

2.4GHz FSK Transmitter

Document Title

2.4GHz FSK Transmitter

Revision History

Rev. No.	History	Issue Date	<u>Remark</u>
0.0	Initial issue	January 3, 2002	Preliminary
0.1	Error correction:	February 4, 2002	
	Change part number from A73P24P01 to A73P024P01		
0.2	Modify AC Characteristic, PIN description and SPI interface	July 30, 2002	
0.3	Update Fig-3, 4, 7and 8. Table-3 and pin description.	August 2, 2002	
0.4	Modify frequency deviation, data rate, output power, low voltage	October 16, 2002	
	indicator SPI interface, and pin description.		
0.5	Modify X'TAL Settling Time, Tx output power (Low power)	June 9, 2003	
	Application Circuit, and delete X'TAL accuracy		
0.6	Improve Performance	October 6, 2003	

Important Notice:

AMIC reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. AMIC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of AMIC products in such applications is understood to be fully at the risk of the customer.

Preliminary

2.4GHz FSK Transmitter

Typical Applications

- Wireless Mouse and Keyboard
- 2.4GHz ISM Band Communication System

General Description

The A7301 is a monolithic CMOS integrated circuit intended for use as a low cost FSK transmitter in wireless applications. The device is provided in a 32-lead plastic QFN5X5 packaging and is designed as a complete FSK

Pin Configurations

Wireless toy

Available in 32-pin QFN package

transmitter. It is intended for wireless applications in the 2.4GHz to 2.5GHz ISM band. The chip features a fully programmable frequency synthesizer with integrated VCO circuitry.

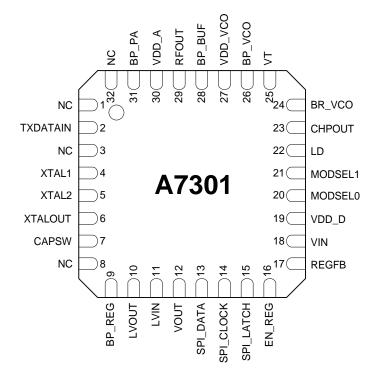


Figure 1. QFN Package Top View

1

Block Diagram

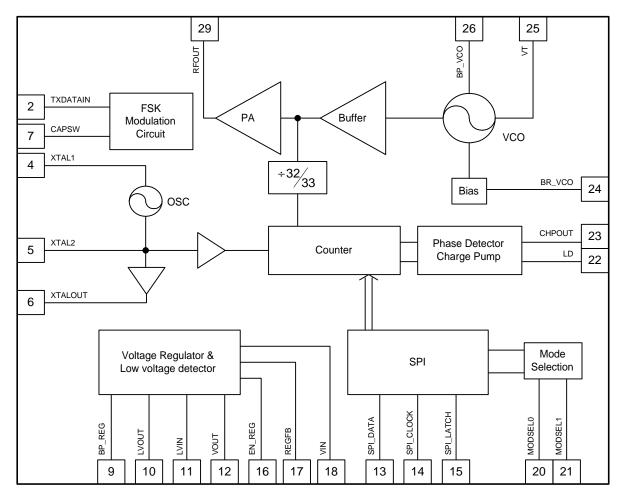


Figure 2. System Block Diagram

Specification

Parameter	Description	Min.	Тур.	Max.	Unit
General					
Storage Temperature		-20		70	°C
Operation Temperature		0		50	°C
Supply Voltage		2.2	2.5	5	V
Current Consumption	Active (@High Power)		17		mA
Transmitter Circuit	Active (@Low Power)		14		mA
	Stand By		1.5		mA
	Sleep		5		μΑ
Current Consumption	Active @ Vin = 3.3V		150		μΑ
Embedded Regulator	Stand By		5		μA
Average Current Consumption	@25% Duty, Low Power		5		mA
Phase Locked Loop					
Reference Frequency		4	,6,8,10,12,14, ²	16	MHz
X'TAL Settling Time	@12MHz, cap. Load = 20pF		5		ms
Operation Frequency			2416~2478		MHz
Number of Channel	@2MHz spacing		32		
PLL Settling Time	@Loop bandwidth = 100KHz		150		μs
RF Front End					
TX Power	High Power		-2		dBm
	Low Power		-10		dBm
RF Output Impedance	@2.45GHz		50		Ohm
Modulation					
Scheme	FSK				
Frequency Deviation	+/-		50		KHz
Data Rate		4.8		64	Kbps
Regulator					
Supply voltage				5	V
Output voltage			2.5		V
Drop out voltage			0.2		V
Load current				50	mA
Battery-Low indicator reference			1.2		V

Table 1.

