ChipFind - документация

Электронный компонент: MB91101

Скачать:  PDF   ZIP

Document Outline

DS07-16301-2E
FUJITSU SEMICONDUCTOR
DATA SHEET
32-bit RISC Microcontroller
CMOS
FR30 Series
MB91101/MB91101A
s
DESCRIPTION
The MB91101 is a standard single-chip microcontroller constructed around the 32-bit RISC CPU (FR* family)
core with abundant I/O resources and bus control functions optimized for high-performance/high-speed CPU
processing for embedded controller applications. To support the vast memory space accessed by the 32-bit
CPU, the MB91101 normally operates in the external bus access mode and executes instructions on the internal
1 Kbyte cache memory and 2 Kbytes RAM for enhanced performance.
The MB91101 is optimized for applications requiring high-performance CPU processing such as navigation
systems, high-performance FAXs and printer controllers.
*: FR Family stands for FUJITSU RISC controller.
s
FEATURES
FR CPU
32-bit RISC, load/store architecture, 5-stage pipeline
Operating clock frequency: Internal 50 MHz/external 25 MHz (PLL used at source oscillation 12.5 MHz)
General purpose registers: 32 bits
16
16-bit fixed length instructions (basic instructions), 1 instruction/1 cycle
Memory to memory transfer, bit processing, barrel shifter processing: Optimized for embedded applications
Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems
supporting high level languages
Register interlock functions, efficient assembly language coding
Branch instructions with delay slots: Reduced overhead time in branch executions
(Continued)
s
PACKAGE
100-pin Plastic LQFP
(FPT-100P-M05)
100-pin Plastic QFP
(FPT-100P-M06)
MB91101/MB91101A
2
(Continued)
Internal multiplier/supported at instruction level
Signed 32-bit multiplication: 5 cycles
Signed 16-bit multiplication: 3 cycles
Interrupt (push PC and PS): 6 cycles, 16 priority levels
External bus interface
Clock doubler: Internal 50 MHz, external bus 25 MHz operation
25-bit address bus (32 Mbytes memory space)
8/16-bit data bus
Basic external bus cycle: 2 clock cycles
Chip select outputs for setting down to a minimum memory block size of 64 Kbytes: 6
Interface supported for various memory technologies
DRAM interface (area 4 and 5)
Automatic wait cycle insertion: Flexible setting, from 0 to 7 for each area
Unused data/address pins can be configured us input/output ports
Little endian mode supported (Select 1 area from area 1 to 5)
DRAM interface
2 banks independent control (area 4 and 5)
Normal mode (double CAS DRAM)/high-speed page mode (single CAS DRAM)/Hyper DRAM
Basic bus cycle: Normally 5 cycles, 2-cycle access possible in high-speed page mode
Programmable waveform: Automatic 1-cycle wait insertion to RAS and CAS cycles
DRAM refresh
CBR refresh (interval time configurable by 6-bit timer)
Self-refresh mode
Supports 8/9/10/12-bit column address width
2CAS/1WE, 2WE/1CAS selective
Cache memory
1-Kbyte instruction cache memory
32 block/way, 4 entry(4 word)/block
2 way set associative
Lock function: For specific program code to be resident in cashe memory
DMA controller (DMAC)
8 channels
Transfer incident/external pins/internal resource interrupt requests
Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer
Transfer data length: 8 bits/16 bits/32 bits selective
NMI/interrupt request enables temporary stop operation
UART
3 independent channels
Full-duplex double buffer
Data length: 7 bits to 9 bits (non-parity), 6 bits to 8 bits (parity)
