ChipFind - документация

Электронный компонент: IRL3215

Скачать:  PDF   ZIP
IRL3215
HEXFET
Power MOSFET
Fifth Generation HEXFETs from International Rectifier utilize advanced
processing techniques to achieve extremely low on-resistance per silicon area.
This benefit, combined with the fast switching speed and ruggedized device
design that HEXFET Power MOSFETs are well known for, provides the
designer with an extremely efficient and reliable device for use in a wide variety
of applications.
The TO-220 package is universally preferred for all commercial-industrial
applications at power dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
S
D
G
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
12
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
8.5
A
I
DM
Pulsed Drain Current
48
P
D
@T
C
= 25C
Power Dissipation
80
W
Linear Derating Factor
0.53
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
130
mJ
I
AR
Avalanche Current
7.2
A
E
AR
Repetitive Avalanche Energy
8.0
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
1.9
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
V
DSS
= 150V
R
DS(on)
= 0.166
I
D
= 12A
TO-220AB
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
3/23/99
www.irf.com
1
PD- 91792
IRL3215
2
www.irf.com
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
7.2A, di/dt
100A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 4.9mH
R
G
= 25
, I
AS
= 7.2A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 7.2A, V
GS
= 0V
t
rr
Reverse Recovery Time
160
240
ns
T
J
= 25C, I
F
= 7.2A
Q
rr
Reverse RecoveryCharge
810
1210
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
12
48
A
Caculated continuous current based on maximum allowable
junction temperature;for recommended current-handling of the
package refer to Design Tip # 93-4
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
150
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.20
V/C
Reference to 25C, I
D
= 1mA
0.166
V
GS
= 10V, I
D
= 7.2A
0.184
V
GS
= 5.0V, I
D
= 7.2A
0.208
V
GS
= 4.0V, I
D
= 6A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
8.3
S
V
DS
= 25V, I
D
= 7.2A
25
A
V
DS
= 150V, V
GS
= 0V
250
V
DS
= 120V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
35
I
D
= 7.2A
Q
gs
Gate-to-Source Charge
4.1
nC
V
DS
= 120V
Q
gd
Gate-to-Drain ("Miller") Charge
21
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
7.4
V
DD
= 75V
t
r
Rise Time
45
ns
I
D
= 7.2A
t
d(off)
Turn-Off Delay Time
38
R
G
= 12
,
V
GS
= 5.0V
t
f
Fall Time
36
R
D
= 10.2
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
775
V
GS
= 0V
C
oss
Output Capacitance
140
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
70
= 1.0MHz, See Fig. 5
nH
I
GSS
S
D
G
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
L
D
Internal Drain Inductance
4.5
I
DSS
Drain-to-Source Leakage Current
IRL3215
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.01
0.1
1
10
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.5V
0.01
0.1
1
10
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.5V
0.1
1
10
2.0
3.0
4.0
5.0
6.0
7.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
-60 -40 -20
0
20
40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
12A
VGS
TOP 15V
10V
5V
4.5V
3.5V
3V
2.75V
BOTTOM 2.50V
VGS
TOP 15V
10V
5V
4.5V
3.5V
3V
2.75V
BOTTOM 2.50V
IRL3215
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
0
500
1000
1500
2000
2500
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
Ciss
Coss
Crss
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
0.1
1
10
100
1000
1
10
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
0
10
20
30
40
50
0
5
10
15
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
7.2 A
V
= 30V
DS
V
= 75V
DS
V
= 120V
DS
IRL3215
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
3
6
9
12
T , Case Temperature ( C)
I , Drain Current (A)
C
D