
ARM1026EJ-S™

Revision: r0p2

Technical Reference Manual
Copyright © 2003 ARM Limited. All rights reserved.
ARM DDI 0244C

ARM1026EJ-S
Technical Reference Manual

Copyright © 2003 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. It has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

Change history

Date Issue Change

24 September, 2002 A First release.

20 December, 2002 B Second release. Updated for ARM1026EJ-S r0p1 processor.

20 June, 2003 C Third release. Updated for ARM1026EJ-S r0p2 processor.
ii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Contents
ARM1026EJ-S Technical Reference Manual

Preface
About this document .. xviii
Feedback ... xxiv

Chapter 1 Introduction
1.1 About the processor .. 1-2
1.2 Components of the processor ... 1-4
1.3 Silicon revision information ... 1-10

Chapter 2 Integer Core
2.1 About the integer core ... 2-2
2.2 Pipeline ... 2-4
2.3 Prefetch unit .. 2-6
2.4 Typical ALU/multiply operations .. 2-7
2.5 Load/store unit .. 2-8
2.6 Typical load/store operations .. 2-9
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. iii

Chapter 3 Programmer’s Model
3.1 About the programmer’s model .. 3-2
3.2 Program status registers .. 3-3
3.3 About the CP15 system control coprocessor registers 3-5
3.4 CP15 register descriptions ... 3-9
3.5 CP15 instruction summary ... 3-70

Chapter 4 Clocking and Reset Timing
4.1 About clock and reset signals ... 4-2
4.2 Clock interfaces .. 4-3
4.3 Reset .. 4-4

Chapter 5 Prefetch Unit
5.1 About the prefetch unit ... 5-2
5.2 Branch prediction activity .. 5-3
5.3 Branch instruction cycle summary .. 5-6
5.4 Instruction memory barriers .. 5-8

Chapter 6 Bus Interface
6.1 About the bus interface ... 6-2
6.2 Bus transfer characteristics .. 6-3
6.3 Bus transfer cycle timing .. 6-8
6.4 Topology ... 6-23
6.5 Endianness of BIU transfers ... 6-24
6.6 64-bit and 32-bit AHB data buses ... 6-25

Chapter 7 Coprocessor Interface
7.1 About the coprocessor interface ... 7-2
7.2 Coprocessor interface signals .. 7-3
7.3 Design considerations .. 7-5
7.4 Parallel execution ... 7-8
7.5 Rules for the interface .. 7-9
7.6 Pipeline signal assertion ... 7-10
7.7 Instruction issue .. 7-11
7.8 Hold signals .. 7-21
7.9 Instruction cancelation .. 7-40
7.10 Bounced instructions .. 7-47
7.11 Data buses ... 7-53
iv Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 8 Debug
8.1 About the debug unit ... 8-2
8.2 Register descriptions .. 8-6
8.3 Software lockout function .. 8-18
8.4 Halt mode .. 8-19
8.5 Monitor mode .. 8-22
8.6 Values in the link register after exceptions .. 8-24
8.7 Comms channel .. 8-25

Chapter 9 Debug Test Access Port
9.1 Debug test access port and halt mode ... 9-2
9.2 DBGTAP instructions .. 9-4
9.3 Scan chain descriptions .. 9-7

Chapter 10 Memory Management Unit
10.1 About the MMU ... 10-2
10.2 MMU software-accessible registers .. 10-6
10.3 Address translation ... 10-8
10.4 MMU memory access control .. 10-26
10.5 MMU cachable and bufferable information ... 10-28
10.6 MMU and pending write buffer .. 10-29
10.7 Fault checking sequence .. 10-30
10.8 Fault priority .. 10-33
10.9 MMU aborts and external aborts ... 10-34
10.10 Memory parity ... 10-35

Chapter 11 Memory Protection Unit
11.1 About the MPU .. 11-2
11.2 MPU software-accessible registers ... 11-3
11.3 Configuring the MPU ... 11-5
11.4 Overlapping protection regions ... 11-8
11.5 Fault priority .. 11-9
11.6 MPU aborts and external aborts ... 11-10

Chapter 12 Caches
12.1 About the caches .. 12-2
12.2 Enabling the caches .. 12-3
12.3 Cache and TCM access priorities ... 12-6
12.4 Cache MVA and set/way formats .. 12-7
12.5 Cache size support ... 12-9
12.6 Cache support for external aborts ... 12-10
12.7 Castout functionality, DCache only ... 12-11
12.8 Cache support for MBIST ... 12-12
12.9 Cache memory parity .. 12-13
12.10 Code examples of CP15 cache operations ... 12-15
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. v

Chapter 13 Pending Write Buffer
13.1 About the pending write buffer .. 13-2
13.2 External aborts ... 13-5

Chapter 14 Interrupt Latency
14.1 About interrupt latency .. 14-2
14.2 Worst-case interrupt latency ... 14-3
14.3 Tuning interrupt latency .. 14-4

Chapter 15 Noncachable Instruction Fetches
15.1 About noncachable instruction fetches ... 15-2
15.2 External aborts ... 15-4

Chapter 16 External Aborts
16.1 About external aborts ... 16-2
16.2 External abort reporting .. 16-3
16.3 External abort rules of conduct ... 16-4

Chapter 17 Tightly-Coupled Memories
17.1 About the tightly-coupled memories ... 17-2
17.2 Programming the TCM ... 17-3
17.3 Interface timing ... 17-10
17.4 TCM parity .. 17-16

Chapter 18 Vectored Interrupt Controller Port
18.1 About vectored interrupt controllers .. 18-2
18.2 About the VIC port .. 18-3
18.3 Timing of the VIC port ... 18-4

Chapter 19 Power Management
19.1 About power management ... 19-2
19.2 Wait for interrupt mode ... 19-3
19.3 Leakage control .. 19-5

Chapter 20 Design for Test
20.1 ARM1026EJ-S processor ... 20-2
20.2 Test signal connections .. 20-10
20.3 MBIST ... 20-13

Chapter 21 Instruction Cycle Count
21.1 Cycle timing considerations .. 21-2
21.2 Instruction cycle counts .. 21-3
21.3 Interlocks .. 21-22
vi Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Appendix A Signal Descriptions
A.1 AHB signals in normal mode ... A-2
A.2 Coprocessor signals ... A-7
A.3 Debug interface signals .. A-9
A.4 DFT signals ... A-10
A.5 MBIST signals ... A-11
A.6 ETM signals .. A-12
A.7 TCM signals ... A-13
A.8 Interrupt signals .. A-15
A.9 Memory parity signals ... A-16
A.10 Other signals ... A-17

Glossary

Index
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. vii

viii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

List of Tables
ARM1026EJ-S Technical Reference Manual

Change history .. ii
Register notation conventions ... xxii

Table 3-1 CP15 register summary .. 3-6
Table 3-2 Address types ... 3-8
Table 3-3 Encoding of the Device ID Register .. 3-10
Table 3-4 Encoding of the Cache Type Register .. 3-11
Table 3-5 Encoding of the TCM Status Register ... 3-13
Table 3-6 Control Register instructions ... 3-14
Table 3-7 Encoding of the Control Register .. 3-15
Table 3-8 Effects of Control Register on caches ... 3-17
Table 3-9 Effects of Control Register on TCM interface .. 3-18
Table 3-10 Encoding of the Auxiliary Control Register .. 3-19
Table 3-11 Translation Table Base Register instructions .. 3-20
Table 3-12 Encoding of the Translation Table Base Register ... 3-20
Table 3-13 L2C and L2B encoding .. 3-21
Table 3-14 DCache and ICache Configuration Register instructions .. 3-21
Table 3-15 Encoding of the DCache and ICache Configuration Registers 3-22
Table 3-16 Domain Access Control Register instructions ... 3-23
Table 3-17 Encoding of the Domain Access Control Register .. 3-23
Table 3-18 Access permission summary when using the MMU .. 3-24
Table 3-19 Write Buffer Control Register instructions ... 3-25
Table 3-20 Encoding of the Write Buffer Control Register .. 3-25
Table 3-21 Data and Instruction Fault Status Register instructions .. 3-26
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. vii

Table 3-22 Encoding of the Data and Instruction Fault Status Registers 3-27
Table 3-23 MMU and MPU faults .. 3-28
Table 3-24 DEAPR and IEAPR instructions ... 3-29
Table 3-25 Encoding of the DEAPR and IEAPR ... 3-30
Table 3-26 Encoding of the extended access permission bit fields .. 3-30
Table 3-27 DSAPR and ISAPR instructions ... 3-31
Table 3-28 Encoding of the DSAPR and ISAPR ... 3-32
Table 3-29 Encoding of the standard access permission bit fields ... 3-32
Table 3-30 DFAR and IFAR instructions ... 3-33
Table 3-31 Protection Region Registers instructions .. 3-34
Table 3-32 Encoding of the Protection Region Registers ... 3-34
Table 3-33 Cache operation instructions .. 3-36
Table 3-34 Encoding of the cache operations bit fields in MVA format 3-38
Table 3-35 Encoding of the cache operation bit fields in set/way format 3-39
Table 3-36 TLB operation instructions .. 3-40
Table 3-37 Encoding of the invalidate single TLB entry bit fields ... 3-40
Table 3-38 DCache and ICache Lockdown Register instructions ... 3-41
Table 3-39 Encoding of the DCache and ICache Lockdown Registers 3-42
Table 3-40 DTCM and ITCM Region Register instructions ... 3-44
Table 3-41 Encoding of the DTCM and ITCM Region Registers .. 3-45
Table 3-42 TLB Lockdown Register instructions .. 3-46
Table 3-43 Encoding of the TLB Lockdown Register .. 3-47
Table 3-44 FCSE Process ID Register instructions .. 3-49
Table 3-45 Encoding of the FSCE Process ID Register ... 3-49
Table 3-46 Context ID Register instructions ... 3-52
Table 3-47 Debug Override Register instructions ... 3-53
Table 3-48 Encoding of the Debug Override Register .. 3-54
Table 3-49 Prefetch Unit Debug Override Register instructions ... 3-55
Table 3-50 Encoding of the Prefetch Unit Override Register .. 3-56
Table 3-51 Debug and Test Address Register instructions .. 3-56
Table 3-52 Memory Region Remap Register instructions .. 3-57
Table 3-53 Encoding of the Memory Region Remap Register ... 3-58
Table 3-54 Encoding of the remap fields .. 3-58
Table 3-55 MMU test operation instructions ... 3-60
Table 3-56 Encoding of the main TLB entry-select bit fields ... 3-61
Table 3-57 Encoding of the TLB MVA tag bit fields .. 3-62
Table 3-58 Encoding of the TLB entry PA and AP bit fields ... 3-63
Table 3-59 Encoding of the lockdown TLB entry-select bit fields ... 3-64
Table 3-60 Cache Debug Control Register instructions .. 3-65
Table 3-61 Encoding of the Cache Debug Control Register ... 3-66
Table 3-62 MMU Debug Control Register instructions ... 3-67
Table 3-63 Encoding of the MMU Debug Control Register ... 3-68
Table 3-64 CP15 instruction summary .. 3-70
Table 5-1 Penalty for a mispredicted branch .. 5-4
Table 5-2 ARM and Thumb branch instruction cycle counts .. 5-6
Table 6-1 DBIU transfer characteristics .. 6-4
Table 6-2 IBIU transfer characteristics .. 6-5
viii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Table 6-3 Definition of variables in cache linefills with 64-bit interface 6-9
Table 6-4 Symbols used in linefill cycle counts with 64-bit AHB ... 6-10
Table 6-5 Definition of variables in cache linefills with 32-bit interface 6-11
Table 6-6 Symbols used in linefill cycle counts with a 32-bit AHB .. 6-13
Table 6-7 Definition of variables in castouts .. 6-14
Table 6-8 Symbols used in linefill cycle counts with 64-bit AHB ... 6-15
Table 6-9 Definition of variables in level 1 and level 2 table walks ... 6-17
Table 6-10 Symbols used in level 1 and level 2 table walk cycle counts 6-19
Table 6-11 Definition of variables in NC loads and NCNB stores ... 6-20
Table 6-12 Symbols used in NC load and NCNB store cycle counts .. 6-21
Table 7-1 Pipeline stages and active signals .. 7-10
Table 7-2 CPINSTR interactions with other signals .. 7-12
Table 7-3 CPINSTRV interactions with other signals .. 7-14
Table 7-4 CPVALIDD interactions with other signals .. 7-15
Table 7-5 CPLSLEN interactions with other signals .. 7-18
Table 7-6 CPLSSWP interactions with other signals .. 7-19
Table 7-7 CPLSDBL interactions with other signals .. 7-20
Table 7-8 Hold signals summary ... 7-22
Table 7-9 ASTOPCPD interactions with other signals .. 7-23
Table 7-10 ASTOPCPE interactions with other signals .. 7-25
Table 7-11 LSHOLDCPE interactions with other signals .. 7-27
Table 7-12 LSHOLDCPM interactions with other signals .. 7-29
Table 7-13 CPBUSYE interactions with other signals ... 7-31
Table 7-14 CPLSBUSY interactions with other signals ... 7-39
Table 7-15 ACANCELCP interactions with other signals .. 7-40
Table 7-16 AFLUSHCP interactions with other signals ... 7-44
Table 7-17 CPBOUNCEE interactions with other signals ... 7-48
Table 7-18 STCMRCDATA interactions with signals .. 7-53
Table 7-19 LDCMRCDATA interactions with signals .. 7-54
Table 8-1 CP14 registers and scan chain numbers .. 8-4
Table 8-2 Debug ID Register instructions ... 8-6
Table 8-3 Encoding of the Debug ID Register ... 8-7
Table 8-4 Debug Status and Control Register instructions ... 8-7
Table 8-5 Encoding of Debug Status and Control Register .. 8-8
Table 8-6 DSCR bits from the core ... 8-10
Table 8-7 Data Transfer Register instructions ... 8-11
Table 8-8 Breakpoint Address Register instructions ... 8-12
Table 8-9 Breakpoint Control Register instructions ... 8-13
Table 8-10 Encoding of Breakpoint Control Registers .. 8-14
Table 8-11 Watchpoint Address Register instructions .. 8-15
Table 8-12 Watchpoint Control Register instructions .. 8-15
Table 8-13 Encoding of Watchpoint Control Registers ... 8-16
Table 8-14 Read PC value after debug state entry ... 8-20
Table 8-15 Link register values after exceptions ... 8-24
Table 9-1 Supported public JTAG instructions .. 9-4
Table 10-1 CP15 MMU registers ... 10-6
Table 10-2 Access type encoding in a level 1 descriptor .. 10-11
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. ix

Table 10-3 Access type encoding in a coarse page table descriptor 10-15
Table 10-4 Access type encoding in a fine page table descriptor ... 10-20
Table 10-5 Domain access encoding .. 10-26
Table 10-6 MMU memory access control ... 10-27
Table 10-7 C and B bit access control .. 10-28
Table 10-8 MMU faults .. 10-33
Table 10-9 MMU TLB parity interfaces ... 10-35
Table 11-1 CP15 MPU registers ... 11-4
Table 11-2 MPU faults .. 11-9
Table 12-1 Enabling the ICache with the processor configured for MMU operation 12-3
Table 12-2 Enabling the ICache with the processor configured for MPU operation 12-3
Table 12-3 Enabling the DCache with the processor configured for MMU operation 12-4
Table 12-4 Enabling the DCache with the processor configured for MPU operation 12-4
Table 12-5 Enabling data caching and buffering with the C and B bits 12-5
Table 12-6 Priorities of instruction accesses to the TCMs and caches 12-6
Table 12-7 Priorities of data accesses to the TCMs and caches .. 12-6
Table 12-8 Cache size and number of sets .. 12-8
Table 12-9 ICache and DCache size configurations ... 12-9
Table 12-10 Aborts on linefills and castouts ... 12-10
Table 12-11 ICache parity interfaces .. 12-13
Table 12-12 DCache parity interfaces .. 12-14
Table 14-1 Worst-case interrupt latency cycle count .. 14-3
Table 14-2 Tuning interrupt latency with a 1:1 HCLK-to-CLK ratio ... 14-4
Table 14-3 Tuning interrupt latency with a 4:1 HCLK-to-CLK ratio ... 14-5
Table 14-4 LDM restricted to nine registers .. 14-5
Table 14-5 TLB locking and write-through caches .. 14-6
Table 14-6 LDM restricted to nine registers, TLB locking, and write-through caches 14-6
Table 16-1 External abort summary .. 16-3
Table 17-1 ITCM initialization ... 17-3
Table 17-2 TCM mapping of chip select and byte enable mapping .. 17-6
Table 17-3 ITCM parity interface .. 17-16
Table 17-4 DTCM parity interface ... 17-17
Table 18-1 VIC port signals .. 18-3
Table 20-1 Selecting mode of operation of dedicated wrapper cells .. 20-4
Table 20-2 Wrapper scan chains .. 20-6
Table 20-3 Test port signals during internal test ... 20-9
Table 20-4 Test port connections in internal test mode .. 20-10
Table 20-5 Test port connections in functional mode ... 20-11
Table 20-6 Test port connections in external test mode ... 20-12
Table 20-7 MBIST interface in test mode ... 20-13
Table 20-8 MBISTTX external interface .. 20-15
Table 20-9 MBISTRXCGR[2:0] and MBISTRXTCM[2:0] external interface 20-16
Table 20-10 Memory test interface cycle counts .. 20-22
Table 20-11 Scanout formats of fail data .. 20-24
Table 20-12 Array enables .. 20-25
Table 21-1 Subcategories of data processing instructions ... 21-5
Table 21-2 Cycle counts of data processing instructions .. 21-5
x Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Table 21-3 Cycle counts of multiply instructions ... 21-7
Table 21-4 Cycle counts of branch instructions .. 21-8
Table 21-5 Cycle counts of MRS and MSR instructions ... 21-9
Table 21-6 Cycle counts of load instructions ... 21-10
Table 21-7 Cycle counts of store instructions ... 21-12
Table 21-8 Cycle counts of load multiple and store multiple instructions 21-14
Table 21-9 Cycle counts of preload instructions ... 21-15
Table 21-10 Cycle counts of coprocessor instructions .. 21-15
Table 21-11 Cycle counts of swap instructions ... 21-16
Table 21-12 Cycle counts of Thumb data processing instructions .. 21-17
Table 21-13 Cycle count of the Thumb multiply instruction ... 21-19
Table 21-14 Cycle counts of Thumb branch instructions .. 21-19
Table 21-15 Cycle counts of Thumb load instructions .. 21-20
Table 21-16 Cycle counts of Thumb store instruction ... 21-20
Table 21-17 Cycle counts of Thumb load/store multiple instructions .. 21-21
Table A-1 AHB signals ... A-2
Table A-2 Coprocessor signals .. A-7
Table A-3 Debug interface signals ... A-9
Table A-4 DFT signals ... A-10
Table A-5 MBIST signals ... A-11
Table A-6 ETM signals .. A-12
Table A-7 TCM signals .. A-13
Table A-8 Interrupt signals ... A-15
Table A-9 Memory parity signals ... A-16
Table A-10 Other signals ... A-17
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xi

xii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

List of Figures
ARM1026EJ-S Technical Reference Manual

Key to timing diagram conventions .. xxi
Figure 1-1 ARM1026EJ-S processor block diagram .. 1-5
Figure 2-1 Integer core block diagram .. 2-3
Figure 2-2 Pipeline stages of the ARM1026EJ-S processor .. 2-5
Figure 2-3 Pipeline stages of a typical ALU operation .. 2-7
Figure 2-4 Pipeline stages of a typical multiply operation .. 2-7
Figure 2-5 Pipeline stages of a load or store operation .. 2-9
Figure 2-6 Pipeline stages of a load multiple or store multiple operation 2-10
Figure 3-1 Program Status Registers ... 3-3
Figure 3-2 CP15 MCR and MRC instruction format ... 3-5
Figure 3-3 Device ID Register .. 3-10
Figure 3-4 Cache Type Register .. 3-11
Figure 3-5 TCM Status Register ... 3-13
Figure 3-6 Control Register .. 3-15
Figure 3-7 Auxiliary Control Register .. 3-19
Figure 3-8 Translation Table Base Register ... 3-20
Figure 3-9 DCache and ICache Configuration Registers ... 3-22
Figure 3-10 Domain Access Control Register .. 3-23
Figure 3-11 Write Buffer Control Register .. 3-25
Figure 3-12 Data and Instruction Fault Status Registers .. 3-27
Figure 3-13 Data and Instruction Extended Access Permission Registers 3-29
Figure 3-14 Data and Instruction Standard Access Permission Registers 3-31
Figure 3-15 Data and Instruction Fault Address Registers ... 3-33
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xiii

Figure 3-16 Protection Region Registers 0-7 ... 3-34
Figure 3-17 Rd format for cache operations in MVA format ... 3-38
Figure 3-18 Rd format for cache operations in set/way format .. 3-39
Figure 3-19 Rd format for invalidate single TLB entry operations .. 3-40
Figure 3-20 DCache and ICache Lockdown Registers .. 3-41
Figure 3-21 DTCM and ITCM Region Registers .. 3-44
Figure 3-22 TLB Lockdown Register .. 3-47
Figure 3-23 FSCE Process ID Register ... 3-49
Figure 3-24 FCSE address mapping .. 3-50
Figure 3-25 Context ID Register .. 3-52
Figure 3-26 Debug Override Register .. 3-53
Figure 3-27 Prefetch Unit Debug Override Register .. 3-55
Figure 3-28 Debug and Test Address Register .. 3-56
Figure 3-29 Memory Region Remap Register ... 3-57
Figure 3-30 Memory region attribute resolution ... 3-59
Figure 3-31 Rd format for selecting main TLB entry .. 3-60
Figure 3-32 Rd format for accessing MVA tag of main or lockdown TLB entry 3-61
Figure 3-33 Rd format for accessing PA and AP data of main or lockdown TLB entry 3-62
Figure 3-34 Rd format for selecting lockdown TLB entry ... 3-64
Figure 3-35 Cache Debug Control Register ... 3-65
Figure 3-36 MMU Debug Control Register ... 3-68
Figure 4-1 HCLK derivation .. 4-2
Figure 4-2 TCK derivation .. 4-3
Figure 4-3 HRESETn assertion .. 4-4
Figure 6-1 Cache linefill cycle count with 64-bit AHB ... 6-10
Figure 6-2 Cache linefill cycle count with 32-bit AHB ... 6-12
Figure 6-3 Cache castout cycle count with 64-bit AHB interface ... 6-15
Figure 6-4 Cache castout cycle count with 32-bit AHB interface ... 6-16
Figure 6-5 Level 1 and level 2 table walk cycle count .. 6-18
Figure 6-6 Cycle count of NC loads and NCNB stores with one data phase 6-21
Figure 6-7 Cycle count of NC loads and NCNB stores with two data phases 6-22
Figure 6-8 Bus interface block diagram ... 6-23
Figure 6-9 Endianness of byte lane strobes ... 6-24
Figure 6-10 AHB bus alignment ... 6-26
Figure 7-1 ARM1026EJ-S and CP pipeline stages .. 7-2
Figure 7-2 ARM1026EJ-S coprocessor inputs ... 7-6
Figure 7-3 Instruction issue example ... 7-16
Figure 7-4 ASTOPCPD example ... 7-24
Figure 7-5 ASTOPCPE example .. 7-26
Figure 7-6 LSHOLDCPE example ... 7-28
Figure 7-7 LSHOLDCPM example ... 7-30
Figure 7-8 CPBUSYE example .. 7-32
Figure 7-9 CPBUSYE ignored due to ASTOPCPD assertion .. 7-33
Figure 7-10 CPBUSYE asserted before ASTOPCPD .. 7-33
Figure 7-11 ASTOPCPD with CPBUSYE .. 7-34
Figure 7-12 CPBUSYE ignored due to ASTOPCPE assertion .. 7-35
Figure 7-13 CPBUSYE asserted before ASTOPCPE .. 7-35
xiv Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Figure 7-14 I2 held up by ASTOPCPE and CPBUSYE .. 7-36
Figure 7-15 I1 held up by ASTOPCPE and I2 held up by CPBUSYE .. 7-37
Figure 7-16 I1 held up by CPBUSYE and I2 held up by ASTOPCPD .. 7-38
Figure 7-17 ACANCELCP example .. 7-41
Figure 7-18 ACANCELCP with ASTOPCPE example .. 7-42
Figure 7-19 ACANCELCP with CPBUSYE example .. 7-43
Figure 7-20 AFLUSHCP example .. 7-45
Figure 7-21 CPBOUNCEE example ... 7-50
Figure 7-22 CPBOUNCEE with ASTOPCPE example ... 7-51
Figure 7-23 CPBOUNCEE with CPBUSYE example ... 7-52
Figure 8-1 Debug ID Register ... 8-6
Figure 8-2 Debug Status and Control Register .. 8-8
Figure 8-3 Data Transfer Register .. 8-11
Figure 8-4 Breakpoint Address Registers ... 8-12
Figure 8-5 Breakpoint Control Registers .. 8-13
Figure 8-6 Watchpoint Address Registers .. 8-15
Figure 8-7 Watchpoint Control Registers ... 8-16
Figure 8-8 Comms channel output ... 8-26
Figure 9-1 JTAG DBGTAP state diagram .. 9-2
Figure 9-2 Bypass Register bit order .. 9-7
Figure 9-3 TAP ID Register .. 9-8
Figure 9-4 TAP ID Register bit order .. 9-8
Figure 9-5 Instruction Register bit order ... 9-9
Figure 9-6 Scan Chain Select Register bit order .. 9-10
Figure 9-7 Scan chain 0 bit order ... 9-10
Figure 9-8 Scan chain 1 bit order ... 9-10
Figure 9-9 Scan chain 2 bit order ... 9-11
Figure 9-10 Scan chain 4 bit order ... 9-12
Figure 9-11 Scan chain 5 bit order ... 9-14
Figure 10-1 Address translation ... 10-9
Figure 10-2 Translating a level 1 descriptor address ... 10-10
Figure 10-3 Level 1 descriptor formats ... 10-11
Figure 10-4 Translating a section base address .. 10-12
Figure 10-5 Level 2 descriptor formats ... 10-13
Figure 10-6 Translating a coarse page table address .. 10-14
Figure 10-7 Translating a large page or subpage address from a coarse page table 10-16
Figure 10-8 Translating a small page or subpage address from a coarse page table 10-18
Figure 10-9 Translating a fine page table address ... 10-19
Figure 10-10 Translating a large page or subpage address from a fine page table 10-21
Figure 10-11 Translating a small page or subpage address from a fine page table 10-23
Figure 10-12 Translating a tiny page address .. 10-25
Figure 10-13 Fault checking flowchart .. 10-31
Figure 11-1 MPU block diagram ... 11-2
Figure 11-2 Overlapping protection regions ... 11-8
Figure 12-1 Cache read block diagram .. 12-7
Figure 17-1 TCM interface timing ... 17-5
Figure 17-2 TCM controller and DMA arbitration state diagram ... 17-8
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xv

Figure 17-3 TCM reads with zero wait states ... 17-10
Figure 17-4 TCM reads with one wait state ... 17-11
Figure 17-5 TCM reads with four wait states ... 17-11
Figure 17-6 TCM writes with zero wait states .. 17-12
Figure 17-7 TCM writes with one wait state ... 17-13
Figure 17-8 TCM writes with two wait states .. 17-14
Figure 17-9 TCM reads and writes with wait states of varying length 17-14
Figure 17-10 TCM and DMA interaction .. 17-15
Figure 18-1 VIC port timing example with HCLK:CLK = 1:1 .. 18-4
Figure 18-2 VIC port timing example with HCLK:CLK = 2:1 .. 18-5
Figure 19-1 Using STANDBYWFI to control system clocks ... 19-3
Figure 19-2 Deassertion of STANDBYWFI after an IRQ interrupt ... 19-4
Figure 19-3 Using STANDBYWFI to control ARM1026EJ-S clocks .. 19-4
Figure 19-4 Cache power-down ... 19-5
Figure 20-1 Dedicated input wrapper cell .. 20-2
Figure 20-2 Dedicated output wrapper cell .. 20-3
Figure 20-3 Shared input wrapper cell ... 20-3
Figure 20-4 Shared output wrapper cell ... 20-3
Figure 20-5 Wrapper segments ... 20-5
Figure 20-6 HWDATA bus output ports ... 20-5
Figure 20-7 HRDATA bus input ports .. 20-6
Figure 20-8 Wrapper falling-edge logic .. 20-7
Figure 20-9 Reset synchronizer ... 20-7
Figure 20-10 RSTSAFE signal ... 20-8
Figure 20-11 Reset wrapper cell .. 20-8
Figure 20-12 MBIST block diagram ... 20-13
Figure 20-13 ATPG view of read datapath ... 20-17
Figure 20-14 Chip-select implementation example .. 20-18
Figure 20-15 Data RAM MBIST arrays .. 20-19
Figure 20-16 Instruction RAM MBIST arrays ... 20-20
Figure 20-17 MMU RAM MBIST array ... 20-20
Figure 20-18 TCM MBIST array ... 20-21
Figure 20-19 MBIST Instruction Register ... 20-23
Figure 20-20 MBIST test start waveforms .. 20-25
Figure 20-21 MBIST test end waveforms ... 20-26
Figure 21-1 Pipeline forwarding paths ... 21-23
xvi Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Preface

This preface introduces the ARM1026EJ-S r0p2 Technical Reference Manual. It
contains the following sections:

• About this document on page xviii

• Feedback on page xxiv.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xvii

Preface
About this document

This is the technical reference manual for the ARM1026EJ-S r0p2 processor.

Intended audience

This document is written to help designers develop systems around the ARM1026EJ-S
processor.

Using this document

This document is organized into the following chapters:

Chapter 1 Introduction

Learn about the features and components of the ARM1026EJ-S
processor.

Chapter 2 Integer Core

Learn how overlapping pipeline stages and simultaneous execution of
instructions achieve a peak throughput of one instruction per cycle.

Chapter 3 Programmer’s Model

Learn how to use CP15 registers to configure, control, and monitor the
ARM1026EJ-S system.

Chapter 4 Clocking and Reset Timing

Learn about the clock signals and clock enable signals that control the
ARM1026EJ-S integer unit and the AHB and JTAG interfaces.

Chapter 5 Prefetch Unit

Learn how the ARM1026EJ-S processor prefetches and buffers
instructions, predicts branches and subroutine calls and returns, and how
instruction memory barriers flush the prefetch buffer.

Chapter 6 Bus Interface

Learn how the separate instruction and data bus interfaces handle
AMBA™ transfers.

Chapter 7 Coprocessor Interface

Learn how multiple coprocessors interact with the ARM1026EJ-S
processor.
xviii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Preface
Chapter 8 Debug

Learn about the ARM1026EJ-S debug functionality.

Chapter 9 Debug Test Access Port

Learn about the JTAG-based ARM1026EJ-S Debug Test Access Port
(DBGTAP).

Chapter 10 Memory Management Unit

Learn how the MMU translates modified virtual addresses to physical
addresses and controls access to external memory.

Chapter 11 Memory Protection Unit

Learn to partition external memory into protection regions with different
sizes and access attributes.

Chapter 12 Caches

Learn about cache structure and operation, including CP15 cache
operations and cache and TCM priorities.

Chapter 13 Pending Write Buffer

Learn about the programmable eight-entry buffer for loads and stores and
the parallel eviction buffer.

Chapter 14 Interrupt Latency

Learn to calculate latency from a worst-case example and to use
techniques for improving latency.

Chapter 15 Noncachable Instruction Fetches

Learn how to use the noncachable instruction prefetch buffer to support
speculative prefetching and instruction streaming.

Chapter 16 External Aborts

Learn how the ARM1026EJ-S processor handles and reports precise and
imprecise aborts on critical and noncritical words.

Chapter 17 Tightly-Coupled Memories

Learn to initialize and operate the ITCM and DTCM and see examples of
the timing of TCM transactions.

Chapter 18 Vectored Interrupt Controller Port

Learn how to connect an external VIC and to enable the ARM1026EJ-S
processor to read IRQ address vectors from the VIC port.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xix

Preface
Chapter 19 Power Management

Learn to use dynamic power management to idle all external interfaces
and static power management to turn off cache and MMU RAMs.

Chapter 20 Design for Test

Learn to integrate the ARM1026EJ-S DFT and MBIST features into an
SoC.

Chapter 21 Instruction Cycle Count

Learn the cycle-by-cycle behavior of the ARM and Thumb™ instruction
sets.

Appendix A Signal Descriptions

Refer to Appendix A for a summary of ARM1026EJ-S processor signals.

Product revision status

The rnpn identifier indicates the revision status of the product described in this
document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Typographical conventions

The following typographical conventions are used in this book:

italic Introduces special terminology. Also denotes cross-references.

bold Denotes signal names. Also used for terms in descriptive lists,
where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.
xx Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Preface
Timing diagram conventions

The figure explains the symbols used in timing diagrams. Any variations are clearly
labeled when they occur. Therefore, you must attach no additional meaning unless
specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xxi

Preface
Register notation conventions

The table shows the terms and abbreviations used in register descriptions. In all cases,
reading or writing any fields, including those specified as Unpredictable, Should Be
One, or Should Be Zero, does not cause any physical damage to the chip.

Register notation conventions

Term Description

Unpredictable (UNP) Reading returns an Unpredictable value. Writing causes Unpredictable behavior or an
Unpredictable change in device configuration.

Undefined (UND) An instruction that accesses this field in the manner indicated takes the Undefined instruction trap.

Should Be Zero (SBZ) When writing to this field, write only zeros. Writing ones has Unpredictable results.

Should Be One (SBO) When writing to this field, write only ones. Writing zeros has Unpredictable results.
xxii Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Preface
Further reading

This section lists publications by ARM Limited and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently
Asked Questions list.

ARM publications

This document contains information that is specific to the ARM1026EJ-S processor.
Refer to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM AMBA Specification (ARM IHI 0001)

• ARM102600E Test Chip Implementation Guide (ARM DXI 0143)

• ARM VFP10 Technical Reference Manual (ARM DDI 0106)

• ARM ETM10RV Technical Reference Manual (ARM DDI 0245)

• Jazelle VI Architecture Reference Manual (ARM DDI 0225).

Other publications

This section lists relevant documents published by third parties:

• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification
1149.1-1990 (JTAG).
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. xxiii

Preface
Feedback

ARM Limited welcomes feedback both on the ARM1026EJ-S processor, and on the
documentation.

Feedback on the ARM1026EJ-S processor

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments on this document, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xxiv Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 1
Introduction

This chapter describes the components and features of the ARM1026EJ-S processor. It
contains the following sections:

• About the processor on page 1-2

• Components of the processor on page 1-4

• Silicon revision information on page 1-10.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the processor

The ARM1026EJ-S processor is a member of the ARM10 family and implements the
ARMv5TEJ architecture. It is a high-performance, low-power, cached processor that
provides full virtual memory capabilities. It is designed to run high-end embedded
applications and sophisticated operating systems such as Linux, Microsoft
WindowsCE, NetBSD, and EPOC-32 from Symbian. It supports the 32-bit ARM,
16-bit Thumb®, and 8-bit Jazelle™ instruction sets.

The synthesizable ARM1026EJ-S processor consists of:

• the ARM10EJ-S integer core

— prefetch unit

— integer unit

— load/store unit

— EmbeddedICE-RT™ logic for JTAG-based debug

• CP14 debug coprocessor and CP15 system control coprocessor

• external coprocessor interface for application-specific acceleration hardware

• Memory Management Unit (MMU) or Memory Protection Unit (MPU)

• separate ICache and DCache configurable to 0KB or 4KB-128KB sizes

• Tightly Coupled Memory (TCM) interface with:

— separate externally-instantiated instruction and data TCMs configurable to
0KB or 4KB-1MB sizes

— zero-wait-state memory support

— DMA support

• write-back Physical Address (PA) TAG RAM

• pending write buffer

• separate Advanced Micro Bus Architecture (AMBA) High-performance Bus
(AHB) instruction and data bus interfaces with independently configurable 32-bit
or 64-bit widths

• Embedded Trace Macrocell (ETM) interface

• Vectored Interrupt Controller (VIC) port.
1-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Introduction
Features of the ARM1026EJ-S processor include:

• a six-stage pipeline

• branch prediction that supports branch folding (zero-cycle branches)

• full 64-bit interfaces between the integer core and:

— caches

— pending write buffer

— bus interface unit instruction side and data side

— coprocessors

• multilayer AHB support through independent 32-bit or 64-bit AHB interfaces for
instruction and data sides

• power management support

• enhanced debug support.

See the ARM Architecture Reference Manual for a detailed ARM1026EJ-S instruction
set specification.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Components of the processor

The main blocks of the ARM1026EJ-S processor are:

• Integer core on page 1-6

• Memory management unit on page 1-6

• Memory protection unit on page 1-6

• Instruction and data caches and pending write buffer on page 1-7

• Instruction and data TCMs on page 1-7

• Branch prediction and prefetch unit on page 1-8

• AMBA interface on page 1-8

• Coprocessor interface on page 1-8

• Debug on page 1-8

• Instruction cycle summary and interlocks on page 1-8

• Design-for-test features on page 1-9

• Power management on page 1-9

• Clocking and reset on page 1-9

• ETM interface logic on page 1-9.

Figure 1-1 on page 1-5 shows the structure of the ARM1026EJ-S processor.
1-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Introduction
Figure 1-1 ARM1026EJ-S processor block diagram

IRDATA

DROUTE IRDATA

DRDATA

DEXTRD

DCRD

DMVA

IROUTE

S
T

C
M

R
C

D
A

T
A

L
D

C
M

C
R

D
A

T
A

C
P

IN
S

T
R

ARM10EJ-S

integer core

D
W

D

D
R

D
IR

D

External

coprocessor

interface

FCSE

DA

IA

ICRD

IEXTRD

IMVA

DWD

DBIU

TCM

interface

DRDATA

IRDATA

DWD

IPA

DPA

DRAM

IRAM

64/32

AHB
Data

AHB

interfaceETM

interface

DEXTBIUA

DEXTBIUWD

DBIURD

DPA

DPA

DEXT

NCB, NCNB, WT,

WB (miss)

pending write

buffer
DWD

DEXTRD

IPA

MMU or MPU

Main TLB and

lockdown TLB

MPU entries in

lockdown TLB

DMVA

IMVA

DBIURD

MMUBIUA

DCACHEBIUWD

DCACHEBIUA

DCACHE

Eviction

write buffer

DWD

DPA

PA tag

RAM

DMVA

DBIURDLinefill

buffer

DCRD

AHB

64/32

Instruction

AHB

interface

IBIU

ICACHEBIUA

IBIURD

IBIURD

ICRD
ICACHE

IMVA

IPA

IEXT

IEXTRD

IPA
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 1-5

Introduction
1.2.1 Integer core

The ARM1026EJ-S processor is built around the ARM10EJ-S integer core in an
ARMv5TEJ implementation that runs the 32-bit ARM, 16-bit Thumb, and 8-bit Jazelle
instruction sets. You can balance high performance against code size and extract
maximum performance from 8-bit, 16-bit, and 32-bit memory. The processor contains
EmbeddedICE-RT logic and a JTAG debug interface to enable hardware debuggers to
communicate with the processor.

See Chapter 2 Integer Core for details of the pipeline stages and instruction
progression.

See Chapter 3 Programmer’s Model for system coprocessor programming information.

1.2.2 Memory management unit

The Memory Management Unit (MMU) has a single Translation Lookaside Buffer
(TLB) for both instructions and data. The MMU includes a 1KB tiny page mapping size
to enable a smaller RAM and ROM footprint for embedded systems and operating
systems such as WindowsCE that have many small mapped objects. The
ARM1026EJ-S processor implements the Fast Context Switch Extension (FCSE) and
high vectors extension that are required to run Microsoft WindowsCE. See Chapter 10
Memory Management Unit for more information.

Enable the MMU by tying the MMUnMPU pin HIGH.

1.2.3 Memory protection unit

The Memory Protection Unit (MPU) enables you to partition external memory into
eight protection regions. The protection regions can have different sizes and protection
attributes.

Enable the MPU by tying the MMUnMPU pin LOW.
1-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Introduction
1.2.4 Instruction and data caches and pending write buffer

The ARM1026EJ-S Instruction Cache (ICache) and Data Cache (DCache) are
configurable to 0KB or 4KB-128KB in powers of two. The DCache regions are
individually programmable for Write-Through (WT) or Write-Back (WB) operation.
Configuring large caches enables you to obtain high performance from memory
systems by reducing:

• the read bandwidth required of main memory

• the write bandwidth required of main memory when write-back caching is used

• overall system power consumption by reducing accesses to off-chip memory.

The ARM1026EJ-S pending write buffer holds up to eight 8, 16, 32, or 64-bit values,
each at an independent or sequential address.

See Chapter 12 Caches and Chapter 13 Pending Write Buffer for more information.

1.2.5 Instruction and data TCMs

You can individually configure the Instruction TCM (ITCM) and Data TCM (DTCM)
sizes with sizes of 0KB or 4KB-1MB anywhere in the memory map. For flexibility in
optimizing the TCM subsystem for performance, power, and RAM type, the TCMs are
external to the ARM1026EJ-S processor. The INITRAM pin enables booting from the
ITCM. Both the ITCM and DTCM support wait states and DMA activity. See
Chapter 17 Tightly-Coupled Memories for more information.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 1-7

Introduction
1.2.6 Branch prediction and prefetch unit

The prefetch unit is part of the ARM10EJ-S integer core. It fetches instructions from
the ICache, ITCM, or from external memory and predicts the outcome of branches in
the instruction stream. Refer to Chapter 5 Prefetch Unit for more information.

1.2.7 AMBA interface

The bus interface unit provides a multimaster AHB interface to memory and
peripherals. The AHB is an on-chip multilayer bus with configurable 32-bit or 64-bit
data buses. On the data side, the address bus is 32 bits wide, and the data buses are
configurable as:

• a 64-bit read data bus plus a 64-bit write data bus

• a 32-bit read data bus plus a 32-bit write data bus.

On the instruction side, the address bus is 32 bits wide, and the read data bus is
configurable to 32 or 64 bits.

See Chapter 6 Bus Interface for more information.

1.2.8 Coprocessor interface

Chapter 7 Coprocessor Interface describes the interface for on-chip coprocessors such
as floating-point or other application-specific hardware acceleration units.

1.2.9 Debug

The debug coprocessor, CP14, implements a full range of debug features described in
Chapter 8 Debug and Chapter 9 Debug Test Access Port.

1.2.10 Instruction cycle summary and interlocks

Chapter 21 Instruction Cycle Count describes instruction cycles and gives examples of
interlock timing.
1-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Introduction
1.2.11 Design-for-test features

The ARM1026EJ-S processor is designed to be embedded into large System-On-a Chip
(SoC) designs. The EmbeddedICE-RT logic debug facilities, AMBA on-chip system
bus, and test methodology are all designed for efficient use of the processor when
integrated into a larger IC. See Chapter 20 Design for Test for details of testing.

1.2.12 Power management

Power management features are described in Chapter 19 Power Management.

1.2.13 Clocking and reset

The ARM1026EJ-S processor has one clock input, CLK. The design is fully static.
When CLK is stopped, the internal state of the processor is preserved indefinitely. CLK
drives the internal logic in the processor and both AHB interfaces. To enable the data
and instruction interfaces of the AHB to run at synchronous multiples of CLK, the AHB
interfaces have separate clock enable signals, HCLKEND and HCLKENI.

See Chapter 4 Clocking and Reset Timing for details.

1.2.14 ETM interface logic

An optional external ETM can be connected to the ARM1026EJ-S processor to provide
real-time tracing of instructions and data in an embedded system. The processor
includes the logic and interface to enable you to trace program execution and data
transfers using the ETM10RV. Further details are in the Embedded Trace Macrocell
Specification. See Table A-6 on page A-12 for descriptions of ETM-related signals.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 1-9

Introduction
1.3 Silicon revision information

This manual is for revision r0p2 of the ARM1026EJ-S processor. See Product revision
status on page xx for details of revision numbering.

Updates in the r0p1 ARM1026EJ-S processor are:

• corrections for r0p0 errata

• update to the AHB address bus during IDLE cycles in locked SWP instructions
so that the address bus maintains the same value during the locked period

• update to the CP15 c0 Device ID Register to reflect the r0p1 release.

There are no other functional differences between the ARM1026EJ-S r0p0 and
ARM1026EJ-S r0p1 processors.

Updates in the r0p2 ARM1026EJ-S processor are:

• corrections for r0p1 errata

• update to the CP15 c0 Device ID Register to reflect the r0p2 release.

There are no other functional differences between the ARM1026EJ-S r0p1 and
ARM1026EJ-S r0p2 processors.
1-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 2
Integer Core

This chapter describes the ARM1026EJ-S integer core. It contains the following
sections:

• About the integer core on page 2-2

• Pipeline on page 2-4

• Prefetch unit on page 2-6

• Typical ALU/multiply operations on page 2-7

• Load/store unit on page 2-8

• Typical load/store operations on page 2-9.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 2-1

Integer Core
2.1 About the integer core

By overlapping the stages of operation, the integer core increases the number of
instructions executed per cycle. The integer core has multiple execution units, enabling
multiple instructions to exist in the same pipeline stage, and enabling simultaneous
execution of some instructions. As a result, it delivers a peak throughput of one
instruction per cycle. The integer core consists of:

Prefetch unit
The prefetch unit fetches instructions from the ICache, ITCM, or external
memory. To reduce the number of pipeline refills, it predicts the outcome
of branches whenever it can.

Integer unit
The integer unit decodes instructions sent from the prefetch unit. It
contains the barrel shifter, Arithmetic Logic Unit (ALU), and multiplier,
and executes data processing instructions such as MOV, ADD, and
MUL. The integer unit helps the load/store unit to execute loads, stores,
and coprocessor transfer instructions such as LDR, STM, LDC, and
MCRR. It also contains the main instruction sequencer that takes care of
multicycle data processing instructions, mode changes, exceptions, and
debug events.

Load/store unit
If the data address is 64-bit aligned, the Load/Store Unit (LSU) can load
or store two registers (64 bits) per cycle. In a load or store multiple
instruction (LDM or STM), the LSU remains in lockstep with the integer
unit for the duration of the LDM or STM.

Note
 Unlike the ARM1020E and ARM1022E processors, the ARM1026EJ-S

LSU does not support Hit-Under-Miss (HUM) operation.

Figure 2-1 on page 2-3 shows the integer core components.
2-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Integer Core
Figure 2-1 Integer core block diagram

Integer unit

Load/store unit

Prefetch unit

Misprediction

Force prefetch 1

Prefetch

buffer

Branch phantom

Force prefetch 2

Branch

predictor/

return stack

PC

queue

Instruction

PC

Multiplier

Shift and

ALU

Decoded

load/store

instruction

Force prefetch 3

D
a
ta

re
a
d

d
a
ta

(D
R

D
)

6
4

b
it
s

In
s
tr

u
c
ti
o
n

re
a
d

d
a
ta

(I
R

D
)

6
4

b
it
s

In
s
tr

u
c
ti
o
n

a
d
d
re

s
s

(I
A

)

D
a
ta

w
ri
te

d
a
ta

(D
W

D
)D

a
ta

a
d
d
re

s
s

(D
A

)

Rotate and

sign extend

Rotate and

sign extend

Halfword

replicate

Halfword

replicate

Register

bank

W A

B

L1

L2

S1

S2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 2-3

Integer Core
2.2 Pipeline

The ARM1026EJ-S pipeline has six stages to maximize instruction throughput:

Fetch ICache access. Branch prediction for instructions that have already been
fetched. Prediction of fetch path ahead of execution of branch
instructions. The Fetch stage uses a First-In-First-Out (FIFO) prefetch
buffer that can hold up to four instructions.

Issue Initial instruction decode. Can contain one instruction with up to one
branch in parallel.

Decode Final instruction decode, register reads for ALU operation, data access
address calculation, forwarding, and initial interlock resolution. Can
contain one instruction with up to one branch in parallel.

Execute Data processing shift, shift and saturate, ALU operation, first stage of
multiplications, flag setting, condition code check, branch mispredict
detection, first stage of store data register read, and DCache access
request.

Memory Second stage of multiplications and saturations, second stage of store
data register read, and DCache memory access.

Write Byte rotation, sign extension, register writes, and instruction retirement.

The Execute, Memory, and Write stages can simultaneously contain the following:

• a predicted branch

• an ALU, multiply or load/store instruction.

Figure 2-2 on page 2-5 shows the stages of the ARM1026EJ-S pipeline.
2-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Integer Core
Figure 2-2 Pipeline stages of the ARM1026EJ-S processor

LSU

pipeline

ALU

pipeline

ALU/MUL

register write

Saturation

Multiply(2)

ALU

operation/

Shift

Multiply(1)

Secondary

instruction

decode

Register read

ARM/Thumb/

Jazelle main

instruction

decode

Static branch

prediction

Instruction

fetch

Fetch Issue Decode Execute Memory Write

Return stack

Data address

calculation

Byte rotate/

Sign extension

LSU register

write

Store data

register

read(2)

Data cache

access

Store data

register

read(1)

Data cache

request
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 2-5

Integer Core
2.3 Prefetch unit

The prefetch unit operates in the Fetch stage of the pipeline. It can fetch 64 bits every
cycle from the ICache. It can only issue one 32-bit instruction per cycle to the integer
unit. Because it can fetch more instructions than it can issue, the prefetch unit puts
pending instructions in the prefetch buffer. While an instruction is in the prefetch buffer,
the branch prediction logic can decode it to see if it is a predictable branch.

Where possible, the branch prediction logic removes branches from the instruction
stream. If the branch is predicted to be taken, then the instruction address is redirected
to the branch target address. If the branch is predicted not to be taken, then the
instruction address continues to progress through the instructions following the branch
instruction. If the instruction following the branch is already in the prefetch buffer, it
can be issued in place of the branch and the branch effectively takes no cycles. When
there is not enough time to completely remove the branch, the fetch address is redirected
anyway, because this still helps to reduce the branch penalty.

The prefetch unit and branch prediction are described in detail in Chapter 5 Prefetch
Unit.
2-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Integer Core
2.4 Typical ALU/multiply operations

Figure 2-3 shows the stages of a typical data processing operation.

Figure 2-3 Pipeline stages of a typical ALU operation

Figure 2-4 shows the stages of a typical multiply operation. The MUL loops in the
Execute stage until it passes through the first part of the multiplier array enough times.
Then it progresses to the Memory stage where it passes once through the second half of
the array to produce the final result.

Figure 2-4 Pipeline stages of a typical multiply operation

LSU

pipeline

ALU

pipeline

Register

write

Cycle 6

Secondary

instruction

decode

Cycle 3

Main

instruction

decode

Cycle 2

Instruction

fetch

Cycle 1

Not used Not used Not used

Saturation

Cycle 5

ALU

operation/

Shift

Cycle 4

Not used

Register read

LSU

pipeline

ALU

pipeline

Main

instruction

decode

Cycle 2

Instruction

fetch

Cycle 1

Fetch Issue Decode Execute Memory Write

Not used Not used Not used

Multiply 2

Cycle 4, 5

Multiply

Cycle 4, 5

Secondary

instruction

decode

Cycle 3

Register

write

Cycle 6, 7

Not used

Register read
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 2-7

Integer Core
2.5 Load/store unit

If the data address is 64-bit aligned, the LSU can load or store two 32-bit registers per
transfer. This does not speed up single load or store instructions (LDR or STR) but it
does considerably speed up load and store multiple instructions (LDM and STM). Load
and store double instructions (LDRD and STRD) also take advantage of the available
bandwidth.

Accesses that are not 64-bit aligned have to take place over two cycles. If an LDM or
STM address is not 64-bit aligned, then only one 32-bit register is transferred on the first
access. After that, two registers per cycle can be transferred each cycle.

Single loads and all cycles of multiple loads and stores work in cooperation with the
integer unit. A DCache load access that misses stalls the LSU and integer unit until the
data is returned from the cache.

The LSU calculates the address for the data access using a dedicated adder. A separate
adder in the ALU calculates a base register write-back value if it is required.

The A and B register ports of the integer unit read the operands for both adders. For
complex, scaled-register addressing modes that require the barrel shifter, the ALU has
to calculate the shifted value. This costs one extra cycle.

The LSU has two dedicated register bank read ports, S1 and S2, and two dedicated write
ports, L1 and L2. These are used to read data to be stored and to write data that is loaded.
2-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Integer Core
2.6 Typical load/store operations

Figure 2-5 shows a simple LDR/STR operation that hits in the DCache.

Figure 2-5 Pipeline stages of a load or store operation

LSU

pipeline

ALU

pipeline

Base register

writeback

Cycle 6

Secondary

instruction

decode

Cycle 3

Main

instruction

decode

Cycle 2

Instruction

fetch

Cycle 1 Cycle 5

Writeback

value

calculation

Cycle 4

Store data

register read

Cycle 4

Memory

access

Cycle 5

Loaded data

register write

Cycle 6

Data address

calculation

Cycle 3

Memory

request

Register read
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 2-9

Integer Core
Figure 2-6 shows the progression of an LDM/STM operation using the load/store
pipeline to complete. The LDM/STM iterates in the LSU pipeline until it completes.
Because any LDM/STM memory access can abort, the LSU stalls all integer pipeline
activity until the last LDM/STM memory access completes.

Figure 2-6 Pipeline stages of a load multiple or store multiple operation

See Chapter 21 Instruction Cycle Count for further details of instruction cycles and
timing.

LSU

pipeline

ALU

pipeline

Base register

writeback

Cycle 6

Register read

Cycle 3

Main

instruction

decode

Cycle 2

Instruction

fetch

Cycle 1 Cycle 5

Writeback

value

calculation

Cycle 4

Store data

register read

Cycle 4-7

Memory

access

Loaded data

register write

Cycle 5-8 Cycle 7-10

Data address

calculation

Cycle 3-6

Memory

request

Secondary

instruction

decode
2-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 3
Programmer’s Model

This chapter describes the ARM1026EJ-S registers and provides information for
programming the microprocessor. It contains the following sections:

• About the programmer’s model on page 3-2

• Program status registers on page 3-3

• About the CP15 system control coprocessor registers on page 3-5

• CP15 register descriptions on page 3-9

• CP15 instruction summary on page 3-70.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-1

Programmer’s Model
3.1 About the programmer’s model

The ARM1026EJ-S processor implements the ARMv5TEJ architecture. This includes
the:

• 32-bit ARM instruction set

• 16-bit Thumb instruction set

• 8-bit Jazelle instruction set.

For details of both the ARM and Thumb instruction sets, and the ARM programmer’s
model, see the ARM Architecture Reference Manual. For details of the Jazelle
instruction set and the Jazelle programmer’s model, see the Jazelle VI Architecture
Reference Manual.

The ARM1026EJ-S programmer’s model is the same as that described in the ARM
Architecture Reference Manual and the Jazelle VI Architecture Reference Manual, but
extended in the following ways:

• The Current Program Status Register, CPSR, and the Saved Program Status
Registers, SPSRs, have an additional J bit to indicate Jazelle state and an
additional A bit to mask imprecise aborts.

• The system control coprocessor, CP15, provides additional registers for system
configuration and control.

• The CP14 debug registers provide support for debug functionality. See Chapter 8
Debug for a description of the CP14 debug registers.
3-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.2 Program status registers

To support exception handling, the ARM1026EJ-S processor has one CPSR and five
SPSRs. The Program Status Registers:

• hold information about the most recently performed ALU operation

• control enabling and disabling of interrupts

• set the processor operating mode.

Figure 3-1 Program Status Registers

3.2.1 The J bit

The J bit in the CPSR indicates when the ARM1026EJ-S processor is in Jazelle state.
When J is set, the processor is in Jazelle state. When J is clear, the processor is in ARM
or Thumb state, depending on the T bit.

Note
 • Setting both J and T causes the next instruction executed to take the Undefined

Instruction exception. Entering the exception handler causes the processor to
enter ARM state, and the exception handler can detect that setting both J and T
caused the exception.

• The MSR instruction cannot be used to change the J bit in the CPSR.

• The position of the J bit avoids using the status or extension bytes in code run on
ARMv5TE or earlier processors. This ensures that operating system code that
uses the deprecated CPSR, SPSR, CPSR_all, or SPSR_all syntax for the
destination of an MSR instruction still works.

31 8 7

N

27 242830 29 2526

F

56

TA IZ C

Reserved

J ReservedV Q Mode

4 023 9
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-3

Programmer’s Model
3.2.2 The A bit

An imprecise abort is separated from the instruction that caused the error response. The
abort can occur many cycles after the error-generating instruction retires. The AHB
error response leading to an imprecise abort can occur at a time when the processor is
already in Abort mode, or when the processor has entered the interrupt handler from
Abort mode.

To avoid the loss of the Abort mode state (R14_abt and SPSR_abt) in these cases, which
leads to the processor entering an unrecoverable state, the existence of a pending
imprecise abort must be held by the processor until a time when the Abort mode can
safely be entered.

The A mask is added to the CPSR to indicate that an imprecise abort can be accepted.
When the A bit is set, an imprecise abort is held until the mask is cleared. When the A
bit is cleared, a pending imprecise abort is recognized, and the abort is taken.

The A bit is set automatically on entry into Abort mode, IRQ mode, FIQ mode, and on
reset.

3.2.3 Other bits

All other bits of the CPSR and the SPSRs are as described in the ARM Architecture
Reference Manual.
3-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.3 About the CP15 system control coprocessor registers

The programmer’s model of the ARM1026EJ-S processor includes a system control
coprocessor, CP15, that provides additional registers for system configuration and
control.

3.3.1 Accessing CP15 registers

CP15 registers can be accessed only with MCR and MRC instructions in a privileged
mode. Figure 3-2 shows the MCR and MRC instruction format.

Figure 3-2 CP15 MCR and MRC instruction format

The assembly code for these instructions is:

MCR{cond} P15, opcode_1, Rd, CRn, CRm, opcode_2
MRC{cond} P15, opcode_1, Rd, CRn, CRm, opcode_2

In User mode, coprocessor instructions take the Undefined instruction trap. See the
ARM Architecture Reference Manual for a description of the MCR and MRC
instructions.

20 4

1 CRm1111

Opcode_2

CRn Rd0

Opcode_1

1110cond

31 28 27 24 19 16 15 12 11 8 3 023 21 7 5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-5

Programmer’s Model
3.3.2 Summary of CP15 registers

Table 3-1 lists the 16 CP15 registers and their accessibility. The MMU/MPU enabled
column indicates whether you can access the register only when the MMU is enabled,
only when the MPU is enabled, or when either the MMU or MPU is enabled.

Table 3-1 CP15 register summary

Register Register name
MMU or MPU
enabled Access

CP15 c0 Device ID Register
Cache Type Register
TCM Status Register

MMU or MPU
MMU or MPU
MMU or MPU

Read-only
Read-only
Read-only

CP15 c1 Control Register
Auxiliary Control Register

MMU or MPU
MMU or MPU

Read/write
Read-only

CP15 c2 TTB Register
DCache Configuration Register
ICache Configuration Register

MMU only
MPU only
MPU only

Read/write
Read/write
Read/write

CP15 c3 Domain Access Control Register
Write Buffer Control Register

MMU only
MPU only

Read/write
Read/write

CP15 c4 Reserved - Undefined

CP15 c5 Data Fault Status Register when using MMU
Instruction Fault Status Register when using MMU
Data Extended Access Permission Register
Instruction Extended Access Permission Register
Data Standard Access Permission Register
Instruction Standard Access Permission Register
Data Fault Status Register when using MPU
Instruction Fault Status Register when using MPU

MMU only
MMU only
MPU only
MPU only
MPU only
MPU only
MPU only
MPU only

Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write

CP15 c5 Data Fault Address Register when using MMU
Instruction Fault Address Register when using MMU
Protection Region Registers 0-7
Data Fault Address Register when using MPU
Instruction Fault Address Register when using MPU

MMU only
MMU only
MPU only
MPU only
MPU only

Read/write
Read/write
Read/write
Read/write
Read/write

CP15 c7 Cache operations MMU or MPU Read/write

CP15 c8 TLB operations MMU only Write-only
3-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
CP15 c9 DCache Lockdown Register
ICache Lockdown Register
DTCM Region Register
ITCM Region Register

MMU or MPU
MMU or MPU
MMU or MPU
MMU or MPU

Read/write
Read/write
Read/write
Read/write

CP15 c10 TLB Lockdown Register MMU only Read/write

CP15 c11 Reserved - Undefined

CP15 c12 Reserved - Undefined

CP15 c13 FCSE Process ID Register
Context ID Register

MMU only
MMU or MPU

Read/write
Read/write

CP15 c14 Reserved - Undefined

CP15 c15 Debug Override Register
Prefetch Unit Debug Override Register
Debug and Test Address Register
Memory Region Remap Register
MMU test operations
Cache Debug Control Register
MMU Debug Control Register

MMU or MPU
MMU or MPU
MMU or MPU
MMU or MPU
MMU only
MMU or MPU
MMU only

Read/write
Read/write
Read/write
Read/write
Read/write
Read/write
Read/write

Table 3-1 CP15 register summary (continued)

Register Register name
MMU or MPU
enabled Access
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-7

Programmer’s Model
3.3.3 Address types

The ARM processor uses three address types:

• Virtual Address (VA)

• Modified Virtual Address (MVA)

• Physical Address (PA).

Table 3-2 shows the parts of the ARM processor that use each address type.

Table 3-2 Address types

Processor unit Address type

Integer unit Virtual address

Caches and TLBs Modified virtual address

TCM and AMBA bus Physical address
3-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4 CP15 register descriptions

This section describes the CP15 registers:

• CP15 c0 Device ID Register on page 3-10

• CP15 c0 Cache Type Register on page 3-11

• CP15 c0 TCM Status Register on page 3-13

• CP15 c1 Control Register on page 3-14

• CP15 c1 Auxiliary Control Register on page 3-19

• CP15 c2 Translation Table Base Register on page 3-20

• CP15 c2 DCache and ICache Configuration Registers on page 3-21

• CP15 c3 Domain Access Control Register on page 3-23

• CP15 c3 Write Buffer Control Register on page 3-25

• CP15 c4 Reserved on page 3-26

• CP15 c5 Data and Instruction Fault Status Registers on page 3-26

• CP15 c5 Data and Instruction Extended Access Permission Registers on
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on
page 3-31

• CP15 c5 Data and Instruction Fault Address Registers on page 3-33

• CP15 c5 Protection Region Registers on page 3-34

• CP15 c7 cache operations on page 3-36

• CP15 c8 TLB operations on page 3-40

• CP15 c9 DCache and ICache Lockdown Registers on page 3-41

• CP15 c9 DTCM and ITCM Region Registers on page 3-44

• CP15 c10 TLB Lockdown Register on page 3-46

• CP15 c11 Reserved on page 3-48

• CP15 c12 Reserved on page 3-48

• CP15 c13 FCSE Process ID Register on page 3-49

• CP15 c13 Context ID Register on page 3-52

• CP15 c14 Reserved on page 3-52

• CP15 c15 Debug Override Register on page 3-53

• CP15 c15 Prefetch Unit Debug Override Register on page 3-55

• CP15 c15 Debug and Test Address Register on page 3-56

• CP15 c15 Memory Region Remap Register on page 3-57

• CP15 c15 MMU test operations on page 3-60

• CP15 c15 Cache Debug Control Register on page 3-65

• CP15 c15 MMU Debug Control Register on page 3-67.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-9

Programmer’s Model
3.4.1 CP15 c0 Device ID Register

The read-only Device ID Register contains the 32-bit ID code of the ARM1026EJ-S
processor, 0x4106A262.

You can read the Device ID Register when using the MMU or the MPU
(MMUnMPU = 1 or 0). Use the following instruction to read the Device ID Register:

MRC p15, 0, Rd, c0, c0, {0, 3-7} ; read Device ID Register

When reading the Device ID Register, the opcode_2 field can be any value other than
1 or 2. Writing to the Device ID Register is Unpredictable.

Figure 3-3 shows the Device ID Register bit fields.

Figure 3-3 Device ID Register

Table 3-3 describes the bit fields of the Device ID Register.

RevisionPart numberArchitectureVariantImplementer

31 24 23 20 19 16 15 4 3 0

Table 3-3 Encoding of the Device ID Register

Bit Name Definition Reset state

[31:24] Implementer ASCII code for implementer’s trademark. For example,
ARM Limited uses the code for the letter A, 0x41.

0x41

[23:20] Variant Variant of the ARM processor. 0x0

[19:16] Architecture ARM architecture version v5TEJ. 0x6

[15:4] Part number Three-digit part number. 0xA26

[3:0] Revision Revision number of the ARM processor. 0x2
3-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.2 CP15 c0 Cache Type Register

The read-only Cache Type Register reflects the type, size, associativity, and line length
of the ICache and the DCache.

You can read the Cache Type Register when using the MMU or the MPU
(MMUnMPU = 1 or 0). Use the following instruction to read the Cache Type Register:

MRC p15, 0, Rd, c0, c0, 1 ; read Cache Type Register

Writing to the Cache Type Register is Undefined.

Figure 3-4 shows the Cache Type Register bit fields.

Figure 3-4 Cache Type Register

Table 3-4 describes the bit fields of the Cache Type Register.

31 15 12 11 3 024 232829 25 2122 1718 1314 910 56 12

S

Reserved

Ctype Size Assoc

SBZ

Len

Reserved

Size Assoc

SBZ

Len

ICacheDCache

Table 3-4 Encoding of the Cache Type Register

Bit Name Definition Reset state

[31:29] - Reserved. b000

[28:25] Ctype Cache class.
Write strategy: write-back.
Cache cleaning: c7 operations.
Cache lockdown: format C.

b1110

[24] S Harvard architecture. 1

[23:22] - Reserved. b00

[21:18] Size DCache size. Implementation-defined:
b0011 = 4 KB
b0100 = 8 KB
b0101 = 16 KB
b0110 = 32 KB
b0111 = 64KB
b1000 = 128 KB.

Determined by
DCACHESIZE[3:0]
pins
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-11

Programmer’s Model
[17:15] Assoc DCache associativity. Four-way set-associative. b010

[14] - Should Be Zero. 0

[13:12] Len DCache line length. Eight words per line. b10

[11:10] - Reserved. b00

[9:6] Size ICache size. Implementation-defined:
b0011 = 4 KB
b0100 = 8 KB
b0101 = 16 KB
b0110 = 32 KB
b0111 = 64KB
b1000 = 128 KB.

Determined by
ICACHESIZE[3:0]
pins

[5:3] Assoc ICache associativity. Four-way set-associative. b010

[2] - Should Be Zero. 0

[1:0] Len ICache line length. Eight words per line. b10

Table 3-4 Encoding of the Cache Type Register (continued)

Bit Name Definition Reset state
3-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.3 CP15 c0 TCM Status Register

The read-only TCM Status Register indicates the presence of a Data TCM (DTCM) and
an Instruction TCM (ITCM).

You can read the TCM Status Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the following instruction:

MRC p15, 0, Rd, c0, c0, 2 ; read TCM Status Register

Writing to the TCM Status Register is Unpredictable.

Figure 3-5 shows the bit fields of the TCM Status Register.

Figure 3-5 TCM Status Register

Table 3-5 describes the bit fields of the TCM Status Register.

See Table 3-41 on page 3-45 for encoding of DRSIZE and IRSIZE bits in the DTCM
and ITCM Region Registers.

31 16 15 017 1

Unpredictable Unpredictable

DTCM ITCM

Table 3-5 Encoding of the TCM Status Register

Bit Name Definition Reset state

[31:17] - Unpredictable. 0x0000

[16] DTCM DTCM present bit:
1 = DTCMSIZE pins are not b0000, meaning DTCM is present
0 = DTCMSIZE pins are b0000, meaning DTCM is not present.

Determined by
DTCMSIZE[3:0]
pins

[15:1] - Unpredictable. 0x0000

[0] ITCM ITCM present bit:
1 = ITCMSIZE pins are not b0000, meaning ITCM is present
0 = ITCMSIZE pins are b0000, meaning ITCM is not present.

Determined by
ITCMSIZE[3:0]
pins
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-13

Programmer’s Model
3.4.4 CP15 c1 Control Register

The read/write Control Register:

• enables reading IRQ vector addresses from the VIC port

• enables relocation of the IRQ vector address

• selects whether the T bit is set by a load PC operation

• selects random or round-robin victim replacement

• selects high-address or low-address vector locations

• enables the ICache and DCache

• enables branch prediction

• enables ROM protection and system protection

• selects big-endian or little-endian operation

• enables fault checking of address alignment

• enables the MMU

• enables the MPU.

You can access the Control Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-6.

Use a read-modify-write sequence when changing the Control Register.

All defined control bits are cleared on reset except:

• The V bit is cleared at reset if the HIVECSINIT signal is LOW or set if the
HIVECSINIT signal is HIGH.

• The B bit is cleared at reset if the BIGENDINIT signal is LOW or set if the
BIGENDINIT signal is HIGH.

Table 3-6 Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c1, c0, 0 Read Control Register

MCR p15, 0, Rd, c1, c0, 0 Write Control Register
3-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Figure 3-6 shows the Control Register bit fields.

Figure 3-6 Control Register

Table 3-7 describes the Control Register bit fields.

31 16 15 12 11 8 7 3 0

SBZ

24 23 1925 1718 1314

V

910

R SBO

6

C

12

AS BI ZSBZ M

VE SBO

SBZ

SBO

LT

RR

SBZ

Table 3-7 Encoding of the Control Register

Bit Name Definition Reset state

[31:25] - Reading returns an Unpredictable value. When written, Should Be Zero
or a value read from bits [31:25] on the same processor.

Zeros

[24] VE Vector Interrupt Controller (VIC) enable bit:
1 = processor reads IRQ vector address from VIC port
0 = processor reads IRQ vector address from 0x00000018 or 0xFFFF0018.

0

[23:19] - Should Be Zero. Zeros

[18] - Should Be One. 1

[17] - Should Be Zero. 0

[16] - Should Be One. 1

[15] LT Load PC Thumb disable bit:
1 = loading PC does not set T bit
0 = loading PC sets T bit.

0

[14] RR ICache and DCache round-robin replacement bit:
1 = round-robin replacement enabled
0 = random replacement.

0

[13] V Exception vector location bit:
1 = vector address range is 0xFFFF0000 to 0xFFFF001C
0 = vector address range is 0x00000000 to 0x0000001C.

Determined by
HIVECSINIT
pin
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-15

Programmer’s Model
[12] I ICache enable bit:
1 = ICache enabled
0 = ICache disabled.

0

[11] Z Branch prediction enable bit:
1 = branch prediction enabled
0 = branch prediction disabled.

0

[10] - Should Be Zero. 0

[9] R MMU ROM protection enable bit:
1 = ROM protection enabled
0 = ROM protection disabled.
Valid only when using the MMU (MMUnMPU = 1).

0

[8] S MMU system protection enable bit:
1 = MMU protection enabled
0 = MMU protection disabled.
Valid only when using the MMU (MMUnMPU = 1).

0

[7] B Big-endian bit:
1 = big-endian operation
0 = little-endian operation.

Determined by
BIGENDINIT
pin

[6:3] - Should Be One. 0xF

[2] C DCache enable bit:
1 = DCache enabled
0 = DCache disabled.

0

[1] A Address alignment fault checking enable bit:
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

0

[0] M MMU enable bit when MMUnMPU = 1
or MPU enable bit when MMUnMPU = 0:
1 = MMU or MPU enabled
0 = MMU or MPU disabled.

0

Table 3-7 Encoding of the Control Register (continued)

Bit Name Definition Reset state
3-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Effects of the Control Register on caches

The bits that directly affect ICache and DCache behavior are:

• the M bit

• the C bit

• the I bit

• the RR bit.

When the TCM regions are disabled, the caches behave as shown in Table 3-8.