RF - Baseband Interface

Pin Number	Pin Name	Description	Note
18	VIN	Supply voltage.	
	GND	Ground.	Please see Pin Descriptions section for detail.
2	TXDATAIN	Transmitter data input.	
13	SPI_DATA	Data for SPI interface.	
14	SPI_CLOCK	Clock for SPI interface.	
15	SPI_LATCH	Latch for SPI interface.	
20	MODSEL0	Chip operating mode selection (LSB).	Option.
21	MODESEL1	Chip operating mode selection (MSB).	Option.
22	LD	PLL locked detect indicator output.	Option.
16	EN_REG	Voltage regulator enable pin.	Option.
10	LVOUT	Battery-low indicator output.	Option.

Table 2.

Pin Descriptions (I: input; O: output; OD: open drain output)

Pin No.	Symbol	I/O	Function Description
1	NC		This pin must be open.
2	TXDATAIN	I	Transmitter data input.
3	NC		This pin must be open.
4	XTAL1	I	Colpitts crystal oscillator node 1. Connect to external feedback capacitor.
5	XTAL2	I	Colpitts crystal oscillator node 2. Connect to external feedback capacitor.
6	XTALOUT	0	Inverted output from crystal oscillator.
7	CAPSW	I	Modulation switch input.
8	NC		This pin must be open.
9	BP_REG	0	Regulator band gap bypass output. Connect to external noise rejection capacitor. Typical output voltage is 1.2V.
10	LVOUT	0	Battery-Low voltage indicator output. This pin is active low when LVIN is below BP_REG voltage level.
11	LVIN	I	Input for battery-low voltage indicator. The indicator compares LVIN with the threshold voltage, BP_REG.
12	VOUT	0	Regulator output voltage. Nominal voltage output is 2.5V.
			Data for SPI interface.
13	SPI_DATA	I/OD	This pin operates as an Input pin when SPI is in Write mode. This pin operates as an open drain output when SPI is in Read mode.
14	SPI_CLOCK	I	Clock input for SPI interface.
15	SPI_LATCH	I	Latch input for SPI interface.
16	EN_REG	I	Voltage regulator enable pin. Signal is active high.
17	REGFB	0	Output from regulator feedback network. VOUT is set to nominal voltage when this pin is opened. If other voltage is required, connect it to external resistor to adjust VOUT.
18	VIN	I	Supply voltage for the internal voltage regulator.
19	VDD_D		Digital supply voltage input.
20 21	MODSEL0 MODSEL1	I	Transmitter (embedded regulator not included) operation mode selection inputs. MODSEL[1:0] = 00: Sleep mode. Transmitter circuit is turned off. MODSEL[1:0] = 01: Stand-by mode. X'TAL oscillator is turned on. MODSEL[1:0] = 10: Transmit mode. MODSEL[1:0] = 11: Reserved.
22	LD	OD	Output from PLL lock detector. This pin is active high (Open drain) when PLL is locked.
23	CHPOUT	0	Charge-pump output. This pin charges external capacitor to adjust VCO frequency.
24	BR_VCO	0	VCO band gap bias output. Connect to external resistor to set bias current.
25	VT	1	VCO tuning voltage input. The VCO frequency increases as VT increases.
26	BP_VCO	0	Noise bypass. Connect to external noise rejection capacitor.
27	VDD_VCO	I	VCO supply voltage input.
28	BP_BUF	0	Noise bypass. Connect to external noise rejection capacitor.
29	RFOUT	0	RF output with internal 4Kohm pull down resistor.
30	VDD_A	I	Analog supply voltage input.
31	BP_PA	0	Noise bypass.
32	NC		This pin must leave open.
	GND		All internal groundings are connected through the paddle on the back-side of the IC. It is important to make sure proper ground soldering during SMT process to ensure solid grounding path to the target PCB.

