byte 2 -

Byte 3 a -

Table 6-7 on page 6-16 shows active byte lanes for big-endian systems.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

6-15

The Bus Interface

Table 6-7 Active byte lanes for a 32-bit big-endian data bus

Transfer size ﬁggéfss DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]
Word 0 O O O O

Halfword 0 a a - -

Halfword 2 - - a ad

Byte 0 a - - -

Byte 1 - a - -

Byte 2 - - ad -

Byte 3 - - - 0

6-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

6.7

6.7.1

6.7.2

6.7.3

Arbitration

HBUSREQ

HLOCK

HGRANT

The Bus Interface

The arbitration mechanismis described fully in the AMBA Specification (Rev 2.0). This
mechanism is used to ensure that only one master has accessto the bus at any onetime.
The arbiter performs this function by observing a number of different requeststo use
the bus and deciding which is currently the highest priority master requesting the bus.
The arbiter also receives requests from slaves that want to complete SPLIT transfers.

Any slaves that are not capable of performing SPLIT transfers do not have to be aware
of the arbitration process, except that they need to observe the fact that a burst of
transfers might not complete if the ownership of the bus is changed.

The bus request signal is used by a bus master to request accessto the bus. Each bus
master hasits own HBUSREQ signal to the arbiter and there can be up to 16 separate
bus mastersin any system.

Thelock signal is asserted by amaster at the same time as the bus request signal. This
indicates to the arbiter that the master is performing a number of indivisible transfers
and the arbiter must not grant any other bus master access to the bus once the first
transfer of the locked transfers has commenced. HLOCK must be asserted at least a
cyclebeforethe addressto whichit refers, to prevent the arbiter from changing the grant
signals.

The grant signal is generated by the arbiter and indicates that the appropriate master is
currently the highest priority master requesting the bus, taking into account locked
transfers and SPLIT transfers.

A master gains ownership of the address buswhen HGRANT isHIGH and HREADY
isHIGH at therising edge of HCLK.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 6-17

The Bus Interface

6.8 Bus clocking

There are two clock inputs on the ARM720T (Rev 4) processor businterface.

6.8.1 HCLK

The busis clocked by the system clock, HCLK. This clock times all bus transfers. All
signal timings are related to the rising edge of HCLK.

6.8.2 HCLKEN

HCLK isenabled by the HCLKEN signal. You can useHCLKEN to slow the bus
transfer rate by dividing HCLK for the bus interface.

Note

HCLKEN isnot aclock enablefor the CPU itself, but only for the bus. Uses HREADY
to insert wait states on the bus.

6-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

6.9 Reset

The Bus Interface

The busreset signal isHRESETn. Thissignal isthe global reset, used to reset the
system and the bus. It can be asserted asynchronoudly, but is deasserted synchronously
after the rising edge of HCLK.

During reset, al masters must ensure the following:
. the address and control signals are at valid levels
. HTRANS[1:0] indicates IDLE.

HRESETn is the only active LOW signal in the AMBA AHB specification.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 6-19

The Bus Interface

6-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 7
Memory Management Unit

This chapter describesthe Memory Management Unit (MMU). It containsthefollowing
sections:

. About the MMU on page 7-2

. MMU program-accessible registers on page 7-4

. Address trandation on page 7-5

. MMU faults and CPU aborts on page 7-20

. Fault address and fault status registers on page 7-21
. Domain access control on page 7-22

. Fault checking sequence on page 7-24

. External aborts on page 7-27

. Interaction of the MMU and cache on page 7-28.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 7-1

Memory Management Unit

7.1 About the MMU

The ARM720T processor implements an enhanced ARM architecture v4 MMU to
provide translation and access permission checks for the instruction and data address
ports of the core. The MMU iscontrolled from a single set of two-level page tables
stored in main memory, that are enabled by the M bit in CP15 register 1, providing a
single address trandlation and protection scheme.

The MMU features are:
. standard ARMv4 MMU mapping sizes, domains, and access protection scheme

. mapping sizes are IMB (sections), 64KB (large pages), 4KB (small pages), and
1KB (tiny pages)

. access permissions for sections

. access permissionsfor large pages and small pages can be specified separately for
each quarter of the page (these quarters are called subpages)

. 16 domains implemented in hardware
. 64-entry TLB
. hardware page table walks
. round-robin replacement algorithm (also called cyclic)
. invalidate whole TLB, using CP15 register 8
. invalidate TLB entry, selected by Modified Virtual Address (MVA), using CP15
register 8.
7.1.1 Access permissions and domains

For large and small pages, access permissions are defined for each subpage (1KB for
small pages, 16K B for large pages). Sections and tiny pages have asingle set of access
permissions.

All regions of memory have an associated domain. A domain is the primary access
control mechanism for aregion of memory. It defines the conditions necessary for an
access to proceed. The domain determinesif:

. the access permissions are used to qualify the access
. the access is unconditionally allowed to proceed
. the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored.

7-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

There are 16 domains. These are configured using the domain access control register.

7.1.2 Translated entries

The TLB caches64 translated entries. During CPU memory accesses, the TLB provides
the protection information to the access control logic.

If the TLB contains atranslated entry for the MVA, the access control logic determines
if accessis permitted:

. if accessis permitted and an off-chip accessis required, the MMU outputs the
appropriate physical address corresponding to the MVA

. if accessispermitted and an off-chip accessisnot required, the cache servicesthe
access

. if accessis not permitted, the MMU signals the CPU core to abort.

If the TLB misses (it does not contain an entry for the VA) the trandation table walk
hardware is invoked to retrieve the translation information from atranslation table in
physical memory. When retrieved, the trandation information is written into the TLB,
possibly overwriting an existing value.

The entry to be written is chosen by cycling sequentially through the TL B locations.

When the MMU is turned off, as happens on reset, no address mapping occurs and al
regions are marked as noncachable and nonbufferable.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-3

Memory Management Unit

7.2 MMU program-accessible registers

Table 7-1 lists the CP15 registers that are used in conjunction with page table
descriptors stored in memory to determine the operation of the MMU.

Table 7-1 CP15 register functions

Register Number Bits Register description

Control register 1 M,A,S, R Contains bitsto enable the MMU (M bit), enable data address
alignment checks (A bit), and to control the access protection
scheme (S bit and R bit).

Translation table 2 31:14 Holds the physical address of the base of the trand ation table

base register maintained in main memory. This base address must be on a 16KB
boundary.

Domain access 3 31:0 Comprises 16 2-hit fields. Each field defines the access control

control register attributes for one of 16 domains (D15-D0).

Fault status 5 7:0 Indicates the cause of a Data or Prefetch Abort, and the domain

register number of the aborted access, when an abort occurs. Bits 7:4 specify
which of the 16 domains (D15-D0) was being accessed when afault
occurred. Bits 3:0 indicate the type of access being attempted. The
value of al other bitsisunpredictable. The encoding of these bitsis
shown in Table 7-9 on page 7-21.

Fault address 6 31:0 Holds the M VA associated with the access that caused the abort. See

register Table 7-9 on page 7-21 for details of the address stored for each type
of fault.
You can use banked register 14 to determine the VA associated with
aPrefetch Abort.

TLB operations 8 31:0 You can write to this register to make the MMU perform TLB

register

maintenance operations. These are:
. invalidating all the entriesinthe TLB
. invalidating a specific entry.

All the CP15 MMU registers, except register 8, contain state. You can read them using
MRC instructions, and write to them using MCR instructions. Registers 5 and 6 are aso

written by the MMU during all aborts. Writing to register 8 causestheMMU to perform
aTLB operation, to manipulate TLB entries. This register cannot be read.

CP15 isdescribed in Chapter 3 Configuration, with details of register formats and the
COoprocessor instructions you can use to access them.

7-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Memory Management Unit

7.3 Address translation

The MMU translates VAs generated by the CPU core, and by CP15 register 13, into
physical addresses to access external memory. It also derives and checks the access
permission, using the TLB.

The MMU table walking hardware is used to add entries to the TLB. The translation
information, that comprises both the address translation data and the access permission
data, residesin atranslation table located in physical memory. The MMU provides the
logic for you to traverse this translation table and load entries into the TLB.

There are one or two stages in the hardware table walking, and permission checking,
process. The number of stages depends on whether the address is marked as a
section-mapped access or a page-mapped access.

There are three sizes of page-mapped accesses and one size of section-mapped access.
The page-mapped accesses are for:

. large pages
. small pages
. tiny pages.

The translation process aways starts out in the same way, with alevel one fetch. A
section-mapped access requires only alevel one fetch, but a page-mapped access
requires a subsequent level two fetch.

7.3.1 Translation table base

The hardware trandation processis initiated when the TLB does not contain a
translation for the requested MVA. The Translation Table Base (TTB) register pointsto
the base address of atablein physical memory that contains section or page descriptors,
or both. The 14 low-order bitsof the TTB register are set to zero on aread, and the table
must reside on a 16KB boundary. Figure 7-1 shows the format of the TTB register.

31 1413 0

Translation table base

Figure 7-1 Translation table base register

The tranglation table has up to 4096 x 32-bit entries, each describing 1IMB of virtual
memory. This allows up to 4GB of virtual memory to be addressed. Figure 7-2 on
page 7-6 shows the table walk process.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-5

Memory Management Unit

Level one fetch

Translation
table
TTB base
EE— 00
Indexed by
modified 10
virtual
address 01
bits [31:20]
11
4096 entries

Invalid
—>

Level two fetch

Section base

Indexed by
modified
virtual
address
bits [19:0]

Coarse page
table base

Indexed by
modified
virtual
address
bits [19:12]

Fine page
table base

Indexed by
modified
virtual
address
bits [19:10]

Coarse page table

Invalid
00| —»

Large page basg

01 y

>

Indexed by
modified
virtual
address
bits [15:0]

10

Invalid

11

256 entries

Fine page table

Invalid

00

01

10

11

h

Small page basg

Indexed by
modified
virtual
address
bits [11:0]

Tiny page basg

1024 entries

Indexed by
modified
virtual
address
bits [9:0]

Section

1MB

Large page

16 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

64 KB

Small page

1 KB subpage

1 KB subpage

1 KB subpage

1 KB subpage

4 KB

Tiny page

1KB

Figure 7-2 Translating page tables

7-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

7.3.2

7.3.3

Memory Management Unit

Level one fetch

Bits[31:14] of the TTB register are concatenated with bits [31:20] of the MVA to
produce a 30-bit address as shown in Figure 7-3.

Modified virtual address
31 2019 0

Table index

Translation table base
31 1413 0

Translation base

U U

31 1413 210
Translation base Table index o0(o
31 @ 0

Level one descriptor

Figure 7-3 Accessing translation table level one descriptors
This address selects a 4-byte translation table entry. Thisisalevel one descriptor for
either a section or apagetable.
Level one descriptor

The level one descriptor returned is either a section descriptor, a coarse page table
descriptor, or afine page table descriptor, or isinvalid. Figure 7-4 on page 7-8 shows
the format of alevel one descriptor.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 7-7

Memory Management Unit

31 2019 121110 9 8 54 3 21
0

Coarse page table base address Domain |1 0
Section base address AP Domain 1|C|B|1
Fine page table base address Domain 1 1

A section descriptor provides the base address of a IMB block of memory.

Fault

Coarse
page table

Section

Fine
page table

Figure 7-4 Level one descriptor

The page table descriptors provide the base address of a page table that contains level
two descriptors. There are two sizes of page table:

. coarse page tables have 256 entries, splitting the 1M B that the table describesinto

4K B blocks

. fine page tables have 1024 entries, splitting the 1M B that the table describes into

1KB blocks.

Level one descriptor bit assignments are shown in Table 7-2.

Table 7-2 Level one descriptor bits

Bits
Description

Section Coarse Fine

31:20 31:10 31:12 These bits form the corresponding bits of the physical
address

19:12 - - Should be zero

11:10 - - Access permission hits. Domain access control on
page 7-22 and Fault checking sequence on page 7-24
show how to interpret the access permission bits

9 9 11:9 Should be zero

85 8:5 85 Domain control bits

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Memory Management Unit

Table 7-2 Level one descriptor bits (continued)

Bits
Description

Section Coarse Fine

4 4 4 Must be 1

3:2 - - These bits, C and B, indicate whether the area of
memory mapped by this page istreated as cachable or
noncachable, and bufferable or nonbufferable. (The
system is always write-through.)

- 3:2 3:2 Should be zero

1.0 1:0 1:0 These bits indicate the page size and validity and are

interpreted as shown in Table 7-3

The two least significant bits of the level one descriptor indicate the descriptor type as
shown in Table 7-3.

Table 7-3 Interpreting level one descriptor bits [1:0]

Value Meaning Description

00 Invalid Generates a section translation fault

01 Coarse page table Indicates that this is a coarse page table descriptor
10 Section Indicates that this is a section descriptor

11 Fine page table Indicates that thisis a fine page table descriptor

7.3.4 Section descriptor

A section descriptor provides the base address of a IMB block of memory. Figure 7-5
shows the format of a section descriptor.

31

2019

1211109 8 543210

Section base address

SBzZ AP Domain

N

C|[B|1]0

SBZ

Figure 7-5 Section descriptor

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 7-9

Memory Management Unit

7.3.5

Section descriptor bit assignments are described in Table 7-4.

Table 7-4 Section descriptor bits

Bits Description

31:20 Form the corresponding bits of the physical addressfor a section

19:12 AlwayswrittenasO

11:10 (AP) Specify the access permissions for this section

9 Always written as 0

8.5 Specify one of the 16 possible domains (held in the domain access control register)
that contain the primary access controls

4 Should be written as 1, for backward compatibility

32 These bits, C and B, indicate whether the area of memory mapped by this pageis
treated as cachable or noncachable, and bufferable or nonbufferable. (The systemis
always write-through.)

1.0 These bits must be 10 to indicate a section descriptor

Coarse page table descriptor

A coarse page table descriptor provides the base address of a page table that contains
level two descriptors for either large page or small page accesses. Coarse page tables
have 256 entries, splitting the 1M B that the table describesinto 4K B blocks. Figure 7-6
shows the format of a coarse page table descriptor.

31 109 8 543210

Coarse page table base address Domain |1|SBZ|0]|1

SBZ

Figure 7-6 Coarse page table descriptor

Note

If acoarse page table descriptor isreturned from the level onefetch, alevel two fetchis
initiated.

7-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

Coarse page table descriptor bit assignments are described in Table 7-5.

Table 7-5 Coarse page table descriptor bits

Bits Description

31:10 These bits form the base for referencing the level two descriptor (the
coarse page table index for the entry is derived from the MVA)

9 Always written as0

8:5 These hits specify one of the 16 possible domains (held in the domain
access control registers) that contain the primary access controls

4 Always written as 1

32 Always written as0

1.0 These bits must be 01 to indicate a coarse page table descriptor

7.3.6 Fine page table descriptor

A fine page table descriptor providesthe base address of a page table that containslevel
two descriptorsfor large page, small page, or tiny page accesses. Fine page tables have
1024 entries, splitting the 1MB that the table describes into 1KB blocks. Figure 7-7
shows the format of a fine page table descriptor.

31 1211 9 8 543210

Fine page table base address SBZ Domain |1|SBZ|1|1

Figure 7-7 Fine page table descriptor

Note

If afine page table descriptor is returned from the level one fetch, alevel two fetch is
initiated.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-11

Memory Management Unit

Fine page table descriptor bit assignments are described in Table 7-6.

Table 7-6 Fine page table descriptor bits

Bits Description

31:12 These hitsform the base for referencing the level two descriptor (the
fine page table index for the entry is derived from the MVA)

11:9 Always written as 0

8:5 Thesebits specify one of the 16 possible domains (held in thedomain
access control registers) that contain the primary access controls

4 Always written as 1

32 Always written as 0

1.0 These bits must be 11 to indicate a fine page table descriptor

7.3.7 Translating section references

Figure 7-8 on page 7-13 shows the complete section translation sequence.

7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

Modified virtual address
31 2019 0

Table index Section index

Translation table base
31 1413 0

Translation base

U U

31 1413 210

Translation base Table index o[o

@ Section level one descriptor

31 2019 121110 9 8 543210
Section base address AP| |Domain|1]|c|B|1]0
@ Physical address i}
31 2019 0
Section base address Section index
Figure 7-8 Section translation
Note

You must check access permissions contained in the level one descriptor before
generating the physical address.

7.3.8 Level two descriptor

If the level one fetch returns either a coarse page table descriptor or afine page table
descriptor, this provides the base address of the page table to be used. The pagetableis
then accessed and alevel two descriptor isreturned. Figure 7-9 on page 7-14 showsthe
format of level two descriptors.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 7-13

Memory Management Unit

31 16 15 1211109 8 7 6 5 4 3 2
Fault
Large page base address ap3 | ap2 |ap1 |ap0 |C|B Large page
Small page base address ap3 | ap2 | ap1 |ap0 [C|B Small page
Tiny page base address ap |C|B Tiny page

Figure 7-9 Level two descriptor

A level two descriptor definesatiny, asmall, or alarge page descriptor, or isinvalid:
. alarge page descriptor provides the base address of a 64KB block of memory
. asmall page descriptor provides the base address of a 4KB block of memory

. atiny page descriptor provides the base address of a 1KB block of memory.

Coarse page tables provide base addresses for either small or large pages. Large page
descriptors must be repeated in 16 consecutive entries. Small page descriptors must be
repeated in each consecutive entry.

Fine page tables provide base addresses for large, small, or tiny pages. Large page
descriptors must be repeated in 64 consecutive entries. Small page descriptors must be
repeated in four consecutive entries and tiny page descriptors must be repeated in each
consecutive entry.

Level two descriptor bit assignments are described in Table 7-7.

Table 7-7 Level two descriptor bits

Bits
Description
Large Small Tiny

31:16 31:12 3110 These bits form the corresponding bits of the physical address

15:12 - 9:6 Should be zero

7-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

Table 7-7 Level two descriptor bits (continued)

Bits
Description
Large Small Tiny
11:4 11:4 5:4 Access permission bits. Domain access control on page 7-22

and Fault checking sequence on page 7-24 show how to
interpret the access permission bits

32 3:2 3:2 These bits, C and B, indicate whether the area of memory
mapped by this page is treated as cachable or noncachabl e, and
bufferable or nonbufferable. (The system is dways
write-through.)

1.0 1.0 1.0 Thesebitsindicatethe page size and validity and are interpreted
as shown in Table 7-8

The two least significant bits of the level two descriptor indicate the descriptor type as
shown in Table 7-8.

Table 7-8 Interpreting page table entry bits [1:0]

Value Meaning Description

00 Invalid Generates a page translation fault
01 Large page Indicates that thisis a 64KB page
10 Small page Indicates that thisis a4KB page
11 Tiny page Indicates that thisis a 1KB page

Note

Tiny pages do not support subpage permissions and therefore only have one set of
access permission hits.

7.3.9 Translating large page references

Figure 7-10 on page 7-16 shows the complete translation sequence for a 64KB large
page.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 7-15

Memory Management Unit

Modified virtual address

31 2019 1615 12 11 0
. L2 | .
Table index - Page index
table index 9

Translation table base

31 1413 0

Translation base

31 @ 1413 v 210

Translation base Table index 0]0
@ Level one descriptor

31 109 8 543210

Coarse page table base address Domain |1 of1

31

U

109 2 10

Coarse page table base address

L2 table index |0]0

31

@ Level two descriptor

16 15 12

11109 8 76 543210

Page base address

ap3|ap2|ap1|ap0|C|B|0]1

31

@ Physical address l}

16 15

F

Page base address

Page index

Figure 7-10 Large page translation from a coarse page table

Because the upper four bits of the page index and low-order four bits of the coarse page
table index overlap, each coarse page table entry for alarge page must be duplicated 16

times (in consecutive memory locations) in the coarse page table.

If alarge page descriptor isincluded in afine page table, the high-order six bits of the
page index and low-order six bits of the fine page table index overlap. Each fine page

table entry for alarge page must therefore be duplicated 64 times.

7-16

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

7.3.10 Translating small page references

Memory Management Unit

Figure 7-11 shows the compl ete translation sequence for a4KB small page.

Modified virtual address

31 2019 12 11 0
Table index Levgl 2 Page index
table index
Translation table base
31 1413 0
Translation base
31 @ 1413 v 210
Translation base Table index ofo
@ Level one descriptor
31 109 8 543210
Coarse page table base address Domain |1 of1

31

U

9 210

Coarse page table base address

L2 table index |0]0

31

@ Level two descriptor

12 1110

9876543210

Page base address ap3

ap2|ap1[ap0|C|B|1]|0

31

@ Physical address

12 11

U

Page base address

Page index

Figure 7-11 Small page translation from a coarse page table

If asmall page descriptor isincluded in afine page table, the upper two bits of the page
index and low-order two bits of the fine page table index overlap. Each fine page table
entry for asmall page must therefore be duplicated four times.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-17

Memory Management Unit

7.3.11 Translating tiny page references

Figure 7-12 shows the compl ete translation sequence for a 1K B tiny page.