If either the DCache or ICache is disabled, the contents of that cache are not accessed.
If the cache is subsequently re-enabled, the contents are unchanged. To guarantee
memory coherency, the DCache must be cleaned of dirty data before it is disabled.

Table 3-8 Effects of Control Register on caches

Cache MMU/MPU Processor behavior

ICache
disabled

Enabled or
disabled

All instruction fetches are from external memory (AHB).

ICache
enabled

Disabled All instruction fetches cachable. No protection checks done. VA = MVA = PA.

ICache
enabled

Enabled Instruction fetches cachable or noncachable. Protection checks done.
When using MMU, all addresses remapped from VA to PA, depending on MMU page table
entry. VA translated to MVA, MVA remapped to PA.
When using MPU, VA = MVA = PA.

DCache
disabled

Enabled or
disabled

All data accesses to external memory (AHB).

DCache
enabled

Disabled All data accesses noncachable and nonbufferable. VA = MVA = PA.

DCache
enabled

Enabled All data accesses cachable or noncachable. Protection checks done.
When using MMU, all addresses remapped from VA to PA, depending on MMU page table
entry. VA translated to MVA, MVA remapped to PA.
When using MPU, VA = MVA = PA.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-17

Programmer’s Model
Effects of the Control Register on the TCM interface

The Control Register M bit and the E bit in the ITCM or DTCM Register directly affect
the behavior of the TCM interface as Table 3-9 shows.

Table 3-9 Effects of Control Register on TCM interface

TCM MMU or MPU Cache Processor behavior

ITCM
disabled

Disabled ICache
disabled

All instruction fetches from external memory (AHB).

ITCM
enabled

Disabled ICache
disabled

All instruction fetches from TCM interface or from external memory (AHB),
depending on base address in ITCM Region Register. No protection checks
done. VA = MVA = PA.

ITCM
enabled

Disabled ICache
enabled

All instruction fetches from TCM interface or from ICache, depending on base
address in ITCM Region Register. No protection checks done.
VA = MVA = PA.

ITCM
enabled

Enabled ICache
enabled

All instruction fetches from TCM interface or from the ICache interface or
AHB interface, depending on base address in ITCM Region Register.
Protection checks are made.
When using MMU, all addresses remapped from VA to PA, depending on the
page entry. VA is translated to MVA, and MVA is remapped to PA.
When using MPU, VA = MVA = PA.

DTCM
disabled

Disabled DCache
disabled

All data accesses are to external memory (AHB).

DTCM
enabled

Disabled DCache
disabled

All data accesses to TCM interface or to external memory, depending on base
address in DTCM Region Register. No protection checks done.
VA = MVA = PA.

DTCM
enabled

Disabled DCache
enabled

All data accesses to TCM interface or to external memory, depending on base
address in DTCM Region Register. VA = MVA = PA.

DTCM
enabled

Enabled DCache
enabled

All data accesses from either TCM interface or DCache interface or AHB
interface, depending on base address in DTCM Region Register. Protection
checks done.
When using MMU, all addresses remapped from VA to PA, depending on page
entry. VA translated to MVA, and MVA remapped to PA.
When using MPU, VA = MVA = PA.
3-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.5 CP15 c1 Auxiliary Control Register

The read-only Auxiliary Control Register reflects implementation-specific pin
configurations.

You can read the Auxiliary Control Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the following instruction:

MRC p15, 0, Rd, c1, c0, 1 ; read Auxiliary Control Register

Figure 3-7 shows the bit fields of the Auxiliary Control Register.

Figure 3-7 Auxiliary Control Register

Table 3-10 describes the bit fields of the Auxiliary Control Register.

VALInIMPL

DAHBSZCFG

IAHBSZCFG

MxUCFG

31 4 3 0

SBZ

12

Table 3-10 Encoding of the Auxiliary Control Register

Bit Name Definition Reset state

[31:4] - Should Be Zero. 0x0000000

[3] VALInIMPL Indicates whether processor is ARM-internal validation model
or partner-specific fixed-implementation model:
1 = validation model
0 = implementation model.

Determined by
implementation

[2] DAHBSZCFG Indicates whether data AHB is 64 bits or 32 bits wide:
1 = 64-bit DAHB
0 = 32-bit DAHB.

Determined by
D64n32 pin

[1] IAHBSZCFG Indicates whether instruction AHB is 64 bits or 32 bits wide:
1 = 64-bit IAHB
0 = 32-bit IAHB.

Determined by
I64n32 pin

[0] MxUCFG Indicates whether MMU or MPU is enabled:
1 = MMU enabled
0 = MPU enabled.

Determined by
MMUnMPU pin
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-19

Programmer’s Model
3.4.6 CP15 c2 Translation Table Base Register

The read/write Translation Table Base Register, TTBR, contains the pointer to the level
1 translation table and the cachable and bufferable bits for the page tables on AHB.

You can access the TTBR only when using the MMU (MMUnMPU = 1) with the
instructions in Table 3-11.

Figure 3-8 shows the TTBR bit fields.

Figure 3-8 Translation Table Base Register

Table 3-12 describes the TTBR bit fields.

Table 3-11 Translation Table Base Register instructions

Instruction Operation

MRC p15, 0, Rd, c2, c0, 0 Read Translation Table Base Register

MCR p15, 0, Rd, c2, c0, 0 Write Translation Table Base Register

SBZ

L2C

L2B

31 4 3 01314 5 2

Translation table base SBZ

Table 3-12 Encoding of the Translation Table Base Register

Bit Name Definition Reset state

[31:14] Translation table base Base address of level 1 page table. Zeros

[13:5] - Should Be Zero. Zeros

4 L2C Cachable bit for level 2 page table walk. See Table 3-13
on page 3-21.

0

3 L2B Bufferable bit for level 2 page table walk. See Table 3-13
on page 3-21.

0

[2:0] - Should Be Zero. b000
3-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Table 3-13 shows how the L2C and L2B bits control the HPROT[3:0] signals and the
attributes of level 2 page table walks.

3.4.7 CP15 c2 DCache and ICache Configuration Registers

The read/write DCache Configuration Register, DCCR, and ICache Configuration
Register, ICCR, contain the cachable bits for the eight protection regions. Each of the
eight cachable bits controls one of the eight protection regions.

You can access the DCCR and ICCR only when using the MPU (MMUnMPU = 0)
with the instructions in Table 3-14.

Table 3-13 L2C and L2B encoding

TTBR[4:3] HPROT[3:0] Level 2 page table walk attributes

b00 b0011 Privileged NCNB data access

b01 - Unpredictable

b10 b1011 Privileged write-through data access

b11 b1111 Privileged write-back data access

Table 3-14 DCache and ICache Configuration Register instructions

Instruction Operation

MRC p15, 0, Rd, c2, c0, 0 Read DCache Configuration Register

MCR p15, 0, Rd, c2, c0, 0 Write DCache Configuration Register

MRC p15, 0, Rd, c2, c0, 1 Read ICache Configuration Register

MCR p15, 0, Rd, c2, c0, 1 Write ICache Configuration Register
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-21

Programmer’s Model
Figure 3-9 shows the DCCR and ICCR bit fields.

Figure 3-9 DCache and ICache Configuration Registers

Table 3-15 describes the bit fields of the DCache and ICache Configuration Registers.

C7

C0

C1

C2

C3

C4

C5

C6

31 8 7 4 3 056 12

SBZ

Table 3-15 Encoding of the DCache and ICache Configuration Registers

Bit Name Definition Reset state

[7]-[0] C7-C0 Cachable bits:
1 = memory region is cachable
0 = memory region is noncachable.

0

3-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.8 CP15 c3 Domain Access Control Register

The read/write Domain Access Control Register, DACR, contains 16 two-bit domain
access control fields. Each field defines the access permissions for one of the 16
domains, D15-D0.

You can access the DACR only when using the MMU (MMUnMPU = 1) with the
instructions in Table 3-16.

Figure 3-10 shows the DACR bit fields.

Figure 3-10 Domain Access Control Register

Table 3-17 describes the DACR bit fields.

The domain access control fields specify whether or not to check the Access Permission
(AP) bits for each domain. When using the MMU, the AP bits reside in the translation
table level two descriptor entries for large, tiny, or small pages and in the level one
descriptor entries for sections.

Table 3-16 Domain Access Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c3, c0, 0 Read Domain Access Control Register

MCR p15, 0, Rd, c3, c0, 0 Write Domain Access Control Register

D0D1D3 D2D4D5D8 D7 D6D9D11 D10D13 D12D15 D14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 3-17 Encoding of the Domain Access Control Register

Bit Name Definition Reset state

[31:30]-[1:0] D15-D0 Domain access control for domains 15-0:
b00 = No access. Access generates domain fault.
b01 = Client access. Access permissions are checked.
b10 = Reserved. Behaves as no access domain.
b11 = Manager access. Access permissions are not checked.

b00
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-23

Programmer’s Model
Note

 When the MPU is enabled, the AP bits have their own CP15 register space. See:

• CP15 c5 Data and Instruction Extended Access Permission Registers on
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on
page 3-31.

Table 3-18 shows the access permissions when using the MMU.

Table 3-18 Access permission summary when using the MMU

AP
CP15
S bit

CP15
R bit Supervisor User Access

b00 0 0 - - Permission fault

b00 1 0 Read - Read-only in Supervisor mode

b00 0 1 Read Read Permission fault on writes

b00 1 1 Reserved Reserved Permission fault on reads or writes

b01 - - Read/write - Permission fault on reads or writes in User mode

b10 - - Read/write Read Read-only in User mode

b11 - - Read/write Read/write All accesses permissible
3-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.9 CP15 c3 Write Buffer Control Register

The read/write Write Buffer Control Register, WBCR, contains the bufferable bits for
data accesses to protection regions 0-7. Each of the eight bits controls one of the eight
protection regions.

You can access the WBCR only when using the MPU (MMUnMPU = 0) with the
instructions in Table 3-19.

Figure 3-11 shows the WBCR bit fields.

Figure 3-11 Write Buffer Control Register

Table 3-20 describes the bit fields of the WBCR.

Table 3-19 Write Buffer Control Register instructions

Instruction Operation

MRC p15, 0, Rd, c3, c0, 0 Read Write Buffer Control Register

MCR p15, 0, Rd, c3, c0, 0 Write Write Buffer Control Register

7 4 3 0

SBZ

B6

56

B5

B2

12

B1

B4

B3

B7

B0

31 8

Table 3-20 Encoding of the Write Buffer Control Register

Bit Name Definition Reset state

[7]-[0] B7-B0 Bufferable bits:
1 = protection region is bufferable
0 = protection region is nonbufferable.

0

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-25

Programmer’s Model
3.4.10 CP15 c4 Reserved

CP15 c4 accesses take the Undefined exception trap.

3.4.11 CP15 c5 Data and Instruction Fault Status Registers

The read/write Data Fault Status Register, DFSR, contains the source of the last data
fault. The DFSR indicates the domain and type of access being attempted when an abort
occurred. You can use the DFSR to check all Data Aborts and watchpoints and to map
a debug event to a watchpoint.

The read/write Instruction Fault Status Register, IFSR, contains the source of the last
instruction fault. The IFSR indicates the domain and type of access being attempted
when an abort occurred. You can use the IFSR to check all Prefetch Aborts and
breakpoints and to map a debug event to a breakpoint.

You can access the DFSR and IFSR when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-21.

It can be useful for a debugger to restore the value in the DFSR or IFSR by writing to
it. Use a read-modify-write sequence to change the DFSR or IFSR.

Table 3-21 Data and Instruction Fault Status Register instructions

MMU or MPU enabled Instruction Operation

MMU MRC p15, 0, Rd, c5, c0, 0 Read Data Fault Status Register

MCR p15, 0, Rd, c5, c0, 0 Write Data Fault Status Register

MPU MCR p15, 0, Rd, c5, c0, 4 Read Data Fault Status Register

MCR p15, 0, Rd, c5, c0, 4 Write Data Fault Status Register

MMU MRC p15, 0, Rd, c5, c0, 1 Read Instruction Fault Status Register

MCR p15, 0, Rd, c5, c0, 1 Write Instruction Fault Status Register

MPU MRC p15, 0, Rd, c5, c0, 5 Read Instruction Fault Status Register

MRC p15, 0, Rd, c5, c0, 5 Write Instruction Fault Status Register
3-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Figure 3-12 shows the DFSR and IFSR bit fields.

Figure 3-12 Data and Instruction Fault Status Registers

Table 3-22 describes the DFSR and IFSR bit fields.

Table 3-23 on page 3-28 lists the types of fault in order of priority from highest (0) to
lowest (12).

8 7 4 3 0

SBZ

910

SBZ

31 11

Ext

Domain or protection region

Status

Table 3-22 Encoding of the Data and Instruction Fault Status Registers

Bit Name Definition Reset state

[31:11] - Should Be Zero. 0x00000

[10] Ext Fault status extension. Undefined

[9:8] - Should Be Zero. b00

[7:4] Domain or
Protection region

When using MMU:
Domain (D15-D0) being accessed when a fault occurred.

When using MPU:
Protection region (7-0) being accessed when a fault occurred.

Undefined

[3:0] Status Fault status or type of fault generated (see Table 3-23 on
page 3-28).

Undefined
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-27

Programmer’s Model
Table 3-23 MMU and MPU faults

Fault type
Status
[10], [3:0]

FSR updated Priority Valid

IFSR DFSR MMU MPU MMU MPU

Imprecise external abort 1, b0110 Yes Yes 0 0 Yes Yes

Alignment fault 0, b0001 No Yes 1 1 Yes Yes

TLB miss or MPU miss 0, b0000 Yes Yes 2 2 Yes Yes

Level 1 translation precise external abort 0, b1100 Yes Yes 3 - Yes No

Level 1 section translation fault 0, b0101 Yes Yes 4 - Yes No

Level 2 translation precise external abort 0, b1110 Yes Yes 5 - Yes No

Level 2 page translation fault 0, b0111 Yes Yes 6 - Yes No

Section domain fault 0, b1001 Yes Yes 7 - Yes No

Page domain fault 0, b1011 Yes Yes 8 - Yes No

MMU: Section access permission fault
MPU: Access permission fault

0, b1101 Yes Yes 9 3 Yes Yes

Page access permission fault 0, b1111 Yes Yes 10 - Yes No

Nontranslation precise external abort 0, b1000 Yes Yes 11 4 Yes Yes

Debug breakpoint or watchpoint 0, b0010 Yes Yes 12 5 Yes Yes

Reserved 0, b0011
0, b1010
0, b0100
0, b0110
1, b0100
1, b1000

- - - - - -
3-28 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.12 CP15 c5 Data and Instruction Extended Access Permission Registers

Note

 There are two formats for specifying access permissions of memory protection regions:

• extended format

• standard format.

Use the DEAPR and IEAPR to specify access permissions in extended format. For
specifying access permissions in standard format, see CP15 c5 Data and Instruction
Standard Access Permission Registers on page 3-31.

Programming the access permissions in extended format and then reprogramming them
in standard format is equivalent to programming bits APn[3:2] in the DEAPR or IEAPR
to b00 (see Table 3-26 on page 3-30).

The read/write Data Extended Access Permission Register, DEAPR, and Instruction
Extended Access Permission Register, IEAPR, contain the data and instruction access
permission fields in extended format for memory protection regions 7-0.

You can access the DEAPR and IEAPR only when using the MPU (MMUnMPU = 0)
with the instructions in Table 3-24.

Figure 3-13 shows the DEAPR and IEAPR bit fields.

Figure 3-13 Data and Instruction Extended Access Permission Registers

Table 3-24 DEAPR and IEAPR instructions

Instruction Operation

MRC p15, 0, Rd, c5, c0, 2 Read Data Extended Access Permission Register

MCR p15, 0, Rd, c5, c0, 2 Write Data Extended Access Permission Register

MRC p15, 0, Rd, c5, c0, 3 Read Instruction Extended Access Permission Register

MCR p15, 0, Rd, c5, c0, 3 Write Instruction Extended Access Permission Register

AP7

31 28

AP6

27 24

AP5

2023 1619

AP4 AP3

15 12 11 8

AP2

7 4 3 0

AP1 AP0
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-29

Programmer’s Model
Table 3-25 describes the DEAPR and IEAPR bit fields.

Table 3-26 lists the extended access permission codes.

Note
 You must program either the DEAPR and IEAPR or the DSAPR and ISAPR before
enabling the MPU. On reset, the values in all access permission registers are Undefined,
and the MPU is disabled. Enabling the MPU before programming the access permission
registers results in Unpredictable access permissions.

Table 3-25 Encoding of the DEAPR and IEAPR

Bit Name Definition Reset state

[31:28]-[3:0] AP7-AP0 Extended format access permission bits for protection regions 7-0 Undefined

Table 3-26 Encoding of the extended access permission bit fields

AP{7-0} [3:0] Privileged mode User mode

b0000 No access No access

b0001 Read/write No access

b0010 Read/write Read

b0011 Read/write Read/write

b0100 Unpredictable Unpredictable

b0101 Read No access

b0110 Read Read

b0111 Unpredictable Unpredictable

b1xxx Unpredictable Unpredictable
3-30 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.13 CP15 c5 Data and Instruction Standard Access Permission Registers

Note

 There are two formats for specifying access permissions of memory protection regions:

• standard format

• extended format.

Use the DSAPR and ISAPR to specify access permissions in standard format. For
specifying access permissions in extended format, see CP15 c5 Data and Instruction
Extended Access Permission Registers on page 3-29.

Programming the access permissions in extended format and then reprogramming them
in standard format is equivalent to programming bits APn[3:2] in the DEAPR or IEAPR
to b00 (see Table 3-26 on page 3-30).

The read/write Data Standard Access Permission Register, DSAPR, and Instruction
Standard Access Permission Register, ISAPR, contain the data and instruction access
permission fields in standard format for protection regions 0-7.

You can access the DSAPR and ISAPR only when using the MPU (MMUnMPU = 0)
with the instructions in Table 3-27.

Figure 3-14 shows the DSAPR and ISAPR bit fields.

Figure 3-14 Data and Instruction Standard Access Permission Registers

Table 3-27 DSAPR and ISAPR instructions

Instruction Operation

MRC p15, 0, Rd, c5, c0, 0 Read Data Standard Access Permission Register

MCR p15, 0, Rd, c5, c0, 0 Write Data Standard Access Permission Register

MRC p15, 0, Rd, c5, c0, 1 Read Instruction Standard Access Permission Register

MCR p15, 0, Rd, c5, c0, 1 Write Instruction Standard Access Permission Register

15 12

SBZ

131431 16 013 245678911 10

AP7 AP6 AP4 AP3 AP2 AP1 AP0AP5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-31

Programmer’s Model
Table 3-28 describes the DSAPR and ISAPR bit fields.

Table 3-29 lists the standard access permission codes.

Note

 You must program either the DSAPR and ISAPR or the DEAPR and IEAPR before
enabling the MPU. On reset, the values in all access permission registers are Undefined,
and the MPU is disabled. Enabling the MPU before programming the access permission
registers results in Unpredictable access permissions.

Table 3-28 Encoding of the DSAPR and ISAPR

Bit Name Definition Reset state

[31:16] - Should Be Zero 0x0000

[15:14]-[1:0] AP7-AP0 Standard format access permission bits for protection regions 7-0 Undefined

Table 3-29 Encoding of the standard access permission bit fields

AP{7-0} [1:0] Privileged mode User mode

b00 No access No access

b01 Read/write No access

b10 Read/write Read

b11 Read/write Read/write
3-32 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.14 CP15 c5 Data and Instruction Fault Address Registers

The read/write Data Fault Address Register, DFAR, contains the MVA of the memory
access that caused a Data Abort.

The read/write Instruction Fault Address Register, IFAR, contains the MVA of the
memory access which caused either a watchpoint or a Data Abort. The address is PC + 8
in ARM state or PC + 4 in Thumb state.

You can access the DFAR and IFAR when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-30.

It can be useful for a debugger to restore the value in DFAR or IFAR by writing to it.

Figure 3-15 shows the DFAR and IFAR bit fields.

Figure 3-15 Data and Instruction Fault Address Registers

The reset state of the Data and Instruction Fault Address Registers is Undefined.

Table 3-30 DFAR and IFAR instructions

MMU or MPU enabled Instruction Operation

MMU
MRC p15, 0, Rd, c6, c0, 0 Read Data Fault Address Register

MCR p15, 0, Rd, c6, c0, 0 Write Data Fault Address Register

MPU
MRC p15, 0, Rd, c6, c0, 4 Read Data Fault Address Register

MCR p15, 0, Rd, c6, c0, 4 Write Data Fault Address Register

MMU
MRC p15, 0, Rd, c6, c0, 1 Read Instruction Fault Address Register

MCR p15, 0, Rd, c6, c0, 1 Write Instruction Fault Address Register

MPU
MRC p15, 0, Rd, c6, c0, 5 Read Instruction Fault Address Register

MCR p15, 0, Rd, c6, c0, 5 Write Instruction Fault Address Register

31 0

MVA of data or instruction fault
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-33

Programmer’s Model
3.4.15 CP15 c5 Protection Region Registers

The read/write Protection Region Registers, PRR0-7, define the base address and size
of the eight protection regions.

You can access PRR0-7 only when using the MPU (MMUnMPU = 0) with the
instructions in Table 3-31.

Note

 When the MMU is enabled, accessing a Protection Region Register takes the Undefined
instruction trap.

Figure 3-16 shows the PRR bit fields.

Figure 3-16 Protection Region Registers 0-7

Table 3-32 describes the PRR bit fields.

Table 3-31 Protection Region Registers instructions

Instruction Operation

MRC p15, 0, Rd, c6, c{0-7}, 0 Read Protection Region Register

MCR p15, 0, Rd, c6, c{0-7}, 0 Write Protection Region Register

0

Region base address Region sizeSBZ E

31 12 11 6 5 1

Table 3-32 Encoding of the Protection Region Registers

Bit Name Definition Reset state

[31:12] Region
base address

Base address of protection region. Must be aligned
to size boundary of protection region.

Undefined

[11:6] - Should Be Zero. Zeros
3-34 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Note
 Writing a value less than b01011 to the region size field causes Unpredictable behavior.

[5:1] Region size Size of protection region:
b00000-b01010 = reserved
b01011 = 4KB
b01100 = 8KB
b01101 = 16KB
b01110 = 32KB
b01111 = 64KB
b10000 = 128KB
b10001 = 256KB
b10010 = 512KB
b10011 = 1MB
b10100 = 2MB

b10101 = 4MB
b10110 = 8MB
b10111 = 16MB
b11000 = 32MB
b11001 = 64MB
b11010 = 128MB
b11011 = 256MB
b11100 = 512MB
b11101 = 1GB
b11110 = 2GB
b11111 = 4GB.

Undefined

0 E Protection region enable bit:
1 = protection region enabled
0 = protection region disabled.

0

Table 3-32 Encoding of the Protection Region Registers (continued)

Bit Name Definition Reset state
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-35

Programmer’s Model
3.4.16 CP15 c7 cache operations

Use MCR and MRC instructions with a CRn of c7 to perform cache operations and
system control operations:

• cache operations:

— clean

— invalidate

— clean and invalidate

— test and clean

— test, clean, and invalidate.

• system control operations:

— wait for interrupt

— drain pending write buffer

— prefetch ICache line.

Most invalidate operations and clean operations support accesses in the MVA and
set/way formats. The address for the operation is stored in the ARM10 destination
register, Rd.

You can perform cache operations and system control operations using CP15 c7 when
using the MMU or the MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-33.

Table 3-33 Cache operation instructions

Instruction Operation

MCR p15, 0, Rd, c7, c5, 0

MCR p15, 0, Rd, c7, c5, 1

MCR p15, 0, Rd, c7, c5, 2

Invalidate entire ICache.
Invalidate ICache line, MVA format.
Invalidate ICache line, set/way format.

MCR p15, 0, Rd, c7, c6, 0
MCR p15, 0, Rd, c7, c6, 1
MCR p15, 0, Rd, c7, c6, 2

Invalidate entire DCache. Invalidates clean and dirty data.
Invalidate DCache line, MVA format. Invalidates clean and dirty data.
Invalidate DCache line, set/way format. Invalidates clean and dirty data.

MCR p15, 0, Rd, c7, c7, 0 Invalidate entire DCache and ICache. Invalidates clean and dirty data.

MCR p15, 0, Rd, c7, c10, 1

MCR p15, 0, Rd, c7, c10, 2

Clean DCache line, MVA format. Writes line to memory if valid and dirty. Marks line as
not dirty. Valid bit is unchanged.
Clean DCache line, set/way format. Writes line to memory if valid and dirty. Marks line
as not dirty. Valid bit is unchanged.

MCR p15, 0, Rd, c7, c14, 1 Clean and invalidate DCache line, MVA format. Writes line to memory if valid and dirty.
Marks line as invalid and not dirty.

MCR p15, 0, Rd, c7, c14, 2 Clean and invalidate DCache line, set/way format. Writes line to memory if valid and
dirty. Marks line as invalid and not dirty.
3-36 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Dirty data is data that has been modified in the cache but not yet copied back to main
memory.

ICache prefetch operations are performed requested-word-first.

MRC p15, 0, R15, c7, c10, 3 Test and clean DCache. Must have r15 as destination register. Does not change PC.
Updates flags. If cache contains any dirty lines, bit 30 is cleared. If no dirty lines, bit 30
is set. Bit 30 corresponds to Z bit in CPSR. Can clean a number of cache lines with each
loop iteration until entire cache is cleaned:
tc_loop: MRC p15, 0, r15, c7, c10, 3 ; test and clean

BNE tc_loop

MRC p15, 0, R15, c7, c14, 3 Test, clean, and invalidate DCache. Must have r15 as destination register. Does not
change PC. Updates flags. If cache contains any dirty lines, bit 30 is cleared. If no dirty
lines, bit 30 is set. Bit 30 corresponds to Z bit in CPSR. Can clean a number of cache lines
until entire cache is cleaned:
tci_loop: MRC p15, 0, r15, c7, c14, 3 ; test, clean, and invalidate

BNE tci_loop

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

Wait for interrupt. Drains contents of pending write buffer, puts processor in low-power
state, and stops further execution until interrupt or debug request occurs. When interrupt
occurs, the MCR instruction completes, and IRQ or FIQ handler is entered as normal.
Return link in r14_irq or r14_fiq contains address of MCR instruction plus eight, so
typical instruction used for interrupt return, SUBS PC, R14, #4, returns to instruction
following the MCR.

MCR p15, 0, Rd, c7, c10, 4 Drain pending write buffer. Acts as explicit memory barrier. Drains pending write buffer
of all memory stores occurring in program order. No instructions occurring in program
order after this operation are executed until it completes. Can be used to control timing of
specific stores to level 2 memory system, for example, when a store to an interrupt
acknowledge location has to complete before interrupts are enabled.

MCR p15, 0, Rd, c7, c13, 1 Prefetch ICache line, MVA format. Does ICache lookup of specified address. Does
linefill if cache misses and region is cachable.

Table 3-33 Cache operation instructions (continued)

Instruction Operation
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-37

Programmer’s Model
Cache operations in MVA format

Figure 3-17 shows the Rd register bit fields for cache operations in MVA format.

Figure 3-17 Rd format for cache operations in MVA format

Table 3-34 describes the Rd register bit fields for cache operation in MVA format.

Note
 The Fast Context Switch Extension (FCSE) does not automatically modify the address
specified in the Rd register for CP15 c7 cache operations. It is the responsibility of the
programmer to map the VA to the MVA before writing the address in the Rd register.

4 0

MVA tag Set

12

SBZWord

S + 4 531 S + 5

Table 3-34 Encoding of the cache operations bit fields in MVA format

Bit Name Definition

[31:(S + 5)]a

a. S = log2 of the number of cache sets.

MVA tag Tag bits.

[(S + 4):5]b

b. Number of cache sets = cache size in bytes/cache associativity/cache line length in bytes. In
the ARM1026EJ-S processor, the cache associativity is four, and the cache line length is 32.

Set Set bits.

[4:2] Word Word being accessed. Should Be Zero for all cache operations.

[1:0] - Should Be Zero.
3-38 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Set/way format

Figure 3-18 shows the Rd register bit fields for cache operations in set/way format.

Figure 3-18 Rd format for cache operations in set/way format

Table 3-35 describes the Rd register bit fields for cache operations in set/way-format.

4 0

SBZ Set

12

SBZWord

S + 4 531

Way

32 - A S + 531 - A

Table 3-35 Encoding of the cache operation bit fields in set/way format

Bit Name Definition

[31:(32 – A)]a

a. A = log2 of the associativity of the cache.

Way Way bits.

[(31 – A):(S + 5)]b

b. S = log2 of the number of cache sets.

- Should Be Zero.

[(S + 4):5]c

c. Number of cache sets = cache size in bytes/cache associativity/cache line length in bytes. In
the ARM1026EJ-S processor, the cache associativity is four, and the cache line length is 32.

Set Set bits.

[4:2] Word Word being accessed. In cache operations, Should Be Zero.

[1:0] - Should Be Zero.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-39

Programmer’s Model
3.4.17 CP15 c8 TLB operations

Use MCR instructions with a CRn of c8 to invalidate all unlocked TLB entries or to
invalidate single TLB entries.

The TLB has two parts:

• the set-associative main TLB

• the fully-associative lockdown TLB.

Loading an entry into the lockdown TLB preserves the entry during any invalidate all
unlocked TLB operation. The lockdown entry is not preserved during an invalidate
single TLB entry operation.

You can perform TLB operations using CP15 c8 only when using the MMU
(MMUnMPU = 1) with the instructions in Table 3-36.

Figure 3-19 shows the Rd bit fields for invalidate single TLB entry operations.

Figure 3-19 Rd format for invalidate single TLB entry operations

Table 3-37 describes the Rd register bit fields for invalidate single TLB entry
operations.

Table 3-36 TLB operation instructions

Instruction Operation

MCR p15, 0, Rd, c8, c7, 0

MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c6, 0

Invalidate all unlocked TLB entries
Invalidate all unlocked TLB entries
Invalidate all unlocked TLB entries

MCR p15, 0, Rd, c8, c7, 1

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 1

Invalidate single TLB entry, MVA format
Invalidate single TLB entry, MVA format
Invalidate single TLB entry, MVA format

MVA SBZ

31 10 09

Table 3-37 Encoding of the invalidate single TLB entry bit fields

Bit Name Definition

[31:10] MVA MVA of single TLB entry

[9:0] - Should Be Zero
3-40 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Note

 The Fast Context Switch Extension (FCSE) does not automatically modify the address
specified in the Rd register for CP15 c8 TLB operations. It is the responsibility of the
programmer to map the VA to the MVA before writing the address in the Rd register.

3.4.18 CP15 c9 DCache and ICache Lockdown Registers

The read/write DCache and ICache Lockdown Registers enable you to control which
cache way of the four-way set-associative cache is used for allocation on a linefill. They
use format C, a cache way-based locking scheme that controls each cache way
independently. Each way has a lock bit, L, that determines if the normal cache
allocation can access that cache way.

You can access the Cache Lockdown Registers when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-38.

Figure 3-20 shows the bit fields of the Cache Lockdown Registers.

Figure 3-20 DCache and ICache Lockdown Registers

Table 3-38 DCache and ICache Lockdown Register instructions

Instruction Operation

MRC p15, 0, Rd, c9, c0, 0 Read DCache Lockdown Register

MCR p15, 0, Rd, c9, c0, 0 Write DCache Lockdown Register

MRC p15, 0, Rd, c9, c0, 1 Read ICache Lockdown Register

MCR p15, 0, Rd, c9, c0, 1 Write ICache Lockdown Register

SBO

3 012

SBZ/UNP

31 16 15 4

L2

L1

L3

L0
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-41

Programmer’s Model
Note

 If all the L bits are set, then all allocations are to cache way 3.

Table 3-39 describes the bit fields of the Cache Lockdown Registers. All cache ways
are available for allocation from reset.

Locking down a cache way

Use this procedure to load and lock way i of a cache with N ways using format C:

1. Ensure that no exceptions can occur during the execution of this procedure. If this
is not possible, all code and data used by any exception handlers must be treated
as code and data as in steps 2 and 3.

2. If an ICache way is being locked down, ensure that all the code executed by the
lockdown procedure is in a noncachable area of memory, including the TCM, or
is in a cache way that is already locked.

3. If a DCache way is being locked down, ensure that all data used by the lockdown
procedure is in a noncachable area of memory, including the TCM, or is in a cache
way that is already locked.

4. Ensure that the data or instructions that are to be locked down are in a cachable
area of memory.

5. To ensure that the data to be locked down is not already in the cache, use the test
and clean operation or the test, clean, and invalidate operation. To ensure that the
instructions to be locked down are not already in the cache, use the invalidate
operation.

6. Enable allocation to the target cache way by writing to CP15 c9 with CRm = 0,
L = 0 for bit i, and L = 1 for all other ways.

Table 3-39 Encoding of the DCache and ICache Lockdown Registers

Bit Name Definition Reset state

[31:16] - Should Be Zero. Unpredictable. 0x0000

[15:4] - Should Be One. 0xFFF

[3:0] L3-L0 Lock bits for each cache way:
1 = No allocations to this cache way
0 = Allocations determined by replacement algorithm.

0

3-42 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
7. For each of the cache lines to be locked down in cache way i:

• If a DCache is being locked down, use an LDR instruction to load a word
from memory to ensure that the line is loaded into the cache. You can also
use the PLD instruction to preload the cache line.

• If an ICache is being locked down, use the CP15 c7 MCR prefetch ICache
line operation with CRm = c13, and opcode2 = 1 to fetch the line into the
cache.

8. Write to CP15 c9 with CRm = 0 and L = 1 for the target cache way, and restore
all other bits to the values they had before the lockdown routine started.

Unlocking a cache way

To unlock a cache way, write to register c9 clearing the appropriate lock bit. For
example, the following sequence clears L0, unlocking way 0 of the ICache:

MRC p15, 0, Rn, c9, c0, 1
BIC Rn, Rn, 0x01
MCR p15, 0, Rn, c9, c0, 1
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-43

Programmer’s Model
3.4.19 CP15 c9 DTCM and ITCM Region Registers

The read/write DTCM and ITCM Region Registers contain the physical base address
and size of the DTCM and ITCM. The TCMs are physically indexed and physically
tagged.

You can access the DTCM and ITCM Region Registers when using the MMU or the
MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-40.

Figure 3-21 shows the bit fields of the DTCM and ITCM Region Registers.

Figure 3-21 DTCM and ITCM Region Registers

Table 3-40 DTCM and ITCM Region Register instructions

Instruction Operation

MRC p15, 0, Rd, c9, c1, 0 Read DTCM Region Register

MCR p15, 0, Rd, c9, c1, 0 Write DTCM Region Register

MRC p15, 0, Rd, c9, c1, 1 Read ITCM Region Register

MCR p15, 0, Rd, c9, c1, 1 Write ITCM Region Register

0

Physical base address Size

1

SBZ

SBZ/UNP E

31 12 11 6 5 2
3-44 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Table 3-41 describes the bit fields of the DTCM and ITCM Region Registers.

If either the data or instruction TCM is disabled, then the contents of the respective
TCM are not accessed. If the TCM is subsequently reenabled, the contents are not
changed by the processor.

In a Harvard arrangement, the instruction TCM must be accessible for both reads and
writes during normal operation, for loading code, and for debug activity. This enables
accesses to literal pools, undefined instruction emulation, and parameter passing for
SWI operations. You must insert an Instruction Memory Barrier, IMB, between a write
to the ITCM and the instructions being read from the ITCM. See Instruction memory
barriers on page 5-8 for more details.

Table 3-41 Encoding of the DTCM and ITCM Region Registers

Bit Name Definition Reset state

[31:12] Physical
base address

Physical base address of TCM region. DTCM Region Register, Undefined.
ITCM Region Register, 0x00000.

[11:6] - Should Be Zero. Unpredictable. Zeros.

[5:2] Size Size of TCM:
b0000 = 0KB
b0001 and b0010 = TCM disabled (reserved)
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128 KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100-b1111 = TCM disabled (reserved).

DTCM Region Register, determined
by DTCMSIZE[3:0] pins.
ITCM Region Register, determined
by ITCMSIZE[3:0] pins.

1 - Should Be Zero. 0

0 E TCM enable bit:
1 = TCM enabled
0 = TCM disabled.
To enable booting from the ITCM, tie the
INITRAM pin HIGH with the VINITHI pin
LOW at reset.

DTCM Region Register, 0.
ITCM Region Register, determined
by INITRAM pin.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-45

Programmer’s Model
Instruction fetches from the DTCM are not possible. An attempt to fetch an instruction
from an address in the DTCM space does not result in an access to the DTCM, and the
instruction is fetched from main memory. These accesses can result in external aborts,
because the address range might not be supported in main memory. See Chapter 16
External Aborts for an explanation of external abort behavior.

Do not program the ITCM to the same base address as the DTCM. If the two TCMs are
of different sizes, do not allow the regions in physical memory to overlap. If they do
overlap, memory accesses are mapped to the ITCM.

The base address value must be aligned to the TCM size.

3.4.20 CP15 c10 TLB Lockdown Register

The read/write TLB Lockdown Register controls where hardware page table walks
place the TLB entry:

• When the preserve bit, P, is clear, the TLB entry goes in the main TLB. The main
TLB is two-way set-associative and has 32 entries per way for a total of 64
entries.

• When the P bit is set, the TLB entry goes in the lockdown TLB. The lockdown
TLB has eight fully-associative entries that do not overlap the set-associative
TLB region.

When an entry goes in the lockdown TLB, the victim field, V, selects one of eight
lockdown TLB locations to write. The victim field is automatically incremented
after any table walk that results in an entry being written into the lockdown TLB.

You can access the TLB Lockdown Register only when using the MMU
(MMUnMPU = 1) with the instructions in Table 3-42.

Table 3-42 TLB Lockdown Register instructions

Instruction Operation

MRC p15, 0, Rd, c10, c0, 0 Read TLB Lockdown Register

MCR p15, 0, Rd, c10, c0, 0 Write TLB Lockdown Register
3-46 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Figure 3-22 shows the TLB Lockdown Register bit fields.

Figure 3-22 TLB Lockdown Register

Table 3-43 describes the TLB Lockdown Register bit fields.

The TLB instructions only invalidate unpreserved TLB entries, that is, those in the
set-associative region. The invalidate single instructions invalidate any unpreserved or
preserved entry.

Note

 It is not possible for a lockdown entry to entirely map either small or large pages unless
all the subpage access permissions are identical. Entries can still be written into the
lockdown region, but the address range that is mapped only covers the subpage
corresponding to the address that was used to perform the page table walk.

0

SBZ

28 26

SBZ/UNPV P

31 29 25 1

Table 3-43 Encoding of the TLB Lockdown Register

Bit Name Definition Reset state

[31:29] - Should Be Zero. b000

[28:26] V Victim. Selects lockdown TLB location to write. b000

[25:1] - Should Be Zero. Unpredictable. Zeros

[0] P Preserve bit:
1 = subsequent hardware page table walks put TLB entry
in lockdown TLB at location specified by V
0 = subsequent hardware page table walks put TLB entry
in main TLB.

0

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-47

Programmer’s Model
Example 3-1 is a code sequence that locks down an entry to the current victim.

Example 3-1 Locking down an entry to the current victim

ADR r1, LockAddr ; set r1 to value of address to be locked down
MCR p15, 0, r1, c8, c7, 1 ; invalidate TLB single entry to ensure that

; LockAddr is not already in the TLB
MRC p15, 0, r0, c10, c0, 0 ; read lockdown register
ORR r0, r0, #1 ; set preserve bit
MCR p15, 0, r0, c10, c0, 0 ; write to lockdown register
LDR r1, [r1] ; TLB will miss, and entry will be loaded
MRC p15, 0, r0, c10, c0, 0 ; read lockdown register (victim will have

; incremented)
BIC r0, r0, #1 ; clear preserve bit
MCR p15, 0, r0, c10, c0, 0 ; write to lockdown register

3.4.21 CP15 c11 Reserved

CP15 c11 accesses take the Undefined instruction trap.

3.4.22 CP15 c12 Reserved

CP15 c12 accesses take the Undefined instruction trap.
3-48 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.23 CP15 c13 FCSE Process ID Register

The read/write FCSE Process ID Register contains the current process identifier. The
Fast Context Switch Extension, FCSE, changes the upper seven bits of virtual addresses
to enable switching the program context.

You can access the FCSE Process ID Register only when using the MMU
(MMUnMPU = 1) with the instructions in Table 3-44.

Figure 3-23 shows the bit fields of the FCSE Process ID Register.

Figure 3-23 FSCE Process ID Register

Table 3-45 describes the bit fields of the FSCE Process ID Register.

Addresses issued by the integer unit in the range 0 to 32MB are translated by the process
ID. Address A becomes A + (process ID × 32MB). Both the caches and the MMU use
this translated address. Addresses above 32MB are not translated. The process ID is a
seven-bit field, enabling 127 × 32MB processes to be mapped, as Figure 3-24 on
page 3-50 shows.

Table 3-44 FCSE Process ID Register instructions

Instruction Operation

MRC p15, 0, Rd, c13, c0, 0 Read FCSE Process ID Register

MCR p15, 0, Rd, c13, c0, 0 Write FCSE Process ID Register

Process ID

31 25

SBZ

024

Table 3-45 Encoding of the FSCE Process ID Register

Bit Name Definition Reset state

[31:25] Process ID Current process identifier Zeros

[24:0] - Should Be Zero Zeros
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-49

Programmer’s Model
Note

 If the process ID is zero, as it is on reset, then a flat mapping exists between the integer
unit virtual addresses and the modified virtual addresses used by the caches and the
MMU.

Figure 3-24 FCSE address mapping

4GB

VA from

ARM10 processor

32MB

0MB

VA > 32M

4GB
Process ID No 127

0MB

32MB

64MB

MVA to

caches and MMU

Process ID No 1

Process ID No 2
VA < 32M and

process ID = 1-127

FCSE
3-50 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Writing to the FCSE Process ID Register enables a fast context switch. The contents of
the caches and TLBs do not have to be invalidated after a fast context switch because
they still hold valid address tags. As Example 3-2 shows, from two to six instructions
can be fetched with the old process identifier after the MCR that writes to the process
ID.

Example 3-2 Changing the process ID and performing a fast context switch

{procID = 0}
MOV r0, #1 ; Fetched with procID = 0
MCR p15, 0, r0, c13, c0, 0 ; Fetched with procID = 0
A0 (any instruction) ; Fetched with procID = 0/1
A1 (any instruction) ; Fetched with procID = 0/1
A2 (any instruction) ; Fetched with procID = 0/1
A3 (any instruction) ; Fetched with procID = 0/1
A4 (any instruction) ; Fetched with procID = 0/1
A5 (any instruction) ; Fetched with procID = 0/1
A6 (any instruction) ; Fetched with procID = 1

Note
 Do not place any predictable branches or return instructions until at least the seventh
instruction after a process ID change. Before the seventh instruction, the branch target
is fetched from the old process ID, causing Unpredictable behavior.

Fast context switching is an MMU-only feature. Disabling the MMU by clearing the M
bit in the CP15 c1 Control Register or by tying the MMUnMPU pin LOW disables
FCSE address translation. Accesses of the FCSE Process ID Register when using the
MPU (MMUnMPU = 0) take the Undefined instruction trap.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-51

Programmer’s Model
3.4.24 CP15 c13 Context ID Register

The read/write Context ID Register holds the current context of the program.

You can access the Context ID Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-46.

Figure 3-25 shows the bit field of the Context ID Register.

Figure 3-25 Context ID Register

The reset state of the Context ID Register is Undefined.

3.4.25 CP15 c14 Reserved

CP15 c14 accesses take the Undefined exception trap.

Table 3-46 Context ID Register instructions

Instruction Operation

MRC p15, 0, Rd, c13, c0, 1 Read Context ID Register

MCR p15, 0, Rd, c13, c0, 1 Write Context ID Register

31 0

Context ID
3-52 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.26 CP15 c15 Debug Override Register

CP15 c15 is reserved for device-specific test and debug operations. Software written for
device-specific CP15 c15 operations is unlikely to be either backward or forward
compatible. Most of the CP15 c15 registers are for ARM-internal validation and debug
purposes.

The read/write Debug Override Register contains fields to modify the default behavior
of the ARM1026EJ-S processor.

You can access the Debug Override Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-47.

Figure 3-26 shows the Debug Override Register bit fields.

Figure 3-26 Debug Override Register

Table 3-47 Debug Override Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c0, 0 Read Debug Override Register

MCR p15, 0, Rd, c15, c0, 0 Write Debug Override Register

31 16 15 12 11 019 1718 1314 10

SBZ

ADTM

MDDEB

AITM

DNCP

SBZ

FNCNB

IMA

SBZW
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-53

Programmer’s Model
Table 3-48 describes the bit fields of the Debug Override Register.

Caution
 The registers that follow are CP15 c15 debug and test registers. They are reserved for
ARM internal use. The following write is not allowed and is potentially catastrophic:

MCR p15, 0, Rd, c15, c0, 1

Table 3-48 Encoding of the Debug Override Register

Bit Name Definition Reset state

[31:19] - Should Be Zero. Zeros

[18] ADTM Abort on data TLB miss:
1 = Data Abort enabled on data TLB misses
0 = Data Abort disabled on data TLB misses.

0

[17] AITM Abort on instruction TLB miss:
1 = Data Abort enabled on instruction TLB misses
0 = Data Abort disabled on instruction TLB misses.

0

[16] DNCP Disable NC instruction prefetching:
1 = NC instruction prefetching disabled
0 = NC instruction prefetching enabled.

0

[15] - Should Be Zero. 0

[14] FNCNB Force NCB store to be NCNB:
1 = NCB stores treated as nonbufferable
0 = NCB stores are bufferable.
FNCNB overrides setting in MMU page tables and Memory Region
Remap Register.

0

[13] MDDEB MMU disabled, DCache enabled behavior:
1 = If MMU disabled and DCache enabled, data accesses are WT.
0 = Normal operation. If MMU disabled, all data accesses are NCNB.

0

[12] W Pending write buffer enable:
1 = pending write buffer enabled
0 = pending write buffer disabled.

1

[11] IMA Imprecise abort enable:
1 = imprecise abort enabled
0 = imprecise abort disabled.

1

[10:0] - Should Be Zero. Zeros
3-54 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.27 CP15 c15 Prefetch Unit Debug Override Register

The read/write Prefetch Unit Debug Override Register controls the prediction
capabilities of the prefetch unit.

You can access the Prefetch Unit Debug Override Register when using the MMU or the
MPU (MMUnMPU = 1 or 0) with the instructions in Table 3-49.

Figure 3-27 shows the bit fields of the Prefetch Unit Debug Override Register.

Note
 The reset value of the Prefetch Unit Override Register is configured for maximum
performance. Changing the value in this register can decrease performance.

Figure 3-27 Prefetch Unit Debug Override Register

Caution

 Writing to the Prefetch Unit Debug Override Register after enabling branch prediction
can cause Unpredictable processor behavior.

Table 3-49 Prefetch Unit Debug Override Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c0, 2 Read Prefetch Unit Debug Override Register

MCR p15, 0, Rd, c15, c0, 2 Write Prefetch Unit Debug Override Register

0

SBZ

1

EBP

RTK

31 2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-55

Programmer’s Model
Table 3-50 describes the bit fields of the Prefetch Unit Debug Override Register.

3.4.28 CP15 c15 Debug and Test Address Register

The read/write Debug and Test Address Register is for the MMU test operations
described in CP15 c15 MMU test operations on page 3-60. It is also useful as a 32-bit
scratch register for validation purposes.

You can access the Debug and Test Address Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-51.

Figure 3-28 shows the bit field of the Debug and Test Address Register.

Figure 3-28 Debug and Test Address Register

The reset state of the Debug and Test Address Register is Undefined.

Table 3-50 Encoding of the Prefetch Unit Override Register

Bit Name Definition Reset state

[31:2] - Should Be Zero. Zeros

[1] EBP Enhanced branch prediction enable bit:
1 = enabled
0 = disabled.

1

[0] RTK Return stack enable bit:
1 = enabled
0 = disabled.

1

Table 3-51 Debug and Test Address Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c1, 0 Read Debug and Test Address Register

MCR p15, 0, Rd, c15, c1, 0 Write Debug and Test Address Register

31 0

Debug and test address
3-56 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.29 CP15 c15 Memory Region Remap Register

The read/write Memory Region Remap Register overrides the setting specified in either
the MMU page tables or the MPU region attributes, and the default behaviors if neither
the MMU nor the MPU is enabled.

The Memory Region Register has four fields for remapping instruction-side memory
regions and four fields for remapping data-side memory regions.

You can access the Memory Region Remap Register when using the MMU or the MPU
(MMUnMPU = 1 or 0) with the instructions in Table 3-52.

Figure 3-29 shows the bit fields of the Memory Region Remap Register.

Figure 3-29 Memory Region Remap Register

Table 3-52 Memory Region Remap Register instructions

Instruction Operation

MRC p15, 0, Rd, c15, c2, 0 Read Memory Region Remap Register

MCR p15, 0, Rd, c15, c2, 0 Write Memory Region Remap Register

15 12 11 8 7 4 3 0

SBZ

1314 910

DNCB

56 12

DNCNB

DWTDWB

INCNB

INCBIWTIWB

31 16
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-57

Programmer’s Model
Table 3-53 describes the bit fields of the Memory Region Remap Register.

Table 3-54 shows the encoding of each of the remap fields.

Table 3-53 Encoding of the Memory Region Remap Register

Bit Name Definition Reset state

[31:16] - Should Be Zero 0x0000

[15:14] IWB Remap select bits for instruction-side write-back region b11

[13:12] IWT Remap select bits for instruction-side write-through region b10

[11:10] INCB Remap select bits for instruction-side noncachable bufferable region b01

[9:8] INCNB Remap select bits for instruction-side noncachable nonbufferable region b00

[7:6] DWB Remap select bits for data-side write-back region b11

[5:4] DWT Remap select bits for data-side write-through region b10

[3:2] DNCB Remap select bits for data-side noncachable bufferable region b01

[1:0] DNCNB Remap select bits for data-side noncachable nonbufferable region b00

Table 3-54 Encoding of the remap fields

Remap field

b00 = noncachable nonbufferable

b01 = noncachable bufferable

b10 = write-through

b11 = write-back
3-58 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Figure 3-30 shows the flow and precedence of CP15 c15 control bits in resolving a the
cachable and bufferable attributes of a memory reference.

Figure 3-30 Memory region attribute resolution

MMU

or

MPU

Memory

region

remapping

NCNB

NCB

CNB (write-through)

CB (write-back)

NCNB

NCB

CNB (write-through)

CB (write-back)

Force

NCB store

to be

NCNB

MDDEB bit:

MMU/MPU

disabled,

DCache enabled

Memory Region Remap Register

Debug Override Register

Page table descriptor

FNCB bit:

Force NCB store

to be NCNB

C and B bits

Cn bits

Cn bits

Bn bits

ICache Configuration Register

DCache Configuration Register

Write Buffer Control Register
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-59

Programmer’s Model
3.4.30 CP15 c15 MMU test operations

The MMU test operations support accessing TLB structures in the MMU and are used
in conjunction with the Debug and Test Address Register.

You can perform the MMU test operations only when using the MMU
(MMUnMPU = 1) with the instructions in Table 3-55.

Inserting or reading entries in the main TLB

Use this procedure to access entries in the main TLB:

1. Use the following Debug and Test Address Register instruction to access a main
TLB entry:

MCR p15, 0, Rd, c15, c1, 0 ; select TLB entry

The Rd register selects the main TLB entry as Figure 3-31 shows.

Figure 3-31 Rd format for selecting main TLB entry

Table 3-55 MMU test operation instructions

Instruction Operation

MRC P15, 4/5, Rd, c15, c2, 0

MCR P15, 4/5, Rd, c15, c3, 0

Read tag in main TLB entry
Write tag in main TLB entry

MRC P15, 4/5, Rd, c15, c4, 0

MCR P15, 4/5, Rd, c15, c5, 0

Read PA and access permission data in main TLB entry
Write PA and access permission data data in main TLB entry

MCR P15, 4/5, Rd, c15, c7, 0 Transfer main TLB entry into RAM

MRC P15, 4/5, Rd, c15, c2, 1
MCR P15, 4/5, Rd, c15, c3, 1

Read tag in lockdown TLB entry
Write tag in lockdown TLB entry

MRC P15, 4/5, Rd, c15, c4, 1

MCR P15, 4/5, Rd, c15, c5, 1

Read PA and access permission data in lockdown TLB entry
Write PA and access permission data in lockdown TLB entry

MCR P15, 4/5, Rd, c15, c7, 1 Transfer lockdown TLB entry into RAM

31

Way

Indexed entry SBZSBZ

14 10 091530
3-60 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Table 3-56 describes the Rd register entry-select bit fields.

2. Use the following MMU test operation instructions to access the MVA tag:

MRC p15, 4/5, Rd, c15, c2, 0 ; read tag in main TLB

MCR p15, 4/5, Rd, c15, c3, 0 ; write tag in main TLB

The Rd register contains the read or write data as Figure 3-32 shows.

Figure 3-32 Rd format for accessing MVA tag of main or lockdown TLB entry

Table 3-56 Encoding of the main TLB entry-select bit fields

Bit Name Definition

[31] Way Way select:
1 = way 1
0 = way 0.

[30:15] - Should Be Zero.

[14:10] Indexed entry Indexed entry in mail TLB.

[9:0] - Should Be Zero.

0

MVA tag SBZ
Size of

entry
V

4 19 51031
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-61

Programmer’s Model
Table 3-57 describes the MVA tag access bit fields in the Rd register.

3. Use the following MMU Test Register instructions to access the PA and access
permission data:

MRC p15, 4/5, Rd, c15, c4, 0 ; read PA and access permission data

MCR p15, 4/5, Rd, c15, c5, 0 ; write PA and access permission data

The Rd register contains the read or write data as Figure 3-33 shows.

Figure 3-33 Rd format for accessing PA and AP data of main or lockdown TLB entry

Table 3-57 Encoding of the TLB MVA tag bit fields

Bit Name Definition

[31:10] MVA tag Modified virtual address.

[9:5] - Should Be Zero.

[4:1] Size of entry Size of entry:
b1011 = 1MB section
b0111 = 64KB page
b0101 = 16KB subpage of 64KB page
b0011 = 4KB page
b0001 = 1KB page or 1KB subpage of 4KB page.

[0] V Valid bit.

4 3 0

PA

9

Domain

select

56

SBZ

12

C
AP

[1:0]
B

31 10
3-62 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
Table 3-58 describes the PA and access permission bit fields in the Rd register.

4. Use the following instruction to complete a write to an entry:

MCR p15, 4/5, Rd, c15, c7, 0 ; transfer main storage into RAM

Table 3-58 Encoding of the TLB entry PA and AP bit fields

Bit Name Definition

[31:10] PA Physical address.

[9:6] Domain select Domain select:
b0000 = D0
b0001 = D1
.
.
.
b1110 = D14
b1111 = D15.

[5:4] - Should Be Zero.

[3:2] AP Access permission:
b00 = No access.
b01 = Privileged, read/write. User, no access.
b10 = Privileged, read/write. User read-only.
b11 = Privileged, read/write. User, read/write.

[1] C Cachable bit.

[0] B Bufferable bit.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-63

Programmer’s Model
Inserting or reading entries in the lockdown TLB

Use this procedure to access entries in the lockdown TLB:

1. Use the following Debug and Test Address Register instruction to access a
lockdown TLB entry:

MCR p15, 0, Rd, c15, c1, 0

The Rd register selects the lockdown TLB entry as Figure 3-34 shows.

Figure 3-34 Rd format for selecting lockdown TLB entry

Table 3-59 describes the entry-select bit fields in the Rd register.

2. Use the following MMU Test Register instructions to access the MVA tag:

MRC p15, 4, Rd, c15, c2, 1 ; read lockdown TLB

MCR p15, 4, Rd, c15, c3, 1 ; write lockdown TLB

See Figure 3-32 on page 3-61 for read or write data in the Rd register.

3. Use the following MMU Test Register instructions to read or write the PA and
access permission data:

MRC p15, 4, Rd, c15, c4, 1 ; read PA and access permission data

MCR p15, 4, Rd, c15, c5, 1 ; write PA and access permission data

See Figure 3-33 on page 3-62 for the read or write data in the Rd register.

4. Use the following instruction to complete a write to an entry:

MCR p15, 4, Rd, c15, c7, 1 ; transfer lockdown storage into RAM

SBZ

28 26

SBZ
Indexed

entry

31 29 025

Table 3-59 Encoding of the lockdown TLB entry-select bit fields

Bit Name Definition

[31:29] - Should Be Zero

[28:26] Indexed entry Indexed entry in lockdown TLB

[25:0] - Should Be Zero
3-64 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
3.4.31 CP15 c15 Cache Debug Control Register

The read/write Cache Debug Control Register can force a specific cache behavior
required for testing.

You can access the Cache Debug Control Register when using the MMU or the MPU
(MMUnMPU 1 or 0) with the instructions in Table 3-60.

Figure 3-35 shows the bit fields of the Cache Debug Control Register.

Figure 3-35 Cache Debug Control Register

Table 3-60 Cache Debug Control Register instructions

Instruction Operation

MRC p15, 7, Rd, c15, c0, 0 Read Cache Debug Control Register

MCR p15, 7, Rd, c15, c0, 0 Write Cache Debug Control Register

0

SBZ

DDL

12

DIL

DWB

31 3
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-65

Programmer’s Model
Table 3-61 describes the Cache Debug Control Register bit fields.

Setting the DWB bit forces the DCache to treat all cachable accesses as though they
were in a write-through region. The DWB bit overrides the settings in the:

• MMU page tables

• MPU Cache Configuration Register

• Write Buffer Control Register

• Memory Region Remap Register.

Dirty cache lines remain dirty while the DWB bit is set unless they are written back in
a write-back eviction after a linefill or in a clean operation. Lines that are clean are not
marked as dirty if they are updated while the DWB bit is set. This functionality enables
a debugger to download code or data to external memory without having to clean part
or all of the DCache to ensure that the code or data being downloaded has been written
to external memory.

Note
 If the DWB bit is set, and a write is made to a dirty cache line, then both the cache line
and external memory are updated with the write data. Other entries in the cache line still
have to be written back to main memory to achieve coherency.

Setting the DDL and DIL bits prevents the cache from updating when performing a
linefill on a miss. A linefill is performed on a cache miss, reading eight words from
external memory, but the cache is not updated with the linefill data. The memory region
mapping is unchanged. This functionality is required for debug so that the

Table 3-61 Encoding of the Cache Debug Control Register

Bit Name Definition Reset state

[31:3] - Should Be Zero. Zeros

[2] DWB Disable write-back (force write-through):
1 = write-back disabled
0 = write-back enabled.

0

[1] DIL Disable ICache linefills:
1 = disable ICache linefills
0 = enable ICache linefills.

0

[0] DDL Disable DCache linefills:
1 = disable DCache linefills
0 = enable DCache linefills.

0

3-66 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
ARM1026EJ-S memory image can be examined in a noninvasive manner. Cache hits
from a cachable region read data words from the cache, and cache misses from a
cachable region read words directly from memory.

3.4.32 CP15 c15 MMU Debug Control Register

The read/write MMU Debug Control Register forces TLB behavior to enable
noninvasive testing.

You can use the MMU Debug Control Register to enable TLB and microTLB entries to
be preserved during debug. For debug to be noninvasive, bits [5:0] must be b111111
before changing any other CP15 registers or issuing any load or store. If main TLB
loading is disabled, page table walks still take place, but the resultant data is forwarded
around the TLB.

It might be necessary to temporarily change the contents of a page table entry to
facilitate debug operations. Disabling main TLB matches using bit 6 or 7 enables the
modified contents of the page table to be used for an access without having to invalidate
any entries in the main TLB.

You can access the MMU Debug Control Register only when using the MMU
(MMUnMPU = 1) with the instructions in Table 3-62.

Table 3-62 MMU Debug Control Register instructions

Instruction Operation

MRC p15, 7, Rd, c15, c1, 0 Read MMU Debug Control Register

MCR p15, 7, Rd, c15, c1, 0 Write MMU Debug Control Register
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-67

Programmer’s Model
Figure 3-36 shows the bit fields of the MMU Debug Control Register.

Figure 3-36 MMU Debug Control Register

Table 3-63 describes the bit fields of the MMU Debug Control Register.

6 3 2 0

SBZ

DMTMD

45

DMTLI

DDUTM

1

DIUTL

DMTLD

DIUTM

DMTMI

DDUTL

731 8

Table 3-63 Encoding of the MMU Debug Control Register

Bit Name Definition Reset state

[31:0] - Should Be Zero. 0x000000

[7] DMTMI Disable main TLB matching for instruction fetches:
1 = disable
0 = enable.

0

[6] DMTMD Disable main TLB matching for data accesses:
1 = disable
0 = enable.

0

[5] DMTLI Disable main TLB load due to instruction miss:
1 = disable
0 = enable.

0

[4] DMTLD Disable main TLB load due to data miss:
1 = disable
0 = enable.

0

[3] DIUTM Disable instruction microTLB matching:
1 = disable
0 = enable.

0

3-68 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
[2] DDUTM Disable data microTLB matching:
1 = disable
0 = enable.

0

[1] DIUTL Disable instruction microTLB load:
1 = disable
0 = enable.

0

[0] DDUTL Disable data microTLB load:
1 = disable
0 = enable.

0

Table 3-63 Encoding of the MMU Debug Control Register (continued)

Bit Name Definition Reset state
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-69

Programmer’s Model
3.5 CP15 instruction summary

Table 3-64 is a quick reference to the CP15 instructions.

Table 3-64 CP15 instruction summary

Instruction Operation Reference

MRC p15, 0, Rd, c0, c0, {0, 3-7}

MRC p15, 0, Rd, c0, c0, 1

MRC p15, 0, Rd, c0, c0, 2

Read Device ID Register.
Read Cache Type Register.
Read TCM Status Register.

Page 3-10
Page 3-11
Page 3-13

MRC p15, 0, Rd, c1, c0, 0

MCR p15, 0, Rd, c1, c0, 0

MRC p15, 0, Rd, c1, c0, 1

Read Control Register.
Write Control Register.
Read Auxiliary Control Register.

Page 3-14
Page 3-14
Page 3-19

MRC p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c2, c0, 0

MRC p15, 0, Rd, c2, c0, 0

MCR p15, 0, Rd, c2, c0, 0

MRC p15, 0, Rd, c2, c0, 1

MCR p15, 0, Rd, c2, c0, 1

Read Translation Table Base Register when using MMU.
Write Translation Table Base Register when using MMU.
Read DCache Configuration Register when using MPU.
Write DCache Configuration Register when using MPU.
Read ICache Configuration Register when using MPU.
Write ICache Configuration Register when using MPU.

Page 3-20
Page 3-20
Page 3-21
Page 3-21
Page 3-21
Page 3-21

MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

Read Domain Access Control Register when using MMU.
Write Domain Access Control Register when using MMU.
Read Write Buffer Control Register when using MPU.
Write Write Buffer Control Register when using MPU.

Page 3-23
Page 3-23
Page 3-25
Page 3-25

MRC p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 4

MCR p15, 0, Rd, c5, c0, 4

MRC p15, 0, Rd, c5, c0, 1

MCR p15, 0, Rd, c5, c0, 1

MRC p15, 0, Rd, c5, c0, 5

MRC p15, 0, Rd, c5, c0, 5

MRC p15, 0, Rd, c5, c0, 2

MCR p15, 0, Rd, c5, c0, 2

MRC p15, 0, Rd, c5, c0, 3

MCR p15, 0, Rd, c5, c0, 3

MRC p15, 0, Rd, c5, c0, 0

MCR p15, 0, Rd, c5, c0, 0

MRC p15, 0, Rd, c5, c0, 1

MCR p15, 0, Rd, c5, c0, 1

Read Data Fault Status Register when using MMU.
Write Data Fault Status Register when using MMU.
Read Data Fault Status Register when using MPU.
Write Data Fault Status Register when using MPU.
Read Instruction Fault Status Register when using MMU.
Write Instruction Fault Status Register when using MMU.
Read Instruction Fault Status Register when using MPU.
Write Instruction Fault Status Register when using MPU.
Read Data Extended Access Permission Register when using MPU.
Write Data Extended Access Permission Register when using MPU.
Read Instruction Extended Access Permission Register when using MPU.
Write Instruction Extended Access Permission Register when using MPU.
Read Data Standard Access Permission Register when using MPU.
Write Data Standard Access Permission Register when using MPU.
Read Instruction Standard Access Permission Register when using MPU.
Write Instruction Standard Access Permission Register when using MPU.

Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-26
Page 3-29
Page 3-29
Page 3-29
Page 3-29
Page 3-31
Page 3-31
Page 3-31
Page 3-31
3-70 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Programmer’s Model
MRC p15, 0, Rd, c6, c0, 0

MCR p15, 0, Rd, c6, c0, 0

MRC p15, 0, Rd, c6, c0, 4

MCR p15, 0, Rd, c6, c0, 4

MRC p15, 0, Rd, c6, c0, 1

MCR p15, 0, Rd, c6, c0, 1

MRC p15, 0, Rd, c6, c0, 5

MCR p15, 0, Rd, c6, c0, 5

MRC p15, 0, Rd, c6, c{0-7}, 0

MCR p15, 0, Rd, c6, c{0-7}, 0

Read Data Fault Address Register when using MMU.
Write Data Fault Address Register when using MMU.
Read Data Fault Address Register when using MPU.
Write Data Fault Address Register when using MPU.
Read Instruction Fault Address Register when using MMU.
Write Instruction Fault Address Register when using MMU.
Read Instruction Fault Address Register when using MPU.
Write Instruction Fault Address Register when using MPU.
Read Protection Region Register when using MPU.
Write Protection Region Register when using MPU.

Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-33
Page 3-34
Page 3-34

MCR p15, 0, Rd, c7, c5, 0

MCR p15, 0, Rd, c7, c5, 1

MCR p15, 0, Rd, c7, c5, 2

MCR p15, 0, Rd, c7, c6, 0
MCR p15, 0, Rd, c7, c6, 1
MCR p15, 0, Rd, c7, c6, 2

MCR p15, 0, Rd, c7, c7, 0

MCR p15, 0, Rd, c7, c10, 1

MCR p15, 0, Rd, c7, c10, 2

MCR p15, 0, Rd, c7, c14, 1

MCR p15, 0, Rd, c7, c14, 2

MRC p15, 0, R15, c7, c10, 3

MRC p15, 0, R15, c7, c14, 3

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

MCR p15, 0, Rd, c7, c10, 4

MCR p15, 0, Rd, c7, c13, 1

Invalidate entire ICache.
Invalidate ICache line, MVA format.
Invalidate ICache line, set/way format.
Invalidate entire DCache. Invalidates clean and dirty data.
Invalidate DCache line, MVA format. Invalidates clean and dirty data.
Invalidate DCache line, set/way format. Invalidates clean and dirty data.
Invalidate entire DCache and ICache. Invalidates clean and dirty data.
Clean DCache line, MVA format.
Clean DCache line, set/way format.
Clean and invalidate DCache line, MVA format.
Clean and invalidate DCache line, set/way format.
Test and clean DCache.
Test, clean, and invalidate DCache.
Wait for interrupt.

Drain pending write buffer.
Prefetch ICache line, MVA format.

Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36
Page 3-36

Page 3-36
Page 3-36

MCR p15, 0, Rd, c8, c7, 0

MCR p15, 0, Rd, c8, c5, 0

MCR p15, 0, Rd, c8, c6, 0

MCR p15, 0, Rd, c8, c7, 1

MCR p15, 0, Rd, c8, c5, 1

MCR p15, 0, Rd, c8, c6, 1

Invalidate all unlocked TLB entries when using MMU.
Invalidate all unlocked TLB entries when using MMU.
Invalidate all unlocked TLB entries when using MMU.
Invalidate single TLB entry, MVA format when using MMU.
Invalidate single TLB entry, MVA format when using MMU.
Invalidate single TLB entry, MVA format when using MMU.

Page 3-40
Page 3-40
Page 3-40
Page 3-40
Page 3-40
Page 3-40

MRC p15, 0, Rd, c9, c0, 0

MCR p15, 0, Rd, c9, c0, 0

MRC p15, 0, Rd, c9, c0, 1

MCR p15, 0, Rd, c9, c0, 1

Read DCache Lockdown Register.
Write DCache Lockdown Register.
Read ICache Lockdown Register.
Write ICache Lockdown Register.

Page 3-41
Page 3-41
Page 3-41
Page 3-41

Table 3-64 CP15 instruction summary (continued)

Instruction Operation Reference
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 3-71

Programmer’s Model
MRC p15, 0, Rd, c9, c1, 0

MCR p15, 0, Rd, c9, c1, 0

MRC p15, 0, Rd, c9, c1, 1

MCR p15, 0, Rd, c9, c1, 1

Read DTCM Region Register.
Write DTCM Region Register.
Read ITCM Region Register.
Write ITCM Region Register.

Page 3-44
Page 3-44
Page 3-44
Page 3-44

MRC p15, 0, Rd, c10, c0, 0

MCR p15, 0, Rd, c10, c0, 0

Read TLB Lockdown Register when using MMU.
Write TLB Lockdown Register when using MMU.

Page 3-46
Page 3-46

MRC p15, 0, Rd, c13, c0, 0

MCR p15, 0, Rd, c13, c0, 0

MRC p15, 0, Rd, c13, c0, 1

MCR p15, 0, Rd, c13, c0, 1

Read FCSE Process ID Register when using MMU.
Write FCSE Process ID Register when using MMU.
Read Context ID Register.
Write Context ID Register.

Page 3-49
Page 3-49
Page 3-52
Page 3-52

MRC p15, 0, Rd, c15, c0, 0

MCR p15, 0, Rd, c15, c0, 0

MRC p15, 0, Rd, c15, c0, 2

MCR p15, 0, Rd, c15, c0, 2

MRC p15, 0, Rd, c15, c1, 0

MCR p15, 0, Rd, c15, c1, 0

MRC p15, 0, Rd, c15, c2, 0

MCR p15, 0, Rd, c15, c2, 0

MRC p15, 4/5, Rd, c15, c2, 0

MCR p15, 4/5, Rd, c15, c3, 0

MRC p15, 4/5, Rd, c15, c4, 0

MCR p15, 4/5, Rd, c15, c5, 0

MCR p15, 4/5, Rd, c15, c7, 0

MRC p15, 4/5, Rd, c15, c2, 1
MCR p15, 4/5, Rd, c15, c3, 1
MRC p15, 4/5, Rd, c15, c4, 1

MCR p15, 4/5, Rd, c15, c5, 1

MCR p15, 4/5, Rd, c15, c7, 1

MRC p15, 7, Rd, c15, c0, 0

MCR p15, 7, Rd, c15, c0, 0

MRC p15, 7, Rd, c15, c1, 0

MCR p15, 7, Rd, c15, c1, 0

Read Debug Override Register.
Write Debug Override Register.
Read Prefetch Unit Debug Override Register.
Write Prefetch Unit Debug Override Register.
Read Debug and Test Address Register.
Write Debug and Test Address Register.
Read Memory Region Remap Register.
Write Memory Region Remap Register.
Read tag in main TLB entry.
Write tag in main TLB entry.
Read PA and access permission data in main TLB entry.
Write PA and access permission data data in main TLB entry.
Transfer main TLB entry into RAM.
Read tag in lockdown TLB entry.
Write tag in lockdown TLB entry.
Read PA and access permission data in lockdown TLB entry.
Write PA and access permission data in lockdown TLB entry.
Transfer lockdown TLB entry into RAM.
Read Cache Debug Control Register.
Write Cache Debug Control Register.
Read MMU Debug Control Register.
Write MMU Debug Control Register.