Table 3.

Absolute Maximum Ratings

Parameter	With respect to	Rating	Unit
Supply voltage range (VDD)	GND	-0.3 to 5.5	Vdc
Other I/O pins range	GND	-0.3 to VDD+0.3	Vdc
Storage temperature range		-20 ~ +70	°C

Table 4.

*Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Circuit Description

1. Reset

When SPI_CLOCK and SPI _LATCH are both held high simultaneously, bit 4 through bit 9 of the Mode Select Register will be reset to "Low" state.

2. Serial to Parallel Interface (SPI)

A7301's SPI bus consists of three signals: SPI_DATA, SPI_CLOCK, and SPI_LATCH. This interface is used for external base-band controller to communicate with transmitter's internal data and control registers. The contents of the registers are shown in the following register description sections.

After setting SPI_LATCH signal to "Low" state, data on SPI_DATA is shifted into the internal shift register on the rising edge of SPI_CLOCK with MSB going in first. SPI_LATCH should be asserted at the end to latch the data packet into the register according to the address bits, bit 0 through bit 3, for each of the registers. All registers can only be written into except the Status Register that can only be read.

When the content of the Status Register need to be fetched by external controller, external baseband controller need to make sure that the address bits are pointing to address location 0x0 for proper read operation. After the address bits are shifted into the SPI interface and latched by asserting SPI_LATCH, the SPI interface will be in Read Mode and the content of the Status Register will be shifted out on SPI_DATA pin. When all 12-status bits have been shifted out, SPI bus will be put back to Write Mode automatically.

A. Register Description

Note: Convention used:

1: Logic level "ONE".

- 0: Logic level "ZERO".
- X: Don't care.

Synthesizer Configuration Register I (Write only / Address 0xf)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
MB6	MB5	MB4	MB3	MB2	MB1	MB0	MA4	MA3	MA2	MA1	MA0	1	1	1	1

Synthesizer Configuration Register II (Write only / Address 0x7)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
Х	MB9	MB8	MB7	R7	R6	R5	R4	R3	R2	R1	R0	0	1	1	1

Synthesizer Configuration Register I and Synthesizer Configuration Register II control synthesizer frequency settings where

MA[4:0]: A counter[4:0], MB[9:0]: B counter[9:0], P[7:0]: P counter[7:0] Valid rang

R[7:0]: R counter[7:0]. Valid range is from 2 to 255.

The content of A, B and R registers are in unsigned binary format (i.e., $11111_2 = 31_{10}$)

The equation for setting the synthesizer frequency is:

 $f_{vco} = f_{crystal} X (32 X B + A) / R$ (B must be greater than A).

Crystal Control Register (Write only / Address 0xb)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
0	DP	TXH2	TXH1	TXH0	TXL2	TXL1	TXL0	FX3	FX2	FX1	FX0	1	0	1	1

DP: Data Polarity. This control bit sets data output polarity.

0: Inverted.

1: Normal.

TXH[2:0]: Reserved. Must be set to 0x0 for proper operation. TXL[2:0]: Reserved. Must be set to 0x0 for proper operation. FX[3:0]: Reserved. Must be set to 0x0 for proper operation.

VCO Control Register (Write only / Address 0x3)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
VTH2	VTH1	VTH0	T1	T0	HP0	CP2	CP1	CP0	VC2	VC1	VC0	0	0	1	1

VTH[2:0]: Set VCO tuning voltage range. Valid range is from 0x7 to 0x0. The setting of VTH varies inversely with the tuning voltage range such that when VTH = 0x0 tuning voltage range is from 0.3V to VDD-0.3V and when VTH = 0x7 tuning voltage range is from 1V to VDD-1V.

T[1:0]: Reserved. Must be set to 0x0 for proper operation.

HP0: RF output power level control.

0: Low power output.

1: High power output.

CP[2]: Reserved. Must be set to 0x0 for proper operation.

CP[1:0]: Charge pump output current control. Valid range is from 0x3 to 0x0. The setting of CP varies linearly with the output current level such that when CP = 0x0 output current = 100uA and when CP = 0x3 output current = 700uA.

VC[2:0]: Reserved. Must be set to 0x4 for proper operation.