Modified virtual address

31 2019 10 9 0
Table index '-e"?' 2 Page index
table index
Translation table base
31 1413 0
Translation base
31 @ 1413 v 2 10
Translation base Table index ofo
@ Level one descriptor
31 12 11 9 8 54 3210
Fine page table base address Domain |1 11
31 @ 12 11 2 10
Fine page table base address L2 table index |0[0
@ Level two descriptor
31 10 9 6543210
Page base address ap [C|B|1]1
@ Physical address i}
31 10 9 0
Page base address Page index

Figure 7-12 Tiny page translation from afine page table

Page translation involves one additional step beyond that of a section translation. The
level one descriptor is the fine page table descriptor and thisis used to point to the level
one descriptor.

7-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

7.3.12 Subpages

Memory Management Unit

Note

The domain specified in the level one description and access permissions specified in
the level one description together determine whether the access has permissions to
proceed. See section Domain access control on page 7-22 for details.

You can define access permissions for subpages of small and large pages. If, during a
page walk, a small or large page has a non-identical subpage permission, only the
subpage being accessed is written into the TLB. For example, a 16KB (large page)
subpage entry is written into the TL B if the subpage permission differs, and a 64KB
entry is put in the TLB if the subpage permissions are identical.

When you use subpage permissions, and the page entry then hasto be invalidated, you
must invalidate all four subpages separately.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-19

Memory Management Unit

7.4 MMU faults and CPU aborts

The MMU generates an abort on the following types of faults:
. alignment faults (data accesses only)

. trandlation faults

. domain faults

. permission faults.

In addition, an external abort can be raised by the external system. Thiscan happen only
for access types that have the core synchronized to the externa system:

. noncachabl e loads
. nonbufferable writes.

Alignment fault checking is enabled by the A bit in CP15 register 1. Alignment fault
checking is not affected by whether or not the MMU is enabled. Translation, domain,
and permission faults are only generated when the MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If afault is detected as aresult of amemory access, the MMU aborts the access
and signals the fault condition to the CPU core. The MMU retains status and address
information about faults generated by the data accesses in the fault status register and
fault address register (see Fault address and fault status registers on page 7-21).

An access violation for agiven memory access inhibits any corresponding external
access, with an abort returned to the CPU core.

7-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

7.5 Fault address and fault status registers

75.1 Fault status

On an abort, the MMU places an encoded 4-bit value, FS[3:0], along with the 4-bit
encoded domain number, in the data FSR, and the MVVA associated with the abort is
latched into the FAR. If an access violation simultaneously generates more than one
source of abort, they are encoded in the priority given in Table 7-9.

Table 7-9 describes the various access permissions and controls supported by the data
MMU and details how these are interpreted to generate faults.

Table 7-9 Priority encoding of fault status

Priority =~ Source

Size Status Domain FAR

Highest Alignment

- b0Ox1 Invalid MVA of accesscausing

abort
Trangation Section b0101 Invalid MVA of accesscausing
Page b0o111 Vdlid abort
Domain Section b1001 valid MVA of accesscausing
Page b1011 Valid abort
Permission Section b1101 valid MVA of accesscausing
Page b1111 Vvdlid abort
Lowest External abort on noncachable nonbufferable Section b1000 valid MVA of accesscausing
access or noncachable bufferable read Page b1010 vaid abort

Note

Alignment faults can write either b0O001 or b0011 into FS[3:0]. Invalid valuesin
domains[3:0] can occur because the fault israised before avalid domain field has been
read from a page table descriptor. Any abort masked by the priority encoding can be
regenerated by fixing the primary abort and restarting the instruction.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-21

Memory Management Unit

7.6 Domain access control

MMU accesses are primarily controlled through the use of domains. There are 16
domainsand each hasa2-bit field to define accesstoit. Two types of user are supported,
clients and managers. The domains are defined in the domain access control register.
Figure 7-13 shows how the 32 bits of the register are allocated to define the 16 2-bit
domains.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

e e N

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7-13 Domain access control register format

Table 7-10 defines how the bits within each domain areinterpreted to specify the access
permissions.

Table 7-10 Interpreting access control bits in domain access control register

Value Meaning Description

00 Noaccess Any access generates a domain fault

01 Client Accessesare checked against the access permission bitsin the section
or page descriptor

10 Reserved Reserved. Currently behaves like the no access mode

11 M anager Accesses are not checked against the access permission bits so a
permission fault cannot be generated

7-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

Table 7-11 shows how to interpret the Access Permission (AP) bits and how their
interpretation is dependent on the S and R bits (control register bits 8 and 9).

Table 7-11 Interpreting access permission (AP) bits

Supervisor
AP S R P . User. . Description
permissions permissions
00 0 O Noaccess No access Any access generates a permission
fault
00 1 0 Read-only No access Only Supervisor read permitted
00 0 1 Read-only Read-only Any write generates a permission fault
00 1 1 Reserved - -a
01 x x Read/write No access Access allowed only in Supervisor
mode
10 x x Readlwrite Read-only Writesin User mode cause permission
fault
11 X X Read/write Read/write All access types permitted in both
modes
XX 1 1 Reserved - -a

a. Do not use thisencoding. [S:R] = 11 generates a fault for any access.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-23

Memory Management Unit

7.7 Fault checking sequence

The sequence the MMU uses to check for access faults is different for sections and
pages. The sequence for both types of accessis shown in Figure 7-14.

Modified virtual address

v
Check address alignment 4(Misaligned >—> AligggLTtent

A 4

Section
translation <—< Invalid ><— Get level one descriptor
fault

Section Page

Page
Get page . _
;)heck domain status No access (00) dPage_
Reserved (10) ?;leat'”
Section Page
G0l | @)
Manager
(1)

ieCtiO_” No access (00)
omain Reserved (10)
fault

Section Check Check Page
permission access access permission
fault permissions permissions fault

v v 3

Physical address

Figure 7-14 Sequence for checking faults

The conditions that generate each of the faults are described in:
. Alignment fault on page 7-25
. Tranglation fault on page 7-25

7-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

. Domain fault
. Permission fault on page 7-26.

7.7.1 Alignment fault

If alignment fault is enabled (A bit in CP15 register 1 set), the MMU generates an
alignment fault on any data word access, if the address is not word-aligned, or on any
halfword access, if the address is not halfword-aligned, irrespective of whether the
MMU is enabled or not. An alignment fault is not generated on any instruction fetch,
nor on any byte access.

Note

If the access generates an alignment fault, the access sequence abortswithout reference
to more permission checks.

7.7.2 Translation fault

7.7.3 Domain fault

There are two types of translation fault:

Section A section tranglation fault is generated if the level one descriptor is
marked asinvalid. Thishappensif bits[1:0] of the descriptor are both 0.

Page A page trandlation fault is generated if thelevel two descriptor is marked
asinvalid. This happensif bits[1:0] of the descriptor are both 0.

There are two types of domain fault:

Section The level one descriptor holds the 4-bit domain field, which selects one
of the 16 2-bit domainsin the domain access control register. Thetwo bits
of the specified domain are then checked for access permissions as
described in Table 7-11 on page 7-23. The domain is checked when the
level one descriptor is returned.

Page The level one descriptor holds the 4-bit domain field, which selects one
of the 16 2-bit domainsin the domain access control register. Thetwo bits
of the specified domain are then checked for access permissions as
described in Table 7-11 on page 7-23. The domain is checked when the
level one descriptor is returned.

If the specified access is either no access (00) or reserved (10) then either a section
domain fault or page domain fault occurs.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-25

Memory Management Unit

7.7.4

Permission fault

If the 2-bit domain field returns 01 (client) then access permissions are checked as

follows:

Section

If the level one descriptor defines a section-mapped access, the AP bits of
the descriptor define whether or not the access is allowed, according to
Table 7-11 on page 7-23. Their interpretation is dependent on the setting
of the Sand R bits (control register bits 8 and 9). If the accessis not
allowed, a section permission fault is generated.

Large page or small page

Tiny page

If thelevel onedescriptor defines apage-mapped accessand the level two
descriptor isfor alarge or small page, four access permission fields
(ap3-ap0) are specified, each corresponding to one quarter of the page.
For small pages ap3 is selected by the top 1KB of the page and ap0 is
selected by the bottom 1K B of the page. For large pages, ap3 is selected
by the top 16K B of the page and ap0 is selected by the bottom 16K B of
the page. The selected AP bits are then interpreted in exactly the same
way as for a section (see Table 7-11 on page 7-23). The only difference
isthat the fault generated is a page permission fault.

If thelevel onedescriptor defines apage-mapped accessand the level two
descriptor isfor atiny page, the AP bits of the level one descriptor define
whether or not the accessis allowed in the sameway asfor asection. The
fault generated is a page permission fault.

7-26

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Memory Management Unit

7.8 External aborts

In addition to the MM U-generated aborts, the ARM720T processor can be externally
aborted by the AMBA bus. This can be used to flag an error on an external memory
access. However, not all accesses can be aborted in thisway and the Bus Interface Unit
(BIU) ignores external aborts that cannot be handled.

The following accesses can be aborted:

. noncached reads

. unbuffered writes

. read-lock-write sequence, to noncachable memory.

In the case of aread-lock-write (SWP) sequence, if the read aborts, the writeis never
attempted.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 7-27

Memory Management Unit

7.9 Interaction of the MMU and cache

The MMU isenabled and disabled using bit 0 of the CP15 control register as described
in:

. Enabling the MMU

. Disabling the MMU.

79.1 Enabling the MMU
To enablethe MMU:
1. Program the TTB and domain access control registers.
2. Program level 1 and level 2 page tables as required.
3. Enablethe MMU by setting bit 0 in the control register.

You must take care if the trandlated address differs from the untransl ated address
because several instructions following the enabling of the MMU might have been
prefetched with the MMU off (using physical = VA - flat translation).

In this case, enabling the MM U can be considered as a branch with delayed execution.
A similar situation occurs when the MM U is disabled. Consider the following code
sequence:

MRC p15, @, R1, c1, Co, O ; Read control register
ORR R1, #@x1

MCR p15,0,R1,C1, C0,0 ; EnabTe MMUS

Fetch Flat

Fetch Flat

Fetch Translated

79.2 Disabling the MMU

To disablethe MMU, clear bit 0 in the control register. The data cache must be disabled
prior to, or at the sametime as, the MMU is disabled by clearing bit 2 of the control
register. See Enabling the MMU regarding prefetch effects.

Note
If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the
TLB are preserved. If these are now invalid, you must invalidate the TLB before
re-enabling the MMU. See Register 8, TLB operations on page 3-10.

7-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 8
Coprocessor Interface

Thischapter describesthe coprocessor interface onthe ARM720T processor. It contains
the following sections:

. About coprocessors on page 8-2

. Coprocessor interface signals on page 8-4

. Pipeline-following signals on page 8-5

. Coprocessor interface handshaking on page 8-6
. Connecting coprocessors on page 8-11

. Not using an external coprocessor on page 8-13
. STC operations on page 8-14

. Undefined instructions on page 8-15

. Privileged instructions on page 8-16.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-1

Coprocessor Interface

8.1 About coprocessors

Theinstruction set for the ARM720T processor enables you to implement specialized
additional instructions using coprocessors. These are separate processing units that are
tightly coupled to the ARM720T processor. A typical coprocessor contains:

. an instruction pipeline

. instruction decoding logic

. handshake logic

. aregister bank

. specia processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM720T processor in the
system, and tracksthe pipeline in the ARM720T core. This meansthat the coprocessor
can decode the instructionsin theinstruction stream, and execute those that it supports.
Each instruction progresses down both the ARM720T processor pipeline and the
coprocessor pipeline at the same time.

The execution of instructions is shared between the ARM720T core and the
coprocessor, as follows:

The ARM720T core

1. Evaluatesthe condition codes to determine whether the
instruction must be executed by the coprocessor, then
signalsthis to any coprocessors in the system (using
CPNnCPI).

2. Generatesany addressesthat arerequired by theinstruction,
including prefetching the next instruction to refill the
pipeline.

3. Takesthe undefined instruction trap if no coprocessor
accepts the instruction.

Thecoprocessor: 1. Decodesinstructionsto determine whether it can accept the
instruction.

2. Indicateswhether it can accept theinstruction (by signaling
on EXTCPA and EXTCPB).

3. Fetches any values required from its own register bank.
Performs the operation required by the instruction.
If a coprocessor cannot execute an instruction, the instruction takes the undefined

instruction trap. You can choose whether to emulate coprocessor functionsin software,
or to design a dedicated coprocessor.

8-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

8.1.1 Coprocessor availability

You can connect up to 16 coprocessors into a system, each with a unique coprocessor
D number.

Some coprocessor numbers are reserved. For example, you cannot assign external
coprocessors to coprocessor numbers 14 and 15, because these are internal to the
ARM720T processor:

. CP14 is the communications channel coprocessor
. CP15 is the system control coprocessor for cache and MMU functions.

Coprocessor availability is shown in Table 8-1.

Table 8-1 Coprocessor availability

Slj)rp:]rt?:ressor Allocation

15 System control
14 Debug controller
13:8 Reserved

74 Available to users
3:0 Reserved

Note

If you intend to design a coprocessor, send an E-mail with coprocessor in the subject
line to info@arm.com for up to date information on coprocessor numbers that have
already been alocated.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 8-3

Coprocessor Interface

8.2 Coprocessor interface signals

Thesignalsused to interfacethe ARM720T coreto a coprocessor are grouped into four

categories.

The clock and clock control signals include the main processor clock and bus reset:

. HCLK
. EXTCPCLKEN
. HRESETN.

The pipeline-following signas are:
« CPnMREQ
. CPNnTRANS

. CPnOPC

. CPTBIT.

The handshake signals are:
. CPnCPI

. EXTCPA

. EXTCPB.

The datasignals are:

- EXTCPDIN[3L0]
- EXTCPDOUT[31:0]
- EXTCPDBE.

These signals and their use are described in:

. Pipeline-following signals on page 8-5

. Coprocessor interface handshaking on page 8-6
. Connecting coprocessors on page 8-11

. Not using an external coprocessor on page 8-13
. Undefined instructions on page 8-15

. Privileged instructions on page 8-16.

8-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Coprocessor Interface

8.3 Pipeline-following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions executing in the ARM720T processor pipeline. The coprocessors connect
to the ARM720T processor input data bus, RDATA[31:0], over which instructions are
fetched, and to HCLK and EXTCPCLKEN.

Itisessential that the two pipelinesremain in step at all times. When designing a
pipeline follower for a coprocessor, you must observe the following rules:

. At reset (HRESETn LOW), the pipeline must either be marked asinvalid, or
filled with instructions that do not decode to valid instructions for that
COProcessor.

. The coprocessor state must only change when EXTCPCLKEN isHIGH (except
for reset).

. An instruction must be loaded into the pipeline on the rising edge of HCL K, and
only when CPnOPC, CPnMREQ, and CPTBIT were all LOW in the previous
bus cycle.

These conditions indicate that this cycle isan ARM state opcode Fetch, so the
new opcode must be sampled into the pipeline.

. The pipeline must be advanced on the rising edge of HCLK when CPnOPC,
CPNnMREQ, and CPTBIT areal LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch is to refill the pipeline.

Any instructionsthat areflushed from the ARM720T processor pipeline never signa on
CPnCPI that they have entered Execute, so they are automatically flushed from the
coprocessor pipeline by the prefetches required to refill the pipeline.

There are no coprocessor instructions in the Thumb instruction set, so coprocessors
must monitor the state of the CPTBIT signal to ensure that they do not try to decode
pairs of Thumb instructions as ARM instructions.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-5

Coprocessor Interface

8.4

8.4.1

8.4.2

Coprocessor interface handshaking

The ARM720T core and any coprocessorsin the system perform a handshake using the

signals shown in Table 8-2.

Table 8-2 Handshaking signals

Signal

Direction Meaning

CPnCPI

ARM720T coreto Not coprocessor instruction
Coprocessor

EXTCPA

Coprocessor to ARM720T Coprocessor absent
core

EXTCPB

Coprocessor to ARM720T Coprocessor busy
core

These signals are explained in more detail in Coprocessor signaling on page 8-7.

The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction has a coprocessor number that matches the coprocessor 1D of the

coprocessor.

If theinstruction currently in the Decode stage is a coprocessor instruction:

1.
2.

The ARM720T core

The coprocessor attempts to execute the instruction.

The coprocessor signals back to the ARM720T core using EXTCPA and
EXTCPB.

Coprocessor instructions progress down the ARM720T processor pipeline in step with
the coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1.

The coprocessor instruction has reached the Execute stage of the pipeline. (It
might not if it was preceded by abranch.)

The instruction has passed its conditional execution tests.

A coprocessor in the system has signalled on EXTCPA and EXTCPB that it is
able to accept the instruction.

8-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

If all these requirements are met, the ARM720T processor signals by taking CPnCPI
LOW. This commits the coprocessor to the execution of the coprocessor instruction.

8.4.3 Coprocessor signaling
The coprocessor signals as follows:

Coprocessor absent
If acoprocessor cannot accept the instruction currently in Decode
it must leave EXTCPA and EXTCPB both HIGH.

Coprocessor present
If a coprocessor can accept an instruction, and can start that
instruction immediately, it must signa this by driving both
EXTCPA and EXTCPB LOW.

Coprocessor busy (busy-wait)
If acoprocessor can accept an instruction, but is currently unable
to processthat request, it can stall the ARM 720T core by asserting
busy-wait. Thisis signaled by driving EXTCPA LOW, but
leaving EXTCPB HIGH. When the coprocessor isready to start
executing the instruction it signals this by driving EXTCPB
LOW. Thisisshown in Figure 8-1.

LTS I I A B O e
Fetchstage | ADD | SUB) CPDO) TsT SWINE) X L
Decode stage | \ AbD) sus Y.cppo) TST ' SWINE L
_ \
Execute stage |) \ ADD) SuB) CPDO [TST JswiNEY
CPnCPI (from
core) < 54'\
EXTCPA (fi (
coproces(s(rJ?Sn \A\ /
EXTCPB (f
aoprooBeser L
RDATA[31:0] | 1 Fetch X 1 Fetch) I Fetch Y | Fetch X I Fetch) X) {1 Fetch Y I Fetch)
(ADD) (SUB) (CPDO) (TST) (SWINE)
) coprocessor busy-waiting -

Figure 8-1 Coprocessor busy-wait sequence

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-7

Coprocessor Interface

8.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can beinterrupted. If avalid FIQ or IRQ occurs
(the appropriate bit is cleared in the CSPR), the ARM720T processor abandons the
coprocessor instruction, and signals this by taking CPnCPI HIGH. A coprocessor that
is capable of busy-waiting must monitor CPnCPI to detect this condition. When the
ARMT720T core abandons a coprocessor instruction, the coprocessor a so abandonsthe
instruction and continues tracking the ARM720T processor pipeline.

—— Caution

It is essential that any action taken by the coprocessor whileiit is busy-waiting is
idempotent. The actions taken by the coprocessor must not corrupt the state of the
coprocessor, and must be repeatable with identical results. The coprocessor can only
change its own state after the instruction has been executed.

8.4.5 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, transfer data between a
register in the ARM720T processor register bank and aregister in the coprocessor
register bank. An example sequence for a coprocessor register transfer is shown in

Figure 8-2.
weee L L L L L L
Fetchstage) ADD) sUB | MCR | TST)| SWINE | \ L
Decode stage | { ApD Y suB Y. MCR TST ' SWINE) L
_ Y
Execute stage) \ ADD Y SuB J MCR (TST JswiNEY
CPnCPI / /
(from core) < Ei
EXTCPA (f
coproces(str)?gn -
EXTCPB (f \ /
copg)ces(sz)?gn
HRDATA[31:0] J I Fetch) I Fetch) | Fetch) | Fetch) I Fetch | J I Fetch X
(ADD) (SUB) (MCR) (TST) (SWINE)
HWDATA[31:0] oTx X
A—>C

Figure 8-2 Coprocessor register transfer sequence

8-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

8.4.6 Coprocessor data operations

The coprocessor data processing instructions, CDP, perform processing operations on
the dataheld in the coprocessor register bank. No information istransferred between the
ARMT720T core and the coprocessor as a result of this operation. An example sequence
isshownin Figure 8-3.

weee [L L L L
Fetchstage | ADD) SUB) CPDO) TST)SWINE X L
Decode stage | \ ADD Y su J.cPDO)} TST YSWINEY L
_ \
Executestage \ \ ApD) sSuB JcPDO) TST SWINE)
CPnCPI L
(from core) < E;_/
EXTCPA (f
coproces(sg?;n W
EXTCPB (from
coprocessor) \ /
HRDATA[31:0] \ I Fetch) I Fetch) I Fetch | | Fetch X | Fetch) | Fetch X
(ADD) (SUB) (CPDO) (TST) (SWINE)

Figure 8-3 Coprocessor data operation sequence

8.4.7 Coprocessor load and store operations

The coprocessor load and store instructions, LDC and STC, are used to transfer data
between a coprocessor and memory. They can be used to transfer either a single word
of data or anumber of the coprocessor registers. There isno limit to the number of
words of datathat can betransferred by asingle LDC or STC instruction, but by convention
a coprocessor must not transfer more than 16 words of datain a single instruction. An
example sequence is shown in Figure 8-4 on page 8-10.