Page 3-53
Page 3-53
Page 3-55
Page 3-55
Page 3-56
Page 3-56
Page 3-57
Page 3-57
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-60
Page 3-65
Page 3-65
Page 3-67
Page 3-67

Table 3-64 CP15 instruction summary (continued)

Instruction Operation Reference
3-72 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 4
Clocking and Reset Timing

This chapter describes the relationship between the processor clock, the AHB clock,
and the DBGTAP test clock. It also describes the two ARM1026EJ-S reset signals. It
contains the following sections:

• About clock and reset signals on page 4-2

• Clock interfaces on page 4-3

• Reset on page 4-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 4-1

Clocking and Reset Timing
4.1 About clock and reset signals

CLK is the single global processor clock signal. It drives:

• the ARM10EJ-S integer unit

• the data and instruction AHB interfaces

• the JTAG DBGTAP state machine and logic.

All processor outputs change on the rising edge of CLK, and all inputs are sampled on
the rising edge. CLK can be stretched in either phase.

The overall clocking scheme for the ARM1026EJ-S processor is as follows:

• HCLK and CLK must have coincident rising edges

• CLK can run at higher frequencies than HCLK if it is an integer multiple of
HCLK

• the integer unit, caches, MMUs, and any coprocessors run at CLK speed

• the AHB interface runs at HCLK speed, where HCLK = CLK/(1, 2, 3, 4, ...) or
HCLK:CLK = N:1 (N = 1, 2, 3, 4, ...).

Figure 4-1 shows how HCLK is derived from CLK. In this example, the HCLK:CLK
ratio is 4:1.

Figure 4-1 HCLK derivation

The ARM1026EJ-S reset signal, HRESETn, resets all logic except DBGTAP logic.
DBGnTRST is the DBGTAP reset signal.

HCLKEN

CLK

HCLK
4-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Clocking and Reset Timing
4.2 Clock interfaces

The AHB clock enable signals, HCLKENI and HCLKEND, and the DBGTAP clock
enable signal, DBGTCKEN, must be integer multiples of the processor clock, CLK.

4.2.1 AHB clock interface

The synthesizable AHB design restricts AHB operation frequency to be an integer
multiple of CLK. HCLKENI and HCLKEND are the independent clock enable
signals for the instruction and data AHB interfaces. To support multilayer AHB
operation, the AHB the clock enable signals can be different integer multiples of CLK.

4.2.2 DBGTAP clock interface

The synthesizable DBGTAP design restricts the frequency of the test clock, TCK, to an
integer multiple of CLK. The DBGTAP clock enable, DBGTCKEN, must also be an
integer multiple of CLK.

Figure 4-2 shows how TCK is derived from CLK. In this example, the TCK:CLK
ratio is 4:1.

Figure 4-2 TCK derivation

DBGTCKEN

CLK

TCK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 4-3

Clocking and Reset Timing
4.3 Reset

There are two ARM1026EJ-S reset inputs:

HRESETn Controls all non-JTAG DBGTAP logic. HRESETn must be asserted for
a minimum of eight CLK cycles as Figure 4-3 shows. After HRESETn
deassertion, the processor begins fetching instructions after 20 cycles,
including the deassertion cycle.

Figure 4-3 HRESETn assertion

DBGnTRST Resets DBGTAP logic. You can hold the processor in reset while
removing the DBGTAP logic reset to program the ARM1026EJ-S debug
hardware.

HRESETn

CLK

8 cycles minimum
4-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 5
Prefetch Unit

This chapter describes how the prefetch unit fetches instructions to feed to the integer
unit and coprocessors, and how it locates branches in the instruction stream for
predicting potential changes in sequential instruction issue. It also describes the SWI
functions useful for flushing the prefetch buffer. It contains the following sections:

• About the prefetch unit on page 5-2

• Branch prediction activity on page 5-3

• Branch instruction cycle summary on page 5-6

• Instruction memory barriers on page 5-8.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 5-1

Prefetch Unit
5.1 About the prefetch unit

The prefetch unit is responsible for fetching instructions from the memory system as
required by the integer unit and coprocessors. The prefetch unit fetches instructions at
up to twice the rate that the integer unit requires them, and the prefetch buffer holds up
to four instructions. The prefetch buffer enables the prefetch unit to:

• detect branches several instructions ahead of the currently issuing instruction

• predict branches that are likely to be taken

• predict subroutine calls

• predict leaf subroutine returns

• remove those branches that are not likely to be taken.

The bus from the memory system to the prefetch unit is 64 bits wide. It can supply two
ARM instruction words from a doubleword-aligned address every clock cycle.

Branch prediction enables the prefetch unit to provide the branch target instruction to
the integer unit earlier than if no prediction mechanism is used. Branch prediction
increases processor performance by minimizing the cycle time of branch instructions.
When the prefetch unit predicts a branch as taken, it calculates the target address and
fetches instructions from the new address. Depending on how full the prefetch buffer is
at the time the prediction is made, the predicted branch can be reduced to three, two,
one, or zero cycles. When the prefetch unit predicts a branch as not taken, it removes
the branch from the instruction stream passed to the integer unit. It still calculates the
target address of the branch in case the prediction is incorrect. The prediction
mechanism is static. It uses no history information. Conditional forward branches are
predicted as not taken and conditional backward branches are predicted as taken.

The prefetch unit performs branch prediction only when the Z bit is set in the CP15 c1
Control Register.

The prefetch unit also contains a one-entry return stack. Predicted subroutine calls push
the return address into a buffer within the prefetch unit. Subroutines that do not call
other subroutines are called leaf functions. These subroutines can use the BX LR
instruction to return to the caller. Legacy code may also use a MOV PC, LR instruction
where ARM and Thumb state switching is not necessary.
5-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Prefetch Unit
5.2 Branch prediction activity

The prefetch unit predicts all conditional branches.

When the prefetch unit predicts a branch as taken, it speculatively prefetches from the
target address. In speculative prefetching, all cache hits result in an instruction fetched
into the prefetch buffer. Cache misses and noncachable accesses in speculative
prefetching do not initiate a linefill from memory until the integer unit first resolves the
flags and the prediction is confirmed.

5.2.1 Branch folding

Depending on how many instructions are in the prefetch buffer at the time a branch is
predicted, the branch may be completely removed from the instruction stream. This
means:

• A branch is pulled from the instruction stream based on a prediction.

• The predicted next instruction is substituted in place of this branch.

• No empty instruction issue slots results from the process.

Under these circumstances, the branch itself takes zero cycles because it is removed
altogether from the instruction stream to the integer unit. This type of branch removal
that involves direct substitution of another instruction is called branch folding. The
condition codes of the predicted branch are folded onto the predicted next instruction,
and only a single instruction is issued to the integer unit. The condition codes of the
predicted branch are called the branch phantom. The substituted instruction is the
folded instruction.

5.2.2 Flushing the prefetch buffer

The prefetch buffer is flushed in all the following cases:

• entry into an exception processing sequence

• a load to the PC

• an arithmetic manipulation of the PC

• execution of an unpredicted branch

• detection of an mispredicted branch.

The only changes to sequential instruction fetching that do not automatically flush the
prefetch buffer are a predicted taken branch and a predicted return instruction.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 5-3

Prefetch Unit
5.2.3 Branch penalty

Mispredicted branches and unpredicted taken branches have a four-cycle penalty
(assuming ICache hit). Here penalty means the number of cycles in which no useful
Execute stage pipeline activity can occur due to an instruction flow differing from that
assumed or predicted. Table 5-1 illustrates this penalty for the case of a mispredicted
branch. Cycles 2, 3, 4, and 5 have nothing valid in Execute stage. The activity is similar
for an unpredicted branch that is taken. Unpredicted branches that are not taken
consume their normal Execute stage and have no branch penalty.

5.2.4 Optimization of branch instructions

This is a complete list of the branch optimizations performed by the branch prediction
unit:

• ARM and Thumb conditional branches are predicted taken and potentially
reduced to zero cycles if they branch backwards.

• ARM and Thumb conditional branches are predicted not taken and potentially
reduced to zero cycles if they branch forward.

• ARM and Thumb unconditional branches are predicted taken and potentially
reduced to zero cycles.

• ARM unconditional BL and BLX instructions are predicted taken and potentially
reduced to one cycle.

• A Thumb BL pair (always unconditional) is predicted taken and potentially
reduced to one cycle. The pair of instructions must be consecutive in memory for
them to be predicted.

Table 5-1 Penalty for a mispredicted branch

Cycle Pipeline stage Activity

1 Execute Branch phantom, probably with a folded instruction.
Condition code evaluation results in misprediction. All
instructions in earlier pipeline stages are canceled. Folded
instructions are canceled.

2, 3 Fetch Correct branch target address sent to memory system.
Correct target instruction returned from memory system.

4 Issue Correct instruction in Issue stage.

5 Decode Correct instruction in Decode stage.

6 Execute Correct instruction in Execute stage.
5-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Prefetch Unit
• A Thumb BLX pair (always unconditional) is predicted taken and potentially
reduced to one cycle. The pair of instructions must be consecutive in memory for
them to be predicted.

When BL and BLX instructions are predicted, the instruction is changed into a link
instruction and a branch instruction. The link part of the instruction is passed to the
integer unit as a special MOV LR instruction. The branch part is predicted taken.

Branches are not predicted in any of the following cases:

• the Z bit in the CP15 c1 Control Register is clear

• a Prefetch Abort occurs when fetching the instruction

• a breakpoint is set on the instruction address

• the processor is in Jazelle state

• the branch immediately precedes another predictable branch. For example:
BEQ ERROR
BNE LOOP

Note
 In this case, BNE is not predicted.

5.2.5 Return stack

The prefetch unit also contains a one-entry return stack. Predicted subroutine call
instructions (BL and BLX instructions) push the return address and caller ARM/Thumb
state into a buffer within the prefetch unit. The BL and BLX instructions place the
return PC into the Link Register (LR). Subroutine that call other subroutines must save
this register onto a memory stack. Subroutines that do not call other subroutines, called
leaf functions, keep the return address in the link register and use the BX LR instruction
to return to the caller. Legacy code may also use the MOV PC, LR instruction where
ARM and Thumb state interworking is not required. These two instructions are
predicted, with the stored address and mode being the next fetch address. If the
predicted return address does not match the value of LR or the mode does not match,
then a mispredict occurs and the pipeline is flushed.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 5-5

Prefetch Unit
5.3 Branch instruction cycle summary

The number of cycles taken by the ARM10 processor to execute branch instructions
depends primarily on:

• Whether or not the branch is predicted.

• Whether or not the predicted branch is correct.

• What direction the predicted branch takes, forward or backward.

• The number of instructions in the prefetch buffer ahead of the branch at the time
the prediction is made. The prefetch buffer continues to issue instructions while
a predicted branch target instruction is being fetched.

Table 5-2 shows the instruction cycle counts for all ARM and Thumb branches. The
cycle counts are based on ICache hits, because the cycle counts of ICache misses and
noncachable accesses vary widely as a function of system and implementation
characteristics.

Instructions are listed here by their ARM Architecture Reference Manual name. Some
instructions have multiple variations that distinguish unique characteristics among a
common instruction, for example Thumb B(1) and Thumb B(2).

Table 5-2 ARM and Thumb branch instruction cycle counts

Unpredicted
condition code Predicted correctly Predicted incorrectly

Instruction Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken

ARM instructions

B uncond a 5 0-3 0-3 b b

B cond 1 5 0-3 0c 5 5

BL uncond a 5 1-3 d, e 1-3 d, e b b

BL cond 2 5 e e e e

BLX(1) uncond a 5 1-3 d, e 1-3 d, e b b

BLX(2) uncond a 5 f f f f

BLX(2) cond 2 5 f f f f

BX uncond a 5 f f f f
5-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Prefetch Unit
BX cond 2 5 f f f f

BX LR - - 1g 1g 6 6

MOV PC,LR - - 1g 1g 6 6

Thumb instructions

B(1) cond 1 5 0-3 0b 5 5

B(2) uncond a 5 0-3 0-3 b b

BL uncond a 7h 1-3d 1-3d, e b b

BLX(1) uncond a 7h 1-3d 1-3d, e b b

BLX(2) uncond a 5 f f f f

BX uncond a 5 f f f f

BX LR - - 1g 1g 6 6

MOV PC,LR - - 1g 1g 6 6

a. Unconditional branches (either unconditional by instruction definition or by using cond code AL, always) cannot fail
condition codes.

b. Unconditional branches, when predicted, can never be mispredicted.
c. All forward branches are predicted only when prefetch buffer contains at least two instructions, the branch being predicted

and its preceding instruction.
d. ARM and Thumb BL and BLX instructions can never be reduced to 0 cycles by prediction because the link operation

necessarily consumes a cycle.
e. ARM and Thumb BL and BLX instructions are only predicted if unconditional, in which case they are predicted taken

irrespective of direction (guaranteed to be correct).
f. ARM and Thumb BX and BLX(2) instructions are not PC-relative. They cannot be predicted except for the special case of

BX LR and MOV PC, LR when used as return instructions.
g. The leaf return instructions are only predicted if unconditional, in which case they are predicted taken irrespective of

direction (guaranteed to be correct).
h. Thumb BL and BLX(1) instructions are encoded as two Thumb instructions. The first of these is a data processing

instruction that puts an immediate value into r14 and then fetches from that address. This second instruction takes five
cycles before the next instruction is in Execute.

Table 5-2 ARM and Thumb branch instruction cycle counts (continued)

Unpredicted
condition code Predicted correctly Predicted incorrectly

Instruction Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 5-7

Prefetch Unit
5.4 Instruction memory barriers

The prefetch unit performs speculative prefetching of instructions. In some
circumstances it is likely that the prefetch buffer contains out-of-date instructions. In
these circumstances the prefetch buffer must be flushed. An Instruction Memory
Barrier (IMB) sequence provides a means to do this.

You can include processor-specific code in the SWI handler to implement the two IMB
sequences:

IMB The IMB sequence flushes all information about all instructions.

IMBRange When only a small area of code is altered before being executed, the
IMBRange sequence can efficiently and quickly flush any stored
instruction information from addresses within a small range. By flushing
only the required address range information, the rest of the information
remains to provide improved system performance.

The IMB and IMBRange sequences are implemented as calls to specific SWI numbers.

5.4.1 Generic IMB use

Use SWI functions to provide a well-defined interface between code that is:

• independent of the ARM processor implementation on which it is running

• specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with a function that is available on
all processor implementations through the SWI interface, and that can be accessed by
privileged and, where appropriate, nonprivileged (User mode) code.

Using SWIs to implement the IMB instructions means that code that is written now
remains compatible with future ARM processors, even if those processors implement
IMB in different ways. This is achieved by changing the operating system SWI service
routines for each of the IMB SWI numbers that differ from processor to processor.

5.4.2 IMB implementation

Executing the SWI instruction is sufficient to cause IMB operation. Also, both the IMB
and the IMBRange sequences flush all stored information about the instruction stream.

This means that all IMB instructions can be implemented in the operating system by
returning from the IMB/IMBRange service routine and that the service routines can be
exactly the same. The following service routine code can be used:
5-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Prefetch Unit
IMB_SWI_handler
IMBRange_SWI_handler

MOVS PC, R14_svc ; Return to the code after the SWI call

Note

 In new code, you are strongly encouraged to use the IMBRange sequence whenever the
changed area of code is small, even if there is no distinction between it and the IMB
sequence. Future ARM processors might implement a faster and more efficient
IMBRange sequence, and code migrated from this ARM processor can benefit when
executed on future ARM processors.

5.4.3 Execution of IMB sequences

This section gives examples that show what should happen during IMB sequences. The
pseudocode in the square brackets shows what should happen in the SWI routine.

Loading code from disk

Code that loads a program from a disk and then branches to the entry point of that
program must use an IMB sequence after loading the program and before executing it:

IMB EQU 0xF00000
.
.

; code that loads program from disk
.
.
SWI IMB

[branch to IMB service routine]
[perform processor-specific operations to execute IMB]
[return to code]
.

MOV PC, entry_point_of_loaded_program
.
.

Running BitBlt code

Compiled BitBlt routines optimize large copy operations by constructing and executing
a copying loop that has been optimized for a particular operation. When writing such a
routine, an IMB is required between the code that constructs the loop and the execution
of the constructed loop:
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 5-9

Prefetch Unit
IMBRange EQU 0xF00001
.
.

; code that constructs loop code
; load R0 with the start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange

[branch to IMBRange service routine]
[read registers R0 and R1 to set up address range parameters]
[do processor-specific operations to execute IMBRange within address range]
[return to code]

; start of loop code
.
.

Self-decompressing code

When writing a self-decompressing program, an IMBmust be issued after the routine
that decompresses the bulk of the code and before the decompressed code is to be
executed:

IMB EQU 0xF00000
.
.

; copy and decompress bulk of code
SWI IMB

; start of decompressed code
5-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 6
Bus Interface

This chapter describes the features of the bus interface not covered in the AMBA
Specification. It contains the following sections:

• About the bus interface on page 6-2

• Bus transfer characteristics on page 6-3

• Bus transfer cycle timing on page 6-8

• Topology on page 6-23

• Endianness of BIU transfers on page 6-24

• 64-bit and 32-bit AHB data buses on page 6-25.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-1

Bus Interface
6.1 About the bus interface

The ARM1026EJ-S processor is designed to be used within larger chip designs using
the Advanced Microcontroller Bus Architecture (AMBA). The ARM1026EJ-S
processor uses the AMBA High-performance Bus Lite (AHB-Lite) interface to memory
and peripherals.

To make your design reusable with future revisions of ARM processors, use fully
AMBA-compliant peripherals and interfaces early in your design cycle.

The ARM1026EJ-S processor uses separate AHB bus interfaces for instructions and
data:

• Instruction Bus Interface Unit (IBIU)

• Data Bus Interface Unit (DBIU).

Separate bus interfaces enhance the ability to fetch and execute instructions in parallel
with a DCache miss. There is no sharing of any AHB signals between the two
interfaces.

The I64n32 and D64n32 pins independently configure the instruction and data
interfaces to widths of 32 or 64 bits respectively.

The ARM1026EJ-S processor has unidirectional inputs, outputs, and control signals
that are always driven. Because the processor is AHB-Lite compliant, it always drives
a valid sequential, nonsequential, or idle AHB transfer.

For a complete description of AMBA, including the AHB bus and the AMBA test
methodology see the AMBA Specification.

The BIU handles the following transfers:

• cachable instruction and data read transfers

• noncachable instruction and data read transfers

• buffered data write transfers

• nonbuffered data write transfers

• noncachable nonbuffered data swaps

• data eviction write transfers

• hardware page table walk data read transfers.
6-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
6.2 Bus transfer characteristics

The bus interface handles all data transfers and instruction transfers between the core
clock domain and the AMBA bus clock domain. Any request from the prefetch unit or
the LSU that has to go outside the ARM1026EJ-S processor is handled by the bus
interface in a way that is transparent to the prefetch unit and the LSU.

The types of AMBA bus transfers are:

• MMU generated page table walks

• noncachable instruction fetches and data loads

• nonbuffered data stores

• instruction and data linefills

• data evictions due to replacement or CP15 operations

• buffered data stores

• noncachable nonbufferable data swap operations.

Each of the AMBA AHB bus transfers generates a signature. For design flexibility, the
BIU supports 32-bit and 64-bit instruction and data buses. The bus width affects the
signature generated by the BIU.

Table 6-1 on page 6-4 and Table 6-2 on page 6-5 list the types of DBIU and IBIU
transfers and their characteristics.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-3

Bus Interface
Table 6-1 DBIU transfer characteristics

Transfer B
u

s
w

id
th

HADDRDa HTRANSDb HPROTDc HSIZED H
B

U
R

S
T

D

H
L

O
C

K
D

H
W

R
IT

E
D

H
xD

A
TA

D

MMU page
table walk

32 [31:2] b00 NS [c b 1 1] 32 Single 0 0 [31:0]

64 [31:2] b00 NS [c b 1 1] 32 Single 0 0 [63:0]

Noncachable
load

32 [31:0] NS [c b p 1] 8, 16, 32 Single 0 0 [31:0]

32 [31:3] bbb NS-S [c b p 1] 32d Incr 0 0 [63:0]

64 [31:3] bbb NS [c b p 1] 8, 16, 32, 64 Single 0 0 [63:0]

Nonbufferable
store

32 [31:0] NS [c b p 1] 8, 16, 32 Incr 0 1 [31:0]

32 [31:3] bbb NS-S [c b p 1] 32d Incr 0 1 [63:0]

64 [31:3] bbb NS [c b p 1] 8, 16, 32, 64 Incr 0 1 [63:0]

Buffered
store

32 [31:2] bb NS-S-S- . . . -S [c b p 1] 8, 16, 32 Incr 0 1 [31:0]

64 [31:3] bbb NS-S-S- . . . -S [c b p 1] 8, 16, 32, 64 Incr 0 1 [63:0]

Cachable
linefill

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 1] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 1] 64 Wrap4 0 0 [63:0]

Eviction/
castout

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b 1 1] 32 Incr8 0 1 [31:0]

64 [31:3] b000 NS-S-S-S [c b 1 1] 64 Incr4 0 1 [63:0]

Swap (load) 32 [31:2] b00 NS [c b p 1] 32 Single 1 0 [31:0]

Swap (store) 32 [31:2] b00 NS [c b p 1] 32 Single 1 1 [31:0]

Swap (load) 64 [31:2] b00 NS [c b p 1] 32 Single 1 0 [63:0]

Swap (store) 64 [31:2] b00 NS [c b p 1] 32 Single 1 1 [63:0]

a. See Transfer size on page 6-6.
b. See Sequential and nonsequential transfers on page 6-6.
c. See BIU protection control on page 6-6.
d. The internal 64-bit request is converted to two 32-bit transfers to match the AHB bus width.
6-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Table 6-2 lists the IBIU transfer types and their characteristics.

Table 6-2 IBIU transfer characteristics

Transfer A
H

B
 b

u
s

w
id

th
HADDRIa HTRANSIb HPROTIc HSIZEI H

B
U

R
S

T
I

H
L

O
C

K
I

H
W

R
IT

E
I

H
xD

A
TA

Id

Noncachable
fetche

32 [31:2] bb NS [c b p 0] 16, 32 Single 0 0 [31:0]

32 [31:3] bbb NS-S [c b p 0] 32f Incr 0 0 [63:0]

64 [31:3] bbb NS [c b p 0] 16, 32, 64 Single 0 0 [63:0]

Noncachable
fetchg

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 0] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 0] 64 Wrap4 0 0 [63:0]

Cachable
linefill

32 [31:2] b00 NS-S-S-S-S-S-S-S [c b p 0] 32 Wrap8 0 0 [31:0]

64 [31:3] b000 NS-S-S-S [c b p 0] 64 Wrap4 0 0 [63:0]

a. See Transfer size on page 6-6.
b. See Sequential and nonsequential transfers on page 6-6.
c. See BIU protection control on page 6-6.
d. See AHB reads on page 6-7.
e. With noncachable prefetching disabled by setting CP15 c15 Debug Override Register bit 16, DNCP.
f. The internal 64-bit request is converted to two 32-bit transfers to match the AHB bus width.
g. With noncachable prefetching enabled by clearing CP15 c15 Debug Override Register bit 16, DNCP.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-5

Bus Interface
6.2.1 Transfer size

HSIZE[2:0] defines transfer size and determines values of low-order address bits
HADDR[2:0], which appear in the HADDR column of Table 6-1 on page 6-4 and
Table 6-2 on page 6-5 as b, bb, or bbb. An eight-bit transfer does not affect
HADDR[2:0]. A 16-bit transfer forces HADDR[0] to 0. A 32-bit transfer forces
HADDR[1:0] to b00. A 64-bit transfer forces HADDR[2:0] to b000.

6.2.2 Sequential and nonsequential transfers

The HTRANS column in Table 6-1 on page 6-4 and Table 6-2 on page 6-5 shows
whether transfers are sequential (S) or nonsequential (NS). Any burst of four elements
is always an NS-S-S-S transfer. Any burst of eight elements is always an
NS-S-S-S-S-S-S-S transfer. In a DBIU buffered store, the burst can be from one to n
elements, shown as NS-S-S- . . . -S. The n value is the number of sequential data stores
calculated at run-time for all forms of store instructions defined in the ARM
Architectural Reference Manual.

6.2.3 BIU protection control

The four HPROT[3:0] signals indicate the four protection attributes:

• cachability

• bufferability

• accessibility (User or privileged)

• transfer type (instruction or data).

For page table walks, the cachability and bufferability attributes (c and b in the HPROT
column of Table 6-1 on page 6-4 and Table 6-2 on page 6-5) reflect the L2C and L2B
bits in the CP15 c2 Translation Table Base Register. For all other AHB accesses using
the MMU, c and b reflect the C and B bits in the level 1 and level 2 descriptors. For
accesses using the MPU, c and b reflect the C and B bits for the protection region. The
p (privileged) attribute reflects the decoding of the mode bits in the CPSR. HPROT[0]
is set for data accesses and cleared for opcode fetches.
6-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
AHB swap operations

The DBIU can perform locked bus transfers only for ARM swap instructions. It begins
the swap operation by asserting HLOCKD and performing a locked nonsequential
read. The DBIU monitors the AHB for an error response to the nonsequential read.

If the nonsequential read returns an AHB error response, the ARM1026EJ-S processor
terminates the swap operation and does not perform the locked nonsequential write. The
locked indicator is deasserted in the cycle following the return of the AHB error
response.

If the nonsequential read does not return an AHB error response, the DBIU keeps
HLOCKD asserted until the ARM1026EJ-S processor performs the nonsequential
write. Until the nonsequential write begins, the DBIU issues idle AHB cycles.

6.2.4 AHB reads

In an AHB read, the memory system must drive HRDATA according to the state of
HADDR[2], which defines the half of the bus that contains valid data. When
HADDR[2] = 0, HRDATA[31:0] contains the valid transfer data. When
HADDR[2] = 1, HRDATA[63:32] contains the valid transfer data. The only exception
to this rule is in 64-bit transfers, in which case HRDATA[63:0] contains valid data.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-7

Bus Interface
6.3 Bus transfer cycle timing

Transfer cycle counts are affected by:

• 64-bit or 32-bit AHB width.

• Transfer size.

• AHB wait states.

• HCLK-to-CLK frequency ratio.

• Proximity of the transfer to other transfers. The cycle count of an isolated transfer
can differ from the cycle count of the same transfer when it occurs in a series of
other transfers. Pipelining of address phase and data phase activity with other
transfers reduces the effective cycle count of each transfer.

• Presence of valid TLB and cache entries at the time of the transfer request.

This section contains cycle-count equations and diagrams of common AHB transfers.
The equations represent the effective total number of cycles that the instruction remains
in the Memory stage of the integer core pipeline. The equations apply only to transfers
that are not affected by pipelining with other transfers. In the cycle-count diagrams, the
clock domain indicator G represents the internal clock, CLK, and H represents the AHB
clock, HCLK.

The common AHB transfer cycle counts described are:

• Cache linefill cycle count

• Cache castout cycle count on page 6-14

• Level 1 and level 2 table walk cycle count on page 6-16

• NC load and NCNB store cycle count on page 6-19.

6.3.1 Cache linefill cycle count

Clock cycle equations and diagrams for cache linefills are affected by the width of the
AHB interface as shown in:

• With a 64-bit AHB interface on page 6-9

• With a 32-bit AHB interface on page 6-11.
6-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
With a 64-bit AHB interface

The critical doubleword CLK cycles represent the total number of cycles the transfer
remains in the Memory stage of the integer core pipeline. The total number of critical
doubleword CLK cycles is:

5 + TW + (H × (2 + AC + AM + WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 2H = 7 CLK cycles.

The total number of CLK cycles for linefill completion includes critical doubleword
completion and completion of the linefill on the AHB. The total number of CLK cycles
for completing all words of a linefill is:

5 + TW + (H × (5 + AC + AM + 4 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 5H = 10 CLK cycles.

Table 6-3 defines the variables in the cycle-count equations for a cache linefill with a
64-bit AHB interface.

Figure 6-1 on page 6-10 shows the number of CLK and HCLK cycles in a cache
linefill using a 64-bit AHB interface.

Table 6-3 Definition of variables in cache linefills with 64-bit interface

Variable Definition

TW Number of table walk cycles (see Figure 6-5 on page 6-18)

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-9

Bus Interface
Figure 6-1 Cache linefill cycle count with 64-bit AHB

Table 6-4 defines the symbols used in Figure 6-1.

G

1

H

1+WS

H

1+AM

G+H

1
G
+AC

H

G

1+TW

G

1

EX
a

BIU
c

ME
b

ACK
d

DAT
f

ADR
e

2nd doubleword

3rd doubleword

4th doubleword

1st doublewordCAP
g Critical word

Clock domain

Cycles

ME WR
i

G

1

G

1

G

1

H

1+WS

WR
i

ME
h

CAP
gf

G

1

G

1

G

1

H

1+WS

WR
i

ME
h

CAP
gf

G

1

G

1

G

1

H

1+WS

WR
i

ME
h

CAP
gf

G

1

G

1

G

1

h

DAT

DAT

DAT

Memory stage stalled for linefill critical

doubleword

Table 6-4 Symbols used in linefill cycle counts with 64-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU

d BIU acknowledge cycle

e AHB address cycle

f AHB data cycle for doubleword

g BIU data capture cycle

h Critical doubleword valid in linefill buffer and in integer core ME pipeline stage

i Instruction retired in integer core and WR pipeline stage completes

G Internal clock, CLK

H AHB clock, HCLK
6-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
With a 32-bit AHB interface

Internally, there is fixed 64-bit interface between caches and the BIU. When the AHB
interface is configured to a 32-bit width, the BIU must accumulate words into
doubleword packets when responding to the cache linefill request.

The critical doubleword CLK cycles represent the total number of cycles the transfer
remains in the Memory stage of the integer core pipeline. The total number of critical
doubleword CLK cycles is:

5 + TW + (H × (3 + AC + AM + 2 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 3H = 8 CLK cycles.

The total number of CLK cycles for linefill completion includes critical doubleword
completion and completion of the linefill on the AHB. The total number of CLK cycles
for completing all words of a linefill is:

5 + TW + (H × (9 + AC + AM + 8 × WS))

The best case, with H = 1 and TW = AC = AM = WS = 0, is 5 + 9H = 14 CLK cycles.

Table 6-5 defines the variables in the cycle-count equations for a cache linefill with a
64-bit AHB interface.

Figure 6-2 on page 6-12 shows the number of CLK and HCLK cycles in a cache
linefill using a 32-bit AHB interface.

Table 6-5 Definition of variables in cache linefills with 32-bit interface

Variable Definition

TW Number of table walk cycles (see Figure 6-5 on page 6-18)

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-11

Bus Interface
Figure 6-2 Cache linefill cycle count with 32-bit AHB

Critical word

Clock domain

Cycles

Memory stage stalled for linefill critical

doubleword

G

1

G

1

G

1

H

1+WS

p
CAP

q
ME

r
WR

s

G

1

G

1

H

1+WS

CAP
q

ME
r

WR
s

H

1+WS

H

1+WS

CAP
h

WR
j

ME
i

8th

word

G

1

H

1+WS

H

1+AM

G

1+TW

G

1

EX
a

BIU
c

ME
b

ACK
d

DAT
f

ADR
e

2nd

word

3rd

word

4th

word

5th

word

6th

word

7th

word

1st

word

G

1

G

1

G

1

G

1

DAT
g

DAT

DAT
m

H

1+WS

G

1

G

1

G

1

H

1+WS

DAT
p

CAP
q

ME
r

WR
s

DAT
m

H

1+WS

DAT
p

DAT
m

G+H

1
G
+AC

H

6-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Table 6-6 defines the symbols in used in Figure 6-2 on page 6-12.

Table 6-6 Symbols used in linefill cycle counts with a 32-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU

d BIU acknowledge cycle

e AHB address cycle

f (m) AHB data cycle for first word in doubleword pair

g (p) AHB data cycle for second word in doubleword pair

h (q) BIU data capture cycle

i (r) Critical doubleword valid in linefill buffer and in integer core ME pipeline stage

j (s) Load retired in integer core and WR pipeline stage completes

G Internal clock, CLK

H AHB clock, HCLK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-13

Bus Interface
6.3.2 Cache castout cycle count

Clock cycle equations and diagrams for cache castouts are affected by the width of the
AHB interface as shown in:

• With a 64-bit AHB interface

• With a 32-bit AHB interface on page 6-16.

With a 64-bit AHB interface

The number of CLK cycles for completing a castout on the AHB using a 64-bit AHB
interface is:

NR + NA + H × (5 + AC + AM + (4 × WS))

The best case, with NR = 0, NA = H = 1 and AC = AM = WS = 0, is 6 CLK cycles.

Table 6-9 on page 6-17 defines the variables in the cycle-count equations for castouts.

Table 6-7 Definition of variables in castouts

Variable Definition

NR Number of CLK cycles , {0}, for cache request to BIU for castout under linefill

NA Number of CLK cycles to BIU acknowledgement
1 if WS = 0 and H = 1
0 if WS ≥ 1 or H ≥ 2

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to HCLK,
depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states
6-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Figure 6-3 shows the number of CLK and HCLK cycles in a cache castout using a
64-bit AHB interface.

Figure 6-3 Cache castout cycle count with 64-bit AHB interface

Table 6-8 defines the symbols used in Figure 6-3 and in Figure 6-4 on page 6-16.

G

1

H

1+AM

G

1+TW

Clock domain

Cycles

b c d

G

1

Cache linefill

ADRME BIU ACK DAT
1

fa

EX

H

1+WS

. . . DAT
4

f

H

1+WS

H

1+AM

g

G

NR

ADRBIU DAT
1

j

H

1+WS

. . . DAT
4

j

H

1+WS

e i

Cache castout

G+H

1
G
+AC

H

G+H

NA
G
+AC

H

h

ACK

Table 6-8 Symbols used in linefill cycle counts with 64-bit AHB

Symbol Definition

a Issue of request from integer core to memory system

b Cache lookup, miss determined

c Cache request to BIU for linefill

d BIU acknowledge cycle for linefill

e AHB address cycle for linefill

f AHB data cycle for linefill critical doubleword

g Cache request to BIU for castout

h BIU acknowledge cycle for castout

i AHB address cycle for castout

j AHB clock cycles for castout

G Internal clock, CLK

H AHB clock, HCLK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-15

Bus Interface
With a 32-bit AHB interface

The number of CLK cycles for completing a castout on AHB using a 32-bit AHB
interface is:

1 + H × (9 + AC + AM + (8 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 10 CLK cycles.

Refer to Table 6-7 on page 6-14 for the definition of the variables for castout
cycle-count equations.

Figure 6-4 shows the number of CLK and HCLK cycles in a cache castout using a
32-bit AHB interface.

Figure 6-4 Cache castout cycle count with 32-bit AHB interface

Refer to Table 6-7 on page 6-14 for the definition of the variables in castout cycle
counts with a 32-bit AHB interface.

6.3.3 Level 1 and level 2 table walk cycle count

The number of CLK cycles that the Memory pipeline stage is stalled during a level 1
and level 2 table walk is:

7 + NM + (H × (2 + AC + AM + WS)) + L2 × (2 +H × (2 + AC + AM + WS))

The best case for only a level 1 table walk (NM = 2 and L2 = 0), with H = 1 and
AC = AM = WS = 0, is 9 + 2H = 11 CLK cycles.

The best case for a level 1 and level 2 table walk (NM = 2 and L2 = 1), with H = 1 and
AC = AM = WS = 0, is 11 + 4H = 15 CLK cycles.

Table 6-9 on page 6-17 defines the variables in the cycle-count equations for level 1 and
level 2 table walks.

G

1

H

1+AM

G

1+TW

Clock domain

Cycles

b c d

G

1

Cache linefill

ADRME BIU ACK DAT
1

fa

EX

H

1+WS

. . . DAT
8

f

H

WR

H

1+AM

g h

G

NR

ADRBIU ACK DAT
1

j

H

1+WS

. . . DAT
8

j

H

1+WS

e i

Cache castout

.
G+H

1
G
+AC

H

G+H

1
G
+AC

H

6-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Table 6-9 Definition of variables in level 1 and level 2 table walks

Variable Definition

NM Number of lookups, {2, 4, 5, 6, 7, 8} required in main TLB, a function of the number of
valid page sizes and current page size in relation to last main TLB page size accessed

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples to
HCLK, depending on when transfer request appears in relation to HCLK rising edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous
transfer

WS Number of HCLK cycles, {0, 1, 2, . . .}, for AHB data phase wait states

L2 1 if level 1 and level 2 table walk
0 if level 1 table walk only
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-17

Bus Interface
Figure 6-5 shows the number of CLK and HCLK cycles in a level 1 and level 2 table
walk.

Figure 6-5 Level 1 and level 2 table walk cycle count

G

1

H

1+WS

H

1+AM

G

1

e

Clock domain

Cycles

G

1

G

1

H

1+WS

G

2

Memory stage stalled for table walk

ma b c d

G

NM

f g h i j

H

1+AM

k l n

G

2

G

Level 1

descriptor fetch

L1D

ACK

uTLB

calcEX uTLB mTLB
L1D

REQ

L1D

ADR

L1D

DAT

L2D

REQ

L2D

ACK

L2D

ADR

L2D

DAT

mTLB

calc ME

Level 2

descriptor fetch

G+H

1
G
+AC

H

G+H

1
G
+AC

H

6-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Table 6-10 defines the symbols used in Figure 6-5 on page 6-18.

6.3.4 NC load and NCNB store cycle count

Clock cycle counts for noncachable loads and noncachable, nonbufferable stores are
affected by the width of the AHB interface and by the size of the transfer as shown in:

• For a transfer with one data phase on page 6-20

• For a transfer with two data phases on page 6-22.

Table 6-10 Symbols used in level 1 and level 2 table walk cycle counts

Symbol Meaning

a Issue of load or store request from integer core to memory system

b uTLB lookup, miss determined

c Main TLB lookup

d AHB request for level 1 descriptor

e BIU acknowledge cycle

f AHB address cycle for level 1 descriptor

g AHB data cycle for level 1 descriptor

h AHB request cycle for level 2 descriptor

i BIU acknowledge cycle

j AHB address cycle for level 2 descriptor

k AHB data cycle for level 2 descriptor

l Main TLB result calculation

m uTLB result calculation

n Memory stage no longer stalled by table walk, and access underway in memory system

G Internal clock, CLK

H AHB clock, HCLK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-19

Bus Interface
For a transfer with one data phase

The number of CLK cycles that a noncachable load remains in the Memory stage of the
integer core pipeline is:

4 + (H × (2 + AC + AM + WS))

The best case, with H = 1 and AC = AM = WS = 0, is 4 + 2H = 6 CLK cycles.

The number of CLK cycles that a in a noncachable, nonbufferable store remains in the
Memory stage of the integer core pipeline is:

3 + (H × (2 + AC + AM + WS))

The best case, with H = 1 and AC = AM = WS = 0, is 3 + 2H = 5 CLK cycles.

Table 6-11 defines the variables in the cycle-count equations for noncachable loads and
noncachable, nonbufferable stores with one or two data phases.

Figure 6-6 on page 6-21 shows the number of CLK and HCLK cycles in noncachable
loads and noncachable, nonbufferable stores with a single data phase. A transfer with a
single data phase includes:

• a byte, halfword, word, or doubleword transfer on a 64-bit AHB interface

• a byte, halfword, or word transfer on a 32-bit AHB interface.

Table 6-11 Definition of variables in NC loads and NCNB stores

Variable Definition

H HCLK:CLK frequency ratio

AC Number of HCLK cycles, {0, 1, 2}, to synchronization point when CLK couples
to HCLK, depending on when transfer request appears in relation to HCLK rising
edge

AM Number of HCLK cycles, {0, 1, 2, . . .}, for completion of data phase of previous
transfer

WS Number of HCLK cycles for AHB data phase wait states
6-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
Figure 6-6 Cycle count of NC loads and NCNB stores with one data phase

Table 6-12 defines the symbols used in Figure 6-6.

G

1

G

NC

H

1+WS

G

1

ME stalled for transaction handling and

completion on AHB

a

H

1+AM

b

G

1

EX ME

c

G

1+TW

BIU

d

G

1

ACK

e

ADR

f

DAT

g

CAP

h

ME

i

WR

Clock domain

Cycles

G+H

1
G
+AC

H

Table 6-12 Symbols used in NC load and NCNB store cycle counts

Symbol Definition

a Issue of request from integer core to memory system

b External transfer queue entry

c External transfer queue request to BIU

d BIU acknowledge cycle

e AHB address cycle

f AHB data cycle

g BIU data capture cycle

h Data valid and transfer complete in integer core Memory pipeline stage

i Load retired in integer core and Write pipeline stage completes

NC Number of BIU data capture cycles:
1 if load
0 if store

G Internal clock, CLK

H AHB clock, HCLK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-21

Bus Interface
For a transfer with two data phases

Figure 6-7 shows the number of CLK and HCLK cycles in a noncachable load and a
noncachable, nonbufferable store using a 32-bit AHB interface.

The number CLK cycles that a noncachable load remains in the Memory stage of the
integer core pipeline is:

4 + (H × (3 + AC + AM + 2 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 4 + 3H = 7 CLK cycles.

The number CLK cycles that a noncachable, nonbufferable store remains in the
Memory stage of the integer core pipeline is:

3 + (H × (2 + AC + AM + 2 × WS))

The best case, with H = 1 and AC = AM = WS = 0, is 3 + 3H = 6 CLK cycles.

Refer to Table 6-11 on page 6-20 for the definitions of the variables in the equations for
noncachable loads and noncachable, nonbufferable stores.

Figure 6-7 shows the number of CLK and HCLK cycles in noncachable loads and
noncachable, nonbufferable stores with a double data phase. A transfer with a double
data phase is a doubleword transfer on a 32-bit AHB interface.

Figure 6-7 Cycle count of NC loads and NCNB stores with two data phases

Refer to Table 6-12 on page 6-21 for the definitions of the symbols in used in
Figure 6-7.

G

1

G

NC

H

1+WS

G

1

ME stalled for transaction handling and completion on

AHB

a

H

1+AM

b

G

1

EX ME

c

G

1+TW

BIU

d

G

1

ACK

e

ADR

f

DAT

g

CAP

h

ME

i

WR

Clock domain

Cycles

H

1+WS

f

DAT

G+H

1
G
+AC

H

6-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
6.4 Topology

The bus interface consists of two completely separate blocks:

• the IBIU handles all instruction fetches and linefills

• the DBIU performs all data loads and stores.

The DBIU performs all data page table walks and instruction page table walks for the
MMU. HPROTD[0] marks all page table walk transfers as data transfers.

Figure 6-8 shows the structure of the bus interface. The DBIU is on the left with control,
read, write, and address data path. The IBIU on the right has a read and an address data
path only because no writes ever happen on the instruction side. Both the IBIU and the
DBIU have a similar layer for transferring data or instructions to and from the HCLK
domain and further on to the rest of the AMBA system. The arrows illustrate the flow
of requests and data or instructions.

Figure 6-8 Bus interface block diagram

The DBIU and the IBIU are independent of each other. Because there is no efficient
way of communicating between the data and the instruction side, software must
appropriately handle any self-modifying code.

CLK domain

HCLK domain

Read

datapath
Control

Address

datapath

Address

datapath

Read

datapath

Write

datapath

DBIU IBIU

DCache, MMU, DExt (write buffer) ICache, IExt (NC prefetch engine)

AHB

Control
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-23

Bus Interface
6.5 Endianness of BIU transfers

The ARM1026EJ-S processor supports both little-endian and big-endian memory
systems. The CFGBIGEND output indicates the current endianness setting of the
processor and reflects the value of the B bit in the CP15 c1 Control Register.

Before changing the B bit, the software must first complete any outstanding load/store
operations and then drain the write buffer. Draining the write buffer forces all buffered
writes onto AHB in the appropriate endianess. Because all instructions fetches are at
least 32-bit transfers, changing the B bit does not affect instruction fetches on the AHB.

In addition to the CFGBIGEND output, the ARM1026EJ-S processor also has byte
lane strobe outputs for both instruction AHB requests and data AHB requests. The byte
lane strobes, HBSTRBI[7:0] and HBSTRBD[7:0], are encoded in little-endian format.
As Figure 6-9 shows, an HBSTRBx[7:0] value of 0x03 indicates halfword 0 in a
little-endian structure and halfword 1 in a big-endian structure. A value of 0x01 indicates
byte 0 in little-endian and byte 3 in big-endian.

Figure 6-9 Endianness of byte lane strobes

HBSTRBx [7] [6] [5] [4] [3] [2] [1] [0]

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0x3

0x1

byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

halfw ord 3 halfw ord 2 halfw ord 1 halfw ord 0

w ord 1 w ord 0

Little-endian data structure

byte 0 byte 1 byte 2 byte 3byte 4 byte 5 byte 6 byte 7

halfw ord 0 halfw ord 1halfw ord 2 halfw ord 3

w ord 0w ord 1

Big-endian data structure
6-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Bus Interface
6.6 64-bit and 32-bit AHB data buses

The instruction and data AHB interfaces of the ARM1026EJ-S processor can be
statically and independently configured to be 64 bits wide or 32 bits wide. This enables
you to integrate the processor into existing 64-bit or 32-bit AHB systems.

The alignment of the AHB buses is a function of their width. See Figure 6-10 on
page 6-26. If the AHB buses are 32 bits wide, then the both even and odd words appear
on HxDATAD[31:0] only, leaving the HxDATAD[63:32] inputs and outputs either
tied off or unconnected. If the AHB buses are 64 bits wide, then the even words must
always be mapped onto HxDATAD[31:0], and the odd words must always be mapped
onto HxDATAD[63:32].

Note

 In Figure 6-10 on page 6-26, the multiplexors represent hardware in the design
necessary to accommodate 32-bit/64-bit AHB configurability.

For 64-bit systems, the multiplexor select inputs are fixed so that HRDATAD[63:32]
is always passed to internal read data [63:32], and internal write data [31:0] is always
passed to HWDATAD[31:0].
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 6-25

Bus Interface
Figure 6-10 AHB bus alignment

Internal write data bits [31:0]

Internal write data bits [63:32]HWDATA[63:32] odd

HWDATA[31:0] even

Internal read data bits [63:32]

Internal read data bits [31:0]

HRDATA[63:32] odd

HRDATA[31:0] even

64-bit AHB bus alignment

32-bit AHB bus alignment

Internal write data bits [31:0]

Internal write data bits [63:32]HWDATA[63:32] unconnected

HWDATA[31:0] even/odd

Internal read data bits [63:32]

Internal read data bits [31:0]

HRDATA[63:32]

HRDATA[31:0] even/odd
6-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 7
Coprocessor Interface

This chapter contains information about the coprocessor interface. It contains the
following sections:

• About the coprocessor interface on page 7-2

• Coprocessor interface signals on page 7-3

• Design considerations on page 7-5

• Parallel execution on page 7-8

• Rules for the interface on page 7-9

• Pipeline signal assertion on page 7-10

• Instruction issue on page 7-11

• Hold signals on page 7-21

• Instruction cancelation on page 7-40

• Bounced instructions on page 7-47

• Data buses on page 7-53.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-1

Coprocessor Interface
7.1 About the coprocessor interface

The coprocessor interface enables you to attach multiple coprocessors (CPs) to the
ARM1026EJ-S processor. To limit the number of connections required by the interface,
each CP tracks the progress of instructions in the ARM1026EJ-S pipeline.

To enable optimum performance from CPs, the ARM1026EJ-S processor issues CP
instructions as early as possible. This means that the instructions are issued
speculatively, and they can be canceled later in the pipeline if, for example, an
exception or branch misprediction occurs. As a result, CPs must be able to cancel
instructions in late stages of the ARM1026EJ-S pipeline.

Simple CPs track the ARM1026EJ-S pipeline only until they are certain that a given
instruction is not going to be canceled. At this point the CP starts to execute the
instruction. More complex CPs make extensive use of the early issue of the instruction.

At certain points in the pipeline, a CP sends back signals to the ARM1026EJ-S
processor. These can indicate that the CP requires more time to execute or to indicate
that the undefined instruction exception must be taken.

7.1.1 CP pipeline

The CP pipeline runs one cycle behind the ARM1026EJ-S pipeline. This enables
pipeline holds from the ARM1026EJ-S processor to be registered before they are sent
to the CPs. Figure 7-1 shows the ARM1026EJ-S and CP pipeline stages.

Figure 7-1 ARM1026EJ-S and CP pipeline stages

CP pipeline

ARM10 pipeline WriteMemoryExecuteDecodeIssueFetch

WriteMemoryExecuteDecodeIssueFetch
7-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.2 Coprocessor interface signals

This section divides the CP signals according to function:

• ARM1026EJ-S instruction progression signals

• ARM1026EJ-S instruction cancelation signals

• CPBOUNCEE on page 7-4

• Busy-waiting instruction on page 7-4

• CP data buses on page 7-4

• CP control signals on page 7-4.

7.2.1 ARM1026EJ-S instruction progression signals

The signals that indicate instruction progression are:

CPINSTRV Valid CP instruction in ARM1026EJ-S Issue stage.

CPVALIDD Valid CP instruction in ARM1026EJ-S Decode stage.

ASTOPCPD ARM1026EJ-S processor stalled in Decode stage in previous
cycle.

ASTOPCPE ARM1026EJ-S processor stalled in Execute stage in previous
cycle.

LSHOLDCPE ARM1026EJ-S LSU stalled in Execute stage in previous cycle.

LSHOLDCPM ARM1026EJ-S LSU stalled in Memory stage in previous cycle.

7.2.2 ARM1026EJ-S instruction cancelation signals

Two signals indicate ARM1026EJ-S instruction cancelation:

ACANCELCP

Cancels only the instruction that was in ARM1026EJ-S Execute stage in
the previous cycle.

AFLUSHCP

Cancels all the instructions back from the one that was in ARM1026EJ-S
Execute stage in the previous cycle. AFLUSHCP overrides STOP and
VALID signals from the ARM1026EJ-S processor and causes BUSY
signals to be deasserted in the following cycle.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-3

Coprocessor Interface
7.2.3 CPBOUNCEE

The signal that indicates whether a CP can execute an instruction is:

CPBOUNCEE Takes the undefined instruction trap for the instruction that is in
the ARM1026EJ-S Execute stage.

7.2.4 Busy-waiting instruction

The signal that indicates whether a CP requires more time to process an instruction is:

CPBUSYE Busy-wait (stall) the ARM1026EJ-S Execute stage.

Note

 The ARM1026EJ-S processor has CPBUSYD1 and CPBUSYD2 inputs. These are
reserved for future expansion. Tie these off to a logic 0.

7.2.5 CP data buses

There are two 64-bit CP data buses:

• STCMRCDATA carries data from a CP to the ARM1026EJ-S processor

• LDCMRCDATA carries data from the ARM1026EJ-S processor to a CP.

7.2.6 CP control signals

CPLSLEN, CPLSSWP, and CPLSDBL are signals driven by a CP to the
ARM1026EJ-S processor on load/store CP instructions. They carry additional
information about:

• the length of the transfer

• if upper and lower half of the data bus must be swapped before being written

• if the load/store request is for double word data.

Note

 The ARM1026EJ-S processor has a CPABORT output that is reserved for future
expansion. Leave CPABORT unconnected.
7-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.3 Design considerations

This section outlines CP interface design considerations for single and multiple CPs.

7.3.1 Input and output timing

Almost all the signals on both sides of the interface must be driven straight out of
registers. This is necessary because there is very little timing slack in the interface.
There is very little timing slack because as few cycles as practical have been used to
process a given CP instruction. This enables very high performance CPs to be built. If
performance is not an issue, then timing across the interface can be greatly simplified
by stalling all CP instructions in situations where timing is an issue.

7.3.2 ARM1026EJ-S processor inputs and outputs

Outputs driven from the ARM1026EJ-S processor go to all the CPs in the system. The
inputs to the ARM1026EJ-S processor from all the CPs are ANDed or ORed together
before they are used. As a result, the ARM1026EJ-S processor cannot determine which
CP is driving its inputs. Figure 7-2 on page 7-6 shows CPBUSYE and CPBOUNCEE
as examples of ARM1026EJ-S coprocessor input gating. The problem of multiple CPs
driving a signal at the same time is avoided, because there can only be one CP
instruction in each ARM1026EJ-S pipeline stage. So only one CP can own the
instruction in that stage and can drive the associated signals.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-5

Coprocessor Interface
Figure 7-2 ARM1026EJ-S coprocessor inputs

The ARM1026EJ-S processor has control inputs for up to two external coprocessors.
The two sets of inputs are differentiated by appending a 1 or a 2 to the signal name.
Inputs that are not used must be tied off. By convention, single-coprocessor systems
use the 1 inputs and tie off the 2 inputs. Adding more than two external coprocessors
requires external gating.

Any system with more than one external coprocessor requires external gating for the
STCMRCDATA bus inputs to the ARM1026EJ-S processor. This is to avoid the
necessity of routing 64-bit buses to the ARM1026EJ-S processor.

CPBOUNCEE1

Three

coprocessors

ARM1026EJ-S processor

CPBOUNCEE

internal

CPBUSYE

internal

CPBUSYE1

CPBUSYE3CPBUSYE2

CPBOUNCEE2
CPBOUNCEE3

One

coprocessor

CPBOUNCEE

internal

CPBOUNCEE1

V
DD

CPBUSYE

internal

CPBUSYE1

V
SS

Two

coprocessors

CPBOUNCEE

internal

CPBOUNCEE1

CPBOUNCEE2

CPBUSYE

internal

CPBUSYE1

CPBUSYE2

ARM1026EJ-S processorARM1026EJ-S processor
7-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.3.3 CP input loadings

When a CP does not own the instruction associated with an ANDed signal it must drive
the signal HIGH. When a CP does not own the instruction associated with an ORed
signal it must drive the signal LOW. The ARM1026EJ-S processor drives instruction,
data, and control outputs to all CPs, so the loading on these signals might become an
issue in multiple-CP systems. Keep CP input loadings low, and buffer these signals
where appropriate.

7.3.4 Combining outputs from multiple CPs

Outputs from all the CPs are ANDed or ORed together before they are used in the
ARM1026EJ-S processor. The AND and OR gates can be placed in the level of the
design instantiating the ARM1026EJ-S processor and the CPs. To aid timing for control
signals, there is one level of ANDing and ORing inside the ARM1026EJ-S processor.
The ARM1026EJ-S processor implements the ANDing and ORing necessary on the
control signals of up to two external CPs. For more than two CPs, external gates must
be used to OR the hold signals from the external CP into the existing inputs.

Although the ARM1026EJ-S processor implements the necessary inputs for only two
external CPs, this does not have to be the limiting factor in a system with three or more
CPs. In such a system, the wire delays from the farthest CP probably balance the time
required to AND or OR the control signal from the closer CPs. For systems with more
than one CP, external gates are always required for the CP STCMRCDATA bus. These
are not included in the ARM1026EJ-S design as this would have forced the entire bus
to be duplicated on the interface. Also, the freedom to place the gates anywhere in the
top-level design helps with floor planning of the bus route.

7.3.5 CP ID number

The ARM1026EJ-S processor issues all CP instructions to all the CPs. Each CP in the
system has a unique, hardwired ID number from 0 to 15. Every CP instruction includes
a CP number.

Only the CP whose ID number corresponds to the number in the CP instruction can
accept the instruction. To accept an instruction, a CP must pull CPBOUNCEE LOW
at the right time. If no CP pulls CPBOUNCEE LOW, then the instruction is bounced.
That is, the ARM1026EJ-S processor takes the undefined instruction trap. This enables
error trapping or software emulation of a CP not present in the system.

A CP does not have to accept an instruction even if its ID corresponds to the CP number
in the instruction. This is used in cases where some of the CP instructions are handled
in hardware and some are handled in software.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-7

Coprocessor Interface
7.4 Parallel execution

Initially, instructions progress along the ARM1026EJ-S pipeline and CP pipeline in
lockstep. A CP instruction moves along the ARM1026EJ-S pipeline as a single-cycle
instruction. When the first cycle of the instruction traverses the entire length of the
ARM1026EJ-S pipeline, one of three things can occur:

• If the instruction is complete in the CP pipeline, then it is retired in both pipelines.

• If the CP instruction is a multicycle data processing type, then the ARM1026EJ-S
processor and CP pipelines are decoupled. The instruction continues to iterate in
the CP but is retired in the ARM1026EJ-S pipeline. When the pipelines are
decoupled, the ARM1026EJ-S processor cannot cancel the instruction, and the
CP must complete the instruction. While the CP is working, the ARM1026EJ-S
processor continues to execute the following instruction stream and issues any CP
instructions it hits. The CP can hold up any following CP instructions as
necessary. The ARM1026EJ-S processor is not explicitly signaled when the CP
completes the instruction. The CP usually holds up any following instruction that
is dependent on a prior instruction.

• If the CP instruction is a multicycle load or store type, then the ARM1026EJ-S
ALU pipeline and CP pipelines are decoupled, but the ARM1026EJ-S LSU
pipeline and CP pipeline remain coupled. The instruction continues to iterate in
the CP and the ARM1026EJ-S LSU pipelines but is retired in the ARM1026EJ-S
ALU pipeline. When the ARM1026EJ-S ALU pipeline is decoupled, the
ARM1026EJ-S processor cannot cancel the instruction, and the CP must
complete the instruction. While the CP and LSU are working, the ARM1026EJ-S
processor stalls execution of subsequent instructions.

Simple CPs only have to use the first of these mechanisms. They can execute multicycle
instructions by holding up the ARM1026EJ-S pipeline until they complete. In some
systems this has a significant impact on performance.
7-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.5 Rules for the interface

The following rules apply to the CP pipeline and CP interface:

• No two CPs can have an instruction in the same ARM1026EJ-S pipeline stage.
That is, a CP instruction in a particular ARM1026EJ-S pipeline stage is
associated with one, and only one, CP.

• Each CP output signal is associated with one ARM1026EJ-S pipeline stage. The
CP that owns the instruction in that stage drives the signal.

• Outputs from the ARM1026EJ-S processor must enable the CPs to track the
ARM1026EJ-S pipeline well enough for them to detect:

— when to assert hold and bounce signals to ARM1026EJ-S processor

— to which CP instruction a cancel or flush signal applies

— when the instruction is committed and can no longer be canceled or flushed.

• A signal stalled by a hold signal becomes valid in the last cycle of the hold signal.
Signals that override hold signals can be asserted at any time, and their effect
must not be masked by the hold.

Note

 Internal design features of CPs might not conform to these rules.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-9

Coprocessor Interface
7.6 Pipeline signal assertion

Table 7-1 shows where in the pipeline the coprocessor interface signals are active.

Table 7-1 Pipeline stages and active signals

ARM1026EJ-S pipeline CP pipeline

Driven by
ARM1026EJ-S

Driven by CP
Driven by
ARM1026EJ-S

Driven by CP

CPVALIDD Decode - Issue -

CPLSLEN - Decode - Issue

CPLSSWP - Decode - Issue

CPLSDBL - Decode - Issue

CPINSTR Issue - Fetch -

CPINSTRV Issue - Fetch -

ASTOPCPD Execute - Decode -

CPBUSYE - Execute - Decode

CPLSBUSY - Execute - Decode

CPBOUNCEE - Execute - Decode

ASTOPCPE Memory - Execute -

ACANCELCP Memory - Execute -

AFLUSHCP Memory - Execute -

LSHOLDCPE Memory - Execute -

LSHOLDCPM Write - Memory -

STCMRCDATA - Execute - Decode

LDCMCRDATA Write - Memory -
7-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.7 Instruction issue

CPINSTR, CPINSTRV, and CPVALIDD are the signals that control the issue of CP
instructions from the ARM1026EJ-S processor. These instructions go to all CPs at the
same time. Only the CP that owns the instruction can drive control signals for that
instruction back to the ARM1026EJ-S processor.

The following sections describe these signals:

• CPINSTR

• CPINSTRV on page 7-13

• CPVALIDD on page 7-15

• Example of instruction issue on page 7-16

• CPLSLEN, CPLSSWP, and CPLSDBL on page 7-17.

7.7.1 CPINSTR

Instructions are issued to all CPs during the ARM1026EJ-S Issue stage, which is in the
CP Fetch stage. The instructions are sent over a dedicated 26-bit bus, CPINSTR.

Usually, CPINSTR is only driven when there is a valid CP instruction in the
ARM1026EJ-S Issue stage. Occasionally, it might be driven in error because of an
instruction that causes a Prefetch Abort or a branch that is incorrectly predicted. In these
cases the value driven onto CPINSTR might decode to anything, including a CP
instruction. However the instruction is still not valid because it was fetched erroneously.

CPINSTRV and CPVALIDD give more information about the validity of the
instruction. Table 7-2 on page 7-12 shows interactions of CPINSTR with other signals.

The ARM1026EJ-S processor drives CPINSTR in the ARM1026EJ-S Issue stage and
the CP Fetch stage.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-11

Coprocessor Interface
Table 7-2 CPINSTR interactions with other signals

Signal Interactions with CPINSTR

ASTOPCPD Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPD and all other relevant holds go LOW. The value of CPSINTR might change
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPD is asserted.

ASTOPCPE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPE and all other relevant holds go LOW. The value of CPSINTR might change
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPE is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which CPBUSYE and all other relevant holds go LOW. The value of CPSINTR might change while
CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit might
place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction on CPINSTR.

CPBOUNCEE None.
7-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.7.2 CPINSTRV

CPINSTR and CPINSTRV are the only CP interface signals that are driven in the
ARM1026EJ-S Issue stage. CPINSTRV indicates that CPINSTR carries an
instruction worth decoding. The fact that CPINSTRV is asserted is not a guarantee that
CPINSTR carries a valid CP instruction. CPINSTRV going LOW is a guarantee the
CPINSTR does not carry a valid CP instruction.

CPINSTRV is a useful hint. It can be used to save power by not decoding bad
instructions. To save power, all bits of CPINSTR are also driven to 0 when
CPINSTRV is LOW. This behavior must not be relied upon for correct function.

If CPINSTR carries a valid CP instruction, CPINSTRV does not guarantee that it will
be executed. There are some cases where CPINSTRV is asserted for instructions that
turn out to be invalid. Prefetch aborted instructions and instructions following
mispredicted branches are examples of this. Not enough is known about the instruction
in the ARM1026EJ-S Issue stage to make CPINSTRV a definite indicator of a valid
instruction. More is known in the ARM1026EJ-S Decode stage and the signal
CPVALIDD is used to confirm that an instruction is valid. Table 7-3 on page 7-14
shows interactions of CPINSTRV with other signals.

The ARM1026EJ-S processor drives CPINSTRV in the ARM1026EJ-S Issue stage
and the CP Fetch stage.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-13

Coprocessor Interface
Table 7-3 CPINSTRV interactions with other signals

Signal Interactions with CPINSTRV

ASTOPCPD Treat CPINSTRV as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPD and all other relevant holds go LOW. The value of CPSINTRV might change
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPD is asserted.

ASTOPCPE Treat CPINSTRV as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPE and all other relevant holds go LOW. The value of CPSINTRV might change
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while ASTOPCPE is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPINSTR as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which CPBUSYE and all other relevant holds go LOW. The value of CPSINTRV might change
while CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.
7-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.7.3 CPVALIDD

Not enough is known about the instruction in the ARM1026EJ-S Issue stage to make
CPINSTRV a definite indicator of a valid instruction. More is known in the
ARM1026EJ-S Decode stage, and the signal CPVALIDD can confirm that an
instruction is valid. CPVALIDD goes HIGH during the ARM1026EJ-S Decode stage
to confirm an instruction is valid. CPVALIDD does not guarantee execution of the
instruction, because the instruction might get canceled or flushed (see ACANCELCP on
page 7-40 and AFLUSHCP on page 7-44). Table 7-4 shows interactions of
CPVALIDD with other signals.

The ARM1026EJ-S processor drives CPVALIDD in the ARM1026EJ-S Decode stage
and the CP Issue stage.

Table 7-4 CPVALIDD interactions with other signals

Signal Interactions with CPVALIDD

ASTOPCPD Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPD and all other relevant holds go LOW. The value of CPVALIDD might change
while ASTOPCPD is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while CPVALIDD is asserted.

ASTOPCPE Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which ASTOPCPE and all other relevant holds go LOW. The value of CPVALIDD might change
while ASTOPCPE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while CPVALIDD is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPVALIDD as invalid this cycle. Use its value only in the last interlocked cycle, that is, the cycle
in which CPBUSYE and all other relevant holds go LOW. The value of CPVALIDD might change
while CPBUSYE is asserted if an exception or mispredicted branch occurs. Also, the prefetch unit
might place a valid instruction in the Issue stage under an interlock, causing an invalid instruction on
CPINSTR and CPINSTRV to change to a valid one while CPBUSYE is asserted.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-15

Coprocessor Interface
7.7.4 Example of instruction issue

In Figure 7-3, instructions 1 and 2 drive CPINSTR. CPINSTRV initially indicates that
both instructions 1 and 2 are valid, but CPVALIDD indicates that only instruction 1 is
valid. After that, instructions 3 and 4 are not valid CP instructions, so CPINSTRV and
CPVALIDD are kept LOW. The numbers in the waveforms show which instruction
owns the signal at that time. For example, instruction 1 owns CPVALIDD at edge T3.
Instruction 2 owns CPVALIDD at edge T4. A CP registers the instruction 1 value at T3
and the instruction 2 value at T4.

Figure 7-3 Instruction issue example

I1

I1

I2

I1

I1

I2

I1 I2

I1

I3I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I3

I3

I1

I1

I1

I1

I2

I2 I3

I2 I3

I2 I3

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

CPINSTR

CPINSTRV

CPCLK

CPVALIDD 21 3

21

1 2

3 4

4

I4

I2

I4

I2
7-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.7.5 CPLSLEN, CPLSSWP, and CPLSDBL

A CP drives the CPLSLEN, CPLSSWP, and CPLSDBL signals to the ARM1026EJ-S
processor on load/store CP instructions. They indicate:

• the length of the transfer

• if upper and lower half of the data bus must be swapped before being written

• if the load/store request is for double-precision data.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-17

Coprocessor Interface
CPLSLEN

CPLSLEN indicates the number of 32-bit data items to be transferred for the
corresponding load/store CP instruction. Driving a 1 on this bus represents a single load
or store data item being transferred. CPLSLEN must be driven with 0 if the CP is not
processing an instruction. If ASTOPCPD is asserted due to a hold in the
ARM1026EJ-S Decode stage, the CPLSLEN value is retained by the ARM1026EJ-S
processor. Table 7-5 describes the interactions of CPLSLEN with other signals.

The CP drives CPLSLEN in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-5 CPLSLEN interactions with other signals

Signal interactions with CPLSLEN

ASTOPCPD CPLSLEN is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
7-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
CPLSSWP

CPLSSWP indicates that the upper and lower data words on LDCMCRDATA and
STCMRCDATA buses must be swapped by the ARM1026EJ-S processor before
being written. If ASTOPCPD is asserted due to a hold in the ARM1026EJ-S Decode
stage, the CPLSSWP value is retained by the ARM1026EJ-S processor. Table 7-6
describes the interactions of CPLSSWP with other signals.

The CP drives CPLSSWP in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-6 CPLSSWP interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPLSSWP is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-19

Coprocessor Interface
CPLSDBL

CPLSDBL indicates that the load/store CP instruction involves a doubleword transfer.
That is, a 64-bit quantity is being transferred. If ASTOPCPD is asserted due to a hold
in the ARM1026EJ-S Decode stage, the CPLSDBL value is retained by the
ARM1026EJ-S processor. Table 7-7 describes the interactions of CPLSDBL with
other signals.

The CP drives CPLSDBL in the CP Issue stage and the ARM1026EJ-S Decode stage.

Table 7-7 CPLSDBL interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPLSDBL is registered with ASTOPCPD

ASTOPCPE None

LSHOLDCPE None

CPBUSYE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP Invalidates instruction

CPBOUNCEE None
7-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8 Hold signals

The following sections describe hold signals:

• ASTOPCPD on page 7-23

• ASTOPCPE on page 7-25

• ASTOPCPE example on page 7-25

• LSHOLDCPE on page 7-27

• Example of LSHOLDCPE on page 7-27

• LSHOLDCPM on page 7-29

• CPBUSYE on page 7-31

• CPBUSYE example on page 7-32

• CPBUSYE and ASTOPCPD interaction on page 7-33

• ASTOPCPD with CPBUSYE on page 7-34

• CPBUSYE and ASTOPCPE interaction on page 7-35

• ASTOPCPE with CPBUSYE on page 7-36

• CPLSBUSY on page 7-39.

The pipeline hold signals from the ARM1026EJ-S processor keep the CP pipeline in
lockstep with the ARM1026EJ-S processor. Pipeline hold signals from the CPs hold up
the ARM1026EJ-S processor to give more time to execute an instruction. To avoid a
deadlock, it is important that both sides do not factor their hold inputs back into their
hold outputs. Table 7-8 on page 7-22 summarizes the hold signals.

The hold signals are usually timing-critical. They factor huge fanout terms into pipeline
holds. In high-performance systems, they must come straight out of registers in the
driving block.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-21

Coprocessor Interface
Table 7-8 Hold signals summary

Signal From To
ARM10
stage CP stage Comments

ASTOPCPD ARM1026EJ-S All CPs Decode + 1 Decode Hold CP in CP Decode because
ARM1026EJ-S is
held in ARM1026EJ-S Decode

ASTOPCPE ARM1026EJ-S All CPs Execute + 1 Execute Hold CP in CP Execute because
ARM1026EJ-S is held in
ARM1026EJ-S Execute

LSHOLDCPE ARM1026EJ-S All CPs Execute + 1 Execute Hold CP data transfers in CP
Execute because LSU is held in
ARM1026EJ-S Execute

LSHOLDCPM ARM1026EJ-S All CPs Memory + 1 Memory Hold CP data transfers in CP
Memory because LSU is held in
ARM1026EJ-S Memory

CPBUSYE Each CP Other CPs
and
ARM1026EJ-S

Execute Decode Hold ARM1026EJ-S processor
in ARM1026EJ-S Execute

CPLSBUSY Each CP Other CPs - Decode Holds other CPs in CP Issue
7-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.1 ASTOPCPD

ASTOPCPD indicates that the instruction in the ARM1026EJ-S Decode stage did not
progress into the ARM1026EJ-S Execute stage in the previous cycle. It is driven out of
a register following the ARM1026EJ-S Decode stage. If ASTOPCPD is asserted, CPs
must hold their Decode, Issue, and Fetch stages. The logic in these stages must keep
reevaluating because CPINSTR, CPINSTRV, and CPVALIDD might change. Only
the cycle in which ASTOPCPD is deasserted can be considered a valid cycle. Table 7-9
shows the interactions of ASTOPCPD with other signals.

The ARM1026EJ-S processor drives ASTOPCPD in the ARM1026EJ-S Execute stage
and the CP Decode/CP Decode + 1 stage.

Table 7-9 ASTOPCPD interactions with other signals

Signal Interactions with ASTOPCPD

ASTOPCPE ASTOPCPD is usually asserted when ASTOPCPE is asserted.

LSHOLDCPE ASTOPCPD is asserted with LSHOLDCPE when the pipelines are in
lockstep. Pipelines are in lockstep unless the CP instruction has already
retired from the ARM1026EJ-S pipeline and is now transferring data from
the LSU for a load/store multiple.

CPBUSYE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPD is
already asserted. ASTOPCPD is not asserted if a valid CPBUSYE
(ASTOPCPE LOW) was received in the previous cycle.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP Flush invalidates ASTOPCPD.