Test Control Register (Write only / Address 0xd)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
T2	T1	T0	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0	1

T[2:0]: Reserved. Must be set to 0x1 for proper operation.

Mode Select Register (Write only / Address 0x5)

Bit 15	Bit 14	Bit 13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
Х	Х	Х	Х	Х	SC1	SC0	Х	СМ	EXTB	MD1	MD0	0	1	0	1

SC[1:0]: Status Register bit 6 control. Depends on the setting of SC[1:0], bit 6 of the Status Register can represent either system error flag, Battery-low detect or PLL lock detect.

[1:0] = 10: System Error.

[1:0] = 11: Battery-low detect.

[1:0] = 0X: PLL lock detect.

CM: Reserved. Must be set to 1 for proper operation.

EXTB: Operating mode selection.

0: external mode. Mode of operation is determined by external pin MODSEL0 and MODSEL1.

1: internal mode. Mode of operation is determined by MD[1:0].

MD[1:0]: Internal mode selection.

[1:0] = 00: Sleep mode. Transmitter circuit is turned off.

[1:0] = 01: Stand-by mode. X'TAL oscillator is turned on.

[1:0] = 10: Transmit mode.

[1:0] = 11: Reserved.

Status Register (Read only / Address 0x0)

SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
Х	Х	Х	Х	Х	Х	Х	Х	Х	S/B/P	Х	Х	0	0	0	0

S/B/P: Depends on the setting of SC[1:0] in Mode Select Register, this bit can be used to reflect the status of System Error, Battery-low detect or PLL lock detect.

System Error: 0: Normal; 1: Error. Battery-low detect: 0: Battery supply voltage below threshold; 1: Normal. PLL lock detect: 0: Unlock; 1: Lock.

SR[3:0] address bits.

B. SPI Timing Diagram

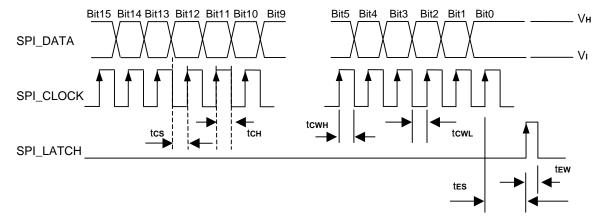


Figure 4. SPI READ mode timing diagram

C. SPI Timing Specification

Symbol	Parameter	Conditions	,	Units		
Gymbol	i didineter	Conditions	Min	Тур	Max	onno
Vн	The High level of voltage	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	VCC-0.4			V
Vi	The low level of voltage	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram			0.4	V
tcs	SPI_DATA to SPI_CLOCK setup time	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	50			ns
tсн	SPI_CLOCK to SPI_DATA hold time	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	10			ns
tсwн	SPI_CLOCK pulse width high	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	50			ns
tcw∟	SPI_CLOCK pulse width low	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	50			ns
tes	SPI_CLOCK to SPI_LATCH setup time	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	50			ns
tew	SPI_LATCH pulse width	Three wire SPI_CLOCK, SPI_DATA, SPI_LATCH timing diagram	50			ns

Table 5.

3. PLL Section

The Phase Lock Loop block is shown as follows:

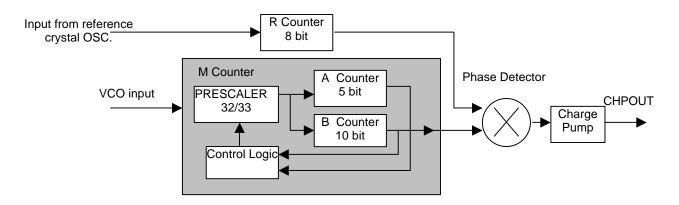


Figure 5. Phase Lock Loop Block Diagram

A. M Counter

The M counter consists of a 32/33 pre-scalar, a 5-bit A counter and a 10-bit B counter (where M = B*32+A).