Note

If you transfer more than 16 words of datain a single instruction, the worst-case
interrupt latency of the ARM720T processor increases.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-9

Coprocessor Interface

wee L L L L)L

Fatch —) ADD) suB)_tbc) TsT) SWINE Y \
n=4

]

Desciggg D \ ADD) suB) LDC J TST [SWINE Y

Execute — Y X \ ADD

stage — /

CPnCPI
(from core)

ENAlmE

—

LDC J_ TST JSWINE

N

EXTCPA

(from coprocessor) % /
\

EXTCPB
(from coprocessor)

Y I Fetch) | Fetch) I Fetch X I Fetch) | Fetch) CP data) CP data) CP data CP data | Fetch)
HRDATA[31:0] (ADD) (SUB) (CPDO) (TST) (SWINE)

Figure 8-4 Coprocessor load sequence

8-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

8.5 Connecting coprocessors

A coprocessor in asystem based on an ARM720T processor must have 32-bit
connections to:
. transfer data from memory (instruction stream and LDC)

. write data from the ARM720T processor (MCR)
. read data to the ARM720T processor (MRC).

8.5.1 Connecting a single coprocessor

You can connect a single coprocessor directly to the coprocessor interface of the
ARMT720T processor without any additional logic, as shown in Figure 8-5.
EXTCPDBE must be driven HIGH by the external coprocessor when it drives data on

EXTCPDOUT.

ARM720T (Rev 4)
processor

> Memory

A

AMBA interface

CPDOUT

3 ‘r

CPDIN

External coprocessor

Figure 8-5 Example coprocessor connections

Note
If you are building a system with an ETM7 and an ARM720T core, you must directly
connect the following buses:

. ETM7 input RDATA[31:0] to the ARM720T processor output
ETMRDATA[31:0]

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 8-11

Coprocessor Interface

. ETM7 input WDATA[31:0] to the ARM720T processor output
ETMWDATA[31:0].

Thisenables the ETM to correctly trace coprocessor instructions.

8.5.2 Connecting multiple coprocessors

If you have multiple coprocessorsin your system, connect the handshake signals as
shown in Table 8-3.

Table 8-3 Handshake signal connections

Signal Connection

CPnCPI Connect this signal to all coprocessors present in the system

CPAandCPB Theindividua CPA and CPB outputs from each coprocessor must be
ANDed together, and connected to the EXTCPA and EXTCPB inputson
the ARM720T processor

You must aso multiplex the output data from the coprocessors.

8-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

8.6 Not using an external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both EXTCPA and EXTCPB HIGH. This indicates that no external
coprocessors are present in the system. If any coprocessor instructions are received,
they take the undefined instruction trap so that they can be emulated in software if
required.

The coprocessor-specific outputs from the ARM720T core must be |eft unconnected:

CPNMREQ
CPNnTRANS
CPnOPC
CPnCPI
CPTBIT.

You must tie off EXTCPDOUT.

You must tie the external coprocessor data bus enable, EXTCPDBE, LOW.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 8-13

Coprocessor Interface

8.7 STC operations

If you are using an external coprocessor, you can perform STC operations in cachable
regions with the cache enabled. However, the STC operation is treated as a series of
nonsequential transfers on the AMBA bus.

8-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Coprocessor Interface

8.8 Undefined instructions

The ARM720T processor implementsfull ARM architecture v4T undefined instruction
handling. This means that any instruction defined in the ARM Architecture Reference
Manual as UNDEFINED, automatically causes the ARM720T processor to take the
undefined instruction trap. Any coprocessor instructions that are not accepted by a
coprocessor also result in the ARM720T processor taking the undefined instruction
trap.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 8-15

Coprocessor Interface

8.9 Privileged instructions
The output signal CPnTRANS enables you to implement coprocessors, or Coprocessor

instructions, that can only be accessed from privileged modes. The signal meanings are
shown in Table 8-4.

Table 8-4 CPnTRANS signal meanings

CPnTRANS Meaning

LOW User mode instruction

HIGH Privileged mode instruction

The CPNTRANS signal is sampled at the same time as the instruction, and is factored
into the coprocessor pipeline Decode stage.

Note

If a User-mode process (CPNTRANS LOW) tries to access a coprocessor instruction
that can only be executed in a privileged mode, the coprocessor must respond with
EXTCPA and EXTCPB HIGH. This causes the ARM720T processor to take the
undefined instruction trap.

8-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 9

Debugging Your System

Thischapter describes how to debug asystem based onan ARM 720T (Rev 4) processor.
It contains the following sections:

. About debugging your system on page 9-3

. Controlling debugging on page 9-5

. Entry into debug state on page 9-7

. Debug interface on page 9-12

. ARM720T core clock domains on page 9-13

. The EmbeddedI CE-RT macrocell on page 9-14

. Disabling Embedded| CE-RT on page 9-16

. Embedded| CE-RT register map on page 9-17

. Monitor mode debugging on page 9-18

. The debug communi cations channel on page 9-20
. Scan chains and the JTAG interface on page 9-24
. The TAP controller on page 9-27

. Public JTAG instructions on page 9-29

. Test data registers on page 9-32

. Scan timing on page 9-37

. Examining the core and the system in debug state on page 9-40

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-1

Debugging Your System

The program counter during debug on page 9-46
Priorities and exceptions on page 9-50

Watchpoint unit registers on page 9-51
Programming breakpoints on page 9-56
Programming watchpoints on page 9-59

Abort status register on page 9-61

Debug control register on page 9-62

Debug status register on page 9-65

Coupling breakpoints and watchpoints on page 9-67
Embedded! CE-RT timing on page 9-70.

9-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Debugging Your System

9.1 About debugging your system

The advanced debugging features of the ARM720T (Rev 4) processor makeit easier to
develop application software, operating systems, and the hardware itself.

9.1.1 Atypical debug system

The ARM720T (Rev 4) processor forms one component of a debug system that
interfaces from the high-level debugging that you perform to the low-level interface
supported by the ARM720T processor. Figure 9-1 shows atypical debug system.

Debug host
(host compiler
running ARM or
third party toolkit)

A 4

Protocol converter —
(for example Multi-
ICE) €

A 4

Debug target
(development
system containing —
ARM720T
processor)

Figure 9-1 Typical debug system
A debug system usually has three parts:

Debug host A computer that isrunning a software debugger such asthe ARM
Debugger for Windows (ADW). The debug host enables you to
issue high-level commands such as setting breakpoints or
examining the contents of memory.

Protocol converter This interfaces between the high-level commands issued by the
debug host and the low-level commands of the ARM720T
processor JTAG interface. Typically it interfaces to the host
through an interface such as an enhanced parallel port.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-3

Debugging Your System

Debug target The ARM720T (Rev 4) processor has hardware extensions that
ease debugging at the lowest level. These extensions enable you
to:

. halt program execution
. examine and modify the internal state of the core
. examine the state of the memory system

. execute abort exceptions, allowing real-time monitoring of
the core

. resume program execution.

The debug host and the protocol converter are system-dependent.

9-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.2 Controlling debugging

The major blocks of the ARM720T (Rev 4) processor are:
ARM CPU core This has hardware support for debug.
Embeddedl CE-RT macrocell

A set of registers and comparators that you use to generate debug
exceptions (such as breakpoints). This unit is described in The
EmbeddedI CE-RT macrocell on page 9-14.

TAP controller Controlsthe action of the scan chains using a JTAG serial
interface. For more details, see The TAP controller on page 9-27.

These blocks are shown in Figure 9-2.

ARM720T
ARM720T processor
EmbeddedICE-RT % System control
5 processor
‘ Scan chain 2 % §
R

ARM720T TAP controller
(also provides scan chain 0
control signals)

Figure 9-2 ARM720T (Rev 4) processor block diagram

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-5

Debugging Your System

9.2.1 Debug modes
You can perform debugging in either of the following modes:

Halt mode When the systemisin halt mode, the core enters debug statewhen
it encountersabreakpoint or awatchpoint. In debug state, the core
is stopped and isolated from the rest of the system. When debug
has completed, the debug host restores the core and system state,
and program execution resumes.

For more information, see Entry into debug state on page 9-7.

Monitor mode When the system is in monitor mode, the core does not enter
debug state on a breakpoint or watchpoint. Instead, an Instruction
Abort or Data Abort isgenerated and the core continuesto receive
and service interrupts as normal. You can use the abort status
register to establish whether the exception was dueto abreakpoint
or watchpoint, or to a genuine memory abort.

For moreinformation, seeMonitor mode debugging on page 9-18.

9.2.2 Examining system state during debugging

In both halt mode and monitor mode, the JTAG-style serial interface enables you to
examinetheinternal state of the core and the externa state of the system while system
activity continues.

In halt mode, this enables instructions to be inserted serialy into the core pipeline
without using the external data bus. For example, when in debug state, a Store Multiple
(ST™) can be inserted into the instruction pipeline to export the contents of the
ARMT720T processor registers. This data can be serially shifted out without affecting
the rest of the system. For more information, see Examining the core and the systemin
debug state on page 9-40.

In monitor mode, the JTAG interfaceis used to transfer data between the debugger and
asimple monitor program running on the ARM720T core.

For detailed information about the scan chains and the JTAG interface, see Scan chains
and the JTAG interface on page 9-24.

9-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.3 Entry into debug state

If the system isin halt mode, any of the following types of interrupt force the processor
into debug state:

. abreakpoint (a given instruction fetch)

. awatchpoint (a data access)

. an external debug request.

Note

In monitor mode, the processor continues to execute instructionsin real time, and will
take an abort exception. The abort status register enables you to establish whether the
exception was due to a breakpoint or watchpoint, or to a genuine memory abort.

You can use the Embeddedl CE-RT logic to program the conditions under which a
breakpoint or watchpoint can occur. Alternatively, you can usethe DBGBREAK signal
to enable external logic to flag breakpoints or watchpoints and monitor the following:
. address bus

. data bus

. control signals.

Thetiming isthesamefor externally-generated breakpoi nts and watchpoints. Datamust
always be valid around therising edge of HCL K. When this datais an instruction to be
breakpointed, the DBGBREAK signal must be HIGH around the rising edge of
HCLK. Similarly, when the dataisfor aload or store, asserting DBGBREAK around
therising edge of HCL K marks the data as watchpointed.

When a breakpoint or watchpoint is generated, there might be a delay before the
ARMT720T core enters debug state. When it enters debug state, the DBGACK signal is
asserted. Thetiming for an externally-generated breakpoint is shown in Figure 9-3 on

page 9-8.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-7

Debugging Your System

9.3.1

HCLK

HADDR[31:0]

DATA[31:0]

DBGBREAK

DBGACK

HTRANSI[1:0]

- X X X

) N\ [\ (
) | | 7
Memory cycles ’,'I X Internal cycles

Figure 9-3 Debug state entry

Entry into debug state on breakpoint

The ARM720T (Rev 4) processor marks instructions as being breakpointed as they
enter theinstruction pipeline, but the core does not enter debug state until theinstruction
reaches the Execute stage.

Breakpointed instructions are not executed. Instead, the ARM720T core enters debug
state. When you examine the internal state, you see the state before the breakpointed
instruction. When your examination is complete, remove the breakpoint. Program
execution restarts from the previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is alwaystaken if the systemisin halt mode. The ARM720T core enters
debug state regardless of whether the instruction condition is met.

A breakpointed instruction does not cause the ARM720T core to enter debug state
when:

. A branch or awrite to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the ARM720T processor flushes the instruction
pipeline, so canceling the breakpoint.

. An exception occurs, causing the ARM720T processor to flush the instruction
pipeline, and cancel the breakpoint. In normal circumstances, on exiting from an
exception, the ARM720T core branches back to the instruction that would have
been executed next before the exception occurred. In this case, the pipelineis
refilled and the breakpoint is reflagged.

9-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.3.2 Entryinto debug state on watchpoint

Watchpoints occur on data accesses. In halt mode, the core processing stops. |n monitor
mode, an abort exception is executed (see Abort on page 2-19). A watchpoint isalways
taken, but a core in halt mode might not enter debug state immediately because the
current instruction always completes. If the current instruction is a multiword load or
store (an LDM or STM), many cycles can elapse before the watchpoint is taken.

On awatchpoint, the following sequence occurs:

1. Thecurrent instruction completes.

2. All changesto the core state are made.

3. Load datais written into the destination registers.
4 Base write-back is performed.

Note

Watchpoints are similar to Data Aborts. The difference isthat when a Data Abort
occurs, although theinstruction completes, the ARM720T core prevents al subseguent
changesto the ARM720T processor state. This action enables the abort handler to cure
the cause of the abort, so the instruction can be re-executed.

If awatchpoint occurs when an exception is pending, the core enters debug state in the
same mode as the exception.

9.3.3 Entryinto debug state on debug request

An ARM720T corein halt mode can be forced into debug state on debug request in
either of the following ways:

. through Embedded| CE-RT programming (see Programming breakpoints on
page 9-56, and Programming watchpoints on page 9-59.)

. by asserting the DBGRQ pin.

When the DBGRQ pin has been asserted, the core normally enters debug state at the
end of the current instruction. However, when the current instruction is a busy-waiting
accessto acoprocessor, theinstruction terminates, and the ARM 720T core entersdebug
state immediately. Thisis similar to the action of nIRQ and nFIQ.

9.3.4 Action of the ARM720T processor in debug state

When the ARM720T processor enters debug state, the core forcesHTRANS[1:0] to
indicateinternal cycles. Thisaction enablestherest of the memory system to ignore the
ARMT720T core and to function as normal. Because the rest of the system continues to
operate, the ARM720T core is forced to ignore aborts and interrupts.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-9

Debugging Your System

9.35

Clocks

—— Caution
Do not reset the core while debugging, otherwise the debugger loses track of the core.

Note

The system must not changethe ETM BI GEND signal during debug. From the point of
view of the programmer, if ETM BIGEND changes, the ARM720T processor changes,
with the debugger unawarethat the core hasreset. You must also ensurethat HRESETn
isheld stable during debug. When the system applies reset to the ARM720T processor
(that is, HRESETn isdriven LOW), the ARM720T processor state changes with the
debugger unaware that the core has reset.

The system and test clocks must be synchronized externally to the macrocell. The ARM
Multi-1CE debug agent directly supports one or more cores within an ASIC design.
Synchronizing off-chip debug clocking with the ARM720T macrocell requires a
three-stage synchronizer. The off-chip device (for example, Multi-ICE) issuesa TCK
signal and waitsfor the RTCK (Returned T CK) signal to come back. Synchronization
is maintai ned because the off-chip device does not progressto the next TCK until after
RTCK isreceived.

Figure 9-4 on page 9-11 shows this synchronization.

9-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

nTRST | o DBGnTRST
| » Reset circuit »
TDO DBGTDO
RTCK :|| ™ DBGTCKEN >
| |)
TCK synchronizer
TCK |
| D Q D Q D QH
HCLK F
T™MS b ENg DBGTMS=
HCLK
TDI SENG DBGTD;
HCLK
Input sample
and hold
Multi_ICE interface pads
HCLK

Note

ARM7TDMI-S macrocell

Figure 9-4 Clock synchronization

All the D-types shown in Figure 9-4 are reset by DBGNTRST .

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

9-11

Debugging Your System

9.4 Debug interface

The ARM720T processor debug interfaceisbased on | EEE Std. 1149.1- 1990, Standard
Test Access Port and Boundary-Scan Architecture. Refer to this standard for an
explanation of thetermsused in this chapter, and for adescription of the TAP controller
states.

9.4.1 Debug interface signals
There are three primary external signals associated with the debug interface:

. DBGBREAK and DBGRQ are system requests for the ARM720T core to enter
debug state

Note

Both DBGRQ and DBBREAK must be LOW when the core has entered debug
state. If they are not, these signal s affect the use of the DBGBREAK flag on scan
chain 1, which controls the way the core goesinto and out of debug. Theresultis
that the core performs an unexpected series of debug and system speed accesses,
and the debugger loses control of the core.

. DBGACK isused by the ARM720T coreto flag back to the system that itisin
debug state.

9-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.5 ARM720T core clock domains

The ARM720T processor has asingle clock, HCLK, that is qualified by two clock
enables:

. HCLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

When the ARM720T processor isin debug state, DBGTCKEN conditions HCLK to
clock the core.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-13

Debugging Your System

9.6 The EmbeddedICE-RT macrocell

The ARM720T processor EmbeddedI CE-RT macrocell module provides integrated
on-chip debug support for the ARM720T core.

The Embeddedl CE-RT moduleis connected directly to the core and therefore functions
on the virtual address of the processor after relocation by the FCSE PID. You program
the Embedded| CE-RT macrocell serially using the ARM720T processor TAP
controller.

Figure 9-5 shows the relationship between the core, Embeddedl CE-RT, and the TAP
controller, showing only the signals that are pertinent to Embedded| CE-RT.

@¢— DBGEXT[1:0]—

—— COMMRX—p
—— COMMTX—>

ARM720-T EmbeddedICE-RT

——DBGRNG[1:0]—p>
(Rev 4) core macrocell [1:0]

DBGACK—»
¢—DBGBREAK——
«¢——DBGRQ

«¢——DBGEN

<¢—DBGTCKEN——
<¢——DBGTMS
<¢——DBGTDI
DBGTDO—p»

——DBGNTRST—> TAP

HCLK

Figure 9-5 The ARM720T (Rev 4) core, TAP controller, and EmbeddedICE-RT macrocell

9-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The Embedded| CE-RT logic comprises the following:

Two real-time watchpoint units

You can program one or both watchpoint units to halt the
execution of instructions by the core. Execution halts when the
values programmed into the Embeddedl CE-RT logic match the
values currently appearing on the address bus, data bus, and
various control signals. You can mask any bit so that itsvalue does
not affect the comparison.

You can configure each watchpoint unit to be either awatchpoint
(monitoring dataaccesses) or abreakpoint (monitoring instruction
fetches). Watchpoints and breakpoints can be data-dependent.

For more details, see Watchpoint unit registers on page 9-51.

Abort statusregister

This register identifies whether an abort exception entry was
caused by a breakpoint, awatchpoint, or areal abort. For more
information, see Abort status register on page 9-61.

Debug Communications Channel (DCC)

The DCC passes information between the target and the host
debugger. For more information, see The debug communications
channel on page 9-20.

In addition, two independent registers provide overall control of Embeddedl CE-RT
operation. These are described in the following sections:

. Debug control register on page 9-62
. Debug status register on page 9-65.

Thelocationsof the Embeddedl CE-RT registersare given in Embedded| CE-RT register
map on page 9-17.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-15

Debugging Your System

9.7 Disabling EmbeddedICE-RT
You can disable Embedded| CE-RT in two ways:

Per manently By wiring the DBGEN input LOW.

When DBGEN is LOW:
. DBGBREAK and DBGRQ areignored by the core
. DBGACK isforced LOW by the ARM720T core

. the IFEN input to the coreis forced HIGH, so interrupts
pass through to the processor uninhibited

. the Embedded| CE-RT logic enters |ow-power mode.

—— Caution

Hard-wiring theDBGEN input LOW permanently disables debug
access. However, you must not rely on thisfor system security.

Temporarily By setting bit 5 in the debug control register (described in Debug
control register on page 9-62). Bit 5 is aso known asthe
Embedded| CE-RT disable bit.

You must set bit 5 before doing either of the following:
. programming breakpoint or watchpoint registers
. changing bit 4 of the debug control register.

9.7.1 EmbeddedICE-RT timing

Embedded| CE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the falling
edgeof HCL K. Thismeansthat you must all ow sufficient set-up and hold timefor these
signals.

9-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

9.8 EmbeddedICE-RT register map

Debugging Your System

The locations of the Embedded| CE-RT registers are shown in Table 9-1.

Table 9-1 Function and mapping of EmbeddedICE-RT registers

Address Width Function

b00000 6 Debug control

b00001 5 Debug status

b00100 32 Debug Communications Channel
(DCC) control register

b00101 32 Debug Communications Channel
(DCC) dataregister

b01000 32 Watchpoint 0 address value

b01001 32 Watchpoint 0 address mask

b01010 32 Watchpoint 0 data value

b01011 32 Watchpoint 0 data mask

b01100 9 Watchpoint O control value

b01101 8 Watchpoint O control mask

b10000 32 Watchpoint 1address value

b10001 32 Watchpoint 1 address mask

b10010 32 Watchpoint 1 data value

b10011 32 Watchpoint 1 data mask

b10100 9 Watchpoint 1 control value

b10101 8 Watchpoint 1 control mask

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-17

Debugging Your System

9.9 Monitor mode debugging

The ARM720T (Rev 4) processor containslogic that enablesthe debugging of asystem
without stopping the core entirely. This means that critical interrupt routines continue
to be serviced while the core is being interrogated by the debugger.

9.9.1 Enabling monitor mode

The debugging mode is controlled by bit 4 of the debug control register (described in
Debug control register on page 9-62). Bit 4 of this register is aso known as the monitor
mode enable bit:

Bit 4 set

Bit 4 clear

Enables the monitor mode features of the ARM 720T processor. When
this bit is set, the EmbeddedI CE-RT logic is configured so that a
breakpoint or watchpoint causesthe ARM720T coreto enter abort mode,
taking the Prefetch or Data Abort vectors respectively.

Monitor mode debugging is disabled and the system is placed into halt
mode. In halt mode, the core enters debug state when it encounters a
breakpoint or watchpoint.

9.9.2 Restrictions on monitor-mode debugging

There are severd restrictions you must be aware of when the ARM coreis configured
for monitor-mode debugging:

. Breakpoints and watchpoints cannot be data-dependent in monitor mode. No
support is provided for use of the range functionality. Breakpoints and
watchpoints can only be based on the following:

instruction or data addresses

external watchpoint conditioner (DBGEXT[0] or DBGEXTI[1])
User or privileged mode access (CPNTRANS)

read/write access for watchpoints (HWRITE)

access size (watchpoints SIZE[1:0]).

