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• Feedback on page xxiv.
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Preface 
About this document

This is the technical reference manual for the ARM1026EJ-S r0p2 processor.

Intended audience

This document is written to help designers develop systems around the ARM1026EJ-S 
processor.

Using this document

This document is organized into the following chapters:

Chapter 1 Introduction 

Learn about the features and components of the ARM1026EJ-S 
processor.

Chapter 2 Integer Core 

Learn how overlapping pipeline stages and simultaneous execution of 
instructions achieve a peak throughput of one instruction per cycle.

Chapter 3 Programmer’s Model 

Learn how to use CP15 registers to configure, control, and monitor the 
ARM1026EJ-S system.

Chapter 4 Clocking and Reset Timing 

Learn about the clock signals and clock enable signals that control the 
ARM1026EJ-S integer unit and the AHB and JTAG interfaces.

Chapter 5 Prefetch Unit 

Learn how the ARM1026EJ-S processor prefetches and buffers 
instructions, predicts branches and subroutine calls and returns, and how 
instruction memory barriers flush the prefetch buffer.

Chapter 6 Bus Interface 

Learn how the separate instruction and data bus interfaces handle 
AMBA™ transfers.

Chapter 7 Coprocessor Interface  

Learn how multiple coprocessors interact with the ARM1026EJ-S 
processor.
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Chapter 8 Debug 

Learn about the ARM1026EJ-S debug functionality.

Chapter 9 Debug Test Access Port 

Learn about the JTAG-based ARM1026EJ-S Debug Test Access Port 
(DBGTAP).

Chapter 10 Memory Management Unit 

Learn how the MMU translates modified virtual addresses to physical 
addresses and controls access to external memory.

Chapter 11 Memory Protection Unit 

Learn to partition external memory into protection regions with different 
sizes and access attributes.

Chapter 12 Caches 

Learn about cache structure and operation, including CP15 cache 
operations and cache and TCM priorities.

Chapter 13 Pending Write Buffer 

Learn about the programmable eight-entry buffer for loads and stores and 
the parallel eviction buffer.

Chapter 14 Interrupt Latency 

Learn to calculate latency from a worst-case example and to use 
techniques for improving latency. 

Chapter 15 Noncachable Instruction Fetches 

Learn how to use the noncachable instruction prefetch buffer to support 
speculative prefetching and instruction streaming.

Chapter 16 External Aborts 

Learn how the ARM1026EJ-S processor handles and reports precise and 
imprecise aborts on critical and noncritical words.

Chapter 17 Tightly-Coupled Memories 

Learn to initialize and operate the ITCM and DTCM and see examples of 
the timing of TCM transactions.

Chapter 18 Vectored Interrupt Controller Port 

Learn how to connect an external VIC and to enable the ARM1026EJ-S 
processor to read IRQ address vectors from the VIC port.
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Chapter 19 Power Management 

Learn to use dynamic power management to idle all external interfaces 
and static power management to turn off cache and MMU RAMs.

Chapter 20 Design for Test 

Learn to integrate the ARM1026EJ-S DFT and MBIST features into an 
SoC.

Chapter 21 Instruction Cycle Count 

Learn the cycle-by-cycle behavior of the ARM and Thumb™ instruction 
sets.

Appendix A Signal Descriptions 

Refer to Appendix A for a summary of ARM1026EJ-S processor signals.

Product revision status

The rnpn identifier indicates the revision status of the product described in this 
document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Typographical conventions

The following typographical conventions are used in this book:

italic  Introduces special terminology. Also denotes cross-references.

bold  Denotes signal names. Also used for terms in descriptive lists, 
where appropriate.

monospace Denotes text that can be entered at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

monospace italic Denotes arguments to commands and functions where the 
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.
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Timing diagram conventions

The figure explains the symbols used in timing diagrams. Any variations are clearly 
labeled when they occur. Therefore, you must attach no additional meaning unless 
specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
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Register notation conventions

The table shows the terms and abbreviations used in register descriptions. In all cases, 
reading or writing any fields, including those specified as Unpredictable, Should Be 
One, or Should Be Zero, does not cause any physical damage to the chip.

Register notation conventions

Term Description

Unpredictable (UNP) Reading returns an Unpredictable value. Writing causes Unpredictable behavior or an 
Unpredictable change in device configuration.

Undefined (UND) An instruction that accesses this field in the manner indicated takes the Undefined instruction trap.

Should Be Zero (SBZ) When writing to this field, write only zeros. Writing ones has Unpredictable results.

Should Be One (SBO) When writing to this field, write only ones. Writing zeros has Unpredictable results.
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Further reading

This section lists publications by ARM Limited and by third parties.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently 
Asked Questions list.

ARM publications

This document contains information that is specific to the ARM1026EJ-S processor. 
Refer to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM AMBA Specification (ARM IHI 0001)

• ARM102600E Test Chip Implementation Guide (ARM DXI 0143)

• ARM VFP10 Technical Reference Manual (ARM DDI 0106)

• ARM ETM10RV Technical Reference Manual (ARM DDI 0245)

• Jazelle VI Architecture Reference Manual (ARM DDI 0225).

Other publications

This section lists relevant documents published by third parties:

• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification 
1149.1-1990 (JTAG).
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Feedback

ARM Limited welcomes feedback both on the ARM1026EJ-S processor, and on the 
documentation.

Feedback on the ARM1026EJ-S processor

If you have any comments or suggestions about this product, contact your supplier 
giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments on this document, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
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Chapter 1 
Introduction

This chapter describes the components and features of the ARM1026EJ-S processor. It 
contains the following sections: 

• About the processor on page 1-2 

• Components of the processor on page 1-4 

• Silicon revision information on page 1-10. 
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1.1 About the processor

The ARM1026EJ-S processor is a member of the ARM10 family and implements the 
ARMv5TEJ architecture. It is a high-performance, low-power, cached processor that 
provides full virtual memory capabilities. It is designed to run high-end embedded 
applications and sophisticated operating systems such as Linux, Microsoft 
WindowsCE, NetBSD, and EPOC-32 from Symbian. It supports the 32-bit ARM, 
16-bit Thumb®, and 8-bit Jazelle™ instruction sets.

The synthesizable ARM1026EJ-S processor consists of:

• the ARM10EJ-S integer core

— prefetch unit

— integer unit

— load/store unit

— EmbeddedICE-RT™ logic for JTAG-based debug

• CP14 debug coprocessor and CP15 system control coprocessor

• external coprocessor interface for application-specific acceleration hardware

• Memory Management Unit (MMU) or Memory Protection Unit (MPU)

• separate ICache and DCache configurable to 0KB or 4KB-128KB sizes

• Tightly Coupled Memory (TCM) interface with:

— separate externally-instantiated instruction and data TCMs configurable to 
0KB or 4KB-1MB sizes

— zero-wait-state memory support

— DMA support

• write-back Physical Address (PA) TAG RAM

• pending write buffer

• separate Advanced Micro Bus Architecture (AMBA) High-performance Bus 
(AHB) instruction and data bus interfaces with independently configurable 32-bit 
or 64-bit widths 

• Embedded Trace Macrocell (ETM) interface

• Vectored Interrupt Controller (VIC) port.
1-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Introduction 
Features of the ARM1026EJ-S processor include:

• a six-stage pipeline

• branch prediction that supports branch folding (zero-cycle branches)

• full 64-bit interfaces between the integer core and:

— caches

— pending write buffer

— bus interface unit instruction side and data side

— coprocessors

• multilayer AHB support through independent 32-bit or 64-bit AHB interfaces for 
instruction and data sides

• power management support

• enhanced debug support.

See the ARM Architecture Reference Manual for a detailed ARM1026EJ-S instruction 
set specification.
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1.2 Components of the processor

The main blocks of the ARM1026EJ-S processor are:

• Integer core on page 1-6

• Memory management unit on page 1-6

• Memory protection unit on page 1-6

• Instruction and data caches and pending write buffer on page 1-7

• Instruction and data TCMs on page 1-7

• Branch prediction and prefetch unit on page 1-8

• AMBA interface on page 1-8

• Coprocessor interface on page 1-8

• Debug on page 1-8

• Instruction cycle summary and interlocks on page 1-8

• Design-for-test features on page 1-9

• Power management on page 1-9

• Clocking and reset on page 1-9

• ETM interface logic on page 1-9.

Figure 1-1 on page 1-5 shows the structure of the ARM1026EJ-S processor.
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Figure 1-1 ARM1026EJ-S processor block diagram
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1.2.1 Integer core

The ARM1026EJ-S processor is built around the ARM10EJ-S integer core in an 
ARMv5TEJ implementation that runs the 32-bit ARM, 16-bit Thumb, and 8-bit Jazelle 
instruction sets. You can balance high performance against code size and extract 
maximum performance from 8-bit, 16-bit, and 32-bit memory. The processor contains 
EmbeddedICE-RT logic and a JTAG debug interface to enable hardware debuggers to 
communicate with the processor.

See Chapter 2 Integer Core for details of the pipeline stages and instruction 
progression.

See Chapter 3 Programmer’s Model for system coprocessor programming information.

1.2.2 Memory management unit

The Memory Management Unit (MMU) has a single Translation Lookaside Buffer 
(TLB) for both instructions and data. The MMU includes a 1KB tiny page mapping size 
to enable a smaller RAM and ROM footprint for embedded systems and operating 
systems such as WindowsCE that have many small mapped objects. The 
ARM1026EJ-S processor implements the Fast Context Switch Extension (FCSE) and 
high vectors extension that are required to run Microsoft WindowsCE. See Chapter 10 
Memory Management Unit for more information.

Enable the MMU by tying the MMUnMPU pin HIGH.

1.2.3 Memory protection unit

The Memory Protection Unit (MPU) enables you to partition external memory into 
eight protection regions. The protection regions can have different sizes and protection 
attributes.

Enable the MPU by tying the MMUnMPU pin LOW.
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1.2.4 Instruction and data caches and pending write buffer

The ARM1026EJ-S Instruction Cache (ICache) and Data Cache (DCache) are 
configurable to 0KB or 4KB-128KB in powers of two. The DCache regions are 
individually programmable for Write-Through (WT) or Write-Back (WB) operation. 
Configuring large caches enables you to obtain high performance from memory 
systems by reducing:

• the read bandwidth required of main memory

• the write bandwidth required of main memory when write-back caching is used

• overall system power consumption by reducing accesses to off-chip memory.

The ARM1026EJ-S pending write buffer holds up to eight 8, 16, 32, or 64-bit values, 
each at an independent or sequential address.

See Chapter 12 Caches and Chapter 13 Pending Write Buffer for more information.

1.2.5 Instruction and data TCMs

You can individually configure the Instruction TCM (ITCM) and Data TCM (DTCM) 
sizes with sizes of 0KB or 4KB-1MB anywhere in the memory map. For flexibility in 
optimizing the TCM subsystem for performance, power, and RAM type, the TCMs are 
external to the ARM1026EJ-S processor. The INITRAM pin enables booting from the 
ITCM. Both the ITCM and DTCM support wait states and DMA activity. See 
Chapter 17 Tightly-Coupled Memories for more information.
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1.2.6 Branch prediction and prefetch unit

The prefetch unit is part of the ARM10EJ-S integer core. It fetches instructions from 
the ICache, ITCM, or from external memory and predicts the outcome of branches in 
the instruction stream. Refer to Chapter 5 Prefetch Unit for more information.

1.2.7 AMBA interface

The bus interface unit provides a multimaster AHB interface to memory and 
peripherals. The AHB is an on-chip multilayer bus with configurable 32-bit or 64-bit 
data buses. On the data side, the address bus is 32 bits wide, and the data buses are 
configurable as:

• a 64-bit read data bus plus a 64-bit write data bus

• a 32-bit read data bus plus a 32-bit write data bus.

On the instruction side, the address bus is 32 bits wide, and the read data bus is 
configurable to 32 or 64 bits. 

See Chapter 6 Bus Interface for more information.

1.2.8 Coprocessor interface

Chapter 7 Coprocessor Interface  describes the interface for on-chip coprocessors such 
as floating-point or other application-specific hardware acceleration units. 

1.2.9 Debug

The debug coprocessor, CP14, implements a full range of debug features described in 
Chapter 8 Debug and Chapter 9 Debug Test Access Port.

1.2.10 Instruction cycle summary and interlocks

Chapter 21 Instruction Cycle Count describes instruction cycles and gives examples of 
interlock timing.
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1.2.11 Design-for-test features

The ARM1026EJ-S processor is designed to be embedded into large System-On-a Chip 
(SoC) designs. The EmbeddedICE-RT logic debug facilities, AMBA on-chip system 
bus, and test methodology are all designed for efficient use of the processor when 
integrated into a larger IC. See Chapter 20 Design for Test for details of testing.

1.2.12 Power management

Power management features are described in Chapter 19 Power Management.

1.2.13 Clocking and reset

The ARM1026EJ-S processor has one clock input, CLK. The design is fully static. 
When CLK is stopped, the internal state of the processor is preserved indefinitely. CLK 
drives the internal logic in the processor and both AHB interfaces. To enable the data 
and instruction interfaces of the AHB to run at synchronous multiples of CLK, the AHB 
interfaces have separate clock enable signals, HCLKEND and HCLKENI.

See Chapter 4 Clocking and Reset Timing for details.

1.2.14 ETM interface logic

An optional external ETM can be connected to the ARM1026EJ-S processor to provide 
real-time tracing of instructions and data in an embedded system. The processor 
includes the logic and interface to enable you to trace program execution and data 
transfers using the ETM10RV. Further details are in the  Embedded Trace Macrocell 
Specification. See Table A-6 on page A-12 for descriptions of ETM-related signals.
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1.3 Silicon revision information

This manual is for revision r0p2 of the ARM1026EJ-S processor. See Product revision 
status on page xx for details of revision numbering.

Updates in the r0p1 ARM1026EJ-S processor are:

• corrections for r0p0 errata 

• update to the AHB address bus during IDLE cycles in locked SWP instructions 
so that the address bus maintains the same value during the locked period 

• update to the CP15 c0 Device ID Register to reflect the r0p1 release. 

There are no other functional differences between the ARM1026EJ-S r0p0 and 
ARM1026EJ-S r0p1 processors. 

Updates in the r0p2 ARM1026EJ-S processor are:

• corrections for r0p1 errata 

• update to the CP15 c0 Device ID Register to reflect the r0p2 release. 

There are no other functional differences between the ARM1026EJ-S r0p1 and 
ARM1026EJ-S r0p2 processors.
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Chapter 2 
Integer Core

This chapter describes the ARM1026EJ-S integer core. It contains the following 
sections:

• About the integer core on page 2-2

• Pipeline on page 2-4

• Prefetch unit on page 2-6

• Typical ALU/multiply operations on page 2-7

• Load/store unit on page 2-8

• Typical load/store operations on page 2-9.
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2.1 About the integer core

By overlapping the stages of operation, the integer core increases the number of 
instructions executed per cycle. The integer core has multiple execution units, enabling 
multiple instructions to exist in the same pipeline stage, and enabling simultaneous 
execution of some instructions. As a result, it delivers a peak throughput of one 
instruction per cycle. The integer core consists of: 

Prefetch unit 
The prefetch unit fetches instructions from the ICache, ITCM, or external 
memory. To reduce the number of pipeline refills, it predicts the outcome 
of branches whenever it can.

Integer unit 
The integer unit decodes instructions sent from the prefetch unit. It 
contains the barrel shifter, Arithmetic Logic Unit (ALU), and multiplier, 
and executes data processing instructions such as MOV, ADD, and 
MUL. The integer unit helps the load/store unit to execute loads, stores, 
and coprocessor transfer instructions such as LDR, STM, LDC, and 
MCRR. It also contains the main instruction sequencer that takes care of 
multicycle data processing instructions, mode changes, exceptions, and 
debug events.

Load/store unit  
If the data address is 64-bit aligned, the Load/Store Unit (LSU) can load 
or store two registers (64 bits) per cycle. In a load or store multiple 
instruction (LDM or STM), the LSU remains in lockstep with the integer 
unit for the duration of the LDM or STM.

Note
 Unlike the ARM1020E and ARM1022E processors, the ARM1026EJ-S 

LSU does not support Hit-Under-Miss (HUM) operation.

Figure 2-1 on page 2-3 shows the integer core components.
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Figure 2-1 Integer core block diagram
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2.2 Pipeline

The ARM1026EJ-S pipeline has six stages to maximize instruction throughput:

Fetch ICache access. Branch prediction for instructions that have already been 
fetched. Prediction of fetch path ahead of execution of branch 
instructions. The Fetch stage uses a First-In-First-Out (FIFO) prefetch 
buffer that can hold up to four instructions. 

Issue Initial instruction decode. Can contain one instruction with up to one 
branch in parallel.

Decode Final instruction decode, register reads for ALU operation, data access 
address calculation, forwarding, and initial interlock resolution. Can 
contain one instruction with up to one branch in parallel.

Execute Data processing shift, shift and saturate, ALU operation, first stage of 
multiplications, flag setting, condition code check, branch mispredict 
detection, first stage of store data register read, and DCache access 
request.

Memory Second stage of multiplications and saturations, second stage of store 
data register read, and DCache memory access.

Write Byte rotation, sign extension, register writes, and instruction retirement.

The Execute, Memory, and Write stages can simultaneously contain the following:

• a predicted branch

• an ALU, multiply or load/store instruction.

Figure 2-2 on page 2-5 shows the stages of the ARM1026EJ-S pipeline.
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Figure 2-2 Pipeline stages of the ARM1026EJ-S processor
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2.3 Prefetch unit

The prefetch unit operates in the Fetch stage of the pipeline. It can fetch 64 bits every 
cycle from the ICache. It can only issue one 32-bit instruction per cycle to the integer 
unit. Because it can fetch more instructions than it can issue, the prefetch unit puts 
pending instructions in the prefetch buffer. While an instruction is in the prefetch buffer, 
the branch prediction logic can decode it to see if it is a predictable branch.

Where possible, the branch prediction logic removes branches from the instruction 
stream. If the branch is predicted to be taken, then the instruction address is redirected 
to the branch target address. If the branch is predicted not to be taken, then the 
instruction address continues to progress through the instructions following the branch 
instruction. If the instruction following the branch is already in the prefetch buffer, it 
can be issued in place of the branch and the branch effectively takes no cycles. When 
there is not enough time to completely remove the branch, the fetch address is redirected 
anyway, because this still helps to reduce the branch penalty.

The prefetch unit and branch prediction are described in detail in Chapter 5 Prefetch 
Unit.
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2.4 Typical ALU/multiply operations

Figure 2-3 shows the stages of a typical data processing operation.

Figure 2-3 Pipeline stages of a typical ALU operation

Figure 2-4 shows the stages of a typical multiply operation. The MUL loops in the 
Execute stage until it passes through the first part of the multiplier array enough times. 
Then it progresses to the Memory stage where it passes once through the second half of 
the array to produce the final result. 

Figure 2-4 Pipeline stages of a typical multiply operation
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2.5 Load/store unit

If the data address is 64-bit aligned, the LSU can load or store two 32-bit registers per 
transfer. This does not speed up single load or store instructions (LDR or STR) but it 
does considerably speed up load and store multiple instructions (LDM and STM). Load 
and store double instructions (LDRD and STRD) also take advantage of the available 
bandwidth.

Accesses that are not 64-bit aligned have to take place over two cycles. If an LDM or 
STM address is not 64-bit aligned, then only one 32-bit register is transferred on the first 
access. After that, two registers per cycle can be transferred each cycle.

Single loads and all cycles of multiple loads and stores work in cooperation with the 
integer unit. A DCache load access that misses stalls the LSU and integer unit until the 
data is returned from the cache.

The LSU calculates the address for the data access using a dedicated adder. A separate 
adder in the ALU calculates a base register write-back value if it is required.

The A and B register ports of the integer unit read the operands for both adders. For 
complex, scaled-register addressing modes that require the barrel shifter, the ALU has 
to calculate the shifted value. This costs one extra cycle.

The LSU has two dedicated register bank read ports, S1 and S2, and two dedicated write 
ports, L1 and L2. These are used to read data to be stored and to write data that is loaded.
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2.6 Typical load/store operations

Figure 2-5 shows a simple LDR/STR operation that hits in the DCache.

Figure 2-5 Pipeline stages of a load or store operation
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Figure 2-6 shows the progression of an LDM/STM operation using the load/store 
pipeline to complete. The LDM/STM iterates in the LSU pipeline until it completes. 
Because any LDM/STM memory access can abort, the LSU stalls all integer pipeline 
activity until the last LDM/STM memory access completes.

Figure 2-6 Pipeline stages of a load multiple or store multiple operation

See Chapter 21 Instruction Cycle Count for further details of instruction cycles and 
timing.
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Chapter 3 
Programmer’s Model

This chapter describes the ARM1026EJ-S registers and provides information for 
programming the microprocessor. It contains the following sections:

• About the programmer’s model on page 3-2

• Program status registers on page 3-3

• About the CP15 system control coprocessor registers on page 3-5

• CP15 register descriptions on page 3-9

• CP15 instruction summary on page 3-70.
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3.1 About the programmer’s model

The ARM1026EJ-S processor implements the ARMv5TEJ architecture. This includes 
the:

• 32-bit ARM instruction set

• 16-bit Thumb instruction set

• 8-bit Jazelle instruction set.

For details of both the ARM and Thumb instruction sets, and the ARM programmer’s 
model, see the ARM Architecture Reference Manual. For details of the Jazelle 
instruction set and the Jazelle programmer’s model, see the Jazelle VI Architecture 
Reference Manual.

The ARM1026EJ-S programmer’s model is the same as that described in the ARM 
Architecture Reference Manual and the Jazelle VI Architecture Reference Manual, but 
extended in the following ways:

• The Current Program Status Register, CPSR, and the Saved Program Status 
Registers, SPSRs, have an additional J bit to indicate Jazelle state and an 
additional A bit to mask imprecise aborts.

• The system control coprocessor, CP15, provides additional registers for system 
configuration and control.

• The CP14 debug registers provide support for debug functionality. See Chapter 8 
Debug for a description of the CP14 debug registers.
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3.2 Program status registers

To support exception handling, the ARM1026EJ-S processor has one CPSR and five 
SPSRs. The Program Status Registers:

• hold information about the most recently performed ALU operation

• control enabling and disabling of interrupts

• set the processor operating mode.

Figure 3-1 Program Status Registers

3.2.1 The J bit

The J bit in the CPSR indicates when the ARM1026EJ-S processor is in Jazelle state. 
When J is set, the processor is in Jazelle state. When J is clear, the processor is in ARM 
or Thumb state, depending on the T bit.

Note
 • Setting both J and T causes the next instruction executed to take the Undefined 

Instruction exception. Entering the exception handler causes the processor to 
enter ARM state, and the exception handler can detect that setting both J and T 
caused the exception.

• The MSR instruction cannot be used to change the J bit in the CPSR.

• The position of the J bit avoids using the status or extension bytes in code run on 
ARMv5TE or earlier processors. This ensures that operating system code that 
uses the deprecated CPSR, SPSR, CPSR_all, or SPSR_all syntax for the 
destination of an MSR instruction still works.
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3.2.2 The A bit

An imprecise abort is separated from the instruction that caused the error response. The 
abort can occur many cycles after the error-generating instruction retires. The AHB 
error response leading to an imprecise abort can occur at a time when the processor is 
already in Abort mode, or when the processor has entered the interrupt handler from 
Abort mode.

To avoid the loss of the Abort mode state (R14_abt and SPSR_abt) in these cases, which 
leads to the processor entering an unrecoverable state, the existence of a pending 
imprecise abort must be held by the processor until a time when the Abort mode can 
safely be entered.

The A mask is added to the CPSR to indicate that an imprecise abort can be accepted. 
When the A bit is set, an imprecise abort is held until the mask is cleared. When the A 
bit is cleared, a pending imprecise abort is recognized, and the abort is taken.

The A bit is set automatically on entry into Abort mode, IRQ mode, FIQ mode, and on 
reset.

3.2.3 Other bits

All other bits of the CPSR and the SPSRs are as described in the ARM Architecture 
Reference Manual.
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3.3 About the CP15 system control coprocessor registers

The programmer’s model of the ARM1026EJ-S processor includes a system control 
coprocessor, CP15, that provides additional registers for system configuration and 
control.

3.3.1 Accessing CP15 registers

CP15 registers can be accessed only with MCR and MRC instructions in a privileged 
mode. Figure 3-2 shows the MCR and MRC instruction format.

Figure 3-2 CP15 MCR and MRC instruction format

The assembly code for these instructions is:

MCR{cond} P15, opcode_1, Rd, CRn, CRm, opcode_2
MRC{cond} P15, opcode_1, Rd, CRn, CRm, opcode_2

In User mode, coprocessor instructions take the Undefined instruction trap. See the 
ARM Architecture Reference Manual for a description of the MCR and MRC 
instructions. 
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3.3.2 Summary of CP15 registers 

Table 3-1 lists the 16 CP15 registers and their accessibility. The MMU/MPU enabled 
column indicates whether you can access the register only when the MMU is enabled, 
only when the MPU is enabled, or when either the MMU or MPU is enabled.

Table 3-1 CP15 register summary

Register Register name
MMU or MPU
enabled Access

CP15 c0 Device ID Register
Cache Type Register
TCM Status Register

MMU or MPU
MMU or MPU
MMU or MPU

Read-only
Read-only
Read-only

CP15 c1 Control Register
Auxiliary Control Register

MMU or MPU
MMU or MPU

Read/write
Read-only

CP15 c2 TTB Register
DCache Configuration Register
ICache Configuration Register

MMU only
MPU only
MPU only

Read/write
Read/write
Read/write

CP15 c3 Domain Access Control Register
Write Buffer Control Register

MMU only
MPU only

Read/write
Read/write

CP15 c4 Reserved - Undefined

CP15 c5 Data Fault Status Register when using MMU
Instruction Fault Status Register when using MMU
Data Extended Access Permission Register
Instruction Extended Access Permission Register
Data Standard Access Permission Register
Instruction Standard Access Permission Register
Data Fault Status Register when using MPU
Instruction Fault Status Register when using MPU

MMU only
MMU only
MPU only
MPU only
MPU only
MPU only
MPU only
MPU only

Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write

CP15 c5 Data Fault Address Register when using MMU
Instruction Fault Address Register when using MMU
Protection Region Registers 0-7
Data Fault Address Register when using MPU 
Instruction Fault Address Register when using MPU

MMU only
MMU only
MPU only
MPU only
MPU only

Read/write
Read/write
Read/write
Read/write
Read/write

CP15 c7 Cache operations MMU or MPU Read/write

CP15 c8 TLB operations MMU only Write-only
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CP15 c9 DCache Lockdown Register
ICache Lockdown Register
DTCM Region Register
ITCM Region Register

MMU or MPU
MMU or MPU
MMU or MPU
MMU or MPU

Read/write
Read/write
Read/write
Read/write

CP15 c10 TLB Lockdown Register MMU only Read/write

CP15 c11 Reserved - Undefined

CP15 c12 Reserved - Undefined

CP15 c13 FCSE Process ID Register
Context ID Register

MMU only
MMU or MPU

Read/write
Read/write

CP15 c14 Reserved - Undefined

CP15 c15 Debug Override Register
Prefetch Unit Debug Override Register
Debug and Test Address Register
Memory Region Remap Register
MMU test operations
Cache Debug Control Register
MMU Debug Control Register

MMU or MPU
MMU or MPU
MMU or MPU
MMU or MPU
MMU only
MMU or MPU
MMU only

Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write

Table 3-1 CP15 register summary (continued)

Register Register name
MMU or MPU
enabled Access
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3.3.3 Address types

The ARM processor uses three address types:

• Virtual Address (VA)

• Modified Virtual Address (MVA)

• Physical Address (PA).

Table 3-2 shows the parts of the ARM processor that use each address type.

Table 3-2 Address types

Processor unit Address type

Integer unit Virtual address

Caches and TLBs Modified virtual address

TCM and AMBA bus Physical address
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3.4 CP15 register descriptions

This section describes the CP15 registers:

• CP15 c0 Device ID Register on page 3-10

• CP15 c0 Cache Type Register on page 3-11

• CP15 c0 TCM Status Register on page 3-13

• CP15 c1 Control Register on page 3-14

• CP15 c1 Auxiliary Control Register on page 3-19

• CP15 c2 Translation Table Base Register on page 3-20

• CP15 c2 DCache and ICache Configuration Registers on page 3-21

• CP15 c3 Domain Access Control Register on page 3-23

• CP15 c3 Write Buffer Control Register on page 3-25

• CP15 c4 Reserved on page 3-26

• CP15 c5 Data and Instruction Fault Status Registers on page 3-26

• CP15 c5 Data and Instruction Extended Access Permission Registers on 
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on 
page 3-31

• CP15 c5 Data and Instruction Fault Address Registers on page 3-33

• CP15 c5 Protection Region Registers on page 3-34

• CP15 c7 cache operations on page 3-36

• CP15 c8 TLB operations on page 3-40

• CP15 c9 DCache and ICache Lockdown Registers on page 3-41

• CP15 c9 DTCM and ITCM Region Registers on page 3-44

• CP15 c10 TLB Lockdown Register on page 3-46

• CP15 c11 Reserved on page 3-48

• CP15 c12 Reserved on page 3-48

• CP15 c13 FCSE Process ID Register on page 3-49

• CP15 c13 Context ID Register on page 3-52

• CP15 c14 Reserved on page 3-52

• CP15 c15 Debug Override Register on page 3-53

• CP15 c15 Prefetch Unit Debug Override Register on page 3-55

• CP15 c15 Debug and Test Address Register on page 3-56

• CP15 c15 Memory Region Remap Register on page 3-57

• CP15 c15 MMU test operations on page 3-60

• CP15 c15 Cache Debug Control Register on page 3-65

• CP15 c15 MMU Debug Control Register on page 3-67.
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3.4.1 CP15 c0 Device ID Register

The read-only Device ID Register contains the 32-bit ID code of the ARM1026EJ-S 
processor, 0x4106A262.

You can read the Device ID Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0). Use the following instruction to read the Device ID Register:

MRC p15, 0, Rd, c0, c0, {0, 3-7} ; read Device ID Register

When reading the Device ID Register, the opcode_2 field can be any value other than 
1 or 2. Writing to the Device ID Register is Unpredictable.

Figure 3-3 shows the Device ID Register bit fields.

Figure 3-3 Device ID Register

Table 3-3 describes the bit fields of the Device ID Register.

RevisionPart numberArchitectureVariantImplementer

31 24 23 20 19 16 15 4 3 0

Table 3-3 Encoding of the Device ID Register

Bit Name Definition Reset state

[31:24] Implementer ASCII code for implementer’s trademark. For example,
ARM Limited uses the code for the letter A, 0x41.

0x41

[23:20] Variant Variant of the ARM processor. 0x0

[19:16] Architecture ARM architecture version v5TEJ. 0x6

[15:4] Part number Three-digit part number. 0xA26

[3:0] Revision Revision number of the ARM processor. 0x2
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3.4.2 CP15 c0 Cache Type Register

The read-only Cache Type Register reflects the type, size, associativity, and line length 
of the ICache and the DCache.

You can read the Cache Type Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0). Use the following instruction to read the Cache Type Register:

MRC p15, 0, Rd, c0, c0, 1 ; read Cache Type Register

Writing to the Cache Type Register is Undefined.

Figure 3-4 shows the Cache Type Register bit fields.

Figure 3-4 Cache Type Register

Table 3-4 describes the bit fields of the Cache Type Register.

31 15 12 11 3 024 232829 25 2122 1718 1314 910 56 12

S

Reserved

Ctype Size Assoc

SBZ

Len

Reserved

Size Assoc

SBZ

Len

ICacheDCache

Table 3-4 Encoding of the Cache Type Register

Bit Name Definition Reset state

[31:29] - Reserved. b000

[28:25] Ctype Cache class.
Write strategy: write-back.
Cache cleaning: c7 operations.
Cache lockdown: format C.

b1110

[24] S Harvard architecture. 1

[23:22] - Reserved. b00

[21:18] Size DCache size. Implementation-defined:
b0011 = 4 KB
b0100 = 8 KB
b0101 = 16 KB
b0110 = 32 KB
b0111 = 64KB
b1000 = 128 KB.

Determined by
DCACHESIZE[3:0]
pins
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[17:15] Assoc DCache associativity. Four-way set-associative. b010

[14] - Should Be Zero. 0

[13:12] Len DCache line length. Eight words per line. b10

[11:10] - Reserved. b00

[9:6] Size ICache size. Implementation-defined:
b0011 = 4 KB
b0100 = 8 KB
b0101 = 16 KB
b0110 = 32 KB
b0111 = 64KB
b1000 = 128 KB.

Determined by
ICACHESIZE[3:0]
pins

[5:3] Assoc ICache associativity. Four-way set-associative. b010

[2] - Should Be Zero. 0

[1:0] Len ICache line length. Eight words per line. b10

Table 3-4 Encoding of the Cache Type Register (continued)

Bit Name Definition Reset state
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3.4.3 CP15 c0 TCM Status Register

The read-only TCM Status Register indicates the presence of a Data TCM (DTCM) and 
an Instruction TCM (ITCM). 

You can read the TCM Status Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the following instruction:

MRC p15, 0, Rd, c0, c0, 2 ; read TCM Status Register

Writing to the TCM Status Register is Unpredictable.

Figure 3-5 shows the bit fields of the TCM Status Register.

Figure 3-5 TCM Status Register

Table 3-5 describes the bit fields of the TCM Status Register. 

See Table 3-41 on page 3-45 for encoding of DRSIZE and IRSIZE bits in the DTCM 
and ITCM Region Registers.

31 16 15 017 1

Unpredictable Unpredictable

DTCM ITCM

Table 3-5 Encoding of the TCM Status Register

Bit Name Definition Reset state

[31:17] - Unpredictable. 0x0000

[16] DTCM DTCM present bit:
1 = DTCMSIZE pins are not b0000, meaning DTCM is present
0 = DTCMSIZE pins are b0000, meaning DTCM is not present.

Determined by
DTCMSIZE[3:0] 
pins

[15:1] - Unpredictable. 0x0000

[0] ITCM ITCM present bit:
1 = ITCMSIZE pins are not b0000, meaning ITCM is present
0 = ITCMSIZE pins are b0000, meaning ITCM is not present.

Determined by
ITCMSIZE[3:0]
pins
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3.4.4 CP15 c1 Control Register

The read/write Control Register:

• enables reading IRQ vector addresses from the VIC port

• enables relocation of the IRQ vector address

• selects whether the T bit is set by a load PC operation

• selects random or round-robin victim replacement

• selects high-address or low-address vector locations

• enables the ICache and DCache

• enables branch prediction

• enables ROM protection and system protection

• selects big-endian or little-endian operation

• enables fault checking of address alignment

• enables the MMU

• enables the MPU.

You can access the Control Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-6.

Use a read-modify-write sequence when changing the Control Register.

All defined control bits are cleared on reset except:

• The V bit is cleared at reset if the HIVECSINIT signal is LOW or set if the 
HIVECSINIT signal is HIGH.

• The B bit is cleared at reset if the BIGENDINIT signal is LOW or set if the 
BIGENDINIT signal is HIGH.

Table 3-6 Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c1, c0, 0 Read Control Register

MCR p15, 0, Rd, c1, c0, 0 Write Control Register
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Figure 3-6  shows the Control Register bit fields.

Figure 3-6 Control Register

Table 3-7 describes the Control Register bit fields.
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AS BI ZSBZ M

VE SBO

SBZ

SBO
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Table 3-7 Encoding of the Control Register

Bit Name Definition Reset state

[31:25] - Reading returns an Unpredictable value. When written, Should Be Zero
or a value read from bits [31:25] on the same processor.

Zeros

[24] VE Vector Interrupt Controller (VIC) enable bit:
1 = processor reads IRQ vector address from VIC port
0 = processor reads IRQ vector address from 0x00000018 or 0xFFFF0018.

0

[23:19] - Should Be Zero. Zeros

[18] - Should Be One. 1

[17] - Should Be Zero. 0

[16] - Should Be One. 1

[15] LT Load PC Thumb disable bit: 
1 = loading PC does not set T bit
0 = loading PC sets T bit.

0

[14] RR ICache and DCache round-robin replacement bit:
1 = round-robin replacement enabled
0 = random replacement.

0

[13] V Exception vector location bit:
1 = vector address range is 0xFFFF0000 to 0xFFFF001C
0 = vector address range is 0x00000000 to 0x0000001C.

Determined by
HIVECSINIT
pin
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[12] I ICache enable bit: 
1 = ICache enabled
0 = ICache disabled.

0

[11] Z Branch prediction enable bit:
1 = branch prediction enabled
0 = branch prediction disabled.

0

[10] - Should Be Zero. 0

[9] R MMU ROM protection enable bit:
1 = ROM protection enabled
0 = ROM protection disabled.
Valid only when using the MMU (MMUnMPU = 1).

0

[8] S MMU system protection enable bit:
1 = MMU protection enabled
0 = MMU protection disabled.
Valid only when using the MMU (MMUnMPU = 1).

0

[7] B Big-endian bit:
1 = big-endian operation
0 = little-endian operation.

Determined by
BIGENDINIT
pin

[6:3] - Should Be One. 0xF

[2] C DCache enable bit:
1 = DCache enabled
0 = DCache disabled.

0

[1] A Address alignment fault checking enable bit:
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

0

[0] M MMU enable bit when MMUnMPU = 1
or MPU enable bit when MMUnMPU = 0:
1 = MMU or MPU enabled 
0 = MMU or MPU disabled.

0

Table 3-7 Encoding of the Control Register (continued)

Bit Name Definition Reset state
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Effects of the Control Register on caches

The bits that directly affect ICache and DCache behavior are:

• the M bit

• the C bit

• the I bit

• the RR bit.

When the TCM regions are disabled, the caches behave as shown in Table 3-8.

If either the DCache or ICache is disabled, the contents of that cache are not accessed. 
If the cache is subsequently re-enabled, the contents are unchanged. To guarantee 
memory coherency, the DCache must be cleaned of dirty data before it is disabled.

Table 3-8 Effects of Control Register on caches

Cache MMU/MPU Processor behavior

ICache
disabled

Enabled or
disabled

All instruction fetches are from external memory (AHB).

ICache
enabled

Disabled All instruction fetches cachable. No protection checks done. VA = MVA = PA.

ICache
enabled

Enabled Instruction fetches cachable or noncachable. Protection checks done.
When using MMU, all addresses remapped from VA to PA, depending on MMU page table 
entry. VA translated to MVA, MVA remapped to PA.
When using MPU, VA = MVA = PA.

DCache
disabled

Enabled or
disabled

All data accesses to external memory (AHB).

DCache
enabled

Disabled All data accesses noncachable and nonbufferable. VA = MVA = PA.

DCache
enabled

Enabled All data accesses cachable or noncachable. Protection checks done.
When using MMU, all addresses remapped from VA to PA, depending on MMU page table 
entry. VA translated to MVA, MVA remapped to PA.
When using MPU, VA = MVA = PA.
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Effects of the Control Register on the TCM interface

The Control Register M bit and the E bit in the ITCM or DTCM Register directly affect 
the behavior of the TCM interface as Table 3-9 shows.

Table 3-9 Effects of Control Register on TCM interface

TCM MMU or MPU Cache Processor behavior

ITCM
disabled

Disabled ICache
disabled

All instruction fetches from external memory (AHB).

ITCM
enabled

Disabled ICache
disabled

All instruction fetches from TCM interface or from external memory (AHB), 
depending on base address in ITCM Region Register. No protection checks 
done. VA = MVA = PA.

ITCM
enabled

Disabled ICache
enabled

All instruction fetches from TCM interface or from ICache, depending on base 
address in ITCM Region Register. No protection checks done. 
VA = MVA = PA.

ITCM
enabled

Enabled ICache
enabled

All instruction fetches from TCM interface or from the ICache interface or 
AHB interface, depending on base address in ITCM Region Register. 
Protection checks are made.
When using MMU, all addresses remapped from VA to PA, depending on the 
page entry. VA is translated to MVA, and MVA is remapped to PA.
When using MPU, VA = MVA = PA.

DTCM
disabled

Disabled DCache
disabled

All data accesses are to external memory (AHB).

DTCM
enabled

Disabled DCache
disabled

All data accesses to TCM interface or to external memory, depending on base 
address in DTCM Region Register. No protection checks done. 
VA = MVA = PA.

DTCM
enabled

Disabled DCache
enabled

All data accesses to TCM interface or to external memory, depending on base 
address in DTCM Region Register. VA = MVA = PA.

DTCM
enabled

Enabled DCache
enabled

All data accesses from either TCM interface or DCache interface or AHB 
interface, depending on base address in DTCM Region Register. Protection 
checks done.
When using MMU, all addresses remapped from VA to PA, depending on page 
entry. VA translated to MVA, and MVA remapped to PA.
When using MPU, VA = MVA = PA.
3-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Programmer’s Model 
3.4.5 CP15 c1 Auxiliary Control Register

The read-only Auxiliary Control Register reflects implementation-specific pin 
configurations. 

You can read the Auxiliary Control Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the following instruction: 

MRC p15, 0, Rd, c1, c0, 1 ; read Auxiliary Control Register

Figure 3-7 shows the bit fields of the Auxiliary Control Register.

Figure 3-7 Auxiliary Control Register

Table 3-10 describes the bit fields of the Auxiliary Control Register.

VALInIMPL

DAHBSZCFG

IAHBSZCFG

MxUCFG

31 4 3 0

SBZ

12

Table 3-10 Encoding of the Auxiliary Control Register

Bit Name Definition Reset state

[31:4] - Should Be Zero. 0x0000000

[3] VALInIMPL Indicates whether processor is ARM-internal validation model
or partner-specific fixed-implementation model:
1 = validation model
0 = implementation model.

Determined by
implementation

[2] DAHBSZCFG Indicates whether data AHB is 64 bits or 32 bits wide:
1 = 64-bit DAHB
0 = 32-bit DAHB.

Determined by
D64n32 pin

[1] IAHBSZCFG Indicates whether instruction AHB is 64 bits or 32 bits wide:
1 = 64-bit IAHB
0 = 32-bit IAHB.

Determined by
I64n32 pin

[0] MxUCFG Indicates whether MMU or MPU is enabled:
1 = MMU enabled
0 = MPU enabled.

Determined by
MMUnMPU pin
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3.4.6 CP15 c2 Translation Table Base Register

The read/write Translation Table Base Register, TTBR, contains the pointer to the level 
1 translation table and the cachable and bufferable bits for the page tables on AHB. 

You can access the TTBR only when using the MMU (MMUnMPU = 1) with the 
instructions in Table 3-11.

Figure 3-8 shows the TTBR bit fields.

Figure 3-8 Translation Table Base Register

Table 3-12 describes the TTBR bit fields.

Table 3-11 Translation Table Base Register instructions

Instruction Operation

MRC p15, 0, Rd, c2, c0, 0 Read Translation Table Base Register

MCR p15, 0, Rd, c2, c0, 0 Write Translation Table Base Register

SBZ

L2C

L2B

31 4 3 01314 5 2

Translation table base SBZ

Table 3-12 Encoding of the Translation Table Base Register

Bit Name Definition Reset state

[31:14] Translation table base Base address of level 1 page table. Zeros

[13:5] - Should Be Zero. Zeros

4 L2C Cachable bit for level 2 page table walk. See Table 3-13 
on page 3-21.

0

3 L2B Bufferable bit for level 2 page table walk. See Table 3-13 
on page 3-21.

0

[2:0] - Should Be Zero. b000
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Table 3-13 shows how the L2C and L2B bits control the HPROT[3:0] signals and the 
attributes of level 2 page table walks.

3.4.7 CP15 c2 DCache and ICache Configuration Registers

The read/write DCache Configuration Register, DCCR, and ICache Configuration 
Register, ICCR, contain the cachable bits for the eight protection regions. Each of the 
eight cachable bits controls one of the eight protection regions.

You can access the DCCR and ICCR only when using the MPU (MMUnMPU = 0) 
with the instructions in Table 3-14.

Table 3-13 L2C and L2B encoding

TTBR[4:3] HPROT[3:0] Level 2 page table walk attributes

b00 b0011 Privileged NCNB data access

b01 - Unpredictable

b10 b1011 Privileged write-through data access

b11 b1111 Privileged write-back data access

Table 3-14 DCache and ICache Configuration Register instructions

Instruction Operation

MRC p15, 0, Rd, c2, c0, 0 Read DCache Configuration Register

MCR p15, 0, Rd, c2, c0, 0 Write DCache Configuration Register

MRC p15, 0, Rd, c2, c0, 1 Read ICache Configuration Register

MCR p15, 0, Rd, c2, c0, 1 Write ICache Configuration Register
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Figure 3-9 shows the DCCR and ICCR bit fields.

Figure 3-9 DCache and ICache Configuration Registers

Table 3-15 describes the bit fields of the DCache and ICache Configuration Registers.

C7

C0

C1

C2

C3

C4

C5

C6

31 8 7 4 3 056 12

SBZ

Table 3-15 Encoding of the DCache and ICache Configuration Registers

Bit Name Definition Reset state

[7]-[0] C7-C0 Cachable bits:
1 = memory region is cachable
0 = memory region is noncachable.

0
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3.4.8 CP15 c3 Domain Access Control Register

The read/write Domain Access Control Register, DACR, contains 16 two-bit domain 
access control fields. Each field defines the access permissions for one of the 16 
domains, D15-D0. 

You can access the DACR only when using the MMU (MMUnMPU = 1) with the 
instructions in Table 3-16.

Figure 3-10 shows the DACR bit fields.

Figure 3-10 Domain Access Control Register

Table 3-17 describes the DACR bit fields.

The domain access control fields specify whether or not to check the Access Permission 
(AP) bits for each domain. When using the MMU, the AP bits reside in the translation 
table level two descriptor entries for large, tiny, or small pages and in the level one 
descriptor entries for sections.

Table 3-16 Domain Access Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c3, c0, 0 Read Domain Access Control Register

MCR p15, 0, Rd, c3, c0, 0 Write Domain Access Control Register

D0D1D3 D2D4D5D8 D7 D6D9D11 D10D13 D12D15 D14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 3-17 Encoding of the Domain Access Control Register

Bit Name Definition Reset state

[31:30]-[1:0] D15-D0 Domain access control for domains 15-0:
b00 = No access. Access generates domain fault.
b01 = Client access. Access permissions are checked.
b10 = Reserved. Behaves as no access domain.
b11 = Manager access. Access permissions are not checked.

b00
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Note

 When the MPU is enabled, the AP bits have their own CP15 register space. See:

• CP15 c5 Data and Instruction Extended Access Permission Registers on 
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on 
page 3-31.

Table 3-18 shows the access permissions when using the MMU.

Table 3-18 Access permission summary when using the MMU

AP
CP15
S bit

CP15
R bit Supervisor User Access

b00 0 0 - - Permission fault

b00 1 0 Read - Read-only in Supervisor mode

b00 0 1 Read Read Permission fault on writes

b00 1 1 Reserved Reserved Permission fault on reads or writes

b01 - - Read/write - Permission fault on reads or writes in User mode

b10 - - Read/write Read Read-only in User mode

b11 - - Read/write Read/write All accesses permissible
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3.4.9 CP15 c3 Write Buffer Control Register

The read/write Write Buffer Control Register, WBCR, contains the bufferable bits for 
data accesses to protection regions 0-7. Each of the eight bits controls one of the eight 
protection regions.

You can access the WBCR only when using the MPU (MMUnMPU = 0) with the 
instructions in Table 3-19.

Figure 3-11 shows the WBCR bit fields.

Figure 3-11 Write Buffer Control Register

Table 3-20 describes the bit fields of the WBCR.

Table 3-19 Write Buffer Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c3, c0, 0 Read Write Buffer Control Register

MCR p15, 0, Rd, c3, c0, 0 Write Write Buffer Control Register

7 4 3 0

SBZ

B6

56

B5

B2

12

B1

B4

B3

B7

B0

31 8

Table 3-20 Encoding of the Write Buffer Control Register

Bit Name Definition Reset state

[7]-[0] B7-B0 Bufferable bits:
1 = protection region is bufferable
0 = protection region is nonbufferable.

0
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3.4.10 CP15 c4 Reserved

CP15 c4 accesses take the Undefined exception trap.

3.4.11 CP15 c5 Data and Instruction Fault Status Registers

The read/write Data Fault Status Register, DFSR, contains the source of the last data 
fault. The DFSR indicates the domain and type of access being attempted when an abort 
occurred. You can use the DFSR to check all Data Aborts and watchpoints and to map 
a debug event to a watchpoint.

The read/write Instruction Fault Status Register, IFSR, contains the source of the last 
instruction fault. The IFSR indicates the domain and type of access being attempted 
when an abort occurred. You can use the IFSR to check all Prefetch Aborts and 
breakpoints and to map a debug event to a breakpoint.

You can access the DFSR and IFSR when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-21.

It can be useful for a debugger to restore the value in the DFSR or IFSR by writing to 
it. Use a read-modify-write sequence to change the DFSR or IFSR. 

Table 3-21 Data and Instruction Fault Status Register instructions

MMU or MPU enabled Instruction Operation

MMU MRC p15, 0, Rd, c5, c0, 0 Read Data Fault Status Register

MCR p15, 0, Rd, c5, c0, 0 Write Data Fault Status Register

MPU MCR p15, 0, Rd, c5, c0, 4 Read Data Fault Status Register

MCR p15, 0, Rd, c5, c0, 4 Write Data Fault Status Register

MMU MRC p15, 0, Rd, c5, c0, 1 Read Instruction Fault Status Register

MCR p15, 0, Rd, c5, c0, 1 Write Instruction Fault Status Register

MPU MRC p15, 0, Rd, c5, c0, 5 Read Instruction Fault Status Register

MRC p15, 0, Rd, c5, c0, 5 Write Instruction Fault Status Register
3-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Programmer’s Model 
Figure 3-12 shows the DFSR and IFSR bit fields.

Figure 3-12 Data and Instruction Fault Status Registers

Table 3-22 describes the DFSR and IFSR bit fields.

Table 3-23 on page 3-28 lists the types of fault in order of priority from highest (0) to 
lowest (12). 

8 7 4 3 0

SBZ

910

SBZ

31 11

Ext

Domain or protection region

Status

Table 3-22 Encoding of the Data and Instruction Fault Status Registers

Bit Name Definition Reset state

[31:11] - Should Be Zero. 0x00000

[10] Ext Fault status extension. Undefined

[9:8] - Should Be Zero. b00

[7:4] Domain or
Protection region

When using MMU:
Domain (D15-D0) being accessed when a fault occurred.

When using MPU:
Protection region (7-0) being accessed when a fault occurred.

Undefined

[3:0] Status Fault status or type of fault generated (see Table 3-23 on 
page 3-28).

Undefined
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Table 3-23 MMU and MPU faults

Fault type
Status
[10], [3:0]

FSR updated Priority Valid

IFSR DFSR MMU MPU MMU MPU

Imprecise external abort 1, b0110 Yes Yes 0 0 Yes Yes

Alignment fault 0, b0001 No Yes 1 1 Yes Yes

TLB miss or MPU miss 0, b0000 Yes Yes 2 2 Yes Yes

Level 1 translation precise external abort 0, b1100 Yes Yes 3 - Yes No

Level 1 section translation fault 0, b0101 Yes Yes 4 - Yes No

Level 2 translation precise external abort 0, b1110 Yes Yes 5 - Yes No

Level 2 page translation fault 0, b0111 Yes Yes 6 - Yes No

Section domain fault 0, b1001 Yes Yes 7 - Yes No

Page domain fault 0, b1011 Yes Yes 8 - Yes No

MMU: Section access permission fault
MPU: Access permission fault

0, b1101 Yes Yes 9 3 Yes Yes

Page access permission fault 0, b1111 Yes Yes 10 - Yes No

Nontranslation precise external abort 0, b1000 Yes Yes 11 4 Yes Yes

Debug breakpoint or watchpoint 0, b0010 Yes Yes 12 5 Yes Yes

Reserved 0, b0011
0, b1010
0, b0100
0, b0110
1, b0100
1, b1000

- - - - - -
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3.4.12 CP15 c5 Data and Instruction Extended Access Permission Registers

Note

 There are two formats for specifying access permissions of memory protection regions:

• extended format

• standard format.

Use the DEAPR and IEAPR to specify access permissions in extended format. For 
specifying access permissions in standard format, see CP15 c5 Data and Instruction 
Standard Access Permission Registers on page 3-31.

Programming the access permissions in extended format and then reprogramming them 
in standard format is equivalent to programming bits APn[3:2] in the DEAPR or IEAPR 
to b00 (see Table 3-26 on page 3-30).

The read/write Data Extended Access Permission Register, DEAPR, and Instruction 
Extended Access Permission Register, IEAPR, contain the data and instruction access 
permission fields in extended format for memory protection regions 7-0. 

You can access the DEAPR and IEAPR only when using the MPU (MMUnMPU = 0) 
with the instructions in Table 3-24.

Figure 3-13 shows the DEAPR and IEAPR bit fields.

Figure 3-13 Data and Instruction Extended Access Permission Registers

Table 3-24 DEAPR and IEAPR instructions

Instruction Operation

MRC p15, 0, Rd, c5, c0, 2 Read Data Extended Access Permission Register

MCR p15, 0, Rd, c5, c0, 2 Write Data Extended Access Permission Register

MRC p15, 0, Rd, c5, c0, 3 Read Instruction Extended Access Permission Register

MCR p15, 0, Rd, c5, c0, 3 Write Instruction Extended Access Permission Register

AP7

31 28

AP6

27 24

AP5

2023 1619

AP4 AP3

15 12 11 8

AP2

7 4 3 0

AP1 AP0
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Table 3-25 describes the DEAPR and IEAPR bit fields.

Table 3-26 lists the extended access permission codes.

Note
 You must program either the DEAPR and IEAPR or the DSAPR and ISAPR before 
enabling the MPU. On reset, the values in all access permission registers are Undefined, 
and the MPU is disabled. Enabling the MPU before programming the access permission 
registers results in Unpredictable access permissions. 

Table 3-25 Encoding of the DEAPR and IEAPR

Bit Name Definition Reset state

[31:28]-[3:0] AP7-AP0 Extended format access permission bits for protection regions 7-0 Undefined

Table 3-26 Encoding of the extended access permission bit fields

AP{7-0} [3:0] Privileged mode User mode

b0000 No access No access

b0001 Read/write No access

b0010 Read/write Read

b0011 Read/write Read/write

b0100 Unpredictable Unpredictable

b0101 Read No access

b0110 Read Read

b0111 Unpredictable Unpredictable

b1xxx Unpredictable Unpredictable
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3.4.13 CP15 c5 Data and Instruction Standard Access Permission Registers

Note

 There are two formats for specifying access permissions of memory protection regions:

• standard format

• extended format.

Use the DSAPR and ISAPR to specify access permissions in standard format. For 
specifying access permissions in extended format, see CP15 c5 Data and Instruction 
Extended Access Permission Registers on page 3-29.

Programming the access permissions in extended format and then reprogramming them 
in standard format is equivalent to programming bits APn[3:2] in the DEAPR or IEAPR 
to b00 (see Table 3-26 on page 3-30).

The read/write Data Standard Access Permission Register, DSAPR, and Instruction 
Standard Access Permission Register, ISAPR, contain the data and instruction access 
permission fields in standard format for protection regions 0-7. 

You can access the DSAPR and ISAPR only when using the MPU (MMUnMPU = 0) 
with the instructions in Table 3-27.

Figure 3-14 shows the DSAPR and ISAPR bit fields.

Figure 3-14 Data and Instruction Standard Access Permission Registers

Table 3-27 DSAPR and ISAPR instructions

Instruction Operation

MRC p15, 0, Rd, c5, c0, 0 Read Data Standard Access Permission Register

MCR p15, 0, Rd, c5, c0, 0 Write Data Standard Access Permission Register

MRC p15, 0, Rd, c5, c0, 1 Read Instruction Standard Access Permission Register

MCR p15, 0, Rd, c5, c0, 1 Write Instruction Standard Access Permission Register

15 12

SBZ

131431 16 013 245678911 10

AP7 AP6 AP4 AP3 AP2 AP1 AP0AP5
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Table 3-28 describes the DSAPR and ISAPR bit fields. 

Table 3-29 lists the standard access permission codes.

Note

 You must program either the DSAPR and ISAPR or the DEAPR and IEAPR before 
enabling the MPU. On reset, the values in all access permission registers are Undefined, 
and the MPU is disabled. Enabling the MPU before programming the access permission 
registers results in Unpredictable access permissions. 

Table 3-28 Encoding of the DSAPR and ISAPR

Bit Name Definition Reset state

[31:16] - Should Be Zero 0x0000

[15:14]-[1:0] AP7-AP0 Standard format access permission bits for protection regions 7-0 Undefined

Table 3-29 Encoding of the standard access permission bit fields

AP{7-0} [1:0] Privileged mode User mode

b00 No access No access

b01 Read/write No access

b10 Read/write Read

b11 Read/write Read/write
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3.4.14 CP15 c5 Data and Instruction Fault Address Registers

The read/write Data Fault Address Register, DFAR, contains the MVA of the memory 
access that caused a Data Abort.

The read/write Instruction Fault Address Register, IFAR, contains the MVA of the 
memory access which caused either a watchpoint or a Data Abort. The address is PC + 8 
in ARM state or PC + 4 in Thumb state. 

You can access the DFAR and IFAR when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-30.

It can be useful for a debugger to restore the value in DFAR or IFAR by writing to it. 

Figure 3-15 shows the DFAR and IFAR bit fields.

Figure 3-15 Data and Instruction Fault Address Registers

The reset state of the Data and Instruction Fault Address Registers is Undefined.

Table 3-30 DFAR and IFAR instructions

MMU or MPU enabled Instruction Operation

MMU
MRC p15, 0, Rd, c6, c0, 0 Read Data Fault Address Register

MCR p15, 0, Rd, c6, c0, 0 Write Data Fault Address Register

MPU
MRC p15, 0, Rd, c6, c0, 4 Read Data Fault Address Register

MCR p15, 0, Rd, c6, c0, 4 Write Data Fault Address Register

MMU
MRC p15, 0, Rd, c6, c0, 1 Read Instruction Fault Address Register

MCR p15, 0, Rd, c6, c0, 1 Write Instruction Fault Address Register

MPU
MRC p15, 0, Rd, c6, c0, 5 Read Instruction Fault Address Register

MCR p15, 0, Rd, c6, c0, 5 Write Instruction Fault Address Register

31 0

MVA of data or instruction fault
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3.4.15 CP15 c5 Protection Region Registers

The read/write Protection Region Registers, PRR0-7, define the base address and size 
of the eight protection regions.