CPBOUNCEE None.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-23

Coprocessor Interface
In Figure 7-4 ASTOPCPD is used to indicate that instruction 1 stalled in the
ARM1026EJ-S Decode stage for one cycle. The following values of CPINSTR,
CPINSTRV, and CPVALIDD are invalid in all but the last cycle that was interlocked.
ASTOPCPD is LOW as instruction 2 leaves the Decode stage indicating that it was not
held up. The numbers in waveforms show which instruction owns the signal at that
time.

Figure 7-4 ASTOPCPD example

CPLSLEN, CPLSSWP, and CPLSDBL for a given instruction are driven from a CP
in the cycle before ASTOPCPD is driven from the ARM1026EJ-S processor, so the
ARM1026EJ-S processor must register the value of CPLSLEN and CPLSSWP and
CPLSDBL if it is about to drive an ASTOPCPD.

I1

I1

I2

I1

I1

I2

I1

I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1 I1

I1

I1

I2

I2 I2

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

1

21

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

I1

CPLSLEN/SWP/DBL

CPLSLEN/SWP/DBL (internal)

1 2

21

11

2

2

2

7-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.2 ASTOPCPE

ASTOPCPE indicates that the instruction in the ARM1026EJ-S Execute stage did not
progress into the ARM1026EJ-S Memory stage in the previous cycle. It is driven out of
a register following the ARM1026EJ-S Execute stage. If ASTOPCPE is asserted, CPs
must hold their Execute, Decode, Issue, and Fetch stages. The logic in these stages must
keep reevaluating as CPINSTR, CPINSTRV, and CPVALIDD might change. Only
the cycle where ASTOPCPE is deasserted is a valid cycle. AFLUSHCP overrides
ASTOPCPE.

The ARM1026EJ-S processor drives ASTOPCPE in ARM1026EJ-S Execute + 1
stage and the CP Execute stage.

7.8.3 ASTOPCPE example

Figure 7-5 on page 7-26 shows the ARM1026EJ-S processor holding instruction 1 in its
Execute stage for one cycle. The numbers in the waveforms show which instruction
owns the signal at that time.

Table 7-10 ASTOPCPE interactions with other signals

Signal Interactions with ASTOPCPD

ASTOPCPD None.

LSHOLDCPE ASTOPCPE is asserted with LSHOLDCPE when the pipelines are in lockstep. Pipelines are in
lockstep unless the CP has already retired from the ARM1026EJ-S pipeline and is now transferring
data from the LSU for a load/store multiple.

CPBUSYE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPE is already asserted. ASTOPCPE is
not asserted if CPBUSYE was asserted at the end of the previous cycle, but ASTOPCPE can be
asserted when CPBUSYE deasserts. In this case, asserting ASTOPCPE continues to hold the same
instruction in ARM1026EJ-S Execute that was held by CPBUSYE.

LSHOLDCPM ASTOPCPE is asserted with LSHOLDCPM when the pipelines are in lockstep. Pipelines are in
lockstep unless the CP has already retired from the ARM1026EJ-S pipeline and is now transferring
data from the LSU for a load/store multiple.

ACANCELCP ACANCELCP held by ASTOPCPE.

AFLUSHCP AFLUSHCP overrides ASTOPCPE. The pipeline is flushed from Execute back.

CPBOUNCEE CPBOUNCEE is not used until ASTOPCPE (and other relevant holds) are deasserted.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-25

Coprocessor Interface
Figure 7-5 ASTOPCPE example

* ASTOPCPD is caused by ASTOPCPE and CPBUSYE is ignored under
ASTOPCPE. Under an ASTOPCPE, STC is registered in the ARM1026EJ-S
processor.

1

21

21

I1

I1

I2

I1

I1

I2

I1 I1

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1

I1 I1

I1

I2

I2

I2 I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

21

21

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

I1

ASTOPCPE

CPLSLEN/SWP/DBL

CPBUSYE

1 2

1 2

2*1

CPLSLEN/SWP/DBL (internal) 2

1

2

2CPBUSYE (internal)

CPBOUNCEE

CPBOUNCEE (internal)

I2

21

STC

STC (internal)

1 2

1 21

1 21

1

7-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.4 LSHOLDCPE

LSHOLDCPE indicates that the load/store CP instruction in the ARM1026EJ-S LSU
Execute stage, did not progress into the ARM1026EJ-S LSU Memory stage in the
previous cycle. It is driven out of a register following the ARM1026EJ-S LSU Execute
stage. If LSHOLDCPE is asserted, CPs must hold their Execute, Decode, Issue, and
Fetch stages. If LSHOLDCPE is asserted, and a store is in the CP Execute stage, the
STCMRCDATA bus value is retained by the ARM1026EJ-S processor until
LSHOLDCPE deasserts.

The ARM1026EJ-S processor drives LSHOLDCPE in the ARM1026EJ-S
Execute + 1 stage and the CP Execute stage.

7.8.5 Example of LSHOLDCPE

Figure 7-6 on page 7-28 shows the ARM1026EJ-S LSU holding instruction 1 in its
Execute stage for one cycle. The numbers in the waveforms show which instruction
owns the signal at that time. ASTOPCPD is caused by ASTOPCPE. CPBUSYE is
ignored under ASTOPCPE. Under an LSHOLDCPE, STC is registered in the
ARM1026EJ-S processor.

Table 7-11 LSHOLDCPE interactions with other signals

Signal Interactions with LSHOLDCPE

ASTOPCPD None.

LSHOLDCPE None.

ASTOPCPE LSHOLDCPE is asserted with ASTOPCPE when pipelines are in lockstep. Pipelines are in lockstep
unless the CP instruction has already retired from the ALU pipeline and is now transferring data to or
from the LSU.

CPBUSYE CPBUSYE indicates an Execute stage hold when the ALU and LSU pipelines are in lockstep.
LSHOLDCPE indicates an LSU execute stage hold when the ALU and LSU pipelines are not in
lockstep.

LSHOLDCPM If LSHOLDCPM is asserted, LSHOLDCPE is asserted as well.

ACANCELCP None.

AFLUSHCP Flush invalidates LSHOLDCPE.

CPBOUNCEE None.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-27

Coprocessor Interface
Figure 7-6 LSHOLDCPE example

2

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1

I1 I1

I1

I2

I2

I2 I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

1

21

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

I1

CPLSLEN/SWP/DBL

CPLSLEN/SWP/DBL (internal)

1 2

2

2

2

1 2

2

ASTOPCPE 1

1LSHOLDCPE

CPBUSYE

CPBUSYE (internal)

CPBOUNCEE

CPBOUNCEE (internal)

1

21

1

1 2

1

1 1 2

STCMRCDATA 1 2

STCMRCDATA (internal) 1 1 2
7-28 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.6 LSHOLDCPM

LSHOLDCPM indicates that the load CP instruction in the ARM1026EJ-S LSU
Memory stage did not progress into the ARM1026EJ-S LSU Write stage in the previous
cycle or that a load cache miss occurred. It is driven out of a register following the
ARM1026EJ-S LSU Memory stage. If LSHOLDCPM is asserted, CPs must hold their
Memory, Execute, Decode, Issue and Fetch stages. If LSHOLDCPM is asserted, and
a load is in the CP Memory stage, the LDCMCRDATA bus value is ignored by the CP
until LSHOLDCPM deasserts.

The ARM1026EJ-S processor drives LSHOLDCPM in the ARM1026EJ-S
Memory + 1 stage and the CP Memory stage.

Table 7-12 LSHOLDCPM interactions with other signals

Signal Interactions with other signals

ASTOPCPD None

LSHOLDCPE None

ASTOPCPE None

CPBUSYE None

LSHOLDCPM If LSHOLDCPM is asserted, LSHOLDCPE is also asserted

ACANCELCP None

AFLUSHCP None

CPBOUNCEE None
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-29

Coprocessor Interface
Figure 7-7 LSHOLDCPM example

1

3

3

3

3

31 2

I1

I1

I2

I1

I1

I2

I1

I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1

I1

I1 I1

I2

I2

I2

I2 I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

21

21

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

I1

ASTOPCPE

CPLSLEN/SWP

LSHOLDCPE

1 2

31 2

31

CPLSLEN/SWP (internal)

T8

3

2

2

1LSHOLDCPE

CPBUSYE

CPBUSYE (internal)

CPBOUNCEE

CPBOUNCEE (internal)

LDCMCRDATA

21

2 3

x 1

I3

I3 I3

I3

I3

I2

I1

I2
7-30 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.7 CPBUSYE

From the ARM1026EJ-S processor viewpoint, CPBUSYE indicates that the CP that
owns the instruction in the ARM1026EJ-S Execute stage wants to hold the instruction
in that stage. It is asserted in the ARM1026EJ-S Execute stage and must come directly
out of a register. It also holds the instructions in other CP Issue stages. Table 7-13 shows
the interaction of CPBUSYE with other signals.

The ARM1026EJ-S processor drives CPBUSYE in the ARM1026EJ-S Execute stage
and the CP Decode stage.

Table 7-13 CPBUSYE interactions with other signals

Signal interactions with CPBUSYE

ASTOPCPD The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPD is already asserted. ASTOPCPD
is not asserted if a valid CPBUSYE (CPBUSY HIGH, ASTOPCPD LOW) was received in the
previous cycle.

ASTOPCPE The ARM1026EJ-S processor ignores CPBUSYE if ASTOPCPE is already active. ASTOPCPE is
not asserted if a valid CPBUSYE was asserted at the end of the previous cycle. ASTOPCPE is not
asserted if CPBUSYE is already asserted. ASTOPCPE can be asserted in the cycle that CPBUSYE
deasserts.

LSHOLDCPE None.

LSHOLDCPM None.

ACANCELCP None.

AFLUSHCP AFLUSHCP has priority over CPBUSYE.

CPBOUNCEE CPBOUNCEE is not used until CPBUSYE (and other holds) are deasserted.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-31

Coprocessor Interface
7.8.8 CPBUSYE example

In Figure 7-8, instruction 1 is held in the ARM1026EJ-S Execute stage by CPBUSYE.
Numbers in waveforms show which instruction owns the signal at that time. In some
CPs, instruction 1 might advance into Decode under the CPBUSYE. In this case,
instruction 1 spends two cycles in Decode rather than in Issue. This depends on the CP
implementation. For the interface this makes no difference because the interface signals
still have to be driven depending upon the position of the instruction in the
ARM1026EJ-S pipeline.

Figure 7-8 CPBUSYE example

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1 I1

I1

I1

I2

I2 I2

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

1

21

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

I1

CPLSLEN/SWP 1 2

2

2

1

CPBUSYE

CPBOUNCEE 2

2STCMRCDATA

I3 I3

x 3

1

ASTOPCPE 1 2

1 1 2

1 2
7-32 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.9 CPBUSYE and ASTOPCPD interaction

There is a complex interaction between ASTOPCPD and CPBUSYE. If ASTOPCPD
and CPBUSYE are asserted in the same cycle, the ARM1026EJ-S processor ignores
CPBUSYE until ASTOPCPD deasserts. Figure 7-9 shows one possible sequence of
events.

Figure 7-9 CPBUSYE ignored due to ASTOPCPD assertion

If CPBUSYE is asserted in the cycle before the ARM1026EJ-S processor would have
asserted ASTOPCPD, then ASTOPCPD is suppressed until the cycle after CPBUSYE
deasserts. Figure 7-10 shows this sequence of events.

Figure 7-10 CPBUSYE asserted before ASTOPCPD

The internal hold signal HOLDD is usually registered to make ASTOPCPD in the next
cycle, but this is held until CPBUSYE goes LOW.

T2T1 T3 T4 T5

CPCLK

CPBUSYE

ASTOPCPD

CPBUSYE (internal)

T2T1 T3 T4 T5

CPCLK

CPBUSYE

CPBUSYE (internal)

HOLDD (internal)

ASTOPCPD

T6
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-33

Coprocessor Interface
7.8.10 ASTOPCPD with CPBUSYE

In Figure 7-11, instruction 1 is held up by CPBUSYE and instruction 2 is held up by
ASTOPCPD. An instruction in ARM1026EJ-S Decode is always held up behind an
instruction held by ARM1026EJ-S CPBUSYE in Execute, unless it is flushed.

Figure 7-11 ASTOPCPD with CPBUSYE

I1

I1

I2

I1

I1

I2

I1

I2

I1

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I1

I2

I1

I2

I1

I1

I1

I1

I2 I2

I2

I2 I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7 T8

1 x2

21

x1

1 21

22

2x

1 2

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

CPBUSYE

CPLSLEN/SWP/DBL

ASTOPCPD

CPBOUNCEE

STCMRCDATA

ASTOPCPD (internal)

21

3

2

1

x1

I1
7-34 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.11 CPBUSYE and ASTOPCPE interaction

There is a complex interaction between ASTOPCPE and CPBUSYE. CPBUSYE is
asserted in the Execute stage of an instruction, ASTOPCPE is asserted from a register
at the end of the Execute stage (E + 1). If ASTOPCPE is asserted in the same cycle that
CPBUSYE is asserted then CPBUSYE is ignored until ASTOPCPE deasserts. If
CPBUSYE is asserted in the previous cycle then ASTOPCPE cannot be asserted until
the cycle after that in which CPBUSYE deasserts.

Where ASTOPCPE is asserted at the same time as CPBUSYE, the ARM1026EJ-S
processor ignores CPBUSYE until ASTOPCPE deasserts. In Figure 7-12, CPBUSYE
is ignored until ASTOPCPE deasserts.

Figure 7-12 CPBUSYE ignored due to ASTOPCPE assertion

In Figure 7-13, CPBUSYE is asserted before ASTOPCPE. The ARM1026EJ-S
processor does not assert ASTOPCPE until the cycle after CPBUSYE deasserts.
ASTOPCPE is holding up the same instruction, in Execute, that CPBUSYE held up.

Figure 7-13 CPBUSYE asserted before ASTOPCPE

T2T1 T3 T4 T5

CPCLK

CPBUSYE

ASTOPCPE

CPBUSYE (internal)

CPCLK

CPBUSYE

HOLDE (internal)

ASTOPCPE

CPBUSYE (internal)

T2T1 T3 T4 T5 T6
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-35

Coprocessor Interface
7.8.12 ASTOPCPE with CPBUSYE

In Figure 7-14, instruction 2 is held up by ASTOPCPE and CPBUSYE.

Figure 7-14 I2 held up by ASTOPCPE and CPBUSYE

*Although instruction 3 is responsible for ASTOPCPD at T7, instruction 2 causes
ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.

I1

I1

I2

I1

I1

I2

I1

I3I

D

E

M

W

F

I

M

W

F

I

M

W

I2

I3

I2

I3

I2

I3

I1

I1

I1

I1

I2 I3

I2 I3

I2 I3

I2

I3

I2

I3

I2 I3

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7 T8

1 32

321

3321 3

1 22 2 3

1 2 2 3

3 3* 331

11 2 2

3x1 2

1 32

32x1

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

CPBUSYE

CPLSLEN/SWP

ASTOPCPE

CPBOUNCEE

STCMRCDATA

ASTOPCPD

CPBUSYE (internal)

HOLD E (internal) 21 2 2 3

I2

I1

I3

I2

I1

I3

I2

2

7-36 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
In Figure 7-15, instruction 1 is held up by ASTOPCPE and instruction 2 is held up by
CPBUSYE.

Figure 7-15 I1 held up by ASTOPCPE and I2 held up by CPBUSYE

*Although instruction 2 is responsible for driving ASTOPCPD at T5, instruction 1
causes ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.

I1

I1

I2

I1

I1

I2

I1

I2

I1

I3 I3I

D

E

M

W

F

I

M

W

F

I

M

W

I2

I1

I3

I2

I3

I2

I3

I2

I3

I1

I1

I1

I1

I2 I3

I2 I3

I2 I3

I2

I3

I2

I3

I2

I3

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7 T8

1 32

321

3321 3

1 22 2 3

1 2 2 3

2* 3 321

11 2 2 3

3x1 2

1 32

3xx1 2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

CPBUSYE

CPLSLEN/

SWP/DBL

ASTOPCPE

CPBOUNCEE

STCMRCDATA

ASTOPCPD

CPBUSYE (internal)

HOLD E (internal) 21 1 2 3
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-37

Coprocessor Interface
In Figure 7-16, instruction 1 is held up by CPBUSYE and instruction 2 is held up by
ASTOPCPD.

Figure 7-16 I1 held up by CPBUSYE and I2 held up by ASTOPCPD

*Although instruction 3 is responsible for driving ASTOPCPE at T7, instruction 2
causes ASTOPCPE to be asserted, and this has to be folded back into ASTOPCPD.

I1

I1

I2

I1

I1

I2

I1

I2

I1

I3 I3I

D

E

M

W

F

I

M

W

F

I

M

W

I2

I1

I3

I1

I2

I3

I2

I3

I2

I3

I1

I1 I1

I1

I1

I2 I3

I2 I3

I2

I3

I2 I3

I2

I3

I2 I3

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7 T8

CPCLK

CPINSTR 1 x 32

CPINSTRV x21 3

CPVALIDD 321

CPBUSYE 1 21 3

HOLD E (internal) 21 1 2 3

CPBUSYE (internal) 1 21 3

ASTOPCPD 3* 3221

ASTOPCPE 11 2 2 3

CPLSLEN/

SWP/DBL
321 3

CPBOUNCEE x 1 2 3

STCMRCDATA 321x
7-38 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.8.13 CPLSBUSY

This is driven out of a register on the CP Issue/Decode boundary (valid early in the
ARM1026EJ-S Execute stage). It signals to other CPs that the sender is involved in a
load or store multiple data transfer and is keeping control of the STCMRCDATA bus.
Other CPs must progress to Decode (where they are stalled by ASTOPCPE) but must
not attempt to drive the bus until a cycle after CPLSBUSY deasserts.

CPLSBUSY stalls all other CPs when a long LDC is in progress. CPLSBUSY does not
have to go to the ARM1026EJ-S processor because it can only do one load/store
operation at a time because they are held up in any case. CPLSBUSY comes out of flop
and goes to other CPs.

The CP drives CPLSBUSY in the CP Decode stage and the ARM1026EJ-S Execute
stage.

Table 7-14 CPLSBUSY interactions with other signals

Signal Interactions with CPLSBUSY

ASTOPCPD None

ASTOPCPE None

LSHOLDCPE None

LSHOLDCPM None

ACANCELCP None

AFLUSHCP None

CPBOUNCEE None
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-39

Coprocessor Interface
7.9 Instruction cancelation

Instruction cancelation signals are described in the following sections:

• ACANCELCP

• ACANCELCP example on page 7-41

• ACANCELCP with ASTOPCPE example on page 7-42

• ACANCELCP with CPBUSYE example on page 7-43

• AFLUSHCP on page 7-44

• AFLUSHCP example on page 7-44.

7.9.1 ACANCELCP

ACANCELCP indicates that the instruction that has just entered the ARM1026EJ-S
Memory stage must be canceled. ACANCELCP differs from AFLUSHCP. It cancels
a single instruction rather than canceling all upstream instructions in the pipeline. It is
driven from register following the ARM1026EJ-S Execute stage. Table 7-15 shows
ACANCELCP the interactions with other signals.

The ARM1026EJ-S processor drives ACANCELCP in the ARM1026EJ-S Memory
stage and the CP Execute stage.

Table 7-15 ACANCELCP interactions with other signals

Signal Interactions with CPBUSYE

ASTOPCPD None

ASTOPCPE CP ignores ACANCELCP if ASTOPCPE asserted

LSHOLDCPE None

CPBUSYE ACANCELCP is held is response to an active CPBUSYE

LSHOLDCPM None

ACANCELCP None

AFLUSHCP AFLUSHCP has priority

CPBOUNCEE No effect for canceled instructions
7-40 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.9.2 ACANCELCP example

ACANCELCP cancels one instruction (turns it into a NOP) but does not affect the ones
around it. In this case, three instructions are issued in a row. Instruction 2 is canceled.
Instructions 1 and 3 complete. The numbers in waveforms show which instruction owns
the signal at that time. The ARM1026EJ-S processor ignores an indication from CP2
that I2 must bounce as the instruction is canceled. Figure 7-17 shows an example with
ACANCELCP.

Figure 7-17 ACANCELCP example

I1

I1

I2

I1

I1

I2

I1 I2

I1

I3

I3

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I3

I3

I3

I1

I1

I1

I1

I2 I3

I2 I3

I2 I3

I2 I3

I3

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 32

321

21 3

1 32

32

2

1

1 3

2 3

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

ACANCELCP

331 2
CPLSLEN/

SWP/DBL

CPBUSYE 1 3

2

1

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-41

Coprocessor Interface
The ARM1026EJ-S processor ignores an indication from CP2 that instruction 2 must
bounce because the instruction is canceled.

7.9.3 ACANCELCP with ASTOPCPE example

Instruction 1 is held up by the ARM1026EJ-S processor with ASTOPCPE.
ACANCELCP is valid in the last cycle that ASTOPCPE is asserted. Figure 7-18
shows an example of ACANCELCP with ASTOPCPE.

Figure 7-18 ACANCELCP with ASTOPCPE example

2

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I2

I1

I1 I1

I1

I2

I2

I2 I2

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

221

1

1 2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

ACANCELCP

321CPLSLEN/SWP/DBL

CPBUSYE 1 2

1

x

1 2

I1

I1

2

7-42 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.9.4 ACANCELCP with CPBUSYE example

Instruction 1 is held up by CP1 as indicated by CPBUSYE. ACANCELCP is valid in
the last cycle that CPBUSYE is asserted.

ASTOPCPE might be asserted with CPBUSYE. It can then be deasserted while
CPBUSYE is still active or might have stayed asserted when CPBUSYE is deasserted.
When both CPBUSYE and ASTOPCPE are deasserted the pipeline must progress.
Figure 7-19 shows an example of ACANCELCP with CPBUSYE.

Figure 7-19 ACANCELCP with CPBUSYE example

2

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I2

I2

I1

I1

I1

I1

I2 I2

I2

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

21x

1

1 2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

ACANCELCP

21CPLSLEN/SWP/DBL

CPBUSYE 1 2

2

x

I1

x

1

1

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-43

Coprocessor Interface
7.9.5 AFLUSHCP

AFLUSHCP indicates that the instruction that has just entered the ARM1026EJ-S
Memory stage and all upstream instructions currently in the pipeline must be canceled.
AFLUSHCP differs from ACANCELCP because it cancels all upstream instructions
in the pipeline rather than just a single instruction. It is driven from register following
the ARM1026EJ-S Execute stage. This means that there is no time to factor Data Aborts
into the AFLUSHCP signal. As a result, aborted CP loads complete when a Data Abort
occurs, and then be reexecuted on return from the Data Abort handler routine. It must
be possible to execute any CP load more than once (before the next instruction is
executed) with no noticeable effects on the CP.

The ARM1026EJ-S processor drives AFLUSHCP in the ARM1026EJ-S Memory
stage and the CP Execute stage.

AFLUSHCP supersedes the ASTOP and VALID signals from the ARM1026EJ-S
processor. It is used to signal that an interrupt has flushed the pipeline. As a result
CPBUSYE must be deasserted in the following cycle to enable the interrupt to be
serviced.

7.9.6 AFLUSHCP example

AFLUSHCP has to override ASTOPCPE and ASTOPCPD. Here AFLUSHCP is
asserted for instruction 2. This might be caused by instruction 2 being bounced or a
reason unrelated to the CPs, an interrupt, for example. AFLUSHCP has to kill the
effects of instruction 2 and all following instructions currently in the pipe.

Table 7-16 AFLUSHCP interactions with other signals

Signal Interactions with CPBUSYE

ASTOPCPD Flush overrides

ASTOPCPE Flush overrides

LSHOLDCPE Flush overrides

CPBUSYE Flush overrides (deasserted in the following cycle)

LSHOLDCPM Flush overrides

ACANCELCP None

CPBOUNCEE Ignored because instruction canceled by flush
7-44 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
Interrupts can cause flushes at any time. So, even a valid instruction that has been
busy-waited for many cycles can be flushed. When the instruction has reached the
Memory stage of the ARM1026EJ-S processor without AFLUSHCP or
ACANCELCP being asserted it completes (with the exception of instructions that Data
Abort). Figure 7-20 shows an example of this with five instructions. CP load or store
instructions that cause a Data Abort are completed by the CP and rerun by the Data
Abort handler. So they must be designed to be rerun with no ill effects.

Figure 7-20 AFLUSHCP example

2

I1

I1

I2

I1

I1

I2

I1 I2

I3

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I1

I1

I1

I2 I3

I3

I3

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

21

1

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

AFLUSHCP

21CPLSLEN/SWP/DBL

CPBUSYE 1 2

2

1

I1

3

2

T8

4 5

3 4 5

3

3

I3

I1

[I4] I5

I2

I2

I4

I2

I5

3

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-45

Coprocessor Interface
The ARM1026EJ-S processor ignores an indication from CP2 that I2 might bounce as
the instruction is canceled. Instruction 4 might be in the Issue stage. This must be
flushed by AFLUSHCP but is also not confirmed by CPVALIDD. Instruction 5 is
issued after the flush and is a valid instruction.

AFLUSHCP can be asserted even if hold signals such as ACANCELCP and/or
CPBUSYE are asserted. In these cases, AFLUSHCP has the highest priority because
the pipe is currently full of instructions that do not execute. This might be because of a
mispredicted branch or an exception.
7-46 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.10 Bounced instructions

The following sections describe what happens when CPs cannot execute an instruction,
and the undefined instruction trap must be taken:

• CPBOUNCEE

• CPBOUNCEE example on page 7-49

• CPBOUNCEE with ASTOPCPE on page 7-51

• CPBOUNCEE with CPBUSYE on page 7-52.

7.10.1 CPBOUNCEE

CPBOUNCEE is used by CPs to acknowledge ownership of CP instructions. Only a
CP with an ID that matches the CPID field in the instruction can accept an instruction.
If no CP accepts an instruction, the instruction is bounced to an Undefined Instruction
handler, and the undefined instruction trap is taken. A CP does not have to accept all
instructions with an CPID that matches its ID. This enables using a mixture of hardware
and software to implement a CP.

The CP drives CPBOUNCEE out of a register at the start of the ARM1026EJ-S
Execute stage. When an instruction is bounced, the CP should continue to operate as if
it were a NOP. If the bounced instruction passes its condition code check then the
ARM1026EJ-S processor indicates that the CP should flush its pipeline using
AFLUSHCP.

The CP that owns an instruction on the CPINSTR bus drives LOW the CPBOUNCEE
signal to the ARM1026EJ-S processor in the CP Decode stage. If the instruction is not
owned by a CP, that CP leaves CPBOUNCEE HIGH. The ARM1026EJ-S processor
ANDs all individual CPBOUNCEE signals internally. If CPBOUNCEE is HIGH
across ARM1026EJ-S Execute/Memory boundary, the instruction is deemed to have
not been accepted by any CP, and the Undefined instruction trap is taken. A CP can
bounce an instruction if the CP is unable to process that instruction or is unable to
process a prior instruction and requires software support.

The ARM1026EJ-S processor ignores CPBOUNCEE if CPBUSYE is asserted and
registers the value of CPBOUNCEE at the end of the cycle that CPBUSYE deasserts.
An active ASTOPCPE does not prevent the value of CPBOUNCEE from being
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-47

Coprocessor Interface
registered. If a CP is driving CPBUSYE, other CPs must hold CPBOUNCEE HIGH.
The CP driving CPBUSYE must hold its value of CPBOUNCEE until the cycle after
CPBUSYE deasserts.

Table 7-17 CPBOUNCEE interactions with other signals

Signal Interactions with CPBOUNCEE

ASTOPCPD None

ASTOPCPE The ARM1026EJ-S processor registers CPBOUNCEE even if
ASTOPCPE is active

LSHOLDCPE CPBOUNCEE is ignored until the cycle in which CPBUSYE deasserts

CPBUSYE Flush overrides

LSHOLDCPM None

ACANCELCP A canceled, bounced instruction has no effect

CPBOUNCEE Ignored as instruction canceled by flush
7-48 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.10.2 CPBOUNCEE example

CPBPOUNCEE must only be considered valid in the last cycle where neither of
CPBUSYE or ASTOPCPE is asserted. Normally, AFLUSHCP is asserted following
a CPBOUNCEE. One case where this does not happen is when the bounced instruction
is canceled at the same time using ACANCELCP.

Here instruction 1 completes but instruction 2 bounces and might cause an
AFLUSHCP that cancels instruction 2 and instruction 3.

As long as one of them is HIGH at all times, CPBUSYE and ASTOPCPE can be
asserted and deasserted under each other multiple times while an instruction is held in
Execute. CPBOUNCEE is ignored until the first cycle in which both are not asserted.
Figure 7-21 on page 7-50 shows an example with CPBOUNCEE.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-49

Coprocessor Interface
Figure 7-21 CPBOUNCEE example

The flush can occur for a number of reasons. The undefined instruction trap is a low
priority exception.

2

I1

I1

I2

I1

I1

I2

I1 I2

I3

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I1

I1

I1

I2 I3

I3

[I3]

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

21

1

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

AFLUSHCP

21CPLSLEN/SWP/DBL

CPBUSYE 1

2

1

3

2

T8

3

3

3

I3

I1

I2

I2

[I2]

[I3]

[I2]

I1
7-50 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.10.3 CPBOUNCEE with ASTOPCPE

In Figure 7-22, instruction 1 is held in the ARM1026EJ-S Execute stage for one cycle.
CPBOUNCEE is considered valid only in the cycle in which ASTOPCPE is
deasserted. So, in this case, instruction 1 does not bounce, and instruction 2 does.

Figure 7-22 CPBOUNCEE with ASTOPCPE example

2

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I1 I1

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

1

21

1

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

CPBOUNCEE (internal)

21CPLSLEN/SWP/DBL

CPBUSYE 1

2

1

1

T8

I2

I2

I2

I1

I1

1

2

1

I2

I1

I1

I2

I2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-51

Coprocessor Interface
7.10.4 CPBOUNCEE with CPBUSYE

In Figure 7-23, instruction 1 is held in the ARM1026EJ-S Execute stage for one cycle.
CPBOUNCEE is considered valid only in the cycle in which CPBUSYE is deasserted.
In this case, instruction 1 does not bounce, and instruction 2 does.

Figure 7-23 CPBOUNCEE with CPBUSYE example

I1

I1

I2

I1

I1

I2

I1 I1

I2

I

D

E

M

W

F

I

M

W

F

I

M

W

I1

I1 I1

I2

I2

ARM

CP1

CP2
D

E

D

E

T1 T2 T3 T4 T5 T6 T7

1 2

21

21

21

2

CPINSTR

CPINSTRV

CPCLK

CPVALIDD

ASTOPCPD

ASTOPCPE

CPBOUNCEE

CPBOUNCEE (internal)

21CPLSLEN/SWP/DBL

CPBUSYE 1

2

1

1

T8

I2

I2

I2

I1

I1

1

I2

I1

I1

I2

I2

11

1 2
7-52 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Coprocessor Interface
7.11 Data buses

This section describes the 64-bit data buses:

• STCMRCDATA

• LDCMCRDATA on page 7-54.

7.11.1 STCMRCDATA

The 64-bit STCMRCDATA bus carries data from a CP to the ARM1026EJ-S
processor. For a data transfer from a CP register to an ARM1026EJ-S register (MRC),
the data on STCMRCDATA is written into a register in the ARM1026EJ-S register
file. For a CP store to memory (STC), the data on STCMRCDATA is passed though
ARM1026EJ-S processor to the memory system. It is stored at an address generated by
the ARM1026EJ-S processor. Table 7-18 describes the interactions between
STCMRCDATA and signals.

STCMRCDATA is driven by a CP in the ARM1026EJ-S Execute stage.

Table 7-18 STCMRCDATA interactions with signals

Signal Interactions with STCMRCDATA

ASTOPCPD None.

ASTOPCPE The ARM1026EJ-S processor registers the value on STCMRCDATA
when ASTOPCPE is asserted and the LSU pipeline and ALU pipeline are
in lockstep. If the pipelines are decoupled, then ASTOPCPE only affects
the data processing operation that might be running under the loads or
stores.

LSHOLDCPE If the ALU and LSU pipelines are decoupled then ARM1026EJ-S
processor registers the value on STCMRCDATA when LSHOLDCPE is
asserted.

CPBUSYE None.

LSHOLDCPM None.

ACANCELCP None.

CPBOUNCEE None.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 7-53

Coprocessor Interface
7.11.2 LDCMCRDATA

The 64-bit LDCMCRDATA bus carries data from the ARM1026EJ-S processor to a
CP. For a data transfer from an ARM1026EJ-S register to a CP register (MCR), the data
on LDCMCRDATA is written into a register in the CP register file. For a CP load from
memory (LDC), the data on LDCMCRDATA is passed though the ARM1026EJ-S
processor from the memory system. It is loaded from an address generated by the
ARM1026EJ-S processor. Table 7-19 shows the interactions of LDCMRCDATA with
other signals.

LDCMRCDATA is driven by the ARM1026EJ-S processor in the ARM1026EJ-S
Write stage.

Table 7-19 LDCMRCDATA interactions with signals

Signal Interactions with LDCMRCDATA

ASTOPCPD None.

ASTOPCPE None.

LSHOLDCPE None.

CPBUSYE None.

LSHOLDCPM LSHOLDCPM indicates that the memory system did not return valid data
in the previous cycle. In this case there is not valid data on
LDCMCRDATA until LSHOLDCPM goes LOW.

ACANCELCP None.

CPBOUNCEE None.
7-54 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 8
Debug

This chapter describes the debug unit. These features assist the development of
application software, operating systems, and hardware. This chapter contains the
following sections:

• About the debug unit on page 8-2

• Register descriptions on page 8-6

• Software lockout function on page 8-18

• Halt mode on page 8-19

• Monitor mode on page 8-22

• Values in the link register after exceptions on page 8-24

• Comms channel on page 8-25.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-1

Debug
8.1 About the debug unit

The ARM1026EJ-S debug unit assists in debugging software running on the
ARM1026EJ-S processor. The debug hardware, in combination with a software
debugger program, can be used to debug:

• application software

• operating systems

• ARM1026EJ-S-based hardware systems.

The debug unit enables you to:

• stop program execution

• examine and alter processor and coprocessor state

• examine and alter memory and input/output peripheral state

• restart the processor.

The debug unit provides several ways to stop execution. The most common is for
execution to halt when a particular memory address is accessed, either for an instruction
fetch (a breakpoint), or a data access (a watchpoint). When execution has stopped, one
of two modes is entered:

Halt mode All processor execution halts, and can only be restarted with
hardware connected to the DBGTAP controller interface. You can
examine and alter all processor state (CPU registers), coprocessor
state, memory, and input/output locations through the DBGTAP
interface. This mode is intentionally invasive to program
execution. In halt mode you can debug the processor irrespective
of its internal state. Halt mode requires external hardware to
control the DBGTAP interface. A software debugger provides the
user interface to the debug hardware.

Monitor mode In monitor mode the processor stops execution of the current
program and starts execution of a Debug Abort handler. The state
of the processor is preserved in the same manner as all ARM
exceptions (see The ARM Architecture Reference Manual on
exceptions and exception priorities). The abort handler
communicates with a debugger application to access processor
and coprocessor state, and to access memory contents and
input/output peripherals. Monitor mode requires a debug monitor
program to interface between the debug hardware and the
software debugger.
8-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
The ARM1026EJ-S debug interface is based on the IEEE Standard, Test Access Port
and Boundary-Scan Architecture specification. However, the only expected use of this
interface is to access the ARM1026EJ-S debug resources, Therefore, the term Debug
Test Access Port (DBGTAP) is used instead of Test Access Port (TAP), DBGTDI
instead of TDI, and so on. For more information about the Debug Test Access Port used
in an ARM1026EJ-S debug system, see Chapter 9 Debug Test Access Port.

8.1.1 Halt mode and monitor mode compared

Halt mode is for nonreal-time debugging. Because of its hardware nature, you can use
halt mode to debug the processor under almost all circumstances. However, real-time
systems in which processor execution cannot be completely suspended are unlikely to
be able to tolerate the intrusion caused by halt mode. Therefore monitor mode is
provided for time-critical applications that cannot tolerate a long interruption while the
processor is halted. Monitor mode relies on the processor being able to freely execute
instructions to process debug requests.

8.1.2 Programming the debug unit

The debug unit is programmed using coprocessor 14, CP14. CP14 provides:

• instruction address comparators for triggering breakpoints

• data address comparators for triggering watchpoints

• a bidirectional serial communication channel

• all other state information associated with debug.

CP14 is accessed using coprocessor instructions in both halt mode and monitor mode.
BKPT instructions cause a Prefetch Abort if debug is disabled.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-3

Debug
8.1.3 Summary of CP14 registers

All debug state is mapped into CP14 as registers. Three CP14 registers, c0, c1, and c5,
can be accessed by software running on the processor. Four registers, c0, c1, c4, and c5,
are accessible as scan chains from the DBGTAP interface. The Instruction Transfer
Register, CP14 c4, is accessible only as a scan chain. The remaining registers are
accessible only by software operating in a privileged processor mode. Table 8-1 shows
the CP14 registers and their scan chain numbers.

The register file has space reserved for up to 16 breakpoints and 16 watchpoints. A
particular implementation can have any number from 2 to 16. The processor has six
instruction-side breakpoints and two data-side watchpoints.

Table 8-1 CP14 registers and scan chain numbers

Register Name Scan chain number

CP14 c0 Debug ID Register, DIDR 0

CP14 c1 Debug Status and Control Register, DSCR 1

CP14 c2 and c3 Reserved -

CP14 c4 Instruction Transfer Register, ITR 4

CP14 c5 Data Transfer Register, DTR 5

CP14 c6-c63 Reserved -

CP14 c64-c69 Breakpoint Address Registers, BA0-BA5 -

CP14 c70-c79 Reserved -

CP14 c80-c85 Breakpoint Control Registers, BC0-BC5 -

CP14 c86-c95 Reserved -

CP14 c96 and c97 Watchpoint Address Registers, WA0 and WA1 -

CP14 c112 and c113 Watchpoint Control Registers, WC0 and WC1 -

CP14 c114 and c127 Reserved -
8-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
There are two requirements to enable debugging:

• An enable bit in the Debug Status and Control Register enables debug
functionality through software. Reset clears the enable bit, disabling all debug
functionality. The processor ignores external debug requests, and BKPT
instructions cause Prefetch Aborts. In this mode, an operating system can quickly
enable and disable debugging on individual tasks as part of the task-switching
sequence.

• The DBGEN pin allows the debug features of the processor to be disabled
entirely.

The DBGEN pin must be tied HIGH to enable the debug functionality of the core.
DBGEN must be tied LOW only when debugging is not required.

The CRm and opcode2 fields are used to encode the debug register number, where the
register number is {opcode2, CRm}.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-5

Debug
8.2 Register descriptions

This section describes the CP14 registers:

• CP14 c0, Debug ID Register

• CP14 c1, Debug Status and Control Register on page 8-7

• CP14 c2-c4 on page 8-11

• CP14 c5, Data Transfer Register on page 8-11

• CP14 c6-c63 on page 8-12

• CP14 c64-c69, Breakpoint Address Registers on page 8-12

• CP14 c70-c79 on page 8-12

• CP14 c80-c85, Breakpoint Control Registers on page 8-13

• CP14 c86-c95 on page 8-14

• CP14 c96 and c97, Watchpoint Address Registers on page 8-15

• CP14 c112 and c113, Watchpoint Control Registers on page 8-15

• CP14 c114-c127 on page 8-17.

8.2.1 CP14 c0, Debug ID Register

The Debug ID Register, DIDR, is read-only and contains 0x41016201. Table 8-2 shows
the instructions for reading DIDR.

Figure 8-1 shows the DIDR bit fields.

Figure 8-1 Debug ID Register

Table 8-2 Debug ID Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c0, 0 Copies contents of Debug ID Register into Rd.

31 24 15 12 7 4 3 0

Revision

0001

SBZ

0000

Watchpoints

0010

Breakpoints

0110

SBZ

0000

Architecture

0001

Designer code

0100 0001

23 20 19 16 11 8
8-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
Table 8-3 describes the DIDR bit fields.

8.2.2 CP14 c1, Debug Status and Control Register

The Debug Status and Control Register, DSCR, is a read/write register. Table 8-4
shows the instructions for accessing DSCR.

Figure 8-2 on page 8-8 shows the DSCR bit fields.

Table 8-3 Encoding of the Debug ID Register

Bit Name Definition

[31:24] Designer code Designer code

[23:20] - Should Be Zero

[19:16] Architecture Debug architecture version

[15:12] Breakpoints Number of implemented register breakpoints

[11:8] Watchpoints Number of implemented watchpoints

[7:4] - Should Be Zero

[3:0] Revision Revision number

Table 8-4 Debug Status and Control Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c1, 0 Copies contents of Debug Status and Control Register into Rd

MCR p14, 0, Rd, c0, c1, 0 Copies contents of Rd into Debug Status and Control Register
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-7

Debug
Figure 8-2 Debug Status and Control Register

Table 8-5 describes the DSCR bit fields.

31 30 1 0

CF

C1

ReservedGE

MOE

CR

CP

CS

CU

R

CD

RF

WE

24

HLT

C

RS

29 28 27 24 23 22 21 20 19 18 17 16

H E T Reserved

7 6 5

A

15 826

Table 8-5 Encoding of Debug Status and Control Register

Bit Name Definition

[31] GE Global debug enable bit:
1 = all debugging functions enabled
0 = all debugging functions disabled.
Reset clears GE.

[30] H Halt mode bit:
1 = halt mode
0 = monitor mode.
Reset clears H.

[29] E Execute instruction in ITR select:
1 = execute instruction in ITR when DBGTAP is in Run-Test/Idle state
0 = do not execute instruction in ITR when in DBGTAP is in Run-Test/Idle state.

[28] T Thumb instruction bit:
1 = ITR contains a Thumb instruction
0 = ITR contains an ARM instruction.

[27] C Comms channel mode:
1 = comms channel activity
0 = no comms channel activity.

[26:24] - Reserved.
8-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
DSCR[23:22] and DSCR[20:16] are used to catch ARM exceptions. The effect of setting one of these bits
is the same as setting a register breakpoint on the address of the exception vector.

[23] CF Vector catch FIQ bit.

[22] CI Vector catch IRQ bit.

[21] - Reserved.

[20] CD Vector catch Data Abort bit.

[19] CP Vector catch Prefetch Abort bit.

[18] CS Vector catch Software Interrupt bit.

[17] CU Vector catch Undefined Instruction bit.

[16] CR Vector catch reset bit.

[15:8] - Reserved.

[7] RF rDTR buffer full bit:
1 = new DBGTAP controller data readable with MRC or STC present in the rDTR
0 = no new DBGTAP controller data in rDTR.

RF indicates to the processor that the rDTR buffer is full of data written by the
debugger. RF is the inversion of the bit that the DBGTAP debugger sees when it
polls the DTR by going through Capture-DR state with INTEST. Because the timing
of the DBGTAP controller and processor can be different, the debugger must not use
RF to determine if the rDTR is empty or full.

[6] WE wDTR buffer empty bit:
1 = wDTR ready for new data
0 = unread data in wDTR.

WE indicates to the processor that the wDTR buffer is empty and that the processor
can write more data into it. WE is the inversion of the bit that the DBGTAP
debugger sees when it polls the DTR by going through Capture-DR state with
EXTEST. Because the timing of the DBGTAP controller and the processor can be
different, the debugger must not use WE to determine if the wDTR is empty or full.

[5] A Sticky abort flag:
1 = abort occurred after last time A was cleared
0 = no abort occurred after last time A was cleared.
This bit is cleared when the DBGTAP debugger reads the DSCR.

Table 8-5 Encoding of Debug Status and Control Register (continued)

Bit Name Definition
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-9

Debug
The DSCR can be seen from processor and from the DBGTAP debugger. Table 8-6
summarizes the accessibility of the DSCR bits as seen from the processor and the
DBGTAP debugger.

[4:2] MOE Method of entry bits:
b000 = DBGTAP HALT instruction
b001 = breakpoint hit
b010 = watchpoint hit
b011 = breakpoint instruction requested
b100 = external debug requested asserted
b101 = vector catch occurred
b110 = data-side abort occurred
b111 = instruction-side abort occurred.

[1] RS Core restarted flag:
1 = processor has exited debug state
0 = processor is exiting debug state.
The DBGTAP debugger can poll this bit to determine when the processor has exited
debug state.

[0] HLT Core halted flag:
1 = processor is in debug state
0 = processor is in normal state.
The DBGTAP debugger can poll this bit to determine when the processor has
entered debug state.

Table 8-5 Encoding of Debug Status and Control Register (continued)

Bit Name Definition

Table 8-6 DSCR bits from the core

DSCR bits View from core View from debugger

[1:0] Reserved Read-only

[4:2] Read-only Read-only

[5] Reserved Read-only

[7:6] Read-only Read-only

[15:8] Reserved Reserved

[23:22] Read-only Read/write

[21] Reserved Reserved

[20:16] Read-only Read/write
8-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.2.3 CP14 c2-c4

CP14 c2-c4 are reserved.

8.2.4 CP14 c5, Data Transfer Register

The Data Transfer Register, DTR, is a read/write register. Table 8-7 shows the
instructions for accessing DTR.

Figure 8-3 shows the DTR bit field.

Figure 8-3 Data Transfer Register

Note

 Physically, the DTR is two separate registers, the rDTR for reading and the wDTR for
writing.

[26:24] Reserved Reserved

[30:27] Reserved Read/write

[31] Read/write Read-only

Table 8-6 DSCR bits from the core

DSCR bits View from core View from debugger

Table 8-7 Data Transfer Register instructions

Instruction Description

MRC p14, 0, Rd, c0, c5, 0 Copies contents of DTR into Rd

MCR p14, 0, Rd, c0, c5, 0 Copies contents of Rd into DTR

LDC p14, c5, <addressing mode> Loads value accessed in memory into DTR

STC p14, c5, <addressing mode> Stores contents of DTR to memory

31 0

Transfer data
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-11

Debug
8.2.5 CP14 c6-c63

CP14 c6-c63 are reserved.

8.2.6 CP14 c64-c69, Breakpoint Address Registers

The Breakpoint Address Registers, BA0-5, are read/write registers. Table 8-8 shows the
instructions for accessing BA0-5.

Figure 8-4 shows the BA0-5 bit field.

Figure 8-4 Breakpoint Address Registers

8.2.7 CP14 c70-c79

CP14 c70-c79 are reserved.

Table 8-8 Breakpoint Address Register instructions

Register Instruction Description

CP14 c64, BA0
MRC p14, 0, Rd, c0, c0, 4 Copies contents of BA0 into Rd

MCR p14, 0, Rd, c0, c0, 4 Copies contents of Rd into BA0

CP14 c65, BA1
MRC p14, 0, Rd, c0, c1, 4 Copies contents of BA1 into Rd

MCR p14, 0, Rd, c0, c1, 4 Copies contents of Rd into BA1

CP14 c66, BA2
MRC p14, 0, Rd, c0, c2, 4 Copies contents of BA2 into Rd

MCR p14, 0, Rd, c0, c2, 4 Copies contents of Rd into BA2

CP14 c67, BA3
MRC p14, 0, Rd, c0, c3, 4 Copies contents of BA3 into Rd

MCR p14, 0, Rd, c0, c3, 4 Copies contents of Rd into BA3

CP14 c68, BA4
MRC p14, 0, Rd, c0, c4, 4 Copies contents of BA4 into Rd

MCR p14, 0, Rd, c0, c4, 4 Copies contents of Rd into BA4

CP14 c69, BA5
MRC p14, 0, Rd, c0, c5, 4 Copies contents of BA5 into Rd

MCR p14, 0, Rd, c0, c5, 4 Copies contents of Rd into BA5

31 0

Breakpoint address
8-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.2.8 CP14 c80-c85, Breakpoint Control Registers

The Breakpoint Control Registers, BC0-5, are read/write registers. Table 8-9 shows the
instructions for accessing BC0-5.

Figure 8-5 shows the BC0-5 bit fields.

Figure 8-5 Breakpoint Control Registers

Table 8-9 Breakpoint Control Register instructions

Register Instruction Description

CP14 c80, BC0
MRC p14, 0, Rd, c0, c0, 5 Copies contents of BC0 into Rd

MCR p14, 0, Rd, c0, c0, 5 Copies contents of Rd into BC0

CP14 c81, BC1
MRC p14, 0, Rd, c0, c1, 5 Copies contents of BC1 into Rd

MCR p14, 0, Rd, c0, c1, 5 Copies contents of Rd into BC1

CP14 c82, BC2
MRC p14, 0, Rd, c0, c2, 5 Copies contents of BC2 into Rd

MCR p14, 0, Rd, c0, c2, 5 Copies contents of Rd into BC2

CP14 c83, BC3
MRC p14, 0, Rd, c0, c3, 5 Copies contents of BC3 into Rd

MCR p14, 0, Rd, c0, c3, 5 Copies contents of Rd into BC3

CP14 c84, BC4
MRC p14, 0, Rd, c0, c4, 5 Copies contents of BC4 into Rd

MCR p14, 0, Rd, c0, c4, 5 Copies contents of Rd into BC4

CP14 c85, BC5
MRC p14, 0, Rd, c0, c5, 5 Copies contents of BC5 into Rd

MCR p14, 0, Rd, c0, c5, 5 Copies contents of Rd into BC5

E

0

SAITSBZ

31 5 4 3 2 1
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-13

Debug
Table 8-10 describes the BC0-5 bit fields.

8.2.9 CP14 c86-c95

CP14 c86-c95 are reserved.

Table 8-10 Encoding of Breakpoint Control Registers

Bit Name Definition

[31:5] - Should Be Zero.

[5:3] IT Instruction type bits:
b000 = reserved
b1xx = Jazelle instruction
bx1x = ARM instruction
bxx1 = Thumb instruction
b111 = Jazelle or ARM or Thumb
instruction.

[2:1] SA Supervisor access bits:
b00 = reserved
b10 = privileged
b01 = user
b11 = either.

[0] E Enable bit:
1 = register enabled
0 = register disabled.
Reset clears E.
8-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.2.10 CP14 c96 and c97, Watchpoint Address Registers

The Watchpoint Address Registers, WA0 and WA1, are read/write registers. Table 8-11
shows the instructions for accessing WA0 and WA1.

Figure 8-6 shows the watchpoint address bit field.

Figure 8-6 Watchpoint Address Registers

8.2.11 CP14 c112 and c113, Watchpoint Control Registers

The Watchpoint Control Registers, WC0 and WC1, are read/write registers. Table 8-12
shows the instructions for accessing WC0 and WC1.

Figure 8-7 on page 8-16 shows the WC0 and WC1 bit fields.

Table 8-11 Watchpoint Address Register instructions

Register Instruction Description

CP14 c96, WA0
MRC p14, 0, Rd, c0, c0, 6 Copies contents of WA0 into Rd

MCR p14, 0, Rd, c0, c0, 6 Copies contents of Rd into WA0

CP14 c97, WA1
MRC p14, 0, Rd, c0, c1, 6 Copies contents of WA1 into Rd

MCR p14, 0, Rd, c0, c1, 6 Copies contents of Rd into WA1

31 0

Watchpoint address

Table 8-12 Watchpoint Control Register instructions

Register Instruction Description

CP14 c112, WC0
MRC p14, 0, Rd, c0, c0, 7 Copies contents of WC0 into Rd

MCR p14, 0, Rd, c0, c0, 7 Copies contents of Rd into WC0 control

CP14 c113, WC1
MRC p14, 0, Rd, c0, c1, 7 Copies contents of WC1 into Rd

MCR p14, 0, Rd, c0, c1, 7 Copies contents of Rd into WC1
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-15

Debug
Figure 8-7 Watchpoint Control Registers

Table 8-13 describes the WC0 and WC1 bit fields.

E

8 0

L/S/E SSizeMaskSBZ

7 5 4 310 9 2 1

SBZ

31 11

Table 8-13 Encoding of Watchpoint Control Registers

Bit Name Definition

[31:11] - Should Be Zero.

[10:9] Mask DA[1:0] address mask bits.
Bit 10:
1 = exclude DA1 in comparison
0 = include DA1 in comparison.
Bit 9:
1 = exclude DA0 in comparison
0 = include DA0 in comparison.

[8] - Should Be Zero.

[7:5] Size Size select bits:
b000 = reserved
b001 = byte
b010 = halfword
b011 = byte or halfword
b100 = word
b101 = word or byte
b110 = word or halfword
b111 = any size.
8-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.2.12 CP14 c114-c127

CP14 c114-c127 are reserved.

[4:3] L/S/E Load/store/either select bits:
b00 = reserved
b10 = load
b01 = store
b11 = either.

[2:1] S Supervisor bits:
b00 = reserved
b10 = privileged
b01 = user
b11 = either.

[0] E Enable bit:
1 = register enabled
0 = register disabled.
Reset clears E.

Table 8-13 Encoding of Watchpoint Control Registers (continued)

Bit Name Definition
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-17

Debug
8.3 Software lockout function

When the DBGTAP debugger is attached to an evaluation board or test system, it
indicates its presence by setting the halt/monitor mode bit in the DSCR. When
breakpoint and watchpoint registers have been configured, software cannot alter them
if the halt/monitor mode bit remains set, because the debugger retains control. In this
mode, software can still write to the comms channel register.
8-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.4 Halt mode

Halt mode is for debugging the processor using external hardware connected to the
DGBTAP interface. The external hardware provides an interface to a DBGTAP
debugger application. Halt mode can be selected only by setting the H bit (bit 30) of the
DSCR, which is only writable through the DBGTAP interface.

8.4.1 Entering debug state

In halt mode, the processor stops executing instructions and enters into debug state if
one of the following events occurs:

• an instruction is fetched from a breakpointed memory location

• a data fetch (load or store) occurs from a watchpointed data location

• a breakpoint instruction is executed

• the external EDBGRQ signal is asserted

• a HALT instruction is scanned into the DBGTAP instruction register

• an exception occurs and the corresponding vector catch bit is set.

When the processor is halted, it is controlled by sending instructions to the integer unit
through the DBGTAP port. Any valid instruction sequence can be scanned into the
processor, and the effect of the instruction on the integer unit is as if the instruction is
executed under normal operations. Some specific exceptions are described in Sending
instructions to the integer unit on page 8-20 and Using the DSCR E bit for fast data
uploads and downloads on page 8-20. Also accessible through the DBGTAP interface
is a register to transfer data between CP14 and the DBGTAP debugger.

The integer unit is restarted by executing a DBGTAP RESTART instruction.

8.4.2 Exiting debug state

Exiting debug state involves causing a branch to the next instruction to be executed.

If debug state was entered from ARM or Thumb state, the processor typically issues a
load or data processing instruction with PC as destination to exit debug state and
re-enter ARM or Thumb state.

If debug state was entered from Jazelle state, the processor must issue the BXJ Rm
instruction followed by a load or data processing operation with PC as destination to
exit debug state back to Jazelle state.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-19

Debug
8.4.3 Behavior of the PC in debug state

When the processor is halted, the PC is frozen on entry to debug state. The PC is not
incremented as instructions are executed. However, branches and instructions that
modify the PC directly update the PC.

Table 8-14 shows the read PC value after debug state entry for different debug events.

8.4.4 Sending instructions to the integer unit

Two registers in CP14 are used to communicate with the processor:

• the Instruction Transfer Register, ITR

• the Data Transfer Register, DTR.

The ITR is used to insert an instruction into the processor pipeline. While in debug state,
most of the processor time is spent waiting for a valid instruction in the ITR. Undefined
instructions fed to the integer unit through the debugger are Unpredictable. Instructions
that cause exceptions cause Unpredictable behavior.

8.4.5 Using the DSCR E bit for fast data uploads and downloads

The E bit in the DSCR enables execution of the instruction in the ITR. You can use it
to repeatedly issue instructions to the integer unit. When E is set, the current ITR
instruction is sent to the prefetch unit for execution each time the DBGTAP controller
enters the Run-Test/Idle state. When E is clear, no instruction is passed to the prefetch
unit. The instruction in the DBGTAP instruction register must be either INTEST or
EXTEST.

Table 8-14 Read PC value after debug state entry

Debug event ARM Thumb Jazelle Return address (RAa) meaning

Register breakpoint RA + 8 RA + 4 RA Register breakpoint hit instruction address.

Watchpoint RA + 8 RA + 4 RA Address of instruction where execution is expected to resume. Can be
a number of instructions after the watchpointed instruction.

Instruction breakpoint RA + 8 RA + 4 RA Breakpoint instruction address.

Vector catch RA + 8 RA + 4 RA Vector address.

EDBGRQ asserted RA + 8 RA + 4 RA Address of instruction where execution is expected to resume.

HALT instruction RA + 8 RA + 4 RA Address of instruction where execution is expected to resume.

a. RA is the address of the instruction that the processor should execute first on debug state exit. Watchpoints can be imprecise,
and RA might not be the address of the watchpointed instruction. The processor might stop a number of instructions later.
8-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
The execute feature enables fast uploads and downloads of data. For example, a
download sequence might consist of:

1. In the Debug Scan Chain Select Register, DBGSCREG, select scan chain 2, the
combination of scan chains 4 and 5, and set the DBGTAP instruction to EXTEST
for writing.

2. Load an STC instruction into the ITR, and load data into the DTR.

3. When the DBGTAP controller passes through the Run-Test/Idle state, the
processor executes the instruction in the ITR.

4. Switch to scan chain 5, the DTR, and poll the DTR until the status bit in wDTR0
indicates the completion of the instruction.

More data can then be loaded into DTR and the instruction reexecuted by passing
through Run-Test/Idle. The STC instruction must specify base address write-back so
that the addresses are automatically updated.

A similar mechanism can increase the performance of upload:

1. First, change the DBGTAP instruction to EXTEST for writing.

2. Using scan chain 2, scan a read instruction such as LDC into the ITR.

3. Change the DBGTAP instruction to INTEST for reading.

4. Switch to scan chain 5, the DTR, and poll the DTR until the instruction
completes. By passing through the Run-Test/Idle state on the way to Shift-DR for
polling, the instruction in the ITR is issued to the integer unit.

Repeat this process until the last word is read.

8.4.6 Accessing processor state

Reading the contents of the integer unit register file requires individual moves from an
ARM1026EJ-S register to CP14 c5 using MRC and MCR instructions. The data is then
scanned out of the DTR.

Byte and halfword transfers are performed by transferring both the address and data into
ARM1026EJ-S registers and then executing the appropriate ARM instructions.

Transfers to and from coprocessors are performed by moving data through an
ARM1026EJ-S register. For this reason all coprocessors must have all data accessible
using MRC and MCR. Otherwise, a data buffer in writable memory must be used.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-21

Debug
8.5 Monitor mode

Monitor mode is useful in real-time systems when the integer unit cannot be halted to
collect information. Engine controllers and servo mechanisms in hard drive controllers
that cannot stop the code without physically damaging the components are examples.

For situations that can only tolerate a small intrusion into the instruction stream,
monitor mode is ideal. Using this technique, code can be suspended with an exception
long enough to save off state information and important variables. The code continues
when the exception handler is finished. The MOE bits in the DSCR can be read to
determine what caused the exception.

8.5.1 Entering monitor mode

Monitor mode is the default mode on Reset. Only an external debugger can change the
mode bit in the DSCR. When monitor mode is enabled, the processor takes an
exception, rather than halting, if one of the following events occurs:

• a register breakpoint is hit

• a watchpoint is hit

• a breakpoint instruction reaches the Execute stage of the ARM1026EJ-S pipeline

• an exception is taken and the corresponding vector trap bit is set.

The global debug enable bit in the DSCR must be set or no action is taken.

Watchpoints cause Data Abort exceptions. Register breakpoints and instruction
breakpoints cause Prefetch Abort exceptions.

8.5.2 Exiting monitor mode

Exiting the exception handler must be done in the normal fashion.

For example, if the processor takes an exception on a breakpoint instrution (BKPT for
ARM and Thumb, 0xFF for Jazelle), the Prefetch Abort exception handler might return
to the instruction following the breakpoint instruction.

For ARM, the following instruction can be used:

MOVS PC, R14

For Thumb, the following instruction can be used:

SUBS PC, R14, #2

For Jazelle, the following instruction can be used:

SUBS PC, R14, #3
8-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.5.3 Reading and writing breakpoint and watchpoint registers

When in monitor mode, all breakpoint and watchpoint registers can be read and written
with MRC and MCR instructions from a privileged processing mode.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-23

Debug
8.6 Values in the link register after exceptions

After an exception, r14, the link register, holds an address for exception processing.
This address is used to return after the exception is processed and to address the faulted
instruction. Prefetch Aborts and Data Aborts might not want to rerun the faulted
instruction.

Table 8-15 shows the values in the link register after exceptions.

Table 8-15 Link register values after exceptions

Debug event ARM Thumb Jazelle Return address (RAa) meaning

Register breakpoint RA + 4 RA + 4 RA + 4 Register breakpoint hit instruction address.

Watchpoint RA + 8 RA + 8 RA + 8 Address of instruction where execution is expected to resume.
Can be a number of instructions after the watchpointed
instruction.

Instruction breakpoint RA + 4 RA + 4 RA + 4 Breakpoint instruction address.

Vector catch RA + 4 RA + 4 RA + 4 Vector address.

Prefetch Abort RA + 4 RA + 4 RA + 4 Address of instruction where execution is expected to resume.

Data Abort RA + 8 RA + 8 RA + 8 Address of instruction where execution is expected to resume.

a. RA is the address of the instruction that the processor should execute first on debug state exit. Watchpoints can be imprecise,
and RA might not be the address of the watchpointed instruction. The processor might stop a number of instructions later.
8-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug
8.7 Comms channel

The comms channel is implemented using the two physically separate DTRs and a
full/empty bit pair to augment each register, creating a bidirectional data port. One
register, wDTR, can be read from the DBGTAP interface and is written from the
ARM1026EJ-S processor wDTR. The other register, rDTR, is written from the
DBGTAP interface and read by the processor. The full/empty bit pair for each register
is automatically updated by the debug unit hardware, and is accessible to both the
DBGTAP interface and to software running on the processor.

When the debugger performs comms channel activities, it indicates this to the hardware
by setting DSCR27 in scan chain 1. This forces the least significant bit of the wDTR to
indicate the state of the comms channel registers.

To read data from the wDTR, the debugger loads the INTEST instruction into the
DBGTAP instruction register and then scans out the contents of the wDTR register. If
the LSB of the 33-bit packet of data is HIGH, the data is valid. The bit is then cleared
by this read. If the bit is a 0, meaning that the core has not written any data for the
debugger, the external hardware can poll the DSCR to see if the core halted.

To write data into the rDTR, the debugger scans the EXTEST instruction into the
DBGTAP instruction register and then scans data into the rDTR. When the debugger
writes more data, it polls the LSB of the register until the LSB is HIGH. If the LSB is
LOW, indicating the rDTR is still full and the core has not read the old data, then the
new data shifted in is not loaded into the rDTR.

Because halt mode and monitor mode are mutually exclusive, the transfer registers are
not used for any other purpose in monitor mode.

Figure 8-8 on page 8-26 shows the output from the comms channel.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 8-25

Debug
Figure 8-8 Comms channel output

rDTR empty

wDTR full

32 1

Write data from

ARM1026EJ-S

processor

wDTR

32 1

Read data to

ARM1026EJ-S

processor

rDTR

0

DBGTDO

DBGTDI
8-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 9
Debug Test Access Port

This chapter describes the JTAG interface built into the ARM1026EJ-S processor. It
contains the following sections:

• Debug test access port and halt mode on page 9-2

• DBGTAP instructions on page 9-4

• Scan chain descriptions on page 9-7.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-1

Debug Test Access Port
9.1 Debug test access port and halt mode

JTAG-based hardware debug using halt mode provides access to the integer unit and
debug logic. Access is through scan chains and the ARM1026EJ-S DBGTAP
controller. Figure 9-1 shows the transitions of the DBGTAP state machine.

Figure 9-1 JTAG DBGTAP state diagram

tms = 0tms = 1

Test-Logic-Reset

0xF

tms = 0

Run-Test/Idle

0xC

Select-DR-Scan

0x7

Capture-DR

0x6

tms = 1

tms = 0

Shift-DR

0x2

tms = 0

Exit1-DR

0x1

tms = 1

tms = 0

Pause-DR

0x3

tms = 1

Exit2-DR

0x0

tms = 1

Update-DR

0x5

tms = 1 tms = 0

tms = 0

tms = 0

tms = 1

tms = 0

tms = 1

Select-IR-Scan

0x4

Capture-IR

0xE

Shift-IR

0xA

Exit1-IR

0x9

Pause-IR

0xB

Exit2-IR

0x8

Update-IR

0xD

tms = 1

tms = 0

tms = 0

tms = 0

tms = 0

tms = 1

tms = 1

tms = 1

tms = 1

tms = 1 tms = 0

tms = 1

tms = 0

tms = 1

tms = 1
9-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
9.1.1 Entering debug state

Halt mode is enabled by writing a 1 to bit 30 of the Debug Status and Control Register,
DSCR. This can only be done by DBGTAP debugger hardware such as Multi-ICE. If
one of the following events occurs when halt mode is enabled, the processor halts and
enters into debug state instead of taking an exception in software:

• A HALT instruction is scanned in through the DBGTAP. The DBGTAP
controller must pass through Run-Test/Idle to issue the HALT instruction to the
ARM1026EJ-S processor.

• An vector catch occurs, and the corresponding vector catch enable bit is set.

• A register breakpoint hits.

• A watchpoint hits.

• A breakpoint instruction reaches the Execute stage of the ARM1026EJ-S
pipeline.

• EDBGRQ is asserted.

The core halted bit in the DSCR is set when debug state is entered. At this point, the
debugger determines why the processor is halted and preserves the processor state. The
MSR instruction can be used to change modes and gain access to all banked registers in
the processor. While in debug state:

• the PC is not incremented

• external interrupts are ignored

• all instructions are read from scan chain 4, the Instruction Transfer Register, ITR.

9.1.2 Exiting debug state

To exit from debug state, scan in the RESTART instruction through the DBGTAP. The
debugger might adjust the PC before restarting, depending on the way the processor
entered debug state. When the state machine enters the Run-Test/Idle state, normal
operations resume. The delay, waiting until the state machine is in Run-Test/Idle,
enables conditions to be set up in other devices in a multiprocessor system without
taking immediate effect. When Run-Test/Idle state is entered, all the processors resume
operation simultaneously. The core restarted bit, DSCR1, is set when the RESTART
sequence is complete.The core halted bit, DSCR0, is cleared before the processor is
restarted.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-3

Debug Test Access Port
9.2 DBGTAP instructions

The ARM1026EJ-S DBGTAP controller is part of the debug logic that enables access
through the DBGTAP to the on-chip debug resources, such as breakpoint and
watchpoint registers. The DBGTAP controller is based on the IEEE 1149.1 standard
and supports:

• a TAP ID Register

• a Bypass Register

• a four-bit Instruction Register, DBGIR

• a five-bit Scan Chain Select Register, DBGSCREG.

In addition, the public instructions listed in Table 9-1 are supported.

Table 9-1 Supported public JTAG instructions

Binary code Instruction Description

b0000 EXTEST See Scan chains on page 9-6

b0001 - Reserved

b0010 SCAN_N Selects the DBGSCREG

b0011 - Reserved

b0100 RESTART Forces the processor to leave debug state

b0101 - Reserved

b0110 - Reserved

b0111 - Reserved

b1000 HALT Forces the processor to enter debug state

b1001 - Reserved

b1010-b1011 - Reserved

b1100 INTEST See Scan chains on page 9-6

b1101 - Reserved

b1110 IDCODE Selects DBGTAP controller TAP ID Register

b1111 BYPASS Selects DBGTAP controller Bypass Register
9-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
Note

 Because the ARM1026EJ-S DBGTAP does not support the attachment of external
boundary scan chains, the SAMPLE/PRELOAD, CLAMP, HIGHZ, and CLAMPZ
instructions are not implemented.

All unused DBGTAP controller instructions default to the BYPASS instruction.

9.2.1 EXTEST

This instruction connects the selected scan chain between DBGTDI and DBGTDO.
When the DBGIR is loaded with the EXTEST instruction, the debug scan chains can be
written.

CP14 debug registers that can be written through the DBGTAP controller, c1, c4, and
c5, are written using an EXTEST instruction.

9.2.2 SCAN_N

This instruction connects the DBGSCREG between DBGTDI and DBGTDO. See
Debug Scan Chain Select Register, DBGSCREG on page 9-9.

9.2.3 RESTART

This instruction is used to exit from debug state. The processor restarts when the
Run-Test/Idle state is entered.

9.2.4 HALT

This instruction stops the processor and puts it into debug state. The processor can be
put into debug state only if debug halt mode is enabled.

9.2.5 INTEST

This instruction connects the selected scan chain between DBGTDI and DBGTDO.
When the DBGIR is loaded with the INTEST instruction, the debug scan chains can be
read.

CP14 debug registers c0, c1, and c5 can be read through the DBGTAP controller using
an INTEST instruction.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-5

Debug Test Access Port
9.2.6 IDCODE

This instruction connects the TAP ID Register between DBGTDI and DBGTDO. The
32-bit TAP ID Register enables the manufacturer, part number, and version of a
component to be determined through the DBGTAP controller.

9.2.7 BYPASS

This instruction connects a one-bit shift register, the Bypass Register, between
DBGTDI and DBGTDO. The first bit shifted out is a zero. All unused DBGTAP
controller instructions default to the BYPASS instruction.

9.2.8 Scan chains

The effect of an INTEST or EXTEST instruction is as follows:

1. Load the SCAN_N instruction into the DBGIR. Now DBGSCREG is selected
between DBGTDI and DBGTDO.

2. Load the number of the required scan chain. For example, load the binary value
b00101 to access scan chain 5, the Data Transfer Register.

3. Load either INTEST or EXTEST into the DBGIR.

4. Go through the DR leg of the DBGTAPSM to access the scan chain.

INTEST and EXTEST must be used as follows:

INTEST Use INTEST for reading the active scan chain. Data is
captured into the shift register in the capture-DR state. The
previous value of the scan chain is shifted out during the
Shift-DR state, while a new value is shifted in. The scan
chain is not updated during Update-DR.

EXTEST Use EXTEST for writing the active scan chain. Data is
captured into the shift register in the Capture-DR state. The
previous value of the scan chain is shifted out during the
Shift-DR state, while a new value is shifted in. The scan
chain is updated with the new value during Update-DR.
9-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
9.3 Scan chain descriptions

This section describes the following scan chains:

• Bypass Register

• TAP ID Register on page 9-8

• Debug Instruction Register, DBGIR on page 9-9

• Debug Scan Chain Select Register, DBGSCREG on page 9-9

• Scan chain 0, Debug ID Register, DIDR on page 9-10

• Scan chain 1, Debug Status and Control Register, DSCR on page 9-10

• Scan chain 2 on page 9-11

• Scan chain 3 on page 9-11

• Scan chain 4, Instruction Transfer Register, ITR on page 9-12

• Scan chain 5, Data Transfer Register, DTR on page 9-13

• Scan chain 6 on page 9-14.

9.3.1 Bypass Register

Purpose Bypasses the device by providing a path between DBGTDI and
DBGTDO.

Length 1 bit.

Operating
mode When the BYPASS instruction is the current instruction in the DBGIR,

serial data is transferred from DBGTDI to DBGTDO in the Shift-DR
state. There is no parallel output from the Bypass Register. A logic 0 is
loaded from the parallel input of the Bypass Register in Capture-DR
state. Nothing happens in the Update-DR state.

Order See Figure 9-2.

Figure 9-2 Bypass Register bit order

0

Bypass[0]DBGTDI DBGTDO
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-7

Debug Test Access Port
9.3.2 TAP ID Register

Purpose Device identification. To distinguish the ARM1026EJ-S processor from
other processors, the DBGTAP controller ID is unique. This means that
a DBGTAP debugger such as MULTI-ICE can easily identify the
processor. The TAP ID Register is routed to the edge of the chip so that
you can create your own ID number by tying the pins HIGH or LOW.