. External breakpoints or watchpoints are not supported.

. No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort
status register in coprocessor 14 (see Abort status register on page 9-61).

9-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The monitor mode enabl e bit doesnot put the ARM 720T processor into debug state. For
this reason, it is necessary to change the contents of the watchpoint registers while
external memory accesses are taking place, rather than changing them when in debug
state where the core is halted.

If there is a possibility of false matches occurring during changes to the watchpoint

registers (caused by old datain some registers and new data in others) you must:

1. Disablethe watchpoint unit by setting bit 5 in the debug control register (also
known as the EmbeddedI CE-RT disable bit).

2. Poll the debug control register until the Embeddedl CE-RT disablebit isread back
as set.

3. Changethe other registers.

4. Re-enablethewatchpoint unit by clearing the Embeddedl CE-RT disablebit inthe
debug control register.

See Debug control register on page 9-62 for more information about controlling core
behavior at breakpoints and watchpoints.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-19

Debugging Your System

9.10 The debug communications channel

The ARM720T (Rev 4) Embeddedl CE-RT macrocell containsaDebug Communication
Channel (DCC) for passing information between the target and the host debugger. This
isimplemented as coprocessor 14.

The DCC comprisestwo registers, asfollows:

DCC control register

A 32-bit register, used for synchronized handshaking between the
processor and the asynchronous debugger. For more details, see
DCC control register.

DCC data register

A 32-bit register, used for datatransfers between the debugger and
the processor. For more details, see Communications through the
DCC on page 9-22.

Theseregistersoccupy fixed locationsin the Embedded CE-RT memory map, as shown
in Table 9-1 on page 9-17. They are accessed from the processor using MCR and MRC
instructions to coprocessor 14.

The registers are accessed as follows:
By thedebugger Through scan chain 2 in the usual way.

By the processor ~ Through coprocessor register transfer instructions.

9.10.1 DCC control register

The DCC control register is read-only and enables synchronized handshaking between
the processor and the debugger. The register format is shown in Figure 9-6.

313029 28 27 26 25 24 23 22212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0/0|0|1 W|R

Figure 9-6 DCC control register

9-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The DCC control register bit assignments are shown in Table 9-2.

Table 9-2 DCC control register bit assignments

Bit Function

31:28 Contain afixed pattern that denotes the
EmbeddedI CE-RT version number, in this case
b0001.

27:2 Reserved.

1 The write control bit.

If thisbit isclear, the DCC data write register isready
to accept data from the processor.

If this bit is set, there is datain the DCC data write
register and the debugger can scan it out.

0 Theread contral bit.
If this bit isclear, the DCC dataread register is ready
to accept data from the debugger.
If this bit is set, the DCC data read register contains
new data that has not been read by the processor, and
the debugger must wait.

Note

If execution is halted, bit 0 might remain asserted. The debugger can clear it by writing
to the DCC control register.

Writing to thisregister is rarely necessary, because in normal operation the processor
clearsbit O after reading it.

Instructions
The following instructions must be used:

MRC CP14, 0, Rd, (0, CO
Returns the value from the DCC control register into the
destination register Rd.

MCR CP14, @, Rn, C1, CO

Writes the value in the source register Rn to the DCC datawrite
register.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-21

Debugging Your System

MRC CP14, 0, Rd, (1, (O

Returns the value from the DCC data read register into the
destination register Rd.

Note

The Thumb instruction set does not contain coprocessor instructions, soitis
recommended that these are accessed using SWI instructions when in Thumb state.

9.10.2 Communications through the DCC

M essages can be sent and received through the DCC.

Sending a message to the debugger
Messages are sent from the processor to the debugger as follows:

1. Whenthe processor wishesto send amessage to Embedded| CE-RT, it first checks
that the communicationsdatawriteregister isfreefor use. The processor doesthis
by reading the DCC contral register to check the status of the W hit:

a IftheW bitisclear, the DCC datawrite register is empty and a messageis
written by aregister transfer to the coprocessor.

b. IftheW bitisset, thisimpliesthat previously-written data has not been read
by the debugger. The processor must repeatedly read the DCC control
register until the W bit is clear.

2. WhentheW bitisclear, amessage iswritten by aregister transfer to coprocessor
14. The datatransfer occurs from the processor to the DCC data write register, so
the W bit is set in the DCC control register.

3. Whenthe debugger reads the DCC control register through the JTAG interface, it
sees a synchronized version of both the R and W bits:

a When the debugger seesthat the W bit is set, it can read the
communications data write register and scan the data out.

b. Theaction of reading thisdataregister clearsthe W bit of the DCC control
register. At this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message from the processor to the debugger. In this case, the debugger reads the R bit
of the debug comms control register.

9-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The sequence for receiving messages from the debugger is as follows:

1. Thedebugger reads the R bit of the DCC control register:

a IftheRbitisclear, thedataread register isfree, and datacan be placed there
for the processor to read.

b. If theR bit isset, previously-deposited data has not yet been collected, so
the debugger must wait.

2. Whenthe communications dataread register isfree, dataiswrittenthere using the
JTAG interface. The action of thiswrite sets the R bit in the DCC control register.

3. Theprocessor reads the DCC control register:

a IftheRbitisset, thereisdatathat can be read using an MRC instruction to
coprocessor 14. The action of thisload clearsthe R bit in the debug comms
control register.

b. If theR bit isclear, thisindicates that the data has been taken and the
process can how be repeated.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-23

Debugging Your System

9.11 Scan chains and the JTAG interface

There are three JTAG-style scan chains within the ARM720T (Rev 4) processor. These
alow debugging and EmbeddedI CE-RT programming.

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For more
details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

9.11.1 Scan chain implementation

The three scan paths on the ARM720T (Rev 4) processor are referred to as scan chain
1, scan chain 2, and scan chain 15. They are shown in Figure 9-7.

Debug scan chain 0 is not implemented in the ARM720T (Rev 4) processor, but all the
control signals are provided at the macrocell boundary. This enables you to design your
own boundary scan chain wrapper if required.

ARM720T
ARM720T processor
EmbeddedICE-RT % System control
5 processor
‘ Scan chain 2 % §
2

ARM720T TAP controller
(also provides scan chain 0
control signals)

Figure 9-7 ARM720T processor scan chain arrangements

9-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Scan chain 1

Scan chain 1 provides serial access to the core data bus HRDATA/HWDATA and the
DBGBREAK signal.

There are 33 bitsin this scan chain, the order being (from serial datain to out):
. data bus bits 0 through 31
. the DBGBREAK bit (the first to be shifted out).

Scan chain 2

Scan chain 2 enables access to the Embedded| CE-RT registers. See Test data registers
on page 9-32 for details.

Scan chain 15

Scan chain 15 is dedicated to the system control coprocessor registers (the CP15
registers).

Thereare 37 bitsin scan chain 15. From DBGTDI to DBGTDO, the order of the bitsis:
. read/write bit

. instruction encoding bits[3:0] (see Table 9-3)

. data bus bits 31 through 0.

Bit 0 of the datafield isthefirst bit to be scanned in and the first to be scanned out.
The 4-bit instruction encodings for scan chain 15 are shown in Table 9-3.

Table 9-3 Instruction encodings for scan chain 15

Encoding Instruction

b0000 ID register access (read only)

b0001 Control register access (read/write)

b0010 TTB register access (read/write)

b0011 DAC register access (read/write)

b0100 FSR register access (read/write)

b0101 FAR register access (read/write)

b0110 FCSE PID register access (read/write)

b0111 TRACE PROCID register access (read/write)

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-25

Debugging Your System

Table 9-3 Instruction encodings for scan chain 15 (continued)

Encoding Instruction

b1000 Invalidate cache (write only)
b1001 Invalidate TLB (write only)
b1010 Invalidate TLB single entry (write only)

Note
The instructions shown in Table 9-3 on page 9-25 are only executed during update. To
perform aread, the processor must return to capture state and then shift the result out.
In the capture stage, the instruction field of scan chain 15is RAZ.

9.11.2 Controlling the JTAG interface

The JTAG interfaceis driven by the currently-loaded instruction in the instruction
register (described in Instruction register on page 9-33). The loading of instructionsis
controlled by the Test Access Port (TAP) controller.

For more information about the TAP controller, see The TAP controller on page 9-27.

9-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.12 The TAP controller

The TAP controller isastate machine that determinesthe state of the boundary-scan test
signals DBGTDI and DBGTDO. Figure 9-8 shows the state transitions that occur in
the TAP controller.

Test-Logic Reset \ 4
OxF -

tms=1

n ~ Select-DR-Scan \ims=1 ~ Select-IR-Scan tms=1
w 0x7 g Ox4

0xC
fms=0 A

Pause-IR
0xB
tms=0

Exit2-DR
0x0

tms=1 tms=1
Update-DR Update-IR
0x5 0xD

tms=1

tms=0

4

Figure 9-8 Test access port controller state transitions

From |EEE Std 1149.1-1990. Copyright 2001 IEEE. All rights reserved.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-27

Debugging Your System

9.12.1 Resetting the TAP controller

To force the TAP controller into the correct state after power-up, you must apply areset
pulse to the DBGnTRST signal:

. When the boundary-scan interface isto be used, DBGNTRST must be driven
LOW and then HIGH again.

. When the boundary-scan interface is not to be used, you can tiethe DBGNTRST
input LOW.

The action of reset is as follows:

1. Systemmodeisselected. Thismeansthat the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. ThelDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state and HCLK is pulsed
while enabled by DBGTCK EN, the contents of the D register are clocked out of
DBGTDO.

9-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.13 Public JTAG instructions
Table 9-4 shows the public JTAG instructions.

Table 9-4 Public instructions

Instruction Binary code
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
RESTART 0100

In the following descriptions, the ARM720T (Rev 4) processor samplesDBGTDI and
DBGTM S ontherising edge of HCLK with DBGTCKEN HIGH. The TAP controller
states are shown in Figure 9-8 on page 9-27.

9.13.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and
DBGTDO:

. In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

. Inthe SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. Inthe UPDATE-DR state, the scan register of the selected scan chain is connected
between DBGTDI and DBGTDO, and remains connected until a subsequent
SCAN_N instruction is issued.

. Onreset, scan chain O is selected by default.
The scan path select register is 4 bits long in thisimplementation, although no finite
length is specified.
9.13.2 INTEST (1100)
The INTEST instruction places the selected scan chain in test mode:

. The INTEST instruction connects the sel ected scan chain between DBGTDI and
DBGTDO.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-29

Debugging Your System

. When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

. In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cellsis captured.

. Inthe SHIFT-DR state, the previously-captured test datais shifted out of the scan
chain through the DBGTDO pin, while new test data is shifted in through the
DBGTDI pin.

Single-step operation of the coreis possible using the INTEST instruction.

9.13.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or

ID register) between DBGTDI and DBGTDO. The ID register is a 32-bit register that
enables the manufacturer, part number, and version of a component to be read through
the TAP. See ARM720T processor deviceidentification (ID) coderegister on page 9-32
for the details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, al the scan cells
are placed in their normal (system) mode of operation:

. In the CAPTURE-DR state, the device identification codeis captured by the ID
register.

. In the SHIFT-DR state, the previously captured device identification codeis
shifted out of the ID register through the DBGTDO pin, while datais shifted into
the ID register through the DBGTDI pin.

. In the UPDATE-DR state, the ID register is unaffected.

9.134 BYPASS (1111)

The BY PASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI and DBGTDO.

When the BY PASS instruction is loaded into the instruction register, al the scan cells
assumetheir normal (system) mode of operation. The BY PASSinstruction hasno effect
on the system pins:

. Inthe CAPTURE-DR state, alogic 0 is captured the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register through
DBGTDI and shifted out on DBGTDO after adelay of one HCLK cycle. The
first bit to shift out isazero.

9-30

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

. The bypass register is not affected in the UPDATE-DR state.
All unused instruction codes default to the BY PASS instruction.

9.13.5 RESTART (0100)

The RESTART instruction restarts the processor on exit from debug state. The
RESTART instruction connects the bypass register between DBGTDI and DBGTDO.
The TAP controller behaves as if the BY PASS instruction had been |oaded.

The processor exits debug state when the RUN-TEST/IDLE state is entered.

For more information, see Exit from debug state on page 9-44.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-31

Debugging Your System

9.14 Test data registers

The six test data registers that can connect between DBGTDI and DBGTDO are
described in the following sections:

. Bypass register

. ARM720T processor device identification (ID) code register
. Instruction register on page 9-33

. Scan path select register on page 9-33

. Scan chain 1 on page 9-35

. Scan chain 2 on page 9-35.

In the following descriptions, datais shifted during every HCLK cycle when
DBGTCKEN enableis HIGH.

9.14.1 Bypass register

Purpose

Length

Operating mode

Bypasses the device during scan testing by providing a path
between DBGTDI and DBGTDO.

1 hit.

When the BY PASS instruction is the current instruction in the
instruction register, serial datais transferred from DBGTDI to
DBGTDO in the SHIFT-DR state with adelay of one HCLK
cycle enabled by DBGTCKEN.

Thereis no parallel output from the bypass register.

A logicOisloaded from the parallel input of the bypassregister in
the CAPTURE-DR state.

9.14.2 ARM720T processor device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.
Length 32 bits. The format of the ID code register is as shown in
Figure 9-9.
31 28 27 12 1 10
Version Part number Manufacturer identity | 1

Figure 9-9 ID code register format

9-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The default device identification code is 0x7f1fofof.

Operating mode

9.14.3 Instruction register
Purpose
Length

Operating mode

9.14.4 Scan path select register
Purpose
Length

Operating mode

When the IDCODE instruction is current, the ID register is
selected as the serial path between DBGTDI and DBGTDO.

Thereis no parallel output from the ID register.

The 32-bit deviceidentification code isloaded into the I D register
from its parallel inputs during the CAPTURE-DR state.

Changes the current TAP instruction.
4 bits.

In the SHIFT-IR state, the instruction register is selected as the
serial path between DBGTDI, and DBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded
into thisregister. Thisvaueis shifted out during SHIFT-IR (least
significant bit first), while a new instruction is shifted in (least
significant bit first).

During the UPDATE-IR state, the valuein theinstruction register
becomes the current instruction.

On reset, IDCODE becomes the current instruction.
Thereis no parity bit.

Changes the current active scan chain.
4 bits.

SCAN_N asthecurrent instruction in the SHIFT-DR state selects
the scan path select register as the seria path between DBGTDI,
and DBGTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded
into thisregister. Thisvalueisloaded out during SHIFT-DR (least
significant bit first), while anew valueisloaded in (least
significant bit first). During the UPDATE-DR state, the value in
the register selects a scan chain to become the currently active
scan chain. All additiond instructions, such as INTEST, then
apply to that scan chain.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-33

Debugging Your System

The currently-sel ected scan chain changes only when aSCAN_N
instruction is executed, or when areset occurs. On reset, scan
chain 0 is selected as the active scan chain.

Table 9-5 shows the scan chain number all ocation.

Table 9-5 Scan chain number allocation

Scan chain number Function

0 (User-implemented)

1 Debug

2 EmbeddedI CE-RT
programming

3 Reserved?

4 Reserveda

8 Reserveda

a When selected, reserved scan chains scan out
Z€Eros.

9.145 Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the Embeddedl CE-RT
hardware for programming purposes. Each scan chain cell is simple and comprises a
serial register and a multiplexor.

The scan cells perform three basic functions:

. capture
. shift
. update.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, thisvalue is output serially. The value applied
to the core from an input cell is either the system input, or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the seria
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output, or the contents of the serial register.

9-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

All the control signals for the scan cells are generated internaly by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of the

TAP state machine.

Scan chain 1

Purpose

Length

Scan chain order

Scan chain 1 is used for communication between the debugger,
and the ARM720T core. It is used to read and write data, and to
scan instructionsinto the pipeline. The SCAN_N TAP instruction
can be used to select scan chain 1.

33 hits, 32 bits afor the data value and 1 bit for the scan cell on
the DBGBREAK coreinput.

From DBGTDI to DBGTDO, the ARM720T processor data bits,
bits 0 to 31, then the 33rd bit, the DBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:

. Under normal INTEST test conditions, it enables a known value to be scanned
into the DBGBREAK input.

. While debugging, the value placed in the 33rd bit determines whether the
ARMT720T core synchronizes back to system speed before executing the
instruction. See System speed access on page 9-48 for more details.

. After the ARM720T core has entered debug state, the value of the 33rd bit on the
first occasion that it is captured, and scanned out tells the debugger whether the
core entered debug state from a breakpoint (bit 33 LOW), or from a watchpoint

(bit 33 HIGH).

Scan chain 2

Purpose

Length

Scan chain order

Scan chain 2 provides access to the Embedded| CE-RT registers.
To dothis, scan chain 2 must be selected using the SCAN_N TAP
controller instruction, and then the TAP controller must be put in
INTEST mode.

38 hits.

From DBGTDI to DBGTDO, the read/write bit, the register
address hits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the seria register. Bits 32 to 36 specify
the address of the Embedded| CE-RT register to be accessed.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-35

Debugging Your System

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 =read, 1 = write). See Figure 9-12 on page 9-52 for more details.

9-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.15 Scan timing

Figure 9-10 provides general scan timing information.

HCLK
DBGTCKEN
t —» <+
istcken
—>
tihtcken
DBGTMS
DBGTDI -
tistctl
—> <«
tihtctl
DBGTDO X X
—> <
—» — tohtdo
ovtdo

Figure 9-10 Scan timing

9.15.1 Scan chain 1 cells

The ARM720T (Rev 4) processor provides data for scan chain 1 cells as shown in
Table 9-6.

Table 9-6 Scan chain 1 cells

Number Signal Type

1 DATAIQ] Input/output
2 DATA[1] Input/output
3 DATA[2] Input/output
4 DATA[3] Input/output
5 DATA[4] Input/output
6 DATA[5] Input/output
7 DATA[6] Input/output

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-37

Debugging Your System

Table 9-6 Scan chain 1 cells (continued)

Number Signal Type

8 DATA[7] Input/output
9 DATA[8] Input/output
10 DATA[9] Input/output
11 DATA[10] Input/output
12 DATA[11] Input/output
13 DATA[12] Input/output
14 DATA[13] Input/output
15 DATA[14] Input/output
16 DATA[15] Input/output
17 DATA[16] Input/output
18 DATA[17] I nput/output
19 DATA[18] Input/output
20 DATA[19] Input/output
21 DATA[20] Input/output
22 DATA[21] Input/output
23 DATA[22] Input/output
24 DATA[23] Input/output
25 DATA[24] Input/output
26 DATA[25] Input/output
27 DATA[26] Input/output
28 DATA[27] Input/output
29 DATA[28] Input/output
30 DATA[29] Input/output

9-38 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Table 9-6 Scan chain 1 cells (continued)

Number Signal Type
31 DATA[30] Input/output
32 DATA[31] Input/output
33 DBGBREAK Input

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-39

Debugging Your System

9.16

Examining the core and the system in debug state

When the ARM720T (Rev 4) processor isin debug state, you can examine the core and
system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug state from Thumb state or ARM state, by
examining bit 4 of the EmbeddedI CE-RT debug status register, as follows:

Bit 4 HIGH The core has entered debug from Thumb state.
Bit 4LOW The core has entered debug from ARM state.

9.16.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of
actionisfor the debugger to force the core back into ARM state. The debugger can then
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core:

STR RO, [RO]; Save RO before use
MOV R@, PC ; Copy PC into RO

STR RO, [RO]; Now save the PC in RO
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

Note

Because all Thumb instructions are only 16 bits long, you can repeat the instruction
when shifting scan chain 1. For example, the encoding for BX RO is 0x4700, so when
0x47004700 shiftsinto scan chain 1, the debugger does not have to keep track of the half
of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions below to determine the state of the
processor.

With the processor in the ARM state, the first instruction to execute is typically:

STM RO, {RO-R15}

9-40

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Thisinstruction causes the contents of the registers to appear on the data bus. You can
then sample and shift out these values.

Note

The use of r0 asthe base register for the STM isonly for illustration, any register can
be used.

After you have determined the values in the current bank of registers, you might wish
to access the banked registers. To do this, you must change mode. Normally, amode
change can occur only if the coreisalready in a privileged mode. However, whilein
debug state, a mode change from one mode into any other mode can occur.

The debugger must restore the origina mode before exiting debug state. For example,
if the debugger was requested to return the state of the User mode registers, and FIQ
mode registers, and debug state was entered in Supervisor mode, the instruction
sequence might be:

STM RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determine current mode

BIC RO, Ox1F; Clear mode bits

ORR RO, 0x10; Select user mode

MSR CPSR, RO; Enter USER mode

STM RO, {R13,R14}; Save register not previously visible
ORR RO, 0x01; Select FIQ mode

MSR CPSR, RO; Enter FIQ mode

STM RO, {R8-R14}; Save banked FIQ registers

All theseinstructions execute at debug speed. Debug speed is much slower than system
speed. This is because between each core clock, 33 clocks occur in order to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM720T processor isfully static. However, you
cannot use this method for determining the state of the rest of the system.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-41

Debugging Your System

Whilein debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

. all data processing operations

. all load, store, load multiple, and store multiple instructions

. MSR and MRS.