You can access PRR0-7 only when using the MPU (MMUnMPU = 0) with the 
instructions in Table 3-31.

Note

 When the MMU is enabled, accessing a Protection Region Register takes the Undefined 
instruction trap.

Figure 3-16 shows the PRR bit fields.

Figure 3-16 Protection Region Registers 0-7

Table 3-32 describes the PRR bit fields.

Table 3-31 Protection Region Registers instructions

Instruction Operation

MRC p15, 0, Rd, c6, c{0-7}, 0 Read Protection Region Register

MCR p15, 0, Rd, c6, c{0-7}, 0 Write Protection Region Register

0

Region base address Region sizeSBZ E

31 12 11 6 5 1

Table 3-32 Encoding of the Protection Region Registers

Bit Name Definition Reset state

[31:12] Region
base address

Base address of protection region. Must be aligned
to size boundary of protection region.

Undefined

[11:6] - Should Be Zero. Zeros
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Note
 Writing a value less than b01011 to the region size field causes Unpredictable behavior.

[5:1] Region size Size of protection region:
b00000-b01010 = reserved
b01011 = 4KB
b01100 = 8KB
b01101 = 16KB
b01110 = 32KB
b01111 = 64KB
b10000 = 128KB
b10001 = 256KB
b10010 = 512KB
b10011 = 1MB
b10100 = 2MB

b10101 = 4MB
b10110 = 8MB
b10111 = 16MB
b11000 = 32MB
b11001 = 64MB
b11010 = 128MB
b11011 = 256MB
b11100 = 512MB
b11101 = 1GB
b11110 = 2GB
b11111 = 4GB.

Undefined

0 E Protection region enable bit:
1 = protection region enabled
0 = protection region disabled.

0

Table 3-32 Encoding of the Protection Region Registers (continued)

Bit Name Definition Reset state
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3.4.16 CP15 c7 cache operations

Use MCR and MRC instructions with a CRn of c7 to perform cache operations and 
system control operations: 

• cache operations:

— clean

— invalidate

— clean and invalidate

— test and clean

— test, clean, and invalidate.

• system control operations:

— wait for interrupt

— drain pending write buffer

— prefetch ICache line.

Most invalidate operations and clean operations support accesses in the MVA and 
set/way formats. The address for the operation is stored in the ARM10 destination 
register, Rd. 

You can perform cache operations and system control operations using CP15 c7 when 
using the MMU or the MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-33.

Table 3-33 Cache operation instructions

Instruction Operation

MCR p15, 0, Rd, c7, c5, 0

MCR p15, 0, Rd, c7, c5, 1

MCR p15, 0, Rd, c7, c5, 2

Invalidate entire ICache. 
Invalidate ICache line, MVA format.
Invalidate ICache line, set/way format.

MCR p15, 0, Rd, c7, c6, 0
MCR p15, 0, Rd, c7, c6, 1
MCR p15, 0, Rd, c7, c6, 2

Invalidate entire DCache. Invalidates clean and dirty data.
Invalidate DCache line, MVA format. Invalidates clean and dirty data.
Invalidate DCache line, set/way format. Invalidates clean and dirty data.

MCR p15, 0, Rd, c7, c7, 0 Invalidate entire DCache and ICache. Invalidates clean and dirty data.

MCR p15, 0, Rd, c7, c10, 1

MCR p15, 0, Rd, c7, c10, 2

Clean DCache line, MVA format. Writes line to memory if valid and dirty. Marks line as 
not dirty. Valid bit is unchanged.
Clean DCache line, set/way format. Writes line to memory if valid and dirty. Marks line 
as not dirty. Valid bit is unchanged.

MCR p15, 0, Rd, c7, c14, 1 Clean and invalidate DCache line, MVA format. Writes line to memory if valid and dirty. 
Marks line as invalid and not dirty.

MCR p15, 0, Rd, c7, c14, 2 Clean and invalidate DCache line, set/way format. Writes line to memory if valid and 
dirty. Marks line as invalid and not dirty.
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Dirty data is data that has been modified in the cache but not yet copied back to main 
memory.

ICache prefetch operations are performed requested-word-first.

MRC p15, 0, R15, c7, c10, 3 Test and clean DCache. Must have r15 as destination register. Does not change PC. 
Updates flags. If cache contains any dirty lines, bit 30 is cleared. If no dirty lines, bit 30 
is set. Bit 30 corresponds to Z bit in CPSR. Can clean a number of cache lines with each 
loop iteration until entire cache is cleaned:
tc_loop: MRC p15, 0, r15, c7, c10, 3 ; test and clean

BNE tc_loop

MRC p15, 0, R15, c7, c14, 3 Test, clean, and invalidate DCache. Must have r15 as destination register. Does not 
change PC. Updates flags. If cache contains any dirty lines, bit 30 is cleared. If no dirty 
lines, bit 30 is set. Bit 30 corresponds to Z bit in CPSR. Can clean a number of cache lines 
until entire cache is cleaned:
tci_loop: MRC p15, 0, r15, c7, c14, 3 ; test, clean, and invalidate

BNE tci_loop

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

Wait for interrupt. Drains contents of pending write buffer, puts processor in low-power 
state, and stops further execution until interrupt or debug request occurs. When interrupt 
occurs, the MCR instruction completes, and IRQ or FIQ handler is entered as normal. 
Return link in r14_irq or r14_fiq contains address of MCR instruction plus eight, so 
typical instruction used for interrupt return, SUBS PC, R14, #4, returns to instruction 
following the MCR.

MCR p15, 0, Rd, c7, c10, 4 Drain pending write buffer. Acts as explicit memory barrier. Drains pending write buffer 
of all memory stores occurring in program order. No instructions occurring in program 
order after this operation are executed until it completes. Can be used to control timing of 
specific stores to level 2 memory system, for example, when a store to an interrupt 
acknowledge location has to complete before interrupts are enabled.

MCR p15, 0, Rd, c7, c13, 1 Prefetch ICache line, MVA format. Does ICache lookup of specified address. Does 
linefill if cache misses and region is cachable.

Table 3-33 Cache operation instructions  (continued)

Instruction Operation
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Cache operations in MVA format

Figure 3-17 shows the Rd register bit fields for cache operations in MVA format.

Figure 3-17 Rd format for cache operations in MVA format

Table 3-34 describes the Rd register bit fields for cache operation in MVA format.

Note
 The Fast Context Switch Extension (FCSE) does not automatically modify the address 
specified in the Rd register for CP15 c7 cache operations. It is the responsibility of the 
programmer to map the VA to the MVA before writing the address in the Rd register.

4 0

MVA tag Set

12

SBZWord

S + 4 531 S + 5

Table 3-34 Encoding of the cache operations bit fields in MVA format

Bit Name Definition

[31:(S + 5)]a

a. S = log2 of the number of cache sets.

MVA tag Tag bits.

[(S + 4):5]b

b. Number of cache sets = cache size in bytes/cache associativity/cache line length in bytes. In 
the ARM1026EJ-S processor, the cache associativity is four, and the cache line length is 32.

Set Set bits.

[4:2] Word Word being accessed. Should Be Zero for all cache operations.

[1:0] - Should Be Zero.
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Set/way format

Figure 3-18 shows the Rd register bit fields for cache operations in set/way format.

Figure 3-18 Rd format for cache operations in set/way format

Table 3-35 describes the Rd register bit fields for cache operations in set/way-format.

4 0

SBZ Set

12

SBZWord

S + 4 531

Way

32 - A S + 531 - A

Table 3-35 Encoding of the cache operation bit fields in set/way format

Bit Name Definition

[31:(32 – A)]a

a. A = log2 of the associativity of the cache.

Way Way bits.

[(31 – A):(S + 5)]b

b. S = log2 of the number of cache sets.

- Should Be Zero.

[(S + 4):5]c

c. Number of cache sets = cache size in bytes/cache associativity/cache line length in bytes. In 
the ARM1026EJ-S processor, the cache associativity is four, and the cache line length is 32.

Set Set bits.

[4:2] Word Word being accessed. In cache operations, Should Be Zero.

[1:0] - Should Be Zero.
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3.4.17 CP15 c8 TLB operations

Use MCR instructions with a CRn of c8 to invalidate all unlocked TLB entries or to 
invalidate single TLB entries.

The TLB has two parts:

• the set-associative main TLB

• the fully-associative lockdown TLB.

Loading an entry into the lockdown TLB preserves the entry during any invalidate all 
unlocked TLB operation. The lockdown entry is not preserved during an invalidate 
single TLB entry operation.

You can perform TLB operations using CP15 c8 only when using the MMU 
(MMUnMPU = 1) with the instructions in Table 3-36.

Figure 3-19 shows the Rd bit fields for invalidate single TLB entry operations.

Figure 3-19 Rd format for invalidate single TLB entry operations

Table 3-37 describes the Rd register bit fields for invalidate single TLB entry 
operations.

Table 3-36 TLB operation instructions

Instruction Operation

MCR p15, 0, Rd, c8, c7, 0

MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c6, 0

Invalidate all unlocked TLB entries
Invalidate all unlocked TLB entries
Invalidate all unlocked TLB entries

MCR p15, 0, Rd, c8, c7, 1

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 1

Invalidate single TLB entry, MVA format
Invalidate single TLB entry, MVA format
Invalidate single TLB entry, MVA format

MVA SBZ

31 10 09

Table 3-37 Encoding of the invalidate single TLB entry bit fields

Bit Name Definition

[31:10] MVA MVA of single TLB entry

[9:0] - Should Be Zero
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Note

 The Fast Context Switch Extension (FCSE) does not automatically modify the address 
specified in the Rd register for CP15 c8 TLB operations. It is the responsibility of the 
programmer to map the VA to the MVA before writing the address in the Rd register.

3.4.18 CP15 c9 DCache and ICache Lockdown Registers

The read/write DCache and ICache Lockdown Registers enable you to control which 
cache way of the four-way set-associative cache is used for allocation on a linefill. They 
use format C, a cache way-based locking scheme that controls each cache way 
independently. Each way has a lock bit, L, that determines if the normal cache 
allocation can access that cache way.

You can access the Cache Lockdown Registers when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-38.

Figure 3-20 shows the bit fields of the Cache Lockdown Registers.

Figure 3-20 DCache and ICache Lockdown Registers

Table 3-38 DCache and ICache Lockdown Register instructions

Instruction Operation

MRC p15, 0, Rd, c9, c0, 0 Read DCache Lockdown Register

MCR p15, 0, Rd, c9, c0, 0 Write DCache Lockdown Register

MRC p15, 0, Rd, c9, c0, 1 Read ICache Lockdown Register

MCR p15, 0, Rd, c9, c0, 1 Write ICache Lockdown Register

SBO

3 012

SBZ/UNP

31 16 15 4

L2

L1

L3

L0
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Note

 If all the L bits are set, then all allocations are to cache way 3.

Table 3-39 describes the bit fields of the Cache Lockdown Registers. All cache ways 
are available for allocation from reset.

Locking down a cache way

Use this procedure to load and lock way i of a cache with N ways using format C:

1. Ensure that no exceptions can occur during the execution of this procedure. If this 
is not possible, all code and data used by any exception handlers must be treated 
as code and data as in steps 2 and 3.

2. If an ICache way is being locked down, ensure that all the code executed by the 
lockdown procedure is in a noncachable area of memory, including the TCM, or 
is in a cache way that is already locked.

3. If a DCache way is being locked down, ensure that all data used by the lockdown 
procedure is in a noncachable area of memory, including the TCM, or is in a cache 
way that is already locked.

4. Ensure that the data or instructions that are to be locked down are in a cachable 
area of memory.

5. To ensure that the data to be locked down is not already in the cache, use the test 
and clean operation or the test, clean, and invalidate operation. To ensure that the 
instructions to be locked down are not already in the cache, use the invalidate 
operation.

6. Enable allocation to the target cache way by writing to CP15 c9 with CRm = 0, 
L = 0 for bit i, and L = 1 for all other ways.

Table 3-39 Encoding of the DCache and ICache Lockdown Registers

Bit Name Definition Reset state

[31:16] - Should Be Zero. Unpredictable. 0x0000

[15:4] - Should Be One. 0xFFF

[3:0] L3-L0 Lock bits for each cache way:
1 = No allocations to this cache way
0 = Allocations determined by replacement algorithm.

0
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7. For each of the cache lines to be locked down in cache way i:

• If a DCache is being locked down, use an LDR instruction to load a word 
from memory to ensure that the line is loaded into the cache. You can also 
use the PLD instruction to preload the cache line.

• If an ICache is being locked down, use the CP15 c7 MCR prefetch ICache 
line operation with CRm = c13, and opcode2 = 1 to fetch the line into the 
cache.

8. Write to CP15 c9 with CRm = 0 and L = 1 for the target cache way, and restore 
all other bits to the values they had before the lockdown routine started.

Unlocking a cache way

To unlock a cache way, write to register c9 clearing the appropriate lock bit. For 
example, the following sequence clears L0, unlocking way 0 of the ICache:

MRC p15, 0, Rn, c9, c0, 1
BIC Rn, Rn, 0x01
MCR p15, 0, Rn, c9, c0, 1
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3.4.19 CP15 c9 DTCM and ITCM Region Registers

The read/write DTCM and ITCM Region Registers contain the physical base address 
and size of the DTCM and ITCM. The TCMs are physically indexed and physically 
tagged.

You can access the DTCM and ITCM Region Registers when using the MMU or the 
MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-40.

Figure 3-21 shows the bit fields of the DTCM and ITCM Region Registers.

Figure 3-21 DTCM and ITCM Region Registers

Table 3-40 DTCM and ITCM Region Register instructions

Instruction Operation

MRC p15, 0, Rd, c9, c1, 0 Read DTCM Region Register

MCR p15, 0, Rd, c9, c1, 0 Write DTCM Region Register

MRC p15, 0, Rd, c9, c1, 1 Read ITCM Region Register

MCR p15, 0, Rd, c9, c1, 1 Write ITCM Region Register

0

Physical base address Size

1

SBZ

SBZ/UNP E

31 12 11 6 5 2
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Table 3-41 describes the bit fields of the DTCM and ITCM Region Registers.

If either the data or instruction TCM is disabled, then the contents of the respective 
TCM are not accessed. If the TCM is subsequently reenabled, the contents are not 
changed by the processor.

In a Harvard arrangement, the instruction TCM must be accessible for both reads and 
writes during normal operation, for loading code, and for debug activity. This enables 
accesses to literal pools, undefined instruction emulation, and parameter passing for 
SWI operations. You must insert an Instruction Memory Barrier, IMB, between a write 
to the ITCM and the instructions being read from the ITCM. See Instruction memory 
barriers on page 5-8 for more details.

Table 3-41 Encoding of the DTCM and ITCM Region Registers

Bit Name Definition Reset state

[31:12] Physical 
base address

Physical base address of TCM region. DTCM Region Register, Undefined.
ITCM Region Register, 0x00000.

[11:6] - Should Be Zero. Unpredictable. Zeros.

[5:2] Size Size of TCM:
b0000 = 0KB
b0001 and b0010 = TCM disabled (reserved)
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128 KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100-b1111 = TCM disabled (reserved).

DTCM Region Register, determined 
by DTCMSIZE[3:0] pins. 
ITCM Region Register, determined 
by ITCMSIZE[3:0] pins.

1 - Should Be Zero. 0

0 E TCM enable bit:
1 = TCM enabled
0 = TCM disabled.
To enable booting from the ITCM, tie the 
INITRAM pin HIGH with the VINITHI pin 
LOW at reset. 

DTCM Region Register, 0.
ITCM Region Register, determined
by INITRAM pin.
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Instruction fetches from the DTCM are not possible. An attempt to fetch an instruction 
from an address in the DTCM space does not result in an access to the DTCM, and the 
instruction is fetched from main memory. These accesses can result in external aborts, 
because the address range might not be supported in main memory. See Chapter 16 
External Aborts for an explanation of external abort behavior.

Do not program the ITCM to the same base address as the DTCM. If the two TCMs are 
of different sizes, do not allow the regions in physical memory to overlap. If they do 
overlap, memory accesses are mapped to the ITCM.

The base address value must be aligned to the TCM size.

3.4.20 CP15 c10 TLB Lockdown Register

The read/write TLB Lockdown Register controls where hardware page table walks 
place the TLB entry:

• When the preserve bit, P, is clear, the TLB entry goes in the main TLB. The main 
TLB is two-way set-associative and has 32 entries per way for a total of 64 
entries.

• When the P bit is set, the TLB entry goes in the lockdown TLB. The lockdown 
TLB has eight fully-associative entries that do not overlap the set-associative 
TLB region.

When an entry goes in the lockdown TLB, the victim field, V, selects one of eight 
lockdown TLB locations to write. The victim field is automatically incremented 
after any table walk that results in an entry being written into the lockdown TLB.

You can access the TLB Lockdown Register only when using the MMU 
(MMUnMPU = 1) with the instructions in Table 3-42.

Table 3-42 TLB Lockdown Register instructions

Instruction Operation

MRC p15, 0, Rd, c10, c0, 0 Read TLB Lockdown Register

MCR p15, 0, Rd, c10, c0, 0 Write TLB Lockdown Register
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Figure 3-22 shows the TLB Lockdown Register bit fields.

Figure 3-22 TLB Lockdown Register

Table 3-43 describes the TLB Lockdown Register bit fields.

The TLB instructions only invalidate unpreserved TLB entries, that is, those in the 
set-associative region. The invalidate single instructions invalidate any unpreserved or 
preserved entry.

Note

 It is not possible for a lockdown entry to entirely map either small or large pages unless 
all the subpage access permissions are identical. Entries can still be written into the 
lockdown region, but the address range that is mapped only covers the subpage 
corresponding to the address that was used to perform the page table walk.

0

SBZ

28 26

SBZ/UNPV P

31 29 25 1

Table 3-43 Encoding of the TLB Lockdown Register

Bit Name Definition Reset state

[31:29] - Should Be Zero. b000

[28:26] V Victim. Selects lockdown TLB location to write. b000

[25:1] - Should Be Zero. Unpredictable. Zeros

[0] P Preserve bit:
1 = subsequent hardware page table walks put TLB entry
in lockdown TLB at location specified by V
0 = subsequent hardware page table walks put TLB entry
in main TLB.

0
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Example 3-1 is a code sequence that locks down an entry to the current victim.

Example 3-1 Locking down an entry to the current victim

ADR r1, LockAddr ; set r1 to value of address to be locked down
MCR p15, 0, r1, c8, c7, 1 ; invalidate TLB single entry to ensure that

; LockAddr is not already in the TLB
MRC p15, 0, r0, c10, c0, 0 ; read lockdown register
ORR r0, r0, #1 ; set preserve bit
MCR p15, 0, r0, c10, c0, 0 ; write to lockdown register
LDR r1, [r1] ; TLB will miss, and entry will be loaded 
MRC p15, 0, r0, c10, c0, 0 ; read lockdown register (victim will have

; incremented)
BIC r0, r0, #1 ; clear preserve bit
MCR p15, 0, r0, c10, c0, 0 ; write to lockdown register

3.4.21 CP15 c11 Reserved

CP15 c11 accesses take the Undefined instruction trap.

3.4.22 CP15 c12 Reserved

CP15 c12 accesses take the Undefined instruction trap.
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3.4.23 CP15 c13 FCSE Process ID Register

The read/write FCSE Process ID Register contains the current process identifier. The 
Fast Context Switch Extension, FCSE, changes the upper seven bits of virtual addresses 
to enable switching the program context. 

You can access the FCSE Process ID Register only when using the MMU 
(MMUnMPU = 1) with the instructions in Table 3-44.

Figure 3-23 shows the bit fields of the FCSE Process ID Register.

Figure 3-23 FSCE Process ID Register

Table 3-45 describes the bit fields of the FSCE Process ID Register.

Addresses issued by the integer unit in the range 0 to 32MB are translated by the process 
ID. Address A becomes A + (process ID × 32MB). Both the caches and the MMU use 
this translated address. Addresses above 32MB are not translated. The process ID is a 
seven-bit field, enabling 127 × 32MB processes to be mapped, as Figure 3-24 on 
page 3-50 shows.

Table 3-44 FCSE Process ID Register instructions

Instruction Operation

MRC p15, 0, Rd, c13, c0, 0 Read FCSE Process ID Register

MCR p15, 0, Rd, c13, c0, 0 Write FCSE Process ID Register

Process ID

31 25

SBZ

024

Table 3-45 Encoding of the FSCE Process ID Register

Bit Name Definition Reset state

[31:25] Process ID Current process identifier Zeros

[24:0] - Should Be Zero Zeros
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Note

 If the process ID is zero, as it is on reset, then a flat mapping exists between the integer 
unit virtual addresses and the modified virtual addresses used by the caches and the 
MMU.

Figure 3-24 FCSE address mapping

4GB

VA from

ARM10 processor

32MB

0MB

VA > 32M

4GB
Process ID No 127

0MB

32MB

64MB

MVA to

caches and MMU

Process ID No 1

Process ID No 2
VA < 32M and

process ID = 1-127

FCSE
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Writing to the FCSE Process ID Register enables a fast context switch. The contents of 
the caches and TLBs do not have to be invalidated after a fast context switch because 
they still hold valid address tags. As Example 3-2 shows, from two to six instructions 
can be fetched with the old process identifier after the MCR that writes to the process 
ID.

Example 3-2 Changing the process ID and performing a fast context switch

{procID = 0}
MOV r0, #1 ; Fetched with procID = 0
MCR p15, 0, r0, c13, c0, 0 ; Fetched with procID = 0
A0 (any instruction) ; Fetched with procID = 0/1
A1 (any instruction) ; Fetched with procID = 0/1
A2 (any instruction) ; Fetched with procID = 0/1
A3 (any instruction) ; Fetched with procID = 0/1
A4 (any instruction) ; Fetched with procID = 0/1
A5 (any instruction) ; Fetched with procID = 0/1
A6 (any instruction) ; Fetched with procID = 1

Note
 Do not place any predictable branches or return instructions until at least the seventh 
instruction after a process ID change. Before the seventh instruction, the branch target 
is fetched from the old process ID, causing Unpredictable behavior.

Fast context switching is an MMU-only feature. Disabling the MMU by clearing the M 
bit in the CP15 c1 Control Register or by tying the MMUnMPU pin LOW disables 
FCSE address translation. Accesses of the FCSE Process ID Register when using the 
MPU (MMUnMPU = 0) take the Undefined instruction trap.
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3.4.24 CP15 c13 Context ID Register

The read/write Context ID Register holds the current context of the program.

You can access the Context ID Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-46.

Figure 3-25 shows the bit field of the Context ID Register.

Figure 3-25 Context ID Register

The reset state of the Context ID Register is Undefined.

3.4.25 CP15 c14 Reserved

CP15 c14 accesses take the Undefined exception trap.

Table 3-46 Context ID Register instructions

Instruction Operation

MRC p15, 0, Rd, c13, c0, 1 Read Context ID Register

MCR p15, 0, Rd, c13, c0, 1 Write Context ID Register

31 0

Context ID
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3.4.26 CP15 c15 Debug Override Register

CP15 c15 is reserved for device-specific test and debug operations. Software written for 
device-specific CP15 c15 operations is unlikely to be either backward or forward 
compatible. Most of the CP15 c15 registers are for ARM-internal validation and debug 
purposes. 

The read/write Debug Override Register contains fields to modify the default behavior 
of the ARM1026EJ-S processor. 

You can access the Debug Override Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-47.

Figure 3-26 shows the Debug Override Register bit fields.

Figure 3-26 Debug Override Register

Table 3-47 Debug Override Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c0, 0 Read Debug Override Register

MCR p15, 0, Rd, c15, c0, 0 Write Debug Override Register

31 16 15 12 11 019 1718 1314 10

SBZ

ADTM

MDDEB

AITM

DNCP

SBZ

FNCNB

IMA

SBZW
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Table 3-48 describes the bit fields of the Debug Override Register.

Caution
 The registers that follow are CP15 c15 debug and test registers. They are reserved for 
ARM internal use. The following write is not allowed and is potentially catastrophic:

MCR p15, 0, Rd, c15, c0, 1

Table 3-48 Encoding of the Debug Override Register

Bit Name Definition Reset state

[31:19] - Should Be Zero. Zeros

[18] ADTM Abort on data TLB miss:
1 = Data Abort enabled on data TLB misses
0 = Data Abort disabled on data TLB misses.

0

[17] AITM Abort on instruction TLB miss:
1 = Data Abort enabled on instruction TLB misses
0 = Data Abort disabled on instruction TLB misses.

0

[16] DNCP Disable NC instruction prefetching:
1 = NC instruction prefetching disabled
0 = NC instruction prefetching enabled.

0

[15] - Should Be Zero. 0

[14] FNCNB Force NCB store to be NCNB:
1 = NCB stores treated as nonbufferable
0 = NCB stores are bufferable.
FNCNB overrides setting in MMU page tables and Memory Region 
Remap Register.

0

[13] MDDEB MMU disabled, DCache enabled behavior:
1 = If MMU disabled and DCache enabled, data accesses are WT.
0 = Normal operation. If MMU disabled, all data accesses are NCNB.

0

[12] W Pending write buffer enable:
1 = pending write buffer enabled
0 = pending write buffer disabled.

1

[11] IMA Imprecise abort enable:
1 = imprecise abort enabled
0 = imprecise abort disabled.

1

[10:0] - Should Be Zero. Zeros
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3.4.27 CP15 c15 Prefetch Unit Debug Override Register

The read/write Prefetch Unit Debug Override Register controls the prediction 
capabilities of the prefetch unit.

You can access the Prefetch Unit Debug Override Register when using the MMU or the 
MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-49.

Figure 3-27 shows the bit fields of the Prefetch Unit Debug Override Register.

Note
 The reset value of the Prefetch Unit Override Register is configured for maximum 
performance. Changing the value in this register can decrease performance.

Figure 3-27 Prefetch Unit Debug Override Register

Caution

 Writing to the Prefetch Unit Debug Override Register after enabling branch prediction 
can cause Unpredictable processor behavior.

Table 3-49 Prefetch Unit Debug Override Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c0, 2 Read Prefetch Unit Debug Override Register

MCR p15, 0, Rd, c15, c0, 2 Write Prefetch Unit Debug Override Register

0

SBZ

1

EBP

RTK

31 2
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Table 3-50 describes the bit fields of the Prefetch Unit Debug Override Register.

3.4.28 CP15 c15 Debug and Test Address Register

The read/write Debug and Test Address Register is for the MMU test operations 
described in CP15 c15 MMU test operations on page 3-60. It is also useful as a 32-bit 
scratch register for validation purposes.

You can access the Debug and Test Address Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-51.

Figure 3-28 shows the bit field of the Debug and Test Address Register.

Figure 3-28 Debug and Test Address Register

The reset state of the Debug and Test Address Register is Undefined.

Table 3-50 Encoding of the Prefetch Unit Override Register

Bit Name Definition Reset state

[31:2] - Should Be Zero. Zeros

[1] EBP Enhanced branch prediction enable bit:
1 = enabled
0 = disabled.

1

[0] RTK Return stack enable bit:
1 = enabled
0 = disabled.

1

Table 3-51 Debug and Test Address Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c1, 0 Read Debug and Test Address Register

MCR p15, 0, Rd, c15, c1, 0 Write Debug and Test Address Register

31 0

Debug and test address
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3.4.29 CP15 c15 Memory Region Remap Register

The read/write Memory Region Remap Register overrides the setting specified in either 
the MMU page tables or the MPU region attributes, and the default behaviors if neither 
the MMU nor the MPU is enabled.

The Memory Region Register has four fields for remapping instruction-side memory 
regions and four fields for remapping data-side memory regions.

You can access the Memory Region Remap Register when using the MMU or the MPU 
(MMUnMPU = 1 or 0) with the instructions in Table 3-52.

Figure 3-29 shows the bit fields of the Memory Region Remap Register.

Figure 3-29 Memory Region Remap Register

Table 3-52 Memory Region Remap Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c2, 0 Read Memory Region Remap Register

MCR p15, 0, Rd, c15, c2, 0 Write Memory Region Remap Register

15 12 11 8 7 4 3 0

SBZ

1314 910

DNCB

56 12

DNCNB

DWTDWB

INCNB

INCBIWTIWB

31 16
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Table 3-53 describes the bit fields of the Memory Region Remap Register.

Table 3-54 shows the encoding of each of the remap fields.

Table 3-53 Encoding of the Memory Region Remap Register

Bit Name Definition Reset state

[31:16] - Should Be Zero 0x0000

[15:14] IWB Remap select bits for instruction-side write-back region b11

[13:12] IWT Remap select bits for instruction-side write-through region b10

[11:10] INCB Remap select bits for instruction-side noncachable bufferable region b01

[9:8] INCNB Remap select bits for instruction-side noncachable nonbufferable region b00

[7:6] DWB Remap select bits for data-side write-back region b11

[5:4] DWT Remap select bits for data-side write-through region b10

[3:2] DNCB Remap select bits for data-side noncachable bufferable region b01

[1:0] DNCNB Remap select bits for data-side noncachable nonbufferable region b00

Table 3-54 Encoding of the remap fields

Remap field

b00 = noncachable nonbufferable

b01 = noncachable bufferable

b10 = write-through

b11 = write-back
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Figure 3-30 shows the flow and precedence of CP15 c15 control bits in resolving a the 
cachable and bufferable attributes of a memory reference.

Figure 3-30 Memory region attribute resolution

MMU

or

MPU

Memory

region

remapping

NCNB

NCB
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NCNB

NCB

CNB (write-through)

CB (write-back)

Force

NCB store

to be

NCNB

MDDEB bit:

MMU/MPU

disabled,
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Memory Region Remap Register

Debug Override Register

Page table descriptor

FNCB bit:

Force NCB store

to be NCNB

C and B bits

Cn bits

Cn bits

Bn bits

ICache Configuration Register

DCache Configuration Register

Write Buffer Control Register
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3.4.30 CP15 c15 MMU test operations

The MMU test operations support accessing TLB structures in the MMU and are used 
in conjunction with the Debug and Test Address Register.

You can perform the MMU test operations only when using the MMU 
(MMUnMPU = 1) with the instructions in Table 3-55.

Inserting or reading entries in the main TLB

Use this procedure to access entries in the main TLB:

1. Use the following Debug and Test Address Register instruction to access a main 
TLB entry:

MCR p15, 0, Rd, c15, c1, 0 ; select TLB entry

The Rd register selects the main TLB entry as Figure 3-31 shows.

Figure 3-31 Rd format for selecting main TLB entry

Table 3-55 MMU test operation instructions

Instruction Operation

MRC P15, 4/5, Rd, c15, c2, 0

MCR P15, 4/5, Rd, c15, c3, 0

Read tag in main TLB entry
Write tag in main TLB entry

MRC P15, 4/5, Rd, c15, c4, 0

MCR P15, 4/5, Rd, c15, c5, 0

Read PA and access permission data in main TLB entry
Write PA and access permission data data in main TLB entry

MCR P15, 4/5, Rd, c15, c7, 0 Transfer main TLB entry into RAM

MRC P15, 4/5, Rd, c15, c2, 1
MCR P15, 4/5, Rd, c15, c3, 1

Read tag in lockdown TLB entry
Write tag in lockdown TLB entry

MRC P15, 4/5, Rd, c15, c4, 1

MCR P15, 4/5, Rd, c15, c5, 1

Read PA and access permission data in lockdown TLB entry
Write PA and access permission data in lockdown TLB entry

MCR P15, 4/5, Rd, c15, c7, 1 Transfer lockdown TLB entry into RAM

31

Way

Indexed entry SBZSBZ

14 10 091530
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Table 3-56 describes the Rd register entry-select bit fields.

2. Use the following MMU test operation instructions to access the MVA tag:

MRC p15, 4/5, Rd, c15, c2, 0 ; read tag in main TLB

MCR p15, 4/5, Rd, c15, c3, 0 ; write tag in main TLB

The Rd register contains the read or write data as Figure 3-32 shows.

Figure 3-32 Rd format for accessing MVA tag of main or lockdown TLB entry

Table 3-56 Encoding of the main TLB entry-select bit fields

Bit Name Definition

[31] Way Way select:
1 = way 1
0 = way 0.

[30:15] - Should Be Zero.

[14:10] Indexed entry Indexed entry in mail TLB.

[9:0] - Should Be Zero.

0

MVA tag SBZ
Size of

entry
V

4 19 51031
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Table 3-57 describes the MVA tag access bit fields in the Rd register.

3. Use the following MMU Test Register instructions to access the PA and access 
permission data:

MRC p15, 4/5, Rd, c15, c4, 0 ; read PA and access permission data

MCR p15, 4/5, Rd, c15, c5, 0 ; write PA and access permission data

The Rd register contains the read or write data as Figure 3-33 shows.

Figure 3-33 Rd format for accessing PA and AP data of main or lockdown TLB entry

Table 3-57 Encoding of the TLB MVA tag bit fields

Bit Name Definition

[31:10] MVA tag Modified virtual address.

[9:5] - Should Be Zero.

[4:1] Size of entry Size of entry:
b1011 = 1MB section
b0111 = 64KB page
b0101 = 16KB subpage of 64KB page
b0011 = 4KB page
b0001 = 1KB page or 1KB subpage of 4KB page.

[0] V Valid bit.

4 3 0

PA

9

Domain

select

56

SBZ

12

C
AP

[1:0]
B

31 10
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Table 3-58 describes the PA and access permission bit fields in the Rd register.

4. Use the following instruction to complete a write to an entry:

MCR p15, 4/5, Rd, c15, c7, 0 ; transfer main storage into RAM

Table 3-58 Encoding of the TLB entry PA and AP bit fields

Bit Name Definition

[31:10] PA Physical address.

[9:6] Domain select Domain select:
b0000 = D0
b0001 = D1
.
.
.
b1110 = D14
b1111 = D15.

[5:4] - Should Be Zero.

[3:2] AP Access permission:
b00 = No access.
b01 = Privileged, read/write. User, no access.
b10 = Privileged, read/write. User read-only.
b11 = Privileged, read/write. User, read/write.

[1] C Cachable bit.

[0] B Bufferable bit.
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Inserting or reading entries in the lockdown TLB

Use this procedure to access entries in the lockdown TLB:

1. Use the following Debug and Test Address Register instruction to access a 
lockdown TLB entry:

MCR p15, 0, Rd, c15, c1, 0

The Rd register selects the lockdown TLB entry as Figure 3-34 shows.

Figure 3-34 Rd format for selecting lockdown TLB entry

Table 3-59 describes the entry-select bit fields in the Rd register.

2. Use the following MMU Test Register instructions to access the MVA tag:

MRC p15, 4, Rd, c15, c2, 1 ; read lockdown TLB

MCR p15, 4, Rd, c15, c3, 1 ; write lockdown TLB

See Figure 3-32 on page 3-61 for read or write data in the Rd register.

3. Use the following MMU Test Register instructions to read or write the PA and 
access permission data:

MRC p15, 4, Rd, c15, c4, 1 ; read PA and access permission data

MCR p15, 4, Rd, c15, c5, 1 ; write PA and access permission data

See Figure 3-33 on page 3-62 for the read or write data in the Rd register.

4. Use the following instruction to complete a write to an entry:

MCR p15, 4, Rd, c15, c7, 1 ; transfer lockdown storage into RAM

SBZ

28 26

SBZ
Indexed

entry

31 29 025

Table 3-59 Encoding of the lockdown TLB entry-select bit fields

Bit Name Definition

[31:29] - Should Be Zero

[28:26] Indexed entry Indexed entry in lockdown TLB

[25:0] - Should Be Zero
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3.4.31 CP15 c15 Cache Debug Control Register

The read/write Cache Debug Control Register can force a specific cache behavior 
required for testing.

You can access the Cache Debug Control Register when using the MMU or the MPU 
(MMUnMPU 1 or 0) with the instructions in Table 3-60.

Figure 3-35 shows the bit fields of the Cache Debug Control Register.

Figure 3-35 Cache Debug Control Register

Table 3-60 Cache Debug Control Register instructions

Instruction Operation

MRC p15, 7, Rd, c15, c0, 0 Read Cache Debug Control Register

MCR p15, 7, Rd, c15, c0, 0 Write Cache Debug Control Register

0

SBZ

DDL

12

DIL

DWB

31 3
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Table 3-61 describes the Cache Debug Control Register bit fields.

Setting the DWB bit forces the DCache to treat all cachable accesses as though they 
were in a write-through region. The DWB bit overrides the settings in the:

• MMU page tables

• MPU Cache Configuration Register

• Write Buffer Control Register

• Memory Region Remap Register.

Dirty cache lines remain dirty while the DWB bit is set unless they are written back in 
a write-back eviction after a linefill or in a clean operation. Lines that are clean are not 
marked as dirty if they are updated while the DWB bit is set. This functionality enables 
a debugger to download code or data to external memory without having to clean part 
or all of the DCache to ensure that the code or data being downloaded has been written 
to external memory. 

Note
 If the DWB bit is set, and a write is made to a dirty cache line, then both the cache line 
and external memory are updated with the write data. Other entries in the cache line still 
have to be written back to main memory to achieve coherency. 

Setting the DDL and DIL bits prevents the cache from updating when performing a 
linefill on a miss. A linefill is performed on a cache miss, reading eight words from 
external memory, but the cache is not updated with the linefill data. The memory region 
mapping is unchanged. This functionality is required for debug so that the 

Table 3-61 Encoding of the Cache Debug Control Register

Bit Name Definition Reset state

[31:3] - Should Be Zero. Zeros

[2] DWB Disable write-back (force write-through):
1 = write-back disabled
0 = write-back enabled.

0

[1] DIL Disable ICache linefills:
1 = disable ICache linefills
0 = enable ICache linefills.

0

[0] DDL Disable DCache linefills:
1 = disable DCache linefills
0 = enable DCache linefills.

0
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ARM1026EJ-S memory image can be examined in a noninvasive manner. Cache hits 
from a cachable region read data words from the cache, and cache misses from a 
cachable region read words directly from memory.

3.4.32 CP15 c15 MMU Debug Control Register

The read/write MMU Debug Control Register forces TLB behavior to enable 
noninvasive testing.

You can use the MMU Debug Control Register to enable TLB and microTLB entries to 
be preserved during debug. For debug to be noninvasive, bits [5:0] must be b111111 
before changing any other CP15 registers or issuing any load or store. If main TLB 
loading is disabled, page table walks still take place, but the resultant data is forwarded 
around the TLB. 

It might be necessary to temporarily change the contents of a page table entry to 
facilitate debug operations. Disabling main TLB matches using bit 6 or 7 enables the 
modified contents of the page table to be used for an access without having to invalidate 
any entries in the main TLB. 

You can access the MMU Debug Control Register only when using the MMU 
(MMUnMPU = 1) with the instructions in Table 3-62.

Table 3-62 MMU Debug Control Register instructions

Instruction Operation

MRC p15, 7, Rd, c15, c1, 0 Read MMU Debug Control Register

MCR p15, 7, Rd, c15, c1, 0 Write MMU Debug Control Register
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Figure 3-36 shows the bit fields of the MMU Debug Control Register.

Figure 3-36 MMU Debug Control Register

Table 3-63 describes the bit fields of the MMU Debug Control Register.

6 3 2 0

SBZ

DMTMD

45

DMTLI

DDUTM

1

DIUTL

DMTLD

DIUTM

DMTMI

DDUTL

731 8

Table 3-63 Encoding of the MMU Debug Control Register

Bit Name Definition Reset state

[31:0] - Should Be Zero. 0x000000

[7] DMTMI Disable main TLB matching for instruction fetches:
1 = disable
0 = enable.

0

[6] DMTMD Disable main TLB matching for data accesses:
1 = disable
0 = enable.

0

[5] DMTLI Disable main TLB load due to instruction miss:
1 = disable
0 = enable.

0

[4] DMTLD Disable main TLB load due to data miss:
1 = disable
0 = enable.

0

[3] DIUTM Disable instruction microTLB matching:
1 = disable
0 = enable.

0
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[2] DDUTM Disable data microTLB matching:
1 = disable
0 = enable.

0

[1] DIUTL Disable instruction microTLB load:
1 = disable
0 = enable.

0

[0] DDUTL Disable data microTLB load:
1 = disable
0 = enable.

0

Table 3-63 Encoding of the MMU Debug Control Register (continued)

Bit Name Definition Reset state
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3.5 CP15 instruction summary

Table 3-64 is a quick reference to the CP15 instructions. 

Table 3-64 CP15 instruction summary

Instruction Operation Reference

MRC p15, 0, Rd, c0, c0, {0, 3-7}

MRC p15, 0, Rd, c0, c0, 1

MRC p15, 0, Rd, c0, c0, 2

Read Device ID Register.
Read Cache Type Register.
Read TCM Status Register.

Page 3-10
Page 3-11
Page 3-13

MRC p15, 0, Rd, c1, c0, 0

MCR p15, 0, Rd, c1, c0, 0

MRC p15, 0, Rd, c1, c0, 1

Read Control Register. 
Write Control Register. 
Read Auxiliary Control Register. 

Page 3-14
Page 3-14
Page 3-19

MRC p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c2, c0, 0

MRC p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c2, c0, 0

MRC p15, 0, Rd, c2, c0, 1

MCR p15, 0, Rd, c2, c0, 1

Read Translation Table Base Register when using MMU. 
Write Translation Table Base Register when using MMU.
Read DCache Configuration Register when using MPU.
Write DCache Configuration Register when using MPU.
Read ICache Configuration Register when using MPU.
Write ICache Configuration Register when using MPU.

Page 3-20
Page 3-20
Page 3-21
Page 3-21
Page 3-21
Page 3-21

MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

Read Domain Access Control Register when using MMU.
Write Domain Access Control Register when using MMU.
Read Write Buffer Control Register when using MPU.
Write Write Buffer Control Register when using MPU.

Page 3-23
Page 3-23
Page 3-25
Page 3-25

MRC p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 4

MCR p15, 0, Rd, c5, c0, 4

MRC p15, 0, Rd, c5, c0, 1

MCR p15, 0, Rd, c5, c0, 1

MRC p15, 0, Rd, c5, c0, 5

MRC p15, 0, Rd, c5, c0, 5

MRC p15, 0, Rd, c5, c0, 2

MCR p15, 0, Rd, c5, c0, 2

MRC p15, 0, Rd, c5, c0, 3

MCR p15, 0, Rd, c5, c0, 3

MRC p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 0

MRC p15, 0, Rd, c5, c0, 1

MCR p15, 0, Rd, c5, c0, 1

Read Data Fault Status Register when using MMU.
Write Data Fault Status Register when using MMU.
Read Data Fault Status Register when using MPU.
Write Data Fault Status Register when using MPU.
Read Instruction Fault Status Register when using MMU.
Write Instruction Fault Status Register when using MMU.
Read Instruction Fault Status Register when using MPU.
Write Instruction Fault Status Register when using MPU.
Read Data Extended Access Permission Register when using MPU.
Write Data Extended Access Permission Register when using MPU.
Read Instruction Extended Access Permission Register when using MPU.
Write Instruction Extended Access Permission Register when using MPU.
Read Data Standard Access Permission Register when using MPU.
Write Data Standard Access Permission Register when using MPU.
Read Instruction Standard Access Permission Register when using MPU.
Write Instruction Standard Access Permission Register when using MPU.

Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-29
Page 3-29
Page 3-29
Page 3-29
Page 3-31
Page 3-31
Page 3-31
Page 3-31
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MRC p15, 0, Rd, c6, c0, 0

MCR p15, 0, Rd, c6, c0, 0

MRC p15, 0, Rd, c6, c0, 4

MCR p15, 0, Rd, c6, c0, 4

MRC p15, 0, Rd, c6, c0, 1

MCR p15, 0, Rd, c6, c0, 1

MRC p15, 0, Rd, c6, c0, 5

MCR p15, 0, Rd, c6, c0, 5

MRC p15, 0, Rd, c6, c{0-7}, 0

MCR p15, 0, Rd, c6, c{0-7}, 0

Read Data Fault Address Register when using MMU.
Write Data Fault Address Register when using MMU.
Read Data Fault Address Register when using MPU.
Write Data Fault Address Register when using MPU.
Read Instruction Fault Address Register when using MMU.
Write Instruction Fault Address Register when using MMU.
Read Instruction Fault Address Register when using MPU.
Write Instruction Fault Address Register when using MPU.
Read Protection Region Register when using MPU.
Write Protection Region Register when using MPU.

Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-34
Page 3-34

MCR p15, 0, Rd, c7, c5, 0

MCR p15, 0, Rd, c7, c5, 1

MCR p15, 0, Rd, c7, c5, 2

MCR p15, 0, Rd, c7, c6, 0
MCR p15, 0, Rd, c7, c6, 1
MCR p15, 0, Rd, c7, c6, 2

MCR p15, 0, Rd, c7, c7, 0

MCR p15, 0, Rd, c7, c10, 1

MCR p15, 0, Rd, c7, c10, 2

MCR p15, 0, Rd, c7, c14, 1

MCR p15, 0, Rd, c7, c14, 2

MRC p15, 0, R15, c7, c10, 3

MRC p15, 0, R15, c7, c14, 3

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

MCR p15, 0, Rd, c7, c10, 4

MCR p15, 0, Rd, c7, c13, 1

Invalidate entire ICache. 
Invalidate ICache line, MVA format.
Invalidate ICache line, set/way format.
Invalidate entire DCache. Invalidates clean and dirty data.
Invalidate DCache line, MVA format. Invalidates clean and dirty data.
Invalidate DCache line, set/way format. Invalidates clean and dirty data.
Invalidate entire DCache and ICache. Invalidates clean and dirty data.
Clean DCache line, MVA format.
Clean DCache line, set/way format.
Clean and invalidate DCache line, MVA format.
Clean and invalidate DCache line, set/way format.
Test and clean DCache.
Test, clean, and invalidate DCache.
Wait for interrupt.

Drain pending write buffer.
Prefetch ICache line, MVA format.

Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36

Page 3-36
Page 3-36

MCR p15, 0, Rd, c8, c7, 0

MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c6, 0

MCR p15, 0, Rd, c8, c7, 1

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 1

Invalidate all unlocked TLB entries when using MMU.
Invalidate all unlocked TLB entries when using MMU.
Invalidate all unlocked TLB entries when using MMU.
Invalidate single TLB entry, MVA format when using MMU.
Invalidate single TLB entry, MVA format when using MMU.
Invalidate single TLB entry, MVA format when using MMU.

Page 3-40
Page 3-40
Page 3-40
Page 3-40
Page 3-40
Page 3-40

MRC p15, 0, Rd, c9, c0, 0

MCR p15, 0, Rd, c9, c0, 0

MRC p15, 0, Rd, c9, c0, 1

MCR p15, 0, Rd, c9, c0, 1

Read DCache Lockdown Register.
Write DCache Lockdown Register.
Read ICache Lockdown Register.
Write ICache Lockdown Register.

Page 3-41
Page 3-41
Page 3-41
Page 3-41

Table 3-64 CP15 instruction summary (continued)

Instruction Operation Reference
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MRC p15, 0, Rd, c9, c1, 0

MCR p15, 0, Rd, c9, c1, 0

MRC p15, 0, Rd, c9, c1, 1

MCR p15, 0, Rd, c9, c1, 1

Read DTCM Region Register.
Write DTCM Region Register.
Read ITCM Region Register.
Write ITCM Region Register.

Page 3-44
Page 3-44
Page 3-44
Page 3-44

MRC p15, 0, Rd, c10, c0, 0

MCR p15, 0, Rd, c10, c0, 0

Read TLB Lockdown Register when using MMU.
Write TLB Lockdown Register when using MMU.

Page 3-46
Page 3-46

MRC p15, 0, Rd, c13, c0, 0

MCR p15, 0, Rd, c13, c0, 0

MRC p15, 0, Rd, c13, c0, 1

MCR p15, 0, Rd, c13, c0, 1

Read FCSE Process ID Register when using MMU.
Write FCSE Process ID Register when using MMU.
Read Context ID Register.
Write Context ID Register.

Page 3-49
Page 3-49
Page 3-52
Page 3-52

MRC p15, 0, Rd, c15, c0, 0

MCR p15, 0, Rd, c15, c0, 0

MRC p15, 0, Rd, c15, c0, 2

MCR p15, 0, Rd, c15, c0, 2

MRC p15, 0, Rd, c15, c1, 0

MCR p15, 0, Rd, c15, c1, 0

MRC p15, 0, Rd, c15, c2, 0

MCR p15, 0, Rd, c15, c2, 0

MRC p15, 4/5, Rd, c15, c2, 0

MCR p15, 4/5, Rd, c15, c3, 0

MRC p15, 4/5, Rd, c15, c4, 0

MCR p15, 4/5, Rd, c15, c5, 0

MCR p15, 4/5, Rd, c15, c7, 0

MRC p15, 4/5, Rd, c15, c2, 1
MCR p15, 4/5, Rd, c15, c3, 1
MRC p15, 4/5, Rd, c15, c4, 1

MCR p15, 4/5, Rd, c15, c5, 1

MCR p15, 4/5, Rd, c15, c7, 1

MRC p15, 7, Rd, c15, c0, 0

MCR p15, 7, Rd, c15, c0, 0

MRC p15, 7, Rd, c15, c1, 0

MCR p15, 7, Rd, c15, c1, 0

Read Debug Override Register.
Write Debug Override Register.
Read Prefetch Unit Debug Override Register.
Write Prefetch Unit Debug Override Register.
Read Debug and Test Address Register.
Write Debug and Test Address Register.
Read Memory Region Remap Register.
Write Memory Region Remap Register.
Read tag in main TLB entry.
Write tag in main TLB entry.
Read PA and access permission data in main TLB entry.
Write PA and access permission data data in main TLB entry.
Transfer main TLB entry into RAM.
Read tag in lockdown TLB entry.
Write tag in lockdown TLB entry.
Read PA and access permission data in lockdown TLB entry.
Write PA and access permission data in lockdown TLB entry.
Transfer lockdown TLB entry into RAM.
Read Cache Debug Control Register.
Write Cache Debug Control Register.
Read MMU Debug Control Register.
Write MMU Debug Control Register.

Page 3-53
Page 3-53
Page 3-55
Page 3-55
Page 3-56
Page 3-56
Page 3-57
Page 3-57
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-65
Page 3-65
Page 3-67
Page 3-67

Table 3-64 CP15 instruction summary (continued)

Instruction Operation Reference
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Chapter 4 
Clocking and Reset Timing

This chapter describes the relationship between the processor clock, the AHB clock, 
and the DBGTAP test clock. It also describes the two ARM1026EJ-S reset signals. It 
contains the following sections:

• About clock and reset signals on page 4-2

• Clock interfaces on page 4-3

• Reset on page 4-4.
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4.1 About clock and reset signals

CLK is the single global processor clock signal. It drives:

• the ARM10EJ-S integer unit

• the data and instruction AHB interfaces

• the JTAG DBGTAP state machine and logic.

All processor outputs change on the rising edge of CLK, and all inputs are sampled on 
the rising edge. CLK can be stretched in either phase. 

The overall clocking scheme for the ARM1026EJ-S processor is as follows: 

• HCLK and CLK must have coincident rising edges

• CLK can run at higher frequencies than HCLK if it is an integer multiple of 
HCLK

• the integer unit, caches, MMUs, and any coprocessors run at CLK speed

• the AHB interface runs at HCLK speed, where HCLK = CLK/(1, 2, 3, 4, ...) or 
HCLK:CLK = N:1 (N = 1, 2, 3, 4, ...). 

Figure 4-1 shows how HCLK is derived from CLK. In this example, the HCLK:CLK 
ratio is 4:1.

Figure 4-1 HCLK derivation

The ARM1026EJ-S reset signal, HRESETn, resets all logic except DBGTAP logic. 
DBGnTRST is the DBGTAP reset signal.

HCLKEN

CLK

HCLK
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4.2 Clock interfaces

The AHB clock enable signals, HCLKENI and HCLKEND, and the DBGTAP clock 
enable signal, DBGTCKEN, must be integer multiples of the processor clock, CLK.

4.2.1 AHB clock interface

The synthesizable AHB design restricts AHB operation frequency to be an integer 
multiple of CLK. HCLKENI and HCLKEND are the independent clock enable 
signals for the instruction and data AHB interfaces. To support multilayer AHB 
operation, the AHB the clock enable signals can be different integer multiples of CLK.

4.2.2 DBGTAP clock interface

The synthesizable DBGTAP design restricts the frequency of the test clock, TCK, to an 
integer multiple of CLK. The DBGTAP clock enable, DBGTCKEN, must also be an 
integer multiple of CLK. 

Figure 4-2 shows how TCK is derived from CLK. In this example, the TCK:CLK 
ratio is 4:1.

Figure 4-2 TCK derivation

DBGTCKEN

CLK

TCK
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4.3 Reset

There are two ARM1026EJ-S reset inputs:

HRESETn Controls all non-JTAG DBGTAP logic. HRESETn must be asserted for 
a minimum of eight CLK cycles as Figure 4-3 shows. After HRESETn 
deassertion, the processor begins fetching instructions after 20 cycles, 
including the deassertion cycle.

Figure 4-3 HRESETn assertion

DBGnTRST Resets DBGTAP logic. You can hold the processor in reset while 
removing the DBGTAP logic reset to program the ARM1026EJ-S debug 
hardware. 

HRESETn

CLK

8 cycles minimum
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Chapter 5 
Prefetch Unit

This chapter describes how the prefetch unit fetches instructions to feed to the integer 
unit and coprocessors, and how it locates branches in the instruction stream for 
predicting potential changes in sequential instruction issue. It also describes the SWI 
functions useful for flushing the prefetch buffer. It contains the following sections:

• About the prefetch unit on page 5-2

• Branch prediction activity on page 5-3

• Branch instruction cycle summary on page 5-6

• Instruction memory barriers on page 5-8.
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5.1 About the prefetch unit

The prefetch unit is responsible for fetching instructions from the memory system as 
required by the integer unit and coprocessors. The prefetch unit fetches instructions at 
up to twice the rate that the integer unit requires them, and the prefetch buffer holds up 
to four instructions. The prefetch buffer enables the prefetch unit to:

• detect branches several instructions ahead of the currently issuing instruction

• predict branches that are likely to be taken

• predict subroutine calls

• predict leaf subroutine returns

• remove those branches that are not likely to be taken.

The bus from the memory system to the prefetch unit is 64 bits wide. It can supply two 
ARM instruction words from a doubleword-aligned address every clock cycle. 

Branch prediction enables the prefetch unit to provide the branch target instruction to 
the integer unit earlier than if no prediction mechanism is used. Branch prediction 
increases processor performance by minimizing the cycle time of branch instructions. 
When the prefetch unit predicts a branch as taken, it calculates the target address and 
fetches instructions from the new address. Depending on how full the prefetch buffer is 
at the time the prediction is made, the predicted branch can be reduced to three, two, 
one, or zero cycles. When the prefetch unit predicts a branch as not taken, it removes 
the branch from the instruction stream passed to the integer unit. It still calculates the 
target address of the branch in case the prediction is incorrect. The prediction 
mechanism is static. It uses no history information. Conditional forward branches are 
predicted as not taken and conditional backward branches are predicted as taken. 

The prefetch unit performs branch prediction only when the Z bit is set in the CP15 c1 
Control Register.

The prefetch unit also contains a one-entry return stack. Predicted subroutine calls push 
the return address into a buffer within the prefetch unit. Subroutines that do not call 
other subroutines are called leaf functions. These subroutines can use the BX LR 
instruction to return to the caller. Legacy code may also use a MOV PC, LR instruction 
where ARM and Thumb state switching is not necessary.
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5.2 Branch prediction activity

The prefetch unit predicts all conditional branches. 

When the prefetch unit predicts a branch as taken, it speculatively prefetches from the 
target address. In speculative prefetching, all cache hits result in an instruction fetched 
into the prefetch buffer. Cache misses and noncachable accesses in speculative 
prefetching do not initiate a linefill from memory until the integer unit first resolves the 
flags and the prediction is confirmed.

5.2.1 Branch folding

Depending on how many instructions are in the prefetch buffer at the time a branch is 
predicted, the branch may be completely removed from the instruction stream. This 
means:

• A branch is pulled from the instruction stream based on a prediction.

• The predicted next instruction is substituted in place of this branch.

• No empty instruction issue slots results from the process.

Under these circumstances, the branch itself takes zero cycles because it is removed 
altogether from the instruction stream to the integer unit. This type of branch removal 
that involves direct substitution of another instruction is called branch folding. The 
condition codes of the predicted branch are folded onto the predicted next instruction, 
and only a single instruction is issued to the integer unit. The condition codes of the 
predicted branch are called the branch phantom. The substituted instruction is the 
folded instruction.

5.2.2 Flushing the prefetch buffer

The prefetch buffer is flushed in all the following cases:

• entry into an exception processing sequence

• a load to the PC

• an arithmetic manipulation of the PC

• execution of an unpredicted branch

• detection of an mispredicted branch.

The only changes to sequential instruction fetching that do not automatically flush the 
prefetch buffer are a predicted taken branch and a predicted return instruction.
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5.2.3 Branch penalty

Mispredicted branches and unpredicted taken branches have a four-cycle penalty 
(assuming ICache hit). Here penalty means the number of cycles in which no useful 
Execute stage pipeline activity can occur due to an instruction flow differing from that 
assumed or predicted. Table 5-1 illustrates this penalty for the case of a mispredicted 
branch. Cycles 2, 3, 4, and 5 have nothing valid in Execute stage. The activity is similar 
for an unpredicted branch that is taken. Unpredicted branches that are not taken 
consume their normal Execute stage and have no branch penalty.

5.2.4 Optimization of branch instructions

This is a complete list of the branch optimizations performed by the branch prediction 
unit:

• ARM and Thumb conditional branches are predicted taken and potentially 
reduced to zero cycles if they branch backwards.

• ARM and Thumb conditional branches are predicted not taken and potentially 
reduced to zero cycles if they branch forward.

• ARM and Thumb unconditional branches are predicted taken and potentially 
reduced to zero cycles.

• ARM unconditional BL and BLX instructions are predicted taken and potentially 
reduced to one cycle.

• A Thumb BL pair (always unconditional) is predicted taken and potentially 
reduced to one cycle. The pair of instructions must be consecutive in memory for 
them to be predicted.

Table 5-1 Penalty for a mispredicted branch

Cycle Pipeline stage Activity

1 Execute Branch phantom, probably with a folded instruction. 
Condition code evaluation results in misprediction. All 
instructions in earlier pipeline stages are canceled. Folded 
instructions are canceled.

2, 3 Fetch Correct branch target address sent to memory system.
Correct target instruction returned from memory system.

