FEATURES

Internally matched input and output of 50 ohms
High Third Order Output Intercept of +43 dBm
Typical P1dB of 27 dBm
Internally biased
DC blocked with AC coupling
3X3 LFCSP Package
Typical fixed gain of $\mathbf{2 0 ~ d B}$
Operational frequency of $700 \mathbf{~ M H z}$ to $\mathbf{1 ~ G H z}$
Temperature and power supply stable
Noise Figure: 5 dB
Power supply: 5 V

APPLICATIONS

Multi carrier and digital wireless base station infrastructure CDMA and CDMA2000 base stations

BTS equipment such as High Power Amplifiers (HPA's) and pre-drivers.

GENERAL DESCRIPTION

The ADL5322 is a high linearity GaAs driver amplifier that is internally matched to 50 Ohms for operation in the 700 MHz to 1000 MHz frequency range. The amplifier, which has a gain of 20 dB , has been specially designed for use in the output stage of a cellular base station radio or as an input pre-amplifier in a multi-carrier base station power amplifier. Matching, biasing as well as input and output coupling capacitors are all on-chip. The ADL5322 is available in a Pb -free $3 \mathrm{~mm} \times 3 \mathrm{~mm} 8$-pin Chip scale package with an operating temperature from $-40^{\circ} \mathrm{C}$ to
$+85^{\circ} \mathrm{C}$.

Figure 1.

Rev. PrC 5/1/06

SPECIFICATIONS

Table 1. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Unit
Frequency Range Gain	Freq $=850 \mathrm{MHz}$ vs. Frequency 832 MHz to 870 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$ Freq $=880 \mathrm{MHz}$ vs. Frequency 869 MHz to 894 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$ Freq $=940 \mathrm{MHz}$ vs. Frequency 925 MHz to 960 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$	700	$\begin{gathered} 20.3 \\ \pm 0.125 \\ \pm 1 \\ \pm 0.1 \\ 20.2 \\ \pm 0.125 \\ \pm 1 \\ \pm 0.1 \\ 19.8 \\ \pm 0.125 \\ \pm 1.2 \\ \pm 0.1 \end{gathered}$	1000	MHz dB
P1dB	Freq $=850 \mathrm{MHz}$ vs. Frequency 832 MHz to 870 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5 V , @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$ Freq $=880 \mathrm{MHz}$ vs. Frequency 869 MHz to 894 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$ Freq $=940 \mathrm{MHz}$ vs. Frequency 925 MHz to 960 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$		$\begin{gathered} 27.8 \\ \pm 0.1 \\ \pm 1 \\ \pm 0.5 \\ 28 \\ \pm 0.1 \\ \pm 1 \\ \pm 0.5 \\ 27.8 \\ \pm 0.2 \\ \pm 1 \\ \pm 0.5 \end{gathered}$		dBm dB dB dB dBm dB dB dB dBm dB dB dB
Noise Figure Input Return Loss Output Return Loss	$\begin{aligned} & \text { Freq }=830 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \\ & \text { Freq }=830 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \\ & \text { Freq }=830 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \end{aligned}$		$\begin{gathered} \hline 5 \\ -10 \\ -10 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
OIP3	```Freq \(=850 \mathrm{MHz}\) vs. Frequency 832 MHz to 870 MHz vs. Temperature, \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) vs. Voltage 5V, @ \(5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})\) Freq \(=880 \mathrm{MHz}\) vs. Frequency 869 MHz to 894 MHz vs. Temperature, \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) vs. Voltage 5V, @ \(5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})\) Freq \(=940 \mathrm{MHz}\) vs. Frequency 925 MHz to 960 MHz vs. Temperature, \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) vs. Voltage 5V, @ \(5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})\)```		43 ± 0.2 ± 0.6 ± 0.5 43.4 ± 0.2 ± 0.6 ± 0.5 43.4 ± 0.2 ± 0.6 ± 1		dBm dB dB dB dBm dB dB dB dBm dB dB dB
Power Supply Supply Voltage Supply Current Operating Temperature	Pout $=+5 \mathrm{dBm}$	4.75 -40	$\begin{gathered} 5 \\ 320 \end{gathered}$	$\begin{array}{r} 5.25 \\ +85 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5 V
Input Power (re: 50Ω)	18 dBm
Equivalent Voltage	1.8 V rms
θ_{J} (Soldered)	$28.5^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range	$240^{\circ} \mathrm{C}$
(Soldering 60 sec)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Gain vs. Frequency and Supply, $V_{S}=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 3. $P_{1 d B}$ vs. Frequency and Temperature, $V_{S}=5 V, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 4. $O P_{1 d B}$ vs. Frequency and Supply, $V_{s}=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=$ $25^{\circ} \mathrm{C}$

Figure 5. Noise Figure vs. Frequency, Multiple Devices, $V_{s}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 6. OIP3 vs. Frequency and Supply, $V_{S}=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=$ $25^{\circ} \mathrm{C}$, Pout $=+5 \mathrm{dBm}$ per tone

Figure 7. OIP3 vs. Frequency and Temperature, $V s=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Preliminary Technical Data

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,5$	VCC	Positive 5 V Supply Voltage: Bypass these three pins with independent power supply decoupling networks $(100 ~ p F, 10 \mathrm{nF}$, and $10 \mu \mathrm{~F})$.
$3,6,7$	GND	Device Ground
4	RFOUT	RF Output: Internally dc blocked and matched to 50Ω.
8	RFIN	RF Input: Internally dc blocked and matched to 50Ω. Exposed Paddle: Connect to ground plane via a low impedance path

EVALUATION BOARD

Figure 8. shows the schematic of the ADL5322 evaluation board. The board is powered by a single supply in the 4.75 V to 5.25 V range. The power supply is decoupled by a $10 \mu \mathrm{~F}$ and a

Figure 13. Evaluation board component side view

Table 4. Evaluation board components

Component	Function	Default Value
C3, C12, C16	Low frequency bypass capacitors	$10 \mu \mathrm{~F}, 0402$
C2, C11, C17	Low frequency bypass capacitors	$10 \mathrm{nF}, 0402$
C1, C10, C18	High frequency bypass capacitors	$100 \mathrm{pF}, 0402$
C8, C13, C14	Open	Open,0402
R2, R4	AC coupling capacitors (can also use 0Ω resistors since the device has	$100 \mathrm{pF}, 0402$

Figure 12. Evaluation Board Schematic

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5322ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP_VD, 7" Tape and Reel	CP-8-2
ADL5322ACPZ-WP		8 -Lead LFCSP_VD, Waffle Pack	CP-8-2
ADL5322-EVAL		Evaluation Board	