The default ID for the ARM1026EJ-S processor is 0x07A26F0F. All ARM
semiconductor partner-specific devices must be identified by ID numbers
of the form shown in Figure 9-3.

Figure 9-3 TAP ID Register

Length 32 bits.

Operating
mode When the IDCODE instruction is current, the TAP ID Register is selected

as the serial path between DBGTDI and DBGTDO. There is no parallel
output from the TAP ID Register. The 32-bit ID code is loaded into the
register from its parallel inputs during the Capture-DR state. This is
shifted out, least-significant bit first, during Shift-DR while a don’t care
value is shifted in. In the Update-DR state, the TAP ID Register is
unaffected.

Order See Figure 9-4.

Figure 9-4 TAP ID Register bit order

LSB

0

Part number Manufacturer IDVersion

31 28 27 12 11 1

TAPID[31:0]

031

DBGTDI DBGTDO
9-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
9.3.3 Debug Instruction Register, DBGIR

Purpose Holds the current DBGTAP controller instruction.

Length 4 bits.

Operating
mode When in Shift-IR state, the DBGIR is selected as the serial path

between DBGTDI and DBGTDO. During the Capture-IR state,
the binary value b0001 is loaded into this register. This is shifted
out during Shift-IR, least significant bit first, while a new
instruction is shifted in, least significant bit first. During the
Update-IR state, the value in the DBGIR becomes the current
instruction. On DBGTAP reset, IDCODE becomes the current
instruction. The value of the current instruction is reflected on the
DBGIR[3:0] output bus.

Order See Figure 9-5.

Figure 9-5 Instruction Register bit order

9.3.4 Debug Scan Chain Select Register, DBGSCREG

Purpose Holds the current active scan chain.

Length 5 bits.

Operating
mode After SCAN_N is selected as the current instruction and when in

Shift-DR state, the DBGSCREG is selected as the serial path
between DBGTDI and DBGTDO. During the Capture-DR state,
the binary value b10000 is loaded into this register. This is shifted
out during Shift-DR, least significant bit first, while a new value
is shifted in, least significant bit first. During the Update-DR state,
the value in the register selects a scan chain to become the
currently active scan chain. All further instructions such as
INTEST then apply to that scan chain. The currently selected scan
chain only changes when a SCAN_N instruction is executed, or a
reset occurs. On reset, scan chain 3 is selected as the active scan
chain. The number of the currently selected scan chain is reflected
on the DBGSCREG[4:0] output bus.

DBGIR[3:0]

03

DBGTDI DBGTDO
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-9

Debug Test Access Port
Order See Figure 9-6.

Figure 9-6 Scan Chain Select Register bit order

9.3.5 Scan chain 0, Debug ID Register, DIDR

Purpose Debug identification.

Length 32 bits.

Description This scan chain is CP14 c0, DIDR. It is a read-only register that
contains 0x41016201, See CP14 c0, Debug ID Register on page 8-6
for a detailed description of the DIDR.

Order See Figure 9-7.

Figure 9-7 Scan chain 0 bit order

9.3.6 Scan chain 1, Debug Status and Control Register, DSCR

Purpose Debug.

Length 32 bits.

Description This scan chain is is CP14 c1, DSCR. It is primarily a read-only
register, although certain bits are readable and writeable by the
DBGTAP controller. See CP14 c1, Debug Status and Control
Register on page 8-7 for a detailed description of the DSCR.

Order See Figure 9-8.

Figure 9-8 Scan chain 1 bit order

DBGSCREG[4:0]

04

DBGTDI DBGTDO

DIDR[31:0]

031

DBGTDI DBGTDO

DSCR[31:0]

031

DBGTDI DBGTDO
9-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
9.3.7 Scan chain 2

Purpose Debug.

Length 65 bits.

Description Scan chain 2 is the combination of scan chain 4 and scan chain 5. Scan
chain 4 is the Instruction Transfer Register, ITR, and scan chain 5 is the
Data Transfer Register, DTR.

Note
 The instruction complete bit, ITR0, is not included in this combination.

ITR0 appears only in scan chain 4.

Order See Figure 9-8 on page 9-10.

Figure 9-9 Scan chain 2 bit order

9.3.8 Scan chain 3

Purpose Can be used for external boundary scan testing. Used for
interdevice testing (EXTEST) and testing the core (INTEST).

Length Undetermined.

064

DBGTDI DBGTDOITR[32:1] DTR[32:0]

33 32
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-11

Debug Test Access Port
9.3.9 Scan chain 4, Instruction Transfer Register, ITR

Purpose Debug.

Length 33 bits.

Description This scan chain is the ITR. It is used to send instructions to the
core through the prefetch unit. This chain consists of 32 bits of
information, plus an additional bit to indicate the completion of
the instruction sent to the core. Instructions scanned into the ITR
are not executed unless the instruction transfer execute bit
DSCR29 is asserted. Bit 0 indicates if the instruction in the ITR
has completed execution.

Order See Figure 9-10.

Figure 9-10 Scan chain 4 bit order

033

DBGTDI DBGTDOITR[32:0]
9-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Debug Test Access Port
9.3.10 Scan chain 5, Data Transfer Register, DTR

Purpose Debug.

Length 33 bits.

Description This scan chain is the DTR. It consists of two separate registers,
the read-only rDTR and the write-only wDTR. The two registers
facilitate the creation of a bidirectional comms channel in
software.

The rDTR can be loaded only through the DBGTAP and is
read-only by the core using an MRC instruction. The rDTR chain
contains 32 bits of information plus one additional bit for the
comms channel.

The wDTR can be loaded only by the core through an MCR
instruction and is read-only through the DBGTAP. The wDTR
contains 32 bits of information plus one additional bit for the
comms channel. The definition of bit 0 depends on whether the
current DBGTAP instruction is INTEST or EXTEST. If the
current instruction is EXTEST, the debugger can write to the
rDTR, and bit 0 indicates if there is still valid data in the queue. If
the bit is set, the debugger can write new data. When the core
performs a read of the rDTR, bit 0 is automatically asserted.
Conversely, if the DBGTAP instruction is INTEST, bit 0 indicates
if there is currently valid data to read in the wDTR. If the bit is set,
the DBGTAP interface must read the contents of the wDTR,
which in turn, clears the bit. The core can then sample its own
wDTR empty bit and write new data for the debugger.

The DBGTAP controller sees either rDTR or wDTR through scan
chain 5, and the appropriate register is chosen depending on which
instruction is used (INTEST or EXTEST).
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 9-13

Debug Test Access Port
Order See Figure 9-11

Figure 9-11 Scan chain 5 bit order

9.3.11 Scan chain 6

Purpose ETM.

Length 40 bits.

Description The ETM scan chain. Refer to ETM10RV Technical Reference
Manual.

065

DBGTDI DBGTDOrDTR[32:0] wDTR[32:0]

33 32
9-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 10
Memory Management Unit

This chapter describes the ARMv5 Memory Management Unit (MMU). It contains the
following sections:

• About the MMU on page 10-2

• MMU software-accessible registers on page 10-6

• Address translation on page 10-8

• MMU memory access control on page 10-26

• MMU cachable and bufferable information on page 10-28

• MMU and pending write buffer on page 10-29

• Fault checking sequence on page 10-30

• Fault priority on page 10-33

• MMU aborts and external aborts on page 10-34

• Memory parity on page 10-35.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-1

Memory Management Unit
10.1 About the MMU

The ARM1026EJ-S MMU is an ARM architecture version 5 MMU. It provides virtual
memory features required by systems operating on platforms such as Symbian OS,
WindowsCE, and Linux. Translation tables in external memory control address
translation, permission checks, and memory region attributes for both data and
instruction accesses.

The MMU translates Modified Virtual Addresses (MVAs) to physical addresses. It
checks access permissions for the instruction and data ports of the integer unit. It
controls the table-walk hardware that fetches page table descriptors in external memory.
To support both sections and pages, there are two levels of address translation. The
MMU puts the translated physical addresses into the MMU Translation Lookaside
Buffer TLB.

The MMU TLB has two parts:

• the main TLB

• the lockdown TLB.

The main TLB is a two-way, set-associative cache for page table information. It has 32
entries per way for a total of 64 entries.

The lockdown TLB is an eight-entry fully-associative cache that contains locked TLB
entries. Locking TLB entries can ensure that a memory access to a given region never
incurs the penalty of a page table walk.

MMU features include:

• standard ARM architecture ARMv4/ARMv5 MMU mapping sizes, domains, and
access protection

• 1KB tiny page, 4KB small page, 64KB large page, and 1MB section mapping
sizes

• separate access permissions for one-quarter page subpages of 64KB large pages
and 4KB small pages

• hardware page table walks

• CP15 c8 invalidation of entire TLB

• CP15 c8 TLB entry invalidation using MVA

• CP15 c10 lockdown of TLB entries.
10-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.1.1 Selecting the MMU

The MMUnMPU static input selects either the MMU or the Memory Protection Unit
(MPU). Tie MMUnMPU HIGH to select the MMU. Tie MMUnMPU LOW to select
the MPU.

10.1.2 Enabling the MMU

To enable the MMU:

1. Program the CP15 c2 Translation Table Base Register and CP15 c3 Domain
Access Control Register.

2. Build level 1 and level 2 descriptor page tables as required.

3. Enable the MMU by setting the M bit in the CP15 c1 Control Register.

Note
 Use caution if the translated address differs from the untranslated address. Several
instructions following the enabling of the MMU might have been prefetched with the
MMU off using PA = VA flat translation. Enabling the MMU can be considered as a
branch with delayed execution. A similar situation occurs when the MMU is disabled.
Consider the following code sequence:

MRC p15, 0, R1, c1, C0, 0 ; Read control register
ORR R1, R1, #0x1
MCR p15, 0, R1, c1, c0, 0 ; Enable MMU
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Flat/Translated
Fetch Translated

You can enable the ICache, DCache, and MMU simultaneously with a single MCR
instruction (see CP15 c1 Control Register on page 3-14).
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-3

Memory Management Unit
10.1.3 Disabling the MMU

To disable the MMU, clear the M bit in the CP15 c1 Control Register. Disable the
DCache by clearing the C bit in the Control Register before or at the same time that you
disable the MMU.

Note
 If you disable the MMU, the contents of the TLBs remain intact. Before enabling the
MMU again, invalidate the TLBs if they are no longer applicable to the memory
context. (see CP15 c8 TLB operations on page 3-40).

10.1.4 Access permissions and domains

Access permissions are defined for:

• each 1MB section

• each 16KB subpage of a large page

• each 1KB subpage of a small page

• each 1KB tiny page.

All regions of memory have an associated domain. A domain is the primary access
control mechanism for a region of memory. It defines the conditions necessary for an
access to proceed. The domain determines if:

• access permissions are used to qualify the access

• the access is unconditionally allowed to proceed

• the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored.

There are 16 domains. Program their access permissions with the Domain Access
Control Register (see CP15 c3 Domain Access Control Register on page 3-23).
10-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.1.5 Translated entries

The main TLB caches 64 translated entries. If, during a memory access, the main TLB
contains a translated entry for the MVA, the MMU reads the protection data to
determine if the access is permitted:

• if the access is permitted, and off-chip access is required, the MMU generates the
PA

• if the access is permitted, and off-chip access is not required, the cache services
the access

• if the access is not permitted, the MMU signals the processor to abort.

If a TLB miss occurs, the table-walk hardware retrieves the translation information
from a translation table in external memory. The retrieved information is written into
the main TLB, possibly overwriting an existing value.

The entry to be written is usually chosen by cycling sequentially through the TLB
locations. To enable use of TLB locking features, the location to be written can be
specified using the CP15 c10 TLB Lockdown Register.

When the MMU is turned off, as happens at reset, no VA-to-MVA or MVA-to-PA
address mapping occurs, and all regions are marked as noncachable and nonbufferable.

Note
 When the MMU is off, you can use the CP15 c15 Debug Overide Register to modify
the default behavior of the ARM1026EJ-S processor.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-5

Memory Management Unit
10.2 MMU software-accessible registers

The CP15 registers listed in Table 10-1, and the page table descriptors stored in
memory, control MMU operation. All the registers in Table 10-1 except CP15 c8
contain state and can be read using MRC instructions and written to using MCR
instructions. Reading CP15 c8 is Unpredictable.

Chapter 3 Programmer’s Model describes the CP15 registers in more detail.

Table 10-1 CP15 MMU registers

Register Bits Description

CP15 c1 Control
Register

[0]

[1]

[8]

[9]

MMU enable bit:
1 = MMU enabled
0 = MMU disabled.

Address alignment fault checking enable bit:
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

MMU system protection enable bit:
1 = MMU protection enabled
0 = MMU protection disabled.

MMU ROM protection enable bit:
1 = ROM protection enabled
0 = ROM protection disabled.

CP15 c2 Translation
Table Base Register

[31:14] PA of base of translation table in external memory. Must be on 16KB boundary.

CP15 c3 Domain
Access Control
Register

[31:30]

[29:28]

. . .

[1:0]

Access permission field for domain D15.

Access permission field for domain D14.

. . .

Access permission field for domain D0. See Table 10-5 on page 10-26.

CP15 c5 Fault
Status
Registers

[31:11]

[7:4]

[10], [3:0]

Should Be Zero.

Domain (D0-D15) in which fault occurred:
b0000 = D0
b0001 = D1
. . .
b1111 = D15.

Type of fault. See Table 10-8 on page 10-33.
10-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
CP15 c6 Fault
Address Registers

[31: 0] MVA that caused Data Abort or Prefetch Abort. ARM10EJ-S register R14_abt holds
VA that caused Prefetch Abort.

CP15 c8 TLB
operations [31:10]

[9:0]

Invalidate single TLB entries or all unlocked TLB entries.

MVA for invalidate single TLB entry operation.

Should Be Zero.

CP15 c10 TLB
Lockdown Register

[31:29]

[28:26]

[25:1]

[0]

Should Be Zero.

Victim field. Selects lockdown TLB location to write.

Should Be Zero.

Preserve bit:
1 = page table walk puts entry in lockdown TLB location specified by victim field
0 = page table walk puts entry in main TLB.

Table 10-1 CP15 MMU registers (continued)

Register Bits Description
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-7

Memory Management Unit
10.3 Address translation

The Fast Context Switch Extension (FCSE) uses the value in the CP15 c3 Context ID
Register to convert the VA generated by the integer core to a Modified Virtual Address
(MVA). The MMU translates the MVA to a physical address in external memory and
checks the access permissions.

The translation information, containing both the address translation data and the access
permission data, resides in a translation table in external memory. The table-walk
hardware automatically reads the translation table and loads entries into the TLB.

The translation process always begins with a level 1 descriptor fetch. A section-mapped
access requires only a level 1 fetch, but a page-mapped access requires both a level 1
and a level 2 fetch.

A section-mapped access addresses a 1MB section. A page-mapped access addresses
one of three page sizes:

• 64KB large page

• 4KB small page

• 1KB tiny page.

10.3.1 Translation table base

The translation process begins when the TLB does not contain a translation for the
requested MVA. The CP15 c2 Translation Table Base Register points to the base
address of the level 1 translation table in external memory. This table contains level 1
descriptors, which can be section descriptors, page table descriptors, or both.

The level 1 translation table has up to 4096 32-bit descriptors. Each descriptor controls
access to 1MB of virtual memory, enabling the MMU to address up to 4GB of virtual
memory.

10.3.2 Translation routes for sections and pages

Figure 10-1 on page 10-9 shows the section and page translation process.
10-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-1 Address translation

Coarse page

table base

address from

L1D[31:10]

Large page base

address from

L2D[31:16]

Small page base

address from

L2D[31:12]

Section base address

from L1D[31:20]

1MB section
Indexed by

MVA[19:0]

4KB small page

1KB subpage

1KB subpage

1KB subpage

1KB subpage

Indexed by

MVA[11:0]

64KB large page

Indexed by

MVA[15:0]

16KB subpage

16KB subpage

16KB subpage

16KB subpage
31 0

Invalid 11

10

01

Large page base

address from

L2D[31:16]

Small page base

address from

L2D[31:12]

Tiny page base

address from

L2D[31:10]

Fine page table

base address from

L1D[31:12]
31 0

Invalid 00

11

10

01

1KB subpage

1KB subpage

1KB subpage

1KB subpage

4KB small page

Indexed by

MVA[11:0]

1KB tiny page
Indexed by

MVA[9:0]

16KB subpage

16KB subpage

16KB subpage

16KB subpage

64KB large page

Indexed by

MVA[15:0]

Level 2

7 0

7 0

7 0

7 0

7 0

7 0

1K 4-word

entries indexed

by MVA[19:10]

256 4-word

entries indexed

by MVA[19:12]

Invalid 00

Translation

table base

Level 1

31 0

01

10

11

4K 4-word

entries indexed

by MVA[31:20]

Invalid 00

16KB of level 1

page table

descriptors

1KB of level 2

coarse page table

descriptors

4KB of level 2

fine page table

descriptors

Pages and sections
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-9

Memory Management Unit
10.3.3 Level 1 descriptor address

Figure 10-2 shows how the MMU creates the level 1 descriptor address from the CP15
c2 Translation Table Base Register and the MVA.

Figure 10-2 Translating a level 1 descriptor address

10.3.4 Level 1 descriptor

The level 1 descriptor indicates whether the access is:

• a translation fault

• an access to a level 2 coarse page table

• an access to a 1MB section of external memory

• an access to a level 2 fine page table.

Bits [1:0] of the level 1 descriptor determine the type of access. Figure 10-3 on
page 10-11 shows the level 1 descriptor format for each access type.

1431

Translation table base

Not usedLevel 1 table index

2031

MVA

1314

Level 1 table index

012

00Translation table base

31

Level 1

descriptor

address

19 0

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
10-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-3 Level 1 descriptor formats

Bits [1:0] of the level 1 descriptor indicate the access type as Table 10-2 shows.

Level 1 translation fault

When bits [1:0] of the level 1 descriptor are b00, the MMU generates a translation fault.
This causes either a Prefetch Abort or Data Abort in the integer unit.

Level 1 coarse page table address

When bits [1:0] of the level 1 descriptor are b01, the MMU fetches a level 2 descriptor
from the coarse page table. Figure 10-6 on page 10-14 shows how the MMU generates
a coarse page table address.

Level 1 section base address

When bits [1:0] of the level 1 descriptor are b10, the MMU accesses a 1MB memory
section. Figure 10-4 on page 10-12 shows the translation process for a 1MB section.

31 20 19 12 11 10 9 8 5 4 1 0

00

101 SBZDomain selectorSBZLevel 2 coarse page table base address

011 C BAPSection base address SBZ

111Level 2 fine page table base address

3 2

SBZ

Domain selector

Domain selector

SBZ

SBZ

IgnoreTranslation fault

Coarse page table

1MB section

Fine page table

Table 10-2 Access type encoding in a level 1 descriptor

Bits [1:0] Access type

b00 Translation fault

b01 Coarse page table base address

b10 Section base address

b11 Fine page table base address
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-11

Memory Management Unit
Figure 10-4 Translating a section base address

Following translation of the level 1 descriptor for a section, the MMU checks the access
permissions for the section. If the access is permitted, the MMU uses the physical
address to transfer the requested data from external memory to the integer unit. MMU
memory access control on page 10-26 describes permission checking.

Level 1 fine page table base address

When bits [1:0] of the level 1 descriptor are b11, the MMU generates fetches a level 2
descriptor from the fine page table. Figure 10-9 on page 10-19 shows how the MMU
generates the fine page table address.

10 9

1431

Translation table base

1314

Level 1 table index

012

00Translation table base

31

Level 1

descriptor

address

Section index

19 0

Level 1 table index

2031

MVA

Domain

selector

19 0

Section base address

2031

Level 1

descriptor

1211

AP
S
B
Z

8 5 4 3 2 1

01C B1
Level 1 fetch

Section index

19 0

Section base address

2031

PA

SBZ

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
10-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.3.5 Level 2 descriptor

If the level 1 descriptor points to a page table, the MMU determines the page table type,
coarse or fine, and fetches a level 2 descriptor from the page table. The level 2 descriptor
indicates whether the access is:

• a translation fault

• an access from a coarse page table to a 64KB large page

• an access from a coarse page table to a 4KB small page

• an access from a fine page table to a 64KB large page

• an access from a fine page table to a 4KB small page

• an access from a fine page table to a 1KB tiny page.

 Figure 10-5 shows the level 2 descriptor format for each access type.

Figure 10-5 Level 2 descriptor formats

Bits [1:0] of the level 2 descriptor indicate the page type.

A large page can be divided into four 16KB subpages with different access permissions
defined by the AP fields. Bits [15:14] of the MVA page index select the subpages of a
large page.

A small page can be divided into four 1KB subpages with different access permissions.
Bits [11:10] of the MVA page index select the subpages of a small page.

Level 2 coarse page table descriptor

When the level 1 descriptor bits [1:0] indicate a descriptor fetch from a coarse page
table, the MMU requests the address of the level 2 coarse page table from external
memory. Figure 10-6 on page 10-14 shows how the coarse page table address is
generated.

0

10BAP3Large page base address

01C BSmall page base address

11APTiny page base address SBZ

IgnoreTranslation fault

64KB large page

4KB small page

1KB tiny page

0

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ AP2 AP1 AP0 C

AP3 AP2 AP1 AP0

C B
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-13

Memory Management Unit
Figure 10-6 Translating a coarse page table address

Following translation of the level 1 descriptor for a section, the the MMU checks the
access permissions for the section. If the access is permitted, the MMU uses the
physical address to transfer the requested data from external memory to the integer unit.

Level 1

descriptor

address

MVA

10 9

1431

Translation table base

1314

Level 1 table index

012

00Translation table base

31

Level 2

table index

19 0

Level 1 table index

2031

Domain

selector

0

Page table base address

31

Level 1

descriptor

Not used

S
B
Z

8 5 4 1

101
Level 1 fetch S

B
Z

3 2

12 11

0

Page table base address

31

Level 2

table index
0

12910

Level 2

descriptor

address

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5

0

10-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
When the coarse page table address is generated, a request is made to external memory
for the level 2 coarse page table descriptor. Bits [1:0] of the level 2 coarse page table
descriptor indicate the access type as shown in Table 10-3.

Level 2 coarse translation fault

If bits [1:0] of the level 2 coarse page table descriptor are b00 or b11, then a translation
fault is generated. This generates an abort to the integer unit, either a Prefetch Abort for
the instruction side or a Data Abort for the data side.

Level 2 coarse large page base address

If bits [1:0] of the level 2 coarse page table descriptor are b01, then a descriptor fetch
from a coarse large page table is required. Figure 10-7 on page 10-16 shows the
translation process for a 64KB large page or a 16KB subpage of a large page.

Table 10-3 Access type encoding in a coarse page table descriptor

Bits[1:0] Access type

b00 Translation fault

b01 64KB large page base address

b10 4KB small page base address

b11 Translation fault
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-15

Memory Management Unit
Figure 10-7 Translating a large page or subpage address from a coarse page table

The 64KB large page is generated by setting all of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = AP0. If any one of the pairs is different, then the 64KB large page
is converted into four 16KB subpages.

1031

Level 1

descriptor

address

012

MVA Level 2

table index
Level 1 table index

2031

Level 1

descriptor

Page index

Level 1

fetch

15

Level 2

descriptor

address

16

0

Page table base address

31

Level 2

table index
0 0

110

031 12910

Level 2

descriptor

131431

Level 1 table index 00Translation table base

1431

Translation table base

Level 2

fetch

1211 8 7 6 5 4 3

Page base address SBZ
A
P
3

A
P
2

A
P
1

A
P
0

C B 0

1119 12 0

PA Page base address Page index

9 08 5 4 13 2

Domain

selector
Page table base address

S
B
Z

101
S
B
Z

1

16 15

29

31 16 015

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
10-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Note

 The level 2 coarse page table index uses MVA[19:12], and the large page index uses
MVA[15:0]. The overlapping four bits, MVA[15:12], require groups of 16 consecutive
entries in the level 2 page tables to contain duplicate entries.

Level 2 coarse small page base address

If bits [1:0] of the level 2 coarse page table descriptor are b10, then a descriptor fetch
from a coarse small page table is required. Figure 10-8 on page 10-18 shows the
translation process for a 4KB small page or a 1KB subpage of a small page.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-17

Memory Management Unit
Figure 10-8 Translating a small page or subpage address from a coarse page table

The 4KB small page is generated by setting all of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = AP0. If any one of the pairs are different, then the 4KB small page
is converted into four 1KB small page subpages.

Level 1

descriptor

address

012

MVA
Level 2

table index
Level 1 table index

2031

Level 1

descriptor

Page index

Level 1

fetch

Level 2

descriptor

address

0

Page table base address

31

Level 2

table index
00

12910

012910

Level 2

descriptor

131431

Level 1 table index 00Translation table base

1431

Translation table base

Level 2

fetch

11 8 7 6 5 4 3

Page base address 0
A
P
3

A
P
2

A
P
1

A
P
0

C B 1

01119 12

10 9 031 8 5 4 13 2

Domain

selector
Page table base address

S
B
Z

101
S
B
Z

PA

0

Page base address

31

Page index

12 11

31 12

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
10-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Level 2 fine page table descriptor

When the level 1 descriptor bits [1:0] indicate that a descriptor fetch from a fine page
table is required, the MMU requests the level 2 fine page table address from external
memory. Figure 10-9 shows how the address is generated.

Figure 10-9 Translating a fine page table address

11 2

Level 1

descriptor

address

012

MVA

9

Level 2

table index

0

Level 1 table index

2031

0

Level 1

descriptor

Not used

8 5 4 1

Level 1 fetch

3 2

1019

Level 2

descriptor

address

131431

Level 1 table index 00Translation table base

1431

Translation table base

9

11

0

Fine page table base address
Level 2

table index
00

11231

Domain

selector
Fine page table base address 11

S
B
Z

SBZ 1

31 12

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-19

Memory Management Unit
Following translation of the level 1 descriptor for the base address of a fine page table
address, the MMU requests checks the access permissions for the section. If the access
is permitted, the MMU uses the physical address to transfer the requested data from
external memory to the integer unit. When the fine page table address is generated, a
request is made to external memory for the level 2 fine page table descriptor. Bits [1:0]
of the level 2 fine page table descriptor indicate the access type as shown in Table 10-4.

Level 2 fine translation fault

If bits [1:0] of the level 2 fine page table descriptor are b00, then a translation fault is
generated. This causes either a Prefetch Abort or a Data Abort in the integer unit. A
Prefetch Abort occurs on the instruction side, while a Data Abort occurs on the data
side.

Level 2 fine large page base address

If bits [1:0] of the level 2 fine page table descriptor are b01, then a descriptor fetch from
a fine large page table is required. Figure 10-10 on page 10-21 shows the translation
process for a 64KB large page or a 16KB subpage of a large page.

Table 10-4 Access type encoding in a fine page table descriptor

Bits [1:0] Access type

b00 Translation fault

b01 Large page table base address

b10 Small page base address

b11 Tiny page table base address
10-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-10 Translating a large page or subpage address from a fine page table

The 64KB large page is generated by setting all of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = AP0. If any pair is different from the others, then the 64KB large
page is converted into four 16KB subpages.

PA

Level 1

descriptor

address

012

MVA Level 2

table index

0

Level 1 table index

2031

Level 1

descriptor

Page index

Level 1

fetch

19

Level 2

descriptor

address

131431

Level 1 table index 00Translation table base

1431

Translation table base

16 15 10 9

9 08 5 4 13 2

Domain

selector
Page table base address 11

S
B
Z

11

SBZ 1

31 12

Level 2

fetch

0

Page table base address
Level 2

table index
00

1212 1131

012

Page table base address Page index

31 16

12

015

1110 9 8 7 4 331

Level 2

descriptor

6 5

A
P
2

A
P
1

A
P
0

10C B
A
P
3

1516

SBZPage table base address

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-21

Memory Management Unit
Note

 The level 2 fine page table index uses MVA[19:10], and the large page index uses
MVA[15:0]. The overlapping six bits, MVA[15:10], require groups of 64 consecutive
entries in the level 2 page tables to contain duplicate entries.

Level 2 fine small page base address

If bits [1:0] of the level 2 fine page table descriptor are b10, then a descriptor fetch from
a fine small page table is required. Figure 10-11 on page 10-23 shows the translation
process for a 4KB small page or a 1KB subpage of a small page.
10-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-11 Translating a small page or subpage address from a fine page table

The 4KB small page is generated by setting all of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = AP0. If any one of the pairs are different, then the 4KB small page
is converted into four 1KB small page subpages.

PA

Level 1

descriptor

address

012

MVA Level 2

table index

0

Level 1 table index

2031

Level 1

descriptor

Page index

Level 1

fetch

19

Level 2

descriptor

address

131431

Level 1 table index 00Translation table base

1431

Translation table base

12 11 10 9

9 08 5 4 13 2

Domain

selector
Page table base address 11

S
B
Z

11

SBZ 1

31 12

Level 2

fetch

0

Page table base address
Level 2

table index
00

1212 1131

012

Page table base address Page index

31 12 011

1110 9 8 7 4 3

Level 2

descriptor

1231 6 5

Page table base address
A
P
3

A
P
2

A
P
1

A
P
0

01C B

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-23

Memory Management Unit
Note

 The level 2 fine page table index uses MVA[19:10], and the small page index uses
MVA[11:0]. The overlapping two bits, MVA[11:10], require groups of four
consecutive entries in the level 2 page tables to contain duplicate entries.

Level 2 fine tiny page base address

If bits [1:0] of the level 2 fine page table descriptor are b11, then a descriptor fetch from
a fine tiny page table is required. Figure 10-12 on page 10-25 shows the translation
process for a 1KB tiny page.
10-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-12 Translating a tiny page address

SBZ

0

CP15 c2

Translation Table Base Register

4 3 2

SBZL2BL2C

13 5

PA

Level 1

descriptor

address

012

MVA Level 2 table index

0

Level 1 table index

2031

Level 1

descriptor

Page index

Level 1

fetch

19

Level 2

descriptor

address

131431

Level 1 table index 00Translation table base

1431

Translation table base

10 9

9 08 5 4 13 2

Domain

selector
Page table base address 11

S
B
Z

11

SBZ 1

31 12

Level 2

fetch

0

Page table base address
Level 2

table index
00

1212 1131

012

Page table base address Page index

31 0

9 4 3

Level 2

descriptor

10 9

6 5

SBZ AP 11C BPage table base address

1031
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-25

Memory Management Unit
10.4 MMU memory access control

Memory domains support multiuser operating systems. All regions of memory have an
associated domain. Domains are the primary memory access control mechanism and
define the conditions in which an access can proceed. Each domain determines whether:

• access is qualified to proceed as shown in Table 10-6 on page 10-27

• access is unconditionally enabled to proceed

• access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored. There are 16
domains, D15-D0, that are configured in the CP15 c3 Domain Access Control Register.

The domain definition provides access for two types of users, manager and client. The
two-bit D15-D0 fields in the Domain Access Control Register control access to both the
instruction and data domains. Table 10-5 shows the encoding for of the domain access
control fields.

A manager access is checked only against the access permissions for the domain. A
client access is checked against the domain access permissions and against the system
protection bit, S, and the ROM protection bit, R, in the CP15 c1 Control Register.
Table 10-6 on page 10-27 shows the effect of the S and R bits.

Table 10-5 Domain access encoding

D15-D0 User Notes

b00 No access Access generates a domain fault.

b01 Client Access permissions are checked.

b10 Reserved Behaves as a no access domain.

b11 Manager Access permissions are not checked.
10-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Table 10-6 MMU memory access control

AP
CP15
S bit

CP15
R bit Supervisor User Meaning

b00 0 0 - - Permission fault

b00 1 0 Read - Read-only in Supervisor mode

b00 0 1 Read Read Permission fault on writes

b00 1 1 Reserved Reserved Permission fault on reads or writes

b01 - - Read/write - Permission fault on reads or writes in User mode

b10 - - Read/write Read Read-only in User mode

b11 - - Read/write Read/write All accesses permissible
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-27

Memory Management Unit
10.5 MMU cachable and bufferable information

The Cachable (C) and Bufferable (B) bits in the level 1 and level 2 descriptors control
the operation of memory accesses to external memory. Table 10-7 indicates how the
MMU and cache interpret the C and B bits.

Table 10-7 C and B bit access control

C B Memory access

0 0 Noncachable, nonbufferable

0 1 Noncachable, bufferable

1 0 Write-through cachable, bufferable

1 1 Write-back cachable, bufferable
10-28 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.6 MMU and pending write buffer

During any descriptor fetch, the MMU has access to external memory. The integer unit
is stalled during any descriptor fetch.

Before an MMU descriptor fetch, the pending write buffer has to be drained to preserve
memory coherency. If the pending write buffer contains any page table entries that have
been modified, those entries are forced to external memory as a result of the descriptor
fetch.

When the MMU contains valid TLB entries that are being modified, these TLB entries
must be invalidated before the new section or page is accessed. This also applies to any
data that resides in the ICache or DCache. The ICache lines must be invalidated, and
the DCache line or lines must be cleaned and invalidated.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-29

Memory Management Unit
10.7 Fault checking sequence

During the processing of a section or page, the MMU checks for faults. This section
describes the following conditions:

• External abort on translation

• Address alignment fault

• Translation fault

• Domain fault on page 10-32

• Permission fault on page 10-32.

Figure 10-13 on page 10-31 shows the fault checking sequence.

10.7.1 External abort on translation

If the BIU returns an error due to a level 1 or level 2 descriptor fetch, the MMU signals
an abort and stops processing the hardware page table walk. No entry is written to the
TLB.

10.7.2 Address alignment fault

An address alignment fault occurs whenever the integer unit indicates a particular data
memory access size and the address does not comply with that size. If MAS[1:0] = b10
indicating a 32-bit access, and the MVA bits [1:0] ≠ b00, then an address alignment
fault occurs. If MAS[1:0] = b01 indicating a 16-bit access, and the MVA bit 0 ≠ 0, then
an address alignment fault occurs. No check is performed when MAS[1:0] = b00.

Alignment checks are performed with the MMU both on and off and only for data
memory accesses.

10.7.3 Translation fault

Two types of translation faults occur:

• section

• page.

A section translation fault results from an invalid level 1 descriptor. Bits [1:0] of the
descriptor are b00.

A page translation fault results from an invalid level 2 descriptor. Bits [1:0] of the
coarse page table descriptor are b00 or b11, or bits [1:0] of the fine page table descriptor
are b00.
10-30 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
Figure 10-13 Fault checking flowchart

Level 1 descriptor fetch

Start

Modified virtual address

N Y

Alignment

fault

Checking

alignment?

Address

aligned?

Section

Coarse

Level 2 descriptor fetch

Fine

Y

N

Section

translation

fault

Section

domain

fault

Section

or page?

Descriptor

fault?

Domain

fault?

Coarse

or fine?

External

abort?

Y

Y

N N

Y

Y

N N

Page

domain

fault

Page

translation

fault

Domain

fault?

Domain

fault?

Descriptor

fault?

Descriptor

fault?

Page

translation

fault

Page

domain

fault

External

abort?

External abort

on level 2

translation

External abort

on level 2

translation

YY

N N

External

abort?

External abort

on level 1

translation

Y N

Y

N

Y N Page

Client

Physical address

ManagerManager

Coarse Fine

Client

N

N

N Y

Y

Y

Page access

permission

fault

Page access

permission

fault

Domain

type?

Domain

type?

Section access

permission fault Access
permission

fault?

Access
permission

fault?

Access
permission

fault?
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-31

Memory Management Unit
10.7.4 Domain fault

Three types of domain faults occur:

• section

• coarse page

• fine page.

For each type, the level 1 descriptor indicates which domain to select in the CP15 c3
Domain Access Control Register. If bit 0 of the selected domain is zero, indicating
either No access or Reserved, then a domain fault occurs. A section domain fault occurs
when the level 1 descriptor is returned. Both the coarse and fine page domain faults are
checked whenever the level 2 descriptor is returned.

The MMU empties any unlocked TLB entry following a write to the CP15 c3 Domain
Access Control Register (DACR). To guarantee the behavior, all locked TLB entries
must not modify their DACR entry. If the DACR entry is modified, the TLB entry must
be unlocked and invalidated.

10.7.5 Permission fault

There are three types of access permission faults:

• section

• coarse page

• fine page.

Whenever the domain indicates that a client has accessed a region of memory, an access
permission check follows. If the access does not comply with the access permission
table, then a fault corresponding to the access type occurs. A section permission fault
check occurs when the level 1 descriptor is returned and is designated as a client. Both
the coarse and fine page permission faults are checked whenever the level 2 descriptor
is returned and is designated as a client.
10-32 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.8 Fault priority

Table 10-8 lists MMU faults in order of priority, from highest to lowest.

The values in the domain field are invalid when the fault occurs before the MMU reads
the domain field from a page table descriptor. Any abort masked by the priority
encoding can be regenerated by fixing the primary abort and restarting the instruction.

Table 10-8 MMU faults

Priority Fault type
Status
[10], [3:0]

Domain FAR

Highest Imprecise external abort 1, b0110 Invalid Valida

a. The CP15 c6 Fault Address Register reflects the address of the load or store to which the
imprecise abort is attached, not the address of the external abort.

Alignment fault 0, b0001 Invalid Valid

TLB miss 0, b0000 Invalid Valid

Level 1 translation precise external abort 0, b1100 Invalid Valid

Level 1 section translation fault 0, b0101 Invalid Valid

Level 2 translation precise external abort 0, b1110 Valid Valid

Level 2 page translation fault 0, b0111 Valid Valid

Section domain fault 0, b1001 Valid Valid

Page domain fault 0, b1011 Valid Valid

Section access permission fault 0, b1101 Valid Valid

Page access permission fault 0, b1111 Valid Valid

Nontranslation precise external abort 0, b000 Valid Valid

Lowest Debug breakpoint or watchpoint 0, b0010 Valid Valid
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-33

Memory Management Unit
10.9 MMU aborts and external aborts

The MMU generates aborts on MMU faults and also makes the properties of both
precise and imprecise external aborts visible.

10.9.1 MMU faults

When the MMU detects a fault during any memory access, it generates a Prefetch Abort
or a Data Abort, and the integer unit enters the Prefetch Abort handler or the Data Abort
handler. The MMU generates aborts on six types of MMU faults:

• alignment fault

• TLB miss when ADTM bit is set (see CP15 c15 Debug Override Register on
page 3-53)

• translation fault

• domain fault

• permission fault

• debug breakpoint or watchpoint.

An alignment fault can be caused only by a data access. The A bit in the CP15 c1
Control Register enables alignment fault checking. Alignment fault checking can be
enabled even when the MMU is disabled.

An MMU miss, translation fault, domain fault, or permission fault can be caused by a
data access or an instruction access.

10.9.2 External aborts

The MMU performs external abort fault checking to enable you to observe the
properties of both precise and imprecise external aborts. Precise aborts are always
enabled. The IMA bit in the CP15 c15 Debug Override Register statically enables
imprecise aborts. Imprecise aborts are enabled by default. See Chapter 16 External
Aborts for a full explanation of external abort behavior.

10.9.3 Fault address registers and fault status registers

The CP15 c5 Instruction Fault Status Register contains the type of MMU fault or
external abort that occurred. The CP15 c6 Instruction Fault Address Register contains
the MVA of the access that caused the MMU fault or external abort.

The CP15 c5 Data Fault Status Register contains the type of MMU fault or external
abort that occurred. The CP15 c6 Data Fault Status Register contains the MVA of the
access that caused the MMU fault or external abort.

 See Table 10-8 on page 10-33 for fault codes and priorities.
10-34 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Management Unit
10.10 Memory parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis.
If a byte has an even number of 1s, the parity generator appends another 1 to the byte
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing
and handling the parity bit information is the responsibility of the system designer. If
parity error detection is not required, the parity outputs can remain unconnected.

10.10.1 MMU parity interfaces

The MMU write interface is split into a 22-bit TLB tag write data interface and a 34-bit
TLB data write data interface. The TLB is two-way set-associative, resulting in 112 bits
total. Parity bit generation is provided for both the tag and data portions of the TLB data
write interface. Table 10-9 lists the TLB data bytes and their parity bits.

Table 10-9 MMU TLB parity interfaces

Data byte Parity bit I/O

TLB tag write parity interface

MMUxWD[111:106]a MMUTAGPAR[5] O

MMUxWD[105:98] MMUTAGPAR[4] O

MMUxWD[97:90] MMUTAGPAR[3] O

MMUxWD[55:50]a MMUTAGPAR[2] O

MMUxWD[49:42] MMUTAGPAR[1] O

MMUxWD[41:34] MMUTAGPAR[0] O

TLB data write parity interface

MMUxWD[89:88]b MMUDATAPAR[9] O

MMUxWD[87:80] MMUDATAPAR[8] O

MMUxWD[79:72] MMUDATAPAR[7] O

MMUxWD[71:64] MMUDATAPAR[6] O

MMUxWD[63:56] MMUDATAPAR[5] O

MMUxWD[33:32]b MMUDATAPAR[4] O
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 10-35

Memory Management Unit
MMUxWD[31:24] MMUDATAPAR[3] O

MMUxWD[23:16] MMUDATAPAR[2] O

MMUxWD[15:8] MMUDATAPAR[1] O

MMUxWD[7:0] MMUDATAPAR[0] O

a. Because the data in this field has only six bits, the
resulting code word has seven bits.

b. Because the data in this field has only two bits, the
resulting code word has three bits.

Table 10-9 MMU TLB parity interfaces (continued)

Data byte Parity bit I/O
10-36 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 11
Memory Protection Unit

This chapter describes the Memory Protection Unit (MPU). It contains the following
sections:

• About the MPU on page 11-2

• MPU software-accessible registers on page 11-3

• Configuring the MPU on page 11-5

• Overlapping protection regions on page 11-8

• Fault priority on page 11-9

• MPU aborts and external aborts on page 11-10.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-1

Memory Protection Unit
11.1 About the MPU

As Figure 11-1 shows, you can use the MPU to partition external memory into eight
protection regions with different sizes and attributes.

Figure 11-1 MPU block diagram

.

.

.

Protection Region Register 7

Address

bus

Region 0 comparator

Hit 7

Hit 0

Priority

encoder

Region 7 comparator

Protection Region Register 0

.

.

.

or AP0[1:0]AP0[3:0]

Protection region 7

or AP7[1:0]AP7[3:0]

Protection region 0

C7 B7

C0 B0

Attributes

for current

transfer
11-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Protection Unit
11.2 MPU software-accessible registers

The CP15 registers listed in Table 11-1 on page 11-4 control MPU operation.

All the registers in Table 11-1 on page 11-4 except CP15 c8 contain state and can be
read using MRC instructions and written to using MCR instructions.

Chapter 3 Programmer’s Model describes the CP15 registers in more detail.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-3

Memory Protection Unit
Table 11-1 CP15 MPU registers

Register Bit Description

CP15 c1 Control
Register

0

1

MPU enable bit:
1 = MPU enabled
0 = MPU disabled.

Address alignment fault checking enable bit:
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled.

CP15 c2 DCache and
ICache Configuration
Registers

[7:0] Cachable bits:
1 = DCache or ICache protection region cachable
0 = DCache or ICache protection region noncachable.

CP15 c3 Write Buffer
Control Register

[7:0] Protection region bufferable bits:
1 = protection region bufferable
0 = protection region nonbufferable.

CP15 c5 Fault Status
Registers

[31:11]

[7:4]

10, [3:0]

Should Be Zero.

Protection region (0-7) in which fault occurred:
b0000 = protection region 0
b0001 = protection region 1
. . .
b0111 = protection region 7.

Fault type that caused Data Abort or Prefetch Abort. See Table 11-2 on page 11-9.

CP15 c5 Extended
Access Permission
Registers

[31:28]
[27:24]
. . .
[3:0]

Extended format access permission field for protection region 7.
Extended format access permission field for protection region 6.
. . .
Extended format access permission field for protection region 0.

CP15 c5 Standard
Access Permission
Registers

[15:14]
[13:12]
. . .
[1:0]

Standard format access permission field for protection region 7.
Standard format access permission field for protection region 6.
. . .
Standard format access permission field for protection region 0.

CP15 c6 Fault Address
Registers

[31: 0] MVA of access that caused Data Abort or Prefetch Abort. ARM10EJ-S register
R14_abt holds VA that caused Prefetch Abort.

CP15 c6 Protection
Region Registers 0-7

[31:12]
[11:6]
[5:1]
0

Base address of protection region.
Should Be Zero.
Size of protection region.
Protection region enable bit.
11-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Protection Unit
11.3 Configuring the MPU

This section describes how to select the MPU and initialize the protection regions.

11.3.1 Selecting the MPU

The MMUnMPU pin is a static input that configures the ARM1026EJ-S processor to
use either the MPU or the Memory Management Unit (MMU). To use the MPU, tie the
MMUnMPU input LOW.

11.3.2 Initializing the protection regions

The ARM architecture uses constants known as inline literals to perform address
calculations. These constants are automatically generated by the assembler and
compiler and are stored inline with the instruction code. To ensure correct operation,
the code that initializes and enables the MPU must lie in a valid protection region that
allows both data and instruction accesses.

To initialize the MPU, use CP15 registers c6, c5, c3, c2, and c1 to:

• program the base address, size, and enable bit of each protection region

• program the access permission of each protection region

• enable or disable bufferability of each protection region

• enable or disable cachability of each protection region

• enable the MPU.

Protection region base address, size, and enable

For each protection region, CP15 c6 has a Protection Region Register (PRR) that:

• defines the base address of the protection region

• defines the size of the protection region

• enables the protection region.

The base address is the first address of the memory region. You must align the base
address on a region-sized boundary. For example, an 8KB region must have a base
address that is a multiple of 8K.

Note

 Incorrrectly aligned regions cause Unpredictable behavior.

A five-bit field in each PRR selects a region size from 4KB to 4GB.

Bit 0 of each PRR enables the protection region.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-5

Memory Protection Unit
CP15 c5 Protection Region Registers on page 3-34 has the instructions for using the
Protection Region Registers.

Access permission

CP15 c5 has four access permission registers:

• CP15 c5 Data and Instruction Extended Access Permission Registers on
page 3-29

• CP15 c5 Data and Instruction Standard Access Permission Registers on
page 3-31.

The extended access permission registers have four-bit fields to control data-access
permission and instruction-access permission for each protection region. The standard
access permission registers have two-bit access permission fields.

A memory abort occurs when an access fails its protection check. For example, a User
mode attempt to access a privileged mode access only protection region causes a
memory abort. The processor enters the abort exception mode, branching to the Data
Abort or Prefetch Abort vector.

Write buffer configuration

The CP15 c3 Write Buffer Control Register has a bufferable bit for each protection
region. The Write Buffer Control Register affects only data accesses.

CP15 c3 Write Buffer Control Register on page 3-25 has the instructions for using the
Write Buffer Control Register.

Cache configuration

The CP15 c2 DCache Configuration Register contains a cachable bit for data accesses
to each protection region. The CP15 c2 ICache Configuration Register contains a
cachable bit for instruction accesses to each protection region.

CP15 c2 DCache and ICache Configuration Registers on page 3-21 has the instructions
for using the DCache and ICache Configuration Registers.
11-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Protection Unit
Enabling the MPU

The M bit in the CP15 c1 Control Register enables the MPU.

Note
 • Do not enable the MPU without initializing at least one protection region.

• When the MPU is disabled and the ICache is enabled, all instruction fetches are
cachable. If the ICache is disabled, all instruction fetches are noncachable.

• When the MPU is disabled, all data accesses are noncachable and nonbufferable
whether the DCache is enabled or disabled.

You can use the CP15 c15 Debug Override Register and the CP15 c15 Memory
Region Remap Register to change this default behavior.

CP15 c1 Control Register on page 3-14 has the instructions for using the Control
Register.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-7

Memory Protection Unit
11.4 Overlapping protection regions

You can program the MPU with two or more overlapping protection regions. When the
processor accesses overlapping protection regions, the attributes of the
highest-numbered protection region control the access. Attributes for protection region
7 have the highest priority, and attributes for protection region 0 have the lowest
priority. For example:

Region 1 16KB deep, starting from address 0x0000. No User mode access.

Region 2 4KB deep, starting from address 0x3000. User mode access
permissions are read-only.

A User mode read to address 0x3010 falls into both protection regions 1 and 2, as shown
in Figure 11-2. The conflict between the permissions of the overlapping protection
regions causes the attributes of protection region 2 take effect. Although a User mode
read to protection region 1 can cause a Data Abort, the overlapping protection region 2
permits the read to 0x3010.

Figure 11-2 Overlapping protection regions

You can overlap protection regions to create a background region. For example, you
might have a number of physical memory areas sparsely distributed across the 4GB
address space. If a programming error occurs, the processor might issue an address that
does not fall into any defined protection region, causing the MPU to abort the access.
You can prevent this kind of abort by programming region 0 to be a 4GB background
region. In this way, if the address does not fall into any of the other seven regions, the
access is controlled by the attributes you specify for region 0.

0x4000

0x3010

0x3000

0x0000

Region 1, User: no access

Region 2, User: read-onlyRead-only User permission of region 2 overrides

no-User-access permission of region 1
11-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Memory Protection Unit
11.5 Fault priority

Table 11-2 lists MPU faults in order of priority, from highest to lowest.

The values in the domain field are invalid when the fault occurs before the MPU reads
the domain field from a page table descriptor. Any abort masked by the priority
encoding can be regenerated by fixing the primary abort and restarting the instruction.

Table 11-2 MPU faults

Priority Fault type
Status
[10], [3:0]

Domain FAR

Highest Imprecise external abort 1, b0110 Invalid Valida

a. The CP15 c6 Fault Address Register reflects the address of the load or store to which
the imprecise abort is attached, not the address of the external abort.

Alignment fault 0, b0001 Invalid Valid

MPU miss 0, b0000 Invalid Valid

Access permission fault 0, b1101 Valid Valid

Nontranslation precise external abort 0, b1000 Valid Valid

Lowest Debug breakpoint or watchpoint 0, b0010 Valid Valid
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 11-9

Memory Protection Unit
11.6 MPU aborts and external aborts

The MPU generates aborts on MPU faults and also makes the properties of both precise
and imprecise external aborts visible.

11.6.1 MPU faults

When the MPU detects a fault during any memory access, it generates a Prefetch Abort
or a Data Abort, and the integer unit enters the Prefetch Abort handler or the Data Abort
handler. The MPU generates aborts on four types of MPU faults:

• alignment fault

• MPU miss

• permission fault

• debug breakpoint or watchpoint.

An alignment fault can be caused only by a data access. The A bit in the CP15 c1
Control Register enables alignment fault checking. Alignment fault checking can be
enabled even when the MPU is disabled.

An MPU miss or permission fault can be caused by a data access or an instruction
access.

11.6.2 External aborts

The MPU performs external abort fault checking to enable you to observe the properties
of both precise and imprecise external aborts. Precise aborts are always enabled. The
IMA bit in the CP15 c15 Debug Override Register enables imprecise aborts. Imprecise
aborts are enabled by default. See Chapter 16 External Aborts for a full explanation of
external abort behavior.

11.6.3 Fault address registers and fault status registers

The CP15 c5 Instruction Fault Status Register contains the type of MPU fault or
external abort that occurred.The CP15 c6 Instruction Fault Address Register contains
the MVA of the access that caused the MPU fault or external abort.

The CP15 c5 Data Fault Status Register contains the type of MPU fault or external abort
that occurred. The CP15 c6 Data Fault Address Register contains the MVA of the
access that caused the MPU fault or external abort.

 See Table 11-2 on page 11-9 for fault codes and priorities.
11-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 12
Caches

This chapter describes the ICache and DCache. It contains the following sections:

• About the caches on page 12-2

• Enabling the caches on page 12-3

• Cache and TCM access priorities on page 12-6

• Cache MVA and set/way formats on page 12-7

• Cache size support on page 12-9

• Cache support for external aborts on page 12-10

• Castout functionality, DCache only on page 12-11

• Cache support for MBIST on page 12-12

• Cache memory parity on page 12-13

• Code examples of CP15 cache operations on page 12-15.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-1

Caches
12.1 About the caches

DCache and ICache features include:

• DCache and ICache sizes are independently selectable at synthesis to 0KB or
4KB-128KB in power-of-two increments with a minimum way size of 1KB.

• The virtual-index, virtual-tag DCache and ICache are addressed by MVA to avoid
necessity of cache cleaning and invalidating on context switch.

• Four-way, set-associative, tag-based DCache and ICache.

• DCache and ICache line length is eight words (32 bytes).

• Write-through and write-back DCache operations.

• Allocate on read-miss support. Critical-word-first cache refilling.

• Pseudorandom or round-robin replacement in DCache and ICache.

• Support for streaming data and instructions.

• DCache and ICache Lockdown Registers enable control over which cache ways
are used for allocation on a linefill, providing a mechanism for both lockdown and
controlling cache pollution.

• The DCache stores the PA tag corresponding to each DCache entry in the tag
RAM if the cache line resides within a write-back region of memory as specified
by the C and B bits in the page descriptor. The PA tag is used during cache line
write-backs, in addition to the virtual address tag stored in the tag RAM. This
means that the MMU is not involved in DCache write-back operations, removing
the possibility of TLB misses related to the write-back address.

• Cache maintenance operations for maintaining cache coherency:

— invalidation of the entire DCache or ICache

— invalidation of regions of the DCache or ICache

— cleaning and invalidation of the entire DCache

— cleaning and invalidation of regions of the DCache

— generation of parity bits for the tags and data/instructions.

• Support for precise aborts on linefills and imprecise aborts on castouts.
12-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.2 Enabling the caches

Reset invalidates all ICache and DCache entries and disables the caches. You can
enable either cache or both caches by writing to the I, C, and M bits in the CP15 c1
Control Register.

12.2.1 Enabling the ICache

Table 12-1 shows how the I and M bits control the ICache when the ARM1026EJ-S
processor is configured for MMU operation.

Table 12-2 shows how the I and M bits control the ICache when the ARM1026EJ-S
processor is configured for MPU operation.

Table 12-1 Enabling the ICache with the processor configured for MMU operation

I M ICache configuration

0 0 ICache and MMU disabled. All instruction fetches from external memory.

0 1 Cache disabled. MMU enabled. All instruction fetches from external memory. MMU checks access permission.
Page entry controls VA-MVA-PA translation.

1 0 ICache enabled. MMU disabled. All instruction fetches cachable. No protection checks. VA = MVA = PA.

1 1 ICache and MMU enabled. MMU checks access permission. Page entry controls VA-MVA-PA translation. C
bit in page table descriptor controls instruction cachability:
1 = Instructions cachable. Read from ICache on cache hit. Linefill on cache miss.
0 = Instructions noncachable.

Table 12-2 Enabling the ICache with the processor configured for MPU operation

I M ICache configuration

0 0 Cache and MPU disabled. All instruction fetches from external memory.

0 1 Cache disabled. MPU enabled. All instruction fetches from external memory. MPU checks access permission.
VA = PA.

1 0 ICache enabled. MPU disabled. All instruction fetches cachable with no protection checks. VA = PA.

1 1 ICache and MPU enabled. MPU checks access permission. VA = PA. Cn bit in CP15 c2 ICache Configuration
Register controls instruction cachability:
1 = Instructions cachable. Read from ICache on cache hit. Linefill on cache miss.
0 = Instructions noncachable.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-3

Caches
12.2.2 Enabling the DCache

Table 12-3 shows how the C and M bits control the DCache when the ARM1026EJ-S
processor is configured for MMU operation.

Table 12-4 shows how the C and M bits control the DCache when the ARM1026EJ-S
processor is configured for MPU operation.

Table 12-3 Enabling the DCache with the processor configured for MMU operation

C M DCache configuration

0 0 DCache and MMU disabled. All data accesses in external memory.

0 1 DCache disabled. MMU enabled. All data accesses in external memory. MMU checks access permission. Page
entry controls VA-MVA-PA translation.

1 0 DCache enabled. MMU disabled. All data accesses noncachable. No access permission checks.
VA = MVA = PA.

1 1 DCache and MMU enabled. MMU checks access permission. Page entry controls VA-MVA-PA translation. C
bit in page table descriptor controls data cachability:
1 = Data cachable. Read from DCache on cache hit. Linefill on cache miss.
0 = Data noncachable. Read from external memory.
B bit in page table descriptor controls data bufferability:
1 = Data bufferable. Writes are buffered stores to external memory. Buffered writes that hit in DCache update
cache. Buffered writes to write-through region update external memory even on cache hit.
0 = Data nonbufferable. Writes are nonbuffered stores to external memory.

Table 12-4 Enabling the DCache with the processor configured for MPU operation

C M DCache configuration

0 0 DCache and MPU disabled. All data accesses in external memory.

0 1 DCache disabled. MPU enabled. Data read from external memory. MPU checks access permission. VA = PA.

1 0 DCache enabled. MPU disabled. All data accesses noncachable. No access permission checks.
VA = MVA = PA.

1 1 DCache and MPU enabled. MPU checks access permission. No address translation. Page descriptor C bit in
page table descriptor controls data cachability:
1 = Data cachable. Read from DCache on cache hit. Linefill on cache miss.
0 = Data noncachable. Read from external memory.
B bit in page table descriptor controls data bufferability:
1 = Data bufferable. Writes are buffered stores to external memory. Buffered writes that hit in DCache update
cache. Buffered writes to write-through region update external memory even on cache hit.
0 = Data nonbufferable. Writes are nonbuffered stores to external memory.
12-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
Table 12-5 shows how the C and B bits in the MMU or MPU affect the DCache when
the C and M bits in the CP15 c1 Control Register are set.

Table 12-5 Enabling data caching and buffering with the C and B bits

Ca Bb DCache configuration

0 0 Accesses noncachable and nonbufferable. Read from external memory. Write as nonbuffered stores to
external memory.

0 1 Accesses noncachable and bufferable. Read from external memory. Writes are buffered stores to external
memory.

1 0 Write-through. Accesses cachable. Read from DCache on read hit. Linefill on read miss. Write to DCache
and buffered store to external memory on write hit. Buffered store to external memory on write miss.

1 1 Accesses cachable. Read from DCache on read hit. Linefill on read miss. Write only to DCache on write hit.
Buffered store to external memory on write miss.

a. When using the MMU, the C bit is the cachable bit in the page table descriptor. When using the MPU, the C bit is the cachable
bit in the CP15 c2 DCache Configuration Register.

b. When using the MMU, the B bit is the bufferable bit in the page table descriptor. When using the MPU, the B bit is the
bufferable bit in the CP15 c3 Write Buffer Control Register.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-5

Caches
12.3 Cache and TCM access priorities

Table 12-6 shows the ICache and ITCM access priorities. Addresses in the ITCM have
the highest priority.

Table 12-7 shows the DCache and DTCM access priorities. The Harvard TCM and
cache arrangement requires that data reads and writes access the ITCM for both reads
and writes.

Table 12-6 Priorities of instruction accesses to the TCMs and caches

Address
in ITCM
region?

Address
in DTCM
region?

C bit in page
descriptor set?

V6 architecture
behavior

ARM1026EJ-S
processor behavior

Yes Yes Don’t care Unpredictable Access ITCM

Yes No Yes Unpredictable Access ITCM

Yes No No Access ITCM Access ITCM

No Don’t care Yes Access ICache Access ICache

No Don’t care No Access external
memory

Access external
memory

Table 12-7 Priorities of data accesses to the TCMs and caches

Address
in ITCM
region?

Address
in DTCM
region?

C bit in page
descriptor set?

V6 architecture
behavior

ARM1026EJ-S
processor behavior

Yes Yes Don’t care Unpredictable Access ITCM

No Yes Yes Unpredictable Access DTCM

No Yes No Access DTCM Access DTCM

Yes No Yes Unpredictable Access ITCM

Yes No No Access ITCM Access ITCM

No No Yes Access DCache Access DCache

No No No Access external
memory

Access external
memory
12-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.4 Cache MVA and set/way formats

Figure 12-1 shows the structure of the virtually-indexed and virtually-addressed cache.

Figure 12-1 Cache read block diagram

The index value selects the four tags in a set of the four-way set-associative cache. The
number of tags in a way is the number of sets.

4 0

Tag Index

12

Byte
Double-

word

3

n

3

n

3

n

0

1

2

3

4

Tag

RAM

n

0

0

0

Way

select

64-bit

data

RAM

Cache

hit

Data

out

Comparator

Comparator

Comparator

Comparator

MVA

3

64

64

64

64

S + 531 S + 4 5

2

64
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-7

Caches
12.4.1 MVA format

Table 12-8 shows the number of sets for each cache size.

Cache operations in MVA format on page 3-38 gives complete details about cache
operations in MVA format.

12.4.2 Set/way format

Set/way format on page 3-39 gives complete details about cache operations in set/way
format.

Table 12-8 Cache size and number of sets

Cache size Sa

a. S = log2 of the number of cache sets,
which is the number of address bits
required to access all sets.

Number of sets

4KB 5 32

8KB 6 64

16KB 7 128

32KB 8 256

64KB 9 512

128KB 10 1024
12-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.5 Cache size support

The ARM1026EJ-S processor supports independent DCache and ICache sizes of 0KB
or 4KB-128KB in power-of-two increments as configured by the DCACHESIZE[3:0]
and ICACHESIZE[3:0] pins. Table 12-9 lists the cache sizes.

The associativity is fixed at 4, which yields a minimum way size of 1KB with a 4KB
cache.

12.5.1 0KB caches

As shown in Table 12-9, implementing either DCACHESIZE[3:0] or
ICACHESIZE[3:0] with any value outside the range b0011 to b1000 results in a cache
size of 0KB. Implementing a cache size of 0KB results in the following:

• The cache performs linefills but never attempts to write the lines to the RAMs.
Streaming is still supported as the filling line is kept in an internal buffer until the
next linefill is started.

• Sequential accesses to the same cache line do not result in further linefills, as the
data/instructions are returned from the internal buffer.

• The 0KB configuration offers a slight performance increase over running in
noncachable mode. This is especially true in the DCache, where noncachable
reads are done as single transfers on the AHB.

• The RAM banks can be removed and the inputs from the RAMs to the cache
controller can be tied to 0.

Table 12-9 ICache and DCache size configurations

I/DCACHESIZE[3:0] I/DCache size

b0011 4KB

b0100 8KB

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB

All other values 0KB
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-9

Caches
12.6 Cache support for external aborts

The caches support external aborts on linefills and castouts as either precise or
imprecise as shown in Table 12-10.

12.6.1 Aborts on linefills

A linefill consists of four double-word transfers from the BIU to the ICache or DCache.
Each of these transfers can have an external abort attached. The following rules cover
cache behavior when dealing with external aborts:

• An abort on the requested (first returned) doubleword of a linefill or a
double-word being streamed out of the caches causes the caches to indicate an
abort.

For a DCache linefill, this results in an exception. For an ICache linefill, the
generation of an exception depends on whether the instruction returned actually
gets executed by the core.

• An abort on any doubleword of a linefill invalidates the cache line and prevents
the update of the cache RAMs. Any subsequent access to the same line results in
another linefill.

• An abort on a linefill is tightly coupled to the data or instructions and is therefore
treated as a precise exception (IFAR/DFAR) holds the correct address for the
access.

12.6.2 Aborts on evictions

Evictions occur either when the selected cache line is both valid and dirty or when CP15
clean operations are used.

Because castouts are essentially buffered writes, it is not possible to back-annotate an
external abort to a specific address. Castouts and buffered writes in general are already
completed from the program and processor state perspective. Any external abort
attached to a castout is forwarded by the DCache and signaled as an imprecise external
abort on the next valid data access. No castouts occur from the ICache.

Table 12-10 Aborts on linefills and castouts

Abort ICache Dcache

Linefill Precise Precise

Castout - Imprecise
12-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.7 Castout functionality, DCache only

A castout always writes the entire cache line back to external memory. See Chapter 6
Bus Interface for a description of the transfer characteristics of a DCache castout.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-11

Caches
12.8 Cache support for MBIST

The caches are designed to minimize the number of logic gates between the cache
controller and the RAMs in Memory Built-In Self Test (MBIST) implementations.
When the ARM1026EJ-S processor is held in reset, the caches drive logic zeros on all
the cache output pins going to the RAM banks. This enables the use of OR gates in the
signal path instead of multiplexors, resulting in improved timing for these paths.
12-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.9 Cache memory parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis.
If a byte has an even number of 1s, the parity generator appends another 1 to the byte
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing
and handling the parity bit information is the responsibility of the system designer. If
parity error detection is not required, the parity outputs can remain unconnected.

12.9.1 ICache parity interface

Parity bit generation is provided for both the tag and data interfaces of the ICache.
Table 12-11 lists the ICache data bytes and their parity bits.

Table 12-11 ICache parity interfaces

Data byte Parity bit I/O

ICache tag parity interface

ICTAGWD[21:16]a

a. Because the data in this field has only six bits, the
resulting code word has seven bits, not nine.

ICTAGPAR[2] O

ICTAGWD[15:8] ICTAGPAR[1] O

ICTAGWD[7:0] ICTAGPAR[0] O

ICache data parity interface

ICDATAWDx[63:56] ICDATAPARx[7] O

ICDATAWDx[55:48] ICDATAPARx[6] O

ICDATAWDx[47:40] ICDATAPARx[5] O

ICDATAWDx[39:32] ICDATAPARx[4] O

ICDATAWDx[31:24] ICDATAPARx[3] O

ICDATAWDx[23:16] ICDATAPARx[2] O

ICDATAWDx[15:8] ICDATAPARx[1] O

ICDATAWDx[7:0] ICDATAPARx[0] O
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-13

Caches
12.9.2 DCache parity interface

Parity bit generation is provided for both the tag and data interfaces of the DCache.
Table 12-12 lists the DCache data bytes and their parity bits.

Table 12-12 DCache parity interfaces

Description Signal I/O

DCache tag parity interface

DCTAGWD[21:16]a

a. Because the data in this field has only six bits, the
resulting code word has seven bits, not nine.

DCTAGPAR[2] O

DCTAGWD[15:8] DCTAGPAR[1] O

DCTAGWD[7:0] DCTAGPAR[0] O

DCache data parity interface

DCDATAWDx[63:56] DCDATAPARx[7] O

DCDATAWDx[55:48] DCDATAPARx[6] O

DCDATAWDx[47:40] DCDATAPARx[5] O

DCDATAWDx[39:32] DCDATAPARx[4] O

DCDATAWDx[31:24] DCDATAPARx[3] O

DCDATAWDx[23:16] DCDATAPARx[2] O

DCDATAWDx[15:8] DCDATAPARx[1] O

DCDATAWDx[7:0] DCDATAPARx[0] O
12-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Caches
12.10 Code examples of CP15 cache operations

This section provides code examples illustrating:

• Enabling and disabling caches

• Locking the ICache

• Cleaning the DCache

• Prefetching a line into the ICache on page 12-16.

12.10.1 Enabling and disabling caches

The following code example enables both caches simultaneously.

mrc p15, 0, r0, c1, c0, 0 ; read CP15 c1: CFG
orr r0, r0, #(1:SHL:2) ; set C bit
orr r0, r0, #(2:SHL:12) ; set I bit
mcr p15, 0, r0, c1, c0, 0 ; write CP15 c1: CFG

The following code example disables the DCache.

mrc p15, 0, r0, c1, c0, 0 ; read CP15 c1: CFG
bic r0, r0, #(1:SHL:2) ; clear C bit
mcr p15, 0, r0, c1, c0, 0 ; write CP15 c1: CFG

12.10.2 Locking the ICache

The following code example locks ways 0 and 1 of the ICache.

mov r0, #0x3 ; bits[3:0] is the base
and r0, r0, #0xf ; keep relevant bits
mrc p15, 0, r1, c9, c0, 1 ; read lockdown register
bic r1, r1, #0xf ; clear the lock bits
orr r0, r1, r0 ; write the lock bits
mcr p15, 0, r0, c9, c0, 1 ; C9,C0 = lockdown, 1 = icache

12.10.3 Cleaning the DCache

The code examples in this section are based on a DCache size of 8KB, yielding a total
of 64 sets. The associativity is fixed at four ways.

The following code example cleans a line (performs a castout if the line is dirty) in the
DCache using the set/way format.

; clean way 2 line/set 7
mov r0, #0x7, LSL #0x5 ; set in bits[10:5]
orr r0, r0, #0x2, LSL #30 ; way in bits[31:30]
mcr p15, 0, r0, c7, c10, 2 ; C7,C10 = clean DCache, 2 = Set/Way;
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 12-15

Caches
The following code example cleans a cache line using the MVA format.

; clean line at address in register 5
mov r0, r5, LSR #0x5 ; clear bits[4:0]
mov r0, r0, LSL #0x5 ; r0 now points to start of line
mcr p15, 0, r0, c7, c10, 1 ; C7,C10 = clean DCache, 1 = MVA

The following code example cleans the entire DCache using a loop for shortest
execution time (the test and clean approach).

; the test and clean continues until the entire Dcache
; is clean, which sets the Z flag and exit the loop

tc_loop:
mrc p15, 0, r0, c7, c10, 3 ; test and clean
bne tc_loop

12.10.4 Prefetching a line into the ICache

The following code example prefetches a line into the ICache.

; use the address in r0
mcr p15, 0, r0, c7, c13, 1 ; C7,C13 = prefetch, 1 = MVA

Note

 The prefetch instruction uses the MVA. Because no instructions are forwarded to the
prefetch unit, no Prefetch Abort can ever occur as a result of a prefetch operation. If the
prefetch operation receives an external abort, the line is simply marked as invalid and
is never written to the ICache.
12-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 13
Pending Write Buffer

This chapter describes the pending write buffer and the eviction write buffer. It contains
the following sections:

• About the pending write buffer on page 13-2

• External aborts on page 13-5.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 13-1

Pending Write Buffer
13.1 About the pending write buffer

The ARM1026EJ-S pending write buffer buffers stores and loads before issuing them
to the data AHB interface. Features of the pending write buffer include:

• up to eight address/data entries

• sequential address-detection logic

• separate eviction write buffer for evicted write-back data or CP15 clean operation
data

• CP15 MCR drain write buffer instruction

• Ability to enable or disable buffered stores with CP15 MCR instructions.

13.1.1 Pending write buffer entries

The pending write buffer functions as an eight-entry queue. It has a unique read and
write pointer that indicates the current entry and the next entry to be written. Each entry
contains:

• physical address of the entry

• write data if the entry is a store

• memory access size information

• a locked indicator

• a privileged/user indicator

• level 2 cachable and bufferable bits

• a sequential/nonsequential indicator

• a read/write indicator

• a valid bit to mark valid data to be transferred to the AHB.

13.1.2 Sequential address detection

The ARM1026EJ-S processor examines the contents of the last stored entry in the
pending write buffer and the next item to be stored in the buffer to determine if the item
to be inserted is sequential. The next item is sequential only if all of the access
attributes, including endianness, match. If the access is sequential, the processor can
then configure the AHB for an incrementing burst transfer. Dynamically determining
sequentiality enables 8-bit, 16-bit, 32-bit, and 64-bit data stores to be marked as
sequential.

The maximum AHB burst length is 1KB. Example 13-1 on page 13-3 is a code
sequence that copies a block of data from the DCache to an external AHB block of
memory. The HCLK:CLK ratio must be at least 2:1. The code resides in a cachable
area of memory.
13-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Pending Write Buffer
Example 13-1 1KB AHB burst

; clock code to generate HCLK:CLK ratio of 2:1 or greater

LDR r0, = 0x0000_0400 ; starting address
LDR r9, = 0x0010_0400 ; target address

loop LDMIA r0!, {r1-r8} ; read data from cache
STMIA r9!, {r1-r8} ; store data into buffer
CMP r0, #0x1000 ; ending address
BNE loop

13.1.3 Noncachable loads and nonbuffered stores

The pending write buffer drains entries in the same order that they enter the buffer. Both
nonbuffered writes and noncachable loads are blocking in the ARM1026EJ-S
processor. The in-order draining and natural blocking design of the pending write buffer
enables it to handle nonbuffered stores as well as noncachable loads.