4 Issue Correct instruction in Issue stage.

5 Decode Correct instruction in Decode stage.

6 Execute Correct instruction in Execute stage.
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• A Thumb BLX pair (always unconditional) is predicted taken and potentially 
reduced to one cycle. The pair of instructions must be consecutive in memory for 
them to be predicted.

When BL and BLX instructions are predicted, the instruction is changed into a link 
instruction and a branch instruction. The link part of the instruction is passed to the 
integer unit as a special MOV LR instruction. The branch part is predicted taken. 

Branches are not predicted in any of the following cases:

• the Z bit in the CP15 c1 Control Register is clear

• a Prefetch Abort occurs when fetching the instruction

• a breakpoint is set on the instruction address

• the processor is in Jazelle state

• the branch immediately precedes another predictable branch. For example:
BEQ ERROR
BNE LOOP

Note
 In this case, BNE is not predicted.

5.2.5 Return stack

The prefetch unit also contains a one-entry return stack. Predicted subroutine call 
instructions (BL and BLX instructions) push the return address and caller ARM/Thumb 
state into a buffer within the prefetch unit. The BL and BLX instructions place the 
return PC into the Link Register (LR). Subroutine that call other subroutines must save 
this register onto a memory stack. Subroutines that do not call other subroutines, called 
leaf functions, keep the return address in the link register and use the BX LR instruction 
to return to the caller. Legacy code may also use the MOV PC, LR instruction where 
ARM and Thumb state interworking is not required. These two instructions are 
predicted, with the stored address and mode being the next fetch address. If the 
predicted return address does not match the value of LR or the mode does not match, 
then a mispredict occurs and the pipeline is flushed.
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5.3 Branch instruction cycle summary

The number of cycles taken by the ARM10 processor to execute branch instructions 
depends primarily on:

• Whether or not the branch is predicted.

• Whether or not the predicted branch is correct.

• What direction the predicted branch takes, forward or backward.

• The number of instructions in the prefetch buffer ahead of the branch at the time 
the prediction is made. The prefetch buffer continues to issue instructions while 
a predicted branch target instruction is being fetched.

Table 5-2 shows the instruction cycle counts for all ARM and Thumb branches. The 
cycle counts are based on ICache hits, because the cycle counts of ICache misses and 
noncachable accesses vary widely as a function of system and implementation 
characteristics.

Instructions are listed here by their ARM Architecture Reference Manual name. Some 
instructions have multiple variations that distinguish unique characteristics among a 
common instruction, for example Thumb B(1) and Thumb B(2).

Table 5-2 ARM and Thumb branch instruction cycle counts

 

 
Unpredicted
condition code Predicted correctly Predicted incorrectly

Instruction Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken

ARM instructions

B uncond a 5 0-3 0-3 b b

B cond 1 5 0-3 0c 5 5

BL uncond a 5 1-3 d, e 1-3 d, e b b

BL cond 2 5 e e e e

BLX(1) uncond a 5 1-3 d, e 1-3 d, e b b

BLX(2) uncond a 5 f f f f

BLX(2) cond 2 5 f f f f

BX uncond a 5 f f f f
5-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Prefetch Unit 
BX cond 2 5 f f f f

BX LR - - 1g 1g 6 6

MOV PC,LR - - 1g 1g 6 6

Thumb instructions

B(1) cond 1 5 0-3 0b 5 5

B(2) uncond a 5 0-3 0-3 b b

BL uncond a 7h 1-3d 1-3d, e b b

BLX(1) uncond a 7h 1-3d 1-3d, e b b

BLX(2) uncond a 5 f f f f

BX uncond a 5 f f f f

BX LR - - 1g 1g 6 6

MOV PC,LR - - 1g 1g 6 6

a. Unconditional branches (either unconditional by instruction definition or by using cond code AL, always) cannot fail 
condition codes.

b. Unconditional branches, when predicted, can never be mispredicted.
c. All forward branches are predicted only when prefetch buffer contains at least two instructions, the branch being predicted 

and its preceding instruction.
d. ARM and Thumb BL and BLX instructions can never be reduced to 0 cycles by prediction because the link operation 

necessarily consumes a cycle.
e. ARM and Thumb BL and BLX instructions are only predicted if unconditional, in which case they are predicted taken 

irrespective of direction (guaranteed to be correct).
f. ARM and Thumb BX and BLX(2) instructions are not PC-relative. They cannot be predicted except for the special case of 

BX LR and MOV PC, LR when used as return instructions.
g. The leaf return instructions are only predicted if unconditional, in which case they are predicted taken irrespective of 

direction (guaranteed to be correct).
h. Thumb BL and BLX(1) instructions are encoded as two Thumb instructions. The first of these is a data processing 

instruction that puts an immediate value into r14 and then fetches from that address. This second instruction takes five 
cycles before the next instruction is in Execute.

Table 5-2 ARM and Thumb branch instruction cycle counts (continued)

 

 
Unpredicted
condition code Predicted correctly Predicted incorrectly

Instruction Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken
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5.4 Instruction memory barriers

The prefetch unit performs speculative prefetching of instructions. In some 
circumstances it is likely that the prefetch buffer contains out-of-date instructions. In 
these circumstances the prefetch buffer must be flushed. An Instruction Memory 
Barrier (IMB) sequence provides a means to do this. 

You can include processor-specific code in the SWI handler to implement the two IMB 
sequences:

IMB The IMB sequence flushes all information about all instructions.

IMBRange When only a small area of code is altered before being executed, the 
IMBRange sequence can efficiently and quickly flush any stored 
instruction information from addresses within a small range. By flushing 
only the required address range information, the rest of the information 
remains to provide improved system performance.

The IMB and IMBRange sequences are implemented as calls to specific SWI numbers. 

5.4.1 Generic IMB use

Use SWI functions to provide a well-defined interface between code that is:

• independent of the ARM processor implementation on which it is running

• specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with a function that is available on 
all processor implementations through the SWI interface, and that can be accessed by 
privileged and, where appropriate, nonprivileged (User mode) code.

Using SWIs to implement the IMB instructions means that code that is written now 
remains compatible with future ARM processors, even if those processors implement 
IMB in different ways. This is achieved by changing the operating system SWI service 
routines for each of the IMB SWI numbers that differ from processor to processor.

5.4.2 IMB implementation

Executing the SWI instruction is sufficient to cause IMB operation. Also, both the IMB 
and the IMBRange sequences flush all stored information about the instruction stream. 

This means that all IMB instructions can be implemented in the operating system by 
returning from the IMB/IMBRange service routine and that the service routines can be 
exactly the same. The following service routine code can be used:
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IMB_SWI_handler 
IMBRange_SWI_handler

MOVS PC, R14_svc ; Return to the code after the SWI call

Note

 In new code, you are strongly encouraged to use the IMBRange sequence whenever the 
changed area of code is small, even if there is no distinction between it and the IMB 
sequence. Future ARM processors might implement a faster and more efficient 
IMBRange sequence, and code migrated from this ARM processor can benefit when 
executed on future ARM processors.

5.4.3 Execution of IMB sequences

This section gives examples that show what should happen during IMB sequences. The 
pseudocode in the square brackets shows what should happen in the SWI routine.

Loading code from disk

Code that loads a program from a disk and then branches to the entry point of that 
program must use an IMB sequence after loading the program and before executing it:

IMB EQU 0xF00000
. 
. 

; code that loads program from disk
. 
. 
SWI IMB

[branch to IMB service routine] 
[perform processor-specific operations to execute IMB] 
[return to code] 
.

MOV PC, entry_point_of_loaded_program 
. 
.

Running BitBlt code

Compiled BitBlt routines optimize large copy operations by constructing and executing 
a copying loop that has been optimized for a particular operation. When writing such a 
routine, an IMB is required between the code that constructs the loop and the execution 
of the constructed loop:
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IMBRange EQU 0xF00001
. 
. 

; code that constructs loop code
; load R0 with the start address of the constructed loop 
; load R1 with the end address of the constructed loop 
SWI IMBRange 

[branch to IMBRange service routine] 
[read registers R0 and R1 to set up address range parameters] 
[do processor-specific operations to execute IMBRange within address range] 
[return to code]

; start of loop code 
. 
.

Self-decompressing code

When writing a self-decompressing program, an IMBmust be issued after the routine 
that decompresses the bulk of the code and before the decompressed code is to be 
executed:

IMB EQU 0xF00000
.
.

; copy and decompress bulk of code
SWI IMB

; start of decompressed code
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Chapter 6 
Bus Interface

This chapter describes the features of the bus interface not covered in the AMBA 
Specification. It contains the following sections:

• About the bus interface on page 6-2

• Bus transfer characteristics on page 6-3

• Bus transfer cycle timing on page 6-8

• Topology on page 6-23

• Endianness of BIU transfers on page 6-24

• 64-bit and 32-bit AHB data buses on page 6-25.
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6.1 About the bus interface

The ARM1026EJ-S processor is designed to be used within larger chip designs using 
the Advanced Microcontroller Bus Architecture (AMBA). The ARM1026EJ-S 
processor uses the AMBA High-performance Bus Lite (AHB-Lite) interface to memory 
and peripherals.

To make your design reusable with future revisions of ARM processors, use fully 
AMBA-compliant peripherals and interfaces early in your design cycle.

The ARM1026EJ-S processor uses separate AHB bus interfaces for instructions and 
data:

• Instruction Bus Interface Unit (IBIU)

• Data Bus Interface Unit (DBIU).

Separate bus interfaces enhance the ability to fetch and execute instructions in parallel 
with a DCache miss. There is no sharing of any AHB signals between the two 
interfaces.

The I64n32 and D64n32 pins independently configure the instruction and data 
interfaces to widths of 32 or 64 bits respectively.

The ARM1026EJ-S processor has unidirectional inputs, outputs, and control signals 
that are always driven. Because the processor is AHB-Lite compliant, it always drives 
a valid sequential, nonsequential, or idle AHB transfer. 

For a complete description of AMBA, including the AHB bus and the AMBA test 
methodology see the AMBA Specification.

The BIU handles the following transfers:

• cachable instruction and data read transfers

• noncachable instruction and data read transfers

• buffered data write transfers

• nonbuffered data write transfers

• noncachable nonbuffered data swaps

• data eviction write transfers

• hardware page table walk data read transfers.
6-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Bus Interface 
6.2 Bus transfer characteristics

The bus interface handles all data transfers and instruction transfers between the core 
clock domain and the AMBA bus clock domain. Any request from the prefetch unit or 
the LSU that has to go outside the ARM1026EJ-S processor is handled by the bus 
interface in a way that is transparent to the prefetch unit and the LSU.

The types of AMBA bus transfers are:

• MMU generated page table walks

• noncachable instruction fetches and data loads

• nonbuffered data stores

• instruction and data linefills

• data evictions due to replacement or CP15 operations 

• buffered data stores 

• noncachable nonbufferable data swap operations. 

Each of the AMBA AHB bus transfers generates a signature.  For design flexibility, the 
BIU supports 32-bit and 64-bit instruction and data buses. The bus width affects the 
signature generated by the BIU. 

Table 6-1 on page 6-4 and Table 6-2 on page 6-5 list the types of DBIU and IBIU 
transfers and their characteristics.
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Table 6-1 DBIU transfer characteristics

Transfer B
u

s 
w

id
th

HADDRDa HTRANSDb HPROTDc HSIZED H
B

U
R

S
T

D

H
L

O
C

K
D

H
W

R
IT

E
D

H
xD

A
TA

D

MMU page
table walk

32 [31:2] b00 NS [c b 1 1] 32 Single 0 0 [31:0]

64 [31:2] b00 NS [c b 1 1] 32 Single 0 0 [63:0]

Noncachable
load

32 [31:0] NS [c b p 1] 8, 16, 32 Single 0 0 [31:0]

32 [31:3] bbb NS-S [c b p 1] 32d Incr 0 0 [63:0]

64 [31:3] bbb NS [c b p 1] 8, 16, 32, 64 Single 0 0 [63:0]

Nonbufferable
store

32 [31:0] NS [c b p 1] 8, 16, 32 Incr 0 1 [31:0]

32 [31:3] bbb NS-S [c b p 1] 32d Incr 0 1 [63:0]

64 [31:3] bbb NS [c b p 1] 8, 16, 32, 64 Incr 0 1 [63:0]

Buffered
store

32 [31:2] bb NS-S-S- . . . -S [c b p 1] 8, 16, 32 Incr 0 1 [31:0]

64 [31:3] bbb NS-S-S- . . . -S [c b p 1] 8, 16, 32, 64 Incr 0 1 [63:0]

Cachable
linefill

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 1] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 1] 64 Wrap4 0 0 [63:0]

Eviction/
castout

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b 1 1] 32 Incr8 0 1 [31:0]

64 [31:3] b000 NS-S-S-S [c b 1 1] 64 Incr4 0 1 [63:0]

Swap (load) 32 [31:2] b00 NS [c b p 1] 32 Single 1 0 [31:0]

Swap (store) 32 [31:2] b00 NS [c b p 1] 32 Single 1 1 [31:0]

Swap (load) 64 [31:2] b00 NS [c b p 1] 32 Single 1 0 [63:0]

Swap (store) 64 [31:2] b00 NS [c b p 1] 32 Single 1 1 [63:0]

a. See Transfer size on page 6-6.
b. See Sequential and nonsequential transfers on page 6-6.
c. See BIU protection control on page 6-6.
d. The internal 64-bit request is converted to two 32-bit transfers to match the AHB bus width.
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Table 6-2 lists the IBIU transfer types and their characteristics.

Table 6-2 IBIU transfer characteristics

Transfer A
H

B
 b

u
s 

w
id

th
HADDRIa HTRANSIb HPROTIc HSIZEI H

B
U

R
S

T
I

H
L

O
C

K
I

H
W

R
IT

E
I

H
xD

A
TA

Id

Noncachable
fetche

32 [31:2] bb NS [c b p 0] 16, 32 Single 0 0 [31:0]

32 [31:3] bbb NS-S [c b p 0] 32f Incr 0 0 [63:0]

64 [31:3] bbb NS [c b p 0] 16, 32, 64 Single 0 0 [63:0]

Noncachable
fetchg

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 0] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 0] 64 Wrap4 0 0 [63:0]

Cachable
linefill

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 0] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 0] 64 Wrap4 0 0 [63:0]

a. See Transfer size on page 6-6.
b. See Sequential and nonsequential transfers on page 6-6.
c. See BIU protection control on page 6-6.
d. See AHB reads on page 6-7.
e. With noncachable prefetching disabled by setting CP15 c15 Debug Override Register bit 16, DNCP.
f. The internal 64-bit request is converted to two 32-bit transfers to match the AHB bus width.
g. With noncachable prefetching enabled by clearing CP15 c15 Debug Override Register bit 16, DNCP.
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6.2.1 Transfer size

HSIZE[2:0] defines transfer size and determines values of low-order address bits 
HADDR[2:0], which appear in the HADDR column of Table 6-1 on page 6-4 and 
Table 6-2 on page 6-5 as b, bb, or bbb. An eight-bit transfer does not affect 
HADDR[2:0]. A 16-bit transfer forces HADDR[0] to 0. A 32-bit transfer forces 
HADDR[1:0] to b00. A 64-bit transfer forces HADDR[2:0] to b000.

6.2.2 Sequential and nonsequential transfers

The HTRANS column in Table 6-1 on page 6-4 and Table 6-2 on page 6-5 shows 
whether transfers are sequential (S) or nonsequential (NS). Any burst of four elements 
is always an NS-S-S-S transfer. Any burst of eight elements is always an 
NS-S-S-S-S-S-S-S transfer. In a DBIU buffered store, the burst can be from one to n 
elements, shown as NS-S-S- . . . -S. The n value is the number of sequential data stores 
calculated at run-time for all forms of store instructions defined in the  ARM 
Architectural Reference Manual.

6.2.3 BIU protection control

The four HPROT[3:0] signals indicate the four protection attributes:

• cachability

• bufferability

• accessibility (User or privileged)

• transfer type (instruction or data).

For page table walks, the cachability and bufferability attributes (c and b in the HPROT 
column of Table 6-1 on page 6-4 and Table 6-2 on page 6-5) reflect the L2C and L2B 
bits in the CP15 c2 Translation Table Base Register. For all other AHB accesses using 
the MMU, c and b reflect the C and B bits in the level 1 and level 2 descriptors. For 
accesses using the MPU, c and b reflect the C and B bits for the protection region. The 
p (privileged) attribute reflects the decoding of the mode bits in the CPSR. HPROT[0] 
is set for data accesses and cleared for opcode fetches.
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AHB swap operations

The DBIU can perform locked bus transfers only for ARM swap instructions. It begins 
the swap operation by asserting HLOCKD and performing a locked nonsequential 
read. The DBIU monitors the AHB for an error response to the nonsequential read.

If the nonsequential read returns an AHB error response, the ARM1026EJ-S processor 
terminates the swap operation and does not perform the locked nonsequential write. The 
locked indicator is deasserted in the cycle following the return of the AHB error 
response.

If the nonsequential read does not return an AHB error response, the DBIU keeps 
HLOCKD asserted until the ARM1026EJ-S processor performs the nonsequential 
write. Until the nonsequential write begins, the DBIU issues idle AHB cycles.

6.2.4 AHB reads

In an AHB read, the memory system must drive HRDATA according to the state of 
HADDR[2], which defines the half of the bus that contains valid data. When 
HADDR[2] = 0, HRDATA[31:0] contains the valid transfer data. When 
HADDR[2] = 1, HRDATA[63:32] contains the valid transfer data. The only exception 
to this rule is in 64-bit transfers, in which case HRDATA[63:0] contains valid data.
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6.3 Bus transfer cycle timing

Transfer cycle counts are affected by:

• 64-bit or 32-bit AHB width.

• Transfer size.

• AHB wait states.

• HCLK-to-CLK frequency ratio.

• Proximity of the transfer to other transfers. The cycle count of an isolated transfer 
can differ from the cycle count of the same transfer when it occurs in a series of 
other transfers. Pipelining of address phase and data phase activity with other 
transfers reduces the effective cycle count of each transfer. 

• Presence of valid TLB and cache entries at the time of the transfer request. 

This section contains cycle-count equations and diagrams of common AHB transfers. 
The equations represent the effective total number of cycles that the instruction remains 
in the Memory stage of the integer core pipeline. The equations apply only to transfers 
that are not affected by pipelining with other transfers. In the cycle-count diagrams, the 
clock domain indicator G represents the internal clock, CLK, and H represents the AHB 
clock, HCLK. 

The common AHB transfer cycle counts described are:

• Cache linefill cycle count

• Cache castout cycle count on page 6-14

• Level 1 and level 2 table walk cycle count on page 6-16

• NC load and NCNB store cycle count on page 6-19.

6.3.1 Cache linefill cycle count

Clock cycle equations and diagrams for cache linefills are affected by the width of the 
AHB interface as shown in:

• With a 64-bit AHB interface on page 6-9

• With a 32-bit AHB interface on page 6-11.
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With a 64-bit AHB interface

The critical doubleword CLK cycles represent the total number of cycles the transfer 
remains in the Memory stage of the integer core pipeline. The total number of critical 
doubleword CLK cycles is:

5 + TW + (H × (2 + AC + AM + WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 2H = 7 CLK cycles.

The total number of CLK cycles for linefill completion includes critical doubleword 
completion and completion of the linefill on the AHB. The total number of CLK cycles 
for completing all words of a linefill is:

5 + TW + (H × (5 + AC + AM + 4 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 5H = 10 CLK cycles.

Table 6-3 defines the variables in the cycle-count equations for a cache linefill with a 
64-bit AHB interface.

Figure 6-1 on page 6-10 shows the number of CLK and HCLK cycles in a cache 
linefill using a 64-bit AHB interface.

Table 6-3 Definition of variables in cache linefills with 64-bit interface

Variable Definition

TW Number of table walk cycles (see Figure 6-5 on page 6-18)

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to 
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous 
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
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Figure 6-1 Cache linefill cycle count with 64-bit AHB

Table 6-4 defines the symbols used in Figure 6-1.
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Table 6-4 Symbols used in linefill cycle counts with 64-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU

d BIU acknowledge cycle

e AHB address cycle

f AHB data cycle for doubleword

g BIU data capture cycle

h Critical doubleword valid in linefill buffer and in integer core ME pipeline stage

i Instruction retired in integer core and WR pipeline stage completes

G Internal clock, CLK

H AHB clock, HCLK
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With a 32-bit AHB interface

Internally, there is fixed 64-bit interface between caches and the BIU. When the AHB 
interface is configured to a 32-bit width, the BIU must accumulate words into 
doubleword packets when responding to the cache linefill request.

The critical doubleword CLK cycles represent the total number of cycles the transfer 
remains in the Memory stage of the integer core pipeline. The total number of critical 
doubleword CLK cycles is:

5 + TW + (H × (3 + AC + AM + 2 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 3H = 8 CLK cycles.

The total number of CLK cycles for linefill completion includes critical doubleword 
completion and completion of the linefill on the AHB. The total number of CLK cycles 
for completing all words of a linefill is:

5 + TW + (H × (9 + AC + AM + 8 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 9H = 14 CLK cycles.

Table 6-5 defines the variables in the cycle-count equations for a cache linefill with a 
64-bit AHB interface.

Figure 6-2 on page 6-12 shows the number of CLK and HCLK cycles in a cache 
linefill using a 32-bit AHB interface.

Table 6-5 Definition of variables in cache linefills with 32-bit interface

Variable Definition

TW Number of table walk cycles (see Figure 6-5 on page 6-18)

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to 
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous 
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
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Figure 6-2 Cache linefill cycle count with 32-bit AHB
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Table 6-6 defines the symbols in used in Figure 6-2 on page 6-12.

Table 6-6 Symbols used in linefill cycle counts with a 32-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU

d BIU acknowledge cycle

e AHB address cycle

f (m) AHB data cycle for first word in doubleword pair

g (p) AHB data cycle for second word in doubleword pair

h (q) BIU data capture cycle

i (r) Critical doubleword valid in linefill buffer and in integer core ME pipeline stage

j (s) Load retired in integer core and WR pipeline stage completes

G Internal clock, CLK

H AHB clock, HCLK
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6.3.2 Cache castout cycle count

Clock cycle equations and diagrams for cache castouts are affected by the width of the 
AHB interface as shown in:

• With a 64-bit AHB interface

• With a 32-bit AHB interface on page 6-16.

With a 64-bit AHB interface

The number of CLK cycles for completing a castout on the AHB using a 64-bit AHB 
interface is:

NR + NA + H × (5 + AC + AM + (4 × WS))

The best case, with NR = 0, NA = H = 1 and AC = AM = WS = 0, is 6 CLK cycles.

Table 6-9 on page 6-17 defines the variables in the cycle-count equations for castouts.

Table 6-7 Definition of variables in castouts

Variable Definition

NR Number of CLK cycles , {0}, for cache request to BIU for castout under linefill

NA Number of CLK cycles to BIU acknowledgement 
1 if WS = 0 and H = 1
0 if WS ≥ 1 or H ≥ 2

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to HCLK, 
depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
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Figure 6-3 shows the number of CLK and HCLK cycles in a cache castout using a 
64-bit AHB interface.

Figure 6-3 Cache castout cycle count with 64-bit AHB interface

Table 6-8 defines the symbols used in Figure 6-3 and in Figure 6-4 on page 6-16.
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Table 6-8 Symbols used in linefill cycle counts with 64-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU for linefill

d BIU acknowledge cycle for linefill

e AHB address cycle for linefill

f AHB data cycle for linefill critical doubleword

g Cache request to BIU for castout

h BIU acknowledge cycle for castout

i AHB address cycle for castout

j AHB clock cycles for castout

G Internal clock, CLK

H AHB clock, HCLK
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With a 32-bit AHB interface

The number of CLK cycles for completing a castout on AHB using a 32-bit AHB 
interface is:

1 + H × (9 + AC + AM + (8 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 10 CLK cycles.

Refer to Table 6-7 on page 6-14 for the definition of the variables for castout 
cycle-count equations.

Figure 6-4 shows the number of CLK and HCLK cycles in a cache castout using a 
32-bit AHB interface.

Figure 6-4 Cache castout cycle count with 32-bit AHB interface

Refer to Table 6-7 on page 6-14 for the definition of the variables in castout cycle 
counts with a 32-bit AHB interface.
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Table 6-9 on page 6-17 defines the variables in the cycle-count equations for level 1 and 
level 2 table walks.
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Table 6-9 Definition of variables in level 1 and level 2 table walks

Variable Definition

NM Number of lookups, {2, 4, 5, 6, 7, 8} required in main TLB, a function of the number of 
valid page sizes and current page size in relation to last main TLB page size accessed

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to 
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous 
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states

L2 1 if level 1 and level 2 table walk
0 if level 1 table walk only
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Figure 6-5 shows the number of CLK and HCLK cycles in a level 1 and level 2 table 
walk.

Figure 6-5 Level 1 and level 2 table walk cycle count
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Table 6-10 defines the symbols used in Figure 6-5 on page 6-18.

6.3.4 NC load and NCNB store cycle count

Clock cycle counts for noncachable loads and noncachable, nonbufferable stores are 
affected by the width of the AHB interface and by the size of the transfer as shown in:

• For a transfer with one data phase on page 6-20

• For a transfer with two data phases on page 6-22.

Table 6-10 Symbols used in level 1 and level 2 table walk cycle counts

Symbol Meaning

a Issue of load or store request from integer core to memory system

b uTLB lookup, miss determined

c Main TLB lookup

d AHB request for level 1 descriptor

e BIU acknowledge cycle

f AHB address cycle for level 1 descriptor

g AHB data cycle for level 1 descriptor

h AHB request cycle for level 2 descriptor

i BIU acknowledge cycle

j AHB address cycle for level 2 descriptor

k AHB data cycle for level 2 descriptor

l Main TLB result calculation

m uTLB result calculation

n Memory stage no longer stalled by table walk, and access underway in memory system

G Internal clock, CLK

H AHB clock, HCLK
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For a transfer with one data phase

The number of CLK cycles that a noncachable load remains in the Memory stage of the 
integer core pipeline is:

4 + (H × (2 + AC + AM + WS))

The best case, with H = 1 and AC = AM = WS = 0, is 4 + 2H = 6 CLK cycles.

The number of CLK cycles that a in a noncachable, nonbufferable store remains in the 
Memory stage of the integer core pipeline is:

3 + (H × (2 + AC + AM + WS))

The best case, with H = 1 and AC = AM = WS = 0, is 3 + 2H = 5 CLK cycles.

Table 6-11 defines the variables in the cycle-count equations for noncachable loads and 
noncachable, nonbufferable stores with one or two data phases.

Figure 6-6 on page 6-21 shows the number of CLK and HCLK cycles in noncachable 
loads and noncachable, nonbufferable stores with a single data phase. A transfer with a 
single data phase includes:

• a byte, halfword, word, or doubleword transfer on a 64-bit AHB interface

• a byte, halfword, or word transfer on a 32-bit AHB interface.

Table 6-11 Definition of variables in NC loads and NCNB stores

Variable Definition

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples 
to HCLK, depending on when transfer request appears in relation to HCLK rising 
edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous 
transfer

WS Number of HCLK cycles for AHB data phase wait states
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Figure 6-6 Cycle count of NC loads and NCNB stores with one data phase

Table 6-12 defines the symbols used in Figure 6-6.

G

1

G

NC

H

1+WS

G

1

ME stalled for transaction handling and

completion on AHB

a

H

1+AM

b

G

1

EX ME

c

G

1+TW

BIU

d

G

1

ACK

e

ADR

f

DAT

g

CAP

h

ME

i

WR

Clock domain

Cycles

G+H

1
G
+AC

H

Table 6-12 Symbols used in NC load and NCNB store cycle counts

Symbol Definition

a Issue of request from integer core to memory system

b External transfer queue entry

c External transfer queue request to BIU

d BIU acknowledge cycle

e AHB address cycle

f AHB data cycle 

g BIU data capture cycle

h Data valid and transfer complete in integer core Memory pipeline stage

i Load retired in integer core and Write pipeline stage completes

NC Number of BIU data capture cycles:
1 if load
0 if store

G Internal clock, CLK

H AHB clock, HCLK
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For a transfer with two data phases

Figure 6-7 shows the number of CLK and HCLK cycles in a noncachable load and a 
noncachable, nonbufferable store using a 32-bit AHB interface.

The number CLK cycles that a noncachable load remains in the Memory stage of the 
integer core pipeline is:

4 + (H × (3 + AC + AM + 2 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 4 + 3H = 7 CLK cycles.

The number CLK cycles that a noncachable, nonbufferable store remains in the 
Memory stage of the integer core pipeline is:

3 + (H × (2 + AC + AM + 2 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 3 + 3H = 6 CLK cycles.

Refer to Table 6-11 on page 6-20 for the definitions of the variables in the equations for 
noncachable loads and noncachable, nonbufferable stores.

Figure 6-7 shows the number of CLK and HCLK cycles in noncachable loads and 
noncachable, nonbufferable stores with a double data phase. A transfer with a double 
data phase is a doubleword transfer on a 32-bit AHB interface.

Figure 6-7 Cycle count of NC loads and NCNB stores with two data phases

Refer to Table 6-12 on page 6-21 for the definitions of the symbols in used in 
Figure 6-7.
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6.4 Topology

The bus interface consists of two completely separate blocks:

• the IBIU handles all instruction fetches and linefills

• the DBIU performs all data loads and stores.

The DBIU performs all data page table walks and instruction page table walks for the 
MMU. HPROTD[0] marks all page table walk transfers as data transfers. 

Figure 6-8 shows the structure of the bus interface. The DBIU is on the left with control, 
read, write, and address data path. The IBIU on the right has a read and an address data 
path only because no writes ever happen on the instruction side. Both the IBIU and the 
DBIU have a similar layer for transferring data or instructions to and from the HCLK 
domain and further on to the rest of the AMBA system. The arrows illustrate the flow 
of requests and data or instructions.

Figure 6-8 Bus interface block diagram
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appropriately handle any self-modifying code.
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6.5 Endianness of BIU transfers

The ARM1026EJ-S processor supports both little-endian and big-endian memory 
systems. The CFGBIGEND output indicates the current endianness setting of the 
processor and reflects the value of the B bit in the CP15 c1 Control Register.

Before changing the B bit, the software must first complete any outstanding load/store 
operations and then drain the write buffer. Draining the write buffer forces all buffered 
writes onto AHB in the appropriate endianess.  Because all instructions fetches are at 
least 32-bit transfers, changing the B bit does not affect instruction fetches on the AHB.

In addition to the CFGBIGEND output, the ARM1026EJ-S processor also has byte 
lane strobe outputs for both instruction AHB requests and data AHB requests. The byte 
lane strobes, HBSTRBI[7:0] and HBSTRBD[7:0], are encoded in little-endian format. 
As Figure 6-9 shows, an HBSTRBx[7:0] value of 0x03 indicates halfword 0 in a 
little-endian structure and halfword 1 in a big-endian structure. A value of 0x01 indicates 
byte 0 in little-endian and byte 3 in big-endian. 

Figure 6-9 Endianness of byte lane strobes
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0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0x3
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byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

halfw ord 3 halfw ord 2 halfw ord 1 halfw ord 0

w ord 1 w ord 0

Little-endian data structure

byte 0 byte 1 byte 2 byte 3byte 4 byte 5 byte 6 byte 7

halfw ord 0 halfw ord 1halfw ord 2 halfw ord 3

w ord 0w ord 1

Big-endian data structure
6-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Bus Interface 
6.6 64-bit and 32-bit AHB data buses

The instruction and data AHB interfaces of the ARM1026EJ-S processor can be 
statically and independently configured to be 64 bits wide or 32 bits wide.  This enables 
you to integrate the processor into existing 64-bit or 32-bit AHB systems.

The alignment of the AHB buses is a function of their width. See Figure 6-10 on 
page 6-26. If the AHB buses are 32 bits wide, then the both even and odd words appear 
on HxDATAD[31:0] only, leaving the HxDATAD[63:32] inputs and outputs either 
tied off or unconnected. If the AHB buses are 64 bits wide, then the even words must 
always be mapped onto HxDATAD[31:0], and the odd words must always be mapped 
onto HxDATAD[63:32].

Note

 In Figure 6-10 on page 6-26, the multiplexors represent hardware in the design 
necessary to accommodate 32-bit/64-bit AHB configurability.

For 64-bit systems, the multiplexor select inputs are fixed so that HRDATAD[63:32] 
is always passed to internal read data [63:32], and internal write data [31:0] is always 
passed to HWDATAD[31:0].
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Figure 6-10 AHB bus alignment
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Chapter 7 
Coprocessor Interface 

This chapter contains information about the coprocessor interface. It contains the 
following sections:

• About the coprocessor interface on page 7-2

• Coprocessor interface signals on page 7-3

• Design considerations on page 7-5

• Parallel execution on page 7-8

• Rules for the interface on page 7-9

• Pipeline signal assertion on page 7-10

• Instruction issue on page 7-11

• Hold signals on page 7-21

• Instruction cancelation on page 7-40

• Bounced instructions on page 7-47

• Data buses on page 7-53.
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7.1 About the coprocessor interface

The coprocessor interface enables you to attach multiple coprocessors (CPs) to the 
ARM1026EJ-S processor. To limit the number of connections required by the interface, 
each CP tracks the progress of instructions in the ARM1026EJ-S pipeline.

To enable optimum performance from CPs, the ARM1026EJ-S processor issues CP 
instructions as early as possible. This means that the instructions are issued 
speculatively, and they can be canceled later in the pipeline if, for example, an 
exception or branch misprediction occurs. As a result, CPs must be able to cancel 
instructions in late stages of the ARM1026EJ-S pipeline. 

Simple CPs track the ARM1026EJ-S pipeline only until they are certain that a given 
instruction is not going to be canceled. At this point the CP starts to execute the 
instruction. More complex CPs make extensive use of the early issue of the instruction.

At certain points in the pipeline, a CP sends back signals to the ARM1026EJ-S 
processor. These can indicate that the CP requires more time to execute or to indicate 
that the undefined instruction exception must be taken.

7.1.1 CP pipeline

The CP pipeline runs one cycle behind the ARM1026EJ-S pipeline. This enables 
pipeline holds from the ARM1026EJ-S processor to be registered before they are sent 
to the CPs. Figure 7-1 shows the ARM1026EJ-S and CP pipeline stages.

Figure 7-1 ARM1026EJ-S and CP pipeline stages

CP pipeline

ARM10 pipeline WriteMemoryExecuteDecodeIssueFetch

WriteMemoryExecuteDecodeIssueFetch
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7.2 Coprocessor interface signals

This section divides the CP signals according to function:

• ARM1026EJ-S instruction progression signals

• ARM1026EJ-S instruction cancelation signals

• CPBOUNCEE on page 7-4

• Busy-waiting instruction on page 7-4

• CP data buses on page 7-4

• CP control signals on page 7-4.

7.2.1 ARM1026EJ-S instruction progression signals

The signals that indicate instruction progression are:

CPINSTRV Valid CP instruction in ARM1026EJ-S Issue stage.

CPVALIDD Valid CP instruction in ARM1026EJ-S Decode stage.

ASTOPCPD ARM1026EJ-S processor stalled in Decode stage in previous 
cycle.

ASTOPCPE ARM1026EJ-S processor stalled in Execute stage in previous 
cycle.

LSHOLDCPE ARM1026EJ-S LSU stalled in Execute stage in previous cycle.

LSHOLDCPM ARM1026EJ-S LSU stalled in Memory stage in previous cycle.

7.2.2 ARM1026EJ-S instruction cancelation signals

Two signals indicate ARM1026EJ-S instruction cancelation:

ACANCELCP 

Cancels only the instruction that was in ARM1026EJ-S Execute stage in 
the previous cycle.

AFLUSHCP 

Cancels all the instructions back from the one that was in ARM1026EJ-S 
Execute stage in the previous cycle. AFLUSHCP overrides STOP and 
VALID signals from the ARM1026EJ-S processor and causes BUSY 
signals to be deasserted in the following cycle.
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7.2.3 CPBOUNCEE

The signal that indicates whether a CP can execute an instruction is:

CPBOUNCEE Takes the undefined instruction trap for the instruction that is in 
the ARM1026EJ-S Execute stage. 

7.2.4 Busy-waiting instruction 

The signal that indicates whether a CP requires more time to process an instruction is:

CPBUSYE Busy-wait (stall) the ARM1026EJ-S Execute stage.

Note

 The ARM1026EJ-S processor has CPBUSYD1 and CPBUSYD2 inputs. These are 
reserved for future expansion. Tie these off to a logic 0.

7.2.5 CP data buses

There are two 64-bit CP data buses:

• STCMRCDATA carries data from a CP to the ARM1026EJ-S processor

• LDCMRCDATA carries data from the ARM1026EJ-S processor to a CP.

7.2.6 CP control signals

CPLSLEN, CPLSSWP, and CPLSDBL are signals driven by a CP to the 
ARM1026EJ-S processor on load/store CP instructions. They carry additional 
information about:

• the length of the transfer

• if upper and lower half of the data bus must be swapped before being written

• if the load/store request is for double word data.

Note

 The ARM1026EJ-S processor has a CPABORT output that is reserved for future 
expansion. Leave CPABORT unconnected. 
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7.3 Design considerations

This section outlines CP interface design considerations for single and multiple CPs.

7.3.1 Input and output timing

Almost all the signals on both sides of the interface must be driven straight out of 
registers. This is necessary because there is very little timing slack in the interface. 
There is very little timing slack because as few cycles as practical have been used to 
process a given CP instruction. This enables very high performance CPs to be built. If 
performance is not an issue, then timing across the interface can be greatly simplified 
by stalling all CP instructions in situations where timing is an issue.

7.3.2 ARM1026EJ-S processor inputs and outputs

Outputs driven from the ARM1026EJ-S processor go to all the CPs in the system. The 
inputs to the ARM1026EJ-S processor from all the CPs are ANDed or ORed together 
before they are used. As a result, the ARM1026EJ-S processor cannot determine which 
CP is driving its inputs. Figure 7-2 on page 7-6 shows CPBUSYE and CPBOUNCEE 
as examples of ARM1026EJ-S coprocessor input gating. The problem of multiple CPs 
driving a signal at the same time is avoided, because there can only be one CP 
instruction in each ARM1026EJ-S pipeline stage. So only one CP can own the 
instruction in that stage and can drive the associated signals.
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Figure 7-2 ARM1026EJ-S coprocessor inputs
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requires external gating.
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7.3.3 CP input loadings

When a CP does not own the instruction associated with an ANDed signal it must drive 
the signal HIGH. When a CP does not own the instruction associated with an ORed 
signal it must drive the signal LOW. The ARM1026EJ-S processor drives instruction, 
data, and control outputs to all CPs, so the loading on these signals might become an 
issue in multiple-CP systems. Keep CP input loadings low, and buffer these signals 
where appropriate.

7.3.4 Combining outputs from multiple CPs

Outputs from all the CPs are ANDed or ORed together before they are used in the 
ARM1026EJ-S processor. The AND and OR gates can be placed in the level of the 
design instantiating the ARM1026EJ-S processor and the CPs. To aid timing for control 
signals, there is one level of ANDing and ORing inside the ARM1026EJ-S processor. 
The ARM1026EJ-S processor implements the ANDing and ORing necessary on the 
control signals of up to two external CPs. For more than two CPs, external gates must 
be used to OR the hold signals from the external CP into the existing inputs.

Although the ARM1026EJ-S processor implements the necessary inputs for only two 
external CPs, this does not have to be the limiting factor in a system with three or more 
CPs. In such a system, the wire delays from the farthest CP probably balance the time 
required to AND or OR the control signal from the closer CPs. For systems with more 
than one CP, external gates are always required for the CP STCMRCDATA bus. These 
are not included in the ARM1026EJ-S design as this would have forced the entire bus 
to be duplicated on the interface. Also, the freedom to place the gates anywhere in the 
top-level design helps with floor planning of the bus route.

7.3.5 CP ID number

The ARM1026EJ-S processor issues all CP instructions to all the CPs. Each CP in the 
system has a unique, hardwired ID number from 0 to 15. Every CP instruction includes 
a CP number.

Only the CP whose ID number corresponds to the number in the CP instruction can 
accept the instruction. To accept an instruction, a CP must pull CPBOUNCEE LOW 
at the right time. If no CP pulls CPBOUNCEE LOW, then the instruction is bounced. 
That is, the ARM1026EJ-S processor takes the undefined instruction trap. This enables 
error trapping or software emulation of a CP not present in the system.

A CP does not have to accept an instruction even if its ID corresponds to the CP number 
in the instruction. This is used in cases where some of the CP instructions are handled 
in hardware and some are handled in software.
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7.4 Parallel execution

Initially, instructions progress along the ARM1026EJ-S pipeline and CP pipeline in 
lockstep. A CP instruction moves along the ARM1026EJ-S pipeline as a single-cycle 
instruction. When the first cycle of the instruction traverses the entire length of the 
ARM1026EJ-S pipeline, one of three things can occur: 

• If the instruction is complete in the CP pipeline, then it is retired in both pipelines. 

• If the CP instruction is a multicycle data processing type, then the ARM1026EJ-S 
processor and CP pipelines are decoupled. The instruction continues to iterate in 
the CP but is retired in the ARM1026EJ-S pipeline. When the pipelines are 
decoupled, the ARM1026EJ-S processor cannot cancel the instruction, and the 
CP must complete the instruction. While the CP is working, the ARM1026EJ-S 
processor continues to execute the following instruction stream and issues any CP 
instructions it hits. The CP can hold up any following CP instructions as 
necessary. The ARM1026EJ-S processor is not explicitly signaled when the CP 
completes the instruction. The CP usually holds up any following instruction that 
is dependent on a prior instruction. 

• If the CP instruction is a multicycle load or store type, then the ARM1026EJ-S 
ALU pipeline and CP pipelines are decoupled, but the ARM1026EJ-S LSU 
pipeline and CP pipeline remain coupled. The instruction continues to iterate in 
the CP and the ARM1026EJ-S LSU pipelines but is retired in the ARM1026EJ-S 
ALU pipeline. When the ARM1026EJ-S ALU pipeline is decoupled, the 
ARM1026EJ-S processor cannot cancel the instruction, and the CP must 
complete the instruction. While the CP and LSU are working, the ARM1026EJ-S 
processor stalls execution of subsequent instructions.

Simple CPs only have to use the first of these mechanisms. They can execute multicycle 
instructions by holding up the ARM1026EJ-S pipeline until they complete. In some 
systems this has a significant impact on performance. 
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7.5 Rules for the interface

The following rules apply to the CP pipeline and CP interface:

• No two CPs can have an instruction in the same ARM1026EJ-S pipeline stage. 
That is, a CP instruction in a particular ARM1026EJ-S pipeline stage is 
associated with one, and only one, CP.

• Each CP output signal is associated with one ARM1026EJ-S pipeline stage. The 
CP that owns the instruction in that stage drives the signal.

• Outputs from the ARM1026EJ-S processor must enable the CPs to track the 
ARM1026EJ-S pipeline well enough for them to detect:

— when to assert hold and bounce signals to ARM1026EJ-S processor

— to which CP instruction a cancel or flush signal applies 

— when the instruction is committed and can no longer be canceled or flushed.

• A signal stalled by a hold signal becomes valid in the last cycle of the hold signal. 
Signals that override hold signals can be asserted at any time, and their effect 
must not be masked by the hold. 

Note

 Internal design features of CPs might not conform to these rules.
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7.6 Pipeline signal assertion

Table 7-1 shows where in the pipeline the coprocessor interface signals are active.

Table 7-1 Pipeline stages and active signals

ARM1026EJ-S pipeline CP pipeline

Driven by 
ARM1026EJ-S

Driven by CP
Driven by 
ARM1026EJ-S

Driven by CP

CPVALIDD Decode - Issue -

CPLSLEN - Decode - Issue

CPLSSWP - Decode - Issue

CPLSDBL - Decode - Issue

CPINSTR Issue - Fetch -

CPINSTRV Issue - Fetch -

ASTOPCPD Execute - Decode -

CPBUSYE - Execute - Decode

CPLSBUSY - Execute - Decode

CPBOUNCEE - Execute - Decode

ASTOPCPE Memory - Execute -

ACANCELCP Memory - Execute -

AFLUSHCP Memory - Execute -

LSHOLDCPE Memory - Execute -

LSHOLDCPM Write - Memory -

STCMRCDATA - Execute - Decode

LDCMCRDATA Write - Memory -
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7.7 Instruction issue

CPINSTR, CPINSTRV, and CPVALIDD are the signals that control the issue of CP 
instructions from the ARM1026EJ-S processor. These instructions go to all CPs at the 
same time. Only the CP that owns the instruction can drive control signals for that 
instruction back to the ARM1026EJ-S processor.

The following sections describe these signals:

• CPINSTR

• CPINSTRV on page 7-13

• CPVALIDD on page 7-15

• Example of instruction issue on page 7-16

• CPLSLEN, CPLSSWP, and CPLSDBL on page 7-17.

7.7.1 CPINSTR

Instructions are issued to all CPs during the ARM1026EJ-S Issue stage, which is in the 
CP Fetch stage. The instructions are sent over a dedicated 26-bit bus, CPINSTR. 

Usually, CPINSTR is only driven when there is a valid CP instruction in the 
ARM1026EJ-S Issue stage. Occasionally, it might be driven in error because of an 
instruction that causes a Prefetch Abort or a branch that is incorrectly predicted. In these 
cases the value driven onto CPINSTR might decode to anything, including a CP 
instruction. However the instruction is still not valid because it was fetched erroneously. 

CPINSTRV and CPVALIDD give more information about the validity of the 
instruction. Table 7-2 on page 7-12 shows interactions of CPINSTR with other signals.

The ARM1026EJ-S processor drives CPINSTR in the ARM1026EJ-S Issue stage and 
the CP Fetch stage.
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Table 7-2 CPINSTR interactions with other signals

Signal Interactions with CPINSTR

ASTOPCPD Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPD and all other relevant holds go LOW. The value of CPSINTR might change 
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPD is asserted.

ASTOPCPE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPE and all other relevant holds go LOW. The value of CPSINTR might change 
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPE is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which CPBUSYE and all other relevant holds go LOW. The value of CPSINTR might change while 
CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit might 
place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction on CPINSTR.

CPBOUNCEE None.
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7.7.2 CPINSTRV

CPINSTR and CPINSTRV are the only CP interface signals that are driven in the 
ARM1026EJ-S Issue stage. CPINSTRV indicates that CPINSTR carries an 
instruction worth decoding. The fact that CPINSTRV is asserted is not a guarantee that 
CPINSTR carries a valid CP instruction. CPINSTRV going LOW is a guarantee the 
CPINSTR does not carry a valid CP instruction. 

CPINSTRV is a useful hint. It can be used to save power by not decoding bad 
instructions. To save power, all bits of CPINSTR are also driven to 0 when 
CPINSTRV is LOW. This behavior must not be relied upon for correct function.

If CPINSTR carries a valid CP instruction, CPINSTRV does not guarantee that it will 
be executed. There are some cases where CPINSTRV is asserted for instructions that 
turn out to be invalid. Prefetch aborted instructions and instructions following 
mispredicted branches are examples of this. Not enough is known about the instruction 
in the ARM1026EJ-S Issue stage to make CPINSTRV a definite indicator of a valid 
instruction. More is known in the ARM1026EJ-S Decode stage and the signal 
CPVALIDD is used to confirm that an instruction is valid. Table 7-3 on page 7-14 
shows interactions of CPINSTRV with other signals.

The ARM1026EJ-S processor drives CPINSTRV in the ARM1026EJ-S Issue stage 
and the CP Fetch stage.
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Table 7-3 CPINSTRV interactions with other signals

Signal Interactions with CPINSTRV

ASTOPCPD Treat CPINSTRV as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPD and all other relevant holds go LOW. The value of CPSINTRV might change 
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPD is asserted.

ASTOPCPE Treat CPINSTRV as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPE and all other relevant holds go LOW. The value of CPSINTRV might change 
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPE is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which CPBUSYE and all other relevant holds go LOW. The value of CPSINTRV might change 
while CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.
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7.7.3 CPVALIDD

Not enough is known about the instruction in the ARM1026EJ-S Issue stage to make 
CPINSTRV a definite indicator of a valid instruction. More is known in the 
ARM1026EJ-S Decode stage, and the signal CPVALIDD can confirm that an 
instruction is valid. CPVALIDD goes HIGH during the ARM1026EJ-S Decode stage 
to confirm an instruction is valid. CPVALIDD does not guarantee execution of the 
instruction, because the instruction might get canceled or flushed (see ACANCELCP on 
page 7-40 and AFLUSHCP on page 7-44). Table 7-4 shows interactions of 
CPVALIDD with other signals.

The ARM1026EJ-S processor drives CPVALIDD in the ARM1026EJ-S Decode stage 
and the CP Issue stage.

Table 7-4 CPVALIDD interactions with other signals

Signal Interactions with CPVALIDD

ASTOPCPD Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPD and all other relevant holds go LOW. The value of CPVALIDD might change 
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while CPVALIDD is asserted.

ASTOPCPE Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which ASTOPCPE and all other relevant holds go LOW. The value of CPVALIDD might change 
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while CPVALIDD is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle 
in which CPBUSYE and all other relevant holds go LOW. The value of CPVALIDD might change 
while CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit 
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on 
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.
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7.7.4 Example of instruction issue

In Figure 7-3, instructions 1 and 2 drive CPINSTR. CPINSTRV initially indicates that 
both instructions 1 and 2 are valid, but CPVALIDD indicates that only instruction 1 is 
valid. After that, instructions 3 and 4 are not valid CP instructions, so CPINSTRV and 
CPVALIDD are kept LOW. The numbers in the waveforms show which instruction 
owns the signal at that time. For example, instruction 1 owns CPVALIDD  at edge T3. 
Instruction 2 owns CPVALIDD at edge T4. A CP registers the instruction 1 value at T3 
and the instruction 2 value at T4.

Figure 7-3 Instruction issue example
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7.7.5 CPLSLEN, CPLSSWP, and CPLSDBL

A CP drives the CPLSLEN, CPLSSWP, and CPLSDBL signals to the ARM1026EJ-S 
processor on load/store CP instructions. They indicate:

• the length of the transfer

• if upper and lower half of the data bus must be swapped before being written

• if the load/store request is for double-precision data.
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CPLSLEN

CPLSLEN indicates the number of 32-bit data items to be transferred for the 
corresponding load/store CP instruction. Driving a 1 on this bus represents a single load 
or store data item being transferred. CPLSLEN must be driven with 0 if the CP is not 
processing an instruction. If ASTOPCPD is asserted due to a hold in the 
ARM1026EJ-S Decode stage, the CPLSLEN value is retained by the ARM1026EJ-S 
processor. Table 7-5 describes the interactions of CPLSLEN with other signals.

The CP drives CPLSLEN in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-5 CPLSLEN interactions with other signals

Signal  interactions with CPLSLEN

ASTOPCPD CPLSLEN is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
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CPLSSWP

CPLSSWP indicates that the upper and lower data words on LDCMCRDATA and 
STCMRCDATA buses must be swapped by the ARM1026EJ-S processor before 
being written. If ASTOPCPD is asserted due to a hold in the ARM1026EJ-S Decode 
stage, the CPLSSWP value is retained by the ARM1026EJ-S processor. Table 7-6 
describes the interactions of CPLSSWP with other signals.

The CP drives CPLSSWP in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-6 CPLSSWP interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPLSSWP is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
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CPLSDBL

CPLSDBL indicates that the load/store CP instruction involves a doubleword transfer. 
That is, a 64-bit quantity is being transferred. If ASTOPCPD is asserted due to a hold 
in the ARM1026EJ-S Decode stage, the CPLSDBL value is retained by the 
ARM1026EJ-S processor. Table 7-7 describes the interactions of CPLSDBL with 
other signals.

The CP drives CPLSDBL in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-7 CPLSDBL interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPLSDBL is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
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7.8 Hold signals

The following sections describe hold signals:

• ASTOPCPD on page 7-23

• ASTOPCPE on page 7-25

• ASTOPCPE example on page 7-25

• LSHOLDCPE on page 7-27

• Example of LSHOLDCPE on page 7-27

• LSHOLDCPM on page 7-29

• CPBUSYE on page 7-31

• CPBUSYE example on page 7-32

• CPBUSYE and ASTOPCPD interaction on page 7-33

• ASTOPCPD with CPBUSYE on page 7-34

• CPBUSYE and ASTOPCPE interaction on page 7-35

• ASTOPCPE with CPBUSYE on page 7-36

• CPLSBUSY on page 7-39.

The pipeline hold signals from the ARM1026EJ-S processor keep the CP pipeline in 
lockstep with the ARM1026EJ-S processor. Pipeline hold signals from the CPs hold up 
the ARM1026EJ-S processor to give more time to execute an instruction. To avoid a 
deadlock, it is important that both sides do not factor their hold inputs back into their 
hold outputs. Table 7-8 on page 7-22 summarizes the hold signals.

The hold signals are usually timing-critical. They factor huge fanout terms into pipeline 
holds. In high-performance systems, they must come straight out of registers in the 
driving block. 
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Table 7-8 Hold signals summary

Signal From To
ARM10 
stage CP stage Comments

ASTOPCPD ARM1026EJ-S All CPs Decode + 1 Decode Hold CP in CP Decode because 
ARM1026EJ-S is
held in ARM1026EJ-S Decode

ASTOPCPE ARM1026EJ-S All CPs Execute + 1 Execute Hold CP in CP Execute because 
ARM1026EJ-S is held in 
ARM1026EJ-S Execute

LSHOLDCPE ARM1026EJ-S All CPs Execute + 1 Execute Hold CP data transfers in CP 
Execute because LSU is held in 
ARM1026EJ-S Execute

LSHOLDCPM ARM1026EJ-S All CPs Memory + 1 Memory Hold CP data transfers in CP 
Memory because LSU is held in 
ARM1026EJ-S Memory

CPBUSYE Each CP Other CPs
and 
ARM1026EJ-S

Execute Decode Hold ARM1026EJ-S processor 
in ARM1026EJ-S Execute

CPLSBUSY Each CP Other CPs - Decode Holds other CPs in CP Issue
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7.8.1 ASTOPCPD

ASTOPCPD indicates that the instruction in the ARM1026EJ-S Decode stage did not 
progress into the ARM1026EJ-S Execute stage in the previous cycle. It is driven out of 
a register following the ARM1026EJ-S Decode stage. If ASTOPCPD is asserted, CPs 
must hold their Decode, Issue, and Fetch stages. The logic in these stages must keep 
reevaluating because CPINSTR, CPINSTRV, and CPVALIDD might change. Only 
the cycle in which ASTOPCPD is deasserted can be considered a valid cycle. Table 7-9 
shows the interactions of ASTOPCPD with other signals.

The ARM1026EJ-S processor drives ASTOPCPD in the ARM1026EJ-S Execute stage 
and the CP Decode/CP Decode + 1 stage.

Table 7-9 ASTOPCPD interactions with other signals

Signal Interactions with ASTOPCPD

ASTOPCPE ASTOPCPD is usually asserted when ASTOPCPE is asserted.

LSHOLDCPE ASTOPCPD is asserted with LSHOLDCPE when the pipelines are in 
lockstep. Pipelines are in lockstep unless the CP instruction has already 
retired from the ARM1026EJ-S pipeline and is now transferring data from 
the LSU for a load/store multiple.

CPBUSYE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPD is 
already asserted. ASTOPCPD is not asserted if a valid CPBUSYE 
(ASTOPCPE LOW) was received in the previous cycle.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Flush invalidates ASTOPCPD.

CPBOUNCEE None.
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In Figure 7-4 ASTOPCPD is used to indicate that instruction 1 stalled in the 
ARM1026EJ-S Decode stage for one cycle. The following values of CPINSTR, 
CPINSTRV, and CPVALIDD are invalid in all but the last cycle that was interlocked. 
ASTOPCPD is LOW as instruction 2 leaves the Decode stage indicating that it was not 
held up. The numbers in waveforms show which instruction owns the signal at that 
time.

Figure 7-4 ASTOPCPD example

CPLSLEN, CPLSSWP, and CPLSDBL for a given instruction are driven from a CP 
in the cycle before ASTOPCPD is driven from the ARM1026EJ-S processor, so the 
ARM1026EJ-S processor must register the value of CPLSLEN and CPLSSWP and 
CPLSDBL if it is about to drive an ASTOPCPD. 
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7.8.2 ASTOPCPE

ASTOPCPE indicates that the instruction in the ARM1026EJ-S Execute stage did not 
progress into the ARM1026EJ-S Memory stage in the previous cycle. It is driven out of 
a register following the ARM1026EJ-S Execute stage. If ASTOPCPE is asserted, CPs 
must hold their Execute, Decode, Issue, and Fetch stages. The logic in these stages must 
keep reevaluating as CPINSTR, CPINSTRV, and CPVALIDD might change. Only 
the cycle where ASTOPCPE is deasserted is a valid cycle. AFLUSHCP overrides 
ASTOPCPE.

The ARM1026EJ-S processor drives ASTOPCPE in ARM1026EJ-S Execute + 1 
stage and the CP Execute stage.

7.8.3 ASTOPCPE example

Figure 7-5 on page 7-26 shows the ARM1026EJ-S processor holding instruction 1 in its 
Execute stage for one cycle. The numbers in the waveforms show which instruction 
owns the signal at that time. 

Table 7-10 ASTOPCPE interactions with other signals

Signal  Interactions with ASTOPCPD

ASTOPCPD None.

LSHOLDCPE ASTOPCPE is asserted with LSHOLDCPE when the pipelines are in lockstep. Pipelines are in 
lockstep unless the CP has already retired from the ARM1026EJ-S pipeline and is now transferring 
data from the LSU for a load/store multiple.

CPBUSYE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPE is already asserted. ASTOPCPE is 
not asserted if CPBUSYE was asserted at the end of the previous cycle, but ASTOPCPE can be 
asserted when CPBUSYE deasserts. In this case, asserting ASTOPCPE continues to hold the same 
instruction in ARM1026EJ-S Execute that was held by CPBUSYE.

LSHOLDCPM ASTOPCPE is asserted with LSHOLDCPM when the pipelines are in lockstep. Pipelines are in 
lockstep unless the CP has already retired from the ARM1026EJ-S pipeline and is now transferring 
data from the LSU for a load/store multiple.

ACANCELCP ACANCELCP held by ASTOPCPE.

AFLUSHCP AFLUSHCP overrides ASTOPCPE. The pipeline is flushed from Execute back.