B. A and B Counters

The A and B counters can be programmed through the Synthesizer Configuration Register I and II. The corresponding relations between the division ratio counters and Synthesizer Configuration Register are shown in the following table:

M counter	B counter	A counter	B counter (binary)								A counter (binary)						
(DEC)	(DEC)	(DEC)	MB9	MB8	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0	MA4	MA3	MA2	MA1	MA0
2400	75	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0
2401	75	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0	1
			0	0	0	1				•	•	•					
2431	75	31	0	0	0	1	0	0	1	0	1	1	1	1	1	1	1
2432	76	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0
2433	76	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1
			0	0	0	1				•	•	•					
2463	76	31	0	0	0	1	0	0	1	1	0	0	1	1	1	1	1
2464	77	0	0	0	0	1	0	0	1	1	0	1	0	0	0	0	0
										•	•						
										•	•	•					
2492	77	28	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0
2493	77	29	0	0	0	1	0	0	1	1	0	1	1	1	1	0	1
2494	77	30	0	0	0	1	0	0	1	1	0	1	1	1	1	1	0
2495	77	31	0	0	0	1	0	0	1	1	0	1	1	1	1	1	1
2496	78	0	0	0	0	1	0	0	1	1	1	0	0	0	0	0	0
2497	78	1	0	0	0	1	0	0	1	1	1	0	0	0	0	0	1
2498	78	2	0	0	0	1	0	0	1	1	1	0	0	0	0	1	0
2499	78	3	0	0	0	1	0	0	1	1	1	0	0	0	0	1	1
2500	78	4	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0

Table 6.

C. R Counter

R counter division R	R_PLL_R register bits										
(DEC)	R7	R6	R5	R4	R3	R2	R1	R0			
2	0	0	0	0	0	0	1	0			
3	0	0	0	0	0	0	1	1			
4.	0	0	0	0	0	1	0	0			
253	1	1	1	1	1	1	0	1			
254	1	1	1	1	1	1	1	0			
255	1	1	1	1	1	1	1	1			

Note: Valid range of R counter is from 2 to 255.

Table 7.

The equation for setting the synthesizer frequency is:

 $f_{vco} = f_{crystal} X (32 X B + A) / R$ (B must be greater than A).

D. Phase Frequency Detector (PFD) and Charge Pump

PFD operates on outputs from the R counter and the M counter. It produces an output signal proportional to the phase and frequency differences between R counter and M counter. The following show a simplified schematic:

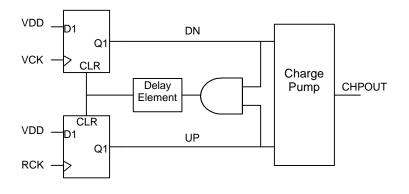
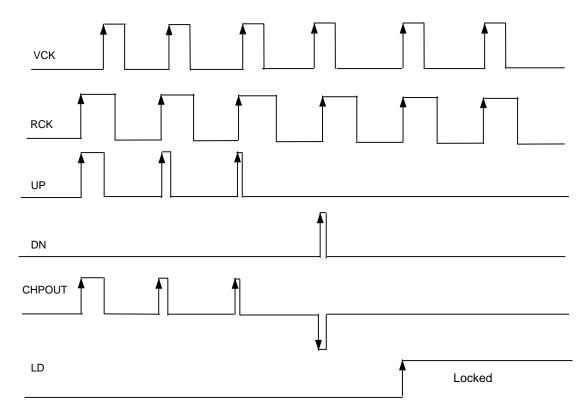
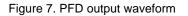




Figure 6. Phase Detector Block Diagram

The PFD output waveform is shown below.

4. Crystal Oscillator and FSK modulation Section

As shown in the following figure, it is a Colpitts type crystal oscillator(XOSC). The FSK modulation is achieved by switching the external capacitor C_X in the XOSC circuit.

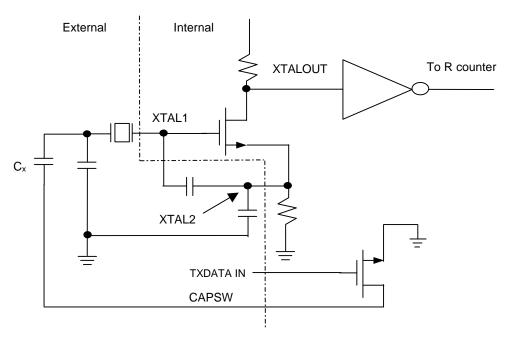


Figure 8. Crystal Oscillator and FSK modulation Circuit

5. Chip setup procedure:

Step 1: Supply DC voltage.