9.16.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur with the clock qualified by HCLKEN. To perform a memory
access, HCLK EN must be used to force the ARM720T processor to run in normal
operating mode. Thisis controlled by bit 33 of scan chain 1.

Aninstruction placed in scan chain 1 with bit 33, the DBGBREAK bit, LOW executes
at debug speed. To execute an instruction at system speed, theinstruction prior to it must
be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART
causes the ARM720T processor to:

1. Switch automatically to HCLKEN control.
2. Executetheinstruction at system speed.
3. Reenter debug state.

When the instruction has completed, DBGACK is HIGH and the core revertsto
DBGTCKEN control. It is now possible to select INTEST in the TAP controller and
resume debugging.

The debugger must ook at both DBGACK and HTRANS[1: 0] to determine whether a
system speed instruction has completed. To access memory, the ARM720T core drives
both bits of HTRANS[1:0] LOW &fter it has synchronized back to system speed. This
transition is used by the memory controller to arbitrate whether the ARM720T core can
havethebusin the next cycle. If the busis not available, the ARM720T processor might
haveits clock stalled indefinitely. The only way to determine whether the memory
access has completed is to examine the state of both HTRANS[1:0] and DBGACK .
When both are HIGH, the access has compl eted.

The debugger usually uses EmbeddedI CE-RT to control debugging, and so the state of
HTRANS[1:0] and DBGACK can be determined by reading the EmbeddedI CE-RT
status register. See Debug status register on page 9-65 for more details.

The state of the system memory can be fed back to the debug host by using system speed
load multiples and debug speed store multiples.

9-42 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

There are restrictions on which instructions can have bit 33 set. The valid instructions
on which to set this bit are:

. loads
. stores
. load multiple

. store multiple.
See also Exit from debug state on page 9-44.

When the ARM720T processor returns to debug state after a system speed access, bit
33 of scanchain 1lisset HIGH. The state of bit 33 givesthe debugger information about
why the core entered debug state the first time this scan chain is read.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-43

Debugging Your System

9.17 Exit from debug state

L eaving debug state involves:

. restoring the ARM720T processor internal state

. causing the execution of a branch to the next instruction
. returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
See The program counter during debug on page 9-46 for details on calculating the
branch.

Bit 33 of scan chain 1 forces the ARM720T processor to resynchronize back to
HCLKEN, clock enable. The penultimateinstruction of the debug sequenceis scanned
inwith bit 33 set HIGH. Thefinal instruction of the debug sequenceisthe branch, which
isscanned in with bit 33 LOW. The core is then clocked to load the branch instruction
into the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back
to System mode. The ARM720T processor then resumes normal operation, fetching
instructions from memory. This delay, until the state machineisin the
RUN-TEST/IDLE state, enables conditions to be set up in other devicesin a
multiprocessor system without taking immediate effect. When the state machine enters
the RUN-TEST/IDLE state, all the processors resume operation simultaneously.

DBGACK informs the rest of the system when the ARM720T processor is in debug
state. Thisinformation can be used to inhibit peripherals, such as watchdog timers, that
have rea -time characteristics. DBGACK can also mask out memory accesses caused
by the debugging process.

For example, when the ARM720T processor enters debug state after a breakpoint, the
instruction pipeline contains the breakpointed instruction, and two other instructions
that have been prefetched. On entry to debug state the pipelineisflushed. On exit from
debug state the pipeline must therefore revert to its previous state.

Because of the debugging process, more memory accesses occur than are expected
normally. DBGACK can inhibit any system peripheral that might be sensitive to the
number of memory accesses. For example, a peripheral that counts the number of
memory cycles must return the same answer after a program has been run with and
without debugging. Figure 9-11 on page 9-45 shows the behavior of the ARM720T
processor on exit from the debug state.

9-44

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

vk [gipigigipigi
HTRANS Internal cycles INYsXs) X X
HADDR([31:0] \ Ab YAb+4fAb+8)
DATA[31:0] ({1)r—
DBGACK \

Figure 9-11 Debug exit sequence

Figure 9-3 on page 9-8 shows that the final memory access occurs in the cycle after
DBGACK goes HIGH. Thisis the point at which the cycle counter must be disabled.
Figure 9-11 showsthat thefirst memory accessthat the cycle counter has not previously
seen occursin the cycle after DBGACK goes LOW. Thisis the point at which to
re-enable the counter.

Note

When a system speed access from debug state occurs, the ARM720T processor
temporarily drops out of debug state, so DBGACK can go LOW. If there are peripherals
that are sensitive to the number of memory accesses, they must be led to believe that the
ARMT720T processor is still in debug state. You can do this by programming the
Embeddedl CE-RT control register to force the value on DBGACK to be HIGH. See
Debug status register on page 9-65 for more details.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-45

Debugging Your System

9.18 The program counter during debug

The debugger must keep track of what happens to the PC, so that the ARM720T core
can be forced to branch back to the place at which program flow wasinterrupted by
debug. Program flow can be interrupted by any of the following:

. Breakpoints

. Watchpoints

. Watchpoint with another exception on page 9-47
. Debug request on page 9-47

. System speed access on page 9-48.

9.18.1 Breakpoints

Entry into debug state from abreakpoint advancesthe PC by four addressesor 16 bytes.
Each instruction executed in debug state advances the PC by one address or 4 bytes.

The usual way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM720T processor entered debug state from a breakpoint set on
agiven address, and two debug speed instructions were executed, a branch of —7
addresses must occur (4 for debug entry, plus 2 for the instructions, plus 1 for thefina
branch).

The following sequence shows the data scanned into scan chain 1, most significant bit
first. The value of thefirst digit goesto the DBGBREAK bit, and then the instruction
data into the remainder of scan chain 1:

0 E0802000; ADD R2, RO, RO
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B -7 (2’s complement)

After the ARM720T processor enters debug state, it must execute a minimum of two
instructions before the branch, although these can both be NOPs (Mov Ro, R@). For small
branches, you can replace the final branch with a subtract, with the PC asthe destination
(SuB PC, PC, #28in the above example).

9.18.2 Watchpoints

Thereturn to program execution after entry to debug state from awatchpointismadein
the same way as the procedure described in Breakpoints.

9-46 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Debug entry adds four addressesto the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program must return to the next instruction.

9.18.3 Watchpoint with another exception

If awatchpointed access simultaneously causes a Data Abort, the ARM720T processor
enters debug statein abort mode. Entry into debug isheld off until the core changesinto
abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM720T processor entersdebug statein the mode
of the exception. The debugger must check to see whether an exception has occurred by
examining the current and previous mode (in the CPSR, and SPSR), and the value of
the PC. When an exception has taken place, you are given the choice of servicing the
exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four, and this must be considered in return branch
calculation when exiting debug state. For example, suppose that an abort occurs on a
watchpointed access, and ten instructions have been executed to determine this
eventuality. You can use the following sequence to return to program execution.

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFO; B -16

This code forces abranch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort, and watchpoint is
refetched and executed. Thistriggersthe watchpoint again and the ARM 720T processor
reenters debug state.

9.18.4 Debug request

Entry into debug state using adebug request is similar to abreakpoint. However, unlike
abreskpoint, the last instruction has completed execution and so must not be refetched
on exit from debug state. Therefore, you can assume that entry to debug state addsthree
addresses to the PC and every instruction executed in debug state adds one address.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-47

Debugging Your System

For example, suppose you have invoked a debug request, and decide to return to
program execution straight away. You could use the following sequence:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

9.18.5 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system and
so it ispossible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM720T processor enters abort mode before returning to debug
state.

This scenario issimilar to an aborted watchpoint, but the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and so the PC
does not point to theinstruction that caused the abort. An abort handler usually looks at
the PC to determine the instruction that caused the abort and & so the abort address. In
this case, the value of the PC isinvalid, but because the debugger can determine which
location was being accessed, the debugger can be written to help the abort handler fix
the memory system.

9.18.6 Summary of return address calculations

To determine whether entry to debug state was due to a breakpoint, watchpoint, or
debug request (DBGRQ), bit 33 (DBGBREAK) of scan chain 1 must be consulted
together with bit 12 (DBGM OE) of the debug status register (register 1 of scan
chain 2).

Table 9-7 on page 9-49 showshow DBGM OE and DBGBREAK vary according tothe
reason for entry to debug state.

Note

DBGMOE and DBGBREAK must beread after entry into debug state and before any
other accessesto scan chain 1.

9-48

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Table 9-7 Determining the cause of entry to debug state

DBGMOE DBGBREAK Description

0 0 Breakpoint

0 1 Watchpoint

1 X Debug Request
(DBGRQ)

The calculation of the branch return address is as foll ows:

. for normal breakpoint and watchpoint, the branch is:
- (4 +N+3S)

. for entry through debug request (DBGRQ) or watchpoint with exception, the
branch is:
- (3+N+39)

where N isthe number of debug speed i nstructions executed (including the final branch)
and S isthe number of system speed instructions executed.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-49

Debugging Your System

9.19 Priorities and exceptions

When a breakpoint, or a debug request occurs, the normal flow of the program is
interrupted. Therefore, debug can be treated as another type of exception. The
interaction of the debugger with other exceptions is described in The program counter
during debug on page 9-46. This section covers the following priorities:

. Breakpoint with Prefetch Abort

. Interrupts

. Data Aborts.

9.19.1 Breakpoint with Prefetch Abort

9.19.2 Interrupts

9.19.3 Data Aborts

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken, and
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an
access is made to avirtual address that does not physically exist, and the returned data
isthereforeinvalid. In such acase, the normal action of the operating system isto swap
in the page of memory, and to return to the previoudly-invalid address. Thistime, when
the instruction is fetched, and providing the breakpoint is activated (it can be
data-dependent), the ARM720T processor enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

When the ARM720T processor enters debug state, interrupts are automatically
disabled.

If aninterrupt is pending during the instruction prior to entering debug state, the
ARMT720T processor enters debug state in the mode of the interrupt. On entry to debug
state, the debugger cannot assumethat the ARM 720T processor isin the mode expected
by the program of the user. The ARM720T core must check the PC, the CPSR, and the
SPSR to determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM720T processor
does remember that an interrupt has occurred.

When a Data Abort occurs on awatchpointed access, the ARM720T processor enters
debug state in abort mode. The watchpoint, therefore, has higher priority than the abort,
but the ARM720T processor remembers that the abort happened.

9-50

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

9.20 Watchpoint unit registers

There are two watchpoint units, known as watchpoint 0 and watchpoint 1. You can
configure either to be a watchpoint (monitoring data accesses) or a breakpoint
(monitoring instruction fetches). You can make watchpoints and breakpoints
data-dependent.

Each watchpoint unit contains three pairs of registers:
. address value and address mask

. data value and data mask

. control value and control mask.

Each register isindependently programmable and has a unique address. The function
and mapping of the watchpoint unit register is shown in Table 9-1 on page 9-17.

9.20.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedI CE-RT scan
chain (scan chain 2). The scan chain is a 38-bit shift register comprising:

. a 32-bit datafield

. a5-bit addressfield

. aread/write bit.

This setup is shown in Figure 9-12 on page 9-52.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-51

Debugging Your System

!

read/write

4

Address

0

Address decoder

31

Data

— po

Value | Mask Comparator ——| + E
|

[¢]4

HADDR[31:0] ——>|

DATA[31:0] —P>

Control —»

W atchpoint registers and comparators

Figure 9-12 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit data field, the address of the register is
shifted into the 5-bit address field, and the read/write bit is set.

9-52

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

The data to be written is scanned into the 32-bit data field, the address of the register is
scanned into the 5-bit addressfield, and the read/write bit is set.

A register isread by shifting its address into the address field, and by shifting a0 into
the read/write bit. The 32-bit data field isignored.

The register addresses are shown in Table 9-1 on page 9-17.

Note
A read or write takes place when the TAP controller enters the UPDATE-DR state.

9.20.2 Using the data, and address mask registers

For each value register in aregister pair, thereis amask register of the same format.
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in
the value register disregarded in the comparison.

For example, when awatchpoint is required on a particular memory location, but the
datavalueisirrelevant, the datamask register can be programmed to oxffffff (al bits
set) to ignore the entire data bus field.

Note

Themask isan XNOR mask rather than a conventional AND mask. When amask bitis
set to 1, the comparator for that bit position always matches, irrespective of the value
register or the input value.

Clearing the mask bit means that the comparator matches only if the input value
matches the value programmed into the value register.

9.20.3 The watchpoint unit control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure 9-13.

8

6 5 4 3 2 1 0

ENABLE

RANGE | CHAIN | DBGEXT | PROT[1] | PROT[0] | SIZE[1] | SIZE[0] | WRITE

Figure 9-13 Watchpoint control value, and mask format

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-53

Debugging Your System

Bit 8 of the control value register isthe ENABLE bit and cannot be masked.

The bits have the following functions:

WRITE

SIZE[1:0]

PROTI0]

PROT[1]

DBGEXT[1:0]

CHAIN

Compares against the write signal from the corein order to detect
the direction of bus activity. WRITE isO for aread cycle, and 1
for awrite cycle.

Compares against the HSI ZE[1:0] signal from the core in order
to detect the size of bus activity.

The encoding is shown in Table 9-8.

Table 9-8 SIZE[1:0] signal encoding

bit 1 bit 0 Data size
0 0 Byte

0 1 Halfword
1 0 Word

1 1 (Reserved)

Is used to detect whether the current cycle is an instruction fetch
(PROTIO] = 0), or adata access (PROT[0] = 1).

Is used to compare against the not trandlate signal from the corein
order to distinguish between user mode (PROT[1] = 0), and
non-User mode (PROT([1] = 1) accesses.

Isan external input to Embedded| CE-RT logic that enables the
watchpoint to be dependent on some external condition.

The DBGEXT input for Watchpoint O is labeled DBGEXT[0].
The DBGEXT input for Watchpoint 1 is labeled DBGEXT[1].

Can be connected to the chain output of another watchpoint in
order to implement, for example, debugger requests of the form
breakpoint on address YYY only when in process XXX.

Inthe ARM720T processor Embeddedl CE-RT macrocell, the
CHAINOUT output of Watchpoint 1 is connected to the CHAIN
input of Watchpoint O.

9-54

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

RANGE

ENABLE

Debugging Your System

The CHAINOUT output is derived from aregister. The
address/control field comparator drives the write enable for the
register. The input to the register isthe value of the data field
comparator.

The CHAINOUT register is cleared when the control value
register iswritten, or when DBGNTRST isLOW.

Inthe ARM720T processor Embedded| CE-RT logic, the
DBGRNG output of Watchpoint 1 is connected to the RANGE
input of Watchpoint 0. Connection enabl esthe two watchpointsto
be coupled for detecting conditionsthat occur simultaneously, for
example in range checking.

When a watchpoint match occurs, the internal DBGBREAK
signal isasserted only whenthe ENABL E bitisset. Thishit exists
only in the value register. It cannot be masked.

For each of the bits[7:0] in the control value register, thereisacorresponding bit in the
control mask register. This removes the dependency on particular signals.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-55

Debugging Your System

9.21

Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardware breakpoints typically monitor the address value and can be set in any
code, even in code that isin ROM or code that is self-modifying. See Hardware
breakpoints for more details.

Software breakpoints monitor a particular bit pattern being fetched from any
address. One Embedded| CE-RT watchpoint can therefore be used to support any
number of software breakpoints. See Software breakpoints on page 9-57 for more
details.

Software breakpointscan usually be set only in RAM because aspecia bit pattern
chosen to cause a software breakpoint has to replace the instruction.

9.21.1 Hardware breakpoints

To make awatchpoint unit cause hardware breakpoints (on instruction fetches):

1

Program its address value register with the address of the instruction to be
breakpointed.
Program the breakpoint bits for each state as follows:

For an ARM-state breakpoint
Set bits [1:0] of the address mask register.

For a Thumb state breakpoint
Set bit O of the address mask register.

In either case, clear the remaining bits.

Program the data value register only when you require a data-dependent
breakpoint, that is only when you have to match the actual instruction code
fetched as well asthe address. If the datavalue is not required, program the data
mask register to OxFFFFFFFF (al bits set). Otherwise program it to 0x00000000.

Program the control value register with PROT[0] = 0.
Program the control mask register with PROT[0]= 0, al other bits set.

When you have to make the distinction between User and non-User mode
instruction fetches, program the PROT[1] value and mask bits appropriately.

If required, program the DBGEXT, RANGE, and CHAIN bitsin the same way.

Set the mask bits for all unused control values.

9-56

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Note

In monitor mode, you must set the EmbeddedI CE-RT disable bit (bit 5in the
debug control register) before changing the register values, and clear it on
completion of the programming.

9.21.2 Software breakpoints

To make a watchpoint unit cause software breakpoints (on instruction fetches of a
particular bit pattern):

1.

o o oM W

Program the address mask register of the watchpoint unit to exFFFFFFFF (all bits
set) so that the address i's disregarded.

Program the data value register with the particular bit pattern that has been chosen
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is @xDFFF,
program 0xDFFFDFFF. When a 16-bit instruction is fetched, Embedded| CE-RT
compares only the valid half of the data bus against the contents of the data value
register. In thisway, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

Program the data mask register to 0x00000000.
Program the control value register with PROT[0] = 0.
Program the control mask register with PROT[0] = 0 and all other bits set.

If you want to make the distinction between User and non-User mode instruction
fetches, program the PROT(1] bit in the control value register and control mask
register accordingly.

If required, program the DBGEXT, RANGE, and CHAIN bitsin the same way.

Note

You do not have to program the address val ue register.

Setting the breakpoint

To set the software breakpoint:

1.
2.

Read the instruction at the desired address and store it.

Write the special bit pattern representing a software breakpoint at the address.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-57

Debugging Your System

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.

9-58 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

9.22 Programming watchpoints

Debugging Your System

This section contains examples of how to program the watchpoint unit to generate
breakpoints and watchpoints. Many other ways of programming the watchpoint unit
registersare possible. For example, simple range breakpoints can be provided by setting
one or more of the address mask hits.

To make awatchpoint unit cause watchpoints (on data accesses):

1.

Program its address val ue register with the address of the data access to be

watchpointed.

Program the address mask register to 0x00000000.

Program the data value register only if you require a data-dependent watchpoint,
that is, only if you have to match the actual data value read or written aswell as
the address. If the data value is irrelevant, program the data mask register to
OxFFFFFFFF (all bits set). Otherwise program the data mask register to 0x00000000.

Program the control value register as follows:

PROTI0]
HWRITE

SIZE[1:0]

Set.

Clear for aread.
Set for awrite.

Program with the value corresponding to the appropriate
datasize.

Program the control mask register as follows:

PROTI0]
HWRITE

SIZE[1:0]

All other bits

Clear.
Clear.

Note

You can set this bit if both reads and writes are to be
watchpointed.

Clear.

Note

You can set these bitsif data size accesses are to be
watchpointed.

Set.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-59

Debugging Your System

6. If you have to make the distinction between User and non-User mode data
accesses, program the PROT([1] bit in thecontrol value and control mask registers

accordingly.
7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

9-60 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

9.23 Abort status register

Only bit O of this 32 bit read/write register is used. It determines whether an abort

Debugging Your System

exception entry was caused by abreakpoint, awatchpoint, or area abort. Theformat is

shown in Figure 9-14.

31:1

0

SBZ/RAZ

DbgAbt

Figure 9-14 Debug abort status register

Bit 0 is set when the ARM720T core takes a Prefetch or Data Abort as aresult of a
breakpoint or watchpoint. If, on a particular instruction or data fetch, both the Debug
Abort and the external Abort signal are asserted, the external Abort takes priority, and
the DbgAbt bit is not set. Once set, DbgAbt remains set until reset by the user. The

register is accessed by MRC and MCR instructions.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

9-61

Debugging Your System

9.24

Debug control register

The debug control register is six bitswide. Writes to the debug control register occur
when awatchpoint unit register is written. Reads of the debug control register occur
when awatchpoint unit register is read. See Watchpoint unit registers on page 9-51 for
more information.

Figure 9-15 shows the function of each bit in the debug control register.

5

4 3 2 1 0

EmbeddedICE-RT Monitor mode
disable enable

SBZ/RAZ INTDIS DBGRQ DBGACK

Figure 9-15 Debug control register format

The debug control register bit assignments are shown in Table 9-9.

Table 9-9 Debug control register bit assignments

Bit

Function

Used to disable the Embedded| CE-RT comparator outputs while the watchpoint and
breakpoint registers are being programmed. This bit can be read and written through
JTAG.

Set bit 5 when:
. programming breakpoint or watchpoint registers
. changing bit 4 of the debug control register.

You must clear bit 5 after you have made the changes, to re-enable the
EmbeddedI CE-RT logic and make the new breakpoints and watchpoints operational .

Used to determine the behavior of the core when breakpoints or watchpoints are
reached:
. If clear, the core enters debug state when a breakpoint or watchpoint is reached.

. If set, the core performs an abort exception when a breakpoint or watchpoint is
reached.

Thisbit can be read and written from JTAG.

This bit must be clear.

9-62

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

Table 9-9 Debug control register bit assignments (continued)

Bit Function
2 Used to disable interrupts:
. If set, the interrupt enable signal of the core (IFEN) isforced LOW. The IFEN
signal is driven as shown in Table 9-10.
. If clear, interrupts are enabled.
1 Used to force the value on DBGRQ.
0 Used to force the value on DBGACK .