Because a ARM1026EJ-S swap operation is a noncachable load followed by a
nonbuffered store, the pending write buffer also handles swap operations.

13.1.4 Eviction write buffer

Because the eviction write buffer is separate from the pending write buffer, the two
buffers operate in parallel. To ensure memory coherency, draining of the eviction write
buffer always has a higher priority than draining of the pending write buffer. For
example, in a 64-bit AHB system, a four-beat incrementing burst to drain the eviction
write buffer precedes an eight-beat incrementing burst of buffered stores.

13.1.5 Draining the pending write buffer

CP15 c7 provides support for draining the contents of the pending write buffer.
Explicitly draining the pending write buffer is necessary for any form of self-modifying
code or synchronization. Before draining the pending write buffer, the drain write
buffer instruction waits until the eviction write buffer drains.

The pending write buffer also supports self-draining. As soon as an entry is valid, the
pending write buffer tries to drain its contents.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 13-3

Pending Write Buffer
13.1.6 Enabling and disabling buffered stores

To aid debug software, you can disable the pending write buffer by clearing the W bit
in the CP15 c15 Debug Override Register. This CP15 control of the pending write
buffer is independent of the MMU or MPU bufferable and cachable attributes. Use a
read-modify-write sequence as shown in Example 13-2.

Example 13-2 Disabling buffered stores

MRC p15, 0, r0, c15, c0, 0
BIC r0, r0, #0x1000 ; clear W bit
MCR p15, 0, r0, c15, c0, 0

This example forces all buffered stores to be nonbuffered stores. In effect, the write
buffer does not hold any stores and immediately forces the ARM1026EJ-S processor to
wait for an AHB response.

Example 13-3 shows a sequence for enabling buffered stores.

Example 13-3 Enabling buffered stores

MRC p15, 0, r0, c15, c0, 0
ORR r0, r0, #0x1000 ; set W bit
MCR p15, 0, r0, c15, c0, 0

This example allows buffered stores to queue in the pending write buffer. Hence, the
ARM1026EJ-S processor no longer has to wait for an AHB response.
13-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Pending Write Buffer
13.2 External aborts

Pending write buffer entries can generate two different types of abort conditions:

• imprecise aborts on buffered writes

• precise aborts on noncachable loads and nonbufferable stores.

The pending write buffer handles both abort conditions identically. The external abort
for any in the pending write buffer entry returns to the MMU or MPU when the AHB
signals completion of that entry. The MMU or MPU then signals an imprecise or precise
abort to the ARM1026EJ-S processor. See Chapter 16 External Aborts for a full
explanation of external abort behavior.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 13-5

Pending Write Buffer
13-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 14
Interrupt Latency

This chapter describes interrupt latency. It contains the following sections:

• About interrupt latency on page 14-2

• Worst-case interrupt latency on page 14-3

• Tuning interrupt latency on page 14-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 14-1

Interrupt Latency
14.1 About interrupt latency

When calculating the interrupt latency of the ARM1026EJ-S processor, you have to
consider:

• the worst possible sequence of events that can affect the total cycle count,
including multiple linefills, hardware page table walks, and cache line evictions

• AHB width.
14-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Interrupt Latency
14.2 Worst-case interrupt latency

The code sequence and interrupt in Example 14-1 illustrate the worst possible interrupt
latency scenario in the ARM1026EJ-S processor.

Example 14-1 Worst-case interrupt latency scenario

STMIA rA, {r0-r15} ; fill write buffer

LDMIA rB, {r0-r15} ; linefill crossing three cache lines, each having
; castout data, two level 2 tablewalks, interrupt
; appears during LDMIA

; interrupt taken

Table 14-1 shows the cycle counts of the events caused by the sequence in
Example 14-1. The cycle count numbers are only for the ARM1026EJ-S processor.
They do not include any latency of a partner-designed memory system. From
Table 14-1, you can easily extract the worst-case numbers for interrupt latency.

Table 14-1 Worst-case interrupt latency cycle count

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles
for 32-bit bus Event

Level 2 table walk 17 4H 0 First table walk for LDMIA rB

Castout drain 1 5H 4H Castout drain (old linefill)

Write buffer drain (full) 0 8H 8H Drain for STMIA rA

Linefill and castout 5 5H 4H First linefill for LDMIA rB

Castout drain 1 5H 4H First castout for LDMIA rB

Linefill and castout 5 5H 4H Second linefill for LDMIA rB

Castout drain 1 5H 4H Second castout for LDMIA rB

Level 2 table walk 17 4H 0H Second table walk for LDMIA rB

Linefill and castout 5 5H 4H Third linefill for LDMIA rB

Total 52 46H 32H

Interrupt serviced Total for 32-bit AHB = 52 + 46H + 32H = 130 for 1:1 HCLK to CLK ratio
Total for 64-bit AHB = 52 + 46H = 98 for 1:1 HCLK to CLK ratio.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 14-3

Interrupt Latency
14.3 Tuning interrupt latency

Table 14-2 and Table 14-3 on page 14-5 show examples of tuning interrupt latency for
both 1:1 and 4:1 HCLK-to-CLK ratios. The examples are based on single-cycle
accessible RAM. Each table has four examples, three of which are examples of tuning
a system to decrease interrupt latency:

• Line 1 describes the worst possible interrupt latency case in which:

— LDM length is not restricted

— TLB entries are not locked

— memory is write-back.

• Line 2 describes the case in which:

— LDM length is restricted to nine registers

— TLB entries are not locked

— memory is write-through.

• Line 3 describes the case in which:

— LDM length is not restricted

— TLB critical entries are locked

— memory is write-through.

• Line 4 describes the case in which:

— LDM length is restricted to nine registers

— TLB critical entries are locked

— memory is write-through.

Table 14-2 shows examples of tuning interrupt latency with a 1:1 HCLK-to-CLK ratio.

Table 14-2 Tuning interrupt latency with a 1:1 HCLK-to-CLK ratio

HCLK:CLK = 1:1

Transfer cycles Improvement over worst case

32-bit
AHB

64-bit
AHB

32-bit
AHB

64-bit
AHB Total cycles

Worst case 130 98 1.00x 1.00x 52 + 46H + 32H

LDM of only nine registers 96 72 1.38x 1.36x 36 + 36H + 24H

TLB locking
Write-through cache

58 38 2.24x 2.57x 15 + 23H + 20H

LDM of only nine registers
TLB locking
Write-through cache

44 28 2.95x 3.50x 10 + 18H + 16H
14-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Interrupt Latency
Table 14-3 shows examples of tuning interrupt latency with a 4:1 HCLK-to-CLK ratio.

Tables Table 14-4, Table 14-5 on page 14-6, and Table 14-6 on page 14-6 show the
cycle count calculation of each of the tuning examples.

Table 14-4 shows the cycle count after restricting the LDM to nine registers.

Table 14-3 Tuning interrupt latency with a 4:1 HCLK-to-CLK ratio

HCLK:CLK = 4:1

Transfer cycles Improvement over worst case

32-bit
AHB

64-bit
AHB

32-bit
AHB

64-bit
AHB Total cycles

Worst case 441 313 1.00x 1.00x 49 + 66H + 32H

LDM of only nine registers 338 242 1.30x 1.29x 34 + 52H + 24H

TLB locking
Write-through cache

215 135 2.05x 2.31x 15 + 30H + 20H

LDM of only nine registers
TLB locking
Write-through cache

162 98 2.91x 3.19x 10 + 22H + 16H

Table 14-4 LDM restricted to nine registers

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles
for 32-bit bus Event

Level 2 table walk 17 4H 0 LDM part 1

Castout drain 1 5H 4H

Write buffer drain (full) 0 8H 8H

Linefill and castout 5 5H 4H LDM part 2

Castout drain 1 5H 4H

Level 2 table walk 17 4H 0 LDM part 3 (PC)

Linefill and castout 5 5H 4H

Total 36 36H 24H

Interrupt serviced Total for 32-bit AHB = 36 + 36H + 24H = 96
Total for 64-bit AHB = 36 + 36H = 72
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 14-5

Interrupt Latency
Table 14-5 shows the cycle count after locking TLB critical entries and using
write-through caches.

Table 14-6 shows the cycle count after restricting the LDM to nine registers, locking
TLB critical entries, and using write-through caches.

Table 14-5 TLB locking and write-through caches

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles
for 32-bit bus Event

Write buffer drain (full) 0 8H 8H

Linefill 5 5H 4H LDM part 1

Linefill 5 5H 4H LDM part 2

Linefill 5 5H 4H LDM part 3 (PC)

Total 15 23H 20H

Interrupt serviced Total for 32-bit AHB = 15 + 23H + 20H = 58
Total for 64-bit AHB = 15 + 23H = 38

Table 14-6 LDM restricted to nine registers, TLB locking, and write-through caches

Event
CLK
cycles

HCLK cycles for
64-bit bus

Extra HCLK cycles
for 32-bit bus Event

Write buffer drain (full) 0 8H 8H

Linefill 5 5H 4H LDM part 1

Linefill 5 5H 4H LDM part 3 (PC)

Total 10 18H 16H

Interrupt serviced Total for 32-bit AHB = 10 + 18H + 16H = 44
Total for 64-bit AHB = 10 + 18H = 28
14-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 15
Noncachable Instruction Fetches

This chapter describes noncachable instruction fetches in the ARM1026EJ-S processor.
It contains the following sections:

• About noncachable instruction fetches on page 15-2

• External aborts on page 15-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 15-1

Noncachable Instruction Fetches
15.1 About noncachable instruction fetches

The ARM1026EJ-S processor performs speculative noncachable instruction fetches to
increase performance. Speculative instruction fetching is enabled at reset. Disable
speculative prefetching by setting CP15 c15 Debug Override Register bit 16, DNCP
(see CP15 c15 Debug Override Register on page 3-53). When speculative prefetching
is disabled, only instruction fetches issued directly by the ARM1026EJ-S processor
result in instruction fetches on the AHB interface.

Noncachable code is sometimes used for boot loaders of operating systems and for
preventing cache pollution. However, it is recommended that the ICache be used
whenever practical.

15.1.1 Prefetch buffer topology

The noncachable prefetch buffer holds eight 32-byte-aligned instructions, the
equivalent of a single cache line of noncachable instructions. The instructions remain
in the buffer until the fetch requirements do not match the instructions in the buffer. At
that time, the buffer is invalidated or flushed and refilled with the instructions from the
target address.

15.1.2 Streaming

The noncachable prefetch buffer supports instruction streaming. When enabled, it
always issues a request to the instruction AHB interface for the requested word. After
receiving the requested word, it continues streaming subsequent requested instructions
to the ARM1026EJ-S processor as long as those instructions match the buffer
addresses.

15.1.3 Invalidating the prefetch buffer

The prefetch buffer is invalidated when:

• the CP15 c15 Debug Override Register bit 16, DNCP, is set

• the target instruction address does not match the buffer address

• a CP15 operation that affects the prefetch buffer is executed, for example:

— the ICache is enabled

— the MMU is enabled

• an IMB operation is performed

• an external abort occurs during filling of the buffer.
15-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Noncachable Instruction Fetches
15.1.4 Self-modifying code

The ARM1026EJ-S processor does not support self-modifying code. Self-modifying
code must flush the noncachable prefetch buffer. See Example 15-1.

Example 15-1 Using an IMB with self-modifying code

LDMIA r0, {r1-r4} ; load code sequence into r1-r4
ADR r0, self_mod_code

STMIA r0, {r1-r4} ; store code sequence to nonbuffered region

MCR p15, 0, r0, c7, c14, 1 ; clean invalidate cache line(s)
MCR p15, 0, r0, c7, c10, 4 ; drain instructions from buffers
IMB ; flush prefetched instructions

self_mod_code:
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 15-3

Noncachable Instruction Fetches
15.2 External aborts

The noncachable prefetch buffer supports precise external aborts. Any access that
occurs when the buffer is disabled is a blocking access. The buffer waits for a response
from the instruction AHB and then returns the response to the ARM1026EJ-S processor
through the MMU or MPU as a Prefetch Abort.

When the prefetch buffer is enabled, an external abort is forwarded only with the critical
word. Any external abort during the fill of the buffer causes the buffer to be invalidated.
The buffer then refills based on the critical word of the pending instruction fetch
address. See Chapter 16 External Aborts for a full explanation of external abort
behavior.
15-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 16
External Aborts

This chapter describes external aborts in the ARM1026EJ-S processor. It contains the
following sections:

• About external aborts on page 16-2

• External abort reporting on page 16-3

• External abort rules of conduct on page 16-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 16-1

External Aborts
16.1 About external aborts

The ARM1026EJ-S processor supports external aborts for all AHB bus transfer types,
including any type of cachable, noncachable, bufferable, or nonbufferable load or store
operation or instruction fetch. There are two types of external aborts:

• Precise external aborts

• Imprecise external aborts.

16.1.1 Precise external aborts

When the external abort is precise, all instructions prior to the external abort complete
execution. The aborted instructions that follow are recoverable and can restart after the
Data Abort or Prefetch Abort exception handler processes the abort.

The ARM1026EJ-S processor supports precise external aborts on the following
operations:

• a cachable load miss that causes a linefill

• a noncachable load

• a nonbufferable store

• an instruction fetch, either cachable or noncachable

• a read-lock-write sequence to noncachable memory

• a level 1 or level 2 MMU descriptor fetch.

16.1.2 Imprecise external aborts

When the external abort is imprecise, recoverability of instructions is not guaranteed.
The ARM1026EJ-S processor follows an explicit protocol for imprecise aborts. After
the processor recognizes the imprecise abort, it aborts the next load or store instruction.
The CP15 c6 Data Fault Status Register reflects the generation of an imprecise abort.

The ARM1026EJ-S processor supports imprecise external aborts for the following
operations:

• any buffered store

• any DCache castout.

The external abort granularity is 64 bits and is derived from the width of the internal
data bus of the prefetch unit and LSU. External abort granularity is not affected by the
AHB bus width configuration.
16-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

External Aborts
16.2 External abort reporting

Table 16-1 summarizes how the ARM1026EJ-S processor reports external aborts.

The status field in the CP15 c5 Fault Status Register indicates whether the external abort
is precise or imprecise. If the external abort is precise, the CP15 c6 Fault Address
Register reflects the address of the load, store, or fetch that aborted. If the external abort
is imprecise, the Fault Address Register reflects the address of the load or store to which
an imprecise abort has been attached, that is, some subsequent load or store instruction.
This is not the address produced by the instruction that actually caused the fault.

As Table 16-1 shows, only buffered stores and cache castouts generate imprecise
external aborts.

Table 16-1 External abort summary

Type of cache region Load aborts Store aborts Castout aborts

NCNB Precise Precise N/A

NCB Precise Imprecise N/A

CNB (write-through) Precise Imprecise Imprecise

CB (write-back) Precise Imprecise Imprecise
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 16-3

External Aborts
16.3 External abort rules of conduct

The ARM1026EJ-S rules governing external abort behavior define:

• how the processor handles data request and instruction fetch external aborts

• how the processor reacts to critical doubleword versus noncritical doubleword
filling.

Note
 The AHB instruction bus and data bus are independently configurable to widths of 64
bits or 32 bits, but external abort granularity is always 64 bits. The term critical
doubleword refers to all data or instructions in the doubleword that contains the
requested data or instruction that initiated a cache linefill. The request might be for a
byte, halfword, word, or doubleword.

The term noncritical doubleword refers to any doubleword in the cache line that does
not contain the data or instruction that initiated a cache linefill. A noncritical
doubleword might or might not contain the requested data or instruction.

Doubleword is used to convey the 64-bit packaging by the BIU of data and instructions
from the AHB and the minimum granularity of external abort resolution. Doubleword
does not imply 64-bit requests from the prefetch unit or LSU.

16.3.1 AHB error on the critical doubleword of a cache linefill

If the critical doubleword of the requested data or instruction for a cache linefill
generates an AHB error, an external abort is reported in a precise and recoverable
manner. Any doubleword received as part of the linefill after the external abort on the
critical doubleword is never marked valid. Following the return of the precise external
abort, the line is marked invalid.

In terms of their error response behavior, the following transfers are treated as critical
doubleword requests, and an external abort on them is reported in a precise manner:

• noncachable load

• nonbufferable store

• read-lock-write swap operation

• MMU hardware page table walk.

16.3.2 AHB error on a noncritical doubleword of a cache linefill

There are two categories of noncritical doubleword error behavior:

• when the ARM1026EJ-S processor explicitly requests a noncritical doubleword
in the currently filling cache linethat causes the AHB error during the linefill
16-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

External Aborts
• when the ARM1026EJ-S processor does not explicitly request the noncritical
doubleword that causes the AHB error during the linefill.

Noncritical doubleword, explicitly requested

If a request is explicitly made by a data load or instruction fetch for a doubleword that
is contained in the currently filling cache line, and the request externally aborts, the
abort is reported to the ARM1026EJ-S processor in a precise and recoverable manner.
This includes streaming data or instructions during the fill in progress. The filling line
in the cache or noncachable prefetch engine is always invalidated upon receipt of an
external abort.

Noncritical doubleword, not explicitly requested

For a data or instruction doubleword received in the linefill that aborts and is not
explicitly requested by the load/store unit or the prefetch unit, an AHB error response
immediately marks the filling line as invalid, both in the cache and the noncachable
prefetch engine. No state is saved in the processor for any nonrequested, noncritical
doubleword AHB error response. If at a later time, the aborted doubleword is explicitly
requested, it then causes a new cache linefill and a precise external abort can be returned
for that request.

16.3.3 Store modification of a filling cache line

Any data store instruction that hits in the filling cache line and is executed prior to the
completion of the linefill is always written to the external write buffer and the linefill
buffer. Store hits to the filling line must be forced onto AHB through the external write
buffer to prevent loss of store data due to invalidation of the linefill buffer as a
consequence of an external abort. This means that store hits to the filling line are
effectively mapped as write-through, regardless of whether the filling line is
write-through or write-back. This remapping occurs for the duration of the cache fill on
AHB. Following the completion of the fill on AHB, this remapping is disabled. On
completion of the linefill, it is known if the line was externally aborted and is invalid or
valid.

16.3.4 Imprecise aborts due to buffered write or castout

An external abort on either a buffered write or castout is always reported as an imprecise
exception. This reporting procedure guarantees that an identified imprecise abort is not
lost. The extension of the CPSR includes an imprecise abort mask. If the CPSR A bit is
set, all imprecise aborts are recognized by the memory system, but no imprecise abort
exception is raised by the ARM1026EJ-S processor. If the CPSR A bit is clear, the
processor recognizes the imprecise abort exception. The CPSR A bit is automatically
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 16-5

External Aborts
set on entry into Abort, FIQ, and IRQ exception processing. When imprecise data aborts
are masked by the CPSR A bit, the ARM1026EJ-S memory system holds information
about the presence of a pending imprecise abort until the A bit is cleared. When the A
bit is cleared, the processor takes the Abort exception.

To be able to recognize the imprecise abort exception, imprecise external aborts are
captured and then subsequently applied to a future load or store instruction that crosses
from the Execute pipeline stage to the Memory pipeline stage.

There are restrictions on attaching an imprecise external abort to future load or store
instructions. Imprecise aborts cannot be attached to the following operations:

• any DCache preload operation, PLD

• any coprocessor operation, including CP15 or CP14

• any locked-write portion of a swap operation.

DCache preload operations and coprocessor operations are not allowed to abort. The
locked write portion of a swap reports a precise abort in the locked-read portion of the
swap. In an imprecise exception, the locked read is completed and cannot be tagged if
the locked write is also tagged with an imprecise external abort exception.

When a load or store is detected after an imprecise abort on AHB is detected, the CP15
c5 Fault Status Register indicates an imprecise external abort exception. The CP15 c6
Fault Address Register indicates the address of the load or store to which the imprecise
external abort is attached. This is not the address of the buffered write or castout that
caused the imprecise exception.

The IMA bit in the CP15 c15 Debug Override Register enables and disables imprecise
external aborts and acts as a static global override on top of the dynamic CPSR A bit.

16.3.5 Instruction fetch behavior

Any AHB error response that occurs on an instruction fetch is always attached to the
instruction upon which the AHB error response occurred. This results in a Prefetch
Abort exception if and only if the instruction reaches the execute stage of the
ARM1026EJ-S pipeline. See page A2-16 in the ARM Architecture Reference Manual
for information on the behavior of instruction fetch exceptions.

Note
 External abort granularity is fixed at 64 bits. The minimum instruction prefetch abort
resolution is two ARM instructions.
16-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 17
Tightly-Coupled Memories

This chapter describes the Data and Instruction Tightly-Coupled Memories (DTCM
and ITCM). It contains the following sections:

• About the tightly-coupled memories on page 17-2

• Programming the TCM on page 17-3

• Interface timing on page 17-10

• TCM parity on page 17-16.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-1

Tightly-Coupled Memories
17.1 About the tightly-coupled memories

The ARM1026EJ-S processor supports both instruction and data TCMs. Accesses to
the TCMs are deterministic and do not access the AHB. Therefore, you can use the
DTCM and ITCM to store real-time, performance-critical code.

The features of the TCMs include:

• independent ITCM and DTCM sizes of 0KB or 4KB-1MB in power-of-two
increments

• software visibility and programmability of TCM size, location, and enable

• boot control for ITCM

• data accesses to the ITCM

• simple SRAM-style interface supporting both reads and writes

• variable TCM wait state control

• control hook for DMA engine.

Note
 For forward compatability, software must program as noncachable and nonbufferable
all MMU or MPU entries that map to TCM addresses.
17-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.2 Programming the TCM

The CP15 c9 TCM Region Registers control both the instruction and data TCMs (see
CP15 c9 DTCM and ITCM Region Registers on page 3-44).

The Instruction TCM (ITCM) has two independent mechanisms for being programmed.
The ITCM can be automatically programmed at reset when the INITRAM pin is HIGH
and the VINITHI pin is LOW. Otherwise, the ITCM must be reprogrammed by by
writing to the CP15 c9 ITCM Region Register.

The Data TCM (DTCM) can be programmed only by writing to the CP15 c9 DTCM
Region Register.

The ITCM can be programmed and enabled using reset as shown in Table 17-1.

Note
 The processor boots from the ITCM only when INITRAM is HIGH and VINITHI is
LOW at reset. In all other configurations, the processor boots from external memory.

17.2.1 Data accesses to the ITCM

The ARM1026EJ-S processor supports accessing the ITCM using either load or store
instructions. This is very useful for loading SWI and emulated instruction handler code
into the ITCM. It is also useful for accessing PC-relative literal pools embedded into the
instruction stream by the compiler.

Table 17-1 ITCM initialization

INITRAM VINITHI Behavior

0 0 ITCM and DTCM disabled.
Processor boots from vector address 0x00000000.

0 1 ITCM and DTCM disabled.
Processor boots from vector address 0xFFFF0000.

1 0 ITCM enabled. Region base 0x0. DTCM disabled.
Processor boots from preloaded code in ITCM.

1 1 ITCM enabled. Region base 0x0. DTCM disabled.
Processor boots from vector address 0xFFFF0000.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-3

Tightly-Coupled Memories
The ITCM is optimized for read accesses by the ARM1026EJ-S prefetch unit. If any
data load or store instruction attempts to access the ITCM, the ITCM arbitrates and
gives priority access to the prefetch unit. Any data load or store goes into a pending
load/store queue in the ITCM to wait for access to the ITCM interface.

The depth of the ITCM queue is three entries. For data stores from the load/store unit,
this is optimal for performance. A new store entry goes into the queue while an old entry
is taken out. Any load access inserted into the queue stalls the ARM1026EJ-S processor
until the load in the queue completes in the ITCM.

Any data operation that attempts to modify the instruction stream is classified as
self-modifying code. The ITCM does not forward any data from a data access to any
instruction fetch. It is the responsibility of the programmer to insert an IMB to force the
ITCM queue to drain. An example of the code sequence to do this is shown in
Example 17-1.

Example 17-1 ITCM self-modifying code

LDMIA r0, {r1-r10} ; load in instructions from RAM
ADR r0, new_code ; load address of new code
STMIA r0, {r1-r10} ; store out instructions to ITCM

MCR p15, 0, r0, c7, c10, 4 ; drain all buffers in system
IMB ; invalidation instruction in ARM10 pipeline.

new_code:
NOP ; to be replace by STMIA
NOP

17.2.2 Simple SRAM interface

The DTCM and ITCM support both read and write operations. The TCM interface is
designed to connect directly to Synchronous RAM (SRAM) with active-HIGH inputs
and outputs. If an SRAM does not support active-HIGH inputs and outputs, you have
to add external logic to produce active-HIGH inputs and outputs.

Caution
 The ARM1026EJ-S processor does not support floating outputs from synchronous or
asynchronous RAM. Any RAM attached to the TCM interface that does not always
drive its outputs can cause high current draw and damage the ARM1026EJ-S processor.
17-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
The TCM interface drives its outputs in the Execute stage of the ARM1026EJ-S
pipeline. This is shown in Figure 17-1 in which all control, address, and external stall
and DMA requests are driven in the first cycle of the diagram. All read data must be
driven in the cycle following, which corresponds to the Memory stage.

Figure 17-1 TCM interface timing

The TCM interface enables maximum design flexibility. A system operates the SRAM
on the falling edge of the clock that drives the ARM1026EJ-S logic. This design
balances the control and address outputs, as well as the data return path, by allowing the
SRAM a full cycle for performing its read or write accesses from falling clock edge to
falling clock edge.

RWBL

RnRW

RCS

CLK

E M

RWPAR

RWAIT

RRD

RWD

RADDR
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-5

Tightly-Coupled Memories
The TCMs perform 8-bit, 16-bit, 32-bit, and 64-bit read and write operations. In write
operations, the TCM interface exports byte write enables. Each chip select and byte
enable maps to an explicit byte lane for the read and write data buses. Table 17-2 shows
the mapping that must be used when connecting the TCM interface.

17.2.3 TCM wait state indicator

In addition to the the standard SRAM signals, the TCM interface includes a wait
indicator. If the TCM cannot service a request in a single cycle, it must assert a wait
signal to inform the ARM1026EJ-S processor that the TCM data is not available for
reads, or that the write requires multiple cycles. Depending on the type of operation, the
processor might stall. If a read operation is being performed, and the TCM indicates a
wait state is desired, then the processor stalls until the read data returns. If a write
operation is being performed, a write stall occurs only when the pending write buffer is
filled, or a subsequent read operation is performed during the stall.

The ARM1026EJ-S processor acknowledges the RWAIT stall only if a TCM request
is being presented. If the TCM is disabled, or no TCM request is being made, the
processor ignores the wait signal. A TCM request might be present during the waited
cycle. It is possible for a read or write to be pending on the TCM interface during a
waited cycle. It is also possible for the TCM address and control outputs to change
during the waited cycle. Due to timing restrictions, it is not possible to prevent
unauthorized reads to the TCM.

Table 17-2 TCM mapping of chip select and byte enable mapping

Chip select Byte lane Write data Read data

RCS[0] RWBL[0] RWD[7:0] RRD[7:0]

RWBL[1] RWD[15:8] RRD[15:8]

RWBL[2] RWD[23:16] RRD[23:16]

RWBL[3] RWD[31:24] RRD[31:24]

RCS[1] RWBL[4] RWD[39:32] RRD[39:32]

RWBL[5] RWD[47:40] RRD[47:40]

RWBL[6] RWD[55:48] RRD[55:48]

RWBL[7] RWD[63:56] RRD[63:56]
17-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.2.4 TCM pending write buffer

The TCM pending write buffer holds a maximum of three buffered stores. The buffer
can accomodate any sequence of load or store operations to the TCM without
introducing a resource conflict stall to the ARM1026EJ-S processor.

By asserting the external RWAIT input, the TCM RAM controller can introduce stalls
in the ARM1026EJ-S processor.

Note
 It is the responsibility of the programmer to use a drain write buffer instruction to drain
the pending write buffers in the ITCM and DTCM before disabling either of the TCM
regions.

17.2.5 DMA interaction with the TCM controller

The TCM controller in the ARM1026EJ-S processor includes a hook to allow a DMA
engine access to the TCM SRAM. The DMA must assert RDMAEN to request the
TCM interface, and this request must always be presented at least one cycle before
using the TCM interface. The pipelining of the DMA request allows the processor to
determine ownership of the bus and grant ownership as early as the cycle immediately
following the request.

 TCM ownership is a function of the DMA request signal, RDMAEN, and the request
and stall indicators, RCS and RWAIT, of the TCM controllers. The conditions for
ownership are shown as a state transition diagram. To determine when it is safe to take
ownership of the TCM SRAM interface, DMA engines built to access the TCM SRAM
must obey the arbitration sequence defined by this state machine. Because the
ARM1026EJ-S processor is given priority access to the TCM interface, there are three
possible states indicating ownership:

• TCM1, the idle or zero wait state TCM access state. If the TCM controller is not
initiating an access in the TCM1 state, and the DMA engine is requesting, the
DMA engine becomes the next owner.

• TCM2, the TCM controller wait state. The TCM2 state is entered only upon
recognition that the external SRAM requires multiple cycles to perform the
memory operation upon a request from the TCM controller. Exiting TCM2 forces
a new evaluation of the requestors for the TCM interface, and the TCM controller
enters the TCM1 or idle state.

• DMA, the DMA ownership state. Exiting DMA forces a new evaluation of the
requestors for the TCM interface, and the TCM controller enters the TCM1 or idle
state.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-7

Tightly-Coupled Memories
Figure 17-2 shows the conditions in which ownership of the TCM interface changes.

Figure 17-2 TCM controller and DMA arbitration state diagram

If the ARM1026EJ-S processor and DMA engine request ownership of the TCM
interface in the same cycle, the TCM controller gives priority to the processor. When
the processor activity on the TCM interface is completed, the DMA engine is granted
ownership of the TCM interface. The processor activity on the TCM interface includes
any pending writes in the queue and any wait state activity. When the DMA engine
gains ownership of the TCM interface, it can maintain ownership by keeping
RDMAEN asserted.

Note
 RDMAEN must remain deasserted for at least two cycles before being reasserted.

When a DMA engine owns the TCM interface, the ARM1026EJ-S processor forces all
its TCM interface outputs to logic zero. This enables you to use a simple logical OR
function to integrate the DMA SRAM inputs or memory test inputs.

A DMA engine can maintain ownership of the TCM interface indefinitely. Be careful
not to starve the ARM1026EJ-S processor, causing system performance to suffer.

TCM1

TCM2

DMA

RDMAEN

RCS AND RWAIT

RWAIT

RWAIT

RDMAEN

RCS AND RDMAEN

(RCS AND RWAIT) OR (RCS AND RDMAEN)
17-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.2.6 TCM memory BIST support

The TCMs are designed to minimize the number of logic gates between the TCM
controller and the RAMs in Memory Built-In Self Test (MBIST) implementations.
When the ARM1026EJ-S processor is held in reset, the TCMs drive logic zeros on all
the TCM output pins to the RAM banks. This enables using OR gates in the signal path
instead of multiplexors, resulting in improved timing for these paths.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-9

Tightly-Coupled Memories
17.3 Interface timing

This section gives examples of typical TCM interface transfers:

• TCM reads with zero wait states

• TCM reads with one wait state

• TCM reads with four wait states on page 17-11

• TCM writes with zero wait states on page 17-12

• TCM write with one wait state on page 17-13

• TCM write with two wait states on page 17-13

• TCM accesses with varying TCM wait states on page 17-14

• TCM and DMA interaction on page 17-15.

17.3.1 TCM reads with zero wait states

Figure 17-3 is an example of single-cycle TCM read accesses. RWAIT is never
asserted, and there are no read delays. Read data must be driven in the cycle after the
address and TCM control signals are driven.

Figure 17-3 TCM reads with zero wait states

17.3.2 TCM reads with one wait state

Figure 17-4 on page 17-11 is an example of two-cycle TCM read accesses. RWAIT
delays the R_B and R_C reads for one cycle. Read data must always be driven in the
cycle after RWAIT is deasserted.

00RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

11 00

BA

R_A R_B

000

0 754 62 31
17-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
Figure 17-4 TCM reads with one wait state

17.3.3 TCM reads with four wait states

Figure 17-5 is an example of a five-cycle TCM read access. RWAIT delays the R_B
read for four cycles. Read data must always be driven in the cycle after RWAIT is
deasserted.

Figure 17-5 TCM reads with four wait states

RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

11

BA

R_A

0

00

C

R_C

00

R_B

0 754 62 31

RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

11

BA

R_A R_B

0

C

R_C

0000

0 754 62 31
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-11

Tightly-Coupled Memories
17.3.4 TCM writes with zero wait states

Figure 17-6 is an example of single-cycle TCM write accesses. RWAIT is never
asserted, and there are no write delays. Write data must be driven in the same cycle as
the address and the TCM control signals.

Figure 17-6 TCM writes with zero wait states

RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

BA

00

00 01/10/11

W_A W_B

Valid Valid

00

0 754 62 31
17-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.3.5 TCM write with one wait state

Figure 17-7 is an example of a two-cycle TCM write access. RWAIT extends the
completion of both the W_B and W_C writes for one cycle each. Write data must be
driven in the same cycle as the address and the TCM control signals.

Figure 17-7 TCM writes with one wait state

17.3.6 TCM write with two wait states

Figure 17-8 on page 17-14 is an example of a three-cycle TCM write access. RWAIT
extends the completion of both the W_B and W_C writes for two cycles each. Write
data must be driven in the same cycle as the address and TCM control signals.

RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

BA

W_A W_B

Valid Valid

01/10/1100 01/10/11 01/10/11

W_C

Valid

00

C

0 754 62 31
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-13

Tightly-Coupled Memories
Figure 17-8 TCM writes with two wait states

17.3.7 TCM accesses with varying TCM wait states

Figure 17-9 shows a mix of read and write transfers with wait states of different lengths.
The lengths of wait states are often transfer-dependent.

Figure 17-9 TCM reads and writes with wait states of varying length

RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

01/10/11 01/10/1100 01/10/11 01/10/11 00

BA C D

Valid Valid Valid Valid

W_A W_B W_C W_D

0 754 62 31 8

0000RCS[1:0]

RADDR[16:0]

CLK

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

R_BR_A

EDC

1111

BA

01/10/11 01/10/1100 11

R_E

W_C W_D

Valid Valid 00 0

0 954 82 31 116 7 10 12
17-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.3.8 TCM and DMA interaction

Figure 17-10 shows the DMA engine attempting to gain ownership of the TCM
interface during a sequence of transfers initiated by the ARM1026EJ-S processor.
When the DMA engine gains ownership, the ARM1026EJ-S processor drives the
ARM1026EJ-S outputs to logic zeros.

Note
 For the DMA engine to gain and hold access to the TCM SRAM, RDMAEN must be
driven LOW for at least two cycles between separate requests.

Figure 17-10 TCM and DMA interaction

01/10/11

R_E

E

00 0011

CLK

110 1 2 3 4 5 6 7 8 9 10 12

00

0

W_B 00

R_C R_DR_A

0D

0000111111

C

RCS[1:0]

RADDR[16:0]

RnRW

RRD[63:0]

RWD[63:0]

RWBL[7:0]

RWAIT

BA

RDMAEN

Interface

owner

State

TCM TCM TCM TCM TCM TCM TCM DMA DMA DMA TCM TCM DMA

TCM1 TCM2 DMA DMA DMA TCM1 TCM1TCM1 TCM1 TCM2 TCM1 TCM1 DMA

00000 Valid
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-15

Tightly-Coupled Memories
17.4 TCM parity

The parity generator is an odd-parity circuit that produces parity bits on a per-byte basis.
If a byte has an even number of 1s, the parity generator appends another 1 to the byte
to produce a nine-bit code word that has an odd number of 1s. Parity generation is not
configurable.

Because the ARM1026EJ-S processor does not provide parity error detection, storing
and handling the parity bit information is the responsibility of the system designer. If
parity error detection is not required, the parity outputs can remain unconnected.

17.4.1 ITCM parity interface

Parity bit generation is provided for every data byte written to the ITCM. Table 17-3
lists the ITCM data bytes and their parity bits.

Table 17-3 ITCM parity interface

Data byte Parity bit I/O

IRWD[63:56] IRWPAR[7] O

IRWD[55:48] IRWPAR[6] O

IRWD[47:40] IRWPAR[5] O

IRWD[39:32] IRWPAR[4] O

IRWD[31:24] IRWPAR[3] O

IRWD[23:16] IRWPAR[2] O

IRWD[15:8] IRWPAR[1] O

IRWD[7:0] IRWPAR[0] O
17-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Tightly-Coupled Memories
17.4.2 DTCM parity interface

Parity bit generation is provided for every byte written in the DTCM. Table 17-4 lists
the DTCM data bytes and their parity bits.

Table 17-4 DTCM parity interface

Data byte Parity bit I/O

DRWD[63:56] DRWPAR[7] O

DRWD[55:48] DRWPAR[6] O

DRWD[47:40] DRWPAR[5] O

DRWD[39:32] DRWPAR[4] O

DRWD[31:24] DRWPAR[3] O

DRWD[23:16] DRWPAR[2] O

DRWD[15:8] DRWPAR[1] O

DRWD[7:0] DRWPAR[0] O
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 17-17

Tightly-Coupled Memories
17-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 18
Vectored Interrupt Controller Port

This chapter describes the ARM1026EJ-S Vectored Interrupt Controller (VIC) port. It
contains the following sections:

• About vectored interrupt controllers on page 18-2

• About the VIC port on page 18-3

• Timing of the VIC port on page 18-4.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 18-1

Vectored Interrupt Controller Port
18.1 About vectored interrupt controllers

An interrupt controller is a peripheral that handles multiple interrupt sources. Features
usually found in an interrupt controller are:

• multiple interrupt inputs, one for each interrupt source

• one interrupt request output for the processor interrupt request input

• software maskable interrupt requests

• prioritization of interrupt sources for interrupt nesting.

With an interrupt controller that has these features, software is still required to:

• determine which interrupt source is requesting service

• determine where the service routine for that interrupt source is loaded.

A vectored interrupt controller does both things in hardware. It supplies the starting
address (vector address) of the service routine corresponding to the highest priority
requesting interrupt source.

The ARM1026EJ-S VIC port provides the necessary interface to connect to an external
VIC such as the PL192. The PL192 VIC is an AMBA-compliant, SoC peripheral
developed and tested for use in ARM1026EJ-S designs.
18-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Vectored Interrupt Controller Port
18.2 About the VIC port

The VIC port enables the ARM1026EJ-S processor to read the vector address as part of
the IRQ interrupt entry. The processor takes a vector address from the VIC port
interface instead of the normal address, 0x00000018, or the high vector address,
0xFFFF0018.

Hardware relocation of the IRQ vector address eliminates the need for an interrupt
handler to determine the source of an interrupt and branching to a routine to handle it.
Setting the VE bit in the CP15 c1 Control Register enables the processor to read the IRQ
vector address from the VIC port.

Note

 The ARM1026EJ-S processor does not support hardware relocation of the FIQ vector
address.

Table 18-1 lists the VIC port signals.

IRQACK and IRQADDRV together implement a four-phase handshake between the
ARM1026EJ-S processor and an external VIC. For more details, see Timing of the VIC
port on page 18-4.

Table 18-1 VIC port signals

Signal I/O Description

nFIQ I Active-LOW fast interrupt request signal. Synchronous to CLK.

nIRQ I Active-LOW normal (IRQ) interrupt request signal.
Synchronous to CLK.

IRQACK O Active-HIGH IRQ acknowledge. Indicates to external VIC that
processor is ready to read IRQADDR[31:2].

IRQADDRV I Active-HIGH valid signal for the IRQ interrupt vector address.
Indicates to processor that IRQADDR bus is valid, and it is safe
for the processor to sample it.

IRQADDR[31:2] I IRQ interrupt vector address. Holds address of first ARM state
instruction in IRQ handler.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 18-3

Vectored Interrupt Controller Port
18.3 Timing of the VIC port

Figure 18-1 shows a timing example of VIC port operation with CLK and HCLK
running at the same frequency.

Figure 18-1 VIC port timing example with HCLK:CLK = 1:1

In Figure 18-1, the processor detects that nIRQ is active and asserts IRQACK at B6 to
indicate that it is is ready to service the interrupt request. The time that the processor
takes to respond to nIRQ depends on the current processor state. When the VIC detects
that IRQACK is active, it asserts IRQADDRV at B7 to indicate that the value on the
IRQADDR bus is stable.

When the processor detects that IRQADDRV is active, it samples IRQADDR[31:2] at
B8 and then deasserts IRQACK. When the VIC detects that IRQACK is low, it
deasserts IRQADDRV. If there are no higher priority interrupt requests pending, the
VIC also deasserts nIRQ. The processor samples nIRQ only while IRQADDRV is
inactive.

To prevent a higher-priority interrupt request from changing IRQADDR, the VIC does
not change the value on IRQADDR[31:2] until after the processor deasserts IRQACK

If the processor is running at a multiple of the bus clock frequency, the IRQACK and
IRQADDRV handshake protocol still applies. However, there can be several processor
clock cycles between IRQACK assertion by the processor and IRQADDRV assertion
by the VIC.

Figure 18-2 on page 18-5 shows a timing example of VIC port operation with CLK
running at twice the speed of HCLK.

CLK

HCLK

IRQADDR[31:2]

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

IRQ vector address

Vector

address

stable

nIRQ

IRQACK

IRQADDRV
18-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Vectored Interrupt Controller Port
Figure 18-2 VIC port timing example with HCLK:CLK = 2:1

Because the processor clock is running at twice the speed of the bus clock, the
IRQACK response from the processor is valid at P10, earlier than when the processor
and bus clocks are the same.

After the IRQ vector address is generated and IRQACK is detected active, the VIC
asserts IRADDRV at B7. The processor then samples IRQADDR[31:2] at P14 and
deasserts IRQACK.

When the VIC detects that IRQACK is low, it deasserts IRQADDRV, and if no
higher-priority interrupt requests are pending, deasserts nIRQ.

IRQADDR[31:2]

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

CLK

HCLK

IRQ vector address

P2 P6P4 P8 P10 P14P12 P16 P18

Vector

address

stable

nIRQ

IRQACK

IRQADDRV
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 18-5

Vectored Interrupt Controller Port
18-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 19
Power Management

This chapter describes power management in the ARM1026EJ-S processor. It contains
the following section:

• About power management on page 19-2

• Wait for interrupt mode on page 19-3

• Leakage control on page 19-5.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 19-1

Power Management
19.1 About power management

The ARM1026EJ-S processor provides two power management facilities:

• Wait for interrupt mode on page 19-3

• Leakage control on page 19-5.
19-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Power Management
19.2 Wait for interrupt mode

The wait for interrupt instructions put the ARM1026EJ-S processor into a low-power
state:

MCR p15, 0, Rd, c7, c0, 4

MCR p15, 0, Rd, c15, c8, 2

Either of these instructions switches the processor into a low-power state until an
interrupt (IRQ or FIQ) or a debug request (EDBGRQ) occurs.

In wait for interrupt mode, all internal clocks can be stopped. The switch into the
low-power state is delayed until all write buffers are drained, and the memory system
is in a quiescent state.

Assertion of the STANDBYWFI signal indicates the switch into a low-power state. If
STANDBYWFI is asserted, then it is guaranteed that all of ARM1026EJ-S external
interfaces (AHB, TCM, and external coprocessor) are in an idle state. You can use
STANDBYWFI to shut down clocks to the ARM1026EJ-S processor and to other
system blocks that do not have to be clocked when the ARM1026EJ-S processor is idle.
Figure 19-3 on page 19-4 shows a user-implemented system clock control block that
uses STANDBYWFI to control the ARM1026EJ-S and system clocks.

Figure 19-1 Using STANDBYWFI to control system clocks

ARM1026EJ-S

processor

Clock

control

STANDBYWFI

To other

system blocks

CLK
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 19-3

Power Management
The STANDBYWFI signal is deasserted in the cycle following an interrupt or a debug
request. It is guaranteed that no form of access on any external interface is started until
the cycle after STANDBYWFI is deasserted. Figure 19-2 shows the deassertion of the
STANDBYWFI signal after an IRQ interrupt.

Figure 19-2 Deassertion of STANDBYWFI after an IRQ interrupt

When the processor enters a low-power state, all of the main internal clocks can be
stopped. However, the processor is active if DBGTCKEN is asserted. This means that
you can safely stop CLK if STANDBYWFI is HIGH and DBGTCKEN is LOW.

Figure 19-3 shows an example of user-implemented system logic for stopping the main
ARM1026EJ-S clock during wait for interrupt.

Figure 19-3 Using STANDBYWFI to control ARM1026EJ-S clocks

The nature of the nFIQ, nIRQ, and EDBGRQ signals enables them to be registered
prior to being used in the gating logic.

STANDBYWFI

nIRQ

CLK

nFIQ

EDBGRQ

nIRQ

DBGTCKEN

STANDBYWFI

FCLK

FCLK = free-running clock

CLK = ARM processor clock

RST

EN

CLK

HRESETn
19-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Power Management
19.3 Leakage control

The ARM1026EJ-S design is partitioned so that the SRAM blocks that are used for the
caches and the MMU can be powered down under certain conditions.

When the RAMs are powered down, the RAM outputs to the ARM1026EJ-S cache
controller must be driven either HIGH or LOW. ARM recommends driving the RAM
outputs LOW. Figure 19-4 shows an example of user-implemented logic to drive the
RAM outputs LOW in power-down.

Figure 19-4 Cache power-down

19.3.1 Cache RAMs

You can safely power down the RAMs for either cache if the cache contains no valid
entries and you first disable it by using the CP15 c1 Control Register. While a cache is
disabled, only CP15 c7 cache maintenance instructions can cause the cache RAMs to
be accessed. You must not re-enable the cache or execute these instructions while any
of the cache RAMs are powered down.

19.3.2 MMU RAMs

You can safely power down the RAM used to implement the MMU if the MMU
contains no valid entries and you first disable it by using the CP15 c1 Control Register.
While the MMU is disabled, only CP15 c8 TLB maintenance instructions and CP15 c15
MMU test/debug instructions can cause the MMU RAM to be accessed. You must not
re-enable the MMU or execute these instructions while the MMU RAM is powered
down.

Cache

controller

Power-down

enable

Cache

RAMs

ARM1026EJ-S processor
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 19-5

Power Management
19-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 20
Design for Test

This chapter describes the Design For Test (DFT) features of the ARM1026EJ-S
processor and describes how to integrate the DFT features into a System on a Chip
(SoC). This chapter contains the following sections:

• ARM1026EJ-S processor on page 20-2

• Test signal connections on page 20-10

• MBIST on page 20-13.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-1

Design for Test
20.1 ARM1026EJ-S processor

Except for reset, the ARM1026EJ-S processor is a fully synchronous muxD flip-flop
macrocell. It contains one internal clock domain controlled by the CLK pin.

20.1.1 Test wrapper

The test wrapper provides a single serial scan ring around the entire periphery of the
processor. You can use the test wrapper to apply test vectors with minimal external pin
control. The test wrapper enables test control and observation of the core from the ports
as well as control and observation of the external logic surrounding the processor.

Wrapper cells can be dedicated or shared. Shared wrapper cells are functional flip-flops
that are also used as wrapper cells. Shared wrapper cells must be registered inputs or
outputs. Dedicated wrapper cells are defined in the RTL. Connect the dedicated
wrapper cells into the test wrapper along with the shared wrapper cells during the scan
insertion portion of the synthesis flow. The functional clock, CLK, drives the wrapper
cells. This flow works in the ARM environment, but it requires a list of the shared
wrapper cells. The format of these paths might change depending on the tool used for
synthesis and how the tool is used. If the scan insertion tool can read the wrapper cell
names, then there is no problem with scan insertion of the wrapper using the ARM flow.

Figure 20-1 shows the structure of a dedicated input wrapper cell.

Figure 20-1 Dedicated input wrapper cell

Figure 20-2 on page 20-3 shows the structure of a dedicated output wrapper cell.

Peripheral logic ARM1026EJ-S processor

Scan input Scan output

Functional path

Scan enable CLK MUXINSEL

SI

IN

CLK

SO

SE

OUT

SEL
20-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Figure 20-2 Dedicated output wrapper cell

Figure 20-3 shows the structure of a shared input wrapper cell.

Figure 20-3 Shared input wrapper cell

Figure 20-4 shows the structure of a shared output wrapper cell.

Figure 20-4 Shared output wrapper cell

Functional path
Peripheral logicARM1026EJ-S processor

Scan input Scan output

Scan enable CLK MUXOUTSEL

IN

SI

CLK

SO

SE

OUT

SEL

Peripheral logic ARM1026EJ-S processor

Scan output

Functional input

Scan input CLK

D

SDI

CLK

Q

Peripheral logicARM1026EJ-S processor

Scan output

Functional output

Scan input CLK

D

SDI

CLK

Q

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-3

Design for Test
The test wrapper has six scan chains with a total of 870 wrapper scan cells. The wrapper
chain consists of both shared and dedicated wrapper cells and is segmented into shorter
scan chains that can be used for both external and internal testing. The wrapper insertion
script creates two scan enables (see WSEI and WSEO on page 20-6). The input bus to
the wrapper scan chains is WSI, and the output bus is WSO. There is a wrapper cell
connected to every input and output functional port with the exception of the clock port
and memories.

Note

 There are no gates at the processor outputs. While the processor is being tested, the
outputs ripple as data is clocked through the wrapper chain. If necessary, you can add
external gates to the outputs.

The dedicated test cells require control signals to differentiate between internal testing,
external testing, and functional mode. Table 20-1 shows how MUXINSEL and
MUXOUTSEL select mode of operation.

20.1.2 Wrapper segmentation

The ARM1026EJ-S wrapper has three segments:

• one segment is connected to the coprocessor interface

• one segment is connected to the ETM interface

• one segment is connected to the AHB interface.

Each segment divided into a wrapper chain that uses WSEI and a wrapper chain that
uses WSEO. See Figure 20-5 on page 20-5.

Table 20-1 Selecting mode of operation of dedicated wrapper cells

MUXINSEL MUXOUTSEL

0 0 Functional mode.

0 1 External test mode.
Wrapper input cells can observe data from peripheral logic.
Wrapper data present on ARM1026EJ-S port.

1 0 Internal test mode.
Dedicated input wrapper cells inward-facing to control of ARM1026EJ-S inputs.
Functional data present on ARM1026EJ-S port.

1 1 Unused.
20-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Figure 20-5 Wrapper segments

The shared AHB wrapper cells in the UDL segment of the wrapper chain are connected
to the output ports of the data bus through multiplexors as Figure 20-6 shows. All logic
outside of the dashed box is tested only in external test mode.

Figure 20-6 HWDATA bus output ports

The shared AHB wrapper cells in the UDL segment of the wrapper chain are connected
to the input ports of the D bus through multiplexors as Figure 20-7 on page 20-6 shows.
All logic outside of the dashed box is tested only in external test mode.

User-defined logicCoprocessorETM10

ETM interface
Coprocessor

interface
AHB interface

ARM1026EJ-S processor

ARM1026EJ-S output ports

HWDATAD/I[63:32]

HWDATAD/I[31:0]

Tested during internal test

Shared wrapper cells
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-5

Design for Test
Figure 20-7 HRDATA bus input ports

You can concatenate the wrapper scan chains as required by wiring the WSO of one
scan chain to the WSI of another scan chain. Table 20-2 shows the lengths of the scan
chains.

WSEI and WSEO

The wrapper contains two scan-enable signals:

WSEI Wrapper scan-enable input. WSEI connects only to the wrapper cells
adjacent to the functional inputs.

WSEO Wrapper scan-enable output. WSEO connects only to wrapper cells
adjacent to the functional outputs.

ARM1026EJ-S input ports

HRDATAD/I[31:0]

HRDATAD/I[63:32]

Tested during internal test

Shared wrapper cells

Table 20-2 Wrapper scan chains

Scan chain Function Number of flip-flops in chain

0 AHB-in 237

1 CP-in 86

2 ETM-in 1

3 AHB-out 219

4 CP-out 102

5 ETM-out 225
20-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
In designs that do not require separate scan enables, you can tie WSEI and WSEO
together as one wrapper scan-enable signal.

WSO

The AHB segment of the scan chain has two wrapper outputs as Figure 20-8 shows.
When there is one wrapper chain, WSO is the output. There is a φ2 latched output called
WSON for connecting the wrapper chain to scan chains in other clock domains.

Figure 20-8 Wrapper falling-edge logic

20.1.3 Clock gating

The clock is not gated in the ARM1026EJ-S processor. It can be gated externally to turn
off the clock during IDDQ test setup or to minimize power consumption while testing
logic other than the ARM1026EJ-S processor. Because there is only one clock domain
in the core, a clock gate would also disable the wrapper.

20.1.4 Reset

The HRESETn and DGBnTRST signals are asynchronous resets that are delivered to
the flip-flops out of a dual flip-flop synchronizer as Figure 20-9 shows. For direct
control of reset during scan testing, the outputs of the flip-flops are blocked if they go
to the reset ports on internal flip-flops.

Figure 20-9 Reset synchronizer

During scan mode, the 0 mux input and the 0 state of the mux select input in Figure 20-9
are not tested.

WSO[0]

Lockup latch

WSON

Last flip-flop in the UDL

wrapper scan chain

HRESETn or DBGnTRST 0

1
Reset to flip-flops

SCANMODE
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-7

Design for Test
The clock that drives the wrapper also controls the ARM1026EJ-S internal flip-flops.
The RSTSAFE signal enables you to reset the ARM1026EJ-S processor to some extent
during external test mode. As Figure 20-10 shows, RSTSAFE connects only to
flip-flops that are not contained in the wrapper scan chain. While in external test mode,
the HRESETn signal has no effect on the wrapper cells that have reset ports.

Figure 20-10 RSTSAFE signal

The reset signals must be directly connected to a port during test. The wrapper cell for
asynchronous resets contain only an observe register, as Figure 20-11 shows.

Figure 20-11 Reset wrapper cell

RSTSAFE

External test mode

HRESETn or DBGnTRST
to internal flip-flopsReset

to wrapper flip-flopsReset

OUT
To next scan cell

To ARM1026EJ-S reset logic

From previous scan cell

HRESETn or DBGnTRST
20-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
20.1.5 Test ports

The dedicated test ports in Table 20-3 must be instantiated as specified for internal
testing to operate correctly. Dynamic signals must make single-cycle test timing to the
core logic.

Table 20-3 Test port signals during internal test

Port name I/O Type Description

SCANMODE I Static Prevents asynchronous reset from being controlled by synchronizer

RSTSAFE I Static Resets any core cells that are reset-capable except wrapper cells

SE I Dynamic Scan enable for all internal clock domains. HIGH = shift

SI[55:0] I Dynamic Scan input port

SO[55:0] O Dynamic Scan output port

Wrapper signals

WSEI I Dynamic or statica Scan enable for all input-dedicated wrapper test cells. HIGH = shift

WSEO I Dynamic Scan enable for all output-dedicated wrapper test cells. HIGH = shift

WSI[5:0] I Dynamic Input ports for wrapper scan chains

WSO[5:0] O Dynamic Output ports for wrapper scan chains

WSON O Dynamic Wrapper output port that changes after falling edge of clock

MUXINSEL I Static Configures dedicated input wrapper cells for functional or test mode

MUXOUTSEL I Static Configures dedicated output wrapper cells for functional or test mode

WMUX[1:0] I Static Unused

SCANMUX[1:0] I Static Unused

CHECKTEST I Static Unused

a. No capture required on inputs during INTEST. Dynamic during EXTEST.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-9

Design for Test
20.2 Test signal connections

This section contains the following test signal connection tables:

• Test port connections in internal test mode

• Test port connections in functional mode on page 20-11

• Test port connections in external test mode on page 20-12.

See Memory test interface on page 20-13 for a description of MBIST connections.

Table 20-4 shows the test port connections for internal test mode.

Table 20-4 Test port connections in internal test mode

Signal Value

SCANMODE 1

RSTSAFE 0

SE Connect to external pin

SI[55:0] Connect to external pins

SO[55:0] Connect to external pins

WSEI Connect to external pin or 1a

a. See WSEI and WSEO on page 20-6.

WSEO Connect to external pin

MUXINSEL 1

MUXOUTSEL 0

WSI[5:0] Connect to external pins

WSO or WSONb

b. WSO or WSON can be connected to another scan
chain if necessary.

Connect to external pin
20-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Table 20-5 shows test port connections for functional mode.

Table 20-5 Test port connections in functional mode

Test signals Connection

SCANMODE 0

RSTSAFE 0

SE 0

SI[55:0] 0 recommended

SO[55:0] Gated 0 recommended

WSEI 0

WSEO 0

MUXINSEL 0

MUXOUTSEL 0

WSI[5:0] 0 recommended

WSO[5:0] Gated 0 recommended

WSON Gated 0 recommended

MBISTRESETN 0
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-11

Design for Test
Table 20-6 shows the test signal connections for external test mode.

Table 20-6 Test port connections in external test mode

Signal Value

SCANMODE 1

RSTSAFE 1 recommended unless IDDQ testing

SE 0

SI[55:0] 0 recommended

SO[55:0] Gated 0 recommended

WSEI Connect to external pin

WSEO Connect to external pin or 1a

a. See WSEI and WSEO on page 20-6.

MUXINSEL 0

MUXOUTSEL 1

WSI[5:0] Connect to external pin

WSO[5:0] or WSONb

b. WSO or WSON can be connected to another scan chain if
necessary.

Connect to external pin

MBISTRAMBYP Connect to external pin

MBISTRESETN Connect to external pin
20-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
20.3 MBIST

This section describes the array architecture, register definition, address mapping, and
implementation of the ARM1026EJ-S Memory Built-In Self Test (MBIST).

Figure 20-12 shows the high-level organization of the ARM1026EJ-S MBIST.

Figure 20-12 MBIST block diagram

20.3.1 Memory test interface

Table 20-7 summarizes the interface between the MBIST controller and the memory
wrapper.

ARM

processor

MBIST

controller

TCM

dispatch

unit

TCM

wrapper

Memory

wrapper

Memory

dispatch

unit

Table 20-7 MBIST interface in test mode

Signal I/O Function Connection

Value in
MBIST test
mode

Value in
functional
mode

MBISTCLKEN I MBIST clock gate External pin and MBIST controller Toggle 0

MTESTON I MBIST path enable External pin and MBIST controller Toggle 0

MBISTDSHIFT I Data log shift External pin and MBIST controller Toggle 0

MBISTSHIFT I Instruction shift External pin and MBIST controller Toggle 0

MBISTDIN I Serial data shift in External pin and MBIST controller Toggle 0
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-13

Design for Test
Each dispatch unit connects the MBIST controller to the memory test interface of the
processor. The dispatch unit resides in the memory wrapper. Some cache-read paths in
the wrapper also contain functional path φ1 latches to enable timing to be met in
functional mode.

MBISTDOUT[2:0]

During tests, the MBISTDOUT[2] signal indicates failures. This can operate using two
modes, configured using bit 5 of the engine control section of the instruction register. If
bit 5 is set, MBISTDOUT[2] is asserted for a single cycle for each failed compare. If
bit 5 is not set, MBISTDOUT[2] is sticky, and is asserted from the first failure until the
end of the test. At the completion of the test, the MBISTDOUT[1] signal goes HIGH.
MBISTDOUT[0] indicates that an address expire has occurred and enables you to
measure sequential progress through the test algorithms.

MBISTDOUT[2:0] O Output status bus External pin and MBIST controller Strobe -

MBISTRAMBYP I Chip-select block External pin and MBIST controller 0 0

HRESETn I Core reset value External pin 0a Toggle

MBISTRESETN I MBIST reset signal External pin and MBIST controller Toggle 0b

SCANMODE I ATPG signal External pin and MBIST controller 0 0

SE I ATPG signal External pin and MBIST controller 0 0

MBISTRXTCM[2:0] O Dispatch unit output bus MBIST controller - -

MBISTRXCGR[2:0] O Dispatch unit output bus MBIST controller - -

MBISTTX[10:0] I MBIST controller out MBIST controller - -

a. HRESETN must be LOW in MBIST test mode.
b. MBISTRESETN must be LOW in functional mode.

Table 20-7 MBIST interface in test mode (continued)

Signal I/O Function Connection

Value in
MBIST test
mode

Value in
functional
mode
20-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
MBISTTX[10:0]

Table 20-8 shows how the MBIST controller interacts with the dispatch unit through
the MBISTTX[10:0] interface.

When instruction shift is enabled, data shifts in on bit 1 (AddrInc in normal operation)
and shifts into the instruction scan chain of the dispatch unit. The MBISTTX[10:0]
interface is ARM-specific and intended for use only with the ARM MBIST controller.

Table 20-8 MBISTTX external interface

MBISTTX[10:0]
bit Description

0 Reset address

1 Increment address

2 Access sacrificial row (used during bang patterns)

3 Invert data/instruction data in

4 Checkerboard data

5 Write data

6 Read data

7 Yfast/nXfast

8 Direction

9 Enable bitmap mode

10 Increment go/nogo dataword selection
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-15

Design for Test
MBISTRXCGR[2:0] and MBISTRXTCM[2:0]

Table 20-9 shows how the dispatch units interact with the MBIST controller through
the MBISTRXTCM and MBISTRXCGR interfaces.

The behavior of MBISTRXCGR[2:0] and MBISTRXTCM[2:0] is ARM-specific.
These signals are intended for use only with the ARM MBIST controller.

The address expire signal is set when both address counters expire.

20.3.2 MBIST and ATPG

This section describes MBIST/ATPG considerations.

MBISTRAMBYP

Figure 20-13 on page 20-17 shows the data path for processor cache reads. The
scannable MBIST data register for data compares also controls this path during ATPG
testing and provides an observe path. This is particularly useful when testing the
processor with black-boxed memories. MBISTRAMBYP controls the multiplexor that
selects between cache data and DFT data. ATPG runs performed with black-boxed
memories must constrain MBISTRAMBYP active. The MBIST data compare flip-flop
can also serve as an observe register when performing ATPG RAM tests.

Caution
 MBISTRAMBYP is a static signal. Constrain MBISTRAMBYP in ATPG runs.

Table 20-9 MBISTRXCGR[2:0] and MBISTRXTCM[2:0] external interface

MBISTRXCGR or
MBISTRXTCM bit Description

0 Address expire/instruction data out/fail data out

1 Bitmap stall

2 Nonsticky fail flag
20-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Figure 20-13 ATPG view of read datapath

Scan enable, SE

Preservation of array state is required when performing multiload ATPG runs or when
performing IDDQ testing. The ARM MBIST blocks all array chip-select signals with the
SE signal. After performing MBIST tests to initialize the arrays to a desired
background, the ATPG test procedures must assert SE during all test setup cycles in
addition to load/unload. Any clocking during IDDQ capture cycles must have array
chip-select signals constrained.

20.3.3 MBIST arrays

The following sections describe the MBIST arrays:

• Memory test and chip select

• Data-side MBIST arrays on page 20-18

• Instruction-side MBIST arrays on page 20-20

• MMU MBIST array on page 20-20

• TCM MBIST array on page 20-21

• Memory test times on page 20-22.

Memory test and chip select

This section describes how each array is enabled by the dispatch unit. Most arrays in
this listing can be tested in parallel. This is accomplished by setting maximum X and Y
address spaces as required for the largest RAMs in each dimension. If the X and Y
address space exceeds the dimension of an array, the address scramble block within the
MBIST wrapper gates the internal chip select of the array.

Cache read data

BIST

data

compare

MBISTRAMBYP

ARM1026EJ-S

processor

Physical RAM 1
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-17

Design for Test
There are architectural four-bit chip-select signals for tag and data RAM arrays as
shown in Figure 20-14. The MBIST tests these arrays serially by assigning their
chip-select bits to the Yaddr space to be gated by the master chip select of the memory
test interface.

Figure 20-14 Chip-select implementation example

Data-side MBIST arrays

The data-side arrays contain four data, four tag, one valid, and one dirty array. There
are four chip-select signals that control the data and tag RAMs. The four chip-select bits
are controlled by appending them to the Yaddr space during MBIST testing. A single
chip-select signal enables the valid and dirty RAMs.

The data RAM exists as four separate 64-bit arrays, each controlled by a chip select. The
tag RAM exists as four separate arrays, one half containing a virtual tag, the other half
holding the physical tag. The tag is 22 bits wide. Addr[12] selects between the physical
and virtual set. The four RAM arrays are selected by TagCS[3:0]. These chip-select
signals are appended to the Y address space during MBIST testing. See Figure 20-15
on page 20-19.

Physical

DCache and

data RAM

Yaddr[4]

Yaddr[5]

DCDATACS[2]

DCDATACS[0]

DCDATACS[1]

DCDATACS[3]

MTESTYADDR[2]

MTESTXADDR[2]

MTESTCE2[3] MTESTCE[1]

Xaddr[10:8]

Yaddr[10:8]

Functional

path

MTESTON
20-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Figure 20-15 Data RAM MBIST arrays

[0] [1] [2] [3]

Dirty

PTAG0 PTAG1 PTAG2 PTAG3

DATA0

Addr[10:0]

Addr[9:0]

Tag CS[3:0]

Addr[10:0]

[0] [1] [2]

Data CS[3:0]

[3]

Addr[11:0]

DATA1 DATA2

VTAG2 VTAG3VTAG0 VTAG1

Valid CS Dirty CS

DATA3

Valid

2432 8

64

22

InstrData[3:0]{16{BistData4[3:0]}}

Fail

Data log and

bitmap support

registers
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-19

Design for Test
Instruction-side MBIST arrays

The instruction-side arrays are similar to the data-side arrays, except that they do not
have a dirty array and contain only a virtual tag array. See Figure 20-16.

Figure 20-16 Instruction RAM MBIST arrays

MMU MBIST array

The MMU MBIST array is a 128-entry by 112-bit (64 bit RAM, 48 bit tag) array. Other
microTLB arrays within the MMU are created from scanable registers and are not
subject to MBIST testing. See Figure 20-17.

Figure 20-17 MMU RAM MBIST array

[0] [1] [2] [3]

DATA0

Addr[7:0]

Tag CS[3:0]

Addr[10:0]

[0] [1] [2]

Data CS[3:0]

[3]

Addr[11:0]

DATA1 DATA2

TAG2 TAG3TAG0 TAG1

Valid CS

DATA3

Valid

2424

64

22

InstrData[3:0]{16{BistData4[3:0]}}

Fail

Data log and

bitmap support

registers

Addr[4:0]

MMU CS
MMU

112112

{28{BistData4[3:0]}}Fail

Data log and

bitmap support

register

InstrData[3:0]
20-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
TCM MBIST array

The TCM array does not have architecturally defined chip-select values and any such
chip select created in implementation is assigned to upper address bits and gated with
the master TCM chip select, MTESTCE2[9:8], for that array. See Figure 20-18.

Figure 20-18 TCM MBIST array

[?] [?] [?] [?]

DTCM?

ITCMCS[?:0]

Addr[17:0]

[?] [?] [?

DTCMCS[?:0]

[?]

Addr[17:0]

DTCM? DTCM?

ITCM? ITCM?ITCM? ITCM?

DTCM?

64

64

InstrData[3:0]{16{BistData4[3:0]}}

Fail

Data log and

bitmap support

registers
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-21

Design for Test
Memory test times

Memory test times using the ARM MBIST are estimated below for minimum and
maximum cache sizes. The 30N go/nogo pattern is the benchmark for this test time
analysis. The analysis is based on the assumption that a passing part completes the
entire test. Variations in test time can exist depending on the test flow chosen for each
array. Arrays are tested in parallel according to their chip-select partitioning as defined
in Table 20-10. Typical cache sizes are assumed to be 32KB. Maximum size is 128KB
(ICache and DCache) with a 1MB TCM.

Note

 In Table 20-10, address depths are in thousands of MBIST-addressable elements. A
128KB DCache has eight bytes tested in parallel. In MBIST addressing, this array has
128KB/8B or 16K addressable elements.

Table 20-10 Memory test interface cycle counts

Memory

Address depth Number of cycles

MBIST bus width Typical Maximum Typical Maximum

ICache RAM 64 bits 4KB 16KB 123 kcycles 492 kcycles

ICache tag RAM 22 bits 2KB 2KB 62 kcycles

ICache valid RAM 24 bits 256B 256B 7.5 kcycles

DCache RAM 64 bits 4KB 16KB 123 kcycles 492 kcycles

DCache tag RAM 54 bits 2KB 2KB 62 kcycles

DCache valid RAM 24 bits 256B 256B 7.5 kcycles

DCache dirty RAM 22 bits 1KB 1KB 31 kcycles

MMU 112 bits 128B 128B 3.8 kcycles

Instruction TCM 64 bits 32KB 128KB 984 kcycles 3.9 Mcycles

Data TCM 64 bits 32KB 128KB 984 kcycles 3.9 Mcycles

Total cycles for largest memory test on interface 984 kcycles 3.9 Mcycles

Estimated test time for 200MHz cycle rate (number of cycles times 5ns) 4.9ms 19.7ms

Estimated test time without TCM RAM 0.6ms 2.5ms
20-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
This test time estimate does not include usual delays required for data retention or IDDQ
tests or reset vectors at the beginning of tests.

20.3.4 MBIST Instruction Register

Figure 20-19 is an example diagram that shows the organization of the instruction shift
register in the controller and the dispatch unit. Only RAMs with a minimum of eight
addresses can be tested.

The MBIST controller is external to the memory wrapper and does not interact with the
ARM1026EJ-S processor. The processor must be held in reset during execution of
MBIST tests.

Figure 20-19 MBIST Instruction Register

Each dispatch unit connects to one or more arrays. Each array can be in more than one
physical RAM. Unused enable bits in a dispatch unit are masked. Upon completion of
the current instruction, the array enables field of the instruction is replaced with a
pass/fail flag. If the array fails, the bit is set.

Fail data

DispatchSelect

FailSelect

MEM dispatch unit

TCM dispatch unit

Fail data

DispatchSelect

FailSelect

Pattern Control

10 5 4 0

MBIST controller

Q DQ D

27 24 23 20 1916 15 8 7 0

MaxXaddr MaxYaddr
Data

word
Masked

Enables

Flags

15 9 7 010 8

Masked
E

F
Masked

E

F
MaxXaddr MaxYaddr

Data

word

27 24 23 20 1916

D Q
0

1

D Q
0

1

ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-23

Design for Test
To retrieve fail data, scan in a Read Dispatch Unit instruction. The next instruction shift
then shifts out the fail data. Table 20-11 shows how the fail data is formatted.

Table 20-11 Scanout formats of fail data

Fail data
Scanout format

ICache/DCache data RAM fail shiftout format:
MBISTDIN → CS[3:0] → Data[3:0] → index[11:0] → dataXOR[63:0] → MBISTDOUT[0]

ICache/DCache tag array fail shiftout:
MBISTDIN → CS[3:0] → expectData[3:0] → index[10:0] → dataXOR[21:0] → MBISTDOUT[0]

ICache/DCache valid array fail shiftout:
MBISTDIN → expectData[3:0] → index[7:0] → dataXOR[23:0] → MBISTDOUT[0]

DCache dirty array fail shiftout:
MBISTDIN → expectData[3:0] → index[9:0] → dataXOR[7:0] → MBISTDOUT[0]

MMU array fail shiftout:

MBISTDIN → expectData[3:0] → index[4:0] → dataXOR[112:0] → MBISTDOUT[0]

ITCM/DTCM array fail shiftout:
MBISTDIN → expectData[3:0] → index[16:0] → dataXOR[63:0] → MBISTDOUT[0]
20-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
Table 20-12 lists the MBIST array enables.