CPBOUNCEE CPBOUNCEE is not used until ASTOPCPE (and other relevant holds) are deasserted.
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Figure 7-5 ASTOPCPE example

* ASTOPCPD is caused by ASTOPCPE and CPBUSYE is ignored under 
ASTOPCPE. Under an ASTOPCPE, STC is registered in the ARM1026EJ-S 
processor.
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7.8.4 LSHOLDCPE

LSHOLDCPE indicates that the load/store CP instruction in the ARM1026EJ-S LSU 
Execute stage, did not progress into the ARM1026EJ-S LSU Memory stage in the 
previous cycle. It is driven out of a register following the ARM1026EJ-S LSU Execute 
stage. If LSHOLDCPE is asserted, CPs must hold their Execute, Decode, Issue, and 
Fetch stages. If LSHOLDCPE is asserted, and a store is in the CP Execute stage, the 
STCMRCDATA bus value is retained by the ARM1026EJ-S processor until 
LSHOLDCPE deasserts.

The ARM1026EJ-S processor drives LSHOLDCPE in the ARM1026EJ-S 
Execute + 1 stage and the CP Execute stage.

7.8.5 Example of LSHOLDCPE

Figure 7-6 on page 7-28 shows the ARM1026EJ-S LSU holding instruction 1 in its 
Execute stage for one cycle. The numbers in the waveforms show which instruction 
owns the signal at that time. ASTOPCPD is caused by ASTOPCPE. CPBUSYE is 
ignored under ASTOPCPE. Under an LSHOLDCPE, STC is registered in the 
ARM1026EJ-S processor.

Table 7-11 LSHOLDCPE interactions with other signals

Signal Interactions with LSHOLDCPE

ASTOPCPD None.

LSHOLDCPE None.

ASTOPCPE LSHOLDCPE is asserted with ASTOPCPE when pipelines are in lockstep. Pipelines are in lockstep 
unless the CP instruction has already retired from the ALU pipeline and is now transferring data to or 
from the LSU.

CPBUSYE CPBUSYE indicates an Execute stage hold when the ALU and LSU pipelines are in lockstep. 
LSHOLDCPE indicates an LSU execute stage hold when the ALU and LSU pipelines are not in 
lockstep.

LSHOLDCPM If LSHOLDCPM is asserted, LSHOLDCPE is asserted as well.

ACANCELCP None. 

AFLUSHCP Flush invalidates LSHOLDCPE.

CPBOUNCEE None.
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Figure 7-6 LSHOLDCPE example
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7.8.6 LSHOLDCPM

LSHOLDCPM indicates that the load CP instruction in the ARM1026EJ-S LSU 
Memory stage did not progress into the ARM1026EJ-S LSU Write stage in the previous 
cycle or that a load cache miss occurred. It is driven out of a register following the 
ARM1026EJ-S LSU Memory stage. If LSHOLDCPM is asserted, CPs must hold their 
Memory, Execute, Decode, Issue and Fetch stages. If LSHOLDCPM is asserted, and 
a load is in the CP Memory stage, the LDCMCRDATA bus value is ignored by the CP 
until LSHOLDCPM deasserts.

The ARM1026EJ-S processor drives LSHOLDCPM in the ARM1026EJ-S 
Memory + 1 stage and the CP Memory stage.

Table 7-12 LSHOLDCPM interactions with other signals

Signal Interactions with other signals

ASTOPCPD None

LSHOLDCPE None

ASTOPCPE None

CPBUSYE None

LSHOLDCPM If LSHOLDCPM is asserted, LSHOLDCPE is also asserted

ACANCELCP None

AFLUSHCP None

CPBOUNCEE None
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Figure 7-7 LSHOLDCPM example
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7.8.7 CPBUSYE

From the ARM1026EJ-S processor viewpoint, CPBUSYE indicates that the CP that 
owns the instruction in the ARM1026EJ-S Execute stage wants to hold the instruction 
in that stage. It is asserted in the ARM1026EJ-S Execute stage and must come directly 
out of a register. It also holds the instructions in other CP Issue stages. Table 7-13 shows 
the interaction of CPBUSYE with other signals.

The ARM1026EJ-S processor drives CPBUSYE in the ARM1026EJ-S Execute stage 
and the CP Decode stage.

Table 7-13 CPBUSYE interactions with other signals

Signal  interactions with CPBUSYE

ASTOPCPD The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPD is already asserted. ASTOPCPD 
is not asserted if a valid CPBUSYE (CPBUSY HIGH, ASTOPCPD LOW) was received in the 
previous cycle. 

ASTOPCPE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPE is already active. ASTOPCPE is 
not asserted if a valid CPBUSYE was asserted at the end of the previous cycle. ASTOPCPE is not 
asserted if CPBUSYE is already asserted. ASTOPCPE can be asserted in the cycle that CPBUSYE 
deasserts.

LSHOLDCPE None.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP AFLUSHCP has priority over CPBUSYE.

CPBOUNCEE CPBOUNCEE is not used until CPBUSYE (and other holds) are deasserted.
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7.8.8 CPBUSYE example

In Figure 7-8, instruction 1 is held in the ARM1026EJ-S Execute stage by CPBUSYE. 
Numbers in waveforms show which instruction owns the signal at that time. In some 
CPs, instruction 1 might advance into Decode under the CPBUSYE. In this case, 
instruction 1 spends two cycles in Decode rather than in Issue. This depends on the CP 
implementation. For the interface this makes no difference because the interface signals 
still have to be driven depending upon the position of the instruction in the 
ARM1026EJ-S pipeline. 

Figure 7-8 CPBUSYE example
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7.8.9 CPBUSYE and ASTOPCPD interaction

There is a complex interaction between ASTOPCPD and CPBUSYE. If ASTOPCPD 
and CPBUSYE are asserted in the same cycle, the ARM1026EJ-S processor ignores 
CPBUSYE until ASTOPCPD deasserts. Figure 7-9 shows one possible sequence of 
events.

Figure 7-9 CPBUSYE ignored due to ASTOPCPD assertion

If CPBUSYE is asserted in the cycle before the ARM1026EJ-S processor would have 
asserted ASTOPCPD, then ASTOPCPD is suppressed until the cycle after CPBUSYE 
deasserts. Figure 7-10 shows this sequence of events.

Figure 7-10 CPBUSYE asserted before ASTOPCPD
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7.8.10 ASTOPCPD with CPBUSYE

In Figure 7-11, instruction 1 is held up by CPBUSYE and instruction 2 is held up by 
ASTOPCPD. An instruction in ARM1026EJ-S Decode is always held up behind an 
instruction held by ARM1026EJ-S CPBUSYE in Execute, unless it is flushed.

Figure 7-11 ASTOPCPD with CPBUSYE
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7.8.11 CPBUSYE and ASTOPCPE interaction

There is a complex interaction between ASTOPCPE and CPBUSYE. CPBUSYE is 
asserted in the Execute stage of an instruction, ASTOPCPE is asserted from a register 
at the end of the Execute stage (E + 1). If ASTOPCPE is asserted in the same cycle that 
CPBUSYE is asserted then CPBUSYE is ignored until ASTOPCPE deasserts. If 
CPBUSYE is asserted in the previous cycle then ASTOPCPE cannot be asserted until 
the cycle after that in which CPBUSYE deasserts. 

Where ASTOPCPE is asserted at the same time as CPBUSYE, the ARM1026EJ-S 
processor ignores CPBUSYE until ASTOPCPE deasserts. In Figure 7-12, CPBUSYE 
is ignored until ASTOPCPE deasserts.

Figure 7-12 CPBUSYE ignored due to ASTOPCPE assertion

In Figure 7-13, CPBUSYE is asserted before ASTOPCPE. The ARM1026EJ-S 
processor does not assert ASTOPCPE until the cycle after CPBUSYE deasserts. 
ASTOPCPE is holding up the same instruction, in Execute, that CPBUSYE held up. 

Figure 7-13 CPBUSYE asserted before ASTOPCPE
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7.8.12 ASTOPCPE with CPBUSYE

In Figure 7-14, instruction 2 is held up by ASTOPCPE and CPBUSYE. 

Figure 7-14 I2 held up by ASTOPCPE and CPBUSYE

*Although instruction 3 is responsible for ASTOPCPD at T7, instruction 2 causes 
ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.
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In Figure 7-15, instruction 1 is held up by ASTOPCPE and instruction 2 is held up by 
CPBUSYE. 

Figure 7-15 I1 held up by ASTOPCPE and I2 held up by CPBUSYE

*Although instruction 2 is responsible for driving ASTOPCPD at T5, instruction 1 
causes ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.
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In Figure 7-16, instruction 1 is held up by CPBUSYE and instruction 2 is held up by 
ASTOPCPD.

Figure 7-16 I1 held up by CPBUSYE and I2 held up by ASTOPCPD

*Although instruction 3 is responsible for driving ASTOPCPE at T7, instruction 2 
causes ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.
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7.8.13 CPLSBUSY

This is driven out of a register on the CP Issue/Decode boundary (valid early in the 
ARM1026EJ-S Execute stage). It signals to other CPs that the sender is involved in a 
load or store multiple data transfer and is keeping control of the STCMRCDATA bus. 
Other CPs must progress to Decode (where they are stalled by ASTOPCPE) but must 
not attempt to drive the bus until a cycle after CPLSBUSY deasserts. 

CPLSBUSY stalls all other CPs when a long LDC is in progress. CPLSBUSY does not 
have to go to the ARM1026EJ-S processor because it can only do one load/store 
operation at a time because they are held up in any case. CPLSBUSY comes out of flop 
and goes to other CPs.

The CP drives CPLSBUSY in the CP Decode stage and the ARM1026EJ-S Execute 
stage.

Table 7-14 CPLSBUSY interactions with other signals

Signal Interactions with CPLSBUSY

ASTOPCPD None 

ASTOPCPE None

LSHOLDCPE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP None

CPBOUNCEE None
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7.9 Instruction cancelation

Instruction cancelation signals are described in the following sections:

• ACANCELCP

• ACANCELCP example on page 7-41

• ACANCELCP with ASTOPCPE example on page 7-42

• ACANCELCP with CPBUSYE example on page 7-43

• AFLUSHCP on page 7-44

• AFLUSHCP example on page 7-44.

7.9.1 ACANCELCP

ACANCELCP indicates that the instruction that has just entered the ARM1026EJ-S 
Memory stage must be canceled. ACANCELCP differs from AFLUSHCP. It cancels 
a single instruction rather than canceling all upstream instructions in the pipeline. It is 
driven from register following the ARM1026EJ-S Execute stage. Table 7-15 shows 
ACANCELCP the interactions with other signals.

The ARM1026EJ-S processor drives ACANCELCP in the ARM1026EJ-S Memory 
stage and the CP Execute stage.

Table 7-15 ACANCELCP interactions with other signals

Signal Interactions with CPBUSYE

ASTOPCPD None 

ASTOPCPE CP ignores ACANCELCP if ASTOPCPE asserted

LSHOLDCPE None

CPBUSYE ACANCELCP is held is response to an active CPBUSYE

LSHOLDCPM None

ACANCELCP None

AFLUSHCP AFLUSHCP has priority

CPBOUNCEE No effect for canceled instructions
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7.9.2 ACANCELCP example

ACANCELCP cancels one instruction (turns it into a NOP) but does not affect the ones 
around it. In this case, three instructions are issued in a row. Instruction 2 is canceled. 
Instructions 1 and 3 complete. The numbers in waveforms show which instruction owns 
the signal at that time. The ARM1026EJ-S processor ignores an indication from CP2 
that I2 must bounce as the instruction is canceled. Figure 7-17 shows an example with 
ACANCELCP.

Figure 7-17 ACANCELCP example
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The ARM1026EJ-S processor ignores an indication from CP2 that instruction 2 must 
bounce because the instruction is canceled. 

7.9.3 ACANCELCP with ASTOPCPE example

Instruction 1 is held up by the ARM1026EJ-S processor with ASTOPCPE. 
ACANCELCP is valid in the last cycle that ASTOPCPE is asserted. Figure 7-18 
shows an example of ACANCELCP with ASTOPCPE. 

Figure 7-18 ACANCELCP with ASTOPCPE example
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7.9.4 ACANCELCP with CPBUSYE example

Instruction 1 is held up by CP1 as indicated by CPBUSYE. ACANCELCP is valid in 
the last cycle that CPBUSYE is asserted. 

ASTOPCPE might be asserted with CPBUSYE. It can then be deasserted while 
CPBUSYE is still active or might have stayed asserted when CPBUSYE is deasserted. 
When both CPBUSYE and ASTOPCPE are deasserted the pipeline must progress. 
Figure 7-19 shows an example of ACANCELCP with CPBUSYE. 

Figure 7-19 ACANCELCP with CPBUSYE example
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7.9.5 AFLUSHCP

AFLUSHCP indicates that the instruction that has just entered the ARM1026EJ-S 
Memory stage and all upstream instructions currently in the pipeline must be canceled. 
AFLUSHCP differs from ACANCELCP because it cancels all upstream instructions 
in the pipeline rather than just a single instruction. It is driven from register following 
the ARM1026EJ-S Execute stage. This means that there is no time to factor Data Aborts 
into the AFLUSHCP signal. As a result, aborted CP loads complete when a Data Abort 
occurs, and then be reexecuted on return from the Data Abort handler routine. It must 
be possible to execute any CP load more than once (before the next instruction is 
executed) with no noticeable effects on the CP.

The ARM1026EJ-S processor drives AFLUSHCP in the ARM1026EJ-S Memory 
stage and the CP Execute stage.

AFLUSHCP supersedes the ASTOP and VALID signals from the ARM1026EJ-S 
processor. It is used to signal that an interrupt has flushed the pipeline. As a result 
CPBUSYE must be deasserted in the following cycle to enable the interrupt to be 
serviced. 

7.9.6 AFLUSHCP example

AFLUSHCP has to override ASTOPCPE and ASTOPCPD. Here AFLUSHCP is 
asserted for instruction 2. This might be caused by instruction 2 being bounced or a 
reason unrelated to the CPs, an interrupt, for example. AFLUSHCP has to kill the 
effects of instruction 2 and all following instructions currently in the pipe. 

Table 7-16 AFLUSHCP interactions with other signals

Signal Interactions with CPBUSYE

ASTOPCPD Flush overrides

ASTOPCPE Flush overrides

LSHOLDCPE Flush overrides

CPBUSYE Flush overrides (deasserted in the following cycle)

LSHOLDCPM Flush overrides

ACANCELCP None

CPBOUNCEE Ignored because instruction canceled by flush
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Interrupts can cause flushes at any time. So, even a valid instruction that has been 
busy-waited for many cycles can be flushed. When the instruction has reached the 
Memory stage of the ARM1026EJ-S processor without AFLUSHCP or 
ACANCELCP being asserted it completes (with the exception of instructions that Data 
Abort). Figure 7-20 shows an example of this with five instructions. CP load or store 
instructions that cause a Data Abort are completed by the CP and rerun by the Data 
Abort handler. So they must be designed to be rerun with no ill effects.

Figure 7-20 AFLUSHCP example
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The ARM1026EJ-S processor ignores an indication from CP2 that I2 might bounce as 
the instruction is canceled. Instruction 4 might be in the Issue stage. This must be 
flushed by AFLUSHCP but is also not confirmed by CPVALIDD. Instruction 5 is 
issued after the flush and is a valid instruction. 

AFLUSHCP can be asserted even if hold signals such as ACANCELCP and/or 
CPBUSYE are asserted. In these cases, AFLUSHCP has the highest priority because 
the pipe is currently full of instructions that do not execute. This might be because of a 
mispredicted branch or an exception. 
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7.10 Bounced instructions

The following sections describe what happens when CPs cannot execute an instruction, 
and the undefined instruction trap must be taken:

• CPBOUNCEE

• CPBOUNCEE example on page 7-49

• CPBOUNCEE with ASTOPCPE on page 7-51

• CPBOUNCEE with CPBUSYE on page 7-52.

7.10.1 CPBOUNCEE

CPBOUNCEE is used by CPs to acknowledge ownership of CP instructions. Only a 
CP with an ID that matches the CPID field in the instruction can accept an instruction. 
If no CP accepts an instruction, the instruction is bounced to an Undefined Instruction 
handler, and the undefined instruction trap is taken. A CP does not have to accept all 
instructions with an CPID that matches its ID. This enables using a mixture of hardware 
and software to implement a CP.

The CP drives CPBOUNCEE out of a register at the start of the ARM1026EJ-S 
Execute stage. When an instruction is bounced, the CP should continue to operate as if 
it were a NOP. If the bounced instruction passes its condition code check then the 
ARM1026EJ-S processor indicates that the CP should flush its pipeline using 
AFLUSHCP.

The CP that owns an instruction on the CPINSTR bus drives LOW the CPBOUNCEE 
signal to the ARM1026EJ-S processor in the CP Decode stage. If the instruction is not 
owned by a CP, that CP leaves CPBOUNCEE HIGH. The ARM1026EJ-S processor 
ANDs all individual CPBOUNCEE signals internally. If CPBOUNCEE is HIGH 
across ARM1026EJ-S Execute/Memory boundary, the instruction is deemed to have 
not been accepted by any CP, and the Undefined instruction trap is taken. A CP can 
bounce an instruction if the CP is unable to process that instruction or is unable to 
process a prior instruction and requires software support.

The ARM1026EJ-S processor ignores CPBOUNCEE if CPBUSYE is asserted and 
registers the value of CPBOUNCEE at the end of the cycle that CPBUSYE deasserts. 
An active ASTOPCPE does not prevent the value of CPBOUNCEE from being 
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registered. If a CP is driving CPBUSYE, other CPs must hold CPBOUNCEE HIGH. 
The CP driving CPBUSYE must hold its value of CPBOUNCEE until the cycle after 
CPBUSYE deasserts.

Table 7-17 CPBOUNCEE interactions with other signals

Signal Interactions with CPBOUNCEE

ASTOPCPD None

ASTOPCPE The ARM1026EJ-S processor registers CPBOUNCEE even if 
ASTOPCPE is active

LSHOLDCPE CPBOUNCEE is ignored until the cycle in which CPBUSYE deasserts

CPBUSYE Flush overrides

LSHOLDCPM None

ACANCELCP A canceled, bounced instruction has no effect

CPBOUNCEE Ignored as instruction canceled by flush
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7.10.2 CPBOUNCEE example

CPBPOUNCEE must only be considered valid in the last cycle where neither of 
CPBUSYE or ASTOPCPE is asserted. Normally, AFLUSHCP is asserted following 
a CPBOUNCEE. One case where this does not happen is when the bounced instruction 
is canceled at the same time using ACANCELCP. 

Here instruction 1 completes but instruction 2 bounces and might cause an 
AFLUSHCP that cancels instruction 2 and instruction 3.

As long as one of them is HIGH at all times, CPBUSYE and ASTOPCPE can be 
asserted and deasserted under each other multiple times while an instruction is held in 
Execute. CPBOUNCEE is ignored until the first cycle in which both are not asserted. 
Figure 7-21 on page 7-50 shows an example with CPBOUNCEE.
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Figure 7-21 CPBOUNCEE example
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7.10.3 CPBOUNCEE with ASTOPCPE

In Figure 7-22, instruction 1 is held in the ARM1026EJ-S Execute stage for one cycle. 
CPBOUNCEE is considered valid only in the cycle in which ASTOPCPE is 
deasserted. So, in this case, instruction 1 does not bounce, and instruction 2 does. 

Figure 7-22 CPBOUNCEE with ASTOPCPE example

2

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I1 I1

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

21

1

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

CPBOUNCEE (internal)

21CPLSLEN/SWP/DBL

CPBUSYE 1

2

1

1

T8

I2

I2

I2

I1

I1

1

2

1

I2

I1

I1

I2

I2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-51



Coprocessor Interface 
7.10.4 CPBOUNCEE with CPBUSYE

In Figure 7-23, instruction 1 is held in the ARM1026EJ-S Execute stage for one cycle. 
CPBOUNCEE is considered valid only in the cycle in which CPBUSYE is deasserted. 
In this case, instruction 1 does not bounce, and instruction 2 does. 

Figure 7-23 CPBOUNCEE with CPBUSYE example
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7.11 Data buses

This section describes the 64-bit data buses: 

• STCMRCDATA

• LDCMCRDATA on page 7-54.

7.11.1 STCMRCDATA

The 64-bit STCMRCDATA bus carries data from a CP to the ARM1026EJ-S 
processor. For a data transfer from a CP register to an ARM1026EJ-S register (MRC), 
the data on STCMRCDATA is written into a register in the ARM1026EJ-S register 
file. For a CP store to memory (STC), the data on STCMRCDATA is passed though 
ARM1026EJ-S processor to the memory system. It is stored at an address generated by 
the ARM1026EJ-S processor. Table 7-18 describes the interactions between 
STCMRCDATA and signals.

STCMRCDATA is driven by a CP in the ARM1026EJ-S Execute stage.

Table 7-18 STCMRCDATA interactions with signals

Signal Interactions with STCMRCDATA

ASTOPCPD None.

ASTOPCPE The ARM1026EJ-S processor registers the value on STCMRCDATA 
when ASTOPCPE is asserted and the LSU pipeline and ALU pipeline are 
in lockstep. If the pipelines are decoupled, then ASTOPCPE only affects 
the data processing operation that might be running under the loads or 
stores.

LSHOLDCPE If the ALU and LSU pipelines are decoupled then ARM1026EJ-S 
processor registers the value on STCMRCDATA when LSHOLDCPE is 
asserted.

CPBUSYE None.

LSHOLDCPM None.

ACANCELCP None.

CPBOUNCEE None.
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7.11.2 LDCMCRDATA

The 64-bit LDCMCRDATA bus carries data from the ARM1026EJ-S processor to a 
CP. For a data transfer from an ARM1026EJ-S register to a CP register (MCR), the data 
on LDCMCRDATA is written into a register in the CP register file. For a CP load from 
memory (LDC), the data on LDCMCRDATA is passed though the ARM1026EJ-S 
processor from the memory system. It is loaded from an address generated by the 
ARM1026EJ-S processor. Table 7-19 shows the interactions of LDCMRCDATA with 
other signals.

LDCMRCDATA is driven by the ARM1026EJ-S processor in the ARM1026EJ-S 
Write stage.

Table 7-19 LDCMRCDATA interactions with signals

Signal Interactions with LDCMRCDATA

ASTOPCPD None.

ASTOPCPE None.

LSHOLDCPE None.

CPBUSYE None.

LSHOLDCPM LSHOLDCPM indicates that the memory system did not return valid data 
in the previous cycle. In this case there is not valid data on 
LDCMCRDATA until LSHOLDCPM goes LOW.

ACANCELCP None.

CPBOUNCEE None.
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Chapter 8 
Debug

This chapter describes the debug unit. These features assist the development of 
application software, operating systems, and hardware. This chapter contains the 
following sections:

• About the debug unit on page 8-2

• Register descriptions on page 8-6

• Software lockout function on page 8-18

• Halt mode on page 8-19

• Monitor mode on page 8-22

• Values in the link register after exceptions on page 8-24

• Comms channel on page 8-25.
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8.1 About the debug unit

The ARM1026EJ-S debug unit assists in debugging software running on the 
ARM1026EJ-S processor. The debug hardware, in combination with a software 
debugger program, can be used to debug:

• application software 

• operating systems

• ARM1026EJ-S-based hardware systems.

The debug unit enables you to:

• stop program execution

• examine and alter processor and coprocessor state

• examine and alter memory and input/output peripheral state 

• restart the processor.

The debug unit provides several ways to stop execution. The most common is for 
execution to halt when a particular memory address is accessed, either for an instruction 
fetch (a breakpoint), or a data access (a watchpoint). When execution has stopped, one 
of two modes is entered:

Halt mode All processor execution halts, and can only be restarted with 
hardware connected to the DBGTAP controller interface. You can 
examine and alter all processor state (CPU registers), coprocessor 
state, memory, and input/output locations through the DBGTAP 
interface. This mode is intentionally invasive to program 
execution. In halt mode you can debug the processor irrespective 
of its internal state. Halt mode requires external hardware to 
control the DBGTAP interface. A software debugger provides the 
user interface to the debug hardware.

Monitor mode In monitor mode the processor stops execution of the current 
program and starts execution of a Debug Abort handler. The state 
of the processor is preserved in the same manner as all ARM 
exceptions (see The ARM Architecture Reference Manual on 
exceptions and exception priorities). The abort handler 
communicates with a debugger application to access processor 
and coprocessor state, and to access memory contents and 
input/output peripherals. Monitor mode requires a debug monitor 
program to interface between the debug hardware and the 
software debugger.
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The ARM1026EJ-S debug interface is based on the IEEE Standard, Test Access Port 
and Boundary-Scan Architecture specification. However, the only expected use of this 
interface is to access the ARM1026EJ-S debug resources, Therefore, the term Debug 
Test Access Port (DBGTAP) is used instead of Test Access Port (TAP), DBGTDI 
instead of TDI, and so on. For more information about the Debug Test Access Port used 
in an ARM1026EJ-S debug system, see Chapter 9 Debug Test Access Port.

8.1.1 Halt mode and monitor mode compared

Halt mode is for nonreal-time debugging. Because of its hardware nature, you can use 
halt mode to debug the processor under almost all circumstances. However, real-time 
systems in which processor execution cannot be completely suspended are unlikely to 
be able to tolerate the intrusion caused by halt mode. Therefore monitor mode is 
provided for time-critical applications that cannot tolerate a long interruption while the 
processor is halted. Monitor mode relies on the processor being able to freely execute 
instructions to process debug requests. 

8.1.2 Programming the debug unit

The debug unit is programmed using coprocessor 14, CP14. CP14 provides:

• instruction address comparators for triggering breakpoints

• data address comparators for triggering watchpoints

• a bidirectional serial communication channel

• all other state information associated with debug. 

CP14 is accessed using coprocessor instructions in both halt mode and monitor mode. 
BKPT instructions cause a Prefetch Abort if debug is disabled.
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8.1.3 Summary of CP14 registers

All debug state is mapped into CP14 as registers. Three CP14 registers, c0, c1, and c5, 
can be accessed by software running on the processor. Four registers, c0, c1, c4, and c5, 
are accessible as scan chains from the DBGTAP interface. The Instruction Transfer 
Register, CP14 c4, is accessible only as a scan chain. The remaining registers are 
accessible only by software operating in a privileged processor mode. Table 8-1 shows 
the CP14 registers and their scan chain numbers.

The register file has space reserved for up to 16 breakpoints and 16 watchpoints. A 
particular implementation can have any number from 2 to 16. The processor has six 
instruction-side breakpoints and two data-side watchpoints.

Table 8-1 CP14 registers and scan chain numbers

Register Name Scan chain number

CP14 c0 Debug ID Register, DIDR 0

CP14 c1 Debug Status and Control Register, DSCR 1

CP14 c2 and c3 Reserved -

CP14 c4 Instruction Transfer Register, ITR 4

CP14 c5 Data Transfer Register, DTR 5

CP14 c6-c63 Reserved -

CP14 c64-c69 Breakpoint Address Registers, BA0-BA5 -

CP14 c70-c79 Reserved -

CP14 c80-c85 Breakpoint Control Registers, BC0-BC5 -

CP14 c86-c95 Reserved -

CP14 c96 and c97 Watchpoint Address Registers, WA0 and WA1 -

CP14 c112 and c113 Watchpoint Control Registers, WC0 and WC1 -

CP14 c114 and c127 Reserved -
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There are two requirements to enable debugging:

• An enable bit in the Debug Status and Control Register enables debug 
functionality through software. Reset clears the enable bit, disabling all debug 
functionality. The processor ignores external debug requests, and BKPT 
instructions cause Prefetch Aborts. In this mode, an operating system can quickly 
enable and disable debugging on individual tasks as part of the task-switching 
sequence. 

• The DBGEN pin allows the debug features of the processor to be disabled 
entirely. 

The DBGEN pin must be tied HIGH to enable the debug functionality of the core. 
DBGEN must be tied LOW only when debugging is not required.

The CRm and opcode2 fields are used to encode the debug register number, where the 
register number is {opcode2, CRm}.
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8.2 Register descriptions

This section describes the CP14 registers:

• CP14 c0, Debug ID Register

• CP14 c1, Debug Status and Control Register on page 8-7

• CP14 c2-c4 on page 8-11

• CP14 c5, Data Transfer Register on page 8-11

• CP14 c6-c63 on page 8-12

• CP14 c64-c69, Breakpoint Address Registers on page 8-12

• CP14 c70-c79 on page 8-12

• CP14 c80-c85, Breakpoint Control Registers on page 8-13

• CP14 c86-c95 on page 8-14

• CP14 c96 and c97, Watchpoint Address Registers on page 8-15

• CP14 c112 and c113, Watchpoint Control Registers on page 8-15

• CP14 c114-c127 on page 8-17.

8.2.1 CP14 c0, Debug ID Register

The Debug ID Register, DIDR, is read-only and contains 0x41016201. Table 8-2 shows 
the instructions for reading DIDR.

Figure 8-1 shows the DIDR bit fields.

Figure 8-1 Debug ID Register

Table 8-2 Debug ID Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c0, 0 Copies contents of Debug ID Register into Rd.

31 24 15 12 7 4 3 0

Revision

0001

SBZ

0000

Watchpoints

0010

Breakpoints

0110

SBZ

0000

Architecture

0001

Designer code

0100 0001

23 20 19 16 11 8
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Table 8-3 describes the DIDR bit fields.

8.2.2 CP14 c1, Debug Status and Control Register

The Debug Status and Control Register, DSCR, is a read/write register. Table 8-4 
shows the instructions for accessing DSCR.

Figure 8-2 on page 8-8 shows the DSCR bit fields.

Table 8-3 Encoding of the Debug ID Register

Bit Name Definition

[31:24] Designer code Designer code

[23:20] - Should Be Zero

[19:16] Architecture Debug architecture version

[15:12] Breakpoints Number of implemented register breakpoints 

[11:8] Watchpoints Number of implemented watchpoints

[7:4] - Should Be Zero

[3:0] Revision Revision number

Table 8-4 Debug Status and Control Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c1, 0 Copies contents of Debug Status and Control Register into Rd

MCR p14, 0, Rd, c0, c1, 0 Copies contents of Rd into Debug Status and Control Register
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Figure 8-2 Debug Status and Control Register

Table 8-5 describes the DSCR bit fields.

31 30 1 0

CF

C1

ReservedGE

MOE

CR

CP

CS

CU

R

CD

RF

WE

24

HLT

C

RS

29 28 27 24 23 22 21 20 19 18 17 16

H E T Reserved

7 6 5

A

15 826

Table 8-5 Encoding of Debug Status and Control Register

Bit Name Definition

[31] GE Global debug enable bit: 
1 = all debugging functions enabled
0 = all debugging functions disabled. 
Reset clears GE.

[30] H Halt mode bit: 
1 = halt mode 
0 = monitor mode.
Reset clears H.

[29] E Execute instruction in ITR select:
1 = execute instruction in ITR when DBGTAP is in Run-Test/Idle state
0 = do not execute instruction in ITR when in DBGTAP is in Run-Test/Idle state.

[28] T Thumb instruction bit:
1 = ITR contains a Thumb instruction 
0 = ITR contains an ARM instruction.

[27] C Comms channel mode:
1 = comms channel activity
0 = no comms channel activity.

[26:24] - Reserved.
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DSCR[23:22] and DSCR[20:16] are used to catch ARM exceptions. The effect of setting one of these bits 
is the same as setting a register breakpoint on the address of the exception vector.

[23] CF Vector catch FIQ bit.

[22] CI Vector catch IRQ bit.

[21] - Reserved.

[20] CD Vector catch Data Abort bit.

[19] CP Vector catch Prefetch Abort bit.

[18] CS Vector catch Software Interrupt bit.

[17] CU Vector catch Undefined Instruction bit.

[16] CR Vector catch reset bit. 

[15:8] - Reserved.

[7] RF rDTR buffer full bit:
1 = new DBGTAP controller data readable with MRC or STC present in the rDTR 
0 = no new DBGTAP controller data in rDTR.

RF indicates to the processor that the rDTR buffer is full of data written by the 
debugger. RF is the inversion of the bit that the DBGTAP debugger sees when it 
polls the DTR by going through Capture-DR state with INTEST. Because the timing 
of the DBGTAP controller and processor can be different, the debugger must not use 
RF to determine if the rDTR is empty or full.

[6] WE wDTR buffer empty bit:
1 = wDTR ready for new data
0 = unread data in wDTR.

WE indicates to the processor that the wDTR buffer is empty and that the processor 
can write more data into it. WE is the inversion of the bit that the DBGTAP 
debugger sees when it polls the DTR by going through Capture-DR state with 
EXTEST. Because the timing of the DBGTAP controller and the processor can be 
different, the debugger must not use WE to determine if the wDTR is empty or full.

[5] A Sticky abort flag:
1 = abort occurred after last time A was cleared
0 = no abort occurred after last time A was cleared.
This bit is cleared when the DBGTAP debugger reads the DSCR.

Table 8-5 Encoding of Debug Status and Control Register (continued)

Bit Name Definition
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The DSCR can be seen from processor and from the DBGTAP debugger. Table 8-6 
summarizes the accessibility of the DSCR bits as seen from the processor and the 
DBGTAP debugger.

[4:2] MOE Method of entry bits:
b000 = DBGTAP HALT instruction
b001 = breakpoint hit
b010 = watchpoint hit
b011 = breakpoint instruction requested
b100 = external debug requested asserted
b101 = vector catch occurred
b110 = data-side abort occurred
b111 = instruction-side abort occurred.

[1] RS Core restarted flag:
1 = processor has exited debug state
0 = processor is exiting debug state.
The DBGTAP debugger can poll this bit to determine when the processor has exited 
debug state.

[0] HLT Core halted flag:
1 = processor is in debug state
0 = processor is in normal state.
The DBGTAP debugger can poll this bit to determine when the processor has 
entered debug state.

Table 8-5 Encoding of Debug Status and Control Register (continued)

Bit Name Definition

Table 8-6 DSCR bits from the core

DSCR bits View from core View from debugger

[1:0] Reserved Read-only

[4:2] Read-only Read-only

[5] Reserved Read-only

[7:6] Read-only Read-only

[15:8] Reserved Reserved

[23:22] Read-only Read/write

[21] Reserved Reserved

[20:16] Read-only Read/write
8-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Debug 
8.2.3 CP14 c2-c4

CP14 c2-c4 are reserved.

8.2.4 CP14 c5, Data Transfer Register

The Data Transfer Register, DTR, is a read/write register. Table 8-7 shows the 
instructions for accessing DTR.

Figure 8-3 shows the DTR bit field.

Figure 8-3 Data Transfer Register

Note

 Physically, the DTR is two separate registers, the rDTR for reading and the wDTR for 
writing. 

[26:24] Reserved Reserved

[30:27] Reserved Read/write

[31] Read/write Read-only

Table 8-6 DSCR bits from the core

DSCR bits View from core View from debugger

Table 8-7 Data Transfer Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c5, 0 Copies contents of DTR into Rd

MCR p14, 0, Rd, c0, c5, 0 Copies contents of Rd into DTR

LDC p14, c5, <addressing mode> Loads value accessed in memory into DTR

STC p14, c5, <addressing mode> Stores contents of DTR to memory

31 0

Transfer data
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8.2.5 CP14 c6-c63

CP14 c6-c63 are reserved.

8.2.6 CP14 c64-c69, Breakpoint Address Registers

The Breakpoint Address Registers, BA0-5, are read/write registers. Table 8-8 shows the 
instructions for accessing BA0-5.

Figure 8-4 shows the BA0-5 bit field.

Figure 8-4 Breakpoint Address Registers

8.2.7 CP14 c70-c79

CP14 c70-c79 are reserved.

Table 8-8 Breakpoint Address Register instructions

Register Instruction Description

CP14 c64, BA0
MRC p14, 0, Rd, c0, c0, 4 Copies contents of BA0 into Rd

MCR p14, 0, Rd, c0, c0, 4 Copies contents of Rd into BA0

CP14 c65, BA1
MRC p14, 0, Rd, c0, c1, 4 Copies contents of BA1 into Rd

MCR p14, 0, Rd, c0, c1, 4 Copies contents of Rd into BA1

CP14 c66, BA2
MRC p14, 0, Rd, c0, c2, 4 Copies contents of BA2 into Rd

MCR p14, 0, Rd, c0, c2, 4 Copies contents of Rd into BA2

CP14 c67, BA3
MRC p14, 0, Rd, c0, c3, 4 Copies contents of BA3 into Rd

MCR p14, 0, Rd, c0, c3, 4 Copies contents of Rd into BA3

CP14 c68, BA4
MRC p14, 0, Rd, c0, c4, 4 Copies contents of BA4 into Rd

MCR p14, 0, Rd, c0, c4, 4 Copies contents of Rd into BA4

CP14 c69, BA5
MRC p14, 0, Rd, c0, c5, 4 Copies contents of BA5 into Rd

MCR p14, 0, Rd, c0, c5, 4 Copies contents of Rd into BA5

31 0

Breakpoint address
8-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Debug 
8.2.8 CP14 c80-c85, Breakpoint Control Registers

The Breakpoint Control Registers, BC0-5, are read/write registers. Table 8-9 shows the 
instructions for accessing BC0-5.

Figure 8-5 shows the BC0-5 bit fields.

Figure 8-5 Breakpoint Control Registers

Table 8-9 Breakpoint Control Register instructions

Register Instruction Description

CP14 c80, BC0
MRC p14, 0, Rd, c0, c0, 5 Copies contents of BC0 into Rd

MCR p14, 0, Rd, c0, c0, 5 Copies contents of Rd into BC0

CP14 c81, BC1
MRC p14, 0, Rd, c0, c1, 5 Copies contents of BC1 into Rd

MCR p14, 0, Rd, c0, c1, 5 Copies contents of Rd into BC1

CP14 c82, BC2
MRC p14, 0, Rd, c0, c2, 5 Copies contents of BC2 into Rd

MCR p14, 0, Rd, c0, c2, 5 Copies contents of Rd into BC2

CP14 c83, BC3
MRC p14, 0, Rd, c0, c3, 5 Copies contents of BC3 into Rd

MCR p14, 0, Rd, c0, c3, 5 Copies contents of Rd into BC3

CP14 c84, BC4
MRC p14, 0, Rd, c0, c4, 5 Copies contents of BC4 into Rd

MCR p14, 0, Rd, c0, c4, 5 Copies contents of Rd into BC4

CP14 c85, BC5
MRC p14, 0, Rd, c0, c5, 5 Copies contents of BC5 into Rd

MCR p14, 0, Rd, c0, c5, 5 Copies contents of Rd into BC5

E

0

SAITSBZ

31 5 4 3 2 1
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Table 8-10 describes the BC0-5 bit fields.

8.2.9 CP14 c86-c95

CP14 c86-c95 are reserved.

Table 8-10 Encoding of Breakpoint Control Registers

Bit Name Definition

[31:5] - Should Be Zero.

[5:3] IT Instruction type bits:
b000 = reserved
b1xx = Jazelle instruction
bx1x = ARM instruction
bxx1 = Thumb instruction
b111 = Jazelle or ARM or Thumb 
instruction.

[2:1] SA Supervisor access bits:
b00 = reserved
b10 = privileged
b01 = user
b11 = either.

[0] E Enable bit:
1 = register enabled
0 = register disabled.
Reset clears E.
8-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Debug 
8.2.10 CP14 c96 and c97, Watchpoint Address Registers

The Watchpoint Address Registers, WA0 and WA1, are read/write registers. Table 8-11 
shows the instructions for accessing WA0 and WA1.

Figure 8-6 shows the watchpoint address bit field.

Figure 8-6 Watchpoint Address Registers

8.2.11 CP14 c112 and c113, Watchpoint Control Registers

The Watchpoint Control Registers, WC0 and WC1, are read/write registers. Table 8-12 
shows the instructions for accessing WC0 and WC1.

Figure 8-7 on page 8-16 shows the WC0 and WC1 bit fields.

Table 8-11 Watchpoint Address Register instructions

Register Instruction Description

CP14 c96, WA0
MRC p14, 0, Rd, c0, c0, 6 Copies contents of WA0 into Rd

MCR p14, 0, Rd, c0, c0, 6 Copies contents of Rd into WA0

CP14 c97, WA1
MRC p14, 0, Rd, c0, c1, 6 Copies contents of WA1 into Rd

MCR p14, 0, Rd, c0, c1, 6 Copies contents of Rd into WA1

31 0

Watchpoint address

Table 8-12 Watchpoint Control Register instructions

Register Instruction Description

CP14 c112, WC0
MRC p14, 0, Rd, c0, c0, 7 Copies contents of WC0 into Rd

MCR p14, 0, Rd, c0, c0, 7 Copies contents of Rd into WC0 control

CP14 c113, WC1
MRC p14, 0, Rd, c0, c1, 7 Copies contents of WC1 into Rd

MCR p14, 0, Rd, c0, c1, 7 Copies contents of Rd into WC1
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Figure 8-7 Watchpoint Control Registers

Table 8-13 describes the WC0 and WC1 bit fields.

E

8 0

L/S/E SSizeMaskSBZ

7 5 4 310 9 2 1

SBZ

31 11

Table 8-13 Encoding of Watchpoint Control Registers

Bit Name Definition

[31:11] - Should Be Zero.

[10:9] Mask DA[1:0] address mask bits.
Bit 10:
1 = exclude DA1 in comparison
0 = include DA1 in comparison.
Bit 9:
1 = exclude DA0 in comparison
0 = include DA0 in comparison.

[8] - Should Be Zero.

[7:5] Size Size select bits:
b000 = reserved
b001 = byte
b010 = halfword
b011 = byte or halfword
b100 = word
b101 = word or byte
b110 = word or halfword
b111 = any size.
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8.2.12 CP14 c114-c127

CP14 c114-c127 are reserved.

[4:3] L/S/E Load/store/either select bits:
b00 = reserved
b10 = load
b01 = store
b11 = either.

[2:1] S Supervisor bits: 
b00 = reserved
b10 = privileged
b01 = user
b11 = either.

[0] E Enable bit:
1 = register enabled
0 = register disabled.
Reset clears E.

Table 8-13 Encoding of Watchpoint Control Registers (continued)

Bit Name Definition
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8.3 Software lockout function

When the DBGTAP debugger is attached to an evaluation board or test system, it 
indicates its presence by setting the halt/monitor mode bit in the DSCR. When 
breakpoint and watchpoint registers have been configured, software cannot alter them 
if the halt/monitor mode bit remains set, because the debugger retains control. In this 
mode, software can still write to the comms channel register.
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8.4 Halt mode

Halt mode is for debugging the processor using external hardware connected to the 
DGBTAP interface. The external hardware provides an interface to a DBGTAP 
debugger application. Halt mode can be selected only by setting the H bit (bit 30) of the 
DSCR, which is only writable through the DBGTAP interface.

8.4.1 Entering debug state

In halt mode, the processor stops executing instructions and enters into debug state if 
one of the following events occurs:

• an instruction is fetched from a breakpointed memory location

• a data fetch (load or store) occurs from a watchpointed data location

• a breakpoint instruction is executed

• the external EDBGRQ signal is asserted

• a HALT instruction is scanned into the DBGTAP instruction register

• an exception occurs and the corresponding vector catch bit is set.

When the processor is halted, it is controlled by sending instructions to the integer unit 
through the DBGTAP port. Any valid instruction sequence can be scanned into the 
processor, and the effect of the instruction on the integer unit is as if the instruction is 
executed under normal operations. Some specific exceptions are described in Sending 
instructions to the integer unit on page 8-20 and Using the DSCR E bit for fast data 
uploads and downloads on page 8-20. Also accessible through the DBGTAP interface 
is a register to transfer data between CP14 and the DBGTAP debugger. 

The integer unit is restarted by executing a DBGTAP RESTART instruction.

8.4.2 Exiting debug state

Exiting debug state involves causing a branch to the next instruction to be executed.

If debug state was entered from ARM or Thumb state, the processor typically issues a 
load or data processing instruction with PC as destination to exit debug state and 
re-enter ARM or Thumb state.

If debug state was entered from Jazelle state, the processor must issue the BXJ Rm 
instruction followed by a load or data processing operation with PC as destination to 
exit debug state back to Jazelle state.
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8.4.3 Behavior of the PC in debug state

When the processor is halted, the PC is frozen on entry to debug state. The PC is not 
incremented as instructions are executed. However, branches and instructions that 
modify the PC directly update the PC.

Table 8-14 shows the read PC value after debug state entry for different debug events.

8.4.4 Sending instructions to the integer unit

Two registers in CP14 are used to communicate with the processor:

• the Instruction Transfer Register, ITR

• the Data Transfer Register, DTR. 

The ITR is used to insert an instruction into the processor pipeline. While in debug state, 
most of the processor time is spent waiting for a valid instruction in the ITR. Undefined 
instructions fed to the integer unit through the debugger are Unpredictable. Instructions 
that cause exceptions cause Unpredictable behavior. 

8.4.5 Using the DSCR E bit for fast data uploads and downloads

The E bit in the DSCR enables execution of the instruction in the ITR. You can use it 
to repeatedly issue instructions to the integer unit. When E is set, the current ITR 
instruction is sent to the prefetch unit for execution each time the DBGTAP controller 
enters the Run-Test/Idle state. When E is clear, no instruction is passed to the prefetch 
unit. The instruction in the DBGTAP instruction register must be either INTEST or 
EXTEST.

Table 8-14 Read PC value after debug state entry

Debug event ARM Thumb Jazelle Return address (RAa) meaning

Register breakpoint RA + 8 RA + 4 RA Register breakpoint hit instruction address.

Watchpoint RA + 8 RA + 4 RA Address of instruction where execution is expected to resume. Can be 
a number of instructions after the watchpointed instruction.

Instruction breakpoint RA + 8 RA + 4 RA Breakpoint instruction address.

Vector catch RA + 8 RA + 4 RA Vector address.

EDBGRQ asserted RA + 8 RA + 4 RA Address of instruction where execution is expected to resume.

HALT instruction RA + 8 RA + 4 RA Address of instruction where execution is expected to resume.

a. RA is the address of the instruction that the processor should execute first on debug state exit. Watchpoints can be imprecise, 
and RA might not be the address of the watchpointed instruction. The processor might stop a number of instructions later.
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The execute feature enables fast uploads and downloads of data. For example, a 
download sequence might consist of:

1. In the Debug Scan Chain Select Register, DBGSCREG, select scan chain 2, the 
combination of scan chains 4 and 5, and set the DBGTAP instruction to EXTEST 
for writing. 

2. Load an STC instruction into the ITR, and load data into the DTR. 

3. When the DBGTAP controller passes through the Run-Test/Idle state, the 
processor executes the instruction in the ITR. 

4. Switch to scan chain 5, the DTR, and poll the DTR until the status bit in wDTR0 
indicates the completion of the instruction. 

More data can then be loaded into DTR and the instruction reexecuted by passing 
through Run-Test/Idle. The STC instruction must specify base address write-back so 
that the addresses are automatically updated.

A similar mechanism can increase the performance of upload: 

1. First, change the DBGTAP instruction to EXTEST for writing. 

2. Using scan chain 2, scan a read instruction such as LDC into the ITR. 

3. Change the DBGTAP instruction to INTEST for reading. 

4. Switch to scan chain 5, the DTR, and poll the DTR until the instruction 
completes. By passing through the Run-Test/Idle state on the way to Shift-DR for 
polling, the instruction in the ITR is issued to the integer unit. 

Repeat this process until the last word is read.

8.4.6 Accessing processor state

Reading the contents of the integer unit register file requires individual moves from an 
ARM1026EJ-S register to CP14 c5 using MRC and MCR instructions. The data is then 
scanned out of the DTR.

Byte and halfword transfers are performed by transferring both the address and data into 
ARM1026EJ-S registers and then executing the appropriate ARM instructions.

Transfers to and from coprocessors are performed by moving data through an 
ARM1026EJ-S register. For this reason all coprocessors must have all data accessible 
using MRC and MCR. Otherwise, a data buffer in writable memory must be used.
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8.5 Monitor mode

Monitor mode is useful in real-time systems when the integer unit cannot be halted to 
collect information. Engine controllers and servo mechanisms in hard drive controllers 
that cannot stop the code without physically damaging the components are examples. 

For situations that can only tolerate a small intrusion into the instruction stream, 
monitor mode is ideal. Using this technique, code can be suspended with an exception 
long enough to save off state information and important variables. The code continues 
when the exception handler is finished. The MOE bits in the DSCR can be read to 
determine what caused the exception.

8.5.1 Entering monitor mode

Monitor mode is the default mode on Reset. Only an external debugger can change the 
mode bit in the DSCR. When monitor mode is enabled, the processor takes an 
exception, rather than halting, if one of the following events occurs:

• a register breakpoint is hit

• a watchpoint is hit

• a breakpoint instruction reaches the Execute stage of the ARM1026EJ-S pipeline

• an exception is taken and the corresponding vector trap bit is set.

The global debug enable bit in the DSCR must be set or no action is taken.

Watchpoints cause Data Abort exceptions. Register breakpoints and instruction 
breakpoints cause Prefetch Abort exceptions.

8.5.2 Exiting monitor mode

Exiting the exception handler must be done in the normal fashion.

For example, if the processor takes an exception on a breakpoint instrution (BKPT for 
ARM and Thumb, 0xFF for Jazelle), the Prefetch Abort exception handler might return 
to the instruction following the breakpoint instruction.

For ARM, the following instruction can be used:

MOVS PC, R14

For Thumb, the following instruction can be used:

SUBS PC, R14, #2

For Jazelle, the following instruction can be used:

SUBS PC, R14, #3
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8.5.3 Reading and writing breakpoint and watchpoint registers

When in monitor mode, all breakpoint and watchpoint registers can be read and written 
with MRC and MCR instructions from a privileged processing mode.
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8.6 Values in the link register after exceptions

After an exception, r14, the link register, holds an address for exception processing. 
This address is used to return after the exception is processed and to address the faulted 
instruction. Prefetch Aborts and Data Aborts might not want to rerun the faulted 
instruction. 

Table 8-15 shows the values in the link register after exceptions.

Table 8-15 Link register values after exceptions

Debug event ARM Thumb Jazelle Return address (RAa) meaning

Register breakpoint RA + 4 RA + 4 RA + 4 Register breakpoint hit instruction address.

Watchpoint RA + 8 RA + 8 RA + 8 Address of instruction where execution is expected to resume. 
Can be a number of instructions after the watchpointed 
instruction.

Instruction breakpoint RA + 4 RA + 4 RA + 4 Breakpoint instruction address.

Vector catch RA + 4 RA + 4 RA + 4 Vector address.

Prefetch Abort RA + 4 RA + 4 RA + 4 Address of instruction where execution is expected to resume.

Data Abort RA + 8 RA + 8 RA + 8 Address of instruction where execution is expected to resume.

a. RA is the address of the instruction that the processor should execute first on debug state exit. Watchpoints can be imprecise, 
and RA might not be the address of the watchpointed instruction. The processor might stop a number of instructions later.
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8.7 Comms channel

The comms channel is implemented using the two physically separate DTRs and a 
full/empty bit pair to augment each register, creating a bidirectional data port. One 
register, wDTR, can be read from the DBGTAP interface and is written from the 
ARM1026EJ-S processor wDTR. The other register, rDTR, is written from the 
DBGTAP interface and read by the processor. The full/empty bit pair for each register 
is automatically updated by the debug unit hardware, and is accessible to both the 
DBGTAP interface and to software running on the processor.

When the debugger performs comms channel activities, it indicates this to the hardware 
by setting DSCR27 in scan chain 1. This forces the least significant bit of the wDTR to 
indicate the state of the comms channel registers.

To read data from the wDTR, the debugger loads the INTEST instruction into the 
DBGTAP instruction register and then scans out the contents of the wDTR register. If 
the LSB of the 33-bit packet of data is HIGH, the data is valid. The bit is then cleared 
by this read. If the bit is a 0, meaning that the core has not written any data for the 
debugger, the external hardware can poll the DSCR to see if the core halted.

To write data into the rDTR, the debugger scans the EXTEST instruction into the 
DBGTAP instruction register and then scans data into the rDTR. When the debugger 
writes more data, it polls the LSB of the register until the LSB is HIGH. If the LSB is 
LOW, indicating the rDTR is still full and the core has not read the old data, then the 
new data shifted in is not loaded into the rDTR.

Because halt mode and monitor mode are mutually exclusive, the transfer registers are 
not used for any other purpose in monitor mode.

Figure 8-8 on page 8-26 shows the output from the comms channel.
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Figure 8-8 Comms channel output
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Chapter 9 
Debug Test Access Port

This chapter describes the JTAG interface built into the ARM1026EJ-S processor. It 
contains the following sections:

• Debug test access port and halt mode on page 9-2

• DBGTAP instructions on page 9-4

• Scan chain descriptions on page 9-7.
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Debug Test Access Port 
9.1 Debug test access port and halt mode

JTAG-based hardware debug using halt mode provides access to the integer unit and 
debug logic. Access is through scan chains and the ARM1026EJ-S DBGTAP 
controller. Figure 9-1 shows the transitions of the DBGTAP state machine.

Figure 9-1 JTAG DBGTAP state diagram
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9.1.1 Entering debug state

Halt mode is enabled by writing a 1 to bit 30 of the Debug Status and Control Register, 
DSCR. This can only be done by DBGTAP debugger hardware such as Multi-ICE. If 
one of the following events occurs when halt mode is enabled, the processor halts and 
enters into debug state instead of taking an exception in software:

• A HALT instruction is scanned in through the DBGTAP. The DBGTAP 
controller must pass through Run-Test/Idle to issue the HALT instruction to the 
ARM1026EJ-S processor.

• An vector catch occurs, and the corresponding vector catch enable bit is set.

• A register breakpoint hits.

• A watchpoint hits.

• A breakpoint instruction reaches the Execute stage of the ARM1026EJ-S 
pipeline.

• EDBGRQ is asserted.

The core halted bit in the DSCR is set when debug state is entered. At this point, the 
debugger determines why the processor is halted and preserves the processor state. The 
MSR instruction can be used to change modes and gain access to all banked registers in 
the processor. While in debug state:

• the PC is not incremented

• external interrupts are ignored

• all instructions are read from scan chain 4, the Instruction Transfer Register, ITR.

9.1.2 Exiting debug state

To exit from debug state, scan in the RESTART instruction through the DBGTAP. The 
debugger might adjust the PC before restarting, depending on the way the processor 
entered debug state. When the state machine enters the Run-Test/Idle state, normal 
operations resume. The delay, waiting until the state machine is in Run-Test/Idle, 
enables conditions to be set up in other devices in a multiprocessor system without 
taking immediate effect. When Run-Test/Idle state is entered, all the processors resume 
operation simultaneously. The core restarted bit, DSCR1, is set when the RESTART 
sequence is complete.The core halted bit, DSCR0, is cleared before the processor is 
restarted.
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9.2 DBGTAP instructions

The ARM1026EJ-S DBGTAP controller is part of the debug logic that enables access 
through the DBGTAP to the on-chip debug resources, such as breakpoint and 
watchpoint registers. The DBGTAP controller is based on the IEEE 1149.1 standard 
and supports:

• a TAP ID Register

• a Bypass Register

• a four-bit Instruction Register, DBGIR

• a five-bit Scan Chain Select Register, DBGSCREG.

In addition, the public instructions listed in Table 9-1 are supported.

Table 9-1 Supported public JTAG instructions

Binary code Instruction Description

b0000 EXTEST See Scan chains on page 9-6

b0001 - Reserved

b0010 SCAN_N Selects the DBGSCREG

b0011 - Reserved

b0100 RESTART Forces the processor to leave debug state

b0101 - Reserved

b0110 - Reserved

b0111 - Reserved

b1000 HALT Forces the processor to enter debug state

b1001 - Reserved

b1010-b1011 - Reserved

b1100 INTEST See Scan chains on page 9-6

b1101 - Reserved

b1110 IDCODE Selects DBGTAP controller TAP ID Register

b1111 BYPASS Selects DBGTAP controller Bypass Register
9-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Debug Test Access Port 
Note

 Because the ARM1026EJ-S DBGTAP does not support the attachment of external 
boundary scan chains, the SAMPLE/PRELOAD, CLAMP, HIGHZ, and CLAMPZ 
instructions are not implemented.

All unused DBGTAP controller instructions default to the BYPASS instruction.

9.2.1 EXTEST 

This instruction connects the selected scan chain between DBGTDI and DBGTDO. 
When the DBGIR is loaded with the EXTEST instruction, the debug scan chains can be 
written.

CP14 debug registers that can be written through the DBGTAP controller, c1, c4, and 
c5, are written using an EXTEST instruction.

9.2.2 SCAN_N

This instruction connects the DBGSCREG between DBGTDI and DBGTDO. See 
Debug Scan Chain Select Register, DBGSCREG on page 9-9.

9.2.3 RESTART

This instruction is used to exit from debug state. The processor restarts when the 
Run-Test/Idle state is entered.

9.2.4 HALT

This instruction stops the processor and puts it into debug state. The processor can be 
put into debug state only if debug halt mode is enabled.

9.2.5 INTEST

This instruction connects the selected scan chain between DBGTDI and DBGTDO. 
When the DBGIR is loaded with the INTEST instruction, the debug scan chains can be 
read.

CP14 debug registers c0, c1, and c5 can be read through the DBGTAP controller using 
an INTEST instruction.
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9.2.6 IDCODE 

This instruction connects the TAP ID Register between DBGTDI and DBGTDO. The 
32-bit TAP ID Register enables the manufacturer, part number, and version of a 
component to be determined through the DBGTAP controller.

9.2.7 BYPASS

This instruction connects a one-bit shift register, the Bypass Register, between 
DBGTDI and DBGTDO. The first bit shifted out is a zero. All unused DBGTAP 
controller instructions default to the BYPASS instruction. 

9.2.8 Scan chains

The effect of an INTEST or EXTEST instruction is as follows:

1. Load the SCAN_N instruction into the DBGIR. Now DBGSCREG is selected 
between DBGTDI and DBGTDO.

2. Load the number of the required scan chain. For example, load the binary value 
b00101 to access scan chain 5, the Data Transfer Register.

3. Load either INTEST or EXTEST into the DBGIR.

4. Go through the DR leg of the DBGTAPSM to access the scan chain.

INTEST and EXTEST must be used as follows:

INTEST Use INTEST for reading the active scan chain. Data is 
captured into the shift register in the capture-DR state. The 
previous value of the scan chain is shifted out during the 
Shift-DR state, while a new value is shifted in. The scan 
chain is not updated during Update-DR.