9.24.1 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:
. during debugging (DBGACK HIGH)
. when the INTDI S bit is set.

The coreinterrupt enable signal, | FEN, is driven as shown in Table 9-10.

Table 9-10 Interrupt signal control

DBGACK INTDIS IFEN Interrupts
0 0 1 Permitted
1 X 0 Inhibited
X 1 0 Inhibited

9.24.2 Forcing DBGRQ

Figure 9-17 on page 9-66 shows that the value stored in bit 1 of the debug control
register issynchronized and then ORed with the external DBGRQ before being applied
to the processor. The output of this OR gateisthe signal DBGRQI whichisbrought out
externally from the macrocell.

The synchronization between debug control register bit 1 and DBGRQI assistsin
multiprocessor environments. The synchronization latch only opens when the TAP
controller state machineisin the RUN-TEST-IDLE state. This enables an enter-debug

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-63

Debugging Your System

condition to be set up in all the processorsin the system while they are still running.
When the condition is set up in al the processors, it can be applied to them
simultaneously by entering the RUN-TEST-IDLE state.

9.24.3 Forcing DBGACK

Figure 9-17 on page 9-66 shows that the value of the internal signal DBGACKI from
the core is ORed with the value held in bit O of the debug control register, to generate
the externa vaue of DBGACK seen at the periphery of the ARM720T core. This
enables the debug system to signal to the rest of the system that the core is still being
debugged even when system-speed accesses are being performed (when the internal
DBGACK signal from the core is LOW).

9-64 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

9.25 Debug status register

12

1"

Debugging Your System

The debug statusregister is 13 bitswide. If it isaccessed for awrite (with the read/write
bit set), the status bits are written. If it is accessed for aread (with the read/write bit
clear), the status bits are read. The format of the debug status register is shown in

Figure 9-16.

3 2 1 0

DBGMOE

TRANS[1] IFEN DBGRQ DBGACK

Figure 9-16 Debug status register format

The function of each bit in this register is shown in Table 9-11.

Table 9-11 Debug status register bit assignments

Bit

Function

12

Enables the debugger to determine whether the core has entered
debug state due to the assertion of DBGRQ.

Enables TBIT to be read. This enables the debugger to determine
what state the processor isin, and which instructions to execute.

Enables the state of the HTRANS[1] signal from the core to be
read. This enables the debugger to determine whether a memory
access from the debug state has compl eted.

Enables the state of the core interrupt enable signal, IFEN, to be
read.

Enables the values on the synchronized version of DBGRQ to be
read.

Enables the values on the synchronized versions of DBGACK to
be read.

The structure of the debug control and status registers is shown in Figure 9-17 on

page 9-66.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-65

Debugging Your System

. Interrupt mask enable

" (to core)

Debug Debug
control status
register register
TBIT » Bit4
(from core)
TRANS[1] » Bit3
(from core)
DBGACKI >
(from core)
-+
Bit 2 >
O——— » Bit2
» +
Bit 1 N—p
i
DBGRQ N > Bit1

(from ARM720T input)

Bit 0

DBGACKI

’—b +
Bit 0

» DBGRQI
(to core)

» DBGACK

(from core)

(to ARM720T processor
output)

Figure 9-17 Debug control and status register structure

9-66

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Debugging Your System

9.26 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and O together using the CHAIN and RANGE
inputs. The use of CHAIN enables Watchpoint O to be triggered only if Watchpoint 1
has previously matched. The use of RANGE enables simple range checking to be
performed by combining the outputs of both watchpoints.

9.26.1 Breakpoint and watchpoint coupling example

Let:
Av[31:0]
Am[31:0]
A[31:0]
Dv[31:0]
Dm[31:0]
D[31:0]
Cv[8:0]
Cm[7:0]

C[9:0]

Be the value in the address value register

Be the value in the address mask register

Be the address bus from the ARM720T (Rev 4) processor
Be the value in the data value register

Be the value in the data mask register

Be the data bus from the ARM720T (Rev 4) processor

Be the value in the control value register

Be the value in the control mask register

Be the combined control bus from the ARM720T core, other watchpoint
registers, and the DBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived asfollows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == OxFFFFFFFFF)

CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == @x7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 providesthe CHAIN input to
Watchpoint 0. This CHAIN input enables you to use quite complicated configurations
of breakpoints and watchpoints.

Note

Thereisno CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint O.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 9-67

Debugging Your System

For example, consider the request by a debugger to breakpoint on the instruction at
location YY'Y when running process XXX in amultiprocess system. If the current
process ID is stored in memory, you can implement the above function with a
watchpoint and breakpoint chained together. The watchpoint address pointsto aknown
memory location containing the current process I D, the watchpoint data pointsto the
required process ID and the ENABLE bit is cleared.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. Theinput to thelatch isthe output of the data comparator from
the same watchpoint. The output of the latch drivesthe CHAIN input of the breakpoint
comparator. The address YY'Y is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches and the breakpoint triggers
correctly.

9.26.2 DBGRNG signal

The DBGRNG signal is derived asfollows:

DBGRNG = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) == OxFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]1}) == OX7FFFFFFFF)

The DBGRNG output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This RANGE input enables you to couple two breakpoints
together to form range breakpoints.

Note
Selectable ranges are restricted to being powers of 2.

For example, if a breakpoint isto occur when the addressis in the first 256 bytes of
memory, but not in the first 32 bytes, program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address val ue of 09x00000000 and an address mask
of 0x0000001F.

2. Clear the ENABLE hit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH but
does not trigger the breakpoint.

9-68

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Debugging Your System

For Watchpoint O:

1. Program Watchpoint O with an address value of 0x00000000, and an address mask
of 0x000000FF.

2. Set the ENABLE hit.
3. Program the RANGE bit to match a 0.
4. Program al other Watchpoint O registers as normal for a breakpoint.

If Watchpoint O matches but Watchpoint 1 does not (that is, the RANGE input to
Watchpoint 0 is 0), the breakpoint is triggered.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 9-69

Debugging Your System

9.27 EmbeddedICE-RT timing

Embedded| CE-RT samples the DBGEXT[1] and DBGEXT[O0] inputs on the rising
edge of HCLK.

9-70 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 10

ETM Interface

This chapter describes the ETM interface that is provided on the ARM720T (Rev 4)
processor. It contains the following sections:

About the ETM interface on page 10-2
Enabling and disabling the ETM7 interface on page 10-3

Connections between the ETM7 macrocell and the ARM720T (Rev 4) processor
on page 10-4

Clocks and resets on page 10-6
Debug request wiring on page 10-7
TAP interface wiring on page 10-8.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 10-1

ETM Interface

10.1 About the ETM interface

You can connect an external Embedded Trace Macrocell (ETM) to the ARM720T
processor, so that you can perform real-time tracing of the code that the processor is
executing.

Ingenerd, little or no gluelogic isrequired to connect the ETM 7 tothe ARM 720T (Rev
4) processor. You program the ETM through a JTAG interface. The interfaceis an
extension of the ARM TAP controller, and is assigned scan chain 6.

Note

If you have more than one ARM processor in your system, each processor must haveits
own dedicated ETM.

Seethe ETM7 (Rev 1) Technical Reference Manual for detailed information about
integrating an ETM7 with an ARM720T processor.

10-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

ETM Interface

10.2 Enabling and disabling the ETM7 interface

Under the control of the ARM debug toals, the ETM7 PWRDOWN output is used to
enable and disablethe ETM. When PWRDOWN is HIGH, thisindicates that the ETM
isnot currently enabled, so you can stop the CLK input and hold the other ETM signals
stable. This enables you to reduce power consumption when you are not performing
tracing.

When a TAP reset (nTRST) occurs, PWRDOWN isforced HIGH until the ETM7
control register has been programmed (see the Embedded Trace Macrocell
Specification for details of this register).

PWRDOWN is automatically cleared at the start of a debug session.

On the ARM720T processor, the ETM interface pins are gated by the ETMEN input.
Thismeansthat if the ETMEN input is LOW, all the output pins of the ETM interface
remain stable. You can control this ETM EN input by connecting it with either of the
following:

. the ETMEN output on the ETM7

. the inverted PWRDOWN output on the ETM?7.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 10-3

ETM Interface

10.3 Connections between the ETM7 macrocell and the ARM720T (Rev 4) processor

Table 10-1 shows the connections that you must make between the ETM 7 macrocell
and the ARM720T processor.

Table 10-1 Connections between the ETM7 macrocell and

the ARM720T (Rev 4) processor

ETM7 macrocell
signal name

ARM720T (Rev 4)
processor signal name

A[31:0] ETMADDR[31:0]
ABORT ETMABORT
ARMTDO DBGTDO
BIGEND ETMBIGEND
CLKa HCLKa

CLKEN ETMCLKEN
CPA ETMCPA

CPB ETMCPB
DBGACK ETMDBGACK
DBGRQP DBGRQb
NMREQ ETMnNMREQ
SEQ ETMSEQ
MAS[1:0] ETMSIZE[1:0]
nCPI ETMnCPI
nEXEC ETMnEXEC
nOPC ETMnOPC
NRESET HRESETnNn

nRW ETMnRW
nTRST2 DBGNTRST2
PROCID[31:0] ETMPROCID[31:0]

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

ETM Interface

Table 10-1 Connections between the ETM7 macrocell and
the ARM720T (Rev 4) processor (continued)

ETM7 macrocell
signal name

ARM720T (Rev 4)
processor signal name

PROCIDWR ETMPROCIDWR
ETMEN or inverted ETMENC
PWRDOWN

- ETMHIVECSY
RANGEOUT[0] DBGRNG[0]
RANGEOUT[1] DBGRNG[1]

RDATA[3L:0]

ETMRDATA[31:0]

TBIT ETMTBIT
TCKa HCLKa
TCKEN DBGTCKEN
TDI DBGTDI
TDO® DBGTDO
TMS DBGTMS

WDATA[3L:0]

ETMWDATA[3L:0]

INSTRVALID

ETMINSTRVALID

a See Clocks and resets on page 10-6.

b. See Debug request wiring on page 10-7.

¢. SeeEnabling and disabling the ETM7 interface

on page 10-3.

d. Leavethis pin unconnected.
e. See TAP interface wiring on page 10-8.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

10-5

ETM Interface

10.4 Clocks and resets

The ARM720T (Rev 4) processor usesasingle clock, HCLK, asboth the main system
clock and the JTAG clock. You must connect the processor clock to both HCLK and
TCK on the ETM. You can then use TCKEN to control the JTAG interface.

To trace through awarm reset of the ARM720T processor, use the TAP reset (connect
NTRST to DBGNTRST) to reset the ETM7 state.

For moreinformation about ETM 7 clocks and resets, seethe ETM7 Technical Reference
Manual.

10-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

ETM Interface

10.5 Debug request wiring

It is recommended that you connect together the DBGRQ output of the ETM7 to the
DBGRQ input of the ARM720T processor. If thisinput is already in use, you can OR
the DBGRQ inputs together. See the ETM7 Technical Reference Manual for more

details.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 10-7

ETM Interface

10.6 TAP interface wiring

The ARM720T (Rev 4) processor does not provide a scan chain expansion input. ARM
Limited recommends that you connect the ARM720T processor and the ETM7 TAP

controllersin paralel. For more details, see the ETM7 (Rev 1) Technical Reference
Manual.

10-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Chapter 11
Test Support

This chapter describes the test methodol ogy and the CP15 test registersfor the
ARM720T (Rev 4) processor synthesized logic and TCM. It contains the following
sections:

. About the ARM720T (Rev 4) test registers on page 11-2

. Automatic Test Pattern Generation (ATPG) on page 11-3
. Test state register on page 11-4

. Cache test registers and operations on page 11-5

. MMU test registers and operations on page 11-12.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 11-1

Test Support

11.1 About the ARM720T (Rev 4) test registers

Coprocessor 15 register 15 (¢15) of the ARM720T processor is used to provide
device-specific test operations. You can use it to access and control the following:

. Test state register on page 11-4
. Cache test registers and operations on page 11-5
. MMU test registers and operations on page 11-12.

You must only use these operations for test. The ARM Architecture Reference Manual
describes this register as implementation defined.

The format of the CP15 test operationsis:

MCR/MRC p15,opcode_1,Rd,c15,CRm,opcode_2

313029 28 27 26 25 24 23 22212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

-

Cond 17 1 1 0 opcode_1|L CRn Rd 1711 opcode_2| 1 CRm

Figure 11-1 CP15 MRC and MCR bit pattern

The L bit distinguishes between an MCR (L = 1) and an MRC (L = 0).

11-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

TestSupport

11.2 Automatic Test Pattern Generation (ATPG)

Scan insertion isaready performed and fixed for the ARM720T (Rev 4) processor. You
can use Automatic Test Pattern Generation (ATPG) tools to create the necessary scan
patterns to test the logic outputs from al registers.

11.2.1 ARM720T (Rev 4) processor INTEST/EXTEST wrapper

In addition to the auto-inserted scan chains, the ARM720T (Rev 4) macrocell includes
all the signalsfor an optional INTEST/EXTEST scan chain, scan chain 0.

ATPG

Seven balanced scan chains are provided for ATPG, along with atest enableand asingle
scan enable.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 11-3

Test Support

11.3 Test state register
The test state register contains only one bit, bit O:
Bit O set Enable MMU and cache test.
Bit Oclear Disable MMU and cache test.
At reset (HRESETn LOW), bit Oiscleared.
The test state register operations are shown in Table 11-1.

Table 11-1 Test state register operations

Operation Instruction

Write test register MCR p15, 7, Rd, c15, c15, 7

Read test register MRC p15, 7, Rd, c15, c15, 7

11-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

TestSupport

11.4 Cache test registers and operations

The cache is maintained using MCR and MRC instructions to CP15 registers 7 and 9,
defined by the ARM v4T programmer’s model. Additional operations are available
using MCR and MRC instructionsto CP15 register 15. These operations are combined with
those using registers 7 and 9 to enabl e testing of the caches entirely in software.

CP15 register 7 (c7) iswrite-only, and provides only one function:
. invalidate cache.

The CP15 register 9 (c9) operations are read and write. The operations available are:
. write victim and lockdown base
. write victim.

The CP15 register 15 (c15) operations are:
. write to register C15.C

. read from register C15.C

. CAM read to C15.C

. CAM write

. RAM read to C15.C

. RAM write from C15.C

. CAM match, RAM read to C15.C.

Note

For the CAM Match, RAM Read operation the respective MMU does not perform a
lookup and a cache miss does not cause a linefill.

Theregister 15 operations are all issued asMCR. The Rd field defines the address for the
operation. Therefore, the datais either supplied from, or latched into, CP15.C in CP15.
These 32-bit registers are accessed with CP15 MCR and MRC instructions.

Table 11-2 summarizes c7, c9, and c15 operations.

Table 11-2 Summary of CP15 register 7, 9, and 15 operations

Function Rd Instruction
Invalidate cache SBZ MCR p15,0,Rd,c7,c7,0
Write cache victim and lockdown Victim=Base MCR p15,0,Rd,c9,c0,0
base

Write cache victim Victim, Seg MCR p15,0,Rd,c9,c1,0

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 11-5

Test Support

Table 11-2 Summary of CP15 register 7, 9, and 15 operations (continued)

Function Rd Instruction

CAM read to C15.C Seg MCR p15,2,Rd,c15,c7,2
CAM write Tag, Seg, Dirty MCR p15,2,Rd,c15,c7,6
RAM read to C15.C Seg, Word MCR p15,2,Rd,c15,c11,2
RAM write from C15.C Seg, Word MCR p15,2,Rd,c15,c11,6

CAM match, RAM readto C15.C Tag, Seg, Word

MCR p15,2,Rd,c15,c7,5

Write to register C15.C Data

MCR p15,3,Rd,c15,c3,0

Read from register C15.C Dataread

MRC p15,3,Rd,c15,c3,0

The CAM read format for Rd is shown in Figure 11-2.

31 765 4 0
SBzZ Seg SBZ
Figure 11-2 Rd format, CAM read
The CAM write format for Rd is shown in Figure 11-3.
31 76543210

MVA TAG

Seg

\

i/

WB
SBzZ

Figure 11-3 Rd format, CAM write

11-6 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

TestSupport

In Figure 11-3 on page 11-6, bit labels have the following meanings:

\Y Valid.

De Dirty even (words[3:0]).
Do Dirty odd (words [7:4]).
WB Writeback.

The RAM read format for Rd is shown in Figure 11-4.

31 7 6 5 4 210

SBZ Seg | Word | SBZ

Figure 11-4 Rd format, RAM read

The RAM write format for Rd is shown in Figure 11-5.

31 7 6 5 4 210

SBZ Seg | Word | SBZ

Figure 11-5 Rd format, RAM write

The CAM match, RAM read format for Rd is shown in Figure 11-6.

31 7 6 5 4 210

MVA TAG Seg | Word | SBZ

Figure 11-6 Rd format, CAM match RAM read

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 11-7

Test Support

The CAM read format for datais shown in Figure 11-7.

31 76543210

MVA TAG ololv

iy

Do
WB

LFSR[6]

Figure 11-7 Data format, CAM read

The RAM read format for dataiis shown in Figure 11-8.

31 0

RAM data word [31:0]

Figure 11-8 Data format, RAM read

The CAM match, RAM read format for data is shown in Figure 11-9.

31 30 29 0

RAM data word [29:0]

S

Miss
Hit

Figure 11-9 Data format, CAM match RAM read

11-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

TestSupport

11.4.1 Addressing the CAM and RAM

For the CAM read or write, and RAM read or write operations you must specify the
segment, index, and word (for the RAM operations). The CAM and RAM operations
usethevaluein thevictim pointer for that sesgment, so you must ensure that thevalueis
written in the victim pointer before any CAM or RAM operation.

If the MCR writevictimand lockdown base is used, then the victim pointer isincremented
after every CAM read or write, and every RAM read or write. If the MCR writevictimis
used, then the victim pointer is only incremented after every CAM read or write. This
enables efficient reading or writing of the CAM and RAM for an entire segment. The
write cache victim and lockdown operations are shown in Table 11-3.

Table 11-3 Write cache victim and lockdown operations

Operation Instructions

Write cache victim and lockdown base MCR p15,0,Rd,c9,c0,0
MCR p15,0,Rd,c9,c0,1

Write cache victim MCR p15,0,Rd,c9,c1,0
MCR p15,0,Rd,c9,cl,1

The write cache victim and lockdown base format for Rd is shown in Figure 11-10.

31 26 25 0
Index SBzZ
Figure 11-10 Rd format, write cache victim and lockdown base
The write cache victim format for Rd is shown in Figure 11-11.
31 26 25 765 4 0
Index SBZ Seg SBZ

Figure 11-11 Rd format, write cache victim

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 11-9

Test Support

Another cache test register, C15.C, iswritten with the current victim of the addressed
segment whenever an MCR CAM read is executed. Thisisintended for usein debug to
establish the value of the current victim pointer of each segment before reading the
vaues of the CAM and RAM, so that the value can be restored afterwards.

Example 11-1 shows sample code for performing software test of the cache. It contains
typical operations with register C15.C.

Example 11-1 Cache test operations

; CAM write, read and check for segment 2

; Write cache victim pointer with index 0, segment 2
MOV r@,#0
ORR rl,r@,#2 :SHL: 0x5
MCR p15,0,rl,c9,cl,0

; Write pattern in OxFFFFFFOE in all 64 CAM lines

MVN r2,#1 ; bit @ should be ‘0’
BIC r2,r2,#0x20 ; write segment 2
MOV r8,#64

Toop® MCR pi15,2,r2,c15,c7,6 ; write CAM, index auto-incremented
SUBS r8,r8,#1
BNE Toop®

; Now read and check

; Reset victim pointer to index 0, segment 2
MOV ro,#0
ORR rl,r@ :SHL: Ox5
MCR p15,0,rl,c9,cl,0

MOV r8,#64
MOV r3,#0x40 ; read segment 2
BIC r2,r2,#0x60 ; clear bit 5 and 6 (always read as ‘0’)

Toopl MCR pi15,3,r0,c15,c3,0 ; write C15.C to ‘0’
MCR p15,2,r3,c15,c7,2 read CAM to (C15.C
MRC p15,3,r4,c15,c3,0 read C15.C to R4
BIC rd4,r4,#1 clear LFSR bit
CMP r4,r2
BNE TEST_FAIL
SUBS r8,r8,#1
BNE Toopl
B TEST_PASS

; RAM write, read and check for segment 1

; Write cache victim pointer with index 0, segment 1
MOV rQ,#0

11-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Test Support

ORR rl,r@,#1 :SHL: 0x5
MCR p15,0,rl,c9,cl,0

; Write pattern Ox5A5A5A5A in RAM Tine (eight words)
LDR r@,=0x5A5A5A5A

MOV r8,#8

MOV r2,#0x20 ; write segment 2, word 0

MCR p15,3,r0,cl15,c3,0 ; write RAM data in C15.C
Toop® MCR pi15,2,r2,c15,cll,6 ; write RAM

ADD r2,r2,#0x04 ; next word

SUBS r8,r8,#1

BNE Toop®

; Now read and check

MOV r8,#8
MOV r2,#0x20
MOV rl,#0
Toopl MCR pi15,3,r1,cl5,c3,0
MCR p15,2,r2,cl5,cll,2
MRC p15,3,r5,cl15,c3,0
CMP r5,r0
BNE TEST_FAIL
SUBS r8,r8,#1
BNE Toopl
B TEST_PASS

write C15.C to ‘0@’
read RAM to (15.C
read C15.C to R4

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 11-11

Test Support

11.5 MMU test registers and operations

The TLB ismaintained using MCR and MRC instructionsto CP15 registers 2, 3, 5, 6, 8, and
10, defined by the ARM v4T programmer’s model.