20.3.5 MBIST test waveforms

Figure 20-20 shows the MBIST test start waveforms.

Figure 20-20 MBIST test start waveforms

Table 20-12 Array enables

Dispatch
instruction
bit

Array Dispatch unit

0 ICache RAM MEM

1 ICache tag MEM

2 ICache valid MEM

3 DCache RAM MEM

4 DCache tag MEM

5 DCache valid MEM

6 DCache dirty MEM

7 MMU MEM

8 ITCM TCMMEM

9 DTCM TCMMEM

MBISTDOUT[0]

MBISTDIN

MBISTRUN

MBISTSHIFT

CLK

i
0
[0] i

0
[38] i

0
[39]

i
-1

[0] i
-1

[38] i
-1

[39]
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-25

Design for Test
Figure 20-21 shows the MBIST test end waveforms.

Figure 20-21 MBIST test end waveforms

20.3.6 Test restrictions with the ARM BIST

Because the memory test interfaces have embedded test requirements such as
handshaking during bitmapping, there are rules regarding array enabling:

• Bitmap mode can only have one array enabled (InstrReg[15:0] is one-hot) for
analysis.

• During normal production test, any or all of the InstrReg[15:0] bits can be enabled
at a time.

• During normal production test, the TCM arrays and ICache and DCache arrays
can be tested simultaneously (multiple dispatch units can be active) if power
concerns can be eliminated.

• The maximum X,Y address must be set for the largest array enabled for that test.
In a parallel test, the dispatch unit disables array chip selects for out-of-bounds
address ranges. You can always set the maximum address, but this unnecessarily
increases test time.

Hard cores have vector sets that test the arrays in addition to soft core stimulus scripts.
Soft cores have simple verilog tasks and monitors to enable vector captures for their
implementation. Vector sets cannot be provided for soft cores because memory sizes
and configurations are not known in advance. Bitmap datalog vectors are provided for
both soft and hard cores as described in Datalog and bitmapping features on
page 20-27.

MBISTDOUT[1]

MBISTDOUT[2]

MBISTRUN

MBISTSHIFT

CLK

MBISTDOUT[0] i
0
[0] i

0
[1] i

0
[2]
20-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
20.3.7 Datalog and bitmapping features

The MBIST tests create a datalog when the first failure occurs. After completion of test,
the datalog can be shifted out by selecting the appropriate array in the instruction
register and performing a dispatch unit data shift through the MTESTDOUT[0] port.

When bitmap mode is set during MBIST test, the dispatch unit stalls the MBIST
controller whenever a read operation is received. The read operation continues until
pass/fail status is known. If the read operation passes, the MBIST controller is released
for the next operation. Failure sets the external fail flag, MBISTDOUT[2]. The
controller and dispatch unit remain stalled until the datalog is scanned out by the
external tester. The tester must branch to the bitmap datalog vector set when a fail is
observed.

The bitmap vector set asserts MBISTDSHIFT to enable shifting out the failure datalog.
MBISTDSHIFT must also clock-divide the MBISTCLKEN signal to insure that shift
timings can be met in the case of high-speed test and slow package pins.

Release of MBISTDSHIFT resets the datalog registers and releases the MBIST
controller for the next operation.

DataXOR contains only the failing bits. Failing expect data is then determined by
matching the dataXOR to an expanded {?{expectData[3:0] }}.

ArrayCS is not a duplication of the InstrReg[15:0] field as some CS fields are tied to the
Yaddr address space. This datalogged architectural ArrayCS is the same CS delivered
to the arrays in functional mode.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-27

Design for Test
20.3.8 Using non-ARM MBIST testing

If you do not require ARM MBIST, you can exclude it by using the NOMBIST compile
option. The following must be considered when disabling the ARM MBIST:

• Test coverage numbers proven in ARM implementations cannot be guaranteed
with non-ARM testing.

• Observe and control flip-flops in the memory wrapper help to reduce coverage
concerns.

• The ARM MBIST provides array-preservation features with the SE pin in the
memory wrapper.

Note
 You must ensure IDDQ state preservation and preserve state during ATPG

load/unload.

• ORing ARM1026EJ-S and MBIST control lines into the arrays results in the
minimum timing impact. This is currently performed in the memory wrapper. The
ARM1026EJ-S processor must be held in reset during ARM MBIST testing.

• Validation of custom implementation is the responsibility of the user.

• Accessing functional data ports for writes and reads can have adverse affects on
area/performance if a hardened design differs from ARM internal
implementation.
20-28 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Design for Test
20.3.9 MBIST address scramble

The address scrambler enables reconfiguring address pins to match the physical
implementation of memory. The a10mBistAddrScrmbl.v and a10mTCMAddrScrmbl.v
blocks must be replaced whenever cache sizes and physical mappings change.
Changing cache size requires changing the out-of-bounds settings. Using different
cache arrays also requires changing the physical mappings to maximize leverage of
bitcell stress tests. Failure to physically map new arrays does not result in failing tests
but can result in lower screening quality.

When creating different implementations, this block must be corrected and validated to
test all arrays for each architectural chip select.

Example address scramble RTL

The RTL in Example 20-1 is an example implementation of address scrambling within
the memory wrapper:

Example 20-1 Address scrambling example

// this example assumes a 256 row array , 8 columns, 2 planes and 4 ways
// Yaddr[3:0], Xaddr[7:0] and Yaddr[6:5] as CS
wire OutsideIRam;
assign OutsideIRAM = (|Yaddr[11:6]) | (|Xaddr[10:8]); // out of bounds address
// must mask the CS
// ArrayCS[0] translates to InstrReg[24]
assign IRamCS[3] = ArrayCS[0] & ~OutsideIRam & Yaddr[5] & Yaddr[4];
assign IRamCS[2] = ArrayCS[0] & ~OutsideIRam & Yaddr[5] & ~Yaddr[4];
assign IRamCS[1] = ArrayCS[0] & ~OutsideIRam & ~Yaddr[5] & Yaddr[4];
assign IRamCS[0] = ArrayCS[0] & ~OutsideIRam & ~Yaddr[5] & ~Yaddr[4];
assign IRamLA[11:0] = {Xaddr[7:0],Yaddr[3:0]}; // example where lowest LA
// bits select columns
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 20-29

Design for Test
Example address scramble/mapping RTL

Example 20-2 is based on arrays with different physical organizations. This requires
simple logic that does an address scramble as a function of each array. No such logic is
required if the attached memories have similar organizations.

Example 20-2 Scrambling/mapping example

// TCM Example:
// CURRENT SCRAMBLE ASSUMPTIONS:
// 1) Ram COMPILER
// 2) 8 column mux selection
// 3) logical address assignment {rows,columns}

// 4) compiled 8-column address mapping is 0, 1, 3, 2, 4, 5, 7, 6
// col_addr[2:0] values are 000, 001, 011, 010, 100, 101, 111, 110
//
// Linear map of left to right accomplished by assigning Y[1] = Yaddr[1] and
// Y[0] = Yaddr[1] ^ Yaddr[0]

// 5) Hidden blackboxed RAMs from xxxx compiler do not exceed 256 columns. All
// row-space beyond Xaddr[7] is mapped to the Y-space to promote bitline stress
// test effectiveness

wire [11:0] YaddrScrmbl;
assign YaddrScrmbl[11:1] = Yaddr[11:1];
assign YaddrScrmbl[0] = Yaddr[1] ^ Yaddr[0];

// I-side TCM

wire OutsideITcm;
assign OutsideITcm = (|YaddrScrmbl[11:9]) | (|Xaddr[10:8]);
// ArrayCS[0] translates to InstrReg[24]
assign ITcmCS = ArrayCS[0] & ~OutsideITcm;
assign ITcmLA[16:0] = {YaddrScrmbl[8:3],Xaddr[7:0],YaddrScrmbl[2:0]};

// D-side TCM

wire OutsideDTcm;
assign OutsideDTcm = (|YaddrScrmbl[11:9]) | (|Xaddr[10:8]);
// ArrayCS[0] translates to InstrReg[24]
assign DTcmCS = ArrayCS[1] & ~OutsideDTcm;
assign DTcmLA[16:0] = {YaddrScrmbl[8:3],Xaddr[7:0],YaddrScrmbl[2:0]};
20-30 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Chapter 21
Instruction Cycle Count

This chapter gives the instruction cycle counts and examples of interlock timing. This
chapter contains the following sections:

• Cycle timing considerations on page 21-2

• Instruction cycle counts on page 21-3

• Interlocks on page 21-22.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-1

Instruction Cycle Count
21.1 Cycle timing considerations

Complex instruction dependencies make it impossible to describe briefly the exact
behavior of all instructions in all circumstances. The tables in this chapter are accurate
in most cases but must never be used instead of running code on a cycle-accurate model
of the ARM1026EJ-S processor.

The performance-enhancing branch prediction architectural feature makes it
particularly difficult to count the number of cycles an instruction takes. With branch
prediction enabled, it is impossible to look at a branch in isolation and tell how many
cycles it takes. The cycle count depends on where the branch is in the pipeline and what
the processor was doing beforehand.

If instruction accesses are hitting in the ICache, then the prefetch buffer is likely to be
full. This means the prefetch unit has plenty of time to predict branches and fetch from
their targets. In this case, correctly predicted branches appear to take no cycles at all.
They are folded.

If the prefetch unit was recently flushed, or is fetching from external memory, its buffer
can be empty or only partially full. In these cases, the branch predictor does not always
have time to completely remove a branch, and it can take one or more cycles before the
following instruction is issued. This is described in more detail in Branch instructions
on page 21-8.
21-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2 Instruction cycle counts

Unless stated otherwise, cycle counts and result latencies described here are best case
numbers. They assume:

• no outstanding data dependencies between an instruction and a previous
instruction

• the instruction does not encounter any resource conflicts

• all data accesses hit in the DCache and do not cross protection region boundaries

• all instruction accesses hit in the ICache.

The tables in this section show the number of cycles an instruction takes to execute and
the number of cycles after which the result of the instruction is available to a following
instruction. These numbers differ because after an instruction has left the Execute stage
of the pipeline, a second instruction can start to execute, even when the first instruction
has not produced its final result. This is only the case when the second instruction is not
dependent on the result from the first.

Instructions that change the PC cause the pipeline to be flushed and restarted with a
fetch of a new instruction. By the time the new instruction executes, it is likely that any
dependencies on previous instructions have been cleared.

Three figures are typically given for each instruction:

Condition pass cycles
 This is the number of cycles taken if the instruction passes its condition

code check, that is, the number of cycles between this instruction starting
to execute and the next instruction starting to execute. This is usually the
same as the number of iterations the instruction makes in the Execute
stage of the ALU pipeline, or the number of iterations a load or store
multiple instruction makes in the Execute stage of the LSU pipeline.

If an instruction changes the instruction stream, then the condition pass
cycles indicates the number of cycles before the new PC is available plus
the number of cycles it takes to refill the pipe to the point where a new
instruction enters Execute in the next cycle.

Condition fail cycles
This is the number of cycles taken if the instruction fails its condition
code check, that is, the number of cycles between this instruction entering
the Execute stage of the pipeline and failing its condition code check and
the next instruction entering the Execute stage.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-3

Instruction Cycle Count
Result cycles
 This is the number of cycles it takes for the instruction to produce its

result. It is the number of cycles that must be taken up by the current
instruction and following independent instructions before a dependent
instruction can be run without interlocking. It can be larger than condition
pass cycles in cases where an instruction produces a result later than the
Execute stage of the pipeline.

If condition pass cycles is greater than result cycles for an instruction,
then the result is always available to a following instruction.

See Interlocks on page 21-22 for details of result forwarding paths and the pipeline
stages in which instructions have to read registers.

Instructions that change mode by writing the control section of the CPSR are
highlighted in some of the tables because they have to wait for the LSU pipe to empty.
This is noted in the tables because it makes a significant difference to the execution time
if there are any outstanding load misses. Exceptions also change mode, causing a delay
while the LSU pipe empties.

The instructions are described in the following sections:

• Data processing instructions on page 21-5

• Multiply instructions on page 21-7

• Branch instructions on page 21-8

• MRS and MSR instructions on page 21-9

• SWI instruction on page 21-9

• Load and store instructions on page 21-9

• Load multiple and store multiple instructions on page 21-14

• Preload instructions on page 21-15

• Coprocessor instructions on page 21-15

• Semaphore instructions on page 21-16

• Thumb data processing instructions on page 21-17

• Thumb multiply instructions on page 21-19

• Thumb branch instructions on page 21-19

• Thumb load instructions and store instructions on page 21-20

• Thumb load multiple and store multiple instructions on page 21-21.
21-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.1 Data processing instructions

The simple data processing instructions are:

AND, EOR, SUB, RSB, ADD,

ADC, SBC, RSC,CMN, ORR,

ORR, MOV, BIC, MVN, TST,

TEQ, CMP, QADD, QDADD, QSUB, QDSUB, CLZ

Table 21-1 shows the addressing mode 1 subcategories of data processing instructions.

Table 21-2 shows examples of data processing cycle counts. In the table, any of the
simple data processing operations can be substituted for AND.

Table 21-1 Subcategories of data processing instructions

 Subcategory Format Example

Immediate OP Rd, Rn, #imm ADD R1, R2, #1

Register OP Rd, Rn, Rm AND R1, R2, R3

Immediate shifted register OP Rd, Rn, Rm LSL #imm AND R1, R2, R3 LSL #1

Register shifted register OP Rd, Rn, Rm LSL Rs AND R1, R2, R3 LSL R4

Table 21-2 Cycle counts of data processing instructions

Example instruction Notes
Change
mode Pass Fail

Result
available

AND Rd, Rn, #imm - No 1 1 1

AND Rd, Rn, Rm - No 1 1 1

AND Rd, Rn, Rm LSL #imm - No 1 1 1

AND Rd, Rn, Rm LSL Rs - No 2 2 2

ANDS Rd, Rn, #imm Set flags No 1 1 1

ANDS Rd, Rn, Rm Set flags No 1 1 1

ANDS Rd, Rn, Rm LSL #imm Set flags No 1 1 1

ANDS Rd, Rn, Rm LSL Rs Set flags No 2 2 2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-5

Instruction Cycle Count
Most data processing instructions take one cycle to execute, after which their result is
available for use. The exceptions are instructions that involve register-controlled shifts,
saturating instructions, and instructions that write to the PC.

A simple MOV from a register, with no shift that writes the PC requires four extra
cycles to refill the pipeline. More complex operations that write to the PC take five extra
cycles to refill the pipeline.

AND PC, Rn, #imm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm LSL #imm To PC No 1 + 5 1 N/A

AND PC, Rn, Rm LSL Rs To PC No 2 + 5 2 N/A

ANDS PC, Rn, #imm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm LSL #imm To PC, restore CPSR Yes 2 + 5 1 N/A

ANDS PC, Rn, Rm LSL Rs To PC, restore CPSR Yes 2 + 5 2 N/A

MOV PC, Rn Zero shift MOV to PC No 1 + 4 1 N/A

CLZ Rd, Rm - No 1 1 1

QADD Rd, Rm, Rn Sets Q flag No 1 1 2

QSUB Rd, Rm, Rn Sets Q flag No 1 1 2

QDADD Rd, Rm, Rn Sets Q flag No 1 1 2

QDSUB Rd, Rm, Rn Sets Q flag No 1 1 2

Table 21-2 Cycle counts of data processing instructions (continued)

Example instruction Notes
Change
mode Pass Fail

Result
available
21-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.2 Multiply instructions

Table 21-3 shows the cycle counts of multiply instructions. For long multiplies, the least
significant word of the result is always the first available. The most significant word is
available in the following cycle. This is why there are two cycle counts for instructions
whose results extend over one word.

If the number of pass cycles is greater than the number of result cycles, then the result
cycles dominate. Multiplies that set the flags other than Q have to sit in Execute stage
for several cycles, because the the ALU must calculate the new flags. Sometimes it
might be possible to use a multiply that does not set the flags, followed by a compare
of the result that does set the flags. This is appropriate where a useful instruction can be
inserted between the multiply and the compare.

Table 21-3 Cycle counts of multiply instructions

Instruction Notes Pass Fail Rd (Lo/Hi) Flags

SMUL<x><y> Rd, Rm, Rs 16 × 16 -> 32 1 1 2 -

SMLA<x><y> Rd, Rm, Rs, Rn 16 × 16 + 32 -> 32 2 2 2 -

SMLAL<x><y> RdLo, RdHi, Rm, Rs 16 × 16 + 64 -> 64 2 2 2/3 -

SMULW<x> Rd, Rm, Rs 32 × 16 -> 32, upper 32 bits 1 1 2 -

SMLAW<x> Rd, Rm, Rs, Rn 32 × 16 + 32 -> 32, upper 32 bits 2 2 2 -

MUL Rd, Rm, Rs 32 × 32 -> 32 2 2 3 -

MULS Rd, Rm, Rs 32 × 32 -> 32, set flags 4 2 3 4

MLA Rd, Rm, Rs, Rn 32 × 32 + 32 -> 32 2 2 3 -

MLAS Rd, Rm, Rs, Rn 32 × 32 + 32 -> 32, set flags 4 2 3 4

UMULL RdLo, RdHi, Rm,Rs 32 × 32 -> 64, unsigned 3 2 3/4 -

UMULLS RdLo, RdHi, Rm, Rs 32 × 32 -> 64, unsigned, set flags 5 2 3/4 5

UMLAL RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, unsigned 3 2 3/4 -

UMLALS RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, unsigned, set flags 5 2 3/4 5

SMULL RdLo, RdHi, Rm,Rs 32 × 32 -> 64, signed 3 2 3/4 -

SMULLS RdLo, RdHi, Rm,Rs 32 × 32 -> 64, signed, set flags 5 2 3/4 5

SMLAL RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, signed 3 2 3/4 -

SMLALS RdLo, RdHi, Rm, Rs 32 × 32 + 64 -> 64, signed, set flags 5 2 3/4 5
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-7

Instruction Cycle Count
21.2.3 Branch instructions

This section describes the following instructions:

B, BL, BX, BLX, BXJ.

When branch prediction is enabled, unconditional and conditional backward branches
are predicted taken, and conditional forward branches are predicted not taken. See
Branch instruction cycle summary on page 5-6 for more detail.

Table 21-4 Cycle counts of branch instructions

Unpredicted Predicted

Instruction Pass Fail Predictable Correctly Incorrectly

B <address> 5 1 Yes 0 to 3a

a. Assuming all accesses hit in the ICache. When the prefetch unit has had time
to fold a branch it appears to take zero cycles. When the prefetch unit has been
recently been flushed and is empty, it takes three cycles to obtain the
instruction at the branch target.

5

BL <address> 5 2 Yes 1 to 3 -

BX Rm 5 2 No - -

BLX Rm 5 2 No - -

BLX <Imm24> 5 N/A Yes 1 to 3 -

BXJ Rm 5 2 No - -
21-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.4 MRS and MSR instructions

MSR instructions that write just the flags run quickly. MSRs that change mode take
more cycles and have to wait for the LSU pipeline to be empty before they start to
execute. Table 21-5 shows the cycle counts for MRS and MSR instructions.

21.2.5 SWI instruction

A SWI instruction takes five cycles to execute, or two cycles if it fails its condition code
check. This is true for the ARM and Thumb SWI instructions.

21.2.6 Load and store instructions

This section describes the following instructions:

LDR, LDRD, LDRB, LDRBT, LDRH, LDRSB, LDRSH, LDRT,

STM, STR, STRD, STRB, STRBT, STRH, STRT.

Loads and stores all take one cycle to execute unless they use a scaled register offset or
scaled register pre-indexed addressing mode, in which case they take three cycles.

Load and stores with a scaled register offset or pre-indexed addressing mode and a base
plus offset with an LSL of 0 or 2, or a base minus offset with an LSL of 0 are optimized
to execute in one cycle.

Loads to the PC take seven cycles to execute unless they use a scaled register offset or
pre-indexed addressing mode, in which case they take nine cycles.

Table 21-5 Cycle counts of MRS and MSR instructions

Example instruction Notes Change mode Pass Fail

MRS Rd, CPSR - No 1 1

MRS Rd, SPSR - No 1 1

MSR_f CPSR, Rn Only flags No 1 1

MSR_f CPSR, #<cns> Only flags No 1 1

MSR CPSR, Rn Not only flags Yes 5 1

MSR CPSR, #<cns> Not only flags Yes 5 1

MSR SPSR, Rn - No 4 2

MSR SPSR, #<cns> - No 4 2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-9

Instruction Cycle Count
For all loads, the loaded data is available for use one cycle after the last Execute stage
of the load.

The base write-back value is calculated in the ALU pipeline Execute stage and is
usually available immediately for forwarding to the Decode stage of the following
instruction. For scaled register pre-indexed addressing mode, the base write-back is
available in the third Execute stage for forwarding to the next instruction.

Table 21-6 shows the cycle counts of the load instructions.

Table 21-6 Cycle counts of load instructions

Example instruction Pass Fail Base write-back Load data

LDR PC, [Rn], #<cns> 7 2 1 -

LDR PC, [Rn, #<cns>] 7 2 - -

LDR PC, [Rn, #<cns>]! 7 2 1 -

LDR PC, [Rn], Rm, <shf><cns> 7 2 3 -

LDR PC, [Rn, Rm] 7 2 - -

LDR PC, [Rn, Rm]! 7 2 1 -

LDR PC, [Rn, Rm, <shf><cns>] 9 2 - -

LDR PC, [Rn, Rm, <shf><cns>]! 9 2 3 -

LDR Rd, [Rn], #<cns> 1 1 1 2

LDRT Rd, [Rn], #<cns> 1 1 1 2

LDRB Rd, [Rn], #<cns> 1 1 1 2

LDRBT Rd, [Rn], #<cns> 1 1 1 2

LDR Rd, [Rn, #<cns>] 1 1 - 2

LDR Rd, [Rn, #<cns>]! 1 1 1 2

LDRB Rd, [Rn, #<cns>] 1 1 - 2

LDRB Rd, [Rn, #<cns>]! 1 1 1 2

LDR Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDRT Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDRB Rd, [Rn], Rm, <shf><cns> 1 1 1 2
21-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
LDRBT Rd, [Rn], Rm, <shf><cns> 1 1 1 2

LDR Rd, [Rn,Rm] 1 1 - 2

LDR Rd, [Rn,Rm]! 1 1 1 2

LDRB Rd, [Rn, Rm] 1 1 - 2

LDRB Rd, [Rn, Rm]! 1 1 1 2

LDR Rd, [Rn, Rm, <shf><cns>] 3 2 - 4

LDR Rd, [Rn, Rm, <shf><cns>]! 3 2 3 4

LDRB Rd, [Rn, Rm, <shf><cns>] 3 2 - 4

LDRB Rd, [Rn, Rm, <shf><cns>]! 3 2 3 4

LDRSB Rd, [Rn], Rm 1 1 1 2

LDRSB Rd, [Rn], #<cns> 1 1 1 2

LDRSB Rd, [Rn, Rm] 1 1 - 2

LDRSB Rd, [Rn, Rm]! 1 1 1 2

LDRSB Rd, [Rn, #<cns>] 1 1 - 2

LDRSB Rd, [Rn, #<cns>]! 1 1 1 2

LDRH Rd, [Rn], Rm 1 1 1 2

LDRH Rd, [Rn], #<cns> 1 1 1 2

LDRH Rd, [Rn, Rm] 1 1 - 2

LDRH Rd, [Rn, Rm]! 1 1 1 2

LDRH Rd, [Rn, #<cnt>] 1 1 - 2

LDRH Rd, [Rn, #<cnt>]! 1 1 1 2

LDRSH Rd, [Rn], Rm 1 1 1 2

LDRSH Rd, [Rn], #<cns> 1 1 1 2

LDRSH Rd, [Rn, Rm] 1 1 - 2

LDRSH Rd, [Rn, Rm]! 1 1 1 2

Table 21-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back Load data
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-11

Instruction Cycle Count
Table 21-7 shows the cycle counts of the store instructions.

LDRSH Rd, [Rn, #<cns>] 1 1 - 2

LDRSH Rd, [Rn, #<cns>]! 1 1 1 2

LDRD Rd, [Rn], Rm 1 1 1 2

LDRD Rd, [Rn], #<cns> 1 1 1 2

LDRD Rd, [Rn, Rm] 1 1 - 2

LDRD Rd, [Rn, Rm]! 1 1 1 2

LDRD Rd, [Rn, #<cns>] 1 1 - 2

LDRD Rd, [Rn, #<cns>]! 1 1 1 2

Table 21-7 Cycle counts of store instructions

Example instruction Pass Fail Base write-back

STR Rd, [Rn], #<cns> 1 1 1

STRT Rd, [Rn], #<cns> 1 1 1

STRB Rd, [Rn], #<cns> 1 1 1

STRBT Rd, [Rn], #<cns> 1 1 1

STR Rd, [Rn, #<cns>] 1 1 -

STR Rd, [Rn, #<cns>]! 1 1 1

STRB Rd, [Rn, #<cns>] 1 1 -

STRB Rd, [Rn, #<cns>]! 1 1 1

STR Rd, [Rn], Rm, <shf><cns> 1 1 1

STRT Rd, [Rn], Rm, <shf><cns> 1 1 1

STRB Rd, [Rn], Rm, <shf><cns> 1 1 1

STRBT Rd, [Rn], Rm, <shf><cns> 1 1 1

STR Rd, [Rn, Rm] 1 1 -

Table 21-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back Load data
21-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
STR Rd, [Rn, Rm]! 1 1 1

STRB Rd, [Rn, Rm] 1 1 -

STRB Rd, [Rn, Rm]! 1 1 1

STR Rd, [Rn, Rm, <shf><cns>] 3 2 -

STR Rd, [Rn, Rm, <shf><cns>]! 3 2 3

STRB Rd, [Rn, Rm, <shf><cns>] 3 2 -

STRB Rd, [Rn, Rm, <shf><cns>]! 3 2 3

STRH Rd, [Rn], Rm 1 1 1

STRH Rd, [Rn], #<cns> 1 1 1

STRH Rd, [Rn, Rm] 1 1 -

STRH Rd, [Rn, Rm]! 1 1 1

STRH Rd, [Rn, #<cnt>] 1 1 -

STRH Rd, [Rn, #<cnt>]! 1 1 1

STRD Rd, [Rn], Rm 1 1 1

STRD Rd, [Rn], #<cns> 1 1 1

STRD Rd, [Rn, Rm] 1 1 -

STRD Rd, [Rn, Rm]! 1 1 1

STRD Rd, [Rn, #<cns>] 1 1 -

STRD Rd, [Rn, #<cns>]! 1 1 1

Table 21-7 Cycle counts of store instructions (continued)

Example instruction Pass Fail Base write-back
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-13

Instruction Cycle Count
21.2.7 Load multiple and store multiple instructions

An LDM can load two registers per cycle. If the initial access is not to a 64-bit aligned
address, an extra cycle is required because only a single register can be loaded in the
first cycle.

An LDM/STM will iterate in the LSU pipeline Execute and Memory stages until the
last register in the list has been loaded. Data processing instructions cannot run under
an LDM/STM, and are held in the ALU pipeline Execute stage. Load/store instructions
cannot run under an LDM/STM, and are held in the LSU pipeline Decode stage.

If an LDM loads the PC, it is loaded from the last access, and six more cycles are
required to refill the pipeline.

Table 21-8 shows the cycle counts of simple load/store multiple instructions. L is the
number of cycles it takes to load the part of the register list before the PC. For example,
if the list of registers is {r1, r2, PC}, L is one or two depending on whether the address
to load r1 from is aligned to 64 bits. If it is aligned, r1 and r2 are loaded in one cycle. If
not, then it takes one cycle to load r1 and a second cycle to load r2.

Table 21-8 Cycle counts of load multiple and store multiple instructions

Example instruction Change mode Pass Fail Base write-back First load data

STM Rn, <...> No L 1 - -

STM Rn!, <...> No L 1 1 -

STM Rn, <...>^ No L 1 - -

STM Rn!, <...>^ No L 1 1 -

LDM Rn, <...noPC> No L 1 - 2

LDM Rn!, <...noPC> No L 1 1 2

LDM Rn, <...noPC>^ No L 1 - 2

LDM Rn!, <...noPC>^ No L 1 1 2

LDM Rn, <...PC> No L + 6 2 - 2

LDM Rn!, <...PC> No L + 6 2 1 2

LDM Rn, <...PC>^ Yes L + 7 2 - 2

LDM Rn!, <...PC>^ Yes L + 7 2 1 2
21-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.8 Preload instructions

Table 21-9 shows the cycle counts of preload instructions.

21.2.9 Coprocessor instructions

This section describes the following instructions:

CDP, LDC, MCR, MCRR, MRC, MRRC, STC.

Table 21-10 shows the cycle counts of the coprocessor instructions. The maximum
number of cycles taken by one of these instructions depends on the coprocessor
involved. Cycles shown are the minimum cycle count for a tightly coupled coprocessor
such as the VFP10 (Rev 1) coprocessor. Other coprocessors might have greater
minimum cycle count.

Table 21-9 Cycle counts of preload instructions

Instruction Number of cycles

PLD [Rn,#-<cns>] 1

PLD [Rn, #<cns>] 1

PLD [Rn, -Rm] 1

PLD [Rn, -Rm, <shf><cns>] 3

PLD [Rn, Rm] 1

PLD [Rn, Rm, <shf><cns>] 3

Table 21-10 Cycle counts of coprocessor instructions

Example instruction Pass Fail Base write-back Data Flags

CDP <copr>, <op1>, CRd, CRn, CRm, <op2> 1 1 - - -

MCR <copr>, <op1>, Rd, CRn, CRm, <op2> 1 1 - - -

MCRR <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - - -

MRC <copr>, <op1>, Rd, CRn, CRm, <op2> 1 1 - 2 -

MRC <copr>, <op1>, PC, CRn, CRm, <op2> 2 2 - 2 2

MRRC <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - 2 -

STC <copr>, CRd, [Rn], {option} L 1 1 - -
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-15

Instruction Cycle Count
21.2.10 Semaphore instructions

This section describes the SWP and SWPB instructions.

A swap takes two cycles, but before it can be executed, all outstanding loads and stores
are completed. Table 21-11 shows the cycle counts of swap instructions.

STC <copr>, CRd, [Rn], #<cns>! L 1 1 - -

STCL <copr>, CRd, [Rn], {option} L 1 1 - -

STCL <copr>, CRd, [Rn], #<cns>! L 1 1 - -

STC <copr>, CRd, [Rn, #<cns>] L 1 - - -

STC <copr>, CRd, [Rn, #<cns>]! L 1 1 - -

STCL <copr>, CRd, [Rn, #<cns>] L 1 - - -

STCL <copr>, CRd, [Rn, #<cns>]! L 1 1 - -

LDC <copr>, CRd, [Rn], {option} L 1 1 2 -

LDC <copr>, CRd, [Rn], #<cns>! L 1 1 2 -

LDCL <copr>, CRd, [Rn], {option} L 1 1 L + 2 -

LDCL <copr>, CRd, [Rn], #<cns>! L 1 1 L + 2 -

LDC <copr>, CRd, [Rn, #<cns>] L 1 - 2 -

LDC <copr>, CRd, [Rn, #<cns>]! L 1 1 2 -

LDCL <copr>, CRd, [Rn, #<cns>] L 1 - L + 2 -

LDCL <copr>, CRd, [Rn, #<cns>]! L 1 1 L + 2 -

Table 21-10 Cycle counts of coprocessor instructions (continued)

Example instruction Pass Fail Base write-back Data Flags

Table 21-11 Cycle counts of swap instructions

Example instruction Pass Fail Result available

SWP Rd, Rm, [Rn] 2 2 2

SWPB Rd, Rm, [Rn] 2 2 2
21-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.11 Thumb data processing instructions

Thumb data processing instructions behave in a way similar to ARM instructions.
Table 21-12 shows the cycle counts of Thumb data processing instructions.

Table 21-12 Cycle counts of Thumb data processing instructions

Example instruction Number of cycles Result available

LSL Rd, Rm, #sh_imm5 1 1

LSR Rd, Rm, #sh_imm5 1 1

ASR Rd, Rm, #sh_imm5 1 1

ADD Rd, Rn, Rm 1 1

SUB Rd, Rn, Rm 1 1

ADD Rd, Rn, #imm3 1 1

SUB Rd, Rn, #imm3 1 1

MOV Rd, #imm8 1 1

CMP Rd, #imm8 1 1

ADD Rd, #imm8 1 1

SUB Rd, #imm8 1 1

AND Rd, Rm 1 1

EOR Rd, Rm 1 1

LSL Rd, Rs 2 2

LSR Rd, Rs 2 2

ASR Rd, Rs 2 2

ADC Rd, Rm 1 1

SBC Rd, Rm 1 1

ROR Rd, Rs 2 2

TST Rn, Rm 1 1

NEG Rd, Rm 1 1

CMP Rd, Rm 1 1
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-17

Instruction Cycle Count
CMN Rd, Rm 1 1

ORR Rd, Rm 1 1

BIC Rd, Rm 1 1

MVN Rd, Rm 1 1

ADD Rd, Hm 1 1

ADD Hd, Rm 1 1

ADD Hd, Hm 1 1

CMP Rd, Hm 1 1

CMP Hd, Rm 1 1

CMP Hd, Hm 1 1

MOV Rd, Hm 1 1

MOV Hd, Rm 1 1

MOV Hd, Hm 1 1

ADD Rd, PC, #imm 1 1

ADD Rd, SP, #imm 1 1

ADD SP, #imm 1 1

SUB SP, #imm 1 1

ADD PC, Rm 6 -

ADD PC, Hm 6 -

MOV PC, Rm 5 -

MOV PC, Hm 5 -

Table 21-12 Cycle counts of Thumb data processing instructions (continued)

Example instruction Number of cycles Result available
21-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.12 Thumb multiply instructions

The Thumb multiply instruction behaves in a way similar to the ARM MULS
instruction. Table 21-13 shows the cycle count of the Thumb multiply instruction.

21.2.13 Thumb branch instructions

Thumb BL and BLX to an immediate value are encoded as two Thumb instructions. The
first instruction is a data processing instruction that puts an immediate value into r14.
This takes three cycles. The second instruction adds an immediate value to r14 and
fetches from that address. This takes four cycles before the next instruction is in
Execute. Table 21-14 shows the cycle counts of Thumb branch instructions.

21.2.14 Thumb SWI instruction

An SWI instruction takes five cycles to execute, or two cycles if it fails its condition
code check. This is true for both the ARM and Thumb SWI instruction.

Table 21-13 Cycle count of the Thumb multiply instruction

Example instruction Notes Number of cycles

Result

Rd Flags

MUL Rd, Rm 32 × 32 + 32 -> 32, set flags 4 3 4

Table 21-14 Cycle counts of Thumb branch instructions

Unpredicted Predicted

Instruction Pass Fail Predictable Correctly Incorrectly

B <address> 5 N/A Yes 0 to 3a

a. Assuming all accesses hit in the ICache. When the prefetch unit has had time
to fold a branch it appears to take zero cycles. When the prefetch unit has been
recently flushed and is empty it takes three cycles to obtain the instruction at
the branch target (See Chapter 5 Prefetch Unit).

5

BL <address> 3 + 4 N/A Yes 1 to 3 -

BX Rm 5 N/A No - -

BLX Rm 5 N/A No - -

BLX <Imm> 3 + 4 N/A Yes 1 to 3 -
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-19

Instruction Cycle Count
21.2.15 Thumb load instructions and store instructions

Thumb load/store instructions behave in a way similar to ARM load/store instructions.
Table 21-16 shows the cycle counts of Thumb load instructions.

Table 21-15 shows the cycle counts of Thumb store instructions.

Table 21-15 Cycle counts of Thumb load instructions

Example instruction Number of cycles Load data

LDR Rd, [Rn, Rm] 1 2

LDRB Rd, [Rn, Rm] 1 2

LDRSB Rd, [Rn, Rm] 1 2

LDRH Rd, [Rn, Rm] 1 2

LDRSH Rd, [Rn, Rm] 1 2

LDR Rd, [Rb, #imm5] 1 2

LDRB Rd, [Rb, #imm5] 1 2

LDRH Rd, [Rn, #imm5] 1 2

LDR Rd, [SP, #imm8] 1 2

Table 21-16 Cycle counts of Thumb store instruction

Example instruction Number of cycles

STR Rd, [Rn, Rm] 1

STRB Rd, [Rn, Rm] 1

STRH Rd, [Rn, Rm] 1

STR Rd, [Rb, #imm5] 1

STRB Rd, [Rb, #imm5] 1

STRH Rd, [Rn, #imm5] 1

STR Rd, [SP, #imm8] 1
21-20 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
21.2.16 Thumb load multiple and store multiple instructions

Thumb load/store multiple instructions behave in the same way as ARM load/store
multiple instructions. Table 21-17 shows the cycle counts of Thumb load/store multiple
instructions.

L is the number of cycles it takes to load the part of the register list before the PC. For
example, for {r1, r2, PC} L is 1 or 2 depending on whether the address to load r1 from
is aligned to 64 bits. If it is aligned, r1 and r2 is loaded in one cycle. If not, then it takes
one cycle to load r1 and a second cycle to load r2.

Table 21-17 Cycle counts of Thumb load/store multiple instructions

Example instruction Number of cycles Base write-back First load data

PUSH {rlist} L - -

PUSH {rlist, LR} L - -

STMIA Rn!, {rlist} L 1 -

POP {rlist} L - 2

POP {rlist, PC} L + 6 - 2

LDMIA Rn!, {rlist} L 1 2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-21

Instruction Cycle Count
21.3 Interlocks

In almost all cases, the integer core uses forwarding to resolve data dependencies
between instructions. For the remaining cases, hardware-imposed interlocks (pipeline
stalls) are used to ensure the correct operation of an instruction.

One of the more common causes of data dependency interlocks are data processing
instructions that have a source register that is loaded from memory by the previous
instruction. The previous instruction might be an LDR, in which case this data is usually
available after a one-cycle interlock. The data processing instruction gets as far as
Decode before it interlocks. It interlocks in Decode because this is where it reads its
source registers.

Another common cause of data dependency interlocks is load/store instructions where
the load/store address is dependent on the result of the previous instruction. The
previous instruction might be a data processing instruction, in which case the result is
usually available after a one-cycle interlock, or it might be an LDR, in which case the
the loaded data is usually available after a two-cycle interlock. The load/store
instruction gets as far as Decode before it interlocks. It interlocks in Decode because
this is where it calculates the load/store address.

Pipeline interlocks are also used to resolve hardware dependencies in the pipeline.
Some common examples of hardware dependencies are:

• a data processing instruction waiting for the LSU to an finish an existing LDM or
STM

• a new load waiting for the LSU to finish an existing LDM or STM

• a new multiply waiting for a previous multiply to free up the first stage of the
multiplier.

The integer core generates most interlocks as late as possible. For instance, a multiply
accumulate instruction can start before the accumulate operands are available and stops
only when the values are required. This gives the maximum time possible for previous
instructions to generate the required data and minimizes occurrences of interlocks.

The integer core implements forwarding paths to enable almost any result to be used as
soon as it is calculated. The forwarding paths are shown in Figure 21-1 on page 21-23.
21-22 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
Figure 21-1 Pipeline forwarding paths

The register bank has four read ports:

• Port A

• Port B

• Port S1

• Port S2.

In the Decode stage, the integer unit reads port A and port B. Ports A and B are for
operands for ALU and multiply instructions and registers to generate addresses for
loads, stores, and unpredicted branches.

In the Execute stage, the LSU reads port S1 and port S2. Ports S1 and S2 are for store
data for STRs and STMs and for transfers to coprocessors.

The register bank has three write ports:

• Port W

• Port L1

• Port L2.

The integer unit writes to port W, and the LSU writes to port L1 and port L2 at the end
of the Write stage. Port W is for writing results from the ALU pipeline. The results
include ALU operations, multiplies, and base register write-backs for loads and stores.
Ports L1 and L2 are for writing loaded data for LDRs and LDMs and for transfers from
coprocessors.

LSU

pipeline

ALU

pipeline

Fetch Issue Decode Execute Memory Write

Read port S1

Read port S2

Write port L1

Write port L2

Write port WRead port A

Read port B
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-23

Instruction Cycle Count
21.3.1 Examples of interlocking and forwarding

Example 21-1 through Example 21-13 on page 21-27 illustrate interlocking and
forwarding.

Example 21-1 is the simplest case of forwarding. The ADD is dependent on the MOV
as the MOV writes r0 and the ADD reads it. The write of 1 into register r0 does not
happen until the end of the Write stage of the pipeline, but the correct value for r0, a 1,
is forwarded to the ADD in the ADD Decode stage by the ALU pipeline
Execute-to-Decode forwarding path. This enables the ADD to run with no interlocks.

Example 21-1

MOV R0, #1
ADD R1, R0, #1

In Example 21-2, the ADD is dependent on the MOV, and there is a single-cycle SUB
between them. The write of 1 to r0 has not happened when the ADD is reading its source
registers because the MOV is in the Memory stage when the ADD is in the Decode
stage. The correct value for r0, a 1, is forwarded to the ADD Decode stage by the ALU
pipeline Memory-to-Decode forwarding path. This enables the ADD to run with no
interlock.

Example 21-2

MOV R0, #1
SUB R1, R2, #2
ADD R2, R0, #1

In Example 21-3, an LDR is followed by an ADD that is dependent on the load return
data. The data loaded into r0 is only available in the Memory stage of the LDR, so the
ADD interlocks in the Decode stage for one cycle. The returned data in the LDR
Memory stage is forwarded to the ADD Decode stage.

Example 21-3

LDR R0, [R1, R2]
ADD R3, R0, #1
21-24 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
In Example 21-4, an LDRB, byte load, is followed by an ADD that is dependent on the
load return data. Since byte rotation and sign extension occur in the LSU pipeline Write
stage, the ADD interlocks in the Decode stage for two cycles. The byte rotated data in
the LDRB Write stage is forwarded to the ADD Decode stage.

Example 21-4

LDRB R0, [R1, R2]
ADD R3, R0, #1

In Example 21-5, the source register for the MOV depends on the LDR base write-back
to r1. There is no interlock because the write-back value is calculated in the ALU
pipeline in the Execute stage and is immediately available for forwarding to the Decode
stage of the following instruction.

Example 21-5

LDR R0, [R1, R2]!
MOV R3, R1

In Example 21-6, the STR data depends on the data loaded by the LDR but there is no
interlock because the data is returned in the Memory stage of the LDR. It is pipelined
to the Write stage where it is forwarded to the Memory stage of the STR.

Example 21-6

LDR R0, [R1, R2]
STR R0, [R3, R4]

In Example 21-7, the LDR address calculation is dependent on the ADD result. Data
address calculation occurs in the LSU pipeline Decode stage. The LDR interlocks in the
Decode stage for one cycle, and the result of the ADD in Memory stage is forwarded to
the LDR Decode stage.

Example 21-7

ADD R0, R1, R2
LDR R4, [R0, R3]
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-25

Instruction Cycle Count
In Example 21-8, the LDR address calculation is dependent on the MUL result. Here
the LDR interlocks in the Decode stage for two cycles, and the result of the MUL in
Write stage is forwarded to the LDR Decode stage.

Example 21-8

MUL R0, R1, R2
LDR R4, [R0, R3]

In Example 21-9, the STR address calculation is dependent on the loaded data from the
LDR. In this case, the STR interlocks in the Decode stage for two cycles. The LDR data
is returned in the Memory stage and is pipelined to the Write stage, where it is
forwarded to the STR Decode stage.

Example 21-9

LDR R0, [R1, R2]
STR R4, [R0, R3]

In Example 21-10, there are no data dependencies between the instructions. If the LDR
missed in the DCache, the LDR is stalled in the LSU Memory stage. Data processing
instructions cannot run underneath a miss. The MOV is stalled in the ALU pipeline
Execute stage.

Example 21-10

LDR R0, [R1, R2]
MOV R3, #1

In Example 21-11, there are no data dependencies between the load instructions. If the
first LDR missed in the DCache, the LDR is stalled in the LSU Memory stage.
Load/store instructions cannot run underneath a miss. The second LDR is stalled in the
LSU pipeline Execute stage.

Example 21-11

LDR R0, [R1, R2]
LDR R3, [R4, R5]
21-26 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Instruction Cycle Count
In Example 21-12, there are no data dependencies between the LDMIA loads and the
destination register of the MOV. Data processing instructions will interlock until the last
memory access of a load/store multiple instruction has completed. In this case, the
MOV is held in the Execute stage of the ALU pipeline until the last Memory stage of
the LDMIA has completed.

Example 21-12

LDMIA R0, {R1-R7}
MOV R8, #1

In Example 21-13, there are no data dependencies between the LDMIA and LDR.
Load/store instructions will interlock until the last memory access of a load/store
multiple instruction has completed. In this case, the LDR is held in the Decode stage of
the LSU pipeline until the last Memory stage of the LDMIA has completed.

Example 21-13

LDMIA R0, {R1-R7}
LDR R8, [R9, R10]
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. 21-27

Instruction Cycle Count
21-28 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Appendix A
Signal Descriptions

This appendix describes the signals of the ARM1026EJ-S processor. It contains the
following sections:

• AHB signals in normal mode on page A-2

• Coprocessor signals on page A-7

• Debug interface signals on page A-9

• DFT signals on page A-10

• MBIST signals on page A-11

• ETM signals on page A-12

• TCM signals on page A-13

• Interrupt signals on page A-15

• Other signals on page A-17.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 AHB signals in normal mode

Table A-1 shows the AHB signals divided by function.

Table A-1 AHB signals

Signal I/O Description

HPROTD[3:0] O DBIU protection control. Transfers are always data accesses:
bxxx0 = opcode fetch
bxxx1 = data access
bxx0x = user access
bxx1x = privileged access
bx0xx = not bufferable
bx1xx = bufferable
b0xxx = not cachable
b1xxx = cachable.

HPROTI[3:0] O IBIU protection control. Transfers are always opcode fetches:
bxxx0 = opcode fetch
bxxx1 = data access
bxx0x = user access
bxx1x = privileged access
bx0xx = not bufferable
bx1xx = bufferable
b0xxx = not cachable
b1xxx = cachable.

HSIZED[2:0] O Size of DBIU transfer:
b000 = byte, 8 bits
b001 = halfword, 16 bits
b010 = word, 32 bits
b011 = doubleword, 64 bits
b100 = 4 words, 128 bits (unused)
b101 = 8 words, 256 bits (unused))
b110 = 16 words, 512 bits (unused)
b111 = 32 words, 1024 bits (unused).

HSIZEI[2:0] O Size of IBIU transfer:
b000 = byte, 8 bits
b001 = halfword, 16 bits
b010 = word, 32 bits
b011 = doubleword, 64 bits
b100 = 4 words, 128 bits (unused)
b101 = 8 words, 256 bits (unused)
b110 = 16 words, 512 bits (unused)
b111 = 32 words, 1024 bits (unused).
A-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
HTRANSD[1:0] O Reflects type of DBIU transfer:
b00 = IDLE
b01 = BUSY (unused transfer type.)
b10 = NONSEQUENTIAL
b11 = SEQUENTIAL.

HTRANSI[1:0] O Selects type of IBIU transfer:
b00 = IDLE
b01 = BUSY (unused transfer type)
b10 = NONSEQUENTIAL
b11 = SEQUENTIAL.

HWDATAD[63:0] O DBIU write data bus. Transfers data from master to slaves in write operations.

When D64n32 is HIGH, both HWDATAD[31:0] and HWDATAD[63:32] contain
valid data as defined by transfer size and address.

When D64n32 is LOW, HWDATAD[31:0] contain valid data and HWDATAD[63:32]
are unconnected.

HWRITED O DBIU transfer direction:
1 = write
0 = read.

HWRITEI O IBIU transfer direction:
1 = write
0 = read.

HADDRD[31:0] O DBIU address bus.

HADDRI[31:0] O IBIU address bus.

Table A-1 AHB signals (continued)

Signal I/O Description
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-3

Signal Descriptions
HBSTRBD[7:0] O Byte lane indicator for current data transfer.

Valid strobe mappings for eight-bit transfers:
b00000001
b00000010
b00000100
b00001000
b00010000
b00100000
b01000000
b10000000

Valid strobe mappings for 16-bit transfers:
b00000011
b00001100
b00110000
b11000000

Valid strobe mappings for 32-bit transfers:
b00001111
b11110000

Valid strobe mapping for 64-bit transfers:
b11111111

HBSTRBI[7:0] O Byte lane indicator for current instruction transfer.

Valid strobe mappings for eight-bit transfers:
b00000001
b00000010
b00000100
b00001000
b00010000
b00100000
b01000000
b10000000

Valid strobe mappings for 16-bit transfers:
b00000011
b00001100
b00110000
b11000000

Valid strobe mappings for 32-bit transfers:
b00001111
b11110000

Valid strobe mapping for 64-bit transfers:
b11111111

Table A-1 AHB signals (continued)

Signal I/O Description
A-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
HBURSTD[2:0] O DBIU burst transfer type:
b000 = single transfer
b001 = incrementing transfer
b010 = 4-beat wrapping burst
b011 = 4-beat incrementing burst
b100 = 8-beat wrapping burst
b101 = 8-beat incrementing burst
b110 = 16-beat wrapping burst (unused)
b111 = 16-beat incrementing burst (unused).

HBURSTI[2:0] O IBIU burst transfer type:
b000 = single transfer
b001 = incrementing transfer
b010 = 4-beat wrapping burst
b011 = 4-beat incrementing burst
b100 = 8-beat wrapping burst
b101 = 8-beat incrementing burst
b110 = 16-beat wrapping burst (unused)
b111 = 16-beat incrementing burst (unused).

D64n32 I DBIU bus size indicator:
1 = 64-bits
0 = 32-bits.

I64n32 I IBIU bus size indicator:
1 = 64-bit
0 = 32-bit.

HCLKEND I Specifies rising edge of HCLK for AHB data transfer. If CLK and HCLK have the
same frequency, tie HCLKEND HIGH. In a single-layer AHB system, tie HCLKEND
and HCLKENI together.

HCLKENI I Specifies rising edge of HCLK for AHB instruction transfer. If CLK and HCLK have
the same frequency, HCLKENI must be tied HIGH. In a single-layer AHB system, tie
HCLKEND and HCLKENI together.

HRDATAD[63:0] I DBIU read data bus. Transfers data from bus slaves to data-side bus master in read
operations.

When D64n32 is HIGH, both HRDATAD[31:0] and HRDATAD[63:32] contain valid
data as defined by transfer size and address.

When D64n32 is LOW, HRDATAD[31:0] contain valid data and HRDATAD[63:32]
are tied to VSS or VDD.

Table A-1 AHB signals (continued)

Signal I/O Description
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-5

Signal Descriptions
HRDATAI[63:0] I IBIU read data bus. Transfers data and instructions from bus slaves to instruction-side
bus master in read operations.

When I64n32 is HIGH, both HRDATAI[31:0] and HRDATAI[63:32] contain valid
data as defined by transfer size and address.

When I64n32 is LOW, HRDATAI[31:0] contain valid data and HRDATAI[63:32] are
tied to VSS or VDD.

HREADYD I Slave ready. Can be driven LOW to extend transfer:
1= transfer done
0 = transfer not done.

HREADYI I Slave ready. Can be driven LOW to extend transfer:
1= transfer done
0 = transfer not done.

HRESETn I Resets system and bus. It is the only active-LOW AHB signal.

HRESPD I Slave response to DBIU. Reflects status of transfer:
1 = ERROR
0 = OKAY.

HRESPI I Slave response to IBIU. Reflects status of transfer:
1 = ERROR
0 = OKAY.

HMASTLOCKD O Indicates sequence of locked DBIU transfers in SWP operations.

HMASTLOCKI O For AMBA compliance. Never asserted.

Table A-1 AHB signals (continued)

Signal I/O Description
A-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.2 Coprocessor signals

Table A-2 lists the coprocessor (CP) signals.

Table A-2 Coprocessor signals

Name I/O Description

CPEN O Enables external coprocessor interface.

CPRST O CP reset. Must be held for at least two cycles.

CPBIGEND O Memory system is big-endian. When this signal is active, devices that support
64-bit data must assert CPLSSWP when loading or storing the 64-bit data for
correct order when read/written.

CPSUPER O Indicates if ARM1026EJ-S processor is in privileged mode.

CPINSTR[25:0] O CP instruction from ARM1026EJ-S processor.

CPINSTRV O Valid CP instruction in ARM1026EJ-S Issue stage.

CPVALIDD O Valid CP instruction in ARM1026EJ-S Decode stage.

CPBUSYD1
CPBUSYD2

I Reserved for future expansion.

CPBUSYE1
CPBUSYE2

I Busy-waits the ARM1026EJ-S Execute stage.

CPBOUNCEE1
CPBOUNCEE2

I Take Undefined instruction trap for instruction in ARM1026EJ-S Execute stage.

CPLSLEN1[5:0]
CPLSLEN2[5:0]

I Indicates length of CP load/store transfers.

CPLSSWP1
CPLSSWP2

I Indicates if upper and lower half of LDCMCRDATA or STCMRCDATA must
be swapped before being written.

CPLSDBL1
CPLSDBL2

I Indicates if CP load/store request is for double-precision data.

ASTOPCPD O Hold CP pipeline in CP Decode stage.

ASTOPCPE O Hold CP pipeline in CP Execute stage.

ACANCELCP O Cancel instruction in CP Execute stage.

AFLUSHCP O Cancel instructions in CP Execute, Decode, Issue, and Fetch stages.

LSHOLDCPE O Hold CP pipeline in CP Execute stage because LSU stalled in ARM1026EJ-S
Execute stage.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-7

Signal Descriptions
LSHOLDCPM O Hold CP pipeline in CP Memory stage cause LSU is stalled ARM1026EJ-S
Memory stage.

CPABORT O Reserved for future expansion.

LDCMCRDATA[63:0] O Carries data from ARM1026EJ-S processor to CP.

STCMRCDATA[63:0] I Carries data from CP to ARM1026EJ-S processor.

Table A-2 Coprocessor signals (continued)

Name I/O Description
A-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.3 Debug interface signals

Table A-3 lists the debug interface signals, including those used with JTAG testing.

Table A-3 Debug interface signals

Name I/O Description

DBGTCKEN I Synchronous test clock enable.

DBGnTRST I Internally synchronized active-LOW reset signal for the EmbeddedICE internal state.

DBGTDI I Test data input for debug logic.

DBGTMS I Test mode select for debug logic.

DBGSDOUT I Serial data out of external scan chain. Must be tied LOW if no external scan chain.

DBGEN I Debug enable. Setting DBGEN enables ARM1026EJ-S debug functionality.

EDBGRQ I External debug request. Setting EDBGRQ puts processor in debug state after current
instruction.

TAPID[31:0] I TAP ID Register. Must be tied to an appropriate value when processor is instantiated.

DBGTDO O Test data output from debug logic.

DBGnTDOEN O When LOW, indicates that serial data is being driven out of DBGTDO output. Normally
used as output enable for the DBGTDO pin in packaged part.

DBGIR[3:0] O Reflect current instruction loaded into DBGTAP controller Instruction Register.

DBGSCREG[4:0] O Reflect ID number of scan chain currently selected by DBGTAP controller.

DBGTAPSM[3:0] O Reflects current state of the DBGTAP controller state machine.

COMMRX O HIGH when comms channel receive buffer has data for processor to read.

COMMTX O Comms channel transmit. HIGH when comms channel transmit buffer is empty.

DBGACK O Debug acknowledge. HIGH when processor is in debug state.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-9

Signal Descriptions
A.4 DFT signals

Table A-4 lists the DFT signals.

Table A-4 DFT signals

Name I/O Description

SCANMODE I Puts processor in scan mode. Prevents asynchronous reset from being
controlled by synchronizer.

RSTSAFE I Resets any core cells that are reset-capable, except wrapper cells.

SE I Scan enable. Must be tied LOW during functional operation. Scan
enable for all internal clock domains. HIGH = shift.

SI[55:0] I Scan input port.

SO[55:0] O Scan output port.

WSEI I Scan enable for all input-dedicated wrapper test cells. HIGH = shift.

WSEO I Scan enable for all output-dedicated wrapper test cells. HIGH = shift.

WSI[5:0] I Input ports for wrapper scan chains.

WSO[5:0] O Output ports for wrapper scan chains.

WSON O Latched φ2 output for connecting wrapper chain to scan chains in other
clock domains.

MUXINSEL I Configures dedicated input wrapper cells for functional or test mode.

MUXOUTSEL I Configures dedicated output wrapper cells for functional or test mode.

CHECKTEST I Not used for soft core. Leave unconnected.

SCANMUX[3:1] I Not used for soft core. Leave unconnected.

SCORETEST I Not used for soft core. Leave unconnected.

WMUX[1:0] I Not used for soft core. Leave unconnected.
A-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.5 MBIST signals

Table A-5 lists the MBIST signals.

Table A-5 MBIST signals

Signal I/O Function

MBISTRXCGR[2:0]a

a. This signal exists as MBISTRX[2:0] at the ARM1026EJ-S level. It is renamed
to MBISTRXCGR[2:0] at the ARM1026EJ-S_TCM level to distinguish it from
its TCM counterpart.

O Dispatch unit output bus

MBISTRXTCM[2:0]b

b. This signal exists only at the ARM1026EJ-S_TCM level, the ARM-provided
reference layer for integration of TCMs.

O Dispatch unit output bus

MBISTCLKEN I MBIST clock gate

MBISTDSHIFT I Data log shift

MBISTRESETN I MBIST reset signal

MBISTSHIFT I Instruction shift

MBISTTX[10:0] I MBIST controller out

MTESTON I MBIST path enable

MBISTRAMBYP I Chip-select block
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-11

Signal Descriptions
A.6 ETM signals

Table A-6 lists the ETM signals.

Table A-6 ETM signals

Signal name I/O Description

ETMCORECTL[30:0] O Miscellaneous control signals from processor to ETM

ETMDA[31:0] O The data address bus

ETMDATA[63:0] O The load, store, and coprocessor data from the processor

ETMDATAVALID[1:0] O Valid signal for ETMDATA bus with one bit for each for HIGH and LOW word

ETMIA[31:0] O The instruction fetch address bus

ETMR15BP[31:0] O The instruction address for branch phantom instructions

ETMR15EX[31:0] O The instruction address for all nonbranch phantom instructions

ETMPWRDOWN I Indicates when ETM is in lower power mode.
A-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.7 TCM signals

Table A-7 lists the TCM signals.

Table A-7 TCM signals

Name I/O Description

DRnRW O Data TCM read or write:
1 = write access
0 = read access.

DRADDR[16:0] O Data TCM address. Address up to 1MB.

DRWD[63:0] O Data TCM write data.

DRCS[1:0] O Data TCM enable. Indicates a write or a speculative read access.

DRWBL[7:0] O Data TCM byte write indicator.

DRRD[63:0] I Data TCM read data.

DRWAIT I Data TCM wait. When HIGH, the data TCM cannot service the request in that cycle.

DTCMSIZE[3:0] I Data TCM size. Allows the TCM size to be changed without resynthesizing processor.

DRDMAEN I Direct DTCM memory access enable.

IRnRW O Instruction TCM read or write:
1 = write access
0 = read access.

IRADDR[16:0] O Instruction TCM address. Address up to 1MB.

IRWD[63:0] O Instruction TCM write data.

IRCS[1:0] O Instruction TCM enable. Indicates a write or a speculative read.

IRWBL[7:0] O Instruction TCM byte write indicator.

IRRD[63:0] I Instruction TCM read data.

IRWAIT I Instruction TCM wait. When HIGH, the instruction TCM cannot service the request in
that cycle.

ITCMSIZE[3:0] I Instruction TCM size.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-13

Signal Descriptions
IRDMAEN I DMA request for access to ITCM memory.

INITRAM I Enables ITCM at system reset. Enables booting from the ITCM if VINITHI is LOW.

TCMVALInImpl I TCM configuration indicator:
1 = TCMs implemented for the ARM internally configurable validation model
0 = TCMs implemented in fixed, partner-specific configuration.

Table A-7 TCM signals (continued)

Name I/O Description
A-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.8 Interrupt signals

Table A-8 lists the interrupt signals, including those used with the VIC port.

Table A-8 Interrupt signals

Name I/O Description

IRQACK O Interrupt request acknowledge

IRQADDR[31:2] I Interrupt request IRQ vector address

IRQADDRV I Indicates IRQADDR is valid

nFIQ I Fast interrupt request signal

nIRQ I Interrupt request signal
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-15

Signal Descriptions
A.9 Memory parity signals

Table A-9 lists the signals in the DCache, ICache, MMU, DTCM, and ITCM memory
parity interfaces.

Table A-9 Memory parity signals

Name I/O Description

DCDATAPARx[7:0]a

a. This signal exists as an output from the ARM1026EJ-S_NORAM logic level to the
ARM1026EJ-S_RAM memory instantiation level. It is not an output of the ARM1026EJ-S
design.

O DCache data parity outputs

DCTAGPAR[2:0]a O DCache tag parity outputs

ICDATAPARx[7:0]a O ICache data parity outputs

ICTAGPAR[2:0]a O ICache tag parity outputs

MMUDATAPAR[9:0]a O MMU data parity outputs

MMUTAGPAR[5:0]a O MMU tag parity outputs

DRWPAR[7:0]b

b. This signal exists as an output from the ARM1026EJ-S_NORAM logic level to the
ARM1026EJ-S_TCMRAM TCM memory instantiation level. It is an output of the
ARM1026EJ-S design.

O DTCM parity outputs

IRWPAR[7:0]b O ITCM parity outputs
A-16 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Signal Descriptions
A.10 Other signals

Table A-10 lists the signals not in Table A-1 on page A-2-Table A-9 on page A-16.

Table A-10 Other signals

Signal I/O Description

CFGBIGEND O Endian configuration indicator. Reflects the value of the B bit in the CP15 c1
Control Register.

STANDBYWFI O ARM1026EJ-S processor is currently in wait-for-interrupt mode.

BIGENDINIT I Configures processor to treat memory bytes as big-endian or little-endian:
1 = big-endian format
0 = little-endian format.

CLK I Times all ARM1026EJ-S processor operations. All outputs change from rising
edge. All inputs sampled on rising edge. Clock can be stretched in either phase.

MMUnMPU I This is a static input that configures the ARM1026EJ-S processor to either use a
Memory Management Unit (MMU) or a Memory Protection Unit (MPU):
1 = system configured to use MMU
0 = system configured to use MPU.

VINITHI I Determines the reset location of the exception vectors:
1 = 0xFFFF0000
0 = 0x00000000.

SIMTESTMDD64n32 O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDI64n32 O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDDDMAa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDDRWTa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDIDMAa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRNDIRWTa I Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDRSIZE[3:0] O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDDRSZVAL O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDIRSIZE[3:0] O Leave unconnected. Used only in ARM-internal validation.

SIMTESTMDIRSZVAL O Leave unconnected. Used only in ARM-internal validation.

a. This signal exists only at the ARM1026EJ-S_TCM level, the ARM-provided reference layer for integration of TCMs.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. A-17

Signal Descriptions
A-18 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it must halt execution of an attempted illegal
memory access. An abort can be caused by the external or internal memory system as a
result of attempting to access invalid instruction or data memory. An abort is classified
as a Prefetch Abort, a Data Abort, or an External Abort.

See also Data Abort, External Abort, and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data
Abort exception. Different abort models behave differently with regard to load and store
instructions that specify base register write-back.

Advanced
High-performance
Bus (AHB)

The AMBA Advanced High-performance Bus system connects embedded processors
such as an ARM core to high-performance peripherals, DMA controllers, on-chip
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports
multi-master bus management to maximize system performance.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced
Microcontroller Bus
Architecture
(AMBA)

AMBA is the ARM open standard for multi-master on-chip buses, capable of running
with multiple masters and slaves. It is an on-chip bus specification that details a strategy
for the interconnection and management of functional blocks that make up a
System-on-Chip (SoC). It aids in the development of embedded processors with one or
more CPUs or signal processors and multiple peripherals. AMBA complements a
reusable design methodology by defining a common backbone for SoC modules. AHB
conforms to this standard.

See also Advanced High-performance Bus and AHB-Lite.

Advanced
Peripheral Bus
(APB)

The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is
designed for use with ancillary or general-purpose peripherals such as timers, interrupt
controllers, UARTs, and I/O ports. Connection to the main system bus is through a
system-to-peripheral bus bridge that helps to reduce system power consumption.

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AHB-Lite AHB-Lite is a subset of the full AHB specification. It is intended for use in designs
where only a single AHB master is used. This can be a simple single AHB master
system or a multi-layer AHB system where there is only one AHB master on a layer.

Aligned Refers to data items stored so that their address is divisible by the highest power of two
that divides their size. Aligned words and halfwords therefore have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore refer to addresses that are divisible by four and two respectively. The terms
byte-aligned and doubleword-aligned are defined similarly.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv6 architecture.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb state.

Banked registers The physical registers whose use is defined by the current processor mode. The banked
registers are r8 to r14.
Glossary-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
Base register A register specified by a load or store instruction that is used to hold the base value for
the address calculation for the instruction. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register value to
form the virtual address that is sent to memory.

Base register
write-back

Updating the contents of the base register used in an instruction target address
calculation so that the modified address is changed to the next higher or lower
sequential address in memory. This means that it is not necessary to fetch the target
address for successive instruction transfers and enables faster burst accesses to
sequential memory.

Big-endian Memory organization in which the least significant byte of a word is at a higher address
than the most significant byte.

See also Little-endian and Endianness.

Block address An address that comprises a tag, an index, and a word field. The tag bits identify the
way that contains the matching cache entry for a cache hit. The index bits identify the
set being addressed. The word field contains the word address that can be used to
identify specific words, halfwords, or bytes within the cache entry.

Branch folding Branch folding is a technique by which, on the prediction of most branches, the branch
instruction is completely removed from the instruction stream presented to the
execution pipeline. Branch folding can significantly improve the performance of
branches, taking the CPI for branches below one cycle.

Branch prediction The process of predicting if conditional branches are to be taken or not in pipelined
processors. Successfully predicting if branches are to be taken enables the processor to
prefetch the instructions following a branch before the condition is fully resolved.
Branch prediction can be done in software or by using custom hardware. Branch
prediction techniques are categorized as static, in which the prediction decision is
decided before run time, and dynamic, in which the prediction decision can change
during program execution.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is halted unconditionally. Breakpoints are inserted by programmers
to allow inspection of register contents, memory locations, and/or variable values at
fixed points in the program execution to test that the program is operating correctly.
Breakpoints are removed after the program is successfully tested. See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AHB
buses are controlled using the HBURST signals to specify if transfers are single,
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are
incremented.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-3

Glossary
Byte invariant Refers to the way of switching between little-endian and big-endian operation that
leaves byte accesses entirely unchanged. Accesses to other data sizes are necessarily
affected by such endianness switches.

Byte lane strobe An AHB signal, HBSTRB, that is used for unaligned or mixed-endian data accesses to
determine which byte lanes are active in a transfer. One bit of HBSTRB corresponds to
eight bits of the data bus.

Cache A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retrieving copies of often used
instructions and/or data. This is done to increase the average speed of memory accesses
and therefore to increase processor performance.

Cache contention When the number of frequently-used memory cache lines that use a particular cache set
exceeds the set-associativity of the cache. In this case, main memory activity increases
and performance decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data
that it addresses is already held in the cache.

Cache line The basic unit of storage in a cache. The number of words in a cache line is always a
power of two and is usually four or eight words. A cache line must be aligned to a
suitable memory boundary.

See also Cache terminology.

Cache line index The number associated with each cache line in a cache way. Within each cache way, the
cache lines are numbered from 0 to (set associativity) – 1.

See also Cache terminology.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown enables
critical instructions and/or data to be loaded into the cache so that the cache lines
containing them are not subsequently reallocated. This ensures that all subsequent
accesses to the instructions or data concerned are cache hits, and therefore complete as
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction or data
it addresses is not in the cache and a main memory access is required.

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be
addressed with the same index. The number of cache sets is always a power of two.

Cache way A group of cache lines (or blocks). It is two to the power of the number of index bits in
size.

CAM See Content Addressable Memory.

Cast out See Victim.
Glossary-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
Central Processing
Unit (CPU)

The part of a processor that contains the ALU, the registers, and the instruction decode
logic and control circuitry. Also commonly known as the processor core.

CISC See Complex Instruction Set Computer.

Clean A cache line that has not been modified while it is in the cache is said to be clean. To
clean a cache is to write dirty cache entries into main memory. If a cache line is clean,
it is not written on a cache miss because the next level of memory contains the same
data as the cache.

See also Dirty.

Clock gating Gating a clock signal for a macrocell with a control signal, and using the modified clock
that results to control the operating state of the macrocell.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning
power off and then back on again clears main memory and many internal settings. Some
program failures can lock up the processor and require a cold reset to enable the system
to be used again. In other cases, only a warm reset is required.

See also Warm reset.

Complex Instruction
Set Computer
(CISC)

A processor architecture that uses microcode to execute complex instructions.
Instructions can be variable in length.

See also Reduced Instruction Set Computer.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction
can execute.

Content
Addressable
Memory (CAM)

Memory that is identified by its contents. Content Addressable Memory is used in
CAM-RAM architecture caches to store the tags for cache entries.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the
main CPU cannot perform. Usually used for floating-point math calculations, signal
processing, or memory management.

Copy back See Write-back.

Core module In the context of Integrator, an add-on development board that contains an ARM
processor and local memory. Core modules can run standalone, or can be stacked onto
Integrator motherboards.

Core reset See Warm reset.

CPI See Cycles per instruction.

CPU See Central Processing Unit.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-5

Glossary
Cycles Per
instruction (CPI)

Cycles per instruction (or clocks per instruction) is a measure of the number of
computer instructions that can be performed in one clock cycle. This figure of merit can
be used to compare the performance of different CPUs against each other. The lower the
value, the better the performance.

Data Abort An indication from a memory system to a core that it must halt execution of an
attempted illegal memory access. A Data Abort is attempting to access invalid data
memory.

See also Abort, External Abort, and Prefetch Abort.

Data Cache
(DCache)

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often-used data. This is done to
greatly increase the average speed of memory accesses and therefore to increase
processor performance.

DBGTAP See Debug Test Access Port.

DCache See Data Cache.

Debug
Communications
Channel

The hardware used for communicating between the software running on the processor,
and an external host, using the debug interface. When this communication is for debug
purposes, it is called the Debug Communications Channel.

Debugger A debugging system that includes a program used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

An application that monitors and controls the operation of a second application. Usually
used to find errors in the application program flow.

Debug Test Access
Port (DBGTAP)

The collection of four mandatory terminals and one optional terminal that form the
input/output and control interface to a JTAG boundary-scan architecture. The
mandatory terminals are DBGTDI (TDI), DBGTDO (TDO), DBGTMS (TMS), and
TCK. The optional terminal is DBGnTRST (TRST).

Direct-mapped
cache

A one-way set-associative cache. Each cache set consists of a single cache line, so cache
look-up selects and checks a single cache line.

Direct Memory
Access

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Dirty A cache line in a Write-Back cache that has been modified while it is in the cache is said
to be dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty,
it must be written to memory on a cache miss because the next level of memory contains
data that has not been updated. The process of writing dirty data to main memory is
called cache cleaning.

See also Clean.
Glossary-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
DMA See Direct Memory Access.

Domain A memory division that is made up of supersections, sections, large pages, or small
pages of memory, which can have their access permissions switched rapidly by writing
to the Domain Access Control Register (CP15 r3).

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor
cores. It is accessed through the TAP controller on the ARM core using the JTAG
interface.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging
in real-time.