EXTEST Use EXTEST for writing the active scan chain. Data is 
captured into the shift register in the Capture-DR state. The 
previous value of the scan chain is shifted out during the 
Shift-DR state, while a new value is shifted in. The scan 
chain is updated with the new value during Update-DR.
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9.3 Scan chain descriptions

This section describes the following scan chains:

• Bypass Register

• TAP ID Register on page 9-8

• Debug Instruction Register, DBGIR on page 9-9

• Debug Scan Chain Select Register, DBGSCREG on page 9-9

• Scan chain 0, Debug ID Register, DIDR on page 9-10

• Scan chain 1, Debug Status and Control Register, DSCR on page 9-10

• Scan chain 2 on page 9-11

• Scan chain 3 on page 9-11

• Scan chain 4, Instruction Transfer Register, ITR on page 9-12

• Scan chain 5, Data Transfer Register, DTR on page 9-13

• Scan chain 6 on page 9-14.

9.3.1 Bypass Register

Purpose Bypasses the device by providing a path between DBGTDI and 
DBGTDO.

Length 1 bit.

Operating
mode  When the BYPASS instruction is the current instruction in the DBGIR, 

serial data is transferred from DBGTDI to DBGTDO in the Shift-DR 
state. There is no parallel output from the Bypass Register. A logic 0 is 
loaded from the parallel input of the Bypass Register in Capture-DR 
state. Nothing happens in the Update-DR state.

Order  See Figure 9-2.

Figure 9-2 Bypass Register bit order

0

Bypass[0]DBGTDI DBGTDO
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9.3.2 TAP ID Register

Purpose Device identification. To distinguish the ARM1026EJ-S processor from 
other processors, the DBGTAP controller ID is unique. This means that 
a DBGTAP debugger such as MULTI-ICE can easily identify the 
processor. The TAP ID Register is routed to the edge of the chip so that 
you can create your own ID number by tying the pins HIGH or LOW.

The default ID for the ARM1026EJ-S processor is 0x07A26F0F. All ARM 
semiconductor partner-specific devices must be identified by ID numbers 
of the form shown in Figure 9-3.

Figure 9-3 TAP ID Register

Length 32 bits.

Operating
mode When the IDCODE instruction is current, the TAP ID Register is selected 

as the serial path between DBGTDI and DBGTDO. There is no parallel 
output from the TAP ID Register. The 32-bit ID code is loaded into the 
register from its parallel inputs during the Capture-DR state. This is 
shifted out, least-significant bit first, during Shift-DR while a don’t care 
value is shifted in. In the Update-DR state, the TAP ID Register is 
unaffected.

Order  See Figure 9-4.

Figure 9-4 TAP ID Register bit order

LSB

0

Part number Manufacturer IDVersion

31 28 27 12 11 1

TAPID[31:0]

031

DBGTDI DBGTDO
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9.3.3 Debug Instruction Register, DBGIR

Purpose Holds the current DBGTAP controller instruction.

Length 4 bits.

Operating
mode When in Shift-IR state, the DBGIR is selected as the serial path 

between DBGTDI and DBGTDO. During the Capture-IR state, 
the binary value b0001 is loaded into this register. This is shifted 
out during Shift-IR, least significant bit first, while a new 
instruction is shifted in, least significant bit first. During the 
Update-IR state, the value in the DBGIR becomes the current 
instruction. On DBGTAP reset, IDCODE becomes the current 
instruction. The value of the current instruction is reflected on the 
DBGIR[3:0] output bus.

Order See Figure 9-5.

Figure 9-5 Instruction Register bit order

9.3.4 Debug Scan Chain Select Register, DBGSCREG

Purpose Holds the current active scan chain.

Length 5 bits.

Operating
mode After SCAN_N is selected as the current instruction and when in 

Shift-DR state, the DBGSCREG is selected as the serial path 
between DBGTDI and DBGTDO. During the Capture-DR state, 
the binary value b10000 is loaded into this register. This is shifted 
out during Shift-DR, least significant bit first, while a new value 
is shifted in, least significant bit first. During the Update-DR state, 
the value in the register selects a scan chain to become the 
currently active scan chain. All further instructions such as 
INTEST then apply to that scan chain. The currently selected scan 
chain only changes when a SCAN_N instruction is executed, or a 
reset occurs. On reset, scan chain 3 is selected as the active scan 
chain. The number of the currently selected scan chain is reflected 
on the DBGSCREG[4:0] output bus. 

DBGIR[3:0]

03

DBGTDI DBGTDO
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Order See Figure 9-6.

Figure 9-6 Scan Chain Select Register bit order

9.3.5 Scan chain 0, Debug ID Register, DIDR

Purpose Debug identification.

Length 32 bits.

Description This scan chain is CP14 c0, DIDR. It is a read-only register that 
contains 0x41016201, See CP14 c0, Debug ID Register on page 8-6 
for a detailed description of the DIDR.

Order See Figure 9-7.

Figure 9-7 Scan chain 0 bit order

9.3.6 Scan chain 1, Debug Status and Control Register, DSCR

Purpose  Debug.

Length  32 bits.

Description  This scan chain is is CP14 c1, DSCR. It is primarily a read-only 
register, although certain bits are readable and writeable by the 
DBGTAP controller. See CP14 c1, Debug Status and Control 
Register on page 8-7 for a detailed description of the DSCR.

Order See Figure 9-8.

Figure 9-8 Scan chain 1 bit order

DBGSCREG[4:0]

04

DBGTDI DBGTDO

DIDR[31:0]

031

DBGTDI DBGTDO

DSCR[31:0]

031

DBGTDI DBGTDO
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9.3.7 Scan chain 2

Purpose  Debug.

Length  65 bits.

Description  Scan chain 2 is the combination of scan chain 4 and scan chain 5. Scan 
chain 4 is the Instruction Transfer Register, ITR, and scan chain 5 is the 
Data Transfer Register, DTR.

Note
 The instruction complete bit, ITR0, is not included in this combination. 

ITR0 appears only in scan chain 4.

Order See Figure 9-8 on page 9-10.

Figure 9-9 Scan chain 2 bit order

9.3.8 Scan chain 3

Purpose Can be used for external boundary scan testing. Used for 
interdevice testing (EXTEST) and testing the core (INTEST).

Length Undetermined.

064

DBGTDI DBGTDOITR[32:1] DTR[32:0]

33 32
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9.3.9 Scan chain 4, Instruction Transfer Register, ITR

Purpose Debug.

Length 33 bits.

Description This scan chain is the ITR. It is used to send instructions to the 
core through the prefetch unit. This chain consists of 32 bits of 
information, plus an additional bit to indicate the completion of 
the instruction sent to the core. Instructions scanned into the ITR 
are not executed unless the instruction transfer execute bit 
DSCR29 is asserted. Bit 0 indicates if the instruction in the ITR 
has completed execution.

Order See Figure 9-10.

Figure 9-10 Scan chain 4 bit order

033

DBGTDI DBGTDOITR[32:0]
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9.3.10 Scan chain 5, Data Transfer Register, DTR

Purpose Debug. 

Length 33 bits. 

Description This scan chain is the DTR. It consists of two separate registers, 
the read-only rDTR and the write-only wDTR. The two registers 
facilitate the creation of a bidirectional comms channel in 
software.

The rDTR can be loaded only through the DBGTAP and is 
read-only by the core using an MRC instruction. The rDTR chain 
contains 32 bits of information plus one additional bit for the 
comms channel.

The wDTR can be loaded only by the core through an MCR 
instruction and is read-only through the DBGTAP. The wDTR 
contains 32 bits of information plus one additional bit for the 
comms channel. The definition of bit 0 depends on whether the 
current DBGTAP instruction is INTEST or EXTEST. If the 
current instruction is EXTEST, the debugger can write to the 
rDTR, and bit 0 indicates if there is still valid data in the queue. If 
the bit is set, the debugger can write new data. When the core 
performs a read of the rDTR, bit 0 is automatically asserted. 
Conversely, if the DBGTAP instruction is INTEST, bit 0 indicates 
if there is currently valid data to read in the wDTR. If the bit is set, 
the DBGTAP interface must read the contents of the wDTR, 
which in turn, clears the bit. The core can then sample its own 
wDTR empty bit and write new data for the debugger.

The DBGTAP controller sees either rDTR or wDTR through scan 
chain 5, and the appropriate register is chosen depending on which 
instruction is used (INTEST or EXTEST).
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Order See Figure 9-11

Figure 9-11 Scan chain 5 bit order

9.3.11 Scan chain 6

Purpose ETM.

Length 40 bits.

Description The ETM scan chain. Refer to ETM10RV Technical Reference 
Manual.

065

DBGTDI DBGTDOrDTR[32:0] wDTR[32:0]

33 32
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Chapter 10 
Memory Management Unit

This chapter describes the ARMv5 Memory Management Unit (MMU). It contains the 
following sections:

• About the MMU on page 10-2

• MMU software-accessible registers on page 10-6

• Address translation on page 10-8

• MMU memory access control on page 10-26

• MMU cachable and bufferable information on page 10-28

• MMU and pending write buffer on page 10-29

• Fault checking sequence on page 10-30

• Fault priority on page 10-33

• MMU aborts and external aborts on page 10-34

• Memory parity on page 10-35.
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10.1 About the MMU

The ARM1026EJ-S MMU is an ARM architecture version 5 MMU. It provides virtual 
memory features required by systems operating on platforms such as Symbian OS, 
WindowsCE, and Linux. Translation tables in external memory control address 
translation, permission checks, and memory region attributes for both data and 
instruction accesses.

The MMU translates Modified Virtual Addresses (MVAs) to physical addresses. It 
checks access permissions for the instruction and data ports of the integer unit. It 
controls the table-walk hardware that fetches page table descriptors in external memory. 
To support both sections and pages, there are two levels of address translation. The 
MMU puts the translated physical addresses into the MMU Translation Lookaside 
Buffer TLB. 

The MMU TLB has two parts: 

• the main TLB

• the lockdown TLB. 

The main TLB is a two-way, set-associative cache for page table information. It has 32 
entries per way for a total of 64 entries.

The lockdown TLB is an eight-entry fully-associative cache that contains locked TLB 
entries. Locking TLB entries can ensure that a memory access to a given region never 
incurs the penalty of a page table walk.

MMU features include:

• standard ARM architecture ARMv4/ARMv5 MMU mapping sizes, domains, and 
access protection

• 1KB tiny page, 4KB small page, 64KB large page, and 1MB section mapping 
sizes 

• separate access permissions for one-quarter page subpages of 64KB large pages 
and 4KB small pages

• hardware page table walks

• CP15 c8 invalidation of entire TLB

• CP15 c8 TLB entry invalidation using MVA

• CP15 c10 lockdown of TLB entries.
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10.1.1 Selecting the MMU

The MMUnMPU static input selects either the MMU or the Memory Protection Unit 
(MPU). Tie MMUnMPU HIGH to select the MMU. Tie MMUnMPU LOW to select 
the MPU.

10.1.2 Enabling the MMU

To enable the MMU:

1. Program the CP15 c2 Translation Table Base Register and CP15 c3 Domain 
Access Control Register.

2. Build level 1 and level 2 descriptor page tables as required.

3. Enable the MMU by setting the M bit in the CP15 c1 Control Register.

Note
 Use caution if the translated address differs from the untranslated address. Several 
instructions following the enabling of the MMU might have been prefetched with the 
MMU off using PA = VA flat translation. Enabling the MMU can be considered as a 
branch with delayed execution. A similar situation occurs when the MMU is disabled. 
Consider the following code sequence:

MRC p15, 0, R1, c1, C0, 0 ; Read control register
ORR R1, R1, #0x1
MCR p15, 0, R1, c1, c0, 0 ; Enable MMU
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Translated

You can enable the ICache, DCache, and MMU simultaneously with a single MCR 
instruction (see CP15 c1 Control Register on page 3-14).
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10.1.3 Disabling the MMU

To disable the MMU, clear the M bit in the CP15 c1 Control Register. Disable the 
DCache by clearing the C bit in the Control Register before or at the same time that you 
disable the MMU.

Note
 If you disable the MMU, the contents of the TLBs remain intact. Before enabling the 
MMU again, invalidate the TLBs if they are no longer applicable to the memory 
context. (see CP15 c8 TLB operations on page 3-40).

10.1.4 Access permissions and domains

Access permissions are defined for:

• each 1MB section

• each 16KB subpage of a large page

• each 1KB subpage of a small page

• each 1KB tiny page.

All regions of memory have an associated domain. A domain is the primary access 
control mechanism for a region of memory. It defines the conditions necessary for an 
access to proceed. The domain determines if:

• access permissions are used to qualify the access

• the access is unconditionally allowed to proceed

• the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored. 

There are 16 domains. Program their access permissions with the Domain Access 
Control Register (see CP15 c3 Domain Access Control Register on page 3-23).
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10.1.5 Translated entries

The main TLB caches 64 translated entries. If, during a memory access, the main TLB 
contains a translated entry for the MVA, the MMU reads the protection data to 
determine if the access is permitted:

• if the access is permitted, and off-chip access is required, the MMU generates the 
PA

• if the access is permitted, and off-chip access is not required, the cache services 
the access

• if the access is not permitted, the MMU signals the processor to abort.

If a TLB miss occurs, the table-walk hardware retrieves the translation information 
from a translation table in external memory. The retrieved information is written into 
the main TLB, possibly overwriting an existing value. 

The entry to be written is usually chosen by cycling sequentially through the TLB 
locations. To enable use of TLB locking features, the location to be written can be 
specified using the CP15 c10 TLB Lockdown Register. 

When the MMU is turned off, as happens at reset, no VA-to-MVA or MVA-to-PA 
address mapping occurs, and all regions are marked as noncachable and nonbufferable.

Note
 When the MMU is off, you can use the CP15 c15 Debug Overide Register to modify 
the default behavior of the ARM1026EJ-S processor.
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10.2 MMU software-accessible registers

The CP15 registers listed in Table 10-1, and the page table descriptors stored in 
memory, control MMU operation. All the registers in Table 10-1 except CP15 c8 
contain state and can be read using MRC instructions and written to using MCR 
instructions. Reading CP15 c8 is Unpredictable.

Chapter 3 Programmer’s Model describes the CP15 registers in more detail.

Table 10-1 CP15 MMU registers

Register Bits Description

CP15 c1 Control
Register

[0]

[1]

[8]

[9]

MMU enable bit:
1 = MMU enabled 
0 = MMU disabled.

Address alignment fault checking enable bit: 
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

MMU system protection enable bit:
1 = MMU protection enabled
0 = MMU protection disabled.

MMU ROM protection enable bit:
1 = ROM protection enabled
0 = ROM protection disabled.

CP15 c2 Translation
Table Base Register

[31:14] PA of base of translation table in external memory. Must be on 16KB boundary.

CP15 c3 Domain
Access Control
Register

[31:30]

[29:28]

. . .

[1:0]

Access permission field for domain D15.

Access permission field for domain D14.

. . .

Access permission field for domain D0. See Table 10-5 on page 10-26.

CP15 c5 Fault 
Status
Registers

[31:11]

[7:4]

[10], [3:0]

Should Be Zero.

Domain (D0-D15) in which fault occurred:
b0000 = D0
b0001 = D1
. . .
b1111 = D15.

Type of fault. See Table 10-8 on page 10-33.
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CP15 c6 Fault
Address Registers

[31: 0] MVA that caused Data Abort or Prefetch Abort. ARM10EJ-S register R14_abt holds 
VA that caused Prefetch Abort.

CP15 c8 TLB
operations [31:10]

[9:0]

Invalidate single TLB entries or all unlocked TLB entries.

MVA for invalidate single TLB entry operation.

Should Be Zero.

CP15 c10 TLB 
Lockdown Register

[31:29]

[28:26]

[25:1]

[0]

Should Be Zero.

Victim field. Selects lockdown TLB location to write.

Should Be Zero.

Preserve bit:
1 = page table walk puts entry in lockdown TLB location specified by victim field
0 = page table walk puts entry in main TLB.

Table 10-1 CP15 MMU registers (continued)

Register Bits Description
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10.3 Address translation

The Fast Context Switch Extension (FCSE) uses the value in the CP15 c3 Context ID 
Register to convert the VA generated by the integer core to a Modified Virtual Address 
(MVA). The MMU translates the MVA to a physical address in external memory and 
checks the access permissions.

The translation information, containing both the address translation data and the access 
permission data, resides in a translation table in external memory. The table-walk 
hardware automatically reads the translation table and loads entries into the TLB.

The translation process always begins with a level 1 descriptor fetch. A section-mapped 
access requires only a level 1 fetch, but a page-mapped access requires both a level 1 
and a level 2 fetch.

A section-mapped access addresses a 1MB section. A page-mapped access addresses 
one of three page sizes:

• 64KB large page

• 4KB small page

• 1KB tiny page.

10.3.1 Translation table base

The translation process begins when the TLB does not contain a translation for the 
requested MVA. The CP15 c2 Translation Table Base Register points to the base 
address of the level 1 translation table in external memory. This table contains level 1 
descriptors, which can be section descriptors, page table descriptors, or both. 

The level 1 translation table has up to 4096 32-bit descriptors. Each descriptor controls 
access to 1MB of virtual memory, enabling the MMU to address up to 4GB of virtual 
memory. 

10.3.2 Translation routes for sections and pages

Figure 10-1 on page 10-9 shows the section and page translation process.
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Figure 10-1 Address translation
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10.3.3 Level 1 descriptor address

Figure 10-2 shows how the MMU creates the level 1 descriptor address from the CP15 
c2 Translation Table Base Register and the MVA.

Figure 10-2 Translating a level 1 descriptor address

10.3.4 Level 1 descriptor

The level 1 descriptor indicates whether the access is: 

• a translation fault

• an access to a level 2 coarse page table 

• an access to a 1MB section of external memory

• an access to a level 2 fine page table.

Bits [1:0] of the level 1 descriptor determine the type of access. Figure 10-3 on 
page 10-11 shows the level 1 descriptor format for each access type. 
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Figure 10-3 Level 1 descriptor formats

Bits [1:0] of the level 1 descriptor indicate the access type as Table 10-2 shows.

Level 1 translation fault

When bits [1:0] of the level 1 descriptor are b00, the MMU generates a translation fault. 
This causes either a Prefetch Abort or Data Abort in the integer unit. 

Level 1 coarse page table address

When bits [1:0] of the level 1 descriptor are b01, the MMU fetches a level 2 descriptor 
from the coarse page table. Figure 10-6 on page 10-14 shows how the MMU generates 
a coarse page table address.

Level 1 section base address

When bits [1:0] of the level 1 descriptor are b10, the MMU accesses a 1MB memory 
section. Figure 10-4 on page 10-12 shows the translation process for a 1MB section.
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111Level 2 fine page table base address
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Coarse page table
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Table 10-2 Access type encoding in a level 1 descriptor

Bits [1:0] Access type

b00 Translation fault

b01 Coarse page table base address

b10 Section base address

b11 Fine page table base address
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Figure 10-4 Translating a section base address

Following translation of the level 1 descriptor for a section, the MMU checks the access 
permissions for the section. If the access is permitted, the MMU uses the physical 
address to transfer the requested data from external memory to the integer unit. MMU 
memory access control on page 10-26 describes permission checking. 

Level 1 fine page table base address

When bits [1:0] of the level 1 descriptor are b11, the MMU generates fetches a level 2 
descriptor from the fine page table. Figure 10-9 on page 10-19 shows how the MMU 
generates the fine page table address.
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10.3.5 Level 2 descriptor

If the level 1 descriptor points to a page table, the MMU determines the page table type, 
coarse or fine, and fetches a level 2 descriptor from the page table. The level 2 descriptor 
indicates whether the access is:

• a translation fault

• an access from a coarse page table to a 64KB large page

• an access from a coarse page table to a 4KB small page

• an access from a fine page table to a 64KB large page

• an access from a fine page table to a 4KB small page

• an access from a fine page table to a 1KB tiny page.

 Figure 10-5 shows the level 2 descriptor format for each access type.

Figure 10-5 Level 2 descriptor formats

Bits [1:0] of the level 2 descriptor indicate the page type.

A large page can be divided into four 16KB subpages with different access permissions 
defined by the AP fields. Bits [15:14] of the MVA page index select the subpages of a 
large page.

A small page can be divided into four 1KB subpages with different access permissions. 
Bits [11:10] of the MVA page index select the subpages of a small page. 

Level 2 coarse page table descriptor 

When the level 1 descriptor bits [1:0] indicate a descriptor fetch from a coarse page 
table, the MMU requests the address of the level 2 coarse page table from external 
memory. Figure 10-6 on page 10-14 shows how the coarse page table address is 
generated.
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Figure 10-6 Translating a coarse page table address

Following translation of the level 1 descriptor for a section, the the MMU checks the 
access permissions for the section. If the access is permitted, the MMU uses the 
physical address to transfer the requested data from external memory to the integer unit.
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When the coarse page table address is generated, a request is made to external memory 
for the level 2 coarse page table descriptor. Bits [1:0] of the level 2 coarse page table 
descriptor indicate the access type as shown in Table 10-3.

Level 2 coarse translation fault

If bits [1:0] of the level 2 coarse page table descriptor are b00 or b11, then a translation 
fault is generated. This generates an abort to the integer unit, either a Prefetch Abort for 
the instruction side or a Data Abort for the data side.

Level 2 coarse large page base address

If bits [1:0] of the level 2 coarse page table descriptor are b01, then a descriptor fetch 
from a coarse large page table is required. Figure 10-7 on page 10-16 shows the 
translation process for a 64KB large page or a 16KB subpage of a large page.

Table 10-3 Access type encoding in a coarse page table descriptor

Bits[1:0] Access type

b00 Translation fault

b01 64KB large page base address

b10 4KB small page base address

b11 Translation fault
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Figure 10-7 Translating a large page or subpage address from a coarse page table

The 64KB large page is generated by setting all of the AP bit pairs to the same values, 
AP3 = AP2 = AP1 = AP0. If any one of the pairs is different, then the 64KB large page 
is converted into four 16KB subpages. 
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Note

 The level 2 coarse page table index uses MVA[19:12], and the large page index uses 
MVA[15:0]. The overlapping four bits, MVA[15:12], require groups of 16 consecutive 
entries in the level 2 page tables to contain duplicate entries.

Level 2 coarse small page base address

If bits [1:0] of the level 2 coarse page table descriptor are b10, then a descriptor fetch 
from a coarse small page table is required. Figure 10-8 on page 10-18 shows the 
translation process for a 4KB small page or a 1KB subpage of a small page.
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Figure 10-8 Translating a small page or subpage address from a coarse page table

The 4KB small page is generated by setting all of the AP bit pairs to the same values, 
AP3 = AP2 = AP1 = AP0. If any one of the pairs are different, then the 4KB small page 
is converted into four 1KB small page subpages.
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Level 2 fine page table descriptor 

When the level 1 descriptor bits [1:0] indicate that a descriptor fetch from a fine page 
table is required, the MMU requests the level 2 fine page table address from external 
memory. Figure 10-9 shows how the address is generated.

Figure 10-9 Translating a fine page table address
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Following translation of the level 1 descriptor for the base address of a fine page table 
address, the MMU requests checks the access permissions for the section. If the access 
is permitted, the MMU uses the physical address to transfer the requested data from 
external memory to the integer unit. When the fine page table address is generated, a 
request is made to external memory for the level 2 fine page table descriptor. Bits [1:0] 
of the level 2 fine page table descriptor indicate the access type as shown in Table 10-4.

Level 2 fine translation fault

If bits [1:0] of the level 2 fine page table descriptor are b00, then a translation fault is 
generated. This causes either a Prefetch Abort or a Data Abort in the integer unit. A 
Prefetch Abort occurs on the instruction side, while a Data Abort occurs on the data 
side.

Level 2 fine large page base address

If bits [1:0] of the level 2 fine page table descriptor are b01, then a descriptor fetch from 
a fine large page table is required. Figure 10-10 on page 10-21 shows the translation 
process for a 64KB large page or a 16KB subpage of a large page.

Table 10-4 Access type encoding in a fine page table descriptor

Bits [1:0] Access type

b00 Translation fault

b01 Large page table base address

b10 Small page base address

b11 Tiny page table base address
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Figure 10-10 Translating a large page or subpage address from a fine page table

The 64KB large page is generated by setting all of the AP bit pairs to the same values, 
AP3 = AP2 = AP1 = AP0. If any pair is different from the others, then the 64KB large 
page is converted into four 16KB subpages.
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Note

 The level 2 fine page table index uses MVA[19:10], and the large page index uses 
MVA[15:0]. The overlapping six bits, MVA[15:10], require groups of 64 consecutive 
entries in the level 2 page tables to contain duplicate entries.

Level 2 fine small page base address

If bits [1:0] of the level 2 fine page table descriptor are b10, then a descriptor fetch from 
a fine small page table is required. Figure 10-11 on page 10-23 shows the translation 
process for a 4KB small page or a 1KB subpage of a small page.
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Figure 10-11 Translating a small page or subpage address from a fine page table

The 4KB small page is generated by setting all of the AP bit pairs to the same values, 
AP3 = AP2 = AP1 = AP0. If any one of the pairs are different, then the 4KB small page 
is converted into four 1KB small page subpages.
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Note

 The level 2 fine page table index uses MVA[19:10], and the small page index uses 
MVA[11:0]. The overlapping two bits, MVA[11:10], require groups of four 
consecutive entries in the level 2 page tables to contain duplicate entries.

Level 2 fine tiny page base address

If bits [1:0] of the level 2 fine page table descriptor are b11, then a descriptor fetch from 
a fine tiny page table is required. Figure 10-12 on page 10-25 shows the translation 
process for a 1KB tiny page.
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Figure 10-12 Translating a tiny page address
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10.4 MMU memory access control

Memory domains support multiuser operating systems. All regions of memory have an 
associated domain. Domains are the primary memory access control mechanism and 
define the conditions in which an access can proceed. Each domain determines whether:

• access is qualified to proceed as shown in Table 10-6 on page 10-27

• access is unconditionally enabled to proceed

• access is unconditionally aborted. 

In the latter two cases, the access permission attributes are ignored. There are 16 
domains, D15-D0, that are configured in the CP15 c3 Domain Access Control Register.

The domain definition provides access for two types of users, manager and client. The 
two-bit D15-D0 fields in the Domain Access Control Register control access to both the 
instruction and data domains. Table 10-5 shows the encoding for of the domain access 
control fields.

A manager access is checked only against the access permissions for the domain. A 
client access is checked against the domain access permissions and against the system 
protection bit, S, and the ROM protection bit, R, in the CP15 c1 Control Register. 
Table 10-6 on page 10-27 shows the effect of the S and R bits.

Table 10-5 Domain access encoding

D15-D0 User Notes

b00 No access Access generates a domain fault.

b01 Client Access permissions are checked.

b10 Reserved Behaves as a no access domain.

b11 Manager Access permissions are not checked.
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Table 10-6 MMU memory access control

AP
CP15
S bit

CP15
R bit Supervisor User Meaning

b00 0 0 - - Permission fault

b00 1 0 Read - Read-only in Supervisor mode

b00 0 1 Read Read Permission fault on writes

b00 1 1 Reserved Reserved Permission fault on reads or writes

b01 - - Read/write - Permission fault on reads or writes in User mode

b10 - - Read/write Read Read-only in User mode

b11 - - Read/write Read/write All accesses permissible
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10.5 MMU cachable and bufferable information

The Cachable (C) and Bufferable (B) bits in the level 1 and level 2 descriptors control 
the operation of memory accesses to external memory. Table 10-7 indicates how the 
MMU and cache interpret the C and B bits.

Table 10-7 C and B bit access control

C B Memory access

0 0 Noncachable, nonbufferable

0 1 Noncachable, bufferable

1 0 Write-through cachable, bufferable

1 1 Write-back cachable, bufferable
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10.6 MMU and pending write buffer

During any descriptor fetch, the MMU has access to external memory. The integer unit 
is stalled during any descriptor fetch.

Before an MMU descriptor fetch, the pending write buffer has to be drained to preserve 
memory coherency. If the pending write buffer contains any page table entries that have 
been modified, those entries are forced to external memory as a result of the descriptor 
fetch. 

When the MMU contains valid TLB entries that are being modified, these TLB entries 
must be invalidated before the new section or page is accessed. This also applies to any 
data that resides in the ICache or DCache. The ICache lines must be invalidated, and 
the DCache line or lines must be cleaned and invalidated.
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10.7 Fault checking sequence

During the processing of a section or page, the MMU checks for faults. This section 
describes the following conditions:

• External abort on translation

• Address alignment fault

• Translation fault

• Domain fault on page 10-32

• Permission fault on page 10-32.

Figure 10-13 on page 10-31 shows the fault checking sequence.

10.7.1 External abort on translation

If the BIU returns an error due to a level 1 or level 2 descriptor fetch, the MMU signals 
an abort and stops processing the hardware page table walk. No entry is written to the 
TLB.

10.7.2 Address alignment fault

An address alignment fault occurs whenever the integer unit indicates a particular data 
memory access size and the address does not comply with that size. If MAS[1:0] = b10 
indicating a 32-bit access, and the MVA bits [1:0] ≠ b00, then an address alignment 
fault occurs. If MAS[1:0] = b01 indicating a 16-bit access, and the MVA bit 0 ≠ 0, then 
an address alignment fault occurs. No check is performed when MAS[1:0] = b00.

Alignment checks are performed with the MMU both on and off and only for data 
memory accesses.

10.7.3 Translation fault

Two types of translation faults occur:

• section

• page.

A section translation fault results from an invalid level 1 descriptor. Bits [1:0] of the 
descriptor are b00.

A page translation fault results from an invalid level 2 descriptor. Bits [1:0] of the 
coarse page table descriptor are b00 or b11, or bits [1:0] of the fine page table descriptor 
are b00.
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Figure 10-13 Fault checking flowchart
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10.7.4 Domain fault

Three types of domain faults occur: 

• section

• coarse page

• fine page. 

For each type, the level 1 descriptor indicates which domain to select in the CP15 c3 
Domain Access Control Register. If bit 0 of the selected domain is zero, indicating 
either No access or Reserved, then a domain fault occurs. A section domain fault occurs 
when the level 1 descriptor is returned. Both the coarse and fine page domain faults are 
checked whenever the level 2 descriptor is returned.

The MMU empties any unlocked TLB entry following a write to the CP15 c3 Domain 
Access Control Register (DACR). To guarantee the behavior, all locked TLB entries 
must not modify their DACR entry. If the DACR entry is modified, the TLB entry must 
be unlocked and invalidated.

10.7.5 Permission fault

There are three types of access permission faults: 

• section

• coarse page

• fine page.

Whenever the domain indicates that a client has accessed a region of memory, an access 
permission check follows. If the access does not comply with the access permission 
table, then a fault corresponding to the access type occurs. A section permission fault 
check occurs when the level 1 descriptor is returned and is designated as a client. Both 
the coarse and fine page permission faults are checked whenever the level 2 descriptor 
is returned and is designated as a client.
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10.8 Fault priority

Table 10-8 lists MMU faults in order of priority, from highest to lowest.

The values in the domain field are invalid when the fault occurs before the MMU reads 
the domain field from a page table descriptor. Any abort masked by the priority 
encoding can be regenerated by fixing the primary abort and restarting the instruction.

Table 10-8 MMU faults

Priority Fault type
Status
[10], [3:0]

Domain FAR

Highest Imprecise external abort 1, b0110 Invalid Valida

a. The CP15 c6 Fault Address Register reflects the address of the load or store to which the 
imprecise abort is attached, not the address of the external abort.

Alignment fault 0, b0001 Invalid Valid

TLB miss 0, b0000 Invalid Valid

Level 1 translation precise external abort 0, b1100 Invalid Valid

Level 1 section translation fault 0, b0101 Invalid Valid

Level 2 translation precise external abort 0, b1110 Valid Valid

Level 2 page translation fault 0, b0111 Valid Valid

Section domain fault 0, b1001 Valid Valid

Page domain fault 0, b1011 Valid Valid

Section access permission fault 0, b1101 Valid Valid

Page access permission fault 0, b1111 Valid Valid

Nontranslation precise external abort 0, b000 Valid Valid

Lowest Debug breakpoint or watchpoint 0, b0010 Valid Valid
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10.9 MMU aborts and external aborts

The MMU generates aborts on MMU faults and also makes the properties of both 
precise and imprecise external aborts visible.

10.9.1 MMU faults

When the MMU detects a fault during any memory access, it generates a Prefetch Abort 
or a Data Abort, and the integer unit enters the Prefetch Abort handler or the Data Abort 
handler. The MMU generates aborts on six types of MMU faults:

• alignment fault

• TLB miss when ADTM bit is set (see CP15 c15 Debug Override Register on 
page 3-53)

• translation fault

• domain fault

• permission fault

• debug breakpoint or watchpoint.

An alignment fault can be caused only by a data access. The A bit in the CP15 c1 
Control Register enables alignment fault checking. Alignment fault checking can be 
enabled even when the MMU is disabled.

An MMU miss, translation fault, domain fault, or permission fault can be caused by a 
data access or an instruction access.

10.9.2 External aborts

The MMU performs external abort fault checking to enable you to observe the 
properties of both precise and imprecise external aborts. Precise aborts are always 
enabled. The IMA bit in the CP15 c15 Debug Override Register statically enables 
imprecise aborts. Imprecise aborts are enabled by default. See Chapter 16 External 
Aborts for a full explanation of external abort behavior.

10.9.3 Fault address registers and fault status registers

The CP15 c5 Instruction Fault Status Register contains the type of MMU fault or 
external abort that occurred. The CP15 c6 Instruction Fault Address Register contains 
the MVA of the access that caused the MMU fault or external abort. 

The CP15 c5 Data Fault Status Register contains the type of MMU fault or external 
abort that occurred. The CP15 c6 Data Fault Status Register contains the MVA of the 
access that caused the MMU fault or external abort. 

 See Table 10-8 on page 10-33 for fault codes and priorities. 
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10.10 Memory parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis. 
If a byte has an even number of 1s, the parity generator appends another 1 to the byte 
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not 
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing 
and handling the parity bit information is the responsibility of the system designer. If 
parity error detection is not required, the parity outputs can remain unconnected.

10.10.1 MMU parity interfaces

The MMU write interface is split into a 22-bit TLB tag write data interface and a 34-bit 
TLB data write data interface. The TLB is two-way set-associative, resulting in 112 bits 
total. Parity bit generation is provided for both the tag and data portions of the TLB data 
write interface. Table 10-9 lists the TLB data bytes and their parity bits.

Table 10-9 MMU TLB parity interfaces

Data byte Parity bit I/O

TLB tag write parity interface

MMUxWD[111:106]a MMUTAGPAR[5] O

MMUxWD[105:98] MMUTAGPAR[4] O

MMUxWD[97:90] MMUTAGPAR[3] O

MMUxWD[55:50]a MMUTAGPAR[2] O

MMUxWD[49:42] MMUTAGPAR[1] O

MMUxWD[41:34] MMUTAGPAR[0] O

TLB data write parity interface

MMUxWD[89:88]b MMUDATAPAR[9] O

MMUxWD[87:80] MMUDATAPAR[8] O

MMUxWD[79:72] MMUDATAPAR[7] O

MMUxWD[71:64] MMUDATAPAR[6] O

MMUxWD[63:56] MMUDATAPAR[5] O

MMUxWD[33:32]b MMUDATAPAR[4] O
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MMUxWD[31:24] MMUDATAPAR[3] O

MMUxWD[23:16] MMUDATAPAR[2] O

MMUxWD[15:8] MMUDATAPAR[1] O

MMUxWD[7:0] MMUDATAPAR[0] O

a. Because the data in this field has only six bits, the 
resulting code word has seven bits.

b. Because the data in this field has only two bits, the 
resulting code word has three bits.

Table 10-9 MMU TLB parity interfaces (continued)

Data byte Parity bit I/O
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Chapter 11 
Memory Protection Unit

This chapter describes the Memory Protection Unit (MPU). It contains the following 
sections:

• About the MPU on page 11-2

• MPU software-accessible registers on page 11-3

• Configuring the MPU on page 11-5

• Overlapping protection regions on page 11-8

• Fault priority on page 11-9

• MPU aborts and external aborts on page 11-10.
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11.1 About the MPU

As Figure 11-1 shows, you can use the MPU to partition external memory into eight 
protection regions with different sizes and attributes. 

Figure 11-1 MPU block diagram
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11.2 MPU software-accessible registers

The CP15 registers listed in Table 11-1 on page 11-4 control MPU operation.

All the registers in Table 11-1 on page 11-4 except CP15 c8 contain state and can be 
read using MRC instructions and written to using MCR instructions.

Chapter 3 Programmer’s Model describes the CP15 registers in more detail.
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Table 11-1 CP15 MPU registers

Register Bit Description

CP15 c1 Control 
Register

0

1

MPU enable bit:
1 = MPU enabled 
0 = MPU disabled.

Address alignment fault checking enable bit: 
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

CP15 c2 DCache and 
ICache Configuration 
Registers

[7:0] Cachable bits:
1 = DCache or ICache protection region cachable
0 = DCache or ICache protection region noncachable.

CP15 c3 Write Buffer
Control Register

[7:0] Protection region bufferable bits:
1 = protection region bufferable
0 = protection region nonbufferable.

CP15 c5 Fault Status 
Registers

[31:11]

[7:4]

10, [3:0]

Should Be Zero.

Protection region (0-7) in which fault occurred:
b0000 = protection region 0
b0001 = protection region 1
. . .
b0111 = protection region 7.

Fault type that caused Data Abort or Prefetch Abort. See Table 11-2 on page 11-9.

CP15 c5 Extended 
Access Permission 
Registers

[31:28]
[27:24]
. . .
[3:0]

Extended format access permission field for protection region 7.
Extended format access permission field for protection region 6.
. . .
Extended format access permission field for protection region 0.

CP15 c5 Standard 
Access Permission 
Registers

[15:14]
[13:12]
. . .
[1:0]

Standard format access permission field for protection region 7.
Standard format access permission field for protection region 6.
. . .
Standard format access permission field for protection region 0.

CP15 c6 Fault Address 
Registers

[31: 0] MVA of access that caused Data Abort or Prefetch Abort. ARM10EJ-S register 
R14_abt holds VA that caused Prefetch Abort.

CP15 c6 Protection 
Region Registers 0-7

[31:12]
[11:6]
[5:1]
0

Base address of protection region.
Should Be Zero.
Size of protection region.
Protection region enable bit.
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11.3 Configuring the MPU

This section describes how to select the MPU and initialize the protection regions.

11.3.1 Selecting the MPU

The MMUnMPU pin is a static input that configures the ARM1026EJ-S processor to 
use either the MPU or the Memory Management Unit (MMU). To use the MPU, tie the 
MMUnMPU input LOW.

11.3.2 Initializing the protection regions

The ARM architecture uses constants known as inline literals to perform address 
calculations. These constants are automatically generated by the assembler and 
compiler and are stored inline with the instruction code. To ensure correct operation, 
the code that initializes and enables the MPU must lie in a valid protection region that 
allows both data and instruction accesses.

To initialize the MPU, use CP15 registers c6, c5, c3, c2, and c1 to:

• program the base address, size, and enable bit of each protection region

• program the access permission of each protection region

• enable or disable bufferability of each protection region

• enable or disable cachability of each protection region

• enable the MPU.

Protection region base address, size, and enable

For each protection region, CP15 c6 has a Protection Region Register (PRR) that:

• defines the base address of the protection region

• defines the size of the protection region

• enables the protection region.

The base address is the first address of the memory region. You must align the base 
address on a region-sized boundary. For example, an 8KB region must have a base 
address that is a multiple of 8K.

Note

 Incorrrectly aligned regions cause Unpredictable behavior.

A five-bit field in each PRR selects a region size from 4KB to 4GB.

Bit 0 of each PRR enables the protection region.
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CP15 c5 Protection Region Registers on page 3-34 has the instructions for using the 
Protection Region Registers.

Access permission

CP15 c5 has four access permission registers:

• CP15 c5 Data and Instruction Extended Access Permission Registers on 
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on 
page 3-31.

The extended access permission registers have four-bit fields to control data-access 
permission and instruction-access permission for each protection region. The standard 
access permission registers have two-bit access permission fields.

A memory abort occurs when an access fails its protection check. For example, a User 
mode attempt to access a privileged mode access only protection region causes a 
memory abort. The processor enters the abort exception mode, branching to the Data 
Abort or Prefetch Abort vector.

Write buffer configuration

The CP15 c3 Write Buffer Control Register has a bufferable bit for each protection 
region. The Write Buffer Control Register affects only data accesses.

CP15 c3 Write Buffer Control Register on page 3-25 has the instructions for using the 
Write Buffer Control Register.

Cache configuration

The CP15 c2 DCache Configuration Register contains a cachable bit for data accesses 
to each protection region. The CP15 c2 ICache Configuration Register contains a 
cachable bit for instruction accesses to each protection region.

CP15 c2 DCache and ICache Configuration Registers on page 3-21 has the instructions 
for using the DCache and ICache Configuration Registers.
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Enabling the MPU

The M bit in the CP15 c1 Control Register enables the MPU.

Note
 • Do not enable the MPU without initializing at least one protection region.

• When the MPU is disabled and the ICache is enabled, all instruction fetches are 
cachable. If the ICache is disabled, all instruction fetches are noncachable.

• When the MPU is disabled, all data accesses are noncachable and nonbufferable 
whether the DCache is enabled or disabled.

You can use the CP15 c15 Debug Override Register and the CP15 c15 Memory 
Region Remap Register to change this default behavior.

CP15 c1 Control Register on page 3-14 has the instructions for using the Control 
Register.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-7



Memory Protection Unit 
11.4 Overlapping protection regions

You can program the MPU with two or more overlapping protection regions. When the 
processor accesses overlapping protection regions, the attributes of the 
highest-numbered protection region control the access. Attributes for protection region 
7 have the highest priority, and attributes for protection region 0 have the lowest 
priority. For example:

Region 1 16KB deep, starting from address 0x0000. No User mode access. 

Region 2 4KB deep, starting from address 0x3000. User mode access 
permissions are read-only. 

A User mode read to address 0x3010 falls into both protection regions 1 and 2, as shown 
in Figure 11-2. The conflict between the permissions of the overlapping protection 
regions causes the attributes of protection region 2 take effect. Although a User mode 
read to protection region 1 can cause a Data Abort, the overlapping protection region 2 
permits the read to 0x3010.

Figure 11-2 Overlapping protection regions

You can overlap protection regions to create a background region. For example, you 
might have a number of physical memory areas sparsely distributed across the 4GB 
address space. If a programming error occurs, the processor might issue an address that 
does not fall into any defined protection region, causing the MPU to abort the access. 
You can prevent this kind of abort by programming region 0 to be a 4GB background 
region. In this way, if the address does not fall into any of the other seven regions, the 
access is controlled by the attributes you specify for region 0.

0x4000

0x3010

0x3000

0x0000

Region 1, User: no access

Region 2, User: read-onlyRead-only User permission of region 2 overrides

no-User-access permission of region 1
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11.5 Fault priority

Table 11-2 lists MPU faults in order of priority, from highest to lowest.

The values in the domain field are invalid when the fault occurs before the MPU reads 
the domain field from a page table descriptor. Any abort masked by the priority 
encoding can be regenerated by fixing the primary abort and restarting the instruction.

Table 11-2 MPU faults

Priority Fault type
Status
[10], [3:0]

Domain FAR

Highest Imprecise external abort 1, b0110 Invalid Valida

a. The CP15 c6 Fault Address Register reflects the address of the load or store to which 
the imprecise abort is attached, not the address of the external abort.

Alignment fault 0, b0001 Invalid Valid

MPU miss 0, b0000 Invalid Valid

Access permission fault 0, b1101 Valid Valid

Nontranslation precise external abort 0, b1000 Valid Valid

Lowest Debug breakpoint or watchpoint 0, b0010 Valid Valid
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11.6 MPU aborts and external aborts

The MPU generates aborts on MPU faults and also makes the properties of both precise 
and imprecise external aborts visible.

11.6.1 MPU faults

When the MPU detects a fault during any memory access, it generates a Prefetch Abort 
or a Data Abort, and the integer unit enters the Prefetch Abort handler or the Data Abort 
handler. The MPU generates aborts on four types of MPU faults:

• alignment fault

• MPU miss

• permission fault

• debug breakpoint or watchpoint.

An alignment fault can be caused only by a data access. The A bit in the CP15 c1 
Control Register enables alignment fault checking. Alignment fault checking can be 
enabled even when the MPU is disabled.

An MPU miss or permission fault can be caused by a data access or an instruction 
access.

11.6.2 External aborts

The MPU performs external abort fault checking to enable you to observe the properties 
of both precise and imprecise external aborts. Precise aborts are always enabled. The 
IMA bit in the CP15 c15 Debug Override Register enables imprecise aborts. Imprecise 
aborts are enabled by default. See Chapter 16 External Aborts for a full explanation of 
external abort behavior.

11.6.3 Fault address registers and fault status registers

The CP15 c5 Instruction Fault Status Register contains the type of MPU fault or 
external abort that occurred.The CP15 c6 Instruction Fault Address Register contains 
the MVA of the access that caused the MPU fault or external abort. 

The CP15 c5 Data Fault Status Register contains the type of MPU fault or external abort 
that occurred. The CP15 c6 Data Fault Address Register contains the MVA of the 
access that caused the MPU fault or external abort.

 See Table 11-2 on page 11-9 for fault codes and priorities. 
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Chapter 12 
Caches

This chapter describes the ICache and DCache. It contains the following sections:

• About the caches on page 12-2

• Enabling the caches on page 12-3

• Cache and TCM access priorities on page 12-6

• Cache MVA and set/way formats on page 12-7

• Cache size support on page 12-9

• Cache support for external aborts on page 12-10

• Castout functionality, DCache only on page 12-11

• Cache support for MBIST on page 12-12

• Cache memory parity on page 12-13

• Code examples of CP15 cache operations on page 12-15.
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12.1 About the caches

DCache and ICache features include:

• DCache and ICache sizes are independently selectable at synthesis to 0KB or 
4KB-128KB in power-of-two increments with a minimum way size of 1KB.

• The virtual-index, virtual-tag DCache and ICache are addressed by MVA to avoid 
necessity of cache cleaning and invalidating on context switch.

• Four-way, set-associative, tag-based DCache and ICache.

• DCache and ICache line length is eight words (32 bytes).

• Write-through and write-back DCache operations.

• Allocate on read-miss support. Critical-word-first cache refilling.

• Pseudorandom or round-robin replacement in DCache and ICache.

• Support for streaming data and instructions.

• DCache and ICache Lockdown Registers enable control over which cache ways 
are used for allocation on a linefill, providing a mechanism for both lockdown and 
controlling cache pollution.

• The DCache stores the PA tag corresponding to each DCache entry in the tag 
RAM if the cache line resides within a write-back region of memory as specified 
by the C and B bits in the page descriptor. The PA tag is used during cache line 
write-backs, in addition to the virtual address tag stored in the tag RAM. This 
means that the MMU is not involved in DCache write-back operations, removing 
the possibility of TLB misses related to the write-back address.

• Cache maintenance operations for maintaining cache coherency:

— invalidation of the entire DCache or ICache

— invalidation of regions of the DCache or ICache

— cleaning and invalidation of the entire DCache

— cleaning and invalidation of regions of the DCache

— generation of parity bits for the tags and data/instructions.

• Support for precise aborts on linefills and imprecise aborts on castouts.
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12.2 Enabling the caches

Reset invalidates all ICache and DCache entries and disables the caches. You can 
enable either cache or both caches by writing to the I, C, and M bits in the CP15 c1 
Control Register.

12.2.1 Enabling the ICache

Table 12-1 shows how the I and M bits control the ICache when the ARM1026EJ-S 
processor is configured for MMU operation. 

Table 12-2 shows how the I and M bits control the ICache when the ARM1026EJ-S 
processor is configured for MPU operation.

Table 12-1 Enabling the ICache with the processor configured for MMU operation

I M ICache configuration

0 0 ICache and MMU disabled. All instruction fetches from external memory.

0 1 Cache disabled. MMU enabled. All instruction fetches from external memory. MMU checks access permission. 
Page entry controls VA-MVA-PA translation.

1 0 ICache enabled. MMU disabled. All instruction fetches cachable. No protection checks. VA = MVA = PA.

1 1 ICache and MMU enabled. MMU checks access permission. Page entry controls VA-MVA-PA translation. C 
bit in page table descriptor controls instruction cachability:
1 = Instructions cachable. Read from ICache on cache hit. Linefill on cache miss.
0 = Instructions noncachable.

Table 12-2 Enabling the ICache with the processor configured for MPU operation

I M ICache configuration

0 0 Cache and MPU disabled. All instruction fetches from external memory.

0 1 Cache disabled. MPU enabled. All instruction fetches from external memory. MPU checks access permission. 
VA = PA.

1 0 ICache enabled. MPU disabled. All instruction fetches cachable with no protection checks. VA = PA.

1 1 ICache and MPU enabled. MPU checks access permission. VA = PA. Cn bit in CP15 c2 ICache Configuration 
Register controls instruction cachability:
1 = Instructions cachable. Read from ICache on cache hit. Linefill on cache miss.
0 = Instructions noncachable.
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12.2.2 Enabling the DCache

Table 12-3 shows how the C and M bits control the DCache when the ARM1026EJ-S 
processor is configured for MMU operation. 

Table 12-4 shows how the C and M bits control the DCache when the ARM1026EJ-S 
processor is configured for MPU operation.

Table 12-3 Enabling the DCache with the processor configured for MMU operation

C M DCache configuration

0 0 DCache and MMU disabled. All data accesses in external memory.

0 1 DCache disabled. MMU enabled. All data accesses in external memory. MMU checks access permission. Page 
entry controls VA-MVA-PA translation.

1 0 DCache enabled. MMU disabled. All data accesses noncachable. No access permission checks. 
VA = MVA = PA.

1 1 DCache and MMU enabled. MMU checks access permission. Page entry controls VA-MVA-PA translation. C 
bit in page table descriptor controls data cachability:
1 = Data cachable. Read from DCache on cache hit. Linefill on cache miss.
0 = Data noncachable. Read from external memory.
B bit in page table descriptor controls data bufferability:
1 = Data bufferable. Writes are buffered stores to external memory. Buffered writes that hit in DCache update 
cache. Buffered writes to write-through region update external memory even on cache hit.
0 = Data nonbufferable. Writes are nonbuffered stores to external memory.

Table 12-4 Enabling the DCache with the processor configured for MPU operation

C M DCache configuration

0 0 DCache and MPU disabled. All data accesses in external memory.

0 1 DCache disabled. MPU enabled. Data read from external memory. MPU checks access permission. VA = PA.

1 0 DCache enabled. MPU disabled. All data accesses noncachable. No access permission checks. 
VA = MVA = PA.

1 1 DCache and MPU enabled. MPU checks access permission. No address translation. Page descriptor C bit in 
page table descriptor controls data cachability:
1 = Data cachable. Read from DCache on cache hit. Linefill on cache miss.
0 = Data noncachable. Read from external memory.
B bit in page table descriptor controls data bufferability:
1 = Data bufferable. Writes are buffered stores to external memory. Buffered writes that hit in DCache update 
cache. Buffered writes to write-through region update external memory even on cache hit.
0 = Data nonbufferable. Writes are nonbuffered stores to external memory.
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Table 12-5 shows how the C and B bits in the MMU or MPU affect the DCache when 
the C and M bits in the CP15 c1 Control Register are set. 

Table 12-5 Enabling data caching and buffering with the C and B bits

Ca Bb DCache configuration

0 0 Accesses noncachable and nonbufferable. Read from external memory. Write as nonbuffered stores to 
external memory.

0 1 Accesses noncachable and bufferable. Read from external memory. Writes are buffered stores to external 
memory.

1 0 Write-through. Accesses cachable. Read from DCache on read hit. Linefill on read miss. Write to DCache 
and buffered store to external memory on write hit. Buffered store to external memory on write miss. 

1 1 Accesses cachable. Read from DCache on read hit. Linefill on read miss. Write only to DCache on write hit. 
Buffered store to external memory on write miss.

a. When using the MMU, the C bit is the cachable bit in the page table descriptor. When using the MPU, the C bit is the cachable 
bit in the CP15 c2 DCache Configuration Register.

b. When using the MMU, the B bit is the bufferable bit in the page table descriptor. When using the MPU, the B bit is the 
bufferable bit in the CP15 c3 Write Buffer Control Register.
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12.3 Cache and TCM access priorities

Table 12-6 shows the ICache and ITCM access priorities. Addresses in the ITCM have 
the highest priority. 

Table 12-7 shows the DCache and DTCM access priorities. The Harvard TCM and 
cache arrangement requires that data reads and writes access the ITCM for both reads 
and writes.

Table 12-6 Priorities of instruction accesses to the TCMs and caches

Address
in ITCM
region?

Address
in DTCM
region?

C bit in page
descriptor set?

V6 architecture
behavior

ARM1026EJ-S
processor behavior

Yes Yes Don’t care Unpredictable Access ITCM

Yes No Yes Unpredictable Access ITCM

Yes No No Access ITCM Access ITCM

No Don’t care Yes Access ICache Access ICache

No Don’t care No Access external 
memory

Access external 
memory

Table 12-7 Priorities of data accesses to the TCMs and caches

Address
in ITCM
region?

Address
in DTCM
region?

C bit in page
descriptor set?

V6 architecture
behavior

ARM1026EJ-S
processor behavior

Yes Yes Don’t care Unpredictable Access ITCM

No Yes Yes Unpredictable Access DTCM

No Yes No Access DTCM Access DTCM

Yes No Yes Unpredictable Access ITCM

Yes No No Access ITCM Access ITCM

No No Yes Access DCache Access DCache

No No No Access external 
memory

Access external 
memory
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12.4 Cache MVA and set/way formats

Figure 12-1 shows the structure of the virtually-indexed and virtually-addressed cache.

Figure 12-1 Cache read block diagram

The index value selects the four tags in a set of the four-way set-associative cache. The 
number of tags in a way is the number of sets. 
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12.4.1 MVA format

Table 12-8 shows the number of sets for each cache size. 

Cache operations in MVA format on page 3-38 gives complete details about cache 
operations in MVA format.

12.4.2 Set/way format

Set/way format on page 3-39 gives complete details about cache operations in set/way 
format.

Table 12-8 Cache size and number of sets

Cache size Sa

a. S = log2 of the number of cache sets, 
which is the number of address bits 
required to access all sets.

Number of sets

4KB 5 32

8KB 6 64

16KB 7 128

32KB 8 256

64KB 9 512

128KB 10 1024
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12.5 Cache size support

The ARM1026EJ-S processor supports independent DCache and ICache sizes of 0KB 
or 4KB-128KB in power-of-two increments as configured by the DCACHESIZE[3:0] 
and ICACHESIZE[3:0] pins. Table 12-9 lists the cache sizes.

The associativity is fixed at 4, which yields a minimum way size of 1KB with a 4KB 
cache.

12.5.1 0KB caches

As shown in Table 12-9, implementing either DCACHESIZE[3:0] or 
ICACHESIZE[3:0] with any value outside the range b0011 to b1000 results in a cache 
size of 0KB. Implementing a cache size of 0KB results in the following:

• The cache performs linefills but never attempts to write the lines to the RAMs. 
Streaming is still supported as the filling line is kept in an internal buffer until the 
next linefill is started.

• Sequential accesses to the same cache line do not result in further linefills, as the 
data/instructions are returned from the internal buffer.

• The 0KB configuration offers a slight performance increase over running in 
noncachable mode. This is especially true in the DCache, where noncachable 
reads are done as single transfers on the AHB.

• The RAM banks can be removed and the inputs from the RAMs to the cache 
controller can be tied to 0.

Table 12-9 ICache and DCache size configurations

I/DCACHESIZE[3:0] I/DCache size

b0011 4KB

b0100 8KB

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB

All other values 0KB
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12.6 Cache support for external aborts

The caches support external aborts on linefills and castouts as either precise or 
imprecise as shown in Table 12-10. 

12.6.1 Aborts on linefills

A linefill consists of four double-word transfers from the BIU to the ICache or DCache. 
Each of these transfers can have an external abort attached. The following rules cover 
cache behavior when dealing with external aborts:

• An abort on the requested (first returned) doubleword of a linefill or a 
double-word being streamed out of the caches causes the caches to indicate an 
abort.

For a DCache linefill, this results in an exception. For an ICache linefill, the 
generation of an exception depends on whether the instruction returned actually 
gets executed by the core.

• An abort on any doubleword of a linefill invalidates the cache line and prevents 
the update of the cache RAMs. Any subsequent access to the same line results in 
another linefill.

• An abort on a linefill is tightly coupled to the data or instructions and is therefore 
treated as a precise exception (IFAR/DFAR) holds the correct address for the 
access.

12.6.2 Aborts on evictions

Evictions occur either when the selected cache line is both valid and dirty or when CP15 
clean operations are used.

Because castouts are essentially buffered writes, it is not possible to back-annotate an 
external abort to a specific address. Castouts and buffered writes in general are already 
completed from the program and processor state perspective. Any external abort 
attached to a castout is forwarded by the DCache and signaled as an imprecise external 
abort on the next valid data access. No castouts occur from the ICache.

Table 12-10 Aborts on linefills and castouts

Abort ICache Dcache

Linefill Precise Precise

Castout - Imprecise
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12.7 Castout functionality, DCache only

A castout always writes the entire cache line back to external memory. See Chapter 6 
Bus Interface for a description of the transfer characteristics of a DCache castout.
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12.8 Cache support for MBIST

The caches are designed to minimize the number of logic gates between the cache 
controller and the RAMs in Memory Built-In Self Test (MBIST) implementations. 
When the ARM1026EJ-S processor is held in reset, the caches drive logic zeros on all 
the cache output pins going to the RAM banks. This enables the use of OR gates in the 
signal path instead of multiplexors, resulting in improved timing for these paths.
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12.9 Cache memory parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis. 
If a byte has an even number of 1s, the parity generator appends another 1 to the byte 
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not 
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing 
and handling the parity bit information is the responsibility of the system designer. If 
parity error detection is not required, the parity outputs can remain unconnected.

12.9.1 ICache parity interface

Parity bit generation is provided for both the tag and data interfaces of the ICache. 
Table 12-11 lists the ICache data bytes and their parity bits.

Table 12-11 ICache parity interfaces

Data byte Parity bit I/O

ICache tag parity interface

ICTAGWD[21:16]a

a. Because the data in this field has only six bits, the 
resulting code word has seven bits, not nine.