- Step 2: Set Pin 20, MODSEL0 and Pin 21, MODSEL1 to logic **0** (ground) to ensure the IC is operating in external sleep mode after reset.
- Step 3: Reset IC by setting Pin 14, SPI_CLOCK and Pin 15, SPI _LATCH to logic high simultaneously for more than 1 us.
- Step 4: Setup IC's internal control registers by configuring the followings: Synthesizer Configuration Register I, Synthesizer Configuration Register II, Crystal Control Register, and Crystal Control Register. All registers should be written to in the order specified above.
 - a. Synthesizer Configuration Register I and II: Set VCO center frequency.
 - b. Crystal Control Register: Set TXDATA polarity.
 - c. VCO Control Register: Set VCO tuning range and charge pump output current.

Step 5: Set IC to TX mode.

For internal mode operation, set Mode Select Register to 0x05E5.

For external mode operation, set Pin 21, MODSEL1 to "logic 1", Pin 20, MODSEL0 to "logic 0" and set Mode Select Register to **0x05A5**.

Whenever frequency is to be changed, or system error has been detected (by reading from the Status Register) the IC must be reset by repeating step 2, 3, 4-a, and 5.

Application Circuit

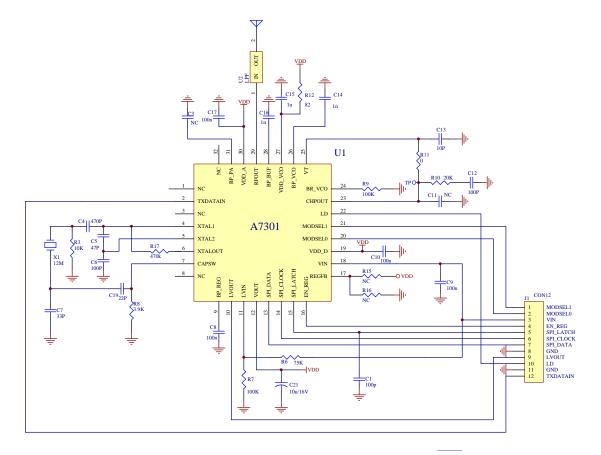
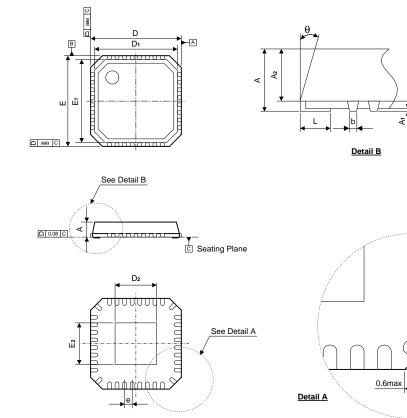


Figure 10. Application Circuit for Transmitter

Ordering Information


Part No.	Package
A73P024P01Q	QFN 32L

unit: inches/mm

Package Information

QFN 32L Outline Dimensions

Symbol	Dimen	sions in	inches	Dimensions in mm						
Symbol	Min	Nom	Max	Min	Nom	Max				
А	0.031	0.033	0.039	0.80	0.85	1.00				
A1	0.000	0.001	0.002	0.00	0.02	0.05				
A2	-	0.026	0.039	-	0.65	1.00				
Аз	-	0.008	-	-	0.20	-				
b	0.007	0.009	0.012	0.18	0.23	0.30				
D	().197 BS(2	5.00 BSC						
D1	(0.187 BS0	2	4.75 BSC						
D2	0.049 0.106		0.128	1.25	2.70	3.25				
E	(0.197 BS0	2	5.00 BSC						
E1	(0.187 BS0	2	4.75 BSC						
E2	0.049	0.106	0.128	1.25	2.70	3.25				
е	(0.020 BSC	2	0.5 BSC						
L	0.012	0.016	0.020	0.30	0.40	0.50				
θ	0°	-	12°	0°	-	12°				
aaa	-	-	0.010	-	-	0.25				
bbb	-	-	0.004	-	-	0.10				
chamfer	-	-	0.024	-	-	0.60				

b ● ● ● bbb @ C A B

0.6max