Embedded Trace
Macrocell (ETM)

A hardware macrocell that outputs instruction and data trace information on a trace port.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data
word are stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell.

Exception An event that occurs during program operation that makes continued normal operation
inadvisable or impossible, and so makes it necessary to change the flow of control in a
program. Exceptions can be caused by error conditions in hardware or software. The
processor can respond to exceptions by running appropriate exception handler code that
attempts to remedy the error condition, and either restarts normal execution or ends the
program in a controlled way.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt service
routine.

External Abort An indication from an external memory system to a core that it must halt execution of
an attempted illegal memory access. An External Abort is caused by the external
memory system as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort

Fast Context Switch
Extension (FCSE)

This enables cached processors with an MMU to present different addresses to the rest
of the memory system for different software processes even when those processes are
using identical addresses.

FCSE See Fast Context Switch Extension.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-7

Glossary
Flat address
mapping

A system of organizing memory in which each physical address contained within the
memory space is the same as its corresponding virtual address.

Fully-associative
cache

A cache that has just one cache set that consists of the entire cache.

See also Direct-mapped cache.

Half-rate clocking Dividing the trace clock by two so that the TPA can sample trace data signals on both
the rising and falling edges of the trace clock. The primary purpose of half-rate clocking
is to reduce the signal transition rate on the trace clock of an ASIC for very high-speed
systems.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state,
memory and input/output locations can be examined and altered by the JTAG interface.
See also Monitor mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the
top of the address space, rather than at the bottom.

Hit-Under-Miss A buffer that enables program execution to continue, even though there has been a data
miss in the cache.

Host A computer that provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

HUM See Hit-Under-Miss.

ICache See Instruction Cache.

IMB See Instruction Memory Barrier.

Implementation-
defined

A feature that is not architecturally defined, and which might vary between
implementations. The feature is defined and documented for each individual
implementation.

Index See Cache line index.

Index register A register specified in some load or store instructions. The value of this register is used
as an offset to be added to or subtracted from the base register value to form the virtual
address, which is sent to memory. Some addressing modes optionally enable the index
register value to be shifted prior to the addition or subtraction.

Instruction Cache
(ICache)

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often-used instructions. This is
done to increase the average speed of memory accesses and therefore to increase
processor performance.
Glossary-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
Instruction cycle count
The number of cycles for which an instruction occupies the Execute stage of the
pipeline.

Instruction Memory
Barrier (IMB)

An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done
whenever the line does not contain a valid cache entry. For example, after a cache flush
all lines are invalid.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte.

See also Big-endian and Endianness.

Jazelle architecture The ARM Jazelle architecture extends the Thumb and ARM operating states by adding
a Java state to the processor. Instruction set support for entering and exiting Java
applications, real-time interrupt handling, and debug support for mixed Java/ARM
applications is present. When in Java state, the processor fetches and decodes Java
bytecodes and maintains the Java operand stack.

Load/store
architecture

A processor architecture where data-processing operations only operate on register
contents, not directly on memory contents.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
comprises several macrocells (such as an ARM processor, an Embedded Trace
Macrocell, and a memory block) plus application-specific logic.

Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide,
that enable reads and writes of multiple words at a time, rather than single words. All
memory banks are addressed simultaneously and a bank enable or chip select signal
determines which of the banks is accessed for each transfer. Accesses to sequential
word addresses cause accesses to sequential banks. This enables the delays associated
with accessing a bank to occur during the access to its adjacent bank, speeding up
memory transfers.

Memory
Management Unit
(MMU)

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual addresses to physical addresses.

Memory Protection
Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not translate virtual addresses to physical addresses.

MMU See Memory Management Unit.

Modified Virtual
Address (MVA)

A virtual address produced by the integer unit can be changed by the current Process ID
to provide a Modified Virtual Address (MVA) for the MMUs and caches.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-9

Glossary
Monitor mode One of two mutually exclusive debug modes. In monitor mode, the processor enables a
software abort handler provided by the debug monitor or operating system debug task.
When a breakpoint or watchpoint is encountered, this enables vital system interrupts to
continue to be serviced while normal program execution is suspended.

See also Halt mode.

MPU See Memory Protection Unit.

MVA See Modified Virtual Address.

PA See Physical Address.

Parity error Indicates that a memory transaction has failed a parity check and that the target location
does not contain valid data.

Physical Address
(PA)

The MMU performs a translation on Modified Virtual Addresses (MVA) to produce the
Physical Address (PA) which is given to AHB to perform an external access. The PA is
also stored in the Data Cache to avoid requiring address translation when data is cast
out of the cache.

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the
pipeline before the preceding instructions have finished executing. Prefetching an
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to a core that it must halt execution of an
attempted illegal memory access. A Prefetch Abort can be caused by the external or
internal memory system as a result of attempting to access invalid instruction memory.

See also Data Abort, External Abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional
components such as memory, and interfaces. These are combined as a single macrocell,
that can be fabricated on an integrated circuit.

Read Reads are defined as memory operations that have the semantics of a load. That is, the
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB,
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM,
LDR, LDRSH, LDRH, LDRSB, LDRB, and POP. Java instructions that are accelerated
by hardware can cause a number of reads to occur, according to the state of the Java
stack and the implementation of the Java hardware acceleration.

Reduced Instruction
Set Computer
(RISC)

A computer architecture that reduces chip complexity by limiting the complexity of
instructions that can be executed. In RISC computers, there is no microcode layer, and
instruction size is fixed.

Region A partition of instruction or data memory space.
Glossary-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
Register A temporary storage location used to hold binary data until it is ready to be used.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to enable RAM to replace ROM when the initialization
has been done.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as zero and are read as zero.

RISC See Reduced Instruction Set Computer.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Set-associative
cache

In a set-associative cache, lines can only be placed in the cache in locations that
correspond to the modulo division of the memory address by the number of sets. If there
are n ways in a cache, the cache is termed n-way set-associative. The set-associativity
can be any number greater than or equal to one and is not restricted to being a power of
two.

Should Be One
(SBO)

Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces
Unpredictable results.

Should Be Zero
(SBZ)

Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces
Unpredictable results.

Should Be Zero or
Preserved (SBZP)

Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the
same value back that has been previously read from the same field on the same
processor.

Synchronization
primitive

The memory synchronization primitive instructions are instructions that are used to
ensure memory synchronization, that is, the LDREX, STREX, SWP, and SWPB
instructions.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-11

Glossary
Tag The upper portion of a block address used to identify a cache line within a cache. The
block address from the CPU is compared with each tag in a set in parallel to determine
if the corresponding line is in the cache. If it is, it is said to be a cache hit and the line
can be fetched from cache. If the block address does not correspond to any of the tags
it is said to be a cache miss and the line must be fetched from the next level of memory.

TAP See Test Access Port.

Test Access Port
(TAP)

The collection of four mandatory terminals and one optional terminal that form the
input/output and control interface to a JTAG boundary-scan architecture. The
mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating
in Thumb state.

TLB See Translation Lookaside Buffer.

Translation
Lookaside Buffer
(TLB)

A cache of recently used page table entries that avoid the overhead of page table
walking on every memory access. Part of the Memory Management Unit.

Unaligned Memory accesses that are not appropriately word-aligned or halfword-aligned.

See also Aligned.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM
Architectural Reference Manual for more information on ARM exceptions.

Translation table A table, held in memory, that contains data that defines the properties of memory areas
of various fixed sizes.

Translation table
walk

The process of doing a full translation table lookup. It is performed automatically by
hardware.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can
have any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

VA See Virtual Address.

Vector operation An operation involving more than one destination register, perhaps involving different
source registers in the generation of the result for each destination.
Glossary-12 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Glossary
Victim A cache line, selected to be discarded to make room for a replacement cache line that is
required as a result of a cache miss. The way in which the victim is selected for eviction
is processor-specific. A victim is also known as a cast out.

Virtual Address (VA) The MMU uses its page tables to translate a Virtual Address into a Physical Address.
The processor executes code at the Virtual Address, which might be located elsewhere
in physical memory. See also FCSE, MVA, and PA.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to enable inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Way See Cache way.

WB See Write-back.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH. Java
instructions that are accelerated by hardware can cause a number of writes to occur,
according to the state of the Java stack and the implementation of the Java hardware
acceleration.

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the
cache on line replacement following a cache miss. Otherwise, writes by the processor
only update the cache. (Also known as copyback).

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the Data Cache and
main memory, whose purpose is to optimize stores to main memory. Each entry in the
write buffer can contain the address of a data item to be stored to main memory, the data
for that item, and a sequential bit that indicates if the next store is sequential or not.

Write completion The memory system indicates to the CPU that a write has been completed at a point in
the transaction where the memory system is able to guarantee that the effect of the write
is visible to all processors in the system. This is not the case if the write is associated
with a memory synchronization primitive, or is to a Device or Strongly Ordered region.
In these cases the memory system might only indicate completion of the write when the
access has affected the state of the target, unless it is impossible to distinguish between
having the effect of the write visible and having the state of target updated.
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Glossary-13

Glossary
This stricter requirement for some types of memory ensures that any side-effects of the
memory access can be guaranteed by the processor to have taken place. You can use this
to prevent the starting of a subsequent operation in the program order until the
side-effects are visible.

Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache
is updated.

WT See Write-through.
Glossary-14 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Index

The items in this index are listed in alphabetical order with references to page numbers.
A
ACANCELCP

description A-7
Access permission fault

fault priority 11-9
fault status code 11-9

Access permission fault
fault priority 3-28

Access permissions 3-24
MMU sections and pages 10-4

Address alignment fault
fault priority 10-33, 11-9
fault status code 3-28, 10-33, 11-9

Address types
modified virtual address 3-8
physical address 3-8
virtual address 3-8

AFLUSHCP
description A-7

AHB-Lite bus interface 6-2
Alignment fault

checking 11-10

Alignment fault checking 10-34
enabling 3-14

Allocate on read-miss 12-2
AMBA bus 6-2

address type used 3-8
transfer types 6-3

ARM state
re-entering from debug state 8-19

ARM10 pipeline
relation to CP pipeline 7-2

ARM1026EJ-S processor
device ID code 3-10

ASTOPCPD
description A-7

ASTOPCPE
description A-7

Auxiliary Control Register 3-6
description 3-19

B
Barrel shifter 2-8

Base address of protection region 3-34
Big-endian operation

selection 3-14
BIGENDINIT 3-14

description A-17
Branch folding 5-3, 21-2
Branch instructions

cycle counts 21-8
Branch phantom 5-3
Branch prediction 2-6, 5-1–5-7, 21-2,

21-8
enabling 3-14

Branches
cycle count 21-2

Breakpoint
triggering 8-3

Breakpoint Address Registers 8-4
description 8-12

Breakpoint Control Registers 8-4
description 8-13

Bus interface
frequency 4-2
transfers 6-2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Index-1

Index
Bus interface transfers
nonsequential 6-6
sequential 6-6

BYPASS instruction 9-4, 9-6
operation 9-7

Bypass Register 9-4
BYPASS instruction 9-6
description 9-7

C
Cache

RAMs 19-5
Cache Debug Control Register 3-7

description 3-65
Cache maintenance operations 12-2
Cache operations 3-6

clean and invalidate DCache line
3-36

clean DCache line 3-36
description 3-36
invalidate DCache line 3-36
invalidate entire DCache 3-36
invalidate entire DCache and ICache

3-36
invalidate entire ICache 3-36
invalidate ICache line 3-36
test and clean DCache 3-37
test, clean, and invalidate DCache

3-37
Cache Type Register 3-6

description 3-11
Cache victim replacement 3-14
Caches

address type used 3-8
Castout

32-bit AHB interface 6-16
64-bit AHB interface 6-14

CFGBIGEND
description A-17
BIU transfers 6-24

CHECKTEST
description A-10, 20-9

CLK
description A-17
relation to HCLK 4-2

CLK signal
relation to TCK 4-3

COMMRX
description A-9

Comms channel 8-25
COMMTX

description A-9
Condition code check

bounced CP instruction 7-47
SWI instruction 21-9

Condition fail cycles 21-3
Condition pass cycles 21-3
Context ID Register 3-7

description 3-52
Control Register 3-6, 11-4

alignment fault checking 11-10
cache enabling 12-3
description 3-14
endianness 6-24
MMU memory access control

10-26
reading VIC port 18-3

Control register 1 (CP15 c1) 10-34
CP pipeline 7-2, 7-8, 7-9, 7-21
CPABORT

description A-8
CPBIGEND

description A-7
CPBOUNCEE1

description A-7
CPBOUNCEE2

description A-7
CPBUSYD1

description A-7
CPBUSYD2

description A-7
CPBUSYE1

description A-7
CPBUSYE2

description A-7
CPEN

description A-7
CPINSTR

description A-7
CPINSTRV

description A-7
CPLSDBL1

description A-7
CPLSDBL2

description A-7

CPLSLEN1
description A-7

CPLSLEN2
description A-7

CPLSSWP1
description A-7

CPLSSWP2
description A-7

CPRST
description A-7

CPSR
see Current Program Status Register

CPSUPER
description A-7

CPVALIDD
description A-7

CP14 c0 Debug ID Register 8-4
description 8-6

CP14 c1 Debug Status and Control
Register 8-4

description 8-7
CP14 c1 Debug status and control

register
enabling halt mode 9-3

CP14 c112, c113 Watchpoint Control
Registers 8-4

description 8-15
CP14 c4 Instruction Transfer Register

8-4, 8-20
CP14 c5 Data Transfer Register 8-4,

8-20
description 8-11

CP14 c64-c69 Breakpoint Address
Registers 8-4

description 8-12
CP14 c80-c85 Breakpoint Control

Registers 8-4
description 8-13

CP14 c96, c97 Watchpoint Address
Registers 8-4

description 8-15
CP15 c0 Cache Type Register 3-6

description 3-11
CP15 c0 Device ID Register 3-6

description 3-10
CP15 c0 TCM Status Register 3-6

description 3-13
Index-2 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Index
CP15 c1 Auxiliary Control Register
3-6

description 3-19
CP15 c1 Control Register 3-6, 11-4

alignment fault checking 11-10
branch prediction 5-2, 5-5
cache enabling 12-3
description 3-14
endianness 6-24
MMU memory access control

10-26
reading VIC port 18-3

CP15 c10 TLB Lockdown Register 3-7
description 3-46

CP15 c13 Context ID Register 3-7
description 3-52

CP15 c13 FCSE Process ID Register
3-7

description 3-49
CP15 c13 Process ID register 3-49
CP15 c15 Cache Debug Control

Register 3-7
description 3-65

CP15 c15 Debug and Test Address
Register 3-7

description 3-56
CP15 c15 Debug Control Register

description 3-67
CP15 c15 Debug Override Register 3-7

description 3-53
enabling and disabling buffered

stores 13-4
imprecise external aborts 16-6

CP15 c15 Memory Region Remap
Register 3-7

description 3-57
CP15 c15 MMU Debug Control

Register 3-7
CP15 c15 MMU test operations 3-7

description 3-60
CP15 c15 Prefetch Unit Debug

Override Register 3-7
description 3-55

CP15 c2 DCache Configuration
Register 3-6, 11-4

description 3-21

CP15 c2 ICache Configuration Register
3-6, 11-4

description 3-21
instruction cachability 12-3

CP15 c2 Translation Table Base
Register 3-6

description 3-20
enabling the MMU 10-3

CP15 c3 Domain Access Control
Register 3-6

description 3-23
enabling the MMU 10-3
MMU memory access control

10-26
CP15 c3 Write Buffer Control Register

3-6, 11-4
description 3-25

CP15 c5 Data Extended Access
Permission Register 3-6, 11-6

description 3-29
CP15 c5 Data Fault Status Register

3-6, 11-4
description 3-26

CP15 c5 Data Standard Access
Permission Register 3-6, 11-6

description 3-31
CP15 c5 Fault Status Register

external abort reporting 16-3
imprecise external aborts 16-6

CP15 c5 Instruction Extended Access
Permission Register 3-6, 11-6

description 3-29
CP15 c5 Instruction Fault Status

Register 3-6
description 3-26

CP15 c5 Instruction Standard Access
Permission Register 3-6, 11-6

description 3-31
CP15 c6 Data Fault Address Register

3-6
description 3-33

CP15 c6 Data Fault Status Register
imprecise external aborts 16-2

CP15 c6 Fault Address Register
external abort reporting 16-3
imprecise external aborts 16-6

CP15 c6 Instruction Fault Address
Register 3-6

description 3-33

CP15 c6 Protection Region Registers
3-6

description 3-34
CP15 c7 cache operations 3-6

description 3-36
CP15 c7 system control operations

drain pending write buffer 3-37
prefetch ICache line 3-37
wait for interrupt 3-37

CP15 c8 TLB operations 3-6
description 3-40

CP15 c9 DCache Lockdown Register
3-7

description 3-41
CP15 c9 DTCM Region Register 3-7,

17-3
description 3-44

CP15 c9 ICache Lockdown Register
3-7

description 3-41
CP15 c9 ITCM Region Register 3-7,

17-3
description 3-44

Critical doubleword
definition 16-4
requests 16-4
32-bit AHB interface 6-11
64-bit AHB interface 6-9

CTCM Region Register 17-3
Current Program Status Register 3-3,

6-6
imprecise external aborts 16-6

D
DACR

see Domain Access Control Register
Data Abort

address 3-33
DMMU fault address register

10-34, 11-10
level 2 fine page table translation

fault 10-20
MMU level 1 translation fault 10-11
MMU level 2 translation fault 10-15
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Index-3

Index
Data bus interface unit 6-2
bus width 6-2, 6-3, 6-8
locked bus transfers 6-7
structure 6-8

Data Extended Access Permission
Register

description 3-29
Data Extended Acess Permission

Register 3-6
Data Fault Address Register 3-6

description 3-33
Data Fault Status Register 3-6, 11-4

description 3-26
imprecise external aborts 16-2

Data processing instructions
cycle counts 21-5

Data Standard Access Permission
Register 3-6

description 3-31
Data Transfer Register 8-4, 8-20, 9-11

description 8-11, 9-13
DBGACK

description A-9
DBGEN

description A-9
in debug state 8-5

DBGIR 9-9
description A-9
see Debug Instruction Register

DBGnTDOEN
description A-9

DBGnTRST 4-4
description A-9

DBGSCREG 9-9
description A-9
see Debug Scan Chain Select

Register
DBGSDOUT

description A-9
DBGTAP

entering debug state 9-3
exiting debug state 9-3
in halt mode 8-19
instruction summary 9-4
resetting 4-4

DBGTAP state machine 9-2
DBGTAPSM

description A-9

DBGTCKEN
description A-9
relation to CLK 4-3

DBGTDI
description A-9
BYPASS instruction 9-6, 9-7
Debug Instruction Register 9-9
Debug Scan Chain Select Register

9-9
IDCODE instruction 9-6
INTEST instruction 9-5
TAP ID Register 9-8

DBGTDO
description A-9
BYPASS instruction 9-6, 9-7
Debug Instruction Register 9-9
Debug Scan Chain Select Register

9-9
IDCODE instruction 9-6
INTEST instruction 9-5
TAP ID Register 9-8

DBGTMS
description A-9

DCache
associativity 12-9
context switch 12-2
enabling 3-14
imprecise abort on castout 12-10
line length 12-2
precise abort on linefill 12-10
size 12-2, 12-9
streaming 12-2, 12-9
write-back operations 12-2
write-through operations 12-2

DCache and DTCM access priorities
12-6

DCache configuration
for MMU operation 12-4
for MPU operation 12-4

DCache Configuration Register 3-6,
11-4

description 3-21
DCache Lockdown Register 3-7, 3-41

linefill allocation 12-2
DCache parity 12-14
DCCR

see DCache Configuration Register
DCDATAPARx 12-14

description A-16

DCTAGPAR 12-14
description A-16

DEAPR
see Data Extended Access

Permission Register
Debug and Test Address Register 3-7

description 3-56
Debug breakpoint

fault priority 3-28, 10-33, 11-9
fault status code 3-28, 11-9
fault status report 10-33

Debug Control Register
description 3-67

Debug ID Register 8-4
description 8-6, 9-10

Debug Instruction Register 9-4, 9-6
description 9-9
INTEST instruction 9-5

Debug Override Register 3-7
description 3-53
imprecise external aborts 16-6

Debug Scan Chain Select Register 9-4,
9-6

description 9-9
SCAN_N instruction 9-5

Debug state
entering 8-19
exiting 8-19

Debug Status and Control Register 8-4
description 8-7, 9-10

Debug status and control register
enabling halt mode 9-3

Debug watchpoint
fault priority 3-28, 10-33
fault status code 3-28
fault status report 10-33
priority 11-9
status code 11-9

Device ID Register 3-6
description 3-10

DFAR
see Data Fault Address Register

DFSR
see Data Fault Status Register

Dirty data
definition 3-37
memory coherency 3-17
Index-4 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Index
Dispatch unit
MBIST controller interface 20-15
output bus 20-14

Domain Access Control Register 3-6
description 3-23
enabling the MMU 10-3
MMU memory access control

10-26
Domain access control register (CP15

c3) 10-32
Domain fault 10-32
DRADDR

description A-13
DRCS

description A-13
DRDMAEN

description A-13
DRnRW

description A-13
DRRD

description A-13
DRWAIT

description A-13
DRWBL

description A-13
DRWD

description A-13
DRWPAR 17-17

description A-16
DSAPR

see Data Standard Access
Permission Register

DTCM
enabling 3-45
size 3-45

DTCM parity 17-17
DTCM Region Register 3-7

description 3-44
DTCMSIZE 3-45

description A-13
D64n32 3-19, 6-2

description A-5

E
EDBGRQ

description A-9
entering debug state 8-19, 9-3

Endianness
dynamic changing 6-24
of byte lane strobes 6-24

ETMCORECTL
description A-12

ETMDA
description A-12

ETMDATA
description A-12

ETMDATAVALID
description A-12

ETMIA
description A-12

ETMPWRDOWN
description A-12

ETMR15BP
description A-12

ETMR15EX
description A-12

Eviction write buffer 13-1, 13-2, 13-3
memory coherency 13-3

Exception vector
location 3-15

External abort
data load 16-4, 16-5
granularity 16-2, 16-4, 16-6
imprecise 16-2, 16-3, 16-5, 16-6
instruction fetch 16-4, 16-5
precise 16-2, 16-3, 16-4, 16-5

EXTEST instruction 9-4, 9-5, 9-13
comms channel 8-25
writing active scan chain 9-6

F
Fast context switch 3-51

example 3-51
Fast context switch extension

in cache operations 3-38
in TLB operations 3-41

Fast interrupt request signal 18-3
Fault Address Register

external abort reporting 16-3
imprecise external aborts 16-6

Fault Status Register
external abort reporting 16-3
imprecise external aborts 16-6

Fault types 3-28

FCSE Process ID Register 3-7
description 3-49

Fine page table descriptor
translation fault 10-30

H
HADDR

AHB reads 6-7
eight-bit transfers 6-6
16-bit transfers 6-6
32-bit transfers 6-6
64-bit transfers 6-6

HADDRD
description A-3

HADDRI
description A-3

HALT instruction 8-19, 9-3, 9-4, 9-5
Halt mode 9-2, 9-3

description 8-2
HBSTRBD

description A-4
endianness 6-24

HBSTRBI
description A-4
endianness 6-24

HBURSTD
description A-5

HBURSTI
description A-5

HCLK
relation to CLK 4-2

HCLKEND
description A-5
relation to CLK 4-3

HCLKENI
description A-5
relation to CLK 4-3

HIVECSINIT 3-14
HLOCKD

AHB swap operations 6-7
description A-6

HLOCKI
description A-6

HPROT
BIU protection attributes 6-6

HPROTD
description A-2
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Index-5

Index
HPROTI
description A-2

HRDATA
AHB reads 6-7

HRDATAD
description A-5
32-bit transfers 6-25
64-bit transfers 6-25

HRDATAI
description A-6

HREADYD
description A-6

HREADYI
description A-6

HRESETn
description A-6
in test mode 20-14
timing 4-4

HRESPD
description A-6

HRESPI
description A-6

HSIZE
BIU transfer size 6-6

HSIZED
description A-2

HSIZEI
description A-2

HTRANSD
BIU transfers 6-6
description A-3

HTRANSI
BIU transfers 6-6
description A-3

HWDATAD
description A-3
32-bit transfers 6-25
64-bit transfers 6-25

HWRITED
description A-3

HWRITEI
description A-3

I
I and M bit settings

ICache 12-3

ICache
associativity 12-9
context switch 12-2
enabling 3-14
line length 12-2
precise abort on linefill 12-10
size 12-2, 12-9
streaming 12-2, 12-9

ICache and ITCM access priority 12-6
ICache configuration

for MMU operation 12-3
for MPU operation 12-3

ICache Configuration Register 3-6,
11-4

description 3-21
instruction cachability 12-3

ICache Lockdown Register 3-7
description 3-41
linefill allocation 12-2

ICache parity 12-13
ICCR

see ICache Configuration Register
ICDATAPARx 12-13

description A-16
ICTAGPAR 12-13

description A-16
IDCODE instruction 9-4, 9-9

operation 9-8
IEAPR

see Instruction Extended Access
Permission Register

IFAR
see Instruction Fault Address

Register
IFSR

see Instruction Fault Status Register
IMB sequence 5-8–5-10
Imprecise abort

DCache eviction 12-10
masking 3-4

Imprecise external abort
attaching 16-3, 16-6
buffered stores 16-3
cache castouts 16-3
coprocessor operations 16-6
Current Program Status Register

16-6
DCache preload operations 16-6
enabling and disabling 16-6

Imprecise external abort (continued)
Fault Address Register 16-6
fault priority 3-28, 10-33, 11-9
fault status code 3-28, 10-33, 11-9
Fault Status Register 16-6
swap operations 16-6

INITRAM
description A-14

Instruction bus interface unit 6-2
bus width 6-2, 6-3, 6-8
structure 6-8

Instruction Extended Access
Permission Register 3-6

description 3-29
Instruction Fault Address Register 3-6

description 3-33
Instruction Fault Status Register 3-6

description 3-26
Instruction memory barrier 5-8–5-10,

17-4
accessing ITCM 3-45

Instruction Standard Access Permission
Register 3-6

description 3-31
Instruction Transfer Register 8-4, 8-20,

9-3, 9-11
description 9-12

Integer core 2-3
Integer unit 2-2

address type used 3-8
Interrupt latency

locking TLB entries 14-4–14-6
restricting LDM length 14-4–14-6
using write-through memory

14-4–14-6
with 32-bit AHB 14-3–14-6
with 64-bit AHB 14-3–14-6

INTEST instruction 9-4, 9-5, 9-13
comms channel 8-25
reading active scan chain 9-6
reading CP14 r0, r1, and r5 9-5

IRADDR
description A-13

IRCS
description A-13

IRDMAEN
description A-14

IRnRW
description A-13
Index-6 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Index
IRQ acknowledge 18-3
IRQ interrupt request signal 18-3
IRQ interrupt vector address 18-3, 18-5
IRQ vector address

reading from VIC port 3-14
relocating 3-14

IRQACK
description A-15, 18-3
VIC port timing 18-4, 18-5

IRQADDR
description A-15, 18-3
VIC port timing 18-4, 18-5

IRQADDRV
description A-15, 18-3
VIC port timing 18-4, 18-5

IRRD
description A-13

IRWAIT
description A-13

IRWBL
description A-13

IRWD
description A-13

IRWPAR 17-16
description A-16

ISAPR
see Instruction Standard Access

Permission Register
ITCM

booting from 3-45
enabling 3-45
size 3-45

ITCM parity 17-16
ITCM Region Register 3-7, 17-3

description 3-44
ITCMSIZE 3-45

description A-13
I64n32 3-19, 6-2

description A-5

J
Jazelle state

Program Status Registers 3-3
re-entering from debug state 8-19

JTAG instructions 9-4

L
LDCMCRDATA

description A-8
Leakage control 19-5
Level 1 section translation fault

fault priority 3-28, 10-33
fault status code 3-28, 10-33

Level 1 translation precise external
abort

fault priority 3-28, 10-33
fault status code 3-28, 10-33

Level 2 page translation fault
fault priority 3-28, 10-33
fault status code 3-28, 10-33

Level 2 translation precise external
abort

fault priority 3-28, 10-33
fault status code 3-28, 10-33

Little-endian operation
selection 3-14

Load instructions
cycle counts 21-9

Load multiple instructions
cycle counts 21-14

Loads to PC
cycle counts 21-9

Load/store unit 2-2, 2-8
L1 and L2 write ports 2-8
S1 and S2 read ports 2-8

Lockdown TLB 3-40
associativity 3-46
size 3-46
victim replacement 3-46

LSHOLDCPE
description A-7

LSHOLDCPM
description A-8

LSU pipeline 21-9

M
Main TLB 3-40

associativity 3-46
size 3-46, 10-5

MBIST
address scramble 20-17
array architecture 20-13
IDDQ testing 20-17

MBIST controller
dispatch unit interface 20-15

MBISTCLKEN
description A-11
in test mode 20-13

MBISTDIN
in test mode 20-13

MBISTDOUT
in test mode 20-14

MBISTDSHIFT
description A-11
in test mode 20-13

MBISTRAMBYP
description A-11
in ATPG 20-16
in external test mode 20-12
in test mode 20-14

MBISTRESETN
description A-11
in external test mode 20-12
in functional mode 20-11
in test mode 20-14

MBISTRXCGR
description A-11

MBISTRXTCM
description A-11
in test mode 20-14

MBISTSHIFT
description A-11
in test mode 20-13

MBISTTX
description A-11

Memory coherency
cleaning DCache 3-17

Memory management unit
enabling 3-14

Memory parity
see Parity

Memory protection unit
enabling 3-14

Memory Region Remap Register 3-7
description 3-57
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Index-7

Index
MMU
accessing main TLB entries 3-60
accessing MVA tag 3-60, 3-61
accessing PA and access permissions

3-60
accessing PA and access permissions

in lockdown TLB entry 3-60
accessing tag in lockdown TLB entry

3-60
debug control register 3-67
domain fault 10-32
page translation fault 10-30
permission fault 10-32
RAMs 19-5
section translation fault 10-30
transferring lockdown TLB entry to

RAM 3-60
transferring main TLB entry to RAM

3-60
MMU Debug Control Register 3-7
MMU parity 10-35
MMU test operations 3-7

accessing PA and access permissions
in lockdown TLB entry 3-60

description 3-60
MMUDATAPAR 10-35

description A-16
MMUnMPU 3-19

description A-17
MMUTAGPAR 10-35

description A-16
Monitor mode

description 8-2
entering 8-22
exiting 8-22

MPU miss
fault priority 11-9
fault status code 11-9

MRS instructions
cycle counts 21-9

MSR instructions
cycle counts 21-9

MTESTON
description A-11
in test mode 20-13

Multi-ICE 9-3, 9-8
Multilayer AHB operation 4-3
Multiply instructions

cycle counts 21-7

MUXINSEL
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

MUXOUTSEL
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

N
nFIQ

description A-15, 18-3
nIRQ

description A-15, 18-3
VIC port timing 18-4, 18-5

Noncachable instruction fetches 15-2
Noncritical doubleword

definition 16-4
Nonsequential BIU transfers 6-6
Nontranslation precise external abort

fault priority 3-28, 10-33, 11-9
fault status code 3-28, 10-33, 11-9

P
Page access permission fault

fault priority 3-28, 10-33
fault status code 3-28, 10-33

Page domain fault
fault priority 3-28, 10-33
fault status code 3-28, 10-33

Parity
DCache parity 12-14
error detection 10-35, 12-13, 17-16
ICache parity 12-13
MMU parity 10-35
parity generator 10-35, 12-13,

17-16
TCM parity 17-16

Pending write buffer 13-2
cache operations 3-36, 3-37
contents of entries 13-2
detection of sequential addresses

13-2

Pending write buffer (continued)
disabling buffered stores 13-4
draining 10-29
enabling and disabling 3-54
external aborts 13-5
memory coherency 13-3
nonbuffered stores 13-3
noncachable loads 13-3
self-draining 13-3
swap operations 13-3

Permission fault 10-32
Pipeline stages

Decode 2-4
Execute 2-4
Fetch 2-4
Issue 2-4
Memory 2-4
Write 2-4

Power management 19-2
dynamic 19-3
static 19-5

Precise external abort 16-5
data load 16-5
instruction fetch 16-5
operations 16-2

Prefetch Abort 10-34, 16-6
BKPT instruction 8-3
IMMU fault status register 10-34,

11-10
level 2 fine page translation fault

10-20
MMU level 1 translation fault 10-11
MMU level 2 translation fault 10-15

Prefetch buffer 2-6, 5-2, 5-3, 5-6, 5-7,
21-2

Prefetch unit 2-2, 2-6
branch folding 5-3
branch phantom 5-3
branch prediction 5-1–5-8
flushing 21-2
speculative prefetching 5-3

Prefetch Unit Debug Override Register
3-7

description 3-55
Process ID 3-49

after reset 3-50
changing 3-51
using 3-49

Process ID Register 3-49
Index-8 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

Index
Protection region
background 11-8
base address 3-34
enabling 3-35
overlapping 11-8
size 3-35

Protection region attributes
bufferability 11-4
cachability 11-4

Protection Region Registers 3-6
description 3-34

PRR0-7
see Protection Region Registers

R
Random victim replacement

selection 3-14
Registers

MMU debug control 3-67
Reset inputs

DBGnTRST 4-4
HRESETn 4-4

RESTART instruction 8-19, 9-4, 9-5
Result cycles 21-4
ROM protection

enabling 3-14
Round-robin victim replacement

selection 3-14
RSTSAFE

description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

S
Saved Program Status Registers 3-3
Scan chain 0

description 9-10
see also Debug ID Register

Scan chain 1
description 9-10
see also Debug Status and Control

Register
Scan chain 2

description 9-11

Scan chain 3
description 9-11

Scan chain 4
description 9-12
see also Instruction Transfer

Register
Scan chain 5

description 9-13
see also Data Transfer Register

SCANMODE
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10
in test mode 20-14

SCANMUX
description A-10, 20-9

SCAN_N instruction 9-5, 9-6, 9-9
SCORETEST

description A-10
SE

description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10
in test mode 20-14

Section access permission fault
fault priority 3-28, 10-33
fault status code 3-28, 10-33

Section domain fault
fault priority 3-28, 10-33
fault status code 3-28, 10-33

Self-modifying code 6-23, 15-3, 17-4
BitBlt code 5-9
draining the pending write buffer

13-3
loading code from disk 5-9
self-decompressing code 5-10

Sequential BIU transfers 6-6
SI

description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

SIMTESTMDDRSZVAL
description A-17

SIMTESTMDD64n32
description A-17

SIMTESTMDIRSIZE
description A-17

SIMTESTMDIRSZVAL
description A-17

SIMTESTMDI64n32
description A-17

SIMTESTMDRNDDDMA
description A-17

SIMTESTMDRNDDRWT
description A-17

SIMTESTMDRNDIDMA
description A-17

SIMTESTMDRNDIRWT
description A-17

SIMTESTMDRSIZE
description A-17

Size of protection region 3-35
SO

description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

Speculative prefetching 5-3
STANDBYWFI

description A-17
STCMRCDATA

description A-8
Store instructions

cycle counts 21-9
Store multiple instructions

cycle counts 21-14
SWI instruction

cycle counts 21-9
Switching program context 3-49

T
T bit

setting after PC load 3-14
TAP ID Register 9-4

description 9-8
IDCODE Register 9-6

TAPID
description A-9

TCK
relation to CLK 4-3

TCM interface 17-2
TCM parity 17-16
ARM DDI 0244C Copyright © 2003 ARM Limited. All rights reserved. Index-9

Index
TCM Status Register 3-6
description 3-13

TCMVALInImpl
description A-14

Test ports 20-9
Thumb state

Program Status Registers 3-3
re-entering from debug state 8-19

Tightly-coupled memory
address type used 3-8

TLB Lockdown Register 3-7
description 3-46

TLB miss
fault priority 3-28, 10-33
fault status code 3-28, 10-33

TLB operations
see Translation lookaside buffer

operations
Translation fault 10-10

page 10-30
section 10-30

Translation lookaside buffer
address type used 3-8
invalidating entries 10-4
invalidating TLB entries 10-29

Translation lookaside buffer operations
3-6

invalidate all unlocked entries 3-40
invalidate single entry 3-40

Translation Table Base Register 3-6
description 3-20
enabling the MMU 10-3

TTBR
see Translation Table Base Register

V
Vector locations

selection 3-14
Vectored interrupt controller 18-2
Victim replacement

in lockdown TLB 3-46
VINITHI

description A-17

W
Wait for interrupt mode 19-3
Watchpoint

triggering 8-3
Watchpoint Address Registers 8-4

description 8-15
Watchpoint Control Registers 8-4

description 8-15
WBCR

see Write Buffer Control Register
WMUX

description A-10, 20-9
Write Buffer Control Register 3-6,

11-4
description 3-25

WSEI
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

WSEO
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

WSI
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

WSO
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

WSON
description A-10, 20-9
in external test mode 20-12
in functional mode 20-11
in internal test mode 20-10

Z
Zero-cycle branch 2-6, 5-2, 5-3, 5-4
Index-10 Copyright © 2003 ARM Limited. All rights reserved. ARM DDI 0244C

	ARM1026EJ-S
	Change history
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Using this document
	Product revision status
	Timing diagram conventions
	Key to timing diagram conventions

	Register notation conventions
	Register notation conventions

	Further reading

	Feedback
	Feedback on the ARM1026EJ-S processor
	Feedback on this document

	Introduction
	1.1 About the processor
	1.2 Components of the processor
	Figure�1�1 ARM1026EJ-S processor block diagram
	1.2.1 Integer core
	1.2.2 Memory management unit
	1.2.3 Memory protection unit
	1.2.4 Instruction and data caches and pending write buffer
	1.2.5 Instruction and data TCMs
	1.2.6 Branch prediction and prefetch unit
	1.2.7 AMBA interface
	1.2.8 Coprocessor interface
	1.2.9 Debug
	1.2.10 Instruction cycle summary and interlocks
	1.2.11 Design-for-test features
	1.2.12 Power management
	1.2.13 Clocking and reset
	1.2.14 ETM interface logic

	1.3 Silicon revision information

	Integer Core
	2.1 About the integer core
	Integer core

	2.2 Pipeline
	Figure�2�2 Pipeline stages of the ARM1026EJ-S processor

	2.3 Prefetch unit
	2.4 Typical ALU/multiply operations
	Figure�2�3 Pipeline stages of a typical ALU operation
	Figure�2�4 Pipeline stages of a typical multiply operation

	2.5 Load/store unit
	2.6 Typical load/store operations
	Figure�2�5 Pipeline stages of a load or store operation
	Figure�2�6 Pipeline stages of a load multiple or store multiple operation

	Programmer’s Model
	3.1 About the programmer’s model
	3.2 Program status registers
	Figure�3�1 Program Status Registers
	3.2.1 The J bit
	3.2.2 The A bit
	3.2.3 Other bits

	3.3 About the CP15 system control coprocessor registers
	3.3.1 Accessing CP15 registers
	Figure�3�2 CP15 MCR and MRC instruction format

	3.3.2 Summary of CP15 registers
	Table�3�1 CP15 register summary�

	3.3.3 Address types
	Table�3�2 Address types

	3.4 CP15 register descriptions
	3.4.1 CP15 c0 Device ID Register
	Figure�3�3 Device ID Register
	Table�3�3 Encoding of the Device ID Register

	3.4.2 CP15 c0 Cache Type Register
	Figure�3�4 Cache Type Register
	Table�3�4 Encoding of the Cache Type Register�

	3.4.3 CP15 c0 TCM Status Register
	Figure�3�5 TCM Status Register
	Table�3�5 Encoding of the TCM Status Register

	3.4.4 CP15 c1 Control Register
	Table�3�6 Control Register instructions
	Figure�3�6 Control Register
	Table�3�7 Encoding of the Control Register�
	Table�3�8 Effects of Control Register on caches�
	Table�3�9 Effects of Control Register on TCM interface�

	3.4.5 CP15 c1 Auxiliary Control Register
	Figure�3�7 Auxiliary Control Register
	Table�3�10 Encoding of the Auxiliary Control Register

	3.4.6 CP15 c2 Translation Table Base Register
	Table�3�11 Translation Table Base Register instructions
	Figure�3�8 Translation Table Base Register
	Table�3�12 Encoding of the Translation Table Base Register
	Table�3�13 L2C and L2B encoding

	3.4.7 CP15 c2 DCache and ICache Configuration Registers
	Table�3�14 DCache and ICache Configuration Register instructions
	Figure�3�9 DCache and ICache Configuration Registers
	Table�3�15 Encoding of the DCache and ICache Configuration Registers

	3.4.8 CP15 c3 Domain Access Control Register
	Table�3�16 Domain Access Control Register instructions
	Figure�3�10 Domain Access Control Register
	Table�3�17 Encoding of the Domain Access Control Register
	Table�3�18 Access permission summary when using the MMU�

	3.4.9 CP15 c3 Write Buffer Control Register
	Table�3�19 Write Buffer Control Register instructions
	Figure�3�11 Write Buffer Control Register
	Table�3�20 Encoding of the Write Buffer Control Register

	3.4.10 CP15 c4 Reserved
	3.4.11 CP15 c5 Data and Instruction Fault Status Registers
	Table�3�21 Data and Instruction Fault Status Register instructions�
	Figure�3�12 Data and Instruction Fault Status Registers
	Table�3�22 Encoding of the Data and Instruction Fault Status Registers �
	Table�3�23 MMU and MPU faults

	3.4.12 CP15 c5 Data and Instruction Extended Access Permission Registers
	Table�3�24 DEAPR and IEAPR instructions
	Figure�3�13 Data and Instruction Extended Access Permission Registers
	Table�3�25 Encoding of the DEAPR and IEAPR�
	Table�3�26 Encoding of the extended access permission bit fields�

	3.4.13 CP15 c5 Data and Instruction Standard Access Permission Registers
	Table�3�27 DSAPR and ISAPR instructions
	Figure�3�14 Data and Instruction Standard Access Permission Registers
	Table�3�28 Encoding of the DSAPR and ISAPR
	Table�3�29 Encoding of the standard access permission bit fields�

	3.4.14 CP15 c5 Data and Instruction Fault Address Registers
	Table�3�30 DFAR and IFAR instructions�
	Figure�3�15 Data and Instruction Fault Address Registers

	3.4.15 CP15 c5 Protection Region Registers
	Table�3�31 Protection Region Registers instructions
	Figure�3�16 Protection Region Registers 0-7
	Table�3�32 Encoding of the Protection Region Registers�

	3.4.16 CP15 c7 cache operations
	Table�3�33 Cache operation instructions �
	Figure�3�17 Rd format for cache operations in MVA format
	Table�3�34 Encoding of the cache operations bit fields in MVA format�
	Figure�3�18 Rd format for cache operations in set/way format
	Table�3�35 Encoding of the cache operation bit fields in set/way format

	3.4.17 CP15 c8 TLB operations
	Table�3�36 TLB operation instructions
	Figure�3�19 Rd format for invalidate single TLB entry operations
	Table�3�37 Encoding of the invalidate single TLB entry bit fields

	3.4.18 CP15 c9 DCache and ICache Lockdown Registers
	Table�3�38 DCache and ICache Lockdown Register instructions�
	Figure�3�20 DCache and ICache Lockdown Registers
	Table�3�39 Encoding of the DCache and ICache Lockdown Registers�

	3.4.19 CP15 c9 DTCM and ITCM Region Registers
	Table�3�40 DTCM and ITCM Region Register instructions
	Figure�3�21 DTCM and ITCM Region Registers
	Table�3�41 Encoding of the DTCM and ITCM Region Registers

	3.4.20 CP15 c10 TLB Lockdown Register
	Table�3�42 TLB Lockdown Register instructions
	Figure�3�22 TLB Lockdown Register
	Table�3�43 Encoding of the TLB Lockdown Register

	3.4.21 CP15 c11 Reserved
	3.4.22 CP15 c12 Reserved
	3.4.23 CP15 c13 FCSE Process ID Register
	Table�3�44 FCSE Process ID Register instructions
	Figure�3�23 FSCE Process ID Register
	Table�3�45 Encoding of the FSCE Process ID Register
	Figure�3�24 FCSE address mapping

	3.4.24 CP15 c13 Context ID Register
	Table�3�46 Context ID Register instructions
	Figure�3�25 Context ID Register

	3.4.25 CP15 c14 Reserved
	3.4.26 CP15 c15 Debug Override Register
	Table�3�47 Debug Override Register instructions
	Figure�3�26 Debug Override Register
	Table�3�48 Encoding of the Debug Override Register�

	3.4.27 CP15 c15 Prefetch Unit Debug Override Register
	Table�3�49 Prefetch Unit Debug Override Register instructions
	Figure�3�27 Prefetch Unit Debug Override Register
	Table�3�50 Encoding of the Prefetch Unit Override Register

	3.4.28 CP15 c15 Debug and Test Address Register
	Table�3�51 Debug and Test Address Register instructions
	Figure�3�28 Debug and Test Address Register

	3.4.29 CP15 c15 Memory Region Remap Register
	Table�3�52 Memory Region Remap Register instructions
	Figure�3�29 Memory Region Remap Register
	Table�3�53 Encoding of the Memory Region Remap Register
	Table�3�54 Encoding of the remap fields
	Figure�3�30 Memory region attribute resolution

	3.4.30 CP15 c15 MMU test operations
	Table�3�55 MMU test operation instructions
	Figure�3�31 Rd format for selecting main TLB entry
	Table�3�56 Encoding of the main TLB entry-select bit fields
	Figure�3�32 Rd format for accessing MVA tag of main or lockdown TLB entry
	Table�3�57 Encoding of the TLB MVA tag bit fields�
	Figure�3�33 Rd format for accessing PA and AP data of main or lockdown TLB entry
	Table�3�58 Encoding of the TLB entry PA and AP bit fields�
	Figure�3�34 Rd format for selecting lockdown TLB entry
	Table�3�59 Encoding of the lockdown TLB entry-select bit fields

	3.4.31 CP15 c15 Cache Debug Control Register
	Table�3�60 Cache Debug Control Register instructions
	Figure�3�35 Cache Debug Control Register
	Table�3�61 Encoding of the Cache Debug Control Register

	3.4.32 CP15 c15 MMU Debug Control Register
	Table�3�62 MMU Debug Control Register instructions
	Figure�3�36 MMU Debug Control Register
	Table�3�63 Encoding of the MMU Debug Control Register�

	3.5 CP15 instruction summary
	Table�3�64 CP15 instruction summary�

	Clocking and Reset Timing
	4.1 About clock and reset signals
	Figure�4�1 HCLK derivation

	4.2 Clock interfaces
	4.2.1 AHB clock interface
	4.2.2 DBGTAP clock interface
	Figure�4�2 TCK derivation

	4.3 Reset

	Prefetch Unit
	5.1 About the prefetch unit
	5.2 Branch prediction activity
	5.2.1 Branch folding
	5.2.2 Flushing the prefetch buffer
	5.2.3 Branch penalty
	Table�5�1 Penalty for a mispredicted branch

	5.2.4 Optimization of branch instructions
	5.2.5 Return stack

	5.3 Branch instruction cycle summary
	Table�5�2 ARM and Thumb branch instruction cycle counts�

	5.4 Instruction memory barriers
	5.4.1 Generic IMB use
	5.4.2 IMB implementation
	5.4.3 Execution of IMB sequences

	Bus Interface
	6.1 About the bus interface
	6.2 Bus transfer characteristics
	Table�6�1 DBIU transfer characteristics
	Table�6�2 IBIU transfer characteristics
	6.2.1 Transfer size
	6.2.2 Sequential and nonsequential transfers
	6.2.3 BIU protection control
	6.2.4 AHB reads

	6.3 Bus transfer cycle timing
	6.3.1 Cache linefill cycle count
	Table�6�3 Definition of variables in cache linefills with 64-bit interface
	Figure�6�1 Cache linefill cycle count with 64-bit AHB
	Table�6�4 Symbols used in linefill cycle counts with 64-bit AHB
	Table�6�5 Definition of variables in cache linefills with 32-bit interface
	Figure�6�2 Cache linefill cycle count with 32-bit AHB
	Table�6�6 Symbols used in linefill cycle counts with a 32-bit AHB

	6.3.2 Cache castout cycle count
	Table�6�7 Definition of variables in castouts
	Figure�6�3 Cache castout cycle count with 64-bit AHB interface
	Table�6�8 Symbols used in linefill cycle counts with 64-bit AHB
	Figure�6�4 Cache castout cycle count with 32-bit AHB interface

	6.3.3 Level 1 and level 2 table walk cycle count
	Table�6�9 Definition of variables in level 1 and level 2 table walks
	Figure�6�5 Level 1 and level 2 table walk cycle count
	Table�6�10 Symbols used in level 1 and level 2 table walk cycle counts

	6.3.4 NC load and NCNB store cycle count
	Table�6�11 Definition of variables in NC loads and NCNB stores
	Figure�6�6 Cycle count of NC loads and NCNB stores with one data phase
	Table�6�12 Symbols used in NC load and NCNB store cycle counts
	Figure�6�7 Cycle count of NC loads and NCNB stores with two data phases

	6.4 Topology
	Figure�6�8 Bus interface block diagram

	6.5 Endianness of BIU transfers
	Endianness:of byte lane strobes

	6.6 64-bit and 32-bit AHB data buses
	Figure�6�10 AHB bus alignment

	Coprocessor Interface
	7.1 About the coprocessor interface
	7.1.1 CP pipeline
	Figure�7�1 ARM1026EJ-S and CP pipeline stages

	7.2 Coprocessor interface signals
	7.2.1 ARM1026EJ-S instruction progression signals
	7.2.2 ARM1026EJ-S instruction cancelation signals
	7.2.3 CPBOUNCEE
	7.2.4 Busy-waiting instruction
	7.2.5 CP data buses
	7.2.6 CP control signals

	7.3 Design considerations
	7.3.1 Input and output timing
	7.3.2 ARM1026EJ-S processor inputs and outputs
	Figure�7�2 ARM1026EJ-S coprocessor inputs

	7.3.3 CP input loadings
	7.3.4 Combining outputs from multiple CPs
	7.3.5 CP ID number

	7.4 Parallel execution
	7.5 Rules for the interface
	7.6 Pipeline signal assertion
	Table�7�1 Pipeline stages and active signals

	7.7 Instruction issue
	7.7.1 CPINSTR
	Table�7�2 CPINSTR interactions with other signals�

	7.7.2 CPINSTRV
	Table�7�3 CPINSTRV interactions with other signals�

	7.7.3 CPVALIDD
	Table�7�4 CPVALIDD interactions with other signals�

	7.7.4 Example of instruction issue
	Figure�7�3 Instruction issue example

	7.7.5 CPLSLEN, CPLSSWP, and CPLSDBL
	Table�7�5 CPLSLEN interactions with other signals
	Table�7�6 CPLSSWP interactions with other signals�
	Table�7�7 CPLSDBL interactions with other signals

	7.8 Hold signals
	Table�7�8 Hold signals summary�
	7.8.1 ASTOPCPD
	Table�7�9 ASTOPCPD interactions with other signals�
	Figure�7�4 ASTOPCPD example

	7.8.2 ASTOPCPE
	Table�7�10 ASTOPCPE interactions with other signals�

	7.8.3 ASTOPCPE example
	Figure�7�5 ASTOPCPE example

	7.8.4 LSHOLDCPE
	Table�7�11 LSHOLDCPE interactions with other signals

	7.8.5 Example of LSHOLDCPE
	Figure�7�6 LSHOLDCPE example

	7.8.6 LSHOLDCPM
	Table�7�12 LSHOLDCPM interactions with other signals
	Figure�7�7 LSHOLDCPM example

	7.8.7 CPBUSYE
	Table�7�13 CPBUSYE interactions with other signals�

	7.8.8 CPBUSYE example
	Figure�7�8 CPBUSYE example

	7.8.9 CPBUSYE and ASTOPCPD interaction
	Figure�7�9 CPBUSYE ignored due to ASTOPCPD assertion
	Figure�7�10 CPBUSYE asserted before ASTOPCPD

	7.8.10 ASTOPCPD with CPBUSYE
	Figure�7�11 ASTOPCPD with CPBUSYE

	7.8.11 CPBUSYE and ASTOPCPE interaction
	Figure�7�12 CPBUSYE ignored due to ASTOPCPE assertion
	Figure�7�13 CPBUSYE asserted before ASTOPCPE

	7.8.12 ASTOPCPE with CPBUSYE
	Figure�7�14 I2 held up by ASTOPCPE and CPBUSYE
	Figure�7�15 I1 held up by ASTOPCPE and I2 held up by CPBUSYE
	Figure�7�16 I1 held up by CPBUSYE and I2 held up by ASTOPCPD

	7.8.13 CPLSBUSY
	Table�7�14 CPLSBUSY interactions with other signals�

	7.9 Instruction cancelation
	7.9.1 ACANCELCP
	Table�7�15 ACANCELCP interactions with other signals�

	7.9.2 ACANCELCP example
	Figure�7�17 ACANCELCP example

	7.9.3 ACANCELCP with ASTOPCPE example
	Figure�7�18 ACANCELCP with ASTOPCPE example

	7.9.4 ACANCELCP with CPBUSYE example
	Figure�7�19 ACANCELCP with CPBUSYE example

	7.9.5 AFLUSHCP
	Table�7�16 AFLUSHCP interactions with other signals�

	7.9.6 AFLUSHCP example
	Figure�7�20 AFLUSHCP example

	7.10 Bounced instructions
	7.10.1 CPBOUNCEE
	Table�7�17 CPBOUNCEE interactions with other signals�

	7.10.2 CPBOUNCEE example
	Figure�7�21 CPBOUNCEE example

	7.10.3 CPBOUNCEE with ASTOPCPE
	Figure�7�22 CPBOUNCEE with ASTOPCPE example

	7.10.4 CPBOUNCEE with CPBUSYE
	Figure�7�23 CPBOUNCEE with CPBUSYE example

	7.11 Data buses
	7.11.1 STCMRCDATA
	Table�7�18 STCMRCDATA interactions with signals

	7.11.2 LDCMCRDATA
	Table�7�19 LDCMRCDATA interactions with signals

	Debug
	8.1 About the debug unit
	8.1.1 Halt mode and monitor mode compared
	8.1.2 Programming the debug unit
	8.1.3 Summary of CP14 registers
	Table�8�1 CP14 registers and scan chain numbers�

	8.2 Register descriptions
	8.2.1 CP14 c0, Debug ID Register
	Table�8�2 Debug ID Register instructions
	Figure�8�1 Debug ID Register
	Table�8�3 Encoding of the Debug ID Register

	8.2.2 CP14 c1, Debug Status and Control Register
	Table�8�4 Debug Status and Control Register instructions
	Figure�8�2 Debug Status and Control Register
	Table�8�5 Encoding of Debug Status and Control Register�
	Table�8�6 DSCR bits from the core

	8.2.3 CP14 c2-c4
	8.2.4 CP14 c5, Data Transfer Register
	Table�8�7 Data Transfer Register instructions
	Figure�8�3 Data Transfer Register

	8.2.5 CP14 c6-c63
	8.2.6 CP14 c64-c69, Breakpoint Address Registers
	Table�8�8 Breakpoint Address Register instructions�
	Figure�8�4 Breakpoint Address Registers

	8.2.7 CP14 c70-c79
	8.2.8 CP14 c80-c85, Breakpoint Control Registers
	Table�8�9 Breakpoint Control Register instructions
	Figure�8�5 Breakpoint Control Registers
	Table�8�10 Encoding of Breakpoint Control Registers

	8.2.9 CP14 c86-c95
	8.2.10 CP14 c96 and c97, Watchpoint Address Registers
	Table�8�11 Watchpoint Address Register instructions
	Figure�8�6 Watchpoint Address Registers

	8.2.11 CP14 c112 and c113, Watchpoint Control Registers
	Table�8�12 Watchpoint Control Register instructions
	Figure�8�7 Watchpoint Control Registers
	Table�8�13 Encoding of Watchpoint Control Registers�

	8.2.12 CP14 c114-c127

	8.3 Software lockout function
	8.4 Halt mode
	8.4.1 Entering debug state
	8.4.2 Exiting debug state
	8.4.3 Behavior of the PC in debug state
	Table�8�14 Read PC value after debug state entry

	8.4.4 Sending instructions to the integer unit
	8.4.5 Using the DSCR E bit for fast data uploads and downloads
	8.4.6 Accessing processor state

	8.5 Monitor mode
	8.5.1 Entering monitor mode
	8.5.2 Exiting monitor mode
	8.5.3 Reading and writing breakpoint and watchpoint registers

	8.6 Values in the link register after exceptions
	Table�8�15 Link register values after exceptions

	8.7 Comms channel
	Figure�8�8 Comms channel output

	Debug Test Access Port
	9.1 Debug test access port and halt mode
	Figure�9�1 JTAG DBGTAP state diagram
	9.1.1 Entering debug state
	9.1.2 Exiting debug state

	9.2 DBGTAP instructions
	Table�9�1 Supported public JTAG instructions
	9.2.1 EXTEST
	9.2.2 SCAN_N
	9.2.3 RESTART
	9.2.4 HALT
	9.2.5 INTEST
	9.2.6 IDCODE
	9.2.7 BYPASS
	9.2.8 Scan chains

	9.3 Scan chain descriptions
	9.3.1 Bypass Register
	Figure�9�2 Bypass Register bit order

	9.3.2 TAP ID Register
	Figure�9�3 TAP ID Register
	Figure�9�4 TAP ID Register bit order

	9.3.3 Debug Instruction Register, DBGIR
	Figure�9�5 Instruction Register bit order

	9.3.4 Debug Scan Chain Select Register, DBGSCREG
	Figure�9�6 Scan Chain Select Register bit order

	9.3.5 Scan chain 0, Debug ID Register, DIDR
	Figure�9�7 Scan chain 0 bit order

	9.3.6 Scan chain 1, Debug Status and Control Register, DSCR
	Figure�9�8 Scan chain 1 bit order

	9.3.7 Scan chain 2
	Figure�9�9 Scan chain 2 bit order

	9.3.8 Scan chain 3
	9.3.9 Scan chain 4, Instruction Transfer Register, ITR
	Figure�9�10 Scan chain 4 bit order

	9.3.10 Scan chain 5, Data Transfer Register, DTR
	Figure�9�11 Scan chain 5 bit order

	9.3.11 Scan chain 6

	Memory Management Unit
	10.1 About the MMU
	10.1.1 Selecting the MMU
	10.1.2 Enabling the MMU
	10.1.3 Disabling the MMU
	10.1.4 Access permissions and domains
	10.1.5 Translated entries

	10.2 MMU software-accessible registers
	Table�10�1 CP15 MMU registers�

	10.3 Address translation
	10.3.1 Translation table base
	10.3.2 Translation routes for sections and pages
	Figure�10�1 Address translation

	10.3.3 Level 1 descriptor address
	Figure�10�2 Translating a level 1 descriptor address

	10.3.4 Level 1 descriptor
	Figure�10�3 Level 1 descriptor formats
	Table�10�2 Access type encoding in a level 1 descriptor
	Figure�10�4 Translating a section base address

	10.3.5 Level 2 descriptor
	Figure�10�5 Level 2 descriptor formats
	Figure�10�6 Translating a coarse page table address
	Table�10�3 Access type encoding in a coarse page table descriptor
	Figure�10�7 Translating a large page or subpage address from a coarse page table
	Figure�10�8 Translating a small page or subpage address from a coarse page table

	Figure�10�9 Translating a fine page table address
	Table�10�4 Access type encoding in a fine page table descriptor
	Figure�10�10 Translating a large page or subpage address from a fine page table
	Figure�10�11 Translating a small page or subpage address from a fine page table
	Figure�10�12 Translating a tiny page address

	10.4 MMU memory access control
	Table�10�5 Domain access encoding
	Table�10�6 MMU memory access control

	10.5 MMU cachable and bufferable information
	Table�10�7 C and B bit access control

	10.6 MMU and pending write buffer
	10.7 Fault checking sequence
	10.7.1 External abort on translation
	10.7.2 Address alignment fault
	10.7.3 Translation fault
	Figure�10�13 Fault checking flowchart

	10.7.4 Domain fault
	10.7.5 Permission fault

	10.8 Fault priority
	Table�10�8 MMU faults

	10.9 MMU aborts and external aborts
	10.9.1 MMU faults
	10.9.2 External aborts
	10.9.3 Fault address registers and fault status registers

	10.10 Memory parity
	10.10.1 MMU parity interfaces
	Table�10�9 MMU TLB parity interfaces�

	Memory Protection Unit
	11.1 About the MPU
	Figure�11�1 MPU block diagram

	11.2 MPU software-accessible registers
	Table�11�1 CP15 MPU registers

	11.3 Configuring the MPU
	11.3.1 Selecting the MPU
	11.3.2 Initializing the protection regions

	11.4 Overlapping protection regions
	Figure�11�2 Overlapping protection regions

	11.5 Fault priority
	Table�11�2 MPU faults

	11.6 MPU aborts and external aborts
	11.6.1 MPU faults
	11.6.2 External aborts
	11.6.3 Fault address registers and fault status registers

	Caches
	12.1 About the caches
	12.2 Enabling the caches
	12.2.1 Enabling the ICache
	Table�12�1 Enabling the ICache with the processor configured for MMU operation
	Table�12�2 Enabling the ICache with the processor configured for MPU operation

	12.2.2 Enabling the DCache
	Table�12�3 Enabling the DCache with the processor configured for MMU operation
	Table�12�4 Enabling the DCache with the processor configured for MPU operation
	Table�12�5 Enabling data caching and buffering with the C and B bits�

	12.3 Cache and TCM access priorities
	Table�12�6 Priorities of instruction accesses to the TCMs and caches
	Table�12�7 Priorities of data accesses to the TCMs and caches�

	12.4 Cache MVA and set/way formats
	Figure�12�1 Cache read block diagram
	12.4.1 MVA format
	Table�12�8 Cache size and number of sets

	12.4.2 Set/way format

	12.5 Cache size support
	Table�12�9 ICache and DCache size configurations
	12.5.1 0KB caches

	12.6 Cache support for external aborts
	Table�12�10 Aborts on linefills and castouts
	12.6.1 Aborts on linefills
	12.6.2 Aborts on evictions

	12.7 Castout functionality, DCache only
	12.8 Cache support for MBIST
	12.9 Cache memory parity
	12.9.1 ICache parity interface
	Table�12�11 ICache parity interfaces

	12.9.2 DCache parity interface
	Table�12�12 DCache parity interfaces

	12.10 Code examples of CP15 cache operations
	12.10.1 Enabling and disabling caches
	12.10.2 Locking the ICache
	12.10.3 Cleaning the DCache
	12.10.4 Prefetching a line into the ICache

	Pending Write Buffer
	13.1 About the pending write buffer
	13.1.1 Pending write buffer entries
	13.1.2 Sequential address detection
	13.1.3 Noncachable loads and nonbuffered stores
	13.1.4 Eviction write buffer
	13.1.5 Draining the pending write buffer
	13.1.6 Enabling and disabling buffered stores

	13.2 External aborts

	Interrupt Latency
	14.1 About interrupt latency
	14.2 Worst-case interrupt latency
	Table�14�1 Worst-case interrupt latency cycle count

	14.3 Tuning interrupt latency
	Table�14�2 Tuning interrupt latency with a 1:1 HCLK-to-CLK ratio
	Table�14�3 Tuning interrupt latency with a 4:1 HCLK-to-CLK ratio
	Table�14�4 LDM restricted to nine registers
	Table�14�5 TLB locking and write-through caches
	Table�14�6 LDM restricted to nine registers, TLB locking, and write-through caches

	Noncachable Instruction Fetches
	15.1 About noncachable instruction fetches
	15.1.1 Prefetch buffer topology
	15.1.2 Streaming
	15.1.3 Invalidating the prefetch buffer
	15.1.4 Self-modifying code

	15.2 External aborts

	External Aborts
	16.1 About external aborts
	16.1.1 Precise external aborts
	16.1.2 Imprecise external aborts

	16.2 External abort reporting
	Table�16�1 External abort summary

	16.3 External abort rules of conduct
	16.3.1 AHB error on the critical doubleword of a cache linefill
	16.3.2 AHB error on a noncritical doubleword of a cache linefill
	16.3.3 Store modification of a filling cache line
	16.3.4 Imprecise aborts due to buffered write or castout
	16.3.5 Instruction fetch behavior

	Tightly-Coupled Memories
	17.1 About the tightly-coupled memories
	17.2 Programming the TCM
	Table�17�1 ITCM initialization
	17.2.1 Data accesses to the ITCM
	17.2.2 Simple SRAM interface
	Figure�17�1 TCM interface timing
	Table�17�2 TCM mapping of chip select and byte enable mapping

	17.2.3 TCM wait state indicator
	17.2.4 TCM pending write buffer
	17.2.5 DMA interaction with the TCM controller
	Figure�17�2 TCM controller and DMA arbitration state diagram

	17.2.6 TCM memory BIST support

	17.3 Interface timing
	17.3.1 TCM reads with zero wait states
	Figure�17�3 TCM reads with zero wait states

	17.3.2 TCM reads with one wait state
	Figure�17�4 TCM reads with one wait state

	17.3.3 TCM reads with four wait states
	Figure�17�5 TCM reads with four wait states

	17.3.4 TCM writes with zero wait states
	Figure�17�6 TCM writes with zero wait states

	17.3.5 TCM write with one wait state
	Figure�17�7 TCM writes with one wait state

	17.3.6 TCM write with two wait states
	Figure�17�8 TCM writes with two wait states

	17.3.7 TCM accesses with varying TCM wait states
	Figure�17�9 TCM reads and writes with wait states of varying length

	17.3.8 TCM and DMA interaction
	Figure�17�10 TCM and DMA interaction

	17.4 TCM parity
	17.4.1 ITCM parity interface
	Table�17�3 ITCM parity interface�

	17.4.2 DTCM parity interface
	Table�17�4 DTCM parity interface�

	Vectored Interrupt Controller Port
	18.1 About vectored interrupt controllers
	18.2 About the VIC port
	Table�18�1 VIC port signals

	18.3 Timing of the VIC port
	Figure�18�1 VIC port timing example with HCLK:CLK = 1:1
	Figure�18�2 VIC port timing example with HCLK:CLK = 2:1

	Power Management
	19.1 About power management
	19.2 Wait for interrupt mode
	Figure�19�1 Using STANDBYWFI to control system clocks
	Figure�19�2 Deassertion of STANDBYWFI after an IRQ interrupt
	Figure�19�3 Using STANDBYWFI to control ARM1026EJ-S clocks

	19.3 Leakage control
	Figure�19�4 Cache power-down
	19.3.1 Cache RAMs
	19.3.2 MMU RAMs

	Design for Test
	20.1 ARM1026EJ-S processor
	20.1.1 Test wrapper
	Figure�20�1 Dedicated input wrapper cell
	Figure�20�2 Dedicated output wrapper cell
	Figure�20�3 Shared input wrapper cell
	Figure�20�4 Shared output wrapper cell
	Table�20�1 Selecting mode of operation of dedicated wrapper cells

	20.1.2 Wrapper segmentation
	Figure�20�5 Wrapper segments
	Figure�20�6 HWDATA bus output ports
	Figure�20�7 HRDATA bus input ports
	Table�20�2 Wrapper scan chains
	Figure�20�8 Wrapper falling-edge logic

	20.1.3 Clock gating
	20.1.4 Reset
	Figure�20�9 Reset synchronizer
	Figure�20�10 RSTSAFE signal
	Figure�20�11 Reset wrapper cell

	20.1.5 Test ports
	Table�20�3 Test port signals during internal test�

	20.2 Test signal connections
	Table�20�4 Test port connections in internal test mode
	Table�20�5 Test port connections in functional mode
	Table�20�6 Test port connections in external test mode�

	20.3 MBIST
	Figure�20�12 MBIST block diagram
	20.3.1 Memory test interface
	Table�20�7 MBIST interface in test mode�
	Table�20�8 MBISTTX external interface
	Table�20�9 MBISTRXCGR[2:0] and MBISTRXTCM[2:0] external interface

	20.3.2 MBIST and ATPG
	Figure�20�13 ATPG view of read datapath

	20.3.3 MBIST arrays
	Figure�20�14 Chip-select implementation example
	Figure�20�15 Data RAM MBIST arrays
	Figure�20�16 Instruction RAM MBIST arrays
	Figure�20�17 MMU RAM MBIST array
	Figure�20�18 TCM MBIST array
	Table�20�10 Memory test interface cycle counts�

	20.3.4 MBIST Instruction Register
	Figure�20�19 MBIST Instruction Register
	Table�20�11 Scanout formats of fail data
	Table�20�12 Array enables�

	20.3.5 MBIST test waveforms
	Figure�20�20 MBIST test start waveforms
	Figure�20�21 MBIST test end waveforms

	20.3.6 Test restrictions with the ARM BIST
	20.3.7 Datalog and bitmapping features
	20.3.8 Using non-ARM MBIST testing
	20.3.9 MBIST address scramble

	Instruction Cycle Count
	21.1 Cycle timing considerations
	21.2 Instruction cycle counts
	21.2.1 Data processing instructions
	Table�21�1 Subcategories of data processing instructions
	Table�21�2 Cycle counts of data processing instructions �

	21.2.2 Multiply instructions
	Table�21�3 Cycle counts of multiply instructions�

	21.2.3 Branch instructions
	Table�21�4 Cycle counts of branch instructions

	21.2.4 MRS and MSR instructions
	Table�21�5 Cycle counts of MRS and MSR instructions�

	21.2.5 SWI instruction
	21.2.6 Load and store instructions
	Table�21�6 Cycle counts of load instructions���
	Table�21�7 Cycle counts of store instructions�

	21.2.7 Load multiple and store multiple instructions
	Table�21�8 Cycle counts of load multiple and store multiple instructions

	21.2.8 Preload instructions
	Table�21�9 Cycle counts of preload instructions

	21.2.9 Coprocessor instructions
	Table�21�10 Cycle counts of coprocessor instructions ��

	21.2.10 Semaphore instructions
	Table�21�11 Cycle counts of swap instructions

	21.2.11 Thumb data processing instructions
	Table�21�12 Cycle counts of Thumb data processing instructions��

	21.2.12 Thumb multiply instructions
	Table�21�13 Cycle count of the Thumb multiply instruction

	21.2.13 Thumb branch instructions
	Table�21�14 Cycle counts of Thumb branch instructions

	21.2.14 Thumb SWI instruction
	21.2.15 Thumb load instructions and store instructions
	Table�21�15 Cycle counts of Thumb load instructions�
	Table�21�16 Cycle counts of Thumb store instruction�

	21.2.16 Thumb load multiple and store multiple instructions
	Table�21�17 Cycle counts of Thumb load/store multiple instructions�

	21.3 Interlocks
	Figure�21�1 Pipeline forwarding paths
	21.3.1 Examples of interlocking and forwarding

	Signal Descriptions
	Signal Descriptions
	A.1 AHB signals in normal mode
	Table�A�1 AHB signals�

	A.2 Coprocessor signals
	Table�A�2 Coprocessor signals�

	A.3 Debug interface signals
	Table�A�3 Debug interface signals�

	A.4 DFT signals
	Table�A�4 DFT signals�

	A.5 MBIST signals
	Table�A�5 MBIST signals

	A.6 ETM signals
	Table�A�6 ETM signals

	A.7 TCM signals
	Table�A�7 TCM signals�

	A.8 Interrupt signals
	Table�A�8 Interrupt signals�

	A.9 Memory parity signals
	Table�A�9 Memory parity signals

	A.10 Other signals
	Table�A�10 Other signals

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	P
	R
	S
	T
	V
	W
	Z