ICTAGPAR[2] O

ICTAGWD[15:8] ICTAGPAR[1] O

ICTAGWD[7:0] ICTAGPAR[0] O

ICache data parity interface

ICDATAWDx[63:56] ICDATAPARx[7] O

ICDATAWDx[55:48] ICDATAPARx[6] O

ICDATAWDx[47:40] ICDATAPARx[5] O

ICDATAWDx[39:32] ICDATAPARx[4] O

ICDATAWDx[31:24] ICDATAPARx[3] O

ICDATAWDx[23:16] ICDATAPARx[2] O

ICDATAWDx[15:8] ICDATAPARx[1] O

ICDATAWDx[7:0] ICDATAPARx[0] O
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12.9.2 DCache parity interface

Parity bit generation is provided for both the tag and data interfaces of the DCache. 
Table 12-12 lists the DCache data bytes and their parity bits.

Table 12-12 DCache parity interfaces

Description Signal I/O

DCache tag parity interface

DCTAGWD[21:16]a

a. Because the data in this field has only six bits, the 
resulting code word has seven bits, not nine.

DCTAGPAR[2] O

DCTAGWD[15:8] DCTAGPAR[1] O

DCTAGWD[7:0] DCTAGPAR[0] O

DCache data parity interface

DCDATAWDx[63:56] DCDATAPARx[7] O

DCDATAWDx[55:48] DCDATAPARx[6] O

DCDATAWDx[47:40] DCDATAPARx[5] O

DCDATAWDx[39:32] DCDATAPARx[4] O

DCDATAWDx[31:24] DCDATAPARx[3] O

DCDATAWDx[23:16] DCDATAPARx[2] O

DCDATAWDx[15:8] DCDATAPARx[1] O

DCDATAWDx[7:0] DCDATAPARx[0] O
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12.10 Code examples of CP15 cache operations

This section provides code examples illustrating:

• Enabling and disabling caches

• Locking the ICache

• Cleaning the DCache

• Prefetching a line into the ICache on page 12-16.

12.10.1 Enabling and disabling caches

The following code example enables both caches simultaneously.

mrc p15, 0, r0, c1, c0, 0 ; read CP15 c1: CFG
orr r0, r0, #(1:SHL:2) ; set C bit
orr r0, r0, #(2:SHL:12) ; set I bit
mcr p15, 0, r0, c1, c0, 0 ; write CP15 c1: CFG

The following code example disables the DCache.

mrc p15, 0, r0, c1, c0, 0 ; read CP15 c1: CFG
bic r0, r0, #(1:SHL:2) ; clear C bit
mcr p15, 0, r0, c1, c0, 0 ; write CP15 c1: CFG

12.10.2 Locking the ICache

The following code example locks ways 0 and 1 of the ICache.

mov r0, #0x3 ; bits[3:0] is the base
and r0, r0, #0xf ; keep relevant bits
mrc p15, 0, r1, c9, c0, 1 ; read lockdown register
bic r1, r1, #0xf ; clear the lock bits
orr r0, r1, r0 ; write the lock bits
mcr p15, 0, r0, c9, c0, 1 ; C9,C0 = lockdown, 1 = icache

12.10.3 Cleaning the DCache

The code examples in this section are based on a DCache size of 8KB, yielding a total 
of 64 sets. The associativity is fixed at four ways.

The following code example cleans a line (performs a castout if the line is dirty) in the 
DCache using the set/way format.

; clean way 2 line/set 7
mov r0, #0x7, LSL #0x5 ; set in bits[10:5]
orr r0, r0, #0x2, LSL #30 ; way in bits[31:30]
mcr p15, 0, r0, c7, c10, 2 ; C7,C10 = clean DCache, 2 = Set/Way;
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The following code example cleans a cache line using the MVA format.

; clean line at address in register 5
mov r0, r5, LSR #0x5 ; clear bits[4:0]
mov r0, r0, LSL #0x5 ; r0 now points to start of line
mcr p15, 0, r0, c7, c10, 1 ; C7,C10 = clean DCache, 1 = MVA

The following code example cleans the entire DCache using a loop for shortest 
execution time (the test and clean approach).

; the test and clean continues until the entire Dcache
; is clean, which sets the Z flag and exit the loop

tc_loop:
mrc p15, 0, r0, c7, c10, 3 ; test and clean
bne tc_loop

12.10.4 Prefetching a line into the ICache

The following code example prefetches a line into the ICache.

; use the address in r0
mcr p15, 0, r0, c7, c13, 1 ; C7,C13 = prefetch, 1 = MVA

Note

 The prefetch instruction uses the MVA. Because no instructions are forwarded to the 
prefetch unit, no Prefetch Abort can ever occur as a result of a prefetch operation. If the 
prefetch operation receives an external abort, the line is simply marked as invalid and 
is never written to the ICache.
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Chapter 13 
Pending Write Buffer

This chapter describes the pending write buffer and the eviction write buffer. It contains 
the following sections:

• About the pending write buffer on page 13-2

• External aborts on page 13-5.
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13.1 About the pending write buffer

The ARM1026EJ-S pending write buffer buffers stores and loads before issuing them 
to the data AHB interface. Features of the pending write buffer include:

• up to eight address/data entries

• sequential address-detection logic

• separate eviction write buffer for evicted write-back data or CP15 clean operation 
data

• CP15 MCR drain write buffer instruction

• Ability to enable or disable buffered stores with CP15 MCR instructions.

13.1.1 Pending write buffer entries

The pending write buffer functions as an eight-entry queue. It has a unique read and 
write pointer that indicates the current entry and the next entry to be written. Each entry 
contains:

• physical address of the entry

• write data if the entry is a store

• memory access size information

• a locked indicator

• a privileged/user indicator

• level 2 cachable and bufferable bits

• a sequential/nonsequential indicator

• a read/write indicator

• a valid bit to mark valid data to be transferred to the AHB.

13.1.2 Sequential address detection

The ARM1026EJ-S processor examines the contents of the last stored entry in the 
pending write buffer and the next item to be stored in the buffer to determine if the item 
to be inserted is sequential. The next item is sequential only if all of the access 
attributes, including endianness, match. If the access is sequential, the processor can 
then configure the AHB for an incrementing burst transfer. Dynamically determining 
sequentiality enables 8-bit, 16-bit, 32-bit, and 64-bit data stores to be marked as 
sequential. 

The maximum AHB burst length is 1KB. Example 13-1 on page 13-3 is a code 
sequence that copies a block of data from the DCache to an external AHB block of 
memory. The HCLK:CLK ratio must be at least 2:1. The code resides in a cachable 
area of memory.
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Example 13-1 1KB AHB burst

; clock code to generate HCLK:CLK ratio of 2:1 or greater

LDR r0, = 0x0000_0400 ; starting address 
LDR r9, = 0x0010_0400 ; target address

loop LDMIA r0!, {r1-r8} ; read data from cache
STMIA r9!, {r1-r8} ; store data into buffer
CMP r0, #0x1000 ; ending address
BNE loop

13.1.3 Noncachable loads and nonbuffered stores

The pending write buffer drains entries in the same order that they enter the buffer. Both 
nonbuffered writes and noncachable loads are blocking in the ARM1026EJ-S 
processor. The in-order draining and natural blocking design of the pending write buffer 
enables it to handle nonbuffered stores as well as noncachable loads.

Because a ARM1026EJ-S swap operation is a noncachable load followed by a 
nonbuffered store, the pending write buffer also handles swap operations.

13.1.4 Eviction write buffer

Because the eviction write buffer is separate from the pending write buffer, the two 
buffers operate in parallel. To ensure memory coherency, draining of the eviction write 
buffer always has a higher priority than draining of the pending write buffer. For 
example, in a 64-bit AHB system, a four-beat incrementing burst to drain the eviction 
write buffer precedes an eight-beat incrementing burst of buffered stores.

13.1.5 Draining the pending write buffer

CP15 c7 provides support for draining the contents of the pending write buffer. 
Explicitly draining the pending write buffer is necessary for any form of self-modifying 
code or synchronization. Before draining the pending write buffer, the drain write 
buffer instruction waits until the eviction write buffer drains.

The pending write buffer also supports self-draining. As soon as an entry is valid, the 
pending write buffer tries to drain its contents.
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13.1.6 Enabling and disabling buffered stores

To aid debug software, you can disable the pending write buffer by clearing the W bit 
in the CP15 c15 Debug Override Register. This CP15 control of the pending write 
buffer is independent of the MMU or MPU bufferable and cachable attributes. Use a 
read-modify-write sequence as shown in Example 13-2. 

Example 13-2 Disabling buffered stores

MRC p15, 0, r0, c15, c0, 0
BIC r0, r0, #0x1000 ; clear W bit
MCR p15, 0, r0, c15, c0, 0

This example forces all buffered stores to be nonbuffered stores. In effect, the write 
buffer does not hold any stores and immediately forces the ARM1026EJ-S processor to 
wait for an AHB response.

Example 13-3 shows a sequence for enabling buffered stores. 

Example 13-3 Enabling buffered stores

MRC p15, 0, r0, c15, c0, 0
ORR r0, r0, #0x1000 ; set W bit
MCR p15, 0, r0, c15, c0, 0

This example allows buffered stores to queue in the pending write buffer. Hence, the 
ARM1026EJ-S processor no longer has to wait for an AHB response.
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13.2 External aborts

Pending write buffer entries can generate two different types of abort conditions:

• imprecise aborts on buffered writes

• precise aborts on noncachable loads and nonbufferable stores.

The pending write buffer handles both abort conditions identically. The external abort 
for any in the pending write buffer entry returns to the MMU or MPU when the AHB 
signals completion of that entry. The MMU or MPU then signals an imprecise or precise 
abort to the ARM1026EJ-S processor. See Chapter 16 External Aborts for a full 
explanation of external abort behavior.
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Chapter 14 
Interrupt Latency

This chapter describes interrupt latency. It contains the following sections:

• About interrupt latency on page 14-2

• Worst-case interrupt latency on page 14-3

• Tuning interrupt latency on page 14-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 14-1



Interrupt Latency 
14.1 About interrupt latency

When calculating the interrupt latency of the ARM1026EJ-S processor, you have to 
consider:

• the worst possible sequence of events that can affect the total cycle count, 
including multiple linefills, hardware page table walks, and cache line evictions

• AHB width.
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14.2 Worst-case interrupt latency

The code sequence and interrupt in Example 14-1 illustrate the worst possible interrupt 
latency scenario in the ARM1026EJ-S processor. 

Example 14-1 Worst-case interrupt latency scenario

STMIA rA, {r0-r15} ; fill write buffer

LDMIA rB, {r0-r15} ; linefill crossing three cache lines, each having
; castout data, two level 2 tablewalks, interrupt
; appears during LDMIA

; interrupt taken

Table 14-1 shows the cycle counts of the events caused by the sequence in 
Example 14-1. The cycle count numbers are only for the ARM1026EJ-S processor. 
They do not include any latency of a partner-designed memory system. From 
Table 14-1, you can easily extract the worst-case numbers for interrupt latency.

Table 14-1 Worst-case interrupt latency cycle count

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles 
for 32-bit bus Event

Level 2 table walk 17 4H 0 First table walk for LDMIA rB

Castout drain 1 5H 4H Castout drain (old linefill)

Write buffer drain (full) 0 8H 8H Drain for STMIA rA

Linefill and castout 5 5H 4H First linefill for LDMIA rB

Castout drain 1 5H 4H First castout for LDMIA rB

Linefill and castout 5 5H 4H Second linefill for LDMIA rB

Castout drain 1 5H 4H Second castout for LDMIA rB

Level 2 table walk 17 4H 0H Second table walk for LDMIA rB

Linefill and castout 5 5H 4H Third linefill for LDMIA rB

Total 52 46H 32H

Interrupt serviced Total for 32-bit AHB = 52 + 46H + 32H = 130 for 1:1 HCLK to CLK ratio
Total for 64-bit AHB = 52 + 46H = 98 for 1:1 HCLK to CLK ratio.
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14.3 Tuning interrupt latency

Table 14-2 and Table 14-3 on page 14-5 show examples of tuning interrupt latency for 
both 1:1 and 4:1 HCLK-to-CLK ratios. The examples are based on single-cycle 
accessible RAM. Each table has four examples, three of which are examples of tuning 
a system to decrease interrupt latency:

• Line 1 describes the worst possible interrupt latency case in which:

— LDM length is not restricted

— TLB entries are not locked

— memory is write-back.

• Line 2 describes the case in which:

— LDM length is restricted to nine registers

— TLB entries are not locked

— memory is write-through.

• Line 3 describes the case in which:

— LDM length is not restricted

— TLB critical entries are locked

— memory is write-through.

• Line 4 describes the case in which:

— LDM length is restricted to nine registers

— TLB critical entries are locked

— memory is write-through.

Table 14-2 shows examples of tuning interrupt latency with a 1:1 HCLK-to-CLK ratio.

Table 14-2 Tuning interrupt latency with a 1:1 HCLK-to-CLK ratio

HCLK:CLK = 1:1

Transfer cycles Improvement over worst case

32-bit
AHB

64-bit
AHB

32-bit
AHB

64-bit
AHB Total cycles

Worst case 130 98 1.00x 1.00x 52 + 46H + 32H

LDM of only nine registers 96 72 1.38x 1.36x 36 + 36H + 24H

TLB locking
Write-through cache

58 38 2.24x 2.57x 15 + 23H + 20H

LDM of only nine registers
TLB locking
Write-through cache

44 28 2.95x 3.50x 10 + 18H + 16H
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Table 14-3 shows examples of tuning interrupt latency with a 4:1 HCLK-to-CLK ratio.

Tables Table 14-4, Table 14-5 on page 14-6, and Table 14-6 on page 14-6 show the 
cycle count calculation of each of the tuning examples. 

Table 14-4 shows the cycle count after restricting the LDM to nine registers.

Table 14-3 Tuning interrupt latency with a 4:1 HCLK-to-CLK ratio

HCLK:CLK = 4:1

Transfer cycles Improvement over worst case

32-bit
AHB

64-bit
AHB

32-bit
AHB

64-bit
AHB Total cycles

Worst case 441 313 1.00x 1.00x 49 + 66H + 32H

LDM of only nine registers 338 242 1.30x 1.29x 34 + 52H + 24H

TLB locking
Write-through cache

215 135 2.05x 2.31x 15 + 30H + 20H

LDM of only nine registers
TLB locking
Write-through cache

162 98 2.91x 3.19x 10 + 22H + 16H

Table 14-4 LDM restricted to nine registers

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles 
for 32-bit bus Event

Level 2 table walk 17 4H 0 LDM part 1

Castout drain 1 5H 4H

Write buffer drain (full) 0 8H 8H

Linefill and castout 5 5H 4H LDM part 2

Castout drain 1 5H 4H

Level 2 table walk 17 4H 0 LDM part 3 (PC)

Linefill and castout 5 5H 4H

Total 36 36H 24H

Interrupt serviced Total for 32-bit AHB = 36 + 36H + 24H = 96
Total for 64-bit AHB = 36 + 36H = 72
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Table 14-5 shows the cycle count after locking TLB critical entries and using 
write-through caches.

Table 14-6 shows the cycle count after restricting the LDM to nine registers, locking 
TLB critical entries, and using write-through caches.

Table 14-5 TLB locking and write-through caches

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles 
for 32-bit bus Event

Write buffer drain (full) 0 8H 8H

Linefill 5 5H 4H LDM part 1

Linefill 5 5H 4H LDM part 2

Linefill 5 5H 4H LDM part 3 (PC)

Total 15 23H 20H

Interrupt serviced Total for 32-bit AHB = 15 + 23H + 20H = 58
Total for 64-bit AHB = 15 + 23H = 38

Table 14-6 LDM restricted to nine registers, TLB locking, and write-through caches

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles 
for 32-bit bus Event

Write buffer drain (full) 0 8H 8H

Linefill 5 5H 4H LDM part 1

Linefill 5 5H 4H LDM part 3 (PC)

Total 10 18H 16H

Interrupt serviced Total for 32-bit AHB = 10 + 18H + 16H = 44
Total for 64-bit AHB = 10 + 18H = 28
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Chapter 15 
Noncachable Instruction Fetches

This chapter describes noncachable instruction fetches in the ARM1026EJ-S processor. 
It contains the following sections:

• About noncachable instruction fetches on page 15-2

• External aborts on page 15-4.
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15.1 About noncachable instruction fetches

The ARM1026EJ-S processor performs speculative noncachable instruction fetches to 
increase performance. Speculative instruction fetching is enabled at reset. Disable 
speculative prefetching by setting CP15 c15 Debug Override Register bit 16, DNCP 
(see CP15 c15 Debug Override Register on page 3-53). When speculative prefetching 
is disabled, only instruction fetches issued directly by the ARM1026EJ-S processor 
result in instruction fetches on the AHB interface.

Noncachable code is sometimes used for boot loaders of operating systems and for 
preventing cache pollution. However, it is recommended that the ICache be used 
whenever practical.

15.1.1 Prefetch buffer topology

The noncachable prefetch buffer holds eight 32-byte-aligned instructions, the 
equivalent of a single cache line of noncachable instructions. The instructions remain 
in the buffer until the fetch requirements do not match the instructions in the buffer. At 
that time, the buffer is invalidated or flushed and refilled with the instructions from the 
target address.

15.1.2 Streaming

The noncachable prefetch buffer supports instruction streaming. When enabled, it 
always issues a request to the instruction AHB interface for the requested word. After 
receiving the requested word, it continues streaming subsequent requested instructions 
to the ARM1026EJ-S processor as long as those instructions match the buffer 
addresses.

15.1.3 Invalidating the prefetch buffer

The prefetch buffer is invalidated when:

• the CP15 c15 Debug Override Register bit 16, DNCP, is set

• the target instruction address does not match the buffer address

• a CP15 operation that affects the prefetch buffer is executed, for example:

— the ICache is enabled

— the MMU is enabled

• an IMB operation is performed

• an external abort occurs during filling of the buffer.
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15.1.4 Self-modifying code

The ARM1026EJ-S processor does not support self-modifying code. Self-modifying 
code must flush the noncachable prefetch buffer. See Example 15-1.

Example 15-1 Using an IMB with self-modifying code

LDMIA r0, {r1-r4} ; load code sequence into r1-r4
ADR r0, self_mod_code

STMIA r0, {r1-r4} ; store code sequence to nonbuffered region

MCR p15, 0, r0, c7, c14, 1 ; clean invalidate cache line(s)
MCR p15, 0, r0, c7, c10, 4 ; drain instructions from buffers
IMB ; flush prefetched instructions

self_mod_code:
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15.2 External aborts

The noncachable prefetch buffer supports precise external aborts. Any access that 
occurs when the buffer is disabled is a blocking access. The buffer waits for a response 
from the instruction AHB and then returns the response to the ARM1026EJ-S processor 
through the MMU or MPU as a Prefetch Abort.

When the prefetch buffer is enabled, an external abort is forwarded only with the critical 
word. Any external abort during the fill of the buffer causes the buffer to be invalidated. 
The buffer then refills based on the critical word of the pending instruction fetch 
address. See Chapter 16 External Aborts for a full explanation of external abort 
behavior.
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External Aborts

This chapter describes external aborts in the ARM1026EJ-S processor. It contains the 
following sections:

• About external aborts on page 16-2

• External abort reporting on page 16-3

• External abort rules of conduct on page 16-4.
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16.1 About external aborts

The ARM1026EJ-S processor supports external aborts for all AHB bus transfer types, 
including any type of cachable, noncachable, bufferable, or nonbufferable load or store 
operation or instruction fetch. There are two types of external aborts:

• Precise external aborts

• Imprecise external aborts.

16.1.1 Precise external aborts

When the external abort is precise, all instructions prior to the external abort complete 
execution. The aborted instructions that follow are recoverable and can restart after the 
Data Abort or Prefetch Abort exception handler processes the abort. 

The ARM1026EJ-S processor supports precise external aborts on the following 
operations:

• a cachable load miss that causes a linefill

• a noncachable load

• a nonbufferable store

• an instruction fetch, either cachable or noncachable

• a read-lock-write sequence to noncachable memory

• a level 1 or level 2 MMU descriptor fetch.

16.1.2 Imprecise external aborts

When the external abort is imprecise, recoverability of instructions is not guaranteed. 
The ARM1026EJ-S processor follows an explicit protocol for imprecise aborts. After 
the processor recognizes the imprecise abort, it aborts the next load or store instruction. 
The CP15 c6 Data Fault Status Register reflects the generation of an imprecise abort.

The ARM1026EJ-S processor supports imprecise external aborts for the following 
operations:

• any buffered store

• any DCache castout.

The external abort granularity is 64 bits and is derived from the width of the internal 
data bus of the prefetch unit and LSU. External abort granularity is not affected by the 
AHB bus width configuration.
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16.2 External abort reporting

Table 16-1 summarizes how the ARM1026EJ-S processor reports external aborts.

The status field in the CP15 c5 Fault Status Register indicates whether the external abort 
is precise or imprecise. If the external abort is precise, the CP15 c6 Fault Address 
Register reflects the address of the load, store, or fetch that aborted. If the external abort 
is imprecise, the Fault Address Register reflects the address of the load or store to which 
an imprecise abort has been attached, that is, some subsequent load or store instruction. 
This is not the address produced by the instruction that actually caused the fault. 

As Table 16-1 shows, only buffered stores and cache castouts generate imprecise 
external aborts.

Table 16-1 External abort summary

Type of cache region Load aborts Store aborts Castout aborts

NCNB Precise Precise N/A

NCB Precise Imprecise N/A

CNB (write-through) Precise Imprecise Imprecise

CB (write-back) Precise Imprecise Imprecise
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16.3 External abort rules of conduct

The ARM1026EJ-S rules governing external abort behavior define:

• how the processor handles data request and instruction fetch external aborts

• how the processor reacts to critical doubleword versus noncritical doubleword 
filling.

Note
 The AHB instruction bus and data bus are independently configurable to widths of 64 
bits or 32 bits, but external abort granularity is always 64 bits. The term critical 
doubleword refers to all data or instructions in the doubleword that contains the 
requested data or instruction that initiated a cache linefill. The request might be for a 
byte, halfword, word, or doubleword.

The term noncritical doubleword refers to any doubleword in the cache line that does 
not contain the data or instruction that initiated a cache linefill. A noncritical 
doubleword might or might not contain the requested data or instruction. 

Doubleword is used to convey the 64-bit packaging by the BIU of data and instructions 
from the AHB and the minimum granularity of external abort resolution. Doubleword 
does not imply 64-bit requests from the prefetch unit or LSU.

16.3.1 AHB error on the critical doubleword of a cache linefill

If the critical doubleword of the requested data or instruction for a cache linefill 
generates an AHB error, an external abort is reported in a precise and recoverable 
manner. Any doubleword received as part of the linefill after the external abort on the 
critical doubleword is never marked valid. Following the return of the precise external 
abort, the line is marked invalid.

In terms of their error response behavior, the following transfers are treated as critical 
doubleword requests, and an external abort on them is reported in a precise manner:

• noncachable load

• nonbufferable store

• read-lock-write swap operation

• MMU hardware page table walk.

16.3.2 AHB error on a noncritical doubleword of a cache linefill

There are two categories of noncritical doubleword error behavior:

• when the ARM1026EJ-S processor explicitly requests a noncritical doubleword 
in the currently filling cache linethat causes the AHB error during the linefill
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• when the ARM1026EJ-S processor does not explicitly request the noncritical 
doubleword that causes the AHB error during the linefill.

Noncritical doubleword, explicitly requested

If a request is explicitly made by a data load or instruction fetch for a doubleword that 
is contained in the currently filling cache line, and the request externally aborts, the 
abort is reported to the ARM1026EJ-S processor in a precise and recoverable manner. 
This includes streaming data or instructions during the fill in progress. The filling line 
in the cache or noncachable prefetch engine is always invalidated upon receipt of an 
external abort.

Noncritical doubleword, not explicitly requested

For a data or instruction doubleword received in the linefill that aborts and is not 
explicitly requested by the load/store unit or the prefetch unit, an AHB error response 
immediately marks the filling line as invalid, both in the cache and the noncachable 
prefetch engine. No state is saved in the processor for any nonrequested, noncritical 
doubleword AHB error response. If at a later time, the aborted doubleword is explicitly 
requested, it then causes a new cache linefill and a precise external abort can be returned 
for that request.

16.3.3 Store modification of a filling cache line

Any data store instruction that hits in the filling cache line and is executed prior to the 
completion of the linefill is always written to the external write buffer and the linefill 
buffer. Store hits to the filling line must be forced onto AHB through the external write 
buffer to prevent loss of store data due to invalidation of the linefill buffer as a 
consequence of an external abort. This means that store hits to the filling line are 
effectively mapped as write-through, regardless of whether the filling line is 
write-through or write-back. This remapping occurs for the duration of the cache fill on 
AHB. Following the completion of the fill on AHB, this remapping is disabled. On 
completion of the linefill, it is known if the line was externally aborted and is invalid or 
valid.

16.3.4 Imprecise aborts due to buffered write or castout 

An external abort on either a buffered write or castout is always reported as an imprecise 
exception. This reporting procedure guarantees that an identified imprecise abort is not 
lost. The extension of the CPSR includes an imprecise abort mask. If the CPSR A bit is 
set, all imprecise aborts are recognized by the memory system, but no imprecise abort 
exception is raised by the ARM1026EJ-S processor. If the CPSR A bit is clear, the 
processor recognizes the imprecise abort exception. The CPSR A bit is automatically 
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set on entry into Abort, FIQ, and IRQ exception processing. When imprecise data aborts 
are masked by the CPSR A bit, the ARM1026EJ-S memory system holds information 
about the presence of a pending imprecise abort until the A bit is cleared. When the A 
bit is cleared, the processor takes the Abort exception.

To be able to recognize the imprecise abort exception, imprecise external aborts are 
captured and then subsequently applied to a future load or store instruction that crosses 
from the Execute pipeline stage to the Memory pipeline stage.

There are restrictions on attaching an imprecise external abort to future load or store 
instructions. Imprecise aborts cannot be attached to the following operations:

• any DCache preload operation, PLD

• any coprocessor operation, including CP15 or CP14

• any locked-write portion of a swap operation.

DCache preload operations and coprocessor operations are not allowed to abort. The 
locked write portion of a swap reports a precise abort in the locked-read portion of the 
swap. In an imprecise exception, the locked read is completed and cannot be tagged if 
the locked write is also tagged with an imprecise external abort exception.

When a load or store is detected after an imprecise abort on AHB is detected, the CP15 
c5 Fault Status Register indicates an imprecise external abort exception. The CP15 c6 
Fault Address Register indicates the address of the load or store to which the imprecise 
external abort is attached. This is not the address of the buffered write or castout that 
caused the imprecise exception.

The IMA bit in the CP15 c15 Debug Override Register enables and disables imprecise 
external aborts and acts as a static global override on top of the dynamic CPSR A bit. 

16.3.5 Instruction fetch behavior

Any AHB error response that occurs on an instruction fetch is always attached to the 
instruction upon which the AHB error response occurred. This results in a Prefetch 
Abort exception if and only if the instruction reaches the execute stage of the 
ARM1026EJ-S pipeline. See page A2-16 in the ARM Architecture Reference Manual 
for information on the behavior of instruction fetch exceptions.

Note
 External abort granularity is fixed at 64 bits. The minimum instruction prefetch abort 
resolution is two ARM instructions.
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Chapter 17 
Tightly-Coupled Memories

This chapter describes the Data and Instruction Tightly-Coupled Memories (DTCM 
and ITCM). It contains the following sections:

• About the tightly-coupled memories on page 17-2

• Programming the TCM on page 17-3

• Interface timing on page 17-10

• TCM parity on page 17-16.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-1



Tightly-Coupled Memories 
17.1 About the tightly-coupled memories

The ARM1026EJ-S processor supports both instruction and data TCMs. Accesses to 
the TCMs are deterministic and do not access the AHB. Therefore, you can use the 
DTCM and ITCM to store real-time, performance-critical code.

The features of the TCMs include:

• independent ITCM and DTCM sizes of 0KB or 4KB-1MB in power-of-two 
increments

• software visibility and programmability of TCM size, location, and enable

• boot control for ITCM

• data accesses to the ITCM

• simple SRAM-style interface supporting both reads and writes

• variable TCM wait state control

• control hook for DMA engine.

Note
 For forward compatability, software must program as noncachable and nonbufferable 
all MMU or MPU entries that map to TCM addresses.
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17.2 Programming the TCM

The CP15 c9 TCM Region Registers control both the instruction and data TCMs (see 
CP15 c9 DTCM and ITCM Region Registers on page 3-44). 

The Instruction TCM (ITCM) has two independent mechanisms for being programmed. 
The ITCM can be automatically programmed at reset when the INITRAM pin is HIGH 
and the VINITHI pin is LOW. Otherwise, the ITCM must be reprogrammed by by 
writing to the CP15 c9 ITCM Region Register.

The Data TCM (DTCM) can be programmed only by writing to the CP15 c9 DTCM 
Region Register.

The ITCM can be programmed and enabled using reset as shown in Table 17-1. 

Note
 The processor boots from the ITCM only when INITRAM is HIGH and VINITHI is 
LOW at reset. In all other configurations, the processor boots from external memory.

17.2.1 Data accesses to the ITCM

The ARM1026EJ-S processor supports accessing the ITCM using either load or store 
instructions. This is very useful for loading SWI and emulated instruction handler code 
into the ITCM. It is also useful for accessing PC-relative literal pools embedded into the 
instruction stream by the compiler.

Table 17-1 ITCM initialization

INITRAM VINITHI Behavior

0 0 ITCM and DTCM disabled.
Processor boots from vector address 0x00000000.

0 1 ITCM and DTCM disabled.
Processor boots from vector address 0xFFFF0000.

1 0 ITCM enabled. Region base 0x0. DTCM disabled.
Processor boots from preloaded code in ITCM. 

1 1 ITCM enabled. Region base 0x0. DTCM disabled.
Processor boots from vector address 0xFFFF0000.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-3



Tightly-Coupled Memories 
The ITCM is optimized for read accesses by the ARM1026EJ-S prefetch unit. If any 
data load or store instruction attempts to access the ITCM, the ITCM arbitrates and 
gives priority access to the prefetch unit. Any data load or store goes into a pending 
load/store queue in the ITCM to wait for access to the ITCM interface.

The depth of the ITCM queue is three entries. For data stores from the load/store unit, 
this is optimal for performance. A new store entry goes into the queue while an old entry 
is taken out. Any load access inserted into the queue stalls the ARM1026EJ-S processor 
until the load in the queue completes in the ITCM.

Any data operation that attempts to modify the instruction stream is classified as 
self-modifying code. The ITCM does not forward any data from a data access to any 
instruction fetch. It is the responsibility of the programmer to insert an IMB to force the 
ITCM queue to drain. An example of the code sequence to do this is shown in 
Example 17-1.

Example 17-1 ITCM self-modifying code

LDMIA r0, {r1-r10} ; load in instructions from RAM
ADR r0, new_code ; load address of new code
STMIA r0, {r1-r10} ; store out instructions to ITCM

MCR  p15, 0, r0, c7, c10, 4 ; drain all buffers in system
IMB ; invalidation instruction in ARM10 pipeline.

new_code:
NOP ; to be replace by STMIA
NOP

17.2.2 Simple SRAM interface

The DTCM and ITCM support both read and write operations. The TCM interface is 
designed to connect directly to Synchronous RAM (SRAM) with active-HIGH inputs 
and outputs. If an SRAM does not support active-HIGH inputs and outputs, you have 
to add external logic to produce active-HIGH inputs and outputs.

Caution
 The ARM1026EJ-S processor does not support floating outputs from synchronous or 
asynchronous RAM. Any RAM attached to the TCM interface that does not always 
drive its outputs can cause high current draw and damage the ARM1026EJ-S processor.
17-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Tightly-Coupled Memories 
The TCM interface drives its outputs in the Execute stage of the ARM1026EJ-S 
pipeline. This is shown in Figure 17-1 in which all control, address, and external stall 
and DMA requests are driven in the first cycle of the diagram. All read data must be 
driven in the cycle following, which corresponds to the Memory stage.

Figure 17-1 TCM interface timing

The TCM interface enables maximum design flexibility. A system operates the SRAM 
on the falling edge of the clock that drives the ARM1026EJ-S logic. This design 
balances the control and address outputs, as well as the data return path, by allowing the 
SRAM a full cycle for performing its read or write accesses from falling clock edge to 
falling clock edge.

RWBL

RnRW

RCS

CLK

E M

RWPAR

RWAIT

RRD

RWD

RADDR
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-5



Tightly-Coupled Memories 
The TCMs perform 8-bit, 16-bit, 32-bit, and 64-bit read and write operations. In write 
operations, the TCM interface exports byte write enables. Each chip select and byte 
enable maps to an explicit byte lane for the read and write data buses. Table 17-2 shows 
the mapping that must be used when connecting the TCM interface.

17.2.3 TCM wait state indicator

In addition to the the standard SRAM signals, the TCM interface includes a wait 
indicator. If the TCM cannot service a request in a single cycle, it must assert a wait 
signal to inform the ARM1026EJ-S processor that the TCM data is not available for 
reads, or that the write requires multiple cycles. Depending on the type of operation, the 
processor might stall. If a read operation is being performed, and the TCM indicates a 
wait state is desired, then the processor stalls until the read data returns. If a write 
operation is being performed, a write stall occurs only when the pending write buffer is 
filled, or a subsequent read operation is performed during the stall.

The ARM1026EJ-S processor acknowledges the RWAIT stall only if a TCM request 
is being presented. If the TCM is disabled, or no TCM request is being made, the 
processor ignores the wait signal. A TCM request might be present during the waited 
cycle. It is possible for a read or write to be pending on the TCM interface during a 
waited cycle. It is also possible for the TCM address and control outputs to change 
during the waited cycle. Due to timing restrictions, it is not possible to prevent 
unauthorized reads to the TCM. 

Table 17-2 TCM mapping of chip select and byte enable mapping

Chip select Byte lane Write data Read data

RCS[0] RWBL[0] RWD[7:0] RRD[7:0]

RWBL[1] RWD[15:8] RRD[15:8]

RWBL[2] RWD[23:16] RRD[23:16]

RWBL[3] RWD[31:24] RRD[31:24]

RCS[1] RWBL[4] RWD[39:32] RRD[39:32]

RWBL[5] RWD[47:40] RRD[47:40]

RWBL[6] RWD[55:48] RRD[55:48]

RWBL[7] RWD[63:56] RRD[63:56]
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17.2.4 TCM pending write buffer

The TCM pending write buffer holds a maximum of three buffered stores. The buffer 
can accomodate any sequence of load or store operations to the TCM without 
introducing a resource conflict stall to the ARM1026EJ-S processor. 

By asserting the external RWAIT input, the TCM RAM controller can introduce stalls 
in the ARM1026EJ-S processor.

Note
 It is the responsibility of the programmer to use a drain write buffer instruction to drain 
the pending write buffers in the ITCM and DTCM before disabling either of the TCM 
regions.

17.2.5 DMA interaction with the TCM controller

The TCM controller in the ARM1026EJ-S processor includes a hook to allow a DMA 
engine access to the TCM SRAM. The DMA must assert RDMAEN to request the 
TCM interface, and this request must always be presented at least one cycle before 
using the TCM interface. The pipelining of the DMA request allows the processor to 
determine ownership of the bus and grant ownership as early as the cycle immediately 
following the request.

 TCM ownership is a function of the DMA request signal, RDMAEN, and the request 
and stall indicators, RCS and RWAIT, of the TCM controllers. The conditions for 
ownership are shown as a state transition diagram. To determine when it is safe to take 
ownership of the TCM SRAM interface, DMA engines built to access the TCM SRAM 
must obey the arbitration sequence defined by this state machine. Because the 
ARM1026EJ-S processor is given priority access to the TCM interface, there are three 
possible states indicating ownership:

• TCM1, the idle or zero wait state TCM access state. If the TCM controller is not 
initiating an access in the TCM1 state, and the DMA engine is requesting, the 
DMA engine becomes the next owner.

• TCM2, the TCM controller wait state. The TCM2 state is entered only upon 
recognition that the external SRAM requires multiple cycles to perform the 
memory operation upon a request from the TCM controller. Exiting TCM2 forces 
a new evaluation of the requestors for the TCM interface, and the TCM controller 
enters the TCM1 or idle state.

• DMA, the DMA ownership state. Exiting DMA forces a new evaluation of the 
requestors for the TCM interface, and the TCM controller enters the TCM1 or idle 
state.
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Figure 17-2 shows the conditions in which ownership of the TCM interface changes.

Figure 17-2 TCM controller and DMA arbitration state diagram

If the ARM1026EJ-S processor and DMA engine request ownership of the TCM 
interface in the same cycle, the TCM controller gives priority to the processor. When 
the processor activity on the TCM interface is completed, the DMA engine is granted 
ownership of the TCM interface. The processor activity on the TCM interface includes 
any pending writes in the queue and any wait state activity. When the DMA engine 
gains ownership of the TCM interface, it can maintain ownership by keeping 
RDMAEN asserted.

Note
 RDMAEN must remain deasserted for at least two cycles before being reasserted.

When a DMA engine owns the TCM interface, the ARM1026EJ-S processor forces all 
its TCM interface outputs to logic zero. This enables you to use a simple logical OR 
function to integrate the DMA SRAM inputs or memory test inputs.

A DMA engine can maintain ownership of the TCM interface indefinitely. Be careful 
not to starve the ARM1026EJ-S processor, causing system performance to suffer.
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17.2.6 TCM memory BIST support

The TCMs are designed to minimize the number of logic gates between the TCM 
controller and the RAMs in Memory Built-In Self Test (MBIST) implementations. 
When the ARM1026EJ-S processor is held in reset, the TCMs drive logic zeros on all 
the TCM output pins to the RAM banks. This enables using OR gates in the signal path 
instead of multiplexors, resulting in improved timing for these paths.
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17.3 Interface timing

This section gives examples of typical TCM interface transfers:

• TCM reads with zero wait states

• TCM reads with one wait state

• TCM reads with four wait states on page 17-11

• TCM writes with zero wait states on page 17-12

• TCM write with one wait state on page 17-13

• TCM write with two wait states on page 17-13

• TCM accesses with varying TCM wait states on page 17-14

• TCM and DMA interaction on page 17-15.

17.3.1 TCM reads with zero wait states

Figure 17-3 is an example of single-cycle TCM read accesses. RWAIT is never 
asserted, and there are no read delays. Read data must be driven in the cycle after the 
address and TCM control signals are driven.

Figure 17-3 TCM reads with zero wait states

17.3.2 TCM reads with one wait state

Figure 17-4 on page 17-11 is an example of two-cycle TCM read accesses. RWAIT 
delays the R_B and R_C reads for one cycle. Read data must always be driven in the 
cycle after RWAIT is deasserted.
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Figure 17-4 TCM reads with one wait state

17.3.3 TCM reads with four wait states

Figure 17-5 is an example of a five-cycle TCM read access. RWAIT delays the R_B 
read for four cycles. Read data must always be driven in the cycle after RWAIT is 
deasserted.

Figure 17-5 TCM reads with four wait states
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17.3.4 TCM writes with zero wait states

Figure 17-6 is an example of single-cycle TCM write accesses. RWAIT is never 
asserted, and there are no write delays. Write data must be driven in the same cycle as 
the address and the TCM control signals.

Figure 17-6 TCM writes with zero wait states
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17.3.5 TCM write with one wait state

Figure 17-7 is an example of a two-cycle TCM write access. RWAIT extends the 
completion of both the W_B and W_C writes for one cycle each. Write data must be 
driven in the same cycle as the address and the TCM control signals.

Figure 17-7 TCM writes with one wait state

17.3.6 TCM write with two wait states

Figure 17-8 on page 17-14 is an example of a three-cycle TCM write access. RWAIT 
extends the completion of both the W_B and W_C writes for two cycles each. Write 
data must be driven in the same cycle as the address and TCM control signals.
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Figure 17-8 TCM writes with two wait states

17.3.7 TCM accesses with varying TCM wait states

Figure 17-9 shows a mix of read and write transfers with wait states of different lengths. 
The lengths of wait states are often transfer-dependent.

Figure 17-9 TCM reads and writes with wait states of varying length
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17.3.8 TCM and DMA interaction

Figure 17-10 shows the DMA engine attempting to gain ownership of the TCM 
interface during a sequence of transfers initiated by the ARM1026EJ-S processor. 
When the DMA engine gains ownership, the ARM1026EJ-S processor drives the 
ARM1026EJ-S outputs to logic zeros.

Note
 For the DMA engine to gain and hold access to the TCM SRAM, RDMAEN must be 
driven LOW for at least two cycles between separate requests.

Figure 17-10 TCM and DMA interaction
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17.4 TCM parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis. 
If a byte has an even number of 1s, the parity generator appends another 1 to the byte 
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not 
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing 
and handling the parity bit information is the responsibility of the system designer. If 
parity error detection is not required, the parity outputs can remain unconnected.

17.4.1 ITCM parity interface

Parity bit generation is provided for every data byte written to the ITCM. Table 17-3 
lists the ITCM data bytes and their parity bits.

Table 17-3 ITCM parity interface

Data byte Parity bit I/O

IRWD[63:56] IRWPAR[7] O

IRWD[55:48] IRWPAR[6] O

IRWD[47:40] IRWPAR[5] O

IRWD[39:32] IRWPAR[4] O

IRWD[31:24] IRWPAR[3] O

IRWD[23:16] IRWPAR[2] O

IRWD[15:8] IRWPAR[1] O

IRWD[7:0] IRWPAR[0] O
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17.4.2 DTCM parity interface

Parity bit generation is provided for every byte written in the DTCM. Table 17-4 lists 
the DTCM data bytes and their parity bits.

Table 17-4 DTCM parity interface

Data byte Parity bit I/O

DRWD[63:56] DRWPAR[7] O

DRWD[55:48] DRWPAR[6] O

DRWD[47:40] DRWPAR[5] O

DRWD[39:32] DRWPAR[4] O

DRWD[31:24] DRWPAR[3] O

DRWD[23:16] DRWPAR[2] O

DRWD[15:8] DRWPAR[1] O

DRWD[7:0] DRWPAR[0] O
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Chapter 18 
Vectored Interrupt Controller Port

This chapter describes the ARM1026EJ-S Vectored Interrupt Controller (VIC) port. It 
contains the following sections:

• About vectored interrupt controllers on page 18-2

• About the VIC port on page 18-3

• Timing of the VIC port on page 18-4.
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18.1 About vectored interrupt controllers

An interrupt controller is a peripheral that handles multiple interrupt sources. Features 
usually found in an interrupt controller are:

• multiple interrupt inputs, one for each interrupt source 

• one interrupt request output for the processor interrupt request input

• software maskable interrupt requests

• prioritization of interrupt sources for interrupt nesting.

With an interrupt controller that has these features, software is still required to:

• determine which interrupt source is requesting service

• determine where the service routine for that interrupt source is loaded.

A vectored interrupt controller does both things in hardware. It supplies the starting 
address (vector address) of the service routine corresponding to the highest priority 
requesting interrupt source.

The ARM1026EJ-S VIC port provides the necessary interface to connect to an external 
VIC such as the PL192. The PL192 VIC is an AMBA-compliant, SoC peripheral 
developed and tested for use in ARM1026EJ-S designs.
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18.2 About the VIC port

The VIC port enables the ARM1026EJ-S processor to read the vector address as part of 
the IRQ interrupt entry. The processor takes a vector address from the VIC port 
interface instead of the normal address, 0x00000018, or the high vector address, 
0xFFFF0018. 

Hardware relocation of the IRQ vector address eliminates the need for an interrupt 
handler to determine the source of an interrupt and branching to a routine to handle it. 
Setting the VE bit in the CP15 c1 Control Register enables the processor to read the IRQ 
vector address from the VIC port.

Note

 The ARM1026EJ-S processor does not support hardware relocation of the FIQ vector 
address.

Table 18-1 lists the VIC port signals.

IRQACK and IRQADDRV together implement a four-phase handshake between the 
ARM1026EJ-S processor and an external VIC. For more details, see Timing of the VIC 
port on page 18-4.

Table 18-1 VIC port signals

Signal I/O Description

nFIQ I Active-LOW fast interrupt request signal. Synchronous to CLK.

nIRQ I Active-LOW normal (IRQ) interrupt request signal. 
Synchronous to CLK.

IRQACK O Active-HIGH IRQ acknowledge. Indicates to external VIC that 
processor is ready to read IRQADDR[31:2].

IRQADDRV I Active-HIGH valid signal for the IRQ interrupt vector address. 
Indicates to processor that IRQADDR bus is valid, and it is safe 
for the processor to sample it.

IRQADDR[31:2] I IRQ interrupt vector address. Holds address of first ARM state 
instruction in IRQ handler. 
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 18-3



Vectored Interrupt Controller Port 
18.3 Timing of the VIC port

Figure 18-1 shows a timing example of VIC port operation with CLK and HCLK 
running at the same frequency.

Figure 18-1 VIC port timing example with HCLK:CLK = 1:1

In Figure 18-1, the processor detects that nIRQ is active and asserts IRQACK at B6 to 
indicate that it is is ready to service the interrupt request. The time that the processor 
takes to respond to nIRQ depends on the current processor state. When the VIC detects 
that IRQACK is active, it asserts IRQADDRV at B7 to indicate that the value on the 
IRQADDR bus is stable.

When the processor detects that IRQADDRV is active, it samples IRQADDR[31:2] at 
B8 and then deasserts IRQACK. When the VIC detects that IRQACK is low, it 
deasserts IRQADDRV. If there are no higher priority interrupt requests pending, the 
VIC also deasserts nIRQ. The processor samples nIRQ only while IRQADDRV is 
inactive.

To prevent a higher-priority interrupt request from changing IRQADDR, the VIC does 
not change the value on IRQADDR[31:2] until after the processor deasserts IRQACK

If  the processor is running at a multiple of the bus clock frequency, the IRQACK and 
IRQADDRV handshake protocol still applies. However, there can be several processor 
clock cycles between IRQACK assertion by the processor and IRQADDRV assertion 
by the VIC.

Figure 18-2 on page 18-5 shows a timing example of VIC port operation with CLK 
running at twice the speed of HCLK.
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Figure 18-2 VIC port timing example with HCLK:CLK = 2:1

Because the processor clock is running at twice the speed of the bus clock, the 
IRQACK response from the processor is valid at P10, earlier than when the processor 
and bus clocks are the same.

After the IRQ vector address is generated and IRQACK is detected active, the VIC 
asserts IRADDRV at B7. The processor then samples IRQADDR[31:2] at P14 and 
deasserts IRQACK.

When the VIC detects that IRQACK is low, it deasserts IRQADDRV, and if no 
higher-priority interrupt requests are pending, deasserts nIRQ.
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Chapter 19 
Power Management

This chapter describes power management in the ARM1026EJ-S processor. It contains 
the following section:

• About power management on page 19-2

• Wait for interrupt mode on page 19-3

• Leakage control on page 19-5.
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19.1 About power management

The ARM1026EJ-S processor provides two power management facilities:

• Wait for interrupt mode on page 19-3

• Leakage control on page 19-5.
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19.2 Wait for interrupt mode

The wait for interrupt instructions put the ARM1026EJ-S processor into a low-power 
state:

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

Either of these instructions switches the processor into a low-power state until an 
interrupt (IRQ or FIQ) or a debug request (EDBGRQ) occurs. 

In wait for interrupt mode, all internal clocks can be stopped. The switch into the 
low-power state is delayed until all write buffers are drained, and the memory system 
is in a quiescent state. 

Assertion of the STANDBYWFI signal indicates the switch into a low-power state. If 
STANDBYWFI is asserted, then it is guaranteed that all of ARM1026EJ-S external 
interfaces (AHB, TCM, and external coprocessor) are in an idle state. You can use 
STANDBYWFI to shut down clocks to the ARM1026EJ-S processor and to other 
system blocks that do not have to be clocked when the ARM1026EJ-S processor is idle. 
Figure 19-3 on page 19-4 shows a user-implemented system clock control block that 
uses STANDBYWFI to control the ARM1026EJ-S and system clocks. 

Figure 19-1 Using STANDBYWFI to control system clocks
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The STANDBYWFI signal is deasserted in the cycle following an interrupt or a debug 
request. It is guaranteed that no form of access on any external interface is started until 
the cycle after STANDBYWFI is deasserted. Figure 19-2 shows the deassertion of the 
STANDBYWFI signal after an IRQ interrupt.

Figure 19-2 Deassertion of STANDBYWFI after an IRQ interrupt

When the processor enters a low-power state, all of the main internal clocks can be 
stopped. However, the processor is active if DBGTCKEN is asserted. This means that 
you can safely stop CLK if STANDBYWFI is HIGH and DBGTCKEN is LOW.

Figure 19-3 shows an example of user-implemented system logic for stopping the main 
ARM1026EJ-S clock during wait for interrupt.

Figure 19-3 Using STANDBYWFI to control ARM1026EJ-S clocks

The nature of the nFIQ, nIRQ, and EDBGRQ signals enables them to be registered 
prior to being used in the gating logic. 
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19.3 Leakage control

The ARM1026EJ-S design is partitioned so that the SRAM blocks that are used for the 
caches and the MMU can be powered down under certain conditions.

When the RAMs are powered down, the RAM outputs to the ARM1026EJ-S cache 
controller must be driven either HIGH or LOW. ARM recommends driving the RAM 
outputs LOW. Figure 19-4 shows an example of user-implemented logic to drive the 
RAM outputs LOW in power-down.

Figure 19-4 Cache power-down

19.3.1 Cache RAMs

You can safely power down the RAMs for either cache if the cache contains no valid 
entries and you first disable it by using the CP15 c1 Control Register. While a cache is 
disabled, only CP15 c7 cache maintenance instructions can cause the cache RAMs to 
be accessed. You must not re-enable the cache or execute these instructions while any 
of the cache RAMs are powered down. 

19.3.2 MMU RAMs

You can safely power down the RAM used to implement the MMU if the MMU 
contains no valid entries and you first disable it by using the CP15 c1 Control Register. 
While the MMU is disabled, only CP15 c8 TLB maintenance instructions and CP15 c15 
MMU test/debug instructions can cause the MMU RAM to be accessed. You must not 
re-enable the MMU or execute these instructions while the MMU RAM is powered 
down. 

Cache

controller

Power-down

enable

Cache

RAMs

ARM1026EJ-S processor
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Chapter 20 
Design for Test

This chapter describes the Design For Test (DFT) features of the ARM1026EJ-S 
processor and describes how to integrate the DFT features into a System on a Chip 
(SoC). This chapter contains the following sections:

• ARM1026EJ-S processor on page 20-2

• Test signal connections on page 20-10

• MBIST on page 20-13.
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20.1 ARM1026EJ-S processor

Except for reset, the ARM1026EJ-S processor is a fully synchronous muxD flip-flop 
macrocell. It contains one internal clock domain controlled by the CLK pin. 

20.1.1 Test wrapper

The test wrapper provides a single serial scan ring around the entire periphery of the 
processor. You can use the test wrapper to apply test vectors with minimal external pin 
control. The test wrapper enables test control and observation of the core from the ports 
as well as control and observation of the external logic surrounding the processor.

Wrapper cells can be dedicated or shared. Shared wrapper cells are functional flip-flops 
that are also used as wrapper cells. Shared wrapper cells must be registered inputs or 
outputs. Dedicated wrapper cells are defined in the RTL. Connect the dedicated 
wrapper cells into the test wrapper along with the shared wrapper cells during the scan 
insertion portion of the synthesis flow. The functional clock, CLK, drives the wrapper 
cells. This flow works in the ARM environment, but it requires a list of the shared 
wrapper cells. The format of these paths might change depending on the tool used for 
synthesis and how the tool is used. If the scan insertion tool can read the wrapper cell 
names, then there is no problem with scan insertion of the wrapper using the ARM flow.

Figure 20-1 shows the structure of a dedicated input wrapper cell.

Figure 20-1 Dedicated input wrapper cell

Figure 20-2 on page 20-3 shows the structure of a dedicated output wrapper cell.
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Figure 20-2 Dedicated output wrapper cell

Figure 20-3 shows the structure of a shared input wrapper cell.

Figure 20-3 Shared input wrapper cell

Figure 20-4 shows the structure of a shared output wrapper cell.

Figure 20-4 Shared output wrapper cell
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The test wrapper has six scan chains with a total of 870 wrapper scan cells. The wrapper 
chain consists of both shared and dedicated wrapper cells and is segmented into shorter 
scan chains that can be used for both external and internal testing. The wrapper insertion 
script creates two scan enables (see WSEI and WSEO on page 20-6). The input bus to 
the wrapper scan chains is WSI, and the output bus is WSO. There is a wrapper cell 
connected to every input and output functional port with the exception of the clock port 
and memories.

Note

 There are no gates at the processor outputs. While the processor is being tested, the 
outputs ripple as data is clocked through the wrapper chain. If necessary, you can add 
external gates to the outputs.

The dedicated test cells require control signals to differentiate between internal testing, 
external testing, and functional mode. Table 20-1 shows how MUXINSEL and 
MUXOUTSEL select mode of operation.

20.1.2 Wrapper segmentation

The ARM1026EJ-S wrapper has three segments:

• one segment is connected to the coprocessor interface

• one segment is connected to the ETM interface

• one segment is connected to the AHB interface.

Each segment divided into a wrapper chain that uses WSEI and a wrapper chain that 
uses WSEO. See Figure 20-5 on page 20-5.

Table 20-1 Selecting mode of operation of dedicated wrapper cells

MUXINSEL MUXOUTSEL

0 0 Functional mode.

0 1 External test mode.
Wrapper input cells can observe data from peripheral logic.
Wrapper data present on ARM1026EJ-S port.

1 0 Internal test mode.
Dedicated input wrapper cells inward-facing to control of ARM1026EJ-S inputs.
Functional data present on ARM1026EJ-S port.

1 1 Unused.
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Figure 20-5 Wrapper segments

The shared AHB wrapper cells in the UDL segment of the wrapper chain are connected 
to the output ports of the data bus through multiplexors as Figure 20-6 shows. All logic 
outside of the dashed box is tested only in external test mode.

Figure 20-6 HWDATA bus output ports

The shared AHB wrapper cells in the UDL segment of the wrapper chain are connected 
to the input ports of the D bus through multiplexors as Figure 20-7 on page 20-6 shows. 
All logic outside of the dashed box is tested only in external test mode. 
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Figure 20-7 HRDATA bus input ports

You can concatenate the wrapper scan chains as required by wiring the WSO of one 
scan chain to the WSI of another scan chain. Table 20-2 shows the lengths of the scan 
chains.

WSEI and WSEO

The wrapper contains two scan-enable signals:

WSEI Wrapper scan-enable input. WSEI connects only to the wrapper cells 
adjacent to the functional inputs.

WSEO Wrapper scan-enable output. WSEO connects only to wrapper cells 
adjacent to the functional outputs.

ARM1026EJ-S input ports

HRDATAD/I[31:0]

HRDATAD/I[63:32]

Tested during internal test

Shared wrapper cells

Table 20-2 Wrapper scan chains

Scan chain Function Number of flip-flops in chain

0 AHB-in 237

1 CP-in 86

2 ETM-in 1

3 AHB-out 219

4 CP-out 102

5 ETM-out 225
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In designs that do not require separate scan enables, you can tie WSEI and WSEO 
together as one wrapper scan-enable signal.

WSO

The AHB segment of the scan chain has two wrapper outputs as Figure 20-8 shows. 
When there is one wrapper chain, WSO is the output. There is a φ2 latched output called 
WSON for connecting the wrapper chain to scan chains in other clock domains. 

Figure 20-8 Wrapper falling-edge logic

20.1.3 Clock gating

The clock is not gated in the ARM1026EJ-S processor. It can be gated externally to turn 
off the clock during IDDQ test setup or to minimize power consumption while testing 
logic other than the ARM1026EJ-S processor. Because there is only one clock domain 
in the core, a clock gate would also disable the wrapper.

20.1.4 Reset

The HRESETn and DGBnTRST signals are asynchronous resets that are delivered to 
the flip-flops out of a dual flip-flop synchronizer as Figure 20-9 shows. For direct 
control of reset during scan testing, the outputs of the flip-flops are blocked if they go 
to the reset ports on internal flip-flops.

Figure 20-9 Reset synchronizer

During scan mode, the 0 mux input and the 0 state of the mux select input in Figure 20-9 
are not tested.

WSO[0]

Lockup latch

WSON

Last flip-flop in the UDL

wrapper scan chain

HRESETn or DBGnTRST 0

1
Reset to flip-flops

SCANMODE
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The clock that drives the wrapper also controls the ARM1026EJ-S internal flip-flops. 
The RSTSAFE signal enables you to reset the ARM1026EJ-S processor to some extent 
during external test mode. As Figure 20-10 shows, RSTSAFE connects only to 
flip-flops that are not contained in the wrapper scan chain. While in external test mode, 
the HRESETn signal has no effect on the wrapper cells that have reset ports.

Figure 20-10 RSTSAFE signal

The reset signals must be directly connected to a port during test. The wrapper cell for 
asynchronous resets contain only an observe register, as Figure 20-11 shows.

Figure 20-11 Reset wrapper cell
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20.1.5 Test ports

The dedicated test ports in Table 20-3 must be instantiated as specified for internal 
testing to operate correctly. Dynamic signals must make single-cycle test timing to the 
core logic. 

Table 20-3 Test port signals during internal test

Port name I/O Type Description

SCANMODE I Static Prevents asynchronous reset from being controlled by synchronizer

RSTSAFE I Static Resets any core cells that are reset-capable except wrapper cells

SE I Dynamic Scan enable for all internal clock domains. HIGH = shift

SI[55:0] I Dynamic Scan input port

SO[55:0] O Dynamic Scan output port

Wrapper signals

WSEI I Dynamic or statica Scan enable for all input-dedicated wrapper test cells. HIGH = shift

WSEO I Dynamic Scan enable for all output-dedicated wrapper test cells. HIGH = shift

WSI[5:0] I Dynamic Input ports for wrapper scan chains

WSO[5:0] O Dynamic Output ports for wrapper scan chains

WSON O Dynamic Wrapper output port that changes after falling edge of clock

MUXINSEL I Static Configures dedicated input wrapper cells for functional or test mode

MUXOUTSEL I Static Configures dedicated output wrapper cells for functional or test mode

WMUX[1:0] I Static Unused

SCANMUX[1:0] I Static Unused

CHECKTEST I Static Unused

a. No capture required on inputs during INTEST. Dynamic during EXTEST.
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20.2 Test signal connections

This section contains the following test signal connection tables:

• Test port connections in internal test mode

• Test port connections in functional mode on page 20-11

• Test port connections in external test mode on page 20-12.

See Memory test interface on page 20-13 for a description of MBIST connections.

Table 20-4 shows the test port connections for internal test mode.

