ChipFind - документация

Электронный компонент: PC3x41xNIP

Скачать:  PDF   ZIP
PC3H41
X
NIP Series
PC3Q410
NIP
PC3H41
X
NIP Series/PC3Q410
NIP
s
Rank Table
s
Absolute Maximum Ratings
s
Outline Dimensions
(Unit : mm)
AC Input, Low Input Current
Type Photocoupler
1. Programmable controllers
2. Facsimiles
3. Telephones
s
Applications
Model No.
Rank mark
Ic (mA)
Conditions
PC3H410NIP
PC3H411NIP
A or no mark
A
0.25 to 2.0
0.5 to 1.5
I
F
=
0.5mA
V
CE
=
5V
T
a
=
25
C
Model No.
Rank mark
Ic (mA)
Conditions
PC3Q410NIP
No mark
0.25 to 2.0
I
F
=
0.5mA
V
CE
=
5V
T
a
=
25
C
*1 Pulse width<=100
s, Duty ratio
=
0.001
*2 40 to 60%RH, AC for 1 minute, f
=
60Hz
*3 For 10s
Parameter
Symbol
Rating
Unit
Forward current
Peak forward current
I
F
I
FM
10
200
mA
mA
mA
Input
Output
V
Power dissipation
Collector-emitter voltage
P
15
Collector power dissipation
Collector current
Total power dissipation
150
70
50
mW
mW
mW
P
tot
I
C
P
C
V
CEO
V
Emitter-collector voltage
6
V
ECO
V
iso
kV
rms
170
Operating temperature
T
opr
-
40 to
+
125
-
30 to
+
100
C
C
Storage temperature
Isolation voltage
T
stg
*2
*3
*1
Soldering temperature
T
sol
260
2.5
C
(Ta
=
25
C)
PC3Q410NIP
0.4
0.1
H 4 1
P C 3 Q 4 1
0
.
4
0
.
1
4.4
0.2
0
.
2
0
.
0
5
5.3
0.3
0.5
+
0.4
-
0.2
7.0
+
0.2
-
0.7
Anode mark
0
.
1
0
.
1
2
.
0
0
.
2
Epoxy resin
Internal connection
diagram
1
.
2
7
0
.
2
5
2
.
6
0
.
3
1
2
3
4
0
.
2
0
.
0
5
5.3
0.3
C0.4
(Input side)
0.5
+
0.4
-
0.2
7.0
+
0.2
-
0.7
Epoxy resin
6
10.3
0.3
1.27
0.25
4
.
4
0
.
2
Primary side mark
8
1
9
16
PC3H41xNIP Series
1
2
4
3
Internal connection
diagram
1
4
3
2
2
.
6
0
.
2
0
.
1
0
.
1
Anode
(Cathode)
Cathode
(Anode)
Emitter
Collector
16
14
12
15
13
10
11
9
1
3
5
2
4
7
6
8
7
5
3
1
6
4
2
13
11
9
14
12
10
8
15
16
Anode
Anode (Cathode)
Cathode (Anode)
Emitter
Collector
0.2mm or more
Soldering area
s
Features
1. Low input current type (I
F
=
0.5mA)
2. High resistance to noise due to high common rejection
voltage (CMR:MIN. 10kV/
s)
3. AC input type
4. Mini-flat package
PC3H41
X
NIP Series
(1ch)
PC3Q410
NIP
(4ch)
5. Isolation voltage (Viso:2.5kVrms)
6. Recognized by UL, file No. E64380
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet
Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
PC3H41
X
NIP Series/PC3Q410
NIP
s
Electro-optical Characteristics
Fig.1 Test Circuit for Common Mode Rejection Voltage
Fig.2 Forward Current vs. Ambient
Temperature
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Forward voltage
Collector current
Isolation resistance
Floating capacitance
Response time
Common mode rejection voltage
Terminal capacitance
Collector dark current
Emitter-collector breakdown voltage
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Rise time
Fall time
V
F
C
t
I
CEO
BV
CEO
BV
ECO
R
ISO
C
f
I
C
V
CE (sat)
tr
tf
CMR
Conditions
I
F
=
10mA
I
F
=
0.5mA, V
CE
=
5V
I
F
=
10mA, I
C
=
1mA
V
=
0, f
=
1kHz
V
CE
=
50V, I
F
=
0
I
C
=0.1mA, I
F
=0
I
E
=10
A, I
F
=0
DC500V 40 to 60%RH
V
=
0, f
=
1MHz
V
CE
=
2V, I
C
=
2mA, R
L
=
100
Ta
=
25
C, R
L
=
470
,
V
CM
=
1.5kV (peak),
I
F
=
0mA, V
CC
=
9V, Vnp
=
100mV
1.4
V
-
-
-
-
70
6
0.25
5
10
10
10
11
30
1.2
-
-
2.0
250
-
0.6
1.0
-
4
18
-
3
18
100
-
10
-
-
V
-
-
-
V
V
-
0.2
-
s
s
kV/
s
mA
pF
pF
nA
(Ta
=
25
C)
I
n
p
u
t
O
u
t
p
u
t
T
r
a
n
s
f
e
r