The CP15 register 2 (c2) operations control the Translation Table Base (TTB). These
operations are:

. write TTB registers
. read TTB register.

The CP15 register 3 (c3) operations control the Domain Access Control (DAC) register.
These operations are:

. write DAC registers
. read DAC register.

The CP15 register 5 (c5) operations control the Fault Satus Register (FSR). These

operations are:

. write FSR

. read FSR.

The CP15 register 6 (c6) operations control the Fault Address Register (FAR). These
operations are:

. write FAR

. read FAR.

The CP15 register 8 (c8) operations control the TLB and are al write-only. These
operations are:

. invalidate TLB
. invalidate single entry using MVA.

The CP15 register 10 (c10) operations control TLB lockdown. These operations are:
. read victim, lockdown base and preserve bit
. write victim, lockdown base and preserve hit.

11-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

TestSupport

The CP15 register 15 (c15) operationsthat operate onthe CAM, RAM1, and RAM2 are
shown in Table 11-4.

Table 11-4 CAM, RAM1, and RAM2 register 15 operations

Function Rd Data

CAM read to C15.M SBz Tag, Size, V, P

CAM write Tag, Size, V, P

RAM1 read to C15.M SBZ Protection

RAM1 write Protection

RAM?2 read to C15.M SBZ PA Tag, Size

RAM2 write PA Tag, Size PA Tag, Size

CAM match RAM1readto C15.M MVA Fault, Miss, Protection

Note
For the CAM match, RAM 1 read operation a TLB misswill not cause a page walk.

Read from register CP15.M

These register 15 operations are al issued asMCR, which means that the read and match
operations haveto belatched into register CP15.M in CP15. Thisisa32-bit register that
is read with the following CP15 MRC instruction:

Table 11-5 summarizes c2, ¢3, ¢5, ¢6, ¢8, c10, and c15 operations.

Table 11-5 Register 2, 3, 5, 6, 8, 10, and 15 operations

Function Rd Instruction(s)

Read TTB register TTB MRC p15,0,Rd,c2,c0,0
Write TTB register TTB MCR p15,0,Rd,c2,c0,0
Read domain [15:0] accesscontrol ~ DAC MRC p15,0,Rd,c3,c0,0
Write domain [15:0] access control DAC MCR p15,0,Rd,c3,c0,0
Read FSR FSR MRC p15,0,Rd,c5,c0,0
Write FSR FSR MCR p15,0,Rd,c5,c0,0
Read FAR FAR MRC p15,0,Rd,c6,c0,0

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

11-13

Test Support

31

Table 11-5 Register 2, 3, 5, 6, 8, 10, and 15 operations (continued)

Function Rd Instruction(s)
Write FAR FAR MCR p15,0,Rd,c6,c0,0
Invalidate TLB SBZ MCR p15,0,Rd,c8,c5,0
MCR p15,0,Rd,c8,c6,0
MCR p15,0,Rd,c8,c7,0
Invalidate TLB singleentry (using ~ MVA format MCR p15,0,Rd,c8,c5,1
MVA) MCR p15,0,Rd,c8,c6,1
MCR p15,0,Rd,c8,c7,1
Read TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,0
Write TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,0
CAM read to C15.M SBZ MCR p15,4,Rd,c15,c7,4
CAM write Tag, Size, V, P MCR p15,4,Rd,c15,c7,0
RAM1 read to C15.M SBZ MCR p15,4,Rd,c15,c11,4
RAM1 write Protection MCR p15,4,Rd,c15,c11,0
RAM2 read to C15.M SBZ MCR p15,4,Rd,c15,c3,5
RAM2 write PA Tag, Size MCR p15,4,Rd,c15,c3,1
CAM match, RAM1readto C15.M MVA MCR p15,4,Rd,c15,c13,4
Read C15.M Data MRC p15,4,Rd,c15,c3,0

10 9

Figure 11-12 showsthe format of Rd for CAM writes and data for CAM reads.

6 543210

MVA TAG

SIZE_C |V|P SBzZ

Figure 11-12 Rd format, CAM write and data format, CAM read

11-14

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

TestSupport

InFigure 11-12 on page 11-14, V isthe Valid bit, Pisthe Preserve bit, and SIZE_C sets
the memory region size. The allowed values of SIZE_C are shown in Table 11-6.

Table 11-6 CAM memory region size

SIZE_C[3:0] Memory region size

Ob1111 IMB
0b0111 64KB
0b0011 16KB
0b0001 4KB
0b0000 1KB

Figure 11-13 showsthe format of Rd for RAM1 writes.

31 22 21 6 543 0
SBz DOMAIN (one hot encoding) AP
D15 DO '\\
nC B

Figure 11-13 Rd format, RAM1 write

In Figure 11-13, AP[3:0] determines the setting of the access permission bits for a
memory region. The allowed values are shown in Table 11-7.

Table 11-7 Access permission bit setting

AP[3:0] Access permission bits

0b1000 Obll

0b0100 0bl10

0b0010 0bO1

0b0001 0b0O

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. 11-15

Test Support

Figure 11-14 shows the data format for RAM1 reads.

31 2524 2322 21 6 54 3 0
SBZ DOMAIN (one hot encoding) AP
D1 D
Prot fault/ / ° 0 \\
Domain fault nC
TLB miss nB

Figure 11-14 Data format, RAM1 read

InFigure 11-14, bits[24:22] are only valid for amatch operation. In this casethevalues
shown in Table 11-8 apply.

Table 11-8 Miss and fault encoding

Prot fault Domain fault TLB miss Function

0 0 0 Hit, OK

0 1 0 Hit, domain fault

1 0 0 Hit, protection fault

1 1 0 Hit, protection and domain fault
- - 1 TLB miss

Figure 11-15 shows the Rd format for RAM2 writes, and the data format for RAM2
reads.

31 10 9 6 5 0

PATAG SIZE_R2 SBZ

Figure 11-15 Rd format, RAM2 write and data format, RAM2 read

11-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

TestSupport

In Figure 11-15 on page 11-16, SIZE_R2 sets the memory region size. The alowed
values of SIZE_R2 are shown in Table 11-9.

Table 11-9 RAM2 memory region size

SIZE_R2[3:0] Memory region size

0Ob1111 IMB
0b0111 64KB
0b0011 16KB
0b0000 4KB
0b0001 1KB

Note
The encoding for SIZE_R2 is different from SIZE_C.

11.5.1 Addressing the CAM, RAM1, and RAM2

For the CAM read or write, RAM1 read or write, and RAM2 read or write operations,
you must specify theindex. The CAM and RAM 1 operations use the value in thevictim
pointer, so you must write this before any CAM or RAM1 operation. RAM2 uses a
pipelined version of the victim pointer used for the CAM or RAM1 operation. This
means that to read from index N in the RAM2 array, you must first perform an access
to index N in either the CAM or RAM1.

The write TLB lockdown operation is:
MCR p15,0,Rd,c10,c0,0

The write TLB lockdown format for Rd is shown in Figure 11-16.

31 26 25 20 19 10

Base Victim SBZ P

Figure 11-16 Rd format, write TLB lockdown

Example 11-2 on page 11-18 shows sample code for performing software test of the
MMU. It contains typical operations with C15.M.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. 11-17

Test Support

Example 11-2 MMU test operations

; MMU write, read and check for CAM, RAM1 and RAM2

; Load victim pointer with 0
MOV ro,#0
MCR p15,0,r0,c10,c0,0

; Write pattern Ox5A5A5A50 in CAM

; Write pattern 0x@025A5A5 in RAM1

; Write pattern OxFOFOFOCO in RAM2
LDR r2,=0x5A5A5A50
LDR r3,=0x0025A5A5
LDR r4,=0xFOFOFOCO
MOV r5,#64

; Write all 64 Tines

Toop® MCR pi15,4,r2,c15,c7,0 ; write CAM
MCR p15,4,r3,cl15,c11,0 ; write RAM1
MCR p15,4,r4,c15,c3,1 ; write RAM2, pointer auto-incremented here
SUBS r5,r5,#1
BNE Toop®

; Now read and check
; Reset victim pointer
MOV ro,#0
MCR p15,0,r0,c10,c0,0
MOV r8,#64
Toopl MCR pi15,4,r5,c15,c7,4 ; read CAM to C15.M
MRC p15,4,r5,c15,c3,6 ; read C15.M to RS
MCR p15,4,r6,c15,cl11,4
MRC p15,4,r6,c15,c3,6 ; read RAML to R6
BIC r5,r5,#0x01c00000 ; mask fault/miss bits

MCR p15,4,r7,cl15,c3,5
MRC p15,4,r7,cl15,c3,6 ; read RAM2 to R7

CMP r5,r2
CMP r6,r3
CMP r7,r4
BNE TEST_FAIL

SUBS r8,r8,#1
BNE Toopl
B TEST_PASS

11-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Appendix A
Signal Descriptions

This chapter describes the interface signals of the ARM720T processor. It contains the
following sections:

. AMBA interface signals on page A-2

. Coprocessor interface signals on page A-3

. JTAG and test signals on page A-4

. Debugger signals on page A-6

. Embedded trace macrocell interface signals on page A-7
. Miscellaneous signals on page A-9.

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved. A-1

Signal Descriptions

Al AMBA interface signals
The AMBA interface signals are shown in Table A-1.
Table A-1 AMBA interface signals

Signal name Type Description

HCLK Input Bus clock. Thisisthe only
clock on the ARM720T
(Rev 4) macrocell.

HADDR[31:0] Output 32-bit system address bus.

HTRANS[1:0] Output Indicates type of current
transfer.

HBURST[2:0] Output Indicates burst length of
current transfer.

HWRITE Output Indicates direction of
current transfer.

HSIZE[2:0] Output Indicates size of current
transfer.

HPROTI[3:0] Output Protection control signals

HGRANT Input Bus transfer granted.

HREADY Input Indicates that the current
transfer has finished.

HRESP[1:0] Input Indicates transfer status.

HWDATA[31:0] Output Write data bus.

HRDATA[31:0] Input Read data bus.

HBUSREQ Output Bus transfer request.

HLOCK Output Indicates locked access.

HCLKEN Input Bus clock enable.

HRESETN Input Global reset.

A-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Signal Descriptions

A.2 Coprocessor interface signals

The coprocessor interface signals are shown in Table A-2.

Table A-2 Coprocessor interface signal descriptions

Name Type Description

EXTCPA In External coprocessor absent.
This signal must be HIGH if no externa coprocessor is present.

EXTCPB In External coprocessor busy.

EXTCPCLKEN Out External coprocessor clock enable.

EXTCPDIN[31:0] Out External coprocessor datain.

EXTCPDOUT[31:0] In Externa coprocessor data out.

CPnCPI Out Not coprocessor instruction.
When LOW, this signal indicates that the ARM720T processor is executing a
Ccoprocessor instruction.

CPnOPC Out Not opcode fetch.
When LOW, this signal indicates that the processor is fetching an instruction from
memory. When HIGH, data, if present, is being transferred. Thissignal isused by the
coprocessor to track the ARM pipeline.

CPTBIT Out Thumb state.
This signal, when HIGH, indicates that the processor is executing the THUMB
instruction set. When LOW, the processor is executing the ARM instruction set.

CPnTRANS Out Not coprocessor trand ate.
When HIGH, the coprocessor interface is in a nonprivileged mode. When LOW, the
coprocessor interfaceisin a privileged mode.
The coprocessor samplesthissignal on every cyclewhen determining the coprocessor
response.

CPnMREQ Out Not coprocessor memory request.

EXTCPDBE In External coprocessor data bus enable.

This signal when HIGH, indicates that the coprocessor intends to drive the
coprocessor databus, CPDATA. If the coprocessor interfaceis not to be used then this
signal must be tied LOW.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. A-3

Signal Descriptions

A.3 JTAG and test signals

JTAG and test signal descriptions are shown in Table A-3.

Table A-3 JTAG and test signal descriptions

Name Type Description

DBGIR[3:0] Out TAP instruction register.
These signals reflect the current instruction loaded into the TAP controller instruction
register. Thesignals change on thefalling edge of HCL K when the TAP state machineis
in the UPDATE-DR gtate. You can use these signals to enable more scan chains to be
added using the ARM720T processor TAP controller.

DBGSREG[3:0] Out Scan chain register.
These signals reflect the ID number of the scan chain currently selected by the TAP
controller. These signals change on the falling edge of XTCK when the TAP state
machine isin the UPDATE-DR state.

DBGSDIN Out Boundary scan serial datain.
This signal isthe serid datato be applied to an external scan chain.

DBGSDOUT In Boundary scan serial data out.

This signal isthe serial datafrom an external scan chain. It enablesasingle DBGTDO
port to be used. If an externa scan chain is not connected, thisinput must be tied LOW.

DBGTAPSM[3:0] Out Tap controller status.
These signals represent the current state of the TAP controller machine. These signals
change on therising edge of XTCK and can be used to allow more scan chains to be
added using the ARM720T processor TAP controller.

DBGCAPTURE2 Out CAPTURE state signdl.

When HIGH, thisindicates that the TAP controller state machineisin a CAPTURE state
(see Figure 9-8 on page 9-27).

DBGSHIFT2a Out SHIFT state signal.

When HIGH, thisindicatesthat the TAP controller state machineisin aSHIFT state (see
Figure 9-8 on page 9-27).

DBGUPDATE2 Out UPDATE state signal.

When HIGH, thisindicates that the TAP controller state machine isin an UPDATE state
(see Figure 9-8 on page 9-27).

DBGINTEST2 Out INTEST state signal.

DBGEXTEST?2 Out EXTEST state signal.

A-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Signal Descriptions

Table A-3 JTAG and test signal descriptions (continued)

Name Type Description
DBGnTDOEN Out Test data out enable.
DBGNTRST In Not test reset.

When LOW, this signal resets the JTAG interface.
DBGTCKEN In Test clock enable.
DBGTDI In Test datain.

JTAG test datain signal.
DBGTDO Out Test data out.

JTAG test data out signd.
DBGTMS In Test mode select.

JTAG test mode select signal.

a. Thesesignals are only active when scan chain O is selected.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

Signal Descriptions

A4 Debugger signals
The debugger signal descriptions are shown in Table A-4.

Table A-4 Debugger signal descriptions

Name Type Description

DBGBREAK In Breakpoint.

This signal enables external hardware to halt execution of the processor for debug
purposes. When HIGH, this causes the current memory access to be breakpointed. If
memory access is an instruction Fetch, the core enters debug state if the instruction
reaches the Execute stage of the core pipeline. If the memory accessisfor data, the core
enters the debug state after the current instruction compl etes execution. This enables
extension of the internal breakpoints provided by the EmbeddedI CE-RT module.

In most systems, thisinput istied LOW.

COMMRX Out Communication receive full.

When HIGH, thissignal denotes that the comms channel receive buffer contains data for
the core to read.

COMMTX Out Communication transmit empty.
When HIGH, this signal denotes that the comms channel transmit buffer is empty.

DBGACK Out Debug acknowledge.
When HIGH, this signal denotes that the ARM isin debug state.

DBGEN In Debug enable.

When DBGEN isLOW, it inhibits BREAK POINT and DBGRQ to thecore. DBGACK
from the ARM720T processor is held LOW when DGBEN is LOW.

DBGEN must be HIGH to enable the Embedded! CE-RT logic to be used.

DBGRQ In Debug request.

This signal causes the core to enter debug state after executing the current instruction.
This enables external hardware to force the core into debug state, in addition to the
debugging features provided by the EmbeddedI CE-RT Logic.

In most systems, thisinput istied LOW.

DBGEXT[1:0] In External condition.
These signals allow breakpoints and watchpoints to depend on an external condition.

DBGRNG[1:0] Out Range out.

These signals indicate that the relevant Embedded| CE-RT watchpoint register has
matched the conditions currently present on the address, data, and control buses. These
signals are independent of the state of the watchpoint enable control bits.

A-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

A5

Signal Descriptions

Embedded trace macrocell interface signals

The ETM interface signals are shown in Table A-5.

Table A-5 ETM interface signal descriptions

Output name Type Description
ETMNMREQ Out Not memory request. When LOW, indicates that the processor requires memory access
during the following cycle.
ETMSEQ Out Sequential address. When HIGH, indicates that the address of the next memory cycle
isrelated to that of the last memory cycle. The new addressis one of the following:
. the same as the previous one
. four greater in ARM state
. two greater in Thumb state.
Thissignal can be used, with the low order addresslines, to indicate that the next cycle
can use afast memory mode and bypass the address trand ation system.
ETMnEXEC Out Not executed. When HIGH, indicates that the instruction in the execution unit is not
being executed. For example it might have failed the condition check code.
ETMnCPI Out Not coprocessor instruction. When the ARM720T processor executes a Coprocessor
instruction, it takesthe ETMnCPI LOW and waits for aresponse from the
coprocessor. The actions taken depend on this response, which the coprocessor signals
on the CPA and CPB inputs.
ETMADDR[31:0] Out Addresses. Thisisthe retimed internal address bus.
ETMnOPC Out Not opcode fetch. When LOW, indicates that the processor is fetching an instruction
from memory. When HIGH, indicates that data, if present, is being transferred.
ETMDBGACK Out Debug acknowledge. When HIGH, indicates that the processor isin debug state. When
LOW, indicates that the processor isin normal system state.
ETMABORT Out Memory abort or bus error. Indicates that a requested access has been disallowed.
ETMCPA Out Coprocessor absent handshake. The coprocessor absent signal. It isabuffered version
of the coprocessor absent signal.
ETMCPB Out Coprocessor busy handshake.
The coprocessor busy signd. It is a buffered version of the coprocessor absent signal.
ETMPROCID[31:0] Out Trace PROCID bus.
ETMPROCIDWR Out Trace PROCID write. Indicatesto the ETM 7 that the Trace PROCI D, CP15 register 13,

has been written.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. A-7

Signal Descriptions

Table A-5 ETM interface signal descriptions (continued)

Output name Type Description

ETMTBIT Out Thumb state.
This signal, when HIGH, indicates that the processor is executing the THUMB
instruction set. When LOW, the processor is executing the ARM instruction set.

ETMBIGEND Out Big-endian format.
When thissignal isHIGH, the processor treats bytesin memory asbeing in big-endian
format. When it is LOW, memory is treated aslittle-endian.

ETMEN In The ETM7 enable signal.

ETMHIVECS Out When LOW, thissignal indicatesthat the exception vectors start at address 0x00000000.
When HIGH, the exception vectors start at address 0xFFFF0000.

ETMSIZE[1:Q] Out The memory access size bus driven by the ARM720T (Rev 4) processor.

ETMRDATA[31:0] Out The processor read data bus.

ETMWDATA[31:0] Out The processor write data bus.

ETMINSTRVALID Out Theinstruction valid signal driven by the ARM720T processor. When HIGH, it
indicates that the instruction in the Execute stage is valid and has not been flushed.

ETMnRW Out Not read/write. When HIGH, indicates a processor write cycle. When LOW, indicates
a processor read cycle.

ETMCLKEN Out Thissignal isusedto indicateto the ETM that the coreisin await state. It isnot atrue
clock enable for the ETM.

A-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Signal Descriptions

A.6 Miscellaneous signals

Miscellaneous signals used by the ARM720T processor are shown in Table A-6.

Table A-6 Miscellaneous signal descriptions

Name Type Description

BIGENDOUT Out Big-endian format.
When this signal isHIGH, the processor treats bytes in memory
as being in big-endian format. When it is LOW, memory is
treated as little-endian.

nFIQ In ARM fast interrupt request signal.
nIRQ In ARM interrupt request signal.
VINITHI In Determines the state of the V bit in CP15 register 1 at reset.

When HIGH, the V bit is set coming out of rest. When LOW, the
V bitisclear coming out of reset.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. A-9

Signal Descriptions

A-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Glossary

Abort

Addressing modes

Arithmetic Logic Unit

ALU
ARM state

Big-endian

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Is caused by an illegal memory access. Abort can be caused by the external memory
system, an external MMU, or the EmbeddedI CE-RT logic.

A procedure shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the val ues generated are memory
addresses (whichisthetraditional role of an addressing mode). A fifth addressing mode
generates values to be used as operands by data-processing instructions.

The part of acomputer that performs all arithmetic computations, such as addition and
multiplication, and al comparison operations.

See Arithmetic Logic Unit.
A processor that is executing ARM (32-bit) instructionsis operating in ARM state.

Memory organization where the least significant byte of aword is at a higher address
than the most significant byte.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-1

Glossary

Banked registers

Breakpoint

CIsC

Register numberswhose physical register isdefined by the current processor mode. The
banked registers are registers R8 to R14, or R13 to R14, depending on the processor
mode.

A location in the program. If execution reaches this location, the debugger halts
execution of the code image.

See also Watchpoint.

See Complex Instruction Set Computer.