Table 20-4 Test port connections in internal test mode

Signal Value

SCANMODE 1

RSTSAFE 0

SE Connect to external pin

SI[55:0] Connect to external pins

SO[55:0] Connect to external pins

WSEI Connect to external pin or 1a

a. See WSEI and WSEO on page 20-6.

WSEO Connect to external pin

MUXINSEL 1

MUXOUTSEL 0

WSI[5:0] Connect to external pins

WSO or WSONb

b. WSO or WSON can be connected to another scan 
chain if necessary.

Connect to external pin
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Table 20-5 shows test port connections for functional mode.

Table 20-5 Test port connections in functional mode

Test signals Connection

SCANMODE 0

RSTSAFE 0

SE 0

SI[55:0] 0 recommended

SO[55:0] Gated 0 recommended

WSEI 0

WSEO 0

MUXINSEL 0

MUXOUTSEL 0

WSI[5:0] 0 recommended

WSO[5:0] Gated 0 recommended

WSON Gated 0 recommended

MBISTRESETN 0
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Table 20-6 shows the test signal connections for external test mode.

Table 20-6 Test port connections in external test mode

Signal Value

SCANMODE 1

RSTSAFE 1 recommended unless IDDQ testing

SE 0

SI[55:0] 0 recommended

SO[55:0] Gated 0 recommended

WSEI Connect to external pin

WSEO Connect to external pin or 1a

a. See WSEI and WSEO on page 20-6.

MUXINSEL 0

MUXOUTSEL 1

WSI[5:0] Connect to external pin

WSO[5:0] or WSONb

b. WSO or WSON can be connected to another scan chain if 
necessary.

Connect to external pin

MBISTRAMBYP Connect to external pin

MBISTRESETN Connect to external pin
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20.3 MBIST

This section describes the array architecture, register definition, address mapping, and 
implementation of the ARM1026EJ-S Memory Built-In Self Test (MBIST).

Figure 20-12 shows the high-level organization of the ARM1026EJ-S MBIST.

Figure 20-12 MBIST block diagram

20.3.1 Memory test interface

Table 20-7 summarizes the interface between the MBIST controller and the memory 
wrapper. 
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Table 20-7 MBIST interface in test mode

Signal I/O Function Connection

Value in 
MBIST test 
mode

Value in 
functional 
mode

MBISTCLKEN I MBIST clock gate External pin and MBIST controller Toggle 0

MTESTON I MBIST path enable External pin and MBIST controller Toggle 0

MBISTDSHIFT I Data log shift External pin and MBIST controller Toggle 0

MBISTSHIFT I Instruction shift External pin and MBIST controller Toggle 0

MBISTDIN I Serial data shift in External pin and MBIST controller Toggle 0
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Each dispatch unit connects the MBIST controller to the memory test interface of the 
processor. The dispatch unit resides in the memory wrapper. Some cache-read paths in 
the wrapper also contain functional path φ1 latches to enable timing to be met in 
functional mode.

MBISTDOUT[2:0]

During tests, the MBISTDOUT[2] signal indicates failures. This can operate using two 
modes, configured using bit 5 of the engine control section of the instruction register. If 
bit 5 is set, MBISTDOUT[2] is asserted for a single cycle for each failed compare. If 
bit 5 is not set, MBISTDOUT[2] is sticky, and is asserted from the first failure until the 
end of the test. At the completion of the test, the MBISTDOUT[1] signal goes HIGH. 
MBISTDOUT[0] indicates that an address expire has occurred and enables you to 
measure sequential progress through the test algorithms.

MBISTDOUT[2:0] O Output status bus External pin and MBIST controller Strobe -

MBISTRAMBYP I Chip-select block External pin and MBIST controller 0 0

HRESETn I Core reset value External pin  0a Toggle

MBISTRESETN I MBIST reset signal External pin and MBIST controller Toggle 0b

SCANMODE I ATPG signal External pin and MBIST controller 0 0

SE I ATPG signal External pin and MBIST controller 0 0

MBISTRXTCM[2:0] O Dispatch unit output bus MBIST controller - -

MBISTRXCGR[2:0] O Dispatch unit output bus MBIST controller - -

MBISTTX[10:0] I MBIST controller out MBIST controller - -

a. HRESETN must be LOW in MBIST test mode. 
b. MBISTRESETN must be LOW in functional mode. 

Table 20-7 MBIST interface in test mode (continued)

Signal I/O Function Connection

Value in 
MBIST test 
mode

Value in 
functional 
mode
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MBISTTX[10:0]

Table 20-8 shows how the MBIST controller interacts with the dispatch unit through 
the MBISTTX[10:0] interface.

When instruction shift is enabled, data shifts in on bit 1 (AddrInc in normal operation) 
and shifts into the instruction scan chain of the dispatch unit. The MBISTTX[10:0] 
interface is ARM-specific and intended for use only with the ARM MBIST controller.

Table 20-8 MBISTTX external interface

MBISTTX[10:0]
bit Description

0 Reset address

1 Increment address

2 Access sacrificial row (used during bang patterns)

3 Invert data/instruction data in

4 Checkerboard data

5 Write data

6 Read data

7 Yfast/nXfast

8 Direction

9 Enable bitmap mode

10 Increment go/nogo dataword selection
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MBISTRXCGR[2:0] and MBISTRXTCM[2:0]

Table 20-9 shows how the dispatch units interact with the MBIST controller through 
the MBISTRXTCM and MBISTRXCGR interfaces.

The behavior of MBISTRXCGR[2:0] and MBISTRXTCM[2:0] is ARM-specific. 
These signals are intended for use only with the ARM MBIST controller.

The address expire signal is set when both address counters expire.

20.3.2 MBIST and ATPG

This section describes MBIST/ATPG considerations.

MBISTRAMBYP

Figure 20-13 on page 20-17 shows the data path for processor cache reads. The 
scannable MBIST data register for data compares also controls this path during ATPG 
testing and provides an observe path. This is particularly useful when testing the 
processor with black-boxed memories. MBISTRAMBYP controls the multiplexor that 
selects between cache data and DFT data. ATPG runs performed with black-boxed 
memories must constrain MBISTRAMBYP active. The MBIST data compare flip-flop 
can also serve as an observe register when performing ATPG RAM tests.

Caution
 MBISTRAMBYP is a static signal. Constrain MBISTRAMBYP in ATPG runs.

Table 20-9 MBISTRXCGR[2:0] and MBISTRXTCM[2:0] external interface

MBISTRXCGR or
MBISTRXTCM bit Description

0 Address expire/instruction data out/fail data out

1 Bitmap stall

2 Nonsticky fail flag
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Figure 20-13 ATPG view of read datapath

Scan enable, SE

Preservation of array state is required when performing multiload ATPG runs or when 
performing IDDQ testing. The ARM MBIST blocks all array chip-select signals with the 
SE signal. After performing MBIST tests to initialize the arrays to a desired 
background, the ATPG test procedures must assert SE during all test setup cycles in 
addition to load/unload. Any clocking during IDDQ capture cycles must have array 
chip-select signals constrained.

20.3.3 MBIST arrays

The following sections describe the MBIST arrays:

• Memory test and chip select

• Data-side MBIST arrays on page 20-18

• Instruction-side MBIST arrays on page 20-20

• MMU MBIST array on page 20-20

• TCM MBIST array on page 20-21

• Memory test times on page 20-22.

Memory test and chip select

This section describes how each array is enabled by the dispatch unit. Most arrays in 
this listing can be tested in parallel. This is accomplished by setting maximum X and Y 
address spaces as required for the largest RAMs in each dimension. If the X and Y 
address space exceeds the dimension of an array, the address scramble block within the 
MBIST wrapper gates the internal chip select of the array.
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There are architectural four-bit chip-select signals for tag and data RAM arrays as 
shown in Figure 20-14. The MBIST tests these arrays serially by assigning their 
chip-select bits to the Yaddr space to be gated by the master chip select of the memory 
test interface.

Figure 20-14 Chip-select implementation example

Data-side MBIST arrays

The data-side arrays contain four data, four tag, one valid, and one dirty array. There 
are four chip-select signals that control the data and tag RAMs. The four chip-select bits 
are controlled by appending them to the Yaddr space during MBIST testing. A single 
chip-select signal enables the valid and dirty RAMs. 

The data RAM exists as four separate 64-bit arrays, each controlled by a chip select. The 
tag RAM exists as four separate arrays, one half containing a virtual tag, the other half 
holding the physical tag. The tag is 22 bits wide. Addr[12] selects between the physical 
and virtual set. The four RAM arrays are selected by TagCS[3:0]. These chip-select 
signals are appended to the Y address space during MBIST testing. See Figure 20-15 
on page 20-19.
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Figure 20-15 Data RAM MBIST arrays
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Instruction-side MBIST arrays

The instruction-side arrays are similar to the data-side arrays, except that they do not 
have a dirty array and contain only a virtual tag array. See Figure 20-16.

Figure 20-16 Instruction RAM MBIST arrays

MMU MBIST array

The MMU MBIST array is a 128-entry by 112-bit (64 bit RAM, 48 bit tag) array. Other 
microTLB arrays within the MMU are created from scanable registers and are not 
subject to MBIST testing. See Figure 20-17.

Figure 20-17 MMU RAM MBIST array

[0] [1] [2] [3]

DATA0

Addr[7:0]

Tag CS[3:0]

Addr[10:0]

[0] [1] [2]

Data CS[3:0]

[3]

Addr[11:0]

DATA1 DATA2

TAG2 TAG3TAG0 TAG1

Valid CS

DATA3

Valid

2424

64

22

InstrData[3:0]{16{BistData4[3:0]}}

Fail

Data log and

bitmap support

registers

Addr[4:0]

MMU CS
MMU

112112

{28{BistData4[3:0]}}Fail

Data log and

bitmap support

register

InstrData[3:0]
20-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C



Design for Test 
TCM MBIST array

The TCM array does not have architecturally defined chip-select values and any such 
chip select created in implementation is assigned to upper address bits and gated with 
the master TCM chip select, MTESTCE2[9:8], for that array. See Figure 20-18.

Figure 20-18 TCM MBIST array

[?] [?] [?] [?]

DTCM?

ITCMCS[?:0]

Addr[17:0]

[?] [?] [?

DTCMCS[?:0]

[?]

Addr[17:0]

DTCM? DTCM?

ITCM? ITCM?ITCM? ITCM?

DTCM?

64

64

InstrData[3:0]{16{BistData4[3:0]}}

Fail

Data log and

bitmap support

registers
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-21



Design for Test 
Memory test times

Memory test times using the ARM MBIST are estimated below for minimum and 
maximum cache sizes. The 30N go/nogo pattern is the benchmark for this test time 
analysis. The analysis is based on the assumption that a passing part completes the 
entire test. Variations in test time can exist depending on the test flow chosen for each 
array. Arrays are tested in parallel according to their chip-select partitioning as defined 
in Table 20-10. Typical cache sizes are assumed to be 32KB. Maximum size is 128KB 
(ICache and DCache) with a 1MB TCM.

Note

 In Table 20-10, address depths are in thousands of MBIST-addressable elements. A 
128KB DCache has eight bytes tested in parallel. In MBIST addressing, this array has 
128KB/8B or 16K addressable elements.

Table 20-10 Memory test interface cycle counts

Memory

Address depth Number of cycles

MBIST bus width Typical Maximum Typical Maximum

ICache RAM 64 bits 4KB 16KB 123 kcycles 492 kcycles

ICache tag RAM 22 bits 2KB 2KB 62 kcycles

ICache valid RAM 24 bits 256B 256B 7.5 kcycles

DCache RAM 64 bits 4KB 16KB 123 kcycles 492 kcycles

DCache tag RAM 54 bits 2KB 2KB 62 kcycles

DCache valid RAM 24 bits 256B 256B 7.5 kcycles

DCache dirty RAM 22 bits 1KB 1KB 31 kcycles

MMU 112 bits 128B 128B 3.8 kcycles

Instruction TCM 64 bits 32KB 128KB 984 kcycles 3.9 Mcycles

Data TCM 64 bits 32KB 128KB 984 kcycles 3.9 Mcycles

Total cycles for largest memory test on interface 984 kcycles 3.9 Mcycles

Estimated test time for 200MHz cycle rate (number of cycles times 5ns) 4.9ms 19.7ms

Estimated test time without TCM RAM 0.6ms 2.5ms
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This test time estimate does not include usual delays required for data retention or IDDQ 
tests or reset vectors at the beginning of tests.

20.3.4 MBIST Instruction Register

Figure 20-19 is an example diagram that shows the organization of the instruction shift 
register in the controller and the dispatch unit. Only RAMs with a minimum of eight 
addresses can be tested.

The MBIST controller is external to the memory wrapper and does not interact with the 
ARM1026EJ-S processor. The processor must be held in reset during execution of 
MBIST tests.

Figure 20-19 MBIST Instruction Register

Each dispatch unit connects to one or more arrays. Each array can be in more than one 
physical RAM. Unused enable bits in a dispatch unit are masked. Upon completion of 
the current instruction, the array enables field of the instruction is replaced with a 
pass/fail flag. If the array fails, the bit is set. 
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To retrieve fail data, scan in a Read Dispatch Unit instruction. The next instruction shift 
then shifts out the fail data. Table 20-11 shows how the fail data is formatted.

Table 20-11 Scanout formats of fail data

Fail data
Scanout format

ICache/DCache data RAM fail shiftout format:
MBISTDIN → CS[3:0] → Data[3:0] → index[11:0] → dataXOR[63:0] → MBISTDOUT[0]

ICache/DCache tag array fail shiftout:
MBISTDIN → CS[3:0] → expectData[3:0] → index[10:0] → dataXOR[21:0] → MBISTDOUT[0]

ICache/DCache valid array fail shiftout:
MBISTDIN → expectData[3:0] → index[7:0] → dataXOR[23:0] → MBISTDOUT[0]

DCache dirty array fail shiftout:
MBISTDIN → expectData[3:0] → index[9:0] → dataXOR[7:0] → MBISTDOUT[0]

MMU array fail shiftout:

MBISTDIN → expectData[3:0] → index[4:0] → dataXOR[112:0] → MBISTDOUT[0]

ITCM/DTCM array fail shiftout:
MBISTDIN → expectData[3:0] → index[16:0] → dataXOR[63:0] → MBISTDOUT[0]
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Table 20-12 lists the MBIST array enables. 

20.3.5 MBIST test waveforms

Figure 20-20 shows the MBIST test start waveforms.

Figure 20-20 MBIST test start waveforms

Table 20-12 Array enables
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Figure 20-21 shows the MBIST test end waveforms.

Figure 20-21 MBIST test end waveforms

20.3.6 Test restrictions with the ARM BIST

Because the memory test interfaces have embedded test requirements such as 
handshaking during bitmapping, there are rules regarding array enabling:

• Bitmap mode can only have one array enabled (InstrReg[15:0] is one-hot) for 
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Soft cores have simple verilog tasks and monitors to enable vector captures for their 
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page 20-27.
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20.3.7 Datalog and bitmapping features

The MBIST tests create a datalog when the first failure occurs. After completion of test, 
the datalog can be shifted out by selecting the appropriate array in the instruction 
register and performing a dispatch unit data shift through the MTESTDOUT[0] port.

When bitmap mode is set during MBIST test, the dispatch unit stalls the MBIST 
controller whenever a read operation is received. The read operation continues until 
pass/fail status is known. If the read operation passes, the MBIST controller is released 
for the next operation. Failure sets the external fail flag, MBISTDOUT[2]. The 
controller and dispatch unit remain stalled until the datalog is scanned out by the 
external tester. The tester must branch to the bitmap datalog vector set when a fail is 
observed.

The bitmap vector set asserts MBISTDSHIFT to enable shifting out the failure datalog. 
MBISTDSHIFT must also clock-divide the MBISTCLKEN signal to insure that shift 
timings can be met in the case of high-speed test and slow package pins.

Release of MBISTDSHIFT resets the datalog registers and releases the MBIST 
controller for the next operation.

DataXOR contains only the failing bits. Failing expect data is then determined by 
matching the dataXOR to an expanded {?{expectData[3:0] }}. 

ArrayCS is not a duplication of the InstrReg[15:0] field as some CS fields are tied to the 
Yaddr address space. This datalogged architectural ArrayCS is the same CS delivered 
to the arrays in functional mode.
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20.3.8 Using non-ARM MBIST testing

If you do not require ARM MBIST, you can exclude it by using the NOMBIST compile 
option. The following must be considered when disabling the ARM MBIST: 

• Test coverage numbers proven in ARM implementations cannot be guaranteed 
with non-ARM testing.

• Observe and control flip-flops in the memory wrapper help to reduce coverage 
concerns.

• The ARM MBIST provides array-preservation features with the SE pin in the 
memory wrapper. 

Note
 You must ensure IDDQ state preservation and preserve state during ATPG 

load/unload.

• ORing ARM1026EJ-S and MBIST control lines into the arrays results in the 
minimum timing impact. This is currently performed in the memory wrapper. The 
ARM1026EJ-S processor must be held in reset during ARM MBIST testing.

• Validation of custom implementation is the responsibility of the user.

• Accessing functional data ports for writes and reads can have adverse affects on 
area/performance if a hardened design differs from ARM internal 
implementation.
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20.3.9 MBIST address scramble

The address scrambler enables reconfiguring address pins to match the physical 
implementation of memory. The a10mBistAddrScrmbl.v and a10mTCMAddrScrmbl.v 
blocks must be replaced whenever cache sizes and physical mappings change. 
Changing cache size requires changing the out-of-bounds settings. Using different 
cache arrays also requires changing the physical mappings to maximize leverage of 
bitcell stress tests. Failure to physically map new arrays does not result in failing tests 
but can result in lower screening quality.

When creating different implementations, this block must be corrected and validated to 
test all arrays for each architectural chip select.

Example address scramble RTL

The RTL in Example 20-1 is an example implementation of address scrambling within 
the memory wrapper:

Example 20-1 Address scrambling example

// this example assumes a 256 row array , 8 columns, 2 planes and 4 ways
// Yaddr[3:0], Xaddr[7:0] and Yaddr[6:5] as CS
wire OutsideIRam; 
assign OutsideIRAM = (|Yaddr[11:6]) | (|Xaddr[10:8]); // out of bounds address
// must mask the CS
// ArrayCS[0] translates to InstrReg[24]
assign  IRamCS[3] = ArrayCS[0] & ~OutsideIRam & Yaddr[5] & Yaddr[4];
assign  IRamCS[2] = ArrayCS[0] & ~OutsideIRam & Yaddr[5] & ~Yaddr[4];
assign  IRamCS[1] = ArrayCS[0] & ~OutsideIRam & ~Yaddr[5] & Yaddr[4];
assign  IRamCS[0] = ArrayCS[0] & ~OutsideIRam & ~Yaddr[5] & ~Yaddr[4];
assign  IRamLA[11:0] = {Xaddr[7:0],Yaddr[3:0]}; // example where lowest LA
// bits select columns
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Example address scramble/mapping RTL

Example 20-2 is based on arrays with different physical organizations. This requires 
simple logic that does an address scramble as a function of each array. No such logic is 
required if the attached memories have similar organizations.

Example 20-2 Scrambling/mapping example

// TCM Example:
// CURRENT SCRAMBLE ASSUMPTIONS:
// 1) Ram COMPILER
// 2) 8 column mux selection
// 3) logical address assignment {rows,columns}

// 4) compiled 8-column address mapping is 0, 1, 3, 2, 4, 5, 7, 6
// col_addr[2:0] values are 000, 001, 011, 010, 100, 101, 111, 110
//
// Linear map of left to right accomplished by assigning Y[1] = Yaddr[1] and
// Y[0] = Yaddr[1] ^ Yaddr[0]

// 5) Hidden blackboxed RAMs from xxxx compiler do not exceed 256 columns. All
// row-space beyond Xaddr[7] is mapped to the Y-space to promote bitline stress
// test effectiveness

wire [11:0] YaddrScrmbl;
assign YaddrScrmbl[11:1] = Yaddr[11:1];
assign YaddrScrmbl[0] = Yaddr[1] ^ Yaddr[0];

// I-side TCM

wire OutsideITcm;
assign OutsideITcm = (|YaddrScrmbl[11:9]) | (|Xaddr[10:8]);
// ArrayCS[0] translates to InstrReg[24]
assign ITcmCS = ArrayCS[0] & ~OutsideITcm;
assign ITcmLA[16:0] = {YaddrScrmbl[8:3],Xaddr[7:0],YaddrScrmbl[2:0]};

// D-side TCM

wire OutsideDTcm;
assign OutsideDTcm = (|YaddrScrmbl[11:9]) | (|Xaddr[10:8]);
// ArrayCS[0] translates to InstrReg[24]
assign DTcmCS = ArrayCS[1] & ~OutsideDTcm;
assign DTcmLA[16:0] = {YaddrScrmbl[8:3],Xaddr[7:0],YaddrScrmbl[2:0]};
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Instruction Cycle Count

This chapter gives the instruction cycle counts and examples of interlock timing. This 
chapter contains the following sections:

• Cycle timing considerations on page 21-2

• Instruction cycle counts on page 21-3

• Interlocks on page 21-22.
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21.1 Cycle timing considerations

Complex instruction dependencies make it impossible to describe briefly the exact 
behavior of all instructions in all circumstances. The tables in this chapter are accurate 
in most cases but must never be used instead of running code on a cycle-accurate model 
of the ARM1026EJ-S processor.

The performance-enhancing branch prediction architectural feature makes it 
particularly difficult to count the number of cycles an instruction takes. With branch 
prediction enabled, it is impossible to look at a branch in isolation and tell how many 
cycles it takes. The cycle count depends on where the branch is in the pipeline and what 
the processor was doing beforehand.

If instruction accesses are hitting in the ICache, then the prefetch buffer is likely to be 
full. This means the prefetch unit has plenty of time to predict branches and fetch from 
their targets. In this case, correctly predicted branches appear to take no cycles at all. 
They are folded. 

If the prefetch unit was recently flushed, or is fetching from external memory, its buffer 
can be empty or only partially full. In these cases, the branch predictor does not always 
have time to completely remove a branch, and it can take one or more cycles before the 
following instruction is issued. This is described in more detail in Branch instructions 
on page 21-8.
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21.2 Instruction cycle counts

Unless stated otherwise, cycle counts and result latencies described here are best case 
numbers. They assume:

• no outstanding data dependencies between an instruction and a previous 
instruction

• the instruction does not encounter any resource conflicts 

• all data accesses hit in the DCache and do not cross protection region boundaries

• all instruction accesses hit in the ICache.

The tables in this section show the number of cycles an instruction takes to execute and 
the number of cycles after which the result of the instruction is available to a following 
instruction. These numbers differ because after an instruction has left the Execute stage 
of the pipeline, a second instruction can start to execute, even when the first instruction 
has not produced its final result. This is only the case when the second instruction is not 
dependent on the result from the first.

Instructions that change the PC cause the pipeline to be flushed and restarted with a 
fetch of a new instruction. By the time the new instruction executes, it is likely that any 
dependencies on previous instructions have been cleared.

Three figures are typically given for each instruction:

Condition pass cycles
 This is the number of cycles taken if the instruction passes its condition 

code check, that is, the number of cycles between this instruction starting 
to execute and the next instruction starting to execute. This is usually the 
same as the number of iterations the instruction makes in the Execute 
stage of the ALU pipeline, or the number of iterations a load or store 
multiple instruction makes in the Execute stage of the LSU pipeline.

If an instruction changes the instruction stream, then the condition pass 
cycles indicates the number of cycles before the new PC is available plus 
the number of cycles it takes to refill the pipe to the point where a new 
instruction enters Execute in the next cycle.

Condition fail cycles 
This is the number of cycles taken if the instruction fails its condition 
code check, that is, the number of cycles between this instruction entering 
the Execute stage of the pipeline and failing its condition code check and 
the next instruction entering the Execute stage.
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Result cycles
 This is the number of cycles it takes for the instruction to produce its 

result. It is the number of cycles that must be taken up by the current 
instruction and following independent instructions before a dependent 
instruction can be run without interlocking. It can be larger than condition 
pass cycles in cases where an instruction produces a result later than the 
Execute stage of the pipeline. 

If condition pass cycles is greater than result cycles for an instruction, 
then the result is always available to a following instruction. 

See Interlocks on page 21-22 for details of result forwarding paths and the pipeline 
stages in which instructions have to read registers. 

Instructions that change mode by writing the control section of the CPSR are 
highlighted in some of the tables because they have to wait for the LSU pipe to empty. 
This is noted in the tables because it makes a significant difference to the execution time 
if there are any outstanding load misses. Exceptions also change mode, causing a delay 
while the LSU pipe empties.

The instructions are described in the following sections:

• Data processing instructions on page 21-5

• Multiply instructions on page 21-7

• Branch instructions on page 21-8

• MRS and MSR instructions on page 21-9

• SWI instruction on page 21-9

• Load and store instructions on page 21-9

• Load multiple and store multiple instructions on page 21-14

• Preload instructions on page 21-15

• Coprocessor instructions on page 21-15

• Semaphore instructions on page 21-16

• Thumb data processing instructions on page 21-17

• Thumb multiply instructions on page 21-19

• Thumb branch instructions on page 21-19

• Thumb load instructions and store instructions on page 21-20

• Thumb load multiple and store multiple instructions on page 21-21.
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21.2.1 Data processing instructions 

The simple data processing instructions are:

AND, EOR, SUB, RSB, ADD, 

ADC, SBC, RSC,CMN, ORR, 

ORR, MOV, BIC, MVN, TST,

TEQ, CMP, QADD, QDADD, QSUB, QDSUB, CLZ

Table 21-1 shows the addressing mode 1 subcategories of data processing instructions.

Table 21-2 shows examples of data processing cycle counts. In the table, any of the 
simple data processing operations can be substituted for AND.

Table 21-1 Subcategories of data processing instructions

 Subcategory Format Example

Immediate OP Rd, Rn, #imm ADD R1, R2, #1

Register OP Rd, Rn, Rm AND R1, R2, R3

Immediate shifted register OP Rd, Rn, Rm LSL #imm AND R1, R2, R3 LSL #1

Register shifted register OP Rd, Rn, Rm LSL Rs AND R1, R2, R3 LSL R4

Table 21-2 Cycle counts of data processing instructions

Example instruction Notes
Change
mode Pass Fail

Result
available

AND Rd, Rn, #imm - No 1 1 1

AND Rd, Rn, Rm - No 1 1 1

AND Rd, Rn, Rm LSL #imm - No 1 1 1

AND Rd, Rn, Rm LSL Rs - No 2 2 2

ANDS Rd, Rn, #imm Set flags No 1 1 1

ANDS Rd, Rn, Rm Set flags No 1 1 1

ANDS Rd, Rn, Rm LSL #imm Set flags No 1 1 1

ANDS Rd, Rn, Rm LSL Rs Set flags No 2 2 2
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Most data processing instructions take one cycle to execute, after which their result is 
available for use. The exceptions are instructions that involve register-controlled shifts, 
saturating instructions, and instructions that write to the PC.

A simple MOV from a register, with no shift that writes the PC requires four extra 
cycles to refill the pipeline. More complex operations that write to the PC take five extra 
cycles to refill the pipeline.

AND PC, Rn, #imm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm LSL #imm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm LSL Rs To PC No 2 + 5 2 N/A

ANDS PC, Rn, #imm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm LSL #imm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm LSL Rs To PC, restore CPSR Yes 2 + 5 2 N/A

MOV PC, Rn Zero shift MOV to PC No 1 + 4 1 N/A

CLZ Rd, Rm - No 1 1 1

QADD Rd, Rm, Rn Sets Q flag No 1 1 2

QSUB Rd, Rm, Rn Sets Q flag No 1 1 2

QDADD Rd, Rm, Rn Sets Q flag No 1 1 2

QDSUB Rd, Rm, Rn Sets Q flag No 1 1 2

Table 21-2 Cycle counts of data processing instructions  (continued)

Example instruction Notes
Change
mode Pass Fail

Result
available
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21.2.2 Multiply instructions

Table 21-3 shows the cycle counts of multiply instructions. For long multiplies, the least 
significant word of the result is always the first available. The most significant word is 
available in the following cycle. This is why there are two cycle counts for instructions 
whose results extend over one word.

If the number of pass cycles is greater than the number of result cycles, then the result 
cycles dominate. Multiplies that set the flags other than Q have to sit in Execute stage 
for several cycles, because the the ALU must calculate the new flags. Sometimes it 
might be possible to use a multiply that does not set the flags, followed by a compare 
of the result that does set the flags. This is appropriate where a useful instruction can be 
inserted between the multiply and the compare.

Table 21-3 Cycle counts of multiply instructions

Instruction Notes Pass Fail Rd (Lo/Hi) Flags

SMUL<x><y> Rd, Rm, Rs 16 × 16 -> 32 1 1 2 -

SMLA<x><y> Rd, Rm, Rs, Rn 16 × 16 + 32 -> 32 2 2 2 -

SMLAL<x><y> RdLo, RdHi, Rm, Rs 16 × 16 + 64 -> 64 2 2 2/3 -

SMULW<x> Rd, Rm, Rs 32 × 16 -> 32, upper 32 bits 1 1 2 -

SMLAW<x> Rd, Rm, Rs, Rn 32 × 16 + 32 -> 32, upper 32 bits 2 2 2 -

MUL Rd, Rm, Rs 32 × 32 -> 32 2 2 3 -

MULS Rd, Rm, Rs 32 × 32 -> 32, set flags 4 2 3 4

MLA Rd, Rm, Rs, Rn 32 × 32 + 32 -> 32 2 2 3 -

MLAS Rd, Rm, Rs, Rn 32 × 32 + 32 -> 32, set flags 4 2 3 4

UMULL RdLo, RdHi, Rm,Rs 32 × 32 -> 64, unsigned 3 2 3/4 -

UMULLS RdLo, RdHi, Rm, Rs 32 × 32 -> 64, unsigned, set flags 5 2 3/4 5

UMLAL RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, unsigned 3 2 3/4 -

UMLALS RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, unsigned, set flags 5 2 3/4 5

SMULL RdLo, RdHi, Rm,Rs 32 × 32 -> 64, signed 3 2 3/4 -

SMULLS RdLo, RdHi, Rm,Rs 32 × 32 -> 64, signed, set flags 5 2 3/4 5

SMLAL RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, signed 3 2 3/4 -

SMLALS RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, signed, set flags 5 2 3/4 5
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21.2.3 Branch instructions

This section describes the following instructions:

B, BL, BX, BLX, BXJ.

When branch prediction is enabled, unconditional and conditional backward branches 
are predicted taken, and conditional forward branches are predicted not taken. See 
Branch instruction cycle summary on page 5-6 for more detail.

Table 21-4 Cycle counts of branch instructions

Unpredicted Predicted

Instruction Pass Fail Predictable Correctly Incorrectly

B <address> 5 1 Yes 0 to 3a

a. Assuming all accesses hit in the ICache. When the prefetch unit has had time 
to fold a branch it appears to take zero cycles. When the prefetch unit has been 
recently been flushed and is empty, it takes three cycles to obtain the 
instruction at the branch target.

5

BL <address> 5 2 Yes 1 to 3 -

BX Rm 5 2 No - -

BLX Rm 5 2 No - -

BLX <Imm24> 5 N/A Yes 1 to 3 -

BXJ Rm 5 2 No - -
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21.2.4 MRS and MSR instructions

MSR instructions that write just the flags run quickly. MSRs that change mode take 
more cycles and have to wait for the LSU pipeline to be empty before they start to 
execute. Table 21-5 shows the cycle counts for MRS and MSR instructions.

21.2.5 SWI instruction

A SWI instruction takes five cycles to execute, or two cycles if it fails its condition code 
check. This is true for the ARM and Thumb SWI instructions. 

21.2.6 Load and store instructions

This section describes the following instructions:

LDR, LDRD, LDRB, LDRBT, LDRH, LDRSB, LDRSH, LDRT,

STM, STR, STRD, STRB, STRBT, STRH, STRT.

Loads and stores all take one cycle to execute unless they use a scaled register offset or 
scaled register pre-indexed addressing mode, in which case they take three cycles.

Load and stores with a scaled register offset or pre-indexed addressing mode and a base 
plus offset with an LSL of 0 or 2, or a base minus offset with an LSL of 0 are optimized 
to execute in one cycle.

Loads to the PC take seven cycles to execute unless they use a scaled register offset or 
pre-indexed addressing mode, in which case they take nine cycles.

Table 21-5 Cycle counts of MRS and MSR instructions

Example instruction Notes Change mode Pass Fail

MRS Rd, CPSR - No 1 1

MRS Rd, SPSR - No 1 1

MSR_f CPSR, Rn Only flags No 1 1

MSR_f CPSR, #<cns> Only flags No 1 1

MSR CPSR, Rn Not only flags Yes 5 1

MSR CPSR, #<cns> Not only flags Yes 5 1

MSR SPSR, Rn - No 4 2

MSR SPSR, #<cns> - No 4 2 
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For all loads, the loaded data is available for use one cycle after the last Execute stage 
of the load.

The base write-back value is calculated in the ALU pipeline Execute stage and is 
usually available immediately for forwarding to the Decode stage of the following 
instruction. For scaled register pre-indexed addressing mode, the base write-back is 
available in the third Execute stage for forwarding to the next instruction.

Table 21-6 shows the cycle counts of the load instructions.

Table 21-6 Cycle counts of load instructions

Example instruction Pass Fail Base write-back Load data

LDR PC, [Rn], #<cns> 7 2 1 -

LDR PC, [Rn, #<cns>] 7 2 - -

LDR PC, [Rn, #<cns>]! 7 2 1 -

LDR PC, [Rn], Rm, <shf><cns> 7 2 3 -

LDR PC, [Rn, Rm] 7 2 - -

LDR PC, [Rn, Rm]! 7 2 1 -

LDR PC, [Rn, Rm, <shf><cns>] 9 2 - -

LDR PC, [Rn, Rm, <shf><cns>]! 9 2 3 -

LDR Rd, [Rn], #<cns> 1 1 1 2

LDRT Rd, [Rn], #<cns> 1 1 1 2

LDRB Rd, [Rn], #<cns> 1 1 1 2

LDRBT Rd, [Rn], #<cns> 1 1 1 2

LDR Rd, [Rn, #<cns>] 1 1 - 2

LDR Rd, [Rn, #<cns>]! 1 1 1 2

LDRB Rd, [Rn, #<cns>] 1 1 - 2

LDRB Rd, [Rn, #<cns>]! 1 1 1 2

LDR Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDRT Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDRB Rd, [Rn], Rm, <shf><cns> 1 1 1 2
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LDRBT Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDR Rd, [Rn,Rm] 1 1 - 2

LDR Rd, [Rn,Rm]! 1 1 1 2

LDRB Rd, [Rn, Rm] 1 1 - 2

LDRB Rd, [Rn, Rm]! 1 1 1 2

LDR Rd, [Rn, Rm, <shf><cns>] 3 2 - 4

LDR Rd, [Rn, Rm, <shf><cns>]! 3 2 3 4

LDRB Rd, [Rn, Rm, <shf><cns>] 3 2 - 4

LDRB Rd, [Rn, Rm, <shf><cns>]! 3 2 3 4

LDRSB Rd, [Rn], Rm 1 1 1 2

LDRSB Rd, [Rn], #<cns> 1 1 1 2

LDRSB Rd, [Rn, Rm] 1 1 - 2

LDRSB Rd, [Rn, Rm]! 1 1 1 2

LDRSB Rd, [Rn, #<cns>] 1 1 - 2

LDRSB Rd, [Rn, #<cns>]! 1 1 1 2

LDRH Rd, [Rn], Rm 1 1 1 2

LDRH Rd, [Rn], #<cns> 1 1 1 2

LDRH Rd, [Rn, Rm] 1 1 - 2

LDRH Rd, [Rn, Rm]! 1 1 1 2

LDRH Rd, [Rn, #<cnt>] 1 1 - 2

LDRH Rd, [Rn, #<cnt>]! 1 1 1 2

LDRSH Rd, [Rn], Rm 1 1 1 2

LDRSH Rd, [Rn], #<cns> 1 1 1 2

LDRSH Rd, [Rn, Rm] 1 1 - 2

LDRSH Rd, [Rn, Rm]! 1 1 1 2

Table 21-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back Load data
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Table 21-7 shows the cycle counts of the store instructions.

LDRSH Rd, [Rn, #<cns>] 1 1 - 2

LDRSH Rd, [Rn, #<cns>]! 1 1 1 2 

LDRD Rd, [Rn], Rm 1 1 1 2

LDRD Rd, [Rn], #<cns> 1 1 1 2

LDRD Rd, [Rn, Rm] 1 1 - 2

LDRD Rd, [Rn, Rm]! 1 1 1 2

LDRD Rd, [Rn, #<cns>] 1 1 - 2

LDRD Rd, [Rn, #<cns>]! 1 1 1 2

Table 21-7 Cycle counts of store instructions

Example instruction Pass Fail Base write-back

STR Rd, [Rn], #<cns> 1 1 1

STRT Rd, [Rn], #<cns> 1 1 1

STRB Rd, [Rn], #<cns> 1 1 1

STRBT Rd, [Rn], #<cns> 1 1 1

STR Rd, [Rn, #<cns>] 1 1 -

STR Rd, [Rn, #<cns>]! 1 1 1

STRB Rd, [Rn, #<cns>] 1 1 -

STRB Rd, [Rn, #<cns>]! 1 1 1

STR Rd, [Rn], Rm, <shf><cns> 1 1 1

STRT Rd, [Rn], Rm, <shf><cns> 1 1 1

STRB Rd, [Rn], Rm, <shf><cns> 1 1 1

STRBT Rd, [Rn], Rm, <shf><cns> 1 1 1

STR Rd, [Rn, Rm] 1 1 -

Table 21-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back Load data
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STR Rd, [Rn, Rm]! 1 1 1

STRB Rd, [Rn, Rm] 1 1 -

STRB Rd, [Rn, Rm]! 1 1 1

STR Rd, [Rn, Rm, <shf><cns>] 3 2 -

STR Rd, [Rn, Rm, <shf><cns>]! 3 2 3

STRB Rd, [Rn, Rm, <shf><cns>] 3 2 -

STRB Rd, [Rn, Rm, <shf><cns>]! 3 2 3

STRH Rd, [Rn], Rm 1 1 1

STRH Rd, [Rn], #<cns> 1 1 1

STRH Rd, [Rn, Rm] 1 1 -

STRH Rd, [Rn, Rm]! 1 1 1

STRH Rd, [Rn, #<cnt>] 1 1 -

STRH Rd, [Rn, #<cnt>]! 1 1 1

STRD Rd, [Rn], Rm 1 1 1

STRD Rd, [Rn], #<cns> 1 1 1

STRD Rd, [Rn, Rm] 1 1 -

STRD Rd, [Rn, Rm]! 1 1 1

STRD Rd, [Rn, #<cns>] 1 1 -

STRD Rd, [Rn, #<cns>]! 1 1 1 

Table 21-7 Cycle counts of store instructions (continued)

Example instruction Pass Fail Base write-back
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21.2.7 Load multiple and store multiple instructions

An LDM can load two registers per cycle. If the initial access is not to a 64-bit aligned 
address, an extra cycle is required because only a single register can be loaded in the 
first cycle. 

An LDM/STM will iterate in the LSU pipeline Execute and Memory stages until the 
last register in the list has been loaded. Data processing instructions cannot run under 
an LDM/STM, and are held in the ALU pipeline Execute stage. Load/store instructions 
cannot run under an LDM/STM, and are held in the LSU pipeline Decode stage.

If an LDM loads the PC, it is loaded from the last access, and six more cycles are 
required to refill the pipeline.

Table 21-8 shows the cycle counts of simple load/store multiple instructions. L is the 
number of cycles it takes to load the part of the register list before the PC. For example, 
if the list of registers is {r1, r2, PC}, L is one or two depending on whether the address 
to load r1 from is aligned to 64 bits. If it is aligned, r1 and r2 are loaded in one cycle. If 
not, then it takes one cycle to load r1 and a second cycle to load r2.

Table 21-8 Cycle counts of load multiple and store multiple instructions

Example instruction Change mode Pass Fail Base write-back First load data

STM Rn, <...> No L 1 - - 

STM Rn!, <...> No L 1 1 - 

STM Rn, <...>^ No L 1 - - 

STM Rn!, <...>^ No L 1 1 - 

LDM Rn, <...noPC> No L 1 - 2

LDM Rn!, <...noPC> No L 1 1 2

LDM Rn, <...noPC>^ No L 1 - 2

LDM Rn!, <...noPC>^ No L 1 1 2

LDM Rn, <...PC> No L + 6 2 - 2

LDM Rn!, <...PC> No L + 6 2 1 2

LDM Rn, <...PC>^ Yes L + 7 2 - 2

LDM Rn!, <...PC>^ Yes L + 7 2 1 2
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21.2.8 Preload instructions

Table 21-9 shows the cycle counts of preload instructions.

21.2.9 Coprocessor instructions

This section describes the following instructions:

CDP, LDC, MCR, MCRR, MRC, MRRC, STC. 

Table 21-10 shows the cycle counts of the coprocessor instructions. The maximum 
number of cycles taken by one of these instructions depends on the coprocessor 
involved. Cycles shown are the minimum cycle count for a tightly coupled coprocessor 
such as the VFP10 (Rev 1) coprocessor. Other coprocessors might have greater 
minimum cycle count.

Table 21-9 Cycle counts of preload instructions

Instruction Number of cycles

PLD [Rn,#-<cns>] 1

PLD [Rn, #<cns>] 1

PLD [Rn, -Rm] 1

PLD [Rn, -Rm, <shf><cns>] 3

PLD [Rn, Rm] 1

PLD [Rn, Rm, <shf><cns>] 3

Table 21-10 Cycle counts of coprocessor instructions

Example instruction Pass Fail Base write-back Data Flags

CDP <copr>, <op1>, CRd, CRn, CRm, <op2> 1 1 - - -

MCR <copr>, <op1>, Rd, CRn, CRm, <op2> 1 1 - - -

MCRR <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - - -

MRC <copr>, <op1>, Rd, CRn, CRm, <op2> 1 1 - 2 -

MRC <copr>, <op1>, PC, CRn, CRm, <op2> 2 2 - 2 2

MRRC <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - 2 -

STC <copr>, CRd, [Rn], {option} L 1 1 - -
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21.2.10 Semaphore instructions

This section describes the SWP and SWPB instructions.

A swap takes two cycles, but before it can be executed, all outstanding loads and stores 
are completed. Table 21-11 shows the cycle counts of swap instructions.

STC <copr>, CRd, [Rn], #<cns>! L 1 1 - -

STCL <copr>, CRd, [Rn], {option} L 1 1 - -

STCL <copr>, CRd, [Rn], #<cns>! L 1 1 - -

STC <copr>, CRd, [Rn, #<cns>] L 1 - - -

STC <copr>, CRd, [Rn, #<cns>]! L 1 1 - -

STCL <copr>, CRd, [Rn, #<cns>] L 1 - - -

STCL <copr>, CRd, [Rn, #<cns>]! L 1 1 - -

LDC <copr>, CRd, [Rn], {option} L 1 1 2 -

LDC <copr>, CRd, [Rn], #<cns>! L 1 1 2 -

LDCL <copr>, CRd, [Rn], {option} L 1 1 L + 2 -

LDCL <copr>, CRd, [Rn], #<cns>! L 1 1 L + 2 -

LDC <copr>, CRd, [Rn, #<cns>] L 1 - 2 -

LDC <copr>, CRd, [Rn, #<cns>]! L 1 1 2 -

LDCL <copr>, CRd, [Rn, #<cns>] L 1 - L + 2 -

LDCL <copr>, CRd, [Rn, #<cns>]! L 1 1 L + 2 - 

Table 21-10 Cycle counts of coprocessor instructions  (continued)

Example instruction Pass Fail Base write-back Data Flags

Table 21-11 Cycle counts of swap instructions

Example instruction Pass Fail Result available 

SWP Rd, Rm, [Rn] 2 2 2

SWPB Rd, Rm, [Rn] 2 2 2 
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21.2.11 Thumb data processing instructions

Thumb data processing instructions behave in a way similar to ARM instructions. 
Table 21-12 shows the cycle counts of Thumb data processing instructions.

Table 21-12 Cycle counts of Thumb data processing instructions

Example instruction Number of cycles Result available

LSL Rd, Rm, #sh_imm5 1 1

LSR Rd, Rm, #sh_imm5 1 1

ASR Rd, Rm, #sh_imm5 1 1

ADD Rd, Rn, Rm 1 1

SUB Rd, Rn, Rm 1 1

ADD Rd, Rn, #imm3 1 1

SUB Rd, Rn, #imm3 1 1

MOV Rd, #imm8 1 1

CMP Rd, #imm8 1 1

ADD Rd, #imm8 1 1

SUB Rd, #imm8 1 1

AND Rd, Rm 1 1

EOR Rd, Rm 1 1

LSL Rd, Rs 2 2

LSR Rd, Rs 2 2

ASR Rd, Rs 2 2

ADC Rd, Rm 1 1

SBC Rd, Rm 1 1

ROR Rd, Rs 2 2

TST Rn, Rm 1 1

NEG Rd, Rm 1 1

CMP Rd, Rm 1 1
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CMN Rd, Rm 1 1

ORR Rd, Rm 1 1

BIC Rd, Rm 1 1

MVN Rd, Rm 1 1

ADD Rd, Hm 1 1

ADD Hd, Rm 1 1

ADD Hd, Hm 1 1

CMP Rd, Hm 1 1

CMP Hd, Rm 1 1

CMP Hd, Hm 1 1

MOV Rd, Hm 1 1

MOV Hd, Rm 1 1

MOV Hd, Hm 1 1

ADD Rd, PC, #imm 1 1

ADD Rd, SP, #imm 1 1

ADD SP, #imm 1 1

SUB SP, #imm 1 1

ADD PC, Rm 6 -

ADD PC, Hm 6 -

MOV PC, Rm 5 -

MOV PC, Hm 5 - 

Table 21-12 Cycle counts of Thumb data processing instructions (continued)

Example instruction Number of cycles Result available
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21.2.12 Thumb multiply instructions

The Thumb multiply instruction behaves in a way similar to the ARM MULS 
instruction. Table 21-13 shows the cycle count of the Thumb multiply instruction.

21.2.13 Thumb branch instructions

Thumb BL and BLX to an immediate value are encoded as two Thumb instructions. The 
first instruction is a data processing instruction that puts an immediate value into r14. 
This takes three cycles. The second instruction adds an immediate value to r14 and 
fetches from that address. This takes four cycles before the next instruction is in 
Execute. Table 21-14 shows the cycle counts of Thumb branch instructions.

21.2.14 Thumb SWI instruction

An SWI instruction takes five cycles to execute, or two cycles if it fails its condition 
code check. This is true for both the ARM and Thumb SWI instruction.

Table 21-13 Cycle count of the Thumb multiply instruction

Example instruction Notes Number of cycles

Result

Rd Flags

MUL Rd, Rm 32 × 32 + 32 -> 32, set flags 4 3 4

Table 21-14 Cycle counts of Thumb branch instructions

Unpredicted Predicted

Instruction Pass Fail Predictable Correctly Incorrectly 

B <address> 5 N/A Yes 0 to 3a

a. Assuming all accesses hit in the ICache. When the prefetch unit has had time 
to fold a branch it appears to take zero cycles. When the prefetch unit has been 
recently flushed and is empty it takes three cycles to obtain the instruction at 
the branch target (See Chapter 5 Prefetch Unit).

5

BL <address> 3 + 4 N/A Yes 1 to 3 -

BX Rm 5 N/A No - -

BLX Rm 5 N/A No - -

BLX <Imm> 3 + 4 N/A Yes 1 to 3 -
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21.2.15 Thumb load instructions and store instructions

Thumb load/store instructions behave in a way similar to ARM load/store instructions. 
Table 21-16 shows the cycle counts of Thumb load instructions.

Table 21-15 shows the cycle counts of Thumb store instructions.

Table 21-15 Cycle counts of Thumb load instructions

Example instruction Number of cycles Load data

LDR Rd, [Rn, Rm] 1 2

LDRB Rd, [Rn, Rm] 1 2

LDRSB Rd, [Rn, Rm] 1 2

LDRH Rd, [Rn, Rm] 1 2

LDRSH Rd, [Rn, Rm] 1 2

LDR Rd, [Rb, #imm5] 1 2

LDRB Rd, [Rb, #imm5] 1 2

LDRH Rd, [Rn, #imm5] 1 2

LDR Rd, [SP, #imm8] 1 2 

Table 21-16 Cycle counts of Thumb store instruction

Example instruction Number of cycles

STR Rd, [Rn, Rm] 1

STRB Rd, [Rn, Rm] 1

STRH Rd, [Rn, Rm] 1

STR Rd, [Rb, #imm5] 1

STRB Rd, [Rb, #imm5] 1

STRH Rd, [Rn, #imm5] 1

STR Rd, [SP, #imm8] 1
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21.2.16 Thumb load multiple and store multiple instructions

Thumb load/store multiple instructions behave in the same way as ARM load/store 
multiple instructions. Table 21-17 shows the cycle counts of Thumb load/store multiple 
instructions.

L is the number of cycles it takes to load the part of the register list before the PC. For 
example, for {r1, r2, PC} L is 1 or 2 depending on whether the address to load r1 from 
is aligned to 64 bits. If it is aligned, r1 and r2 is loaded in one cycle. If not, then it takes 
one cycle to load r1 and a second cycle to load r2.

Table 21-17 Cycle counts of Thumb load/store multiple instructions

Example instruction Number of cycles Base write-back First load data

PUSH {rlist} L - -

PUSH {rlist, LR} L - -

STMIA Rn!, {rlist} L 1 -

POP {rlist} L - 2

POP {rlist, PC} L + 6 - 2

LDMIA Rn!, {rlist} L 1 2
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21.3 Interlocks

In almost all cases, the integer core uses forwarding to resolve data dependencies 
between instructions. For the remaining cases, hardware-imposed interlocks (pipeline 
stalls) are used to ensure the correct operation of an instruction.

One of the more common causes of data dependency interlocks are data processing 
instructions that have a source register that is loaded from memory by the previous 
instruction. The previous instruction might be an LDR, in which case this data is usually 
available after a one-cycle interlock. The data processing instruction gets as far as 
Decode before it interlocks. It interlocks in Decode because this is where it reads its 
source registers.

Another common cause of data dependency interlocks is load/store instructions where 
the load/store address is dependent on the result of the previous instruction. The 
previous instruction might be a data processing instruction, in which case the result is 
usually available after a one-cycle interlock, or it might be an LDR, in which case the 
the loaded data is usually available after a two-cycle interlock. The load/store 
instruction gets as far as Decode before it interlocks. It interlocks in Decode because 
this is where it calculates the load/store address.

Pipeline interlocks are also used to resolve hardware dependencies in the pipeline. 
Some common examples of hardware dependencies are: 

• a data processing instruction waiting for the LSU to an finish an existing LDM or 
STM

• a new load waiting for the LSU to finish an existing LDM or STM

• a new multiply waiting for a previous multiply to free up the first stage of the 
multiplier.

The integer core generates most interlocks as late as possible. For instance, a multiply 
accumulate instruction can start before the accumulate operands are available and stops 
only when the values are required. This gives the maximum time possible for previous 
instructions to generate the required data and minimizes occurrences of interlocks.

The integer core implements forwarding paths to enable almost any result to be used as 
soon as it is calculated. The forwarding paths are shown in Figure 21-1 on page 21-23.
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Figure 21-1 Pipeline forwarding paths

The register bank has four read ports:

• Port A

• Port B

• Port S1

• Port S2.

In the Decode stage, the integer unit reads port A and port B. Ports A and B are for 
operands for ALU and multiply instructions and registers to generate addresses for 
loads, stores, and unpredicted branches.

In the Execute stage, the LSU reads port S1 and port S2. Ports S1 and S2 are for store 
data for STRs and STMs and for transfers to coprocessors.

The register bank has three write ports:

• Port W

• Port L1

• Port L2.

The integer unit writes to port W, and the LSU writes to port L1 and port L2 at the end 
of the Write stage. Port W is for writing results from the ALU pipeline. The results 
include ALU operations, multiplies, and base register write-backs for loads and stores. 
Ports L1 and L2 are for writing loaded data for LDRs and LDMs and for transfers from 
coprocessors.

LSU

pipeline

ALU

pipeline

Fetch Issue Decode Execute Memory Write

Read port S1

Read port S2

Write port L1

Write port L2

Write port WRead port A

Read port B
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21.3.1 Examples of interlocking and forwarding

Example 21-1 through Example 21-13 on page 21-27 illustrate interlocking and 
forwarding. 

Example 21-1 is the simplest case of forwarding. The ADD is dependent on the MOV 
as the MOV writes r0 and the ADD reads it. The write of 1 into register r0 does not 
happen until the end of the Write stage of the pipeline, but the correct value for r0, a 1, 
is forwarded to the ADD in the ADD Decode stage by the ALU pipeline 
Execute-to-Decode forwarding path. This enables the ADD to run with no interlocks.

Example 21-1

MOV R0, #1
ADD R1, R0, #1

In Example 21-2, the ADD is dependent on the MOV, and there is a single-cycle SUB 
between them. The write of 1 to r0 has not happened when the ADD is reading its source 
registers because the MOV is in the Memory stage when the ADD is in the Decode 
stage. The correct value for r0, a 1, is forwarded to the ADD Decode stage by the ALU 
pipeline Memory-to-Decode forwarding path. This enables the ADD to run with no 
interlock.

Example 21-2

MOV R0, #1
SUB R1, R2, #2
ADD R2, R0, #1

In Example 21-3, an LDR is followed by an ADD that is dependent on the load return 
data. The data loaded into r0 is only available in the Memory stage of the LDR, so the 
ADD interlocks in the Decode stage for one cycle. The returned data in the LDR 
Memory stage is forwarded to the ADD Decode stage.

Example 21-3

LDR R0, [R1, R2]
ADD R3, R0, #1
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In Example 21-4, an LDRB, byte load, is followed by an ADD that is dependent on the 
load return data. Since byte rotation and sign extension occur in the LSU pipeline Write 
stage, the ADD interlocks in the Decode stage for two cycles. The byte rotated data in 
the LDRB Write stage is forwarded to the ADD Decode stage.

Example 21-4

LDRB R0, [R1, R2]
ADD R3, R0, #1

In Example 21-5, the source register for the MOV depends on the LDR base write-back 
to r1. There is no interlock because the write-back value is calculated in the ALU 
pipeline in the Execute stage and is immediately available for forwarding to the Decode 
stage of the following instruction.

Example 21-5

LDR R0, [R1, R2]!
MOV R3, R1

In Example 21-6, the STR data depends on the data loaded by the LDR but there is no 
interlock because the data is returned in the Memory stage of the LDR. It is pipelined 
to the Write stage where it is forwarded to the Memory stage of the STR.

Example 21-6

LDR R0, [R1, R2]
STR R0, [R3, R4]

In Example 21-7, the LDR address calculation is dependent on the ADD result. Data 
address calculation occurs in the LSU pipeline Decode stage. The LDR interlocks in the 
Decode stage for one cycle, and the result of the ADD in Memory stage is forwarded to 
the LDR Decode stage.

Example 21-7

ADD R0, R1, R2
LDR R4, [R0, R3]
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Instruction Cycle Count 
In Example 21-8, the LDR address calculation is dependent on the MUL result. Here 
the LDR interlocks in the Decode stage for two cycles, and the result of the MUL in 
Write stage is forwarded to the LDR Decode stage.

Example 21-8

MUL R0, R1, R2
LDR R4, [R0, R3]

In Example 21-9, the STR address calculation is dependent on the loaded data from the 
LDR. In this case, the STR interlocks in the Decode stage for two cycles. The LDR data 
is returned in the Memory stage and is pipelined to the Write stage, where it is 
forwarded to the STR Decode stage.

Example 21-9

LDR R0, [R1, R2]
STR R4, [R0, R3]

In Example 21-10, there are no data dependencies between the instructions. If the LDR 
missed in the DCache, the LDR is stalled in the LSU Memory stage. Data processing 
instructions cannot run underneath a miss. The MOV is stalled in the ALU pipeline 
Execute stage.

Example 21-10

LDR R0, [R1, R2]
MOV R3, #1

In Example 21-11, there are no data dependencies between the load instructions. If the 
first LDR missed in the DCache, the LDR is stalled in the LSU Memory stage. 
Load/store instructions cannot run underneath a miss. The second LDR is stalled in the 
LSU pipeline Execute stage.

Example 21-11

LDR R0, [R1, R2]
LDR R3, [R4, R5]
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In Example 21-12, there are no data dependencies between the LDMIA loads and the 
destination register of the MOV. Data processing instructions will interlock until the last 
memory access of a load/store multiple instruction has completed. In this case, the 
MOV is held in the Execute stage of the ALU pipeline until the last Memory stage of 
the LDMIA has completed.

Example 21-12

LDMIA R0, {R1-R7}
MOV R8, #1

In Example 21-13, there are no data dependencies between the LDMIA and LDR. 
Load/store instructions will interlock until the last memory access of a load/store 
multiple instruction has completed. In this case, the LDR is held in the Decode stage of 
the LSU pipeline until the last Memory stage of the LDMIA has completed.

Example 21-13

LDMIA R0, {R1-R7}
LDR R8, [R9, R10]
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Appendix A 
Signal Descriptions

This appendix describes the signals of the ARM1026EJ-S processor. It contains the 
following sections:

• AHB signals in normal mode on page A-2

• Coprocessor signals on page A-7

• Debug interface signals on page A-9

• DFT signals on page A-10

• MBIST signals on page A-11

• ETM signals on page A-12

• TCM signals on page A-13

• Interrupt signals on page A-15

• Other signals on page A-17.
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Signal Descriptions 
A.1 AHB signals in normal mode

Table A-1 shows the AHB signals divided by function.

Table A-1 AHB signals

Signal I/O Description

HPROTD[3:0] O DBIU protection control. Transfers are always data accesses:
bxxx0 = opcode fetch
bxxx1 = data access
bxx0x = user access
bxx1x = privileged access
bx0xx = not bufferable
bx1xx = bufferable
b0xxx = not cachable
b1xxx = cachable.

HPROTI[3:0] O IBIU protection control. Transfers are always opcode fetches:
bxxx0 = opcode fetch
bxxx1 = data access
bxx0x = user access
bxx1x = privileged access
bx0xx = not bufferable
bx1xx = bufferable
b0xxx = not cachable
b1xxx = cachable.