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
*1 Refer to Fig.1.
*1
V
CM
V
cp
V
np
V
O
(dV/d
t
)
1)
R
L
V
np
V
CC
V
CM
1) V
cp
: Voltage which is generated by displacement current in floating
capacitance between primary and secondary side.
(V
cp
Nearly
=
dV/d
t
C
f
R
L
)
V
CM :
High wave
pulse
R
L
=
470
V
CC
=
9V
F
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F

(
m
A
)
Ambient temperature T
a
(
C)
0
10
5
-
30
0
25
50
75
100
125
Fig.3 Diode Power Dissipation vs. Ambient
Temperature
D
i
o
d
e

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P

(
m
W
)
Ambient temperature T
a
(
C)
0
15
10
5
-
30
0
25
50
75
100
125
PC3H41
X
NIP Series/PC3Q410
NIP
Fig.6 Peak Forward Current vs. Duty Ratio
Fig.7 Forward Current vs. Forward Voltage
P
e
a
k

f
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F
M

(
m
A
)
Duty ratio
10
1000
100
10
-
2
10
-
3
10
-
1
2
2
2
5
5
5
5
1
2000
200
20
500
50
Pulse width
<=
100
s
T
a
=
25
C
F
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F

(
m
A
)
0.1
1
10
100
0
0.5
1.0
1.5
2.0
Forward voltage V
F
(V)
T
a
=
25
C
T
a
=
75
C
T
a
=
100
C
T
a
=
50
C
T
a
=
0
C
T
a
=-
25
C
Fig.5 Total Power Dissipation vs. Ambient
Temperature
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
T
o
t
a
l

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P
t
o
t

(
m
W
)
Ambient temperature T
a
(
C)
0
200
150
170
100
50
-
30
0
25
50
75
100
125
C
o
l
l
e
c
t
o
r

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P
C

(
m
W
)
Ambient temperature T
a
(
C)
0
200
150
100
50
-
30
0
25
50
75
100
125
Fig.8 Current Transfer Ratio vs. Forward
Current
Fig.9 Current Transfer Ratio vs. Forward
Current
C
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

C
T
R

(
%
)
Forward current I
F
(mA)
0.1
1
10
0
600
500
400
300
200
100
V
CE
=
5V
T
a
=
25
C
PC3H41xNIP Series
C
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

C
T
R

(
%
)
Forward current I
F
(mA)
0.1
1
10
0
500
400
300
200
100
V
CE
=
5V
T
a
=
25
C
PC3Q410NIP
PC3H41
X
NIP Series/PC3Q410
NIP
Fig.14 Collector - emitter Saturation Voltage
vs. Ambient Temperature
C
o
l
l
e
c
t
o
r
-
e
m
i
t
t
e
r

s
a
t
u
r
a
t
i
o
n

v
o
l
t
a
g
e

V
C
E

(
s
a
t
)