Complex Instruction Set Computer

CPSR

Control bits

A microprocessor that recognizes alarge number of instructions.
See also Reduced Instruction Set Computer.
See Program Status Register.

The bottom eight bits of a program status register. The control bits change when an
exception arises and can be altered by software only when the processor isin a
privileged mode.

Current Program Status Register

DCC

Debug state

Debugger

EmbeddedICE

EmbeddedICE-RT
Exception modes

Exception

External abort

See Program Status Register.
Debug Communications Channel.

A condition that allows the monitoring and control of the execution of a processor.
Usually used to find errorsin the application program flow. A processor enters debug
state from halt mode and not from monitor mode.

A debugging system which includes a program, used to detect, |ocate, and correct
software faults, together with custom hardware that supports software debugging.

The EmbeddedI CE logic is controlled via the JTAG test access port, using a protocol
converter such as Multil CE: an extra piece of hardware that allows software tools to
debug code running on a target processor.

See also ICE and JTAG.
A version of EmbeddedI| CE logic that has improved support for real-time debugging.
Privileged modes that are entered when specific exceptions occur.

Handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

An abort that is generated by the external memory system.

Glossary-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

FIQ

Halt mode

ICE

Idempotent

In-circuit emulator

IRQ

Glossary

Fast interrupt.

One of two debugging modes. When debugging is performed in halt mode, the core
stopswhen it encounters awatchpoint or breakpoint, and isisolated from therest of the
system. See also Monitor mode.

See In-circuit emulator.

A mathematical quantity that when applied to itself under a given binary operation
equals itself.

An In-Circuit Emulator (ICE), is a device that aids the debugging of hardware and
software. Debuggable ARM processors such as the ARM720T (Rev 4) processor have
extra hardware to assist this process.

See also Embedded| CE-RT.

Interrupt request.

Joint Test Action Group

JTAG

Link register

Little-endian memory

LR

Macrocell

The name of the organization that developed standard |EEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices.

See Joint Test Action Group.

Thisregister holds the address of the next instruction after a branch with link
instruction.

Memory organization where the most significant byte of aword is at a higher address
than the least significant byte.

See Link register

A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such asan ARM7TDMI-S core, an ETM7, and a
memory block) plus application-specific logic.

Memory Management Unit

MMU

Allows control of amemory system. Most of the control is provided through translation
tables held in memory.

See Memory Management Unit

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-3

Glossary

Monitor mode One of two debugging modes. When debugging is performed in monitor mode, the core
does not stop when it encounters a watchpoint or breakpoint, but enters an abort
exception routine. See also Halt mode.

PC See Program Counter.

Privileged mode Any processor mode other than User mode. Memory systems typically check memory
accesses from privileged modes agai nst supervisor access permissions rather than the
more restrictive user access permissions. The use of someinstructionsis also restricted
to privileged modes.

Processor Status Register
See Program Status Register

Program Counter Register 15, the Program Counter, is used in most instructions as a pointer to the
instruction that is two instructions after the current instruction.

Program Status Register

Contains some information about the current program and some information about the
current processor. Also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

PSR See Program Status Register.
RAZ Read as zero.
Reduced Instruction Set Computer

A type of microprocessor that recognizesalower number of instructionsin comparison
with a Complex Instruction Set Computer. The advantages of RISC architectures are:

. they can executetheir instructions very fast because theinstructions are so simple

. they require fewer transistors, this makes them cheaper to produce and more
power efficient.

See also Complex Instruction Set Computer.
RISC See Reduced Instruction Set Computer
Saved Program Status Register

The Saved Program Status Register which isassociated with the current processor mode
and is undefined if there is no such Saved Program Status Register, asin User mode or
System mode.

Glossary-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

SBO

SBZ

Should Be One fields

Should Be Zero fields

Glossary

See also Program Status Register.
See Should Be Onefidlds.
See Should Be Zero fields.

Should be written as one (or all ones for bit fields) by software. Values other than one
produces unpredictable results.

See also Should Be Zero fields.

Should be written as zero (or al Os for bit fields) by software. Values other than zero
produce unpredictable results.

See also Should Be Onefields.

Software Interrupt Instruction

SPSR

Stack pointer

Status registers
SP

SWi

TAP

Test Access Port

Thumb instruction

Thumb state
UND

Undefined

Thisinstruction (SW1) enters Supervisor mode to request a particular operating system
function.

See Saved Program Status Register.

A register or variable pointing to thetop of astack. If the stack isfull stack the SP points
to the most recently pushed item, elseif the stack is empty, the SP pointsto the first
empty location, where the next item will be pushed.

See Program Status Register.

See Stack pointer

See Software Interrupt Instruction.
See Test access port.

The collection of four mandatory and one optional terminalsthat form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
areTDI, TDO, TMS, and TCK. The optional terminal isnTRST.

A halfword which specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.
See Undefined.

Indicates an instruction that generates an undefined instruction trap.

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-5

Glossary

UNP

Unpredictable

Unpredictable fields

See Unpredictable

Means the result of an instruction cannot be relied upon. Unpredictable instructions

must not halt or hang the processor, or any parts of the system.

Do not contain valid data, and avalue can vary from moment to moment, instruction to

instruction, and implementation to implementation.

Watchpoint A locationin theimagethat ismonitored. | f the val ue stored there changes, the debugger
halts execution of the image.
See also Breakpoint.

Glossary-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

Index

Theitemsin thisindex arelisted in aphabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Abort

Data 9-9,9-47

handler 9-9

mode 2-7

Prefetch 9-50

vector 9-47
Abort status register 9-61
Aborted watchpoint 9-48
Aborts

Data 2-19

indexed addressing 2-25

prefetch 2-19

types 2-19
Access permission 7-2

bits 7-23
Address

translation 7-5
Address mask register 9-51, 9-53
Addressvalueregister 9-51
Alignment faults 7-20
AMBA interface

signals A-2
Arbitration, AHB 6-17
ARM instruction set 1-9

addressing mode

five 1-16
four 1-16
three 1-15
two 1-13
two, privileged 1-14

condition fields 1-18

fidds 1-17

operand two 1-17
ARM state

register organization 2-9
ARM720T

block diagram 1-3

description 1-2

B

Banked registers 9-41
Big endian. see memory format

Boundary-scan
chaincells 9-28
interface 9-28
Breakpoint
address mask 9-57
data-dependent 9-56
entry into debug state 9-8
externally-generated 9-7
hardware 9-56
programming 9-56
Breakpoints
programming 9-56
software 9-56
Businterface
transfer types 6-6
Bus request
AHB 6-17
BYPASS instruction 9-30
Bypass register 9-31, 9-32
Byte (datatype) 2-6

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

Index-1

Index

C

Cache
test register 11-5
CAPTURE-DR state 9-29
CHAIN bit 9-54
Clock
domains 9-13
system 9-10
test 9-10
Coarse page table descriptor 7-10
Communications channel
message transfer from the debugger
9-22
Condition code flags 2-13
Configuration
compatibility 3-2
description 3-2
notation 3-2
Connecting an ETM7 macrocell
Control mask 9-51, 9-53
Control mask register 9-51, 9-53
Control value
register 9-55
Control valueregister 9-51, 9-53
Coprocessor 1-7
about 8-2
busy-waiting 8-8
connecting 8-11-8-12
data operations 8-9
handshaking 8-6
interface handshaking 8-6
interface signas 8-4, A-3
load and store operations 8-9
notusing 8-13
CPnCPI 8-8
CPSR (Current Processor Status
Register) 2-13
format of 2-13
CPU aborts 7-20
CP15

10-4

AHB 6-14
Data mask register 9-51, 9-53
Datatypes 2-6
aignment 2-6
byte 2-6
halfword 2-6
word 2-6
Datavalue register 9-51
Debug
actions 9-9
breakpoints 9-8
control register 9-62
corestate 9-40
entry into debug state from
breakpoint/watchpoint 9-46
exceptions 9-50
host 9-3
interface 9-12
interface signals 9-12
Multi-ICE 9-10
priorities 9-50
request 9-7, 9-9, 9-46, 9-47
state 9-9
state, entry from abreakpoint 9-46
state, exit from 9-45
status register 9-40, 9-65
system state 9-40
target 9-3
watchpoint 9-9
Debugger
signals A-6
Descriptor
coarse pagetable 7-10
fine pagetable 7-11
level one 7-7
level two 7-13
section 7-9
Device identification code 9-30, 9-32
Disabling EmbeddedI CE-RT 9-16
Disabling the ETM interface 10-3
Domain 7-2

EmbeddedICE-RT 1-5,9-5
breakpoints
coupling with watchpoints 9-67
hardware 9-56
software 9-57
communications channel 9-20
control register 9-45
control registers 9-53
coupling breakpoints with
watchpoints 9-67
debug status register 9-40, 9-65
disabling 9-16
overview 9-14
programming 9-7, 9-9, 9-24
registers 9-51
software breakpoints 9-57
TAP controller 9-53
timing 9-16, 9-70
watchpoint registers 9-51-9-55
watchpoints 9-56
ENABLE bit 9-55
Enabling the ETM interface 10-3
ETM interface
clocksand resets 10-6
connecting 10-4
enabling and disabling 10-3
signals A-7
Exception
entering 2-16
entry and exit summary 2-17
leaving 2-17
priorities 2-21
restrictions 2-22
returning to THUMB state from
2-17
vectors 2-21
addresses 2-21
watchpoint 9-47
External aborts 7-27

test registers 11-2 access control 7-22 F
faults 7-20, 7-25
FAR 7-21
D Fast Context Switch Extension 2-23
E Fault

Data addressregister 7-21

abort 9-9, 9-50 Early termination domain 7-25
Data bus definition 2-25 permission 7-26
Index-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

statusregister 7-21
translation 7-25
FCSE
relocation of low virtual addresses
2-23
Fetch
instruction 9-54
Fine page table descriptor 7-11
FIQ mode 2-7
definition 2-18
FIQvalid 8-8
FSR 7-21

G

Grant signal, AHB 6-17

H

Halt mode 9-6, 9-7
Hardware breakpoints 9-56
HBUSREQx 6-17
HGRANTx 6-17
High register
accessing from THUMB state 2-11
description 2-11
HLOCKx 6-17
HRDATA 6-14
HRESP 6-12
HWDATA 6-14

ID register 9-28, 9-30, 9-32
IDC
cachable bit 4-2
disable 4-5
enable 4-5
operation 4-2
read-lock-write 4-3
reset 4-5
validity 4-4
double-mapped space 4-4
software IDC flush 4-4
IDCODE instruction 9-30
Identification register, See ID register

Instruction

fetch 9-54

register 9-30, 9-32, 9-33
Instruction set 1-8

ARM 1-9

Thumb 1-18
Ingtruction types 1-8
Interface

coprocessor 8-1

debug 9-12

JTAG 9-24
Internal coprocessor instructions 3-3
Interrupt

mask enable 9-66
Interrupts 9-50
INTEST

instruction 9-29

mode 9-35
INTEST wrapper 11-3
IRQ

valid 8-8
IRQ mode 2-7

definition 2-19

JTAG
BYPASS 9-30
IDCODE 9-30, 9-33
interface 9-5, 9-24
INTEST 9-29
public ingtructions (summary) 9-29
RESTART 9-31
SCAN_N 9-29
JTAG signas A-4

L

Large pagereferences, translating 7-15
Level one
descriptor 7-7
descriptor, accessing 7-7
fetch 7-7
Level two
descriptor 7-13
Little endian. see memory format
Lock signal, AHB 6-17

Index

Low registers 2-12

M

Mask enable
interrupt 9-66
Memory
access from debugging state 9-42,
9-44
formats
big endian
description 2-3
little endian
description 2-4
Memory management unit 7-2
Miscellaneous signds A-9
MMU 7-2
enabling 3-7
enabling and disabling 7-28
faults 7-20
registers 7-4
test registers 11-12
Modes, privileged 8-16
Monitor mode 9-6, 9-18
Multi-ICE 9-10

O

Operating modes
Abort mode 2-7

changing 2-7
FIQ 2-7
IRQ mode 2-7

Supervisor mode 2-7

System mode 2-7

Undefined mode 2-7

User mode 2-7

Operating state

ARM 2-2

reading 2-14

switching 2-2
toARM 2-2
toTHUMB 2-2

THUMB 2-2

ARM DDI 0229A

Copyright © 2001 ARM Limited. All rights reserved.

Index-3

Index

P

Pagetables 7-6
Permission faults 7-20, 7-26
Pipeline

follower 8-5

Privileged instructions 8-16
Privileged modes 8-16
Processor

state 9-40

Program status registers

Programming EmbeddedI CE-RT 9-9

control bits 2-13
modebit values 2-15
reserved bits 2-15

Programming watchpoints 9-59
PROT bits 9-54

Protocol converter 9-4

Public instructions 9-29

R

Range 9-55, 9-56, 9-57, 9-60, 9-67,

9-68

RANGE bit 9-55
Read data bus

AHB 6-14

Register

cachetest 11-5

control value 9-55
debug status 9-66

fault address 7-21

fault status 7-21

MMU test 11-12

test 11-2

test state 11-4
translation table base 7-5

Registers 3-4

ARM 2-8
interrupt modes 2-9
debug communications channel
9-20
debug control
DBGACK 9-64
DBGRQ 9-63
instruction 9-30, 9-32, 9-33
register O, ID register 3-4

register 13, processidentifier register
311
changing FCSE PID 3-12
FCSEPID 3-11
register 1, control register 3-5
register 2, translation table base
register 3-7
register 3, domain access control
register 3-8
register 4, reserved 3-8
register 5, fault status register 3-8
register 6, fault addressregister 3-9
register 7, cache operationsregister
3-10
register 8, translation lookaside
buffer register 3-10
register 9-12, reserved 3-11
relationship between ARM and
Thumb 2-11
Thumb 2-10
watchpoint 9-51
programming and reading 9-51
Registers, debug
addressmask 9-57
BYPASS 9-30
bypass 9-32
control mask 9-51, 9-53
control value 9-51, 9-53
datamask 9-51
datavalue 9-51
EmbeddedI CE-RT 9-35
accessing 9-25, 9-34
debug status 9-40
ID 9-32
instruction 9-30, 9-32, 9-33
scan path select 9-32, 9-33
scan path select register 9-29
status 9-65
statusregister 9-40
test data 9-32
watchpoint address mask 9-51
watchpoint address value 9-51
Reset
action of processor on 2-24
Response encoding 6-13
RESTART
on exit from debug 9-31
RESTART ingtruction 9-31,9-42, 9-44
Return address calculation 9-49

Returned TCK, See RTCK
RTCK 9-10
RUN-TEST/IDLE state 9-31, 9-44

S

Scan
input cells 9-30
interface timing 9-37
limitations 9-24
output cells 9-30
path 9-29
paths 9-24
Scan cells 9-30,9-34
Scan chain
selected 9-29
Scanchain1l 9-24, 9-32, 9-35, 9-37,
9-40, 9-42, 9-43, 9-46
Scan chain 1 cells 9-37
Scan chain2 9-24,9-32, 9-35, 9-51
Scan chains 9-24
number alocation 9-34
Scan path select register 9-29, 9-32,
9-33
SCAN_N 9-29, 9-33,9-35
Section
descriptor 7-9
references, trandating 7-12
SHIFT-DR 9-28, 9-29, 9-30, 9-35
SHIFT-IR 9-33
Signals
AMBA interface A-2
coprocessor interface A-3
debugger A-6
ETM interface A-7
JTAG A-4
miscellaneous A-9
Single-step core operation 9-30
SIZE 6-9
SIZE bits 9-54
Save
transfer response 6-12
Small page references, translating 7-17
Software breakpoints 9-56, 9-57
clearing 9-58
programming 9-57
setting 9-56, 9-57
Software Interrupt 2-20

Index-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0229A

Software interrupt 2-20
SPSR (Saved Processor StatusRegister)
2-13

format of 2-13

State
CAPTURE-DR 9-29, 9-30
processor 9-40
SHIFT-DR 9-28, 9-29, 9-30, 9-32
UPDATE-DR 9-29, 9-30, 9-31
UPDATE-IR 9-33

Subpages 7-19

Supervisor mode 2-7

SwWI 2-20

System mode 2-7

System speed
instruction 9-42, 9-48

System state
determining 9-42

T

T bit (in CPSR) 2-14
TAP

controller 9-5, 9-14, 9-24, 9-27

controller state

transitions 9-27

instruction 9-33

state 9-35
Test

registers 11-2

state register 11-4
Test Access Port, See TAP
Test dataregisters 9-32
Thumb instruction set 1-18
Thumb state 2-2

register organization 2-10
Tiny page references, trandating 7-18
Transfer response

AHB 6-12
Transitions

TAP controller state 9-27
Translating page tables 7-6
Translation faults 7-20, 7-25
Translation table base 7-5
TTB 7-5

U

Undefined instruction

handling 8-15

trap 8-2, 8-13, 8-15, 8-16
Undefined instruction trap 2-20
Undefined mode 2-7
UPDATE-DR 9-29
UPDATE-IR 9-33
User mode 2-7

W

Watchpoint 9-7, 9-9, 9-15, 9-35, 9-46,
9-67
aborted 9-48
coupling 9-67
EmbeddedI CE-RT 9-56
externally generated 9-7
programming 9-59
register 9-51, 9-57
registers 9-51
programming and reading 9-51
unit 9-59
with exception 9-49
Watchpoint 0 9-69
Watchpointed
access 9-47,9-50
memory access 9-47
Watchpoints
programming 9-59
WRITE 9-54
Write buffer
bufferable bit 5-2
definition 5-2
operation 5-3
bufferable write 5-3
read-lock-write 5-3
unbufferable write 5-3
Write data bus
AHB 6-14

Index

ARM DDI 0229A Copyright © 2001 ARM Limited. All rights reserved.

Index-5

Index

Index-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0229A

	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Feedback

	Introduction
	1.1 About the ARM720T (Rev 4) macrocell
	1.2 Coprocessors
	1.3 About the instruction set

	Programmer’s Model
	2.1 Processor operating states
	2.2 Memory formats
	2.3 Instruction length
	2.4 Data types
	2.5 Operating modes
	2.6 Registers
	2.7 Program status registers
	2.8 Exceptions
	2.9 Relocation of low virtual addresses by the FCSE PID
	2.10 Reset
	2.11 Implementation-defined behavior of instructions

	Configuration
	3.1 About configuration
	3.2 Internal coprocessor instructions
	3.3 Registers

	Instruction and Data Cache
	4.1 About the instruction and data cache
	4.2 IDC validity
	4.3 IDC enable, disable, and reset

	Write Buffer
	5.1 About the write buffer
	5.2 Write buffer operation

	The Bus�Interface
	6.1 About the bus interface
	6.2 Bus interface signals
	6.3 Transfer types
	6.4 Address and control signals
	6.5 Slave transfer response signals
	6.6 Data buses
	6.7 Arbitration
	6.8 Bus clocking
	6.9 Reset

	Memory Management Unit
	7.1 About the MMU
	7.2 MMU program-accessible registers
	7.3 Address translation
	7.4 MMU faults and CPU aborts
	7.5 Fault address and fault status registers
	7.6 Domain access control
	7.7 Fault checking sequence
	7.8 External aborts
	7.9 Interaction of the MMU and cache

	Coprocessor Interface
	8.1 About coprocessors
	8.2 Coprocessor interface signals
	8.3 Pipeline-following signals
	8.4 Coprocessor interface handshaking
	8.5 Connecting coprocessors
	8.6 Not using an external coprocessor
	8.7 STC operations
	8.8 Undefined instructions
	8.9 Privileged instructions

	Debugging Your System
	9.1 About debugging your system
	9.2 Controlling debugging
	9.3 Entry into debug state
	9.4 Debug interface
	9.5 ARM720T core clock domains
	9.6 The EmbeddedICE-RT macrocell
	9.7 Disabling EmbeddedICE-RT
	9.8 EmbeddedICE-RT register map
	9.9 Monitor mode debugging
	9.10 The debug communications channel
	9.11 Scan chains and the JTAG interface
	9.12 The TAP controller
	9.13 Public JTAG instructions
	9.14 Test data registers
	9.15 Scan timing
	9.16 Examining the core and the system in debug state
	9.17 Exit from debug state
	9.18 The program counter during debug
	9.19 Priorities and exceptions
	9.20 Watchpoint unit registers
	9.21 Programming breakpoints
	9.22 Programming watchpoints
	9.23 Abort status register
	9.24 Debug control register
	9.25 Debug status register
	9.26 Coupling breakpoints and watchpoints
	9.27 EmbeddedICE-RT timing

	ETM Interface
	10.1 About the ETM interface
	10.2 Enabling and disabling the ETM7 interface
	10.3 Connections between the ETM7 macrocell and the ARM720T (Rev 4) processor
	10.4 Clocks and resets
	10.5 Debug request wiring
	10.6 TAP interface wiring

	Test Support
	11.1 About the ARM720T (Rev 4) test registers
	11.2 Automatic Test Pattern Generation (ATPG)
	11.3 Test state register
	11.4 Cache test registers and operations
	11.5 MMU test registers and operations

	Signal Descriptions
	A.1 AMBA interface signals
	A.2 Coprocessor interface signals
	A.3 JTAG and test signals
	A.4 Debugger signals
	A.5 Embedded trace macrocell interface signals
	A.6 Miscellaneous signals

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W