HSIZED[2:0] O Size of DBIU transfer:
b000 = byte, 8 bits
b001 = halfword, 16 bits
b010 = word, 32 bits
b011 = doubleword, 64 bits
b100 = 4 words, 128 bits (unused)
b101 = 8 words, 256 bits (unused))
b110 = 16 words, 512 bits (unused)
b111 = 32 words, 1024 bits (unused).

HSIZEI[2:0] O Size of IBIU transfer:
b000 = byte, 8 bits
b001 = halfword, 16 bits
b010 = word, 32 bits
b011 = doubleword, 64 bits
b100 = 4 words, 128 bits (unused)
b101 = 8 words, 256 bits (unused)
b110 = 16 words, 512 bits (unused)
b111 = 32 words, 1024 bits (unused).
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Signal Descriptions 
HTRANSD[1:0] O Reflects type of DBIU transfer:
b00 = IDLE
b01 = BUSY (unused transfer type.)
b10 = NONSEQUENTIAL
b11 = SEQUENTIAL.

HTRANSI[1:0] O Selects type of IBIU transfer:
b00 = IDLE
b01 = BUSY (unused transfer type)
b10 = NONSEQUENTIAL
b11 = SEQUENTIAL.

HWDATAD[63:0] O DBIU write data bus. Transfers data from master to slaves in write operations.

When D64n32 is HIGH, both HWDATAD[31:0] and HWDATAD[63:32] contain 
valid data as defined by transfer size and address.

When D64n32 is LOW, HWDATAD[31:0] contain valid data and HWDATAD[63:32] 
are unconnected.

HWRITED O DBIU transfer direction:
1 = write
0 = read.

HWRITEI O IBIU transfer direction:
1 = write
0 = read.

HADDRD[31:0] O DBIU address bus.

HADDRI[31:0] O IBIU address bus.

Table A-1 AHB signals (continued)

Signal I/O Description
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Signal Descriptions 
HBSTRBD[7:0] O Byte lane indicator for current data transfer.

Valid strobe mappings for eight-bit transfers:
b00000001
b00000010
b00000100
b00001000
b00010000
b00100000
b01000000
b10000000

Valid strobe mappings for 16-bit transfers:
b00000011
b00001100
b00110000
b11000000

Valid strobe mappings for 32-bit transfers:
b00001111
b11110000

Valid strobe mapping for 64-bit transfers:
b11111111

HBSTRBI[7:0] O Byte lane indicator for current instruction transfer.

Valid strobe mappings for eight-bit transfers:
b00000001
b00000010
b00000100
b00001000
b00010000
b00100000
b01000000
b10000000

Valid strobe mappings for 16-bit transfers:
b00000011
b00001100
b00110000
b11000000

Valid strobe mappings for 32-bit transfers:
b00001111
b11110000

Valid strobe mapping for 64-bit transfers:
b11111111

Table A-1 AHB signals (continued)

Signal I/O Description
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HBURSTD[2:0] O DBIU burst transfer type:
b000 = single transfer
b001 = incrementing transfer
b010 = 4-beat wrapping burst
b011 = 4-beat incrementing burst
b100 = 8-beat wrapping burst
b101 = 8-beat incrementing burst
b110 = 16-beat wrapping burst (unused)
b111 = 16-beat incrementing burst (unused).

HBURSTI[2:0] O IBIU burst transfer type:
b000 = single transfer
b001 = incrementing transfer
b010 = 4-beat wrapping burst
b011 = 4-beat incrementing burst
b100 = 8-beat wrapping burst
b101 = 8-beat incrementing burst
b110 = 16-beat wrapping burst (unused)
b111 = 16-beat incrementing burst (unused).

D64n32 I DBIU bus size indicator:
1 = 64-bits
0 = 32-bits.

I64n32 I IBIU bus size indicator:
1 = 64-bit
0 = 32-bit.

HCLKEND I Specifies rising edge of HCLK for AHB data transfer. If CLK and HCLK have the 
same frequency, tie HCLKEND HIGH. In a single-layer AHB system, tie HCLKEND 
and HCLKENI together.

HCLKENI I Specifies rising edge of HCLK for AHB instruction transfer. If CLK and HCLK have 
the same frequency, HCLKENI must be tied HIGH. In a single-layer AHB system, tie 
HCLKEND and HCLKENI together.

HRDATAD[63:0] I DBIU read data bus. Transfers data from bus slaves to data-side bus master in read 
operations.

When D64n32 is HIGH, both HRDATAD[31:0] and HRDATAD[63:32] contain valid 
data as defined by transfer size and address.

When D64n32 is LOW, HRDATAD[31:0] contain valid data and HRDATAD[63:32] 
are tied to VSS or VDD.

Table A-1 AHB signals (continued)

Signal I/O Description
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Signal Descriptions 
HRDATAI[63:0] I IBIU read data bus. Transfers data and instructions from bus slaves to instruction-side 
bus master in read operations.

When I64n32 is HIGH, both HRDATAI[31:0] and HRDATAI[63:32] contain valid 
data as defined by transfer size and address.

When I64n32 is LOW, HRDATAI[31:0] contain valid data and HRDATAI[63:32] are 
tied to VSS or VDD.

HREADYD I Slave ready. Can be driven LOW to extend transfer:
1= transfer done
0 = transfer not done.

HREADYI I Slave ready. Can be driven LOW to extend transfer:
1= transfer done
0 = transfer not done.

HRESETn I Resets system and bus. It is the only active-LOW AHB signal.

HRESPD I Slave response to DBIU. Reflects status of transfer:
1 = ERROR
0 = OKAY.

HRESPI I Slave response to IBIU. Reflects status of transfer:
1 = ERROR
0 = OKAY.

HMASTLOCKD O Indicates sequence of locked DBIU transfers in SWP operations.

HMASTLOCKI O For AMBA compliance. Never asserted.

Table A-1 AHB signals (continued)

Signal I/O Description
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A.2 Coprocessor signals

Table A-2 lists the coprocessor (CP) signals.

Table A-2 Coprocessor signals

Name I/O Description

CPEN O Enables external coprocessor interface.

CPRST O CP reset. Must be held for at least two cycles. 

CPBIGEND O Memory system is big-endian. When this signal is active, devices that support 
64-bit data must assert CPLSSWP when loading or storing the 64-bit data for 
correct order when read/written. 

CPSUPER O Indicates if ARM1026EJ-S processor is in privileged mode.

CPINSTR[25:0] O CP instruction from ARM1026EJ-S processor.

CPINSTRV O Valid CP instruction in ARM1026EJ-S Issue stage.

CPVALIDD O Valid CP instruction in ARM1026EJ-S Decode stage.

CPBUSYD1
CPBUSYD2

I Reserved for future expansion.

CPBUSYE1
CPBUSYE2

I Busy-waits the ARM1026EJ-S Execute stage.

CPBOUNCEE1
CPBOUNCEE2

I Take Undefined instruction trap for instruction in ARM1026EJ-S Execute stage.

CPLSLEN1[5:0]
CPLSLEN2[5:0]

I Indicates length of CP load/store transfers.

CPLSSWP1
CPLSSWP2

I Indicates if upper and lower half of LDCMCRDATA or STCMRCDATA must 
be swapped before being written.

CPLSDBL1
CPLSDBL2

I Indicates if CP load/store request is for double-precision data.

ASTOPCPD O Hold CP pipeline in CP Decode stage. 

ASTOPCPE O Hold CP pipeline in CP Execute stage. 

ACANCELCP O Cancel instruction in CP Execute stage.

AFLUSHCP O Cancel instructions in CP Execute, Decode, Issue, and Fetch stages. 

LSHOLDCPE O Hold CP pipeline in CP Execute stage because LSU stalled in ARM1026EJ-S 
Execute stage.
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Signal Descriptions 
LSHOLDCPM O Hold CP pipeline in CP Memory stage cause LSU is stalled ARM1026EJ-S 
Memory stage.

CPABORT O Reserved for future expansion. 

LDCMCRDATA[63:0] O Carries data from ARM1026EJ-S processor to CP.

STCMRCDATA[63:0] I Carries data from CP to ARM1026EJ-S processor.

Table A-2 Coprocessor signals (continued)

Name I/O Description
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A.3 Debug interface signals

Table A-3 lists the debug interface signals, including those used with JTAG testing.

Table A-3 Debug interface signals

Name I/O Description

DBGTCKEN I Synchronous test clock enable.

DBGnTRST I Internally synchronized active-LOW reset signal for the EmbeddedICE internal state.

DBGTDI I Test data input for debug logic.

DBGTMS I Test mode select for debug logic.

DBGSDOUT I Serial data out of external scan chain. Must be tied LOW if no external scan chain.

DBGEN I Debug enable. Setting DBGEN enables ARM1026EJ-S debug functionality.

EDBGRQ I External debug request. Setting EDBGRQ puts processor in debug state after current 
instruction.

TAPID[31:0] I TAP ID Register. Must be tied to an appropriate value when processor is instantiated.

DBGTDO O Test data output from debug logic.

DBGnTDOEN O When LOW, indicates that serial data is being driven out of DBGTDO output. Normally 
used as output enable for the DBGTDO pin in packaged part.

DBGIR[3:0] O Reflect current instruction loaded into DBGTAP controller Instruction Register.

DBGSCREG[4:0] O Reflect ID number of scan chain currently selected by DBGTAP controller.

DBGTAPSM[3:0] O Reflects current state of the DBGTAP controller state machine.

COMMRX O HIGH when comms channel receive buffer has data for processor to read.

COMMTX O Comms channel transmit. HIGH when comms channel transmit buffer is empty.

DBGACK O Debug acknowledge. HIGH when processor is in debug state.
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A.4 DFT signals

Table A-4 lists the DFT signals.

Table A-4 DFT signals

Name I/O Description

SCANMODE I Puts processor in scan mode. Prevents asynchronous reset from being 
controlled by synchronizer.

RSTSAFE I Resets any core cells that are reset-capable, except wrapper cells.

SE I Scan enable. Must be tied LOW during functional operation. Scan 
enable for all internal clock domains. HIGH = shift.

SI[55:0] I Scan input port.

SO[55:0] O Scan output port.

WSEI I Scan enable for all input-dedicated wrapper test cells. HIGH = shift.

WSEO I Scan enable for all output-dedicated wrapper test cells. HIGH = shift.

WSI[5:0] I Input ports for wrapper scan chains.

WSO[5:0] O Output ports for wrapper scan chains.

WSON O Latched φ2 output for connecting wrapper chain to scan chains in other 
clock domains.

MUXINSEL I Configures dedicated input wrapper cells for functional or test mode.

MUXOUTSEL I Configures dedicated output wrapper cells for functional or test mode.

CHECKTEST I Not used for soft core. Leave unconnected.

SCANMUX[3:1] I Not used for soft core. Leave unconnected.

SCORETEST I Not used for soft core. Leave unconnected.

WMUX[1:0] I Not used for soft core. Leave unconnected.
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A.5 MBIST signals

Table A-5 lists the MBIST signals.

Table A-5 MBIST signals

Signal I/O Function

MBISTRXCGR[2:0]a

a. This signal exists as MBISTRX[2:0] at the ARM1026EJ-S level. It is renamed 
to MBISTRXCGR[2:0] at the ARM1026EJ-S_TCM level to distinguish it from 
its TCM counterpart.

O Dispatch unit output bus

MBISTRXTCM[2:0]b

b. This signal exists only at the ARM1026EJ-S_TCM level, the ARM-provided 
reference layer for integration of TCMs.

O Dispatch unit output bus

MBISTCLKEN I MBIST clock gate

MBISTDSHIFT I Data log shift 

MBISTRESETN I MBIST reset signal

MBISTSHIFT I Instruction shift

MBISTTX[10:0] I MBIST controller out

MTESTON I MBIST path enable

MBISTRAMBYP I Chip-select block
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A.6 ETM signals

Table A-6 lists the ETM signals.

Table A-6 ETM signals

Signal name I/O Description

ETMCORECTL[30:0] O Miscellaneous control signals from processor to ETM

ETMDA[31:0] O The data address bus

ETMDATA[63:0] O The load, store, and coprocessor data from the processor

ETMDATAVALID[1:0] O Valid signal for ETMDATA bus with one bit for each for HIGH and LOW word

ETMIA[31:0] O The instruction fetch address bus

ETMR15BP[31:0] O The instruction address for branch phantom instructions

ETMR15EX[31:0] O The instruction address for all nonbranch phantom instructions

ETMPWRDOWN I Indicates when ETM is in lower power mode.
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A.7 TCM signals 

Table A-7 lists the TCM signals.

Table A-7 TCM signals

Name I/O Description

DRnRW O Data TCM read or write:
1 = write access
0 = read access.

DRADDR[16:0] O Data TCM address. Address up to 1MB.

DRWD[63:0] O Data TCM write data.

DRCS[1:0] O Data TCM enable. Indicates a write or a speculative read access.

DRWBL[7:0] O Data TCM byte write indicator.

DRRD[63:0] I Data TCM read data.

DRWAIT I Data TCM wait. When HIGH, the data TCM cannot service the request in that cycle.

DTCMSIZE[3:0] I Data TCM size. Allows the TCM size to be changed without resynthesizing processor.

DRDMAEN I Direct DTCM memory access enable.

IRnRW O Instruction TCM read or write:
1 = write access
0 = read access.

IRADDR[16:0] O Instruction TCM address. Address up to 1MB.

IRWD[63:0] O Instruction TCM write data.

IRCS[1:0] O Instruction TCM enable. Indicates a write or a speculative read.

IRWBL[7:0] O Instruction TCM byte write indicator.

IRRD[63:0] I Instruction TCM read data.

IRWAIT I Instruction TCM wait. When HIGH, the instruction TCM cannot service the request in 
that cycle.

ITCMSIZE[3:0] I Instruction TCM size.
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IRDMAEN I DMA request for access to ITCM memory.

INITRAM I Enables ITCM at system reset. Enables booting from the ITCM if VINITHI is LOW.

TCMVALInImpl I TCM configuration indicator:
1 = TCMs implemented for the ARM internally configurable validation model
0 = TCMs implemented in fixed, partner-specific configuration.

Table A-7 TCM signals (continued)

Name I/O Description
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A.8 Interrupt signals

Table A-8 lists the interrupt signals, including those used with the VIC port.

Table A-8 Interrupt signals

Name I/O Description

IRQACK O Interrupt request acknowledge

IRQADDR[31:2] I Interrupt request IRQ vector address

IRQADDRV I Indicates IRQADDR is valid

nFIQ I Fast interrupt request signal

nIRQ I Interrupt request signal
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A.9 Memory parity signals

Table A-9 lists the signals in the DCache, ICache, MMU, DTCM, and ITCM memory 
parity interfaces.

Table A-9 Memory parity signals

Name I/O Description

DCDATAPARx[7:0]a

a. This signal exists as an output from the ARM1026EJ-S_NORAM logic level to the 
ARM1026EJ-S_RAM memory instantiation level. It is not an output of the ARM1026EJ-S 
design.

O DCache data parity outputs

DCTAGPAR[2:0]a O DCache tag parity outputs

ICDATAPARx[7:0]a O ICache data parity outputs

ICTAGPAR[2:0]a O ICache tag parity outputs

MMUDATAPAR[9:0]a O MMU data parity outputs

MMUTAGPAR[5:0]a O MMU tag parity outputs

DRWPAR[7:0]b

b. This signal exists as an output from the ARM1026EJ-S_NORAM logic level to the 
ARM1026EJ-S_TCMRAM TCM memory instantiation level. It is an output of the 
ARM1026EJ-S design.

O DTCM parity outputs

IRWPAR[7:0]b O ITCM parity outputs
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A.10 Other signals

Table A-10 lists the signals not in Table A-1 on page A-2-Table A-9 on page A-16.

Table A-10 Other signals

Signal I/O Description

CFGBIGEND O Endian configuration indicator. Reflects the value of the B bit in the CP15 c1 
Control Register.

STANDBYWFI O ARM1026EJ-S processor is currently in wait-for-interrupt mode.

BIGENDINIT I Configures processor to treat memory bytes as big-endian or little-endian:
1 = big-endian format
0 = little-endian format.

CLK I Times all ARM1026EJ-S processor operations. All outputs change from rising 
edge. All inputs sampled on rising edge. Clock can be stretched in either phase.

MMUnMPU I This is a static input that configures the ARM1026EJ-S processor to either use a 
Memory Management Unit (MMU) or a Memory Protection Unit (MPU):
1 = system configured to use MMU
0 = system configured to use MPU.

VINITHI I Determines the reset location of the exception vectors:
1 = 0xFFFF0000
0 = 0x00000000.

SIMTESTMDD64n32 O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDI64n32 O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDDDMAa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDDRWTa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDIDMAa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDIRWTa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRSIZE[3:0] O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDDRSZVAL O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDIRSIZE[3:0] O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDIRSZVAL O Leave unconnected. Used only in ARM-internal validation.

a. This signal exists only at the ARM1026EJ-S_TCM level, the ARM-provided reference layer for integration of TCMs.
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Glossary

This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it must halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as a Prefetch Abort, a Data Abort, or an External Abort.

See also Data Abort, External Abort, and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data 
Abort exception. Different abort models behave differently with regard to load and store 
instructions that specify base register write-back.

Advanced
High-performance
Bus (AHB) 

The AMBA Advanced High-performance Bus system connects embedded processors 
such as an ARM core to high-performance peripherals, DMA controllers, on-chip 
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports 
multi-master bus management to maximize system performance. 

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
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Advanced
Microcontroller Bus
Architecture 
(AMBA) 

AMBA is the ARM open standard for multi-master on-chip buses, capable of running 
with multiple masters and slaves. It is an on-chip bus specification that details a strategy 
for the interconnection and management of functional blocks that make up a 
System-on-Chip (SoC). It aids in the development of embedded processors with one or 
more CPUs or signal processors and multiple peripherals. AMBA complements a 
reusable design methodology by defining a common backbone for SoC modules. AHB 
conforms to this standard.

See also Advanced High-performance Bus and AHB-Lite.

Advanced 
Peripheral Bus 
(APB) 

The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is 
designed for use with ancillary or general-purpose peripherals such as timers, interrupt 
controllers, UARTs, and I/O ports. Connection to the main system bus is through a 
system-to-peripheral bus bridge that helps to reduce system power consumption. 

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AHB-Lite AHB-Lite is a subset of the full AHB specification. It is intended for use in designs 
where only a single AHB master is used. This can be a simple single AHB master 
system or a multi-layer AHB system where there is only one AHB master on a layer.

Aligned Refers to data items stored so that their address is divisible by the highest power of two 
that divides their size. Aligned words and halfwords therefore have addresses that are 
divisible by four and two respectively. The terms word-aligned and halfword-aligned 
therefore refer to addresses that are divisible by four and two respectively. The terms 
byte-aligned and doubleword-aligned are defined similarly.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its 
attached components, and enables devices with similar characteristics to be grouped 
together when describing their behavior, for example, Harvard architecture, instruction 
set architecture, ARMv6 architecture.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb state.

Banked registers The physical registers whose use is defined by the current processor mode. The banked 
registers are r8 to r14.
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Base register A register specified by a load or store instruction that is used to hold the base value for 
the address calculation for the instruction. Depending on the instruction and its 
addressing mode, an offset can be added to or subtracted from the base register value to 
form the virtual address that is sent to memory.

Base register 
write-back 

Updating the contents of the base register used in an instruction target address 
calculation so that the modified address is changed to the next higher or lower 
sequential address in memory. This means that it is not necessary to fetch the target 
address for successive instruction transfers and enables faster burst accesses to 
sequential memory. 

Big-endian Memory organization in which the least significant byte of a word is at a higher address 
than the most significant byte. 

See also Little-endian and Endianness.

Block address An address that comprises a tag, an index, and a word field. The tag bits identify the 
way that contains the matching cache entry for a cache hit. The index bits identify the 
set being addressed. The word field contains the word address that can be used to 
identify specific words, halfwords, or bytes within the cache entry.

Branch folding Branch folding is a technique by which, on the prediction of most branches, the branch 
instruction is completely removed from the instruction stream presented to the 
execution pipeline. Branch folding can significantly improve the performance of 
branches, taking the CPI for branches below one cycle. 

Branch prediction The process of predicting if conditional branches are to be taken or not in pipelined 
processors. Successfully predicting if branches are to be taken enables the processor to 
prefetch the instructions following a branch before the condition is fully resolved. 
Branch prediction can be done in software or by using custom hardware. Branch 
prediction techniques are categorized as static, in which the prediction decision is 
decided before run time, and dynamic, in which the prediction decision can change 
during program execution. 

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is halted unconditionally. Breakpoints are inserted by programmers 
to allow inspection of register contents, memory locations, and/or variable values at 
fixed points in the program execution to test that the program is operating correctly. 
Breakpoints are removed after the program is successfully tested. See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, 
there is no requirement to supply an address for any of the transfers after the first one. 
This increases the speed at which the group of transfers can occur. Bursts over AHB 
buses are controlled using the HBURST signals to specify if transfers are single, 
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are 
incremented.
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Byte invariant Refers to the way of switching between little-endian and big-endian operation that 
leaves byte accesses entirely unchanged. Accesses to other data sizes are necessarily 
affected by such endianness switches.

Byte lane strobe An AHB signal, HBSTRB, that is used for unaligned or mixed-endian data accesses to 
determine which byte lanes are active in a transfer. One bit of HBSTRB corresponds to 
eight bits of the data bus.

Cache A block of on-chip or off-chip fast access memory locations, situated between the 
processor and main memory, used for storing and retrieving copies of often used 
instructions and/or data. This is done to increase the average speed of memory accesses 
and therefore to increase processor performance. 

Cache contention When the number of frequently-used memory cache lines that use a particular cache set 
exceeds the set-associativity of the cache. In this case, main memory activity increases 
and performance decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data 
that it addresses is already held in the cache.

Cache line The basic unit of storage in a cache. The number of words in a cache line is always a 
power of two and is usually four or eight words. A cache line must be aligned to a 
suitable memory boundary.

See also Cache terminology.

Cache line index The number associated with each cache line in a cache way. Within each cache way, the 
cache lines are numbered from 0 to (set associativity) – 1.

See also Cache terminology.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown enables 
critical instructions and/or data to be loaded into the cache so that the cache lines 
containing them are not subsequently reallocated. This ensures that all subsequent 
accesses to the instructions or data concerned are cache hits, and therefore complete as 
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction or data 
it addresses is not in the cache and a main memory access is required. 

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be 
addressed with the same index. The number of cache sets is always a power of two.

Cache way A group of cache lines (or blocks). It is two to the power of the number of index bits in 
size.

CAM See Content Addressable Memory.

Cast out See Victim.
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Central Processing 
Unit (CPU) 

The part of a processor that contains the ALU, the registers, and the instruction decode 
logic and control circuitry. Also commonly known as the processor core.

CISC See Complex Instruction Set Computer.

Clean A cache line that has not been modified while it is in the cache is said to be clean. To 
clean a cache is to write dirty cache entries into main memory. If a cache line is clean, 
it is not written on a cache miss because the next level of memory contains the same 
data as the cache.

See also Dirty.

Clock gating Gating a clock signal for a macrocell with a control signal, and using the modified clock 
that results to control the operating state of the macrocell.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning 
power off and then back on again clears main memory and many internal settings. Some 
program failures can lock up the processor and require a cold reset to enable the system 
to be used again. In other cases, only a warm reset is required. 

See also Warm reset.

Complex Instruction 
Set Computer 
(CISC) 

A processor architecture that uses microcode to execute complex instructions. 
Instructions can be variable in length.

See also Reduced Instruction Set Computer.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction 
can execute.

Content 
Addressable 
Memory (CAM) 

Memory that is identified by its contents. Content Addressable Memory is used in 
CAM-RAM architecture caches to store the tags for cache entries.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the 
main CPU cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

Copy back See Write-back.

Core module In the context of Integrator, an add-on development board that contains an ARM 
processor and local memory. Core modules can run standalone, or can be stacked onto 
Integrator motherboards.

Core reset See Warm reset.

CPI See Cycles per instruction.

CPU See Central Processing Unit.
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Cycles Per 
instruction (CPI) 

Cycles per instruction (or clocks per instruction) is a measure of the number of 
computer instructions that can be performed in one clock cycle. This figure of merit can 
be used to compare the performance of different CPUs against each other. The lower the 
value, the better the performance.

Data Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Data Abort is attempting to access invalid data 
memory.

See also Abort, External Abort, and Prefetch Abort.

Data Cache 
(DCache) 

A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often-used data. This is done to 
greatly increase the average speed of memory accesses and therefore to increase 
processor performance.

DBGTAP See Debug Test Access Port.

DCache See Data Cache.

Debug 
Communications 
Channel 

The hardware used for communicating between the software running on the processor, 
and an external host, using the debug interface. When this communication is for debug 
purposes, it is called the Debug Communications Channel.

Debugger A debugging system that includes a program used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.

An application that monitors and controls the operation of a second application. Usually 
used to find errors in the application program flow.

Debug Test Access 
Port (DBGTAP) 

The collection of four mandatory terminals and one optional terminal that form the 
input/output and control interface to a JTAG boundary-scan architecture. The 
mandatory terminals are DBGTDI (TDI), DBGTDO (TDO), DBGTMS (TMS), and 
TCK. The optional terminal is DBGnTRST (TRST).

Direct-mapped 
cache 

A one-way set-associative cache. Each cache set consists of a single cache line, so cache 
look-up selects and checks a single cache line.

Direct Memory 
Access 

An operation that accesses main memory directly, without the processor performing any 
accesses to the data concerned.

Dirty A cache line in a Write-Back cache that has been modified while it is in the cache is said 
to be dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty, 
it must be written to memory on a cache miss because the next level of memory contains 
data that has not been updated. The process of writing dirty data to main memory is 
called cache cleaning.

See also Clean.
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DMA See Direct Memory Access.

Domain A memory division that is made up of supersections, sections, large pages, or small 
pages of memory, which can have their access permissions switched rapidly by writing 
to the Domain Access Control Register (CP15 r3).

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise 
stated.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor 
cores. It is accessed through the TAP controller on the ARM core using the JTAG 
interface.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging 
in real-time.

Embedded Trace 
Macrocell (ETM) 

A hardware macrocell that outputs instruction and data trace information on a trace port.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell.

Exception An event that occurs during program operation that makes continued normal operation 
inadvisable or impossible, and so makes it necessary to change the flow of control in a 
program. Exceptions can be caused by error conditions in hardware or software. The 
processor can respond to exceptions by running appropriate exception handler code that 
attempts to remedy the error condition, and either restarts normal execution or ends the 
program in a controlled way.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt service 
routine.

External Abort An indication from an external memory system to a core that it must halt execution of 
an attempted illegal memory access. An External Abort is caused by the external 
memory system as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort

Fast Context Switch 
Extension (FCSE) 

This enables cached processors with an MMU to present different addresses to the rest 
of the memory system for different software processes even when those processes are 
using identical addresses. 

FCSE See Fast Context Switch Extension. 
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Flat address 
mapping 

A system of organizing memory in which each physical address contained within the 
memory space is the same as its corresponding virtual address. 

Fully-associative 
cache 

A cache that has just one cache set that consists of the entire cache. 

See also Direct-mapped cache.

Half-rate clocking Dividing the trace clock by two so that the TPA can sample trace data signals on both 
the rising and falling edges of the trace clock. The primary purpose of half-rate clocking 
is to reduce the signal transition rate on the trace clock of an ASIC for very high-speed 
systems.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts 
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state, 
memory and input/output locations can be examined and altered by the JTAG interface. 
See also Monitor mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the 
top of the address space, rather than at the bottom.

Hit-Under-Miss A buffer that enables program execution to continue, even though there has been a data 
miss in the cache.

Host A computer that provides data and other services to another computer. Especially, a 
computer providing debugging services to a target being debugged.

HUM See Hit-Under-Miss.

ICache See Instruction Cache.

IMB See Instruction Memory Barrier.

Implementation-
defined 

A feature that is not architecturally defined, and which might vary between 
implementations. The feature is defined and documented for each individual 
implementation.

Index See Cache line index.

Index register A register specified in some load or store instructions. The value of this register is used 
as an offset to be added to or subtracted from the base register value to form the virtual 
address, which is sent to memory. Some addressing modes optionally enable the index 
register value to be shifted prior to the addition or subtraction.

Instruction Cache 
(ICache) 

A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often-used instructions. This is 
done to increase the average speed of memory accesses and therefore to increase 
processor performance.
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Instruction cycle count 
The number of cycles for which an instruction occupies the Execute stage of the 
pipeline.

Instruction Memory 
Barrier (IMB) 

An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done 
whenever the line does not contain a valid cache entry. For example, after a cache flush 
all lines are invalid.

Little-endian Memory organization where the least significant byte of a word is at a lower address 
than the most significant byte.

See also Big-endian and Endianness.

Jazelle architecture The ARM Jazelle architecture extends the Thumb and ARM operating states by adding 
a Java state to the processor. Instruction set support for entering and exiting Java 
applications, real-time interrupt handling, and debug support for mixed Java/ARM 
applications is present. When in Java state, the processor fetches and decodes Java 
bytecodes and maintains the Java operand stack.

Load/store 
architecture 

A processor architecture where data-processing operations only operate on register 
contents, not directly on memory contents.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
comprises several macrocells (such as an ARM processor, an Embedded Trace 
Macrocell, and a memory block) plus application-specific logic.

Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide, 
that enable reads and writes of multiple words at a time, rather than single words. All 
memory banks are addressed simultaneously and a bank enable or chip select signal 
determines which of the banks is accessed for each transfer. Accesses to sequential 
word addresses cause accesses to sequential banks. This enables the delays associated 
with accessing a bank to occur during the access to its adjacent bank, speeding up 
memory transfers.

Memory 
Management Unit 
(MMU) 

Hardware that controls caches and access permissions to blocks of memory, and 
translates virtual addresses to physical addresses.

Memory Protection 
Unit (MPU) 

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an 
MPU does not translate virtual addresses to physical addresses.

MMU See Memory Management Unit.

Modified Virtual 
Address (MVA) 

A virtual address produced by the integer unit can be changed by the current Process ID 
to provide a Modified Virtual Address (MVA) for the MMUs and caches.
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Monitor mode One of two mutually exclusive debug modes. In monitor mode, the processor enables a 
software abort handler provided by the debug monitor or operating system debug task. 
When a breakpoint or watchpoint is encountered, this enables vital system interrupts to 
continue to be serviced while normal program execution is suspended. 

See also Halt mode.

MPU See Memory Protection Unit.

MVA See Modified Virtual Address.

PA See Physical Address.

Parity error Indicates that a memory transaction has failed a parity check and that the target location 
does not contain valid data. 

Physical Address 
(PA) 

The MMU performs a translation on Modified Virtual Addresses (MVA) to produce the 
Physical Address (PA) which is given to AHB to perform an external access. The PA is 
also stored in the Data Cache to avoid requiring address translation when data is cast 
out of the cache. 

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the 
pipeline before the preceding instructions have finished executing. Prefetching an 
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Prefetch Abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, 
that can be fabricated on an integrated circuit. 

Read Reads are defined as memory operations that have the semantics of a load. That is, the 
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, 
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM, 
LDR, LDRSH, LDRH, LDRSB, LDRB, and POP. Java instructions that are accelerated 
by hardware can cause a number of reads to occur, according to the state of the Java 
stack and the implementation of the Java hardware acceleration. 

Reduced Instruction 
Set Computer 
(RISC) 

A computer architecture that reduces chip complexity by limiting the complexity of 
instructions that can be executed. In RISC computers, there is no microcode layer, and 
instruction size is fixed.

Region A partition of instruction or data memory space.
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Register A temporary storage location used to hold binary data until it is ready to be used. 

Remapping  Changing the address of physical memory or devices after the application has started 
executing. This is typically done to enable RAM to replace ROM when the initialization 
has been done.

Reserved A field in a control register or instruction format is reserved if the field is to be defined 
by the implementation, or produces Unpredictable results if the contents of the field are 
not zero. These fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be 
written as zero and are read as zero.

RISC See Reduced Instruction Set Computer.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan 
technology using a standard JTAG TAP interface. Each device contains at least one TAP 
controller containing shift registers that form the chain connected between TDI and 
TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Set-associative 
cache 

In a set-associative cache, lines can only be placed in the cache in locations that 
correspond to the modulo division of the memory address by the number of sets. If there 
are n ways in a cache, the cache is termed n-way set-associative. The set-associativity 
can be any number greater than or equal to one and is not restricted to being a power of 
two.

Should Be One 
(SBO) 

Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero 
(SBZ) 

Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

Should Be Zero or 
Preserved (SBZP) 

Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the 
same value back that has been previously read from the same field on the same 
processor.

Synchronization 
primitive 

The memory synchronization primitive instructions are instructions that are used to 
ensure memory synchronization, that is, the LDREX, STREX, SWP, and SWPB 
instructions.
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Tag The upper portion of a block address used to identify a cache line within a cache. The 
block address from the CPU is compared with each tag in a set in parallel to determine 
if the corresponding line is in the cache. If it is, it is said to be a cache hit and the line 
can be fetched from cache. If the block address does not correspond to any of the tags 
it is said to be a cache miss and the line must be fetched from the next level of memory.

TAP See Test Access Port.

Test Access Port 
(TAP) 

The collection of four mandatory terminals and one optional terminal that form the 
input/output and control interface to a JTAG boundary-scan architecture. The 
mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating 
in Thumb state.

TLB See Translation Lookaside Buffer.

Translation 
Lookaside Buffer 
(TLB) 

A cache of recently used page table entries that avoid the overhead of page table 
walking on every memory access. Part of the Memory Management Unit.

Unaligned Memory accesses that are not appropriately word-aligned or halfword-aligned.

See also Aligned.

Undefined  Indicates an instruction that generates an Undefined instruction trap. See the ARM 
Architectural Reference Manual for more information on ARM exceptions.

Translation table A table, held in memory, that contains data that defines the properties of memory areas 
of various fixed sizes.

Translation table 
walk 

The process of doing a full translation table lookup. It is performed automatically by 
hardware.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can 
have any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.

VA See Virtual Address.

Vector operation  An operation involving more than one destination register, perhaps involving different 
source registers in the generation of the result for each destination.
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Victim A cache line, selected to be discarded to make room for a replacement cache line that is 
required as a result of a cache miss. The way in which the victim is selected for eviction 
is processor-specific. A victim is also known as a cast out.

Virtual Address (VA) The MMU uses its page tables to translate a Virtual Address into a Physical Address. 
The processor executes code at the Virtual Address, which might be located elsewhere 
in physical memory. See also FCSE, MVA, and PA.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging 
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to enable inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Way See Cache way.

WB See Write-back.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM 
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and 
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH. Java 
instructions that are accelerated by hardware can cause a number of writes to occur, 
according to the state of the Java stack and the implementation of the Java hardware 
acceleration.

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the 
cache on line replacement following a cache miss. Otherwise, writes by the processor 
only update the cache. (Also known as copyback).

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the Data Cache and 
main memory, whose purpose is to optimize stores to main memory. Each entry in the 
write buffer can contain the address of a data item to be stored to main memory, the data 
for that item, and a sequential bit that indicates if the next store is sequential or not.

Write completion The memory system indicates to the CPU that a write has been completed at a point in 
the transaction where the memory system is able to guarantee that the effect of the write 
is visible to all processors in the system. This is not the case if the write is associated 
with a memory synchronization primitive, or is to a Device or Strongly Ordered region. 
In these cases the memory system might only indicate completion of the write when the 
access has affected the state of the target, unless it is impossible to distinguish between 
having the effect of the write visible and having the state of target updated. 
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This stricter requirement for some types of memory ensures that any side-effects of the 
memory access can be guaranteed by the processor to have taken place. You can use this 
to prevent the starting of a subsequent operation in the program order until the 
side-effects are visible.

Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache 
is updated. 

WT See Write-through.
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CPSR
see Current Program Status Register

CPSUPER
description   A-7

CPVALIDD
description   A-7

CP14 c0 Debug ID Register   8-4
description   8-6

CP14 c1 Debug Status and Control 
Register   8-4

description   8-7
CP14 c1 Debug status and control 

register
enabling halt mode   9-3

CP14 c112, c113 Watchpoint Control 
Registers   8-4

description   8-15
CP14 c4 Instruction Transfer Register   

8-4, 8-20
CP14 c5 Data Transfer Register   8-4, 

8-20
description   8-11

CP14 c64-c69 Breakpoint Address 
Registers   8-4

description   8-12
CP14 c80-c85 Breakpoint Control 

Registers   8-4
description   8-13

CP14 c96, c97 Watchpoint Address 
Registers   8-4

description   8-15
CP15 c0 Cache Type Register   3-6

description   3-11
CP15 c0 Device ID Register   3-6

description   3-10
CP15 c0 TCM Status Register   3-6

description   3-13
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Index
CP15 c1 Auxiliary Control Register   
3-6

description   3-19
CP15 c1 Control Register   3-6, 11-4

alignment fault checking   11-10
branch prediction   5-2, 5-5
cache enabling   12-3
description   3-14
endianness   6-24
MMU memory access control   

10-26
reading VIC port   18-3

CP15 c10 TLB Lockdown Register   3-7
description   3-46

CP15 c13 Context ID Register   3-7
description   3-52

CP15 c13 FCSE Process ID Register   
3-7

description   3-49
CP15 c13 Process ID register   3-49
CP15 c15 Cache Debug Control 

Register   3-7
description   3-65

CP15 c15 Debug and Test Address 
Register   3-7

description   3-56
CP15 c15 Debug Control Register

description   3-67
CP15 c15 Debug Override Register   3-7

description   3-53
enabling and disabling buffered 

stores   13-4
imprecise external aborts   16-6

CP15 c15 Memory Region Remap 
Register   3-7

description   3-57
CP15 c15 MMU Debug Control 

Register   3-7
CP15 c15 MMU test operations   3-7

description   3-60
CP15 c15 Prefetch Unit Debug 

Override Register   3-7
description   3-55

CP15 c2 DCache Configuration 
Register   3-6, 11-4

description   3-21

CP15 c2 ICache Configuration Register   
3-6, 11-4

description   3-21
instruction cachability   12-3

CP15 c2 Translation Table Base 
Register   3-6

description   3-20
enabling the MMU   10-3

CP15 c3 Domain Access Control 
Register   3-6

description   3-23
enabling the MMU   10-3
MMU memory access control   

10-26
CP15 c3 Write Buffer Control Register   

3-6, 11-4
description   3-25

CP15 c5 Data Extended Access 
Permission Register   3-6, 11-6

description   3-29
CP15 c5 Data Fault Status Register   

3-6, 11-4
description   3-26

CP15 c5 Data Standard Access 
Permission Register   3-6, 11-6

description   3-31
CP15 c5 Fault Status Register

external abort reporting   16-3
imprecise external aborts   16-6

CP15 c5 Instruction Extended Access 
Permission Register   3-6, 11-6

description   3-29
CP15 c5 Instruction Fault Status 

Register   3-6
description   3-26

CP15 c5 Instruction Standard Access 
Permission Register   3-6, 11-6

description   3-31
CP15 c6 Data Fault Address Register   

3-6
description   3-33

CP15 c6 Data Fault Status Register
imprecise external aborts   16-2

CP15 c6 Fault Address Register
external abort reporting   16-3
imprecise external aborts   16-6

CP15 c6 Instruction Fault Address 
Register   3-6

description   3-33

CP15 c6 Protection Region Registers   
3-6

description   3-34
CP15 c7 cache operations   3-6

description   3-36
CP15 c7 system control operations

drain pending write buffer   3-37
prefetch ICache line   3-37
wait for interrupt   3-37

CP15 c8 TLB operations   3-6
description   3-40

CP15 c9 DCache Lockdown Register   
3-7

description   3-41
CP15 c9 DTCM Region Register   3-7, 

17-3
description   3-44

CP15 c9 ICache Lockdown Register   
3-7

description   3-41
CP15 c9 ITCM Region Register   3-7, 

17-3
description   3-44

Critical doubleword
definition   16-4
requests   16-4
32-bit AHB interface   6-11
64-bit AHB interface   6-9

CTCM Region Register   17-3
Current Program Status Register   3-3, 

6-6
imprecise external aborts   16-6

D
DACR

see Domain Access Control Register
Data Abort

address   3-33
DMMU fault address register   

10-34, 11-10
level 2 fine page table translation 

fault   10-20
MMU level 1 translation fault   10-11
MMU level 2 translation fault   10-15
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Data bus interface unit   6-2
bus width   6-2, 6-3, 6-8
locked bus transfers   6-7
structure   6-8

Data Extended Access Permission 
Register

description   3-29
Data Extended Acess Permission 

Register   3-6
Data Fault Address Register   3-6

description   3-33
Data Fault Status Register   3-6, 11-4

description   3-26
imprecise external aborts   16-2

Data processing instructions
cycle counts   21-5

Data Standard Access Permission 
Register   3-6

description   3-31
Data Transfer Register   8-4, 8-20, 9-11

description   8-11, 9-13
DBGACK

description   A-9
DBGEN

description   A-9
in debug state   8-5

DBGIR   9-9
description   A-9
see Debug Instruction Register

DBGnTDOEN
description   A-9

DBGnTRST   4-4
description   A-9

DBGSCREG   9-9
description   A-9
see Debug Scan Chain Select 

Register
DBGSDOUT

description   A-9
DBGTAP

entering debug state   9-3
exiting debug state   9-3
in halt mode   8-19
instruction summary   9-4
resetting   4-4

DBGTAP state machine   9-2
DBGTAPSM

description   A-9

DBGTCKEN
description   A-9
relation to CLK   4-3

DBGTDI
description   A-9
BYPASS instruction   9-6, 9-7
Debug Instruction Register   9-9
Debug Scan Chain Select Register   

9-9
IDCODE instruction   9-6
INTEST instruction   9-5
TAP ID Register   9-8

DBGTDO
description   A-9
BYPASS instruction   9-6, 9-7
Debug Instruction Register   9-9
Debug Scan Chain Select Register   

9-9
IDCODE instruction   9-6
INTEST instruction   9-5
TAP ID Register   9-8

DBGTMS
description   A-9

DCache
associativity   12-9
context switch   12-2
enabling   3-14
imprecise abort on castout   12-10
line length   12-2
precise abort on linefill   12-10
size   12-2, 12-9
streaming   12-2, 12-9
write-back operations   12-2
write-through operations   12-2

DCache and DTCM access priorities   
12-6

DCache configuration
for MMU operation   12-4
for MPU operation   12-4

DCache Configuration Register   3-6, 
11-4

description   3-21
DCache Lockdown Register   3-7, 3-41

linefill allocation   12-2
DCache parity   12-14
DCCR

see DCache Configuration Register
DCDATAPARx   12-14

description   A-16

DCTAGPAR   12-14
description   A-16

DEAPR
see Data Extended Access 

Permission Register
Debug and Test Address Register   3-7

description   3-56
Debug breakpoint

fault priority   3-28, 10-33, 11-9
fault status code   3-28, 11-9
fault status report   10-33

Debug Control Register
description   3-67

Debug ID Register   8-4
description   8-6, 9-10

Debug Instruction Register   9-4, 9-6
description   9-9
INTEST instruction   9-5

Debug Override Register   3-7
description   3-53
imprecise external aborts   16-6

Debug Scan Chain Select Register   9-4, 
9-6

description   9-9
SCAN_N instruction   9-5

Debug state
entering   8-19
exiting   8-19

Debug Status and Control Register   8-4
description   8-7, 9-10

Debug status and control register
enabling halt mode   9-3

Debug watchpoint
fault priority   3-28, 10-33
fault status code   3-28
fault status report   10-33
priority   11-9
status code   11-9

Device ID Register   3-6
description   3-10

DFAR
see Data Fault Address Register

DFSR
see Data Fault Status Register

Dirty data
definition   3-37
memory coherency   3-17
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Dispatch unit
MBIST controller interface   20-15
output bus   20-14

Domain Access Control Register   3-6
description   3-23
enabling the MMU   10-3
MMU memory access control   

10-26
Domain access control register (CP15 

c3)   10-32
Domain fault   10-32
DRADDR

description   A-13
DRCS

description   A-13
DRDMAEN

description   A-13
DRnRW

description   A-13
DRRD

description   A-13
DRWAIT

description   A-13
DRWBL

description   A-13
DRWD

description   A-13
DRWPAR   17-17

description   A-16
DSAPR

see Data Standard Access 
Permission Register

DTCM
enabling   3-45
size   3-45

DTCM parity   17-17
DTCM Region Register   3-7

description   3-44
DTCMSIZE   3-45

description   A-13
D64n32   3-19, 6-2

description   A-5

E
EDBGRQ

description   A-9
entering debug state   8-19, 9-3

Endianness
dynamic changing   6-24
of byte lane strobes   6-24

ETMCORECTL
description   A-12

ETMDA
description   A-12

ETMDATA
description   A-12

ETMDATAVALID
description   A-12

ETMIA
description   A-12

ETMPWRDOWN
description   A-12

ETMR15BP
description   A-12

ETMR15EX
description   A-12

Eviction write buffer   13-1, 13-2, 13-3
memory coherency   13-3

Exception vector
location   3-15

External abort
data load   16-4, 16-5
granularity   16-2, 16-4, 16-6
imprecise   16-2, 16-3, 16-5, 16-6
instruction fetch   16-4, 16-5
precise   16-2, 16-3, 16-4, 16-5

EXTEST instruction   9-4, 9-5, 9-13
comms channel   8-25
writing active scan chain   9-6

F
Fast context switch   3-51

example   3-51
Fast context switch extension

in cache operations   3-38
in TLB operations   3-41

Fast interrupt request signal   18-3
Fault Address Register

external abort reporting   16-3
imprecise external aborts   16-6

Fault Status Register
external abort reporting   16-3
imprecise external aborts   16-6

Fault types   3-28

FCSE Process ID Register   3-7
description   3-49

Fine page table descriptor
translation fault   10-30

H
HADDR

AHB reads   6-7
eight-bit transfers   6-6
16-bit transfers   6-6
32-bit transfers   6-6
64-bit transfers   6-6

HADDRD
description   A-3

HADDRI
description   A-3

HALT instruction   8-19, 9-3, 9-4, 9-5
Halt mode   9-2, 9-3

description   8-2
HBSTRBD

description   A-4
endianness   6-24

HBSTRBI
description   A-4
endianness   6-24

HBURSTD
description   A-5

HBURSTI
description   A-5

HCLK
relation to CLK   4-2

HCLKEND
description   A-5
relation to CLK   4-3

HCLKENI
description   A-5
relation to CLK   4-3

HIVECSINIT   3-14
HLOCKD

AHB swap operations   6-7
description   A-6

HLOCKI
description   A-6

HPROT
BIU protection attributes   6-6

HPROTD
description   A-2
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HPROTI
description   A-2

HRDATA
AHB reads   6-7

HRDATAD
description   A-5
32-bit transfers   6-25
64-bit transfers   6-25

HRDATAI
description   A-6

HREADYD
description   A-6

HREADYI
description   A-6

HRESETn
description   A-6
in test mode   20-14
timing   4-4

HRESPD
description   A-6

HRESPI
description   A-6

HSIZE
BIU transfer size   6-6

HSIZED
description   A-2

HSIZEI
description   A-2

HTRANSD
BIU transfers   6-6
description   A-3

HTRANSI
BIU transfers   6-6
description   A-3

HWDATAD
description   A-3
32-bit transfers   6-25
64-bit transfers   6-25

HWRITED
description   A-3

HWRITEI
description   A-3

I
I and M bit settings

ICache   12-3

ICache
associativity   12-9
context switch   12-2
enabling   3-14
line length   12-2
precise abort on linefill   12-10
size   12-2, 12-9
streaming   12-2, 12-9

ICache and ITCM access priority   12-6
ICache configuration

for MMU operation   12-3
for MPU operation   12-3

ICache Configuration Register   3-6, 
11-4

description   3-21
instruction cachability   12-3

ICache Lockdown Register   3-7
description   3-41
linefill allocation   12-2

ICache parity   12-13
ICCR

see ICache Configuration Register
ICDATAPARx   12-13

description   A-16
ICTAGPAR   12-13

description   A-16
IDCODE instruction   9-4, 9-9

operation   9-8
IEAPR

see Instruction Extended Access 
Permission Register

IFAR
see Instruction Fault Address 

Register
IFSR

see Instruction Fault Status Register
IMB sequence   5-8–5-10
Imprecise abort

DCache eviction   12-10
masking   3-4

Imprecise external abort
attaching   16-3, 16-6
buffered stores   16-3
cache castouts   16-3
coprocessor operations   16-6
Current Program Status Register   

16-6
DCache preload operations   16-6
enabling and disabling   16-6

Imprecise external abort (continued)
Fault Address Register   16-6
fault priority   3-28, 10-33, 11-9
fault status code   3-28, 10-33, 11-9
Fault Status Register   16-6
swap operations   16-6

INITRAM
description   A-14

Instruction bus interface unit   6-2
bus width   6-2, 6-3, 6-8
structure   6-8

Instruction Extended Access 
Permission Register   3-6

description   3-29
Instruction Fault Address Register   3-6

description   3-33
Instruction Fault Status Register   3-6

description   3-26
Instruction memory barrier   5-8–5-10, 

17-4
accessing ITCM   3-45

Instruction Standard Access Permission 
Register   3-6

description   3-31
Instruction Transfer Register   8-4, 8-20, 

9-3, 9-11
description   9-12

Integer core   2-3
Integer unit   2-2

address type used   3-8
Interrupt latency

locking TLB entries   14-4–14-6
restricting LDM length   14-4–14-6
using write-through memory   

14-4–14-6
with 32-bit AHB   14-3–14-6
with 64-bit AHB   14-3–14-6

INTEST instruction   9-4, 9-5, 9-13
comms channel   8-25
reading active scan chain   9-6
reading CP14 r0, r1, and r5   9-5

IRADDR
description   A-13

IRCS
description   A-13

IRDMAEN
description   A-14

IRnRW
description   A-13
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IRQ acknowledge   18-3
IRQ interrupt request signal   18-3
IRQ interrupt vector address   18-3, 18-5
IRQ vector address

reading from VIC port   3-14
relocating   3-14

IRQACK
description   A-15, 18-3
VIC port timing   18-4, 18-5

IRQADDR
description   A-15, 18-3
VIC port timing   18-4, 18-5

IRQADDRV
description   A-15, 18-3
VIC port timing   18-4, 18-5

IRRD
description   A-13

IRWAIT
description   A-13

IRWBL
description   A-13

IRWD
description   A-13

IRWPAR   17-16
description   A-16

ISAPR
see Instruction Standard Access 

Permission Register
ITCM

booting from   3-45
enabling   3-45
size   3-45

ITCM parity   17-16
ITCM Region Register   3-7, 17-3

description   3-44
ITCMSIZE   3-45

description   A-13
I64n32   3-19, 6-2

description   A-5

J
Jazelle state

Program Status Registers   3-3
re-entering from debug state   8-19

JTAG instructions   9-4

L
LDCMCRDATA

description   A-8
Leakage control   19-5
Level 1 section translation fault

fault priority   3-28, 10-33
fault status code   3-28, 10-33

Level 1 translation precise external 
abort

fault priority   3-28, 10-33
fault status code   3-28, 10-33

Level 2 page translation fault
fault priority   3-28, 10-33
fault status code   3-28, 10-33

Level 2 translation precise external 
abort

fault priority   3-28, 10-33
fault status code   3-28, 10-33

Little-endian operation
selection   3-14

Load instructions
cycle counts   21-9

Load multiple instructions
cycle counts   21-14

Loads to PC
cycle counts   21-9

Load/store unit   2-2, 2-8
L1 and L2 write ports   2-8
S1 and S2 read ports   2-8

Lockdown TLB   3-40
associativity   3-46
size   3-46
victim replacement   3-46

LSHOLDCPE
description   A-7

LSHOLDCPM
description   A-8

LSU pipeline   21-9

M
Main TLB   3-40

associativity   3-46
size   3-46, 10-5

MBIST
address scramble   20-17
array architecture   20-13
IDDQ testing   20-17

MBIST controller
dispatch unit interface   20-15

MBISTCLKEN
description   A-11
in test mode   20-13

MBISTDIN
in test mode   20-13

MBISTDOUT
in test mode   20-14

MBISTDSHIFT
description   A-11
in test mode   20-13

MBISTRAMBYP
description   A-11
in ATPG   20-16
in external test mode   20-12
in test mode   20-14

MBISTRESETN
description   A-11
in external test mode   20-12
in functional mode   20-11
in test mode   20-14

MBISTRXCGR
description   A-11

MBISTRXTCM
description   A-11
in test mode   20-14

MBISTSHIFT
description   A-11
in test mode   20-13

MBISTTX
description   A-11

Memory coherency
cleaning DCache   3-17

Memory management unit
enabling   3-14

Memory parity
see Parity

Memory protection unit
enabling   3-14

Memory Region Remap Register   3-7
description   3-57
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MMU
accessing main TLB entries   3-60
accessing MVA tag   3-60, 3-61
accessing PA and access permissions   

3-60
accessing PA and access permissions 

in lockdown TLB entry   3-60
accessing tag in lockdown TLB entry   

3-60
debug control register   3-67
domain fault   10-32
page translation fault   10-30
permission fault   10-32
RAMs   19-5
section translation fault   10-30
transferring lockdown TLB entry to 

RAM   3-60
transferring main TLB entry to RAM   

3-60
MMU Debug Control Register   3-7
MMU parity   10-35
MMU test operations   3-7

accessing PA and access permissions 
in lockdown TLB entry   3-60

description   3-60
MMUDATAPAR   10-35

description   A-16
MMUnMPU   3-19

description   A-17
MMUTAGPAR   10-35

description   A-16
Monitor mode

description   8-2
entering   8-22
exiting   8-22

MPU miss
fault priority   11-9
fault status code   11-9

MRS instructions
cycle counts   21-9

MSR instructions
cycle counts   21-9

MTESTON
description   A-11
in test mode   20-13

Multi-ICE   9-3, 9-8
Multilayer AHB operation   4-3
Multiply instructions

cycle counts   21-7

MUXINSEL
description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10

MUXOUTSEL
description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10

N
nFIQ

description   A-15, 18-3
nIRQ

description   A-15, 18-3
VIC port timing   18-4, 18-5

Noncachable instruction fetches   15-2
Noncritical doubleword

definition   16-4
Nonsequential BIU transfers   6-6
Nontranslation precise external abort

fault priority   3-28, 10-33, 11-9
fault status code   3-28, 10-33, 11-9

P
Page access permission fault

fault priority   3-28, 10-33
fault status code   3-28, 10-33

Page domain fault
fault priority   3-28, 10-33
fault status code   3-28, 10-33

Parity
DCache parity   12-14
error detection   10-35, 12-13, 17-16
ICache parity   12-13
MMU parity   10-35
parity generator   10-35, 12-13, 

17-16
TCM parity   17-16

Pending write buffer   13-2
cache operations   3-36, 3-37
contents of entries   13-2
detection of sequential addresses   

13-2

Pending write buffer (continued)
disabling buffered stores   13-4
draining   10-29
enabling and disabling   3-54
external aborts   13-5
memory coherency   13-3
nonbuffered stores   13-3
noncachable loads   13-3
self-draining   13-3
swap operations   13-3

Permission fault   10-32
Pipeline stages

Decode   2-4
Execute   2-4
Fetch   2-4
Issue   2-4
Memory   2-4
Write   2-4

Power management   19-2
dynamic   19-3
static   19-5

Precise external abort   16-5
data load   16-5
instruction fetch   16-5
operations   16-2

Prefetch Abort   10-34, 16-6
BKPT instruction   8-3
IMMU fault status register   10-34, 

11-10
level 2 fine page translation fault   

10-20
MMU level 1 translation fault   10-11
MMU level 2 translation fault   10-15

Prefetch buffer   2-6, 5-2, 5-3, 5-6, 5-7, 
21-2

Prefetch unit   2-2, 2-6
branch folding   5-3
branch phantom   5-3
branch prediction   5-1–5-8
flushing   21-2
speculative prefetching   5-3

Prefetch Unit Debug Override Register   
3-7

description   3-55
Process ID   3-49

after reset   3-50
changing   3-51
using   3-49

Process ID Register   3-49
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Protection region
background   11-8
base address   3-34
enabling   3-35
overlapping   11-8
size   3-35

Protection region attributes
bufferability   11-4
cachability   11-4

Protection Region Registers   3-6
description   3-34

PRR0-7
see Protection Region Registers

R
Random victim replacement

selection   3-14
Registers

MMU debug control   3-67
Reset inputs

DBGnTRST   4-4
HRESETn   4-4

RESTART instruction   8-19, 9-4, 9-5
Result cycles   21-4
ROM protection

enabling   3-14
Round-robin victim replacement

selection   3-14
RSTSAFE

description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10

S
Saved Program Status Registers   3-3
Scan chain 0

description   9-10
see also Debug ID Register

Scan chain 1
description   9-10
see also Debug Status and Control 

Register
Scan chain 2

description   9-11

Scan chain 3
description   9-11

Scan chain 4
description   9-12
see also Instruction Transfer 

Register
Scan chain 5

description   9-13
see also Data Transfer Register

SCANMODE
description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10
in test mode   20-14

SCANMUX
description   A-10, 20-9

SCAN_N instruction   9-5, 9-6, 9-9
SCORETEST

description   A-10
SE

description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10
in test mode   20-14

Section access permission fault
fault priority   3-28, 10-33
fault status code   3-28, 10-33

Section domain fault
fault priority   3-28, 10-33
fault status code   3-28, 10-33

Self-modifying code   6-23, 15-3, 17-4
BitBlt code   5-9
draining the pending write buffer   

13-3
loading code from disk   5-9
self-decompressing code   5-10

Sequential BIU transfers   6-6
SI

description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10

SIMTESTMDDRSZVAL
description   A-17

SIMTESTMDD64n32
description   A-17

SIMTESTMDIRSIZE
description   A-17

SIMTESTMDIRSZVAL
description   A-17

SIMTESTMDI64n32
description   A-17

SIMTESTMDRNDDDMA
description   A-17

SIMTESTMDRNDDRWT
description   A-17

SIMTESTMDRNDIDMA
description   A-17

SIMTESTMDRNDIRWT
description   A-17

SIMTESTMDRSIZE
description   A-17

Size of protection region   3-35
SO

description   A-10, 20-9
in external test mode   20-12
in functional mode   20-11
in internal test mode   20-10

Speculative prefetching   5-3
STANDBYWFI

description   A-17
STCMRCDATA

description   A-8
Store instructions

cycle counts   21-9
Store multiple instructions

cycle counts   21-14
SWI instruction

cycle counts   21-9
Switching program context   3-49

T
T bit

setting after PC load   3-14
TAP ID Register   9-4

description   9-8
IDCODE Register   9-6
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