(
V
)
Ambient temperature T
a
(
C)
0
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
I
F
=
10mA
I
C
=
1mA
-
30
100
90
80
70
60
50
40
30
20
10
0
-
10
-
20
Fig.15 Collector Dark Current vs. Ambient
Temperature
Fig.10 Collector Current vs. Collector-emitter
Voltage
Fig.11 Collector Current vs. Collector-emitter
Voltage
Ambient temperature T
a
(
C)
-
30
100
90
80
70
60
50
40
30
20
10
0
-
10
-
20
V
CE
=
50V
10
-
11
10
-
5
10
-
6
10
-
7
10
-
8
10
-
9
10
-
10
C
o
l
l
e
c
t
o
r

d
a
r
k

c
u
r
r
e
n
t

I
C
E
O

(
A
)
C
o
l
l
e
c
t
o
r

c
u
r
r
e
n
t

I
C

(
m
A
)
Collector-emitter voltage V
CE
(V)
0
40
0
2
4
6
8
10
T
a
=
25
C
30
20
10
P
C
(MAX.)
I
F
=
7mA
I
F
=
5mA
I
F
=
3mA
I
F
=
2mA
I
F
=
1mA
I
F
=
0.5mA
PC3H41xNIP Series
C
o
l
l
e
c
t
o
r

c
u
r
r
e
n
t

I
C

(
m
A
)
Collector-emitter voltage V
CE
(V)
0
40
0
2
4
6
8
10
T
a
=
25
C
30
20
10
P
C
(MAX.)
I
F
=
7mA
I
F
=
5mA
I
F
=
3mA
I
F
=
2mA
I
F
=
1mA
PC3Q410NIP
I
F
=
0.5mA
Fig.12 Relative Current Transfer Ratio vs.
Ambient Temperature
Fig.13 Relative Current Transfer Ratio vs.
Ambient Temperature
R
e
l
a
t
i
v
e

c
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

(
%
)
Ambient temperature T
a
(
C)
-
30
100
90
80
70
60
50
40
30
20
10
0
-
10
-
20
V
CE
=
5V
I
F
=
0.5mA
0
150
100
50
PC3H41xNIP Series
R
e
l
a
t
i
v
e

c
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

(
%
)
Ambient temperature T
a
(
C)
-
30
100
90
80
70
60
50
40
30
20
10
0
-
10
-
20
V
CE
=
5V
I
F
=
0.5mA
0
150
100
50
PC3Q410NIP
PC3H41
X
NIP Series/PC3Q410
NIP
Fig.16 Response Time vs. Load Resistance
R
e
s
p
o
n
s
e

t
i
m
e

(
s
)
0.1
1000
0.1
1
10
Load resistance R
L
(k
)
V
CE
=
2V
I
C
=
2mA
T
a
=
25
C
t
f
t
r
t
d
t
s
100
10
1
Fig.21 Reflow Soldering
25
C
2min
230
C
200
C
180
C
1min
1min
1.5min
30s
Only one time soldering is recommended within the temperature
profile shown below.
Fig.19 Voltage Gain vs Frequency
Fig.20 Collector-emitter Saturation Voltage
vs. Forward Current
C
o
l
l
e
c
t
o
r
-
e
m
i
t
t
e
r

s
a
t
u
r
a
t
i
o
n

v
o
l
t
a
g
e

V
C
E

(
s
a
t
)

(
V
)
Forward current I
F
(mA)
0
5
0
2
4
6
8
10
T
a
=
25
C
4
3
2
1
I
C
=
7mA
I
C
=
5mA
I
C
=
3mA
I
C
=
2mA
I
C
=
1mA
I
C
=
0.5mA
V
o
l
t
a
g
e

g
a
i
n

A
V

(
d
B
)
-
25
5
0.1
1
10
100
1000
Frequency f (kHz)
V
CE
=
2V
I
C
=
2mA
T
a
=
25
C
0
-
5
-
10
-
15
-
20
R
L
=
10k
1k
100
Fig.17 Response Time vs. Load Resistance
(Saturation)
Fig.18 Test Circuit for Response Time
R
e
s
p
o
n
s
e

t
i
m
e

(
s
)
0.1
1000
1
10
100
Load resistance R
L
(k
)
t
f
t
d
t
s
100
10
1
t
r
V
CC
=
5V
I
F
=
16mA
T
a
=
25
C
10%
Input
Output
Input
Output
90%
t
s
t
d
V
CC
R
D
R
L
t
f
t
r