Asynchronous (start-stop system), CLK-synchronized communication selective
Multi-processor mode
Internal 16-bit timer (U-TIMER) operating as a proprietary baud rate generator: Generates any given baud rate
Use external clock can be used as a transfer clock
Error detection: Parity, frame, overrun
3
MB91101/MB91101A
(Continued)
10-bit A/D converter (successive approximation conversion type)
10-bit resolution, 4 channels
Successive approximation type: Conversion time of 5.6
s at 25 MHz
Internal sample and hold circuit
Conversion mode: Single conversion/scanning conversion/repeated conversion/stop conversion selective
Start: Software/external trigger/internal timer selective
16-bit reload timer
3 channels
Internal clock: 2 clock cycle resolution, divide by 2/8/32 selective
Other interval timers
16-bit timer: 3 channels (U-TIMER)
PWM timer: 4 channels
Watchdog timer: 1 channel
Bit search module
First bit transition "1" or "0" from MSB can be detected in 1 cycle
Interrupt controller
External interrupt input: Non-maskable interrupt (NMI), normal interrupt
4 (INT0 to INT3)
Internal interrupt incident: UART, DMA controller (DMAC), A/D converter, U-TIMER and delayed interrupt
module
Priority levels of interrupts are programmable except for non-maskable interrupt (in 16 steps)
Others
Reset cause: Power-on reset/hardware standby/watchdog timer/software reset/external reset
Low-power consumption mode: Sleep mode/stop mode
Clock control
Gear function: Operating clocks for CPU and peripherals are independently selective
Gear clock can be selected from 1/1, 1/2, 1/4 and 1/8 (or 1/2, 1/4, 1/8 and 1/16)
However, operating frequency for peripherals is less than 25 MHz.
Packages: LQFP-100 and QFP-100
CMOS technology (0.35
m)
Power supply voltage
5 V: CPU power supply 5.0 V
10% (internal regulator)
A/D power supply
2.7 V to 3.6 V
3 V: CPU power supply 2.7 V to 3.6 V (without internal regulator)
A/D power supply
2.7 V to 3.6 V
MB91101/MB91101A
4
s
PIN ASSIGNMENT
(FPT-100P-M05)
(Top view)
1
CS1L/PB5/DREQ2
CS1H/PB6/DACK2
DW1/PB7
V
CC
3
CLK/PA6
CS5/PA5
CS4/PA4
CS3/PA3/EOP1
CS2/PA2
CS1/PA1
CS0
NMI
HST
RST
V
SS
MD0
MD1
MD2
RDY/P80
BGRNT/P81
BRQ/P82
RD
WR0
WR1/P85
D16/P20
2
3
4
5
6
75
7
74
8
73
9
72
10
71
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
55
54
53
52
51
AN3
AN2
AN1
AN0
AV
SS
/AVRL
AVRH
AV
CC
A24/EOP0
A23/P67
A22/P66
V
SS
A21/P65
A20/P64
A19/P63
A18/P62
A17/P61
A16/P60
A15
A14
A13
A12
A11
A10
A09
A08
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
RAS1/PB4/EOP2
DW0/PB3
CS0H/PB2
CS0L/PB1
RAS0/PB0
INT0/PE0
INT1/PE1
V
CC
5
X0
X1
V
SS
INT2/SC1/PE2
INT3/SC2/PE3
DREQ0/PE4
DREQ1/PE5
DACK0/PE6
DACK1/PE7
OCPA0/PF7/ATG
SO2/OCPA2/PF6
SI2/OCPA1/PF5
SO1/TRG3/PF4
SI1/TRG2/PF3
SC0/OCPA3/PF2
SO0/TRG1/PF1
SI0/TRG0/PF0
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
D17/P21
D18/P22
D19/P23
D20/P24
D21/P25
D22/P26
D23/P27
D24
D25
D26
D27
D28
D29
D30
V
SS
D31
A00
V
CC
5
A01
A02
A03
A04
A05
A06
A07
5
MB91101/MB91101A
(FPT-100P-M06)
1
CS0H/PB2
80
2
DW0/PB3
79
3
RAS1/PB4/EOP2
78
4
CS1L/PB5/DREQ2
77
5
CS1H/PB6/DACK2
76
6
DW1/PB7
75
7
V
CC
3
74
8
CLK/PA6
73
9
CS5/PA5
72
10
CS4/PA4
71
11
CS3/PA3/EOP1
70
12
CS2/PA2
69
13
CS1/PA1
68
14
CS0
67
15
NMI
66
16
HST
65
17
RST
64
18
V
SS
63
19
MD0
62
20
MD1
61
21
MD2
60
22
RDY/P80
59
23
BGRNT/P81
58
24
BRQ/P82
57
25
RD
56
26
WR0
55
27
WR1/P85
54
28
D16/P20
53
29
D17/P21
52
30
D18/P22
51
SO0/TRG1/PF1
SI0/TRG0/PF0
AN3
AN2
AN1
AN0
AV
SS
/AVRL
AVRH
AV
CC
A24/EOP0
A23/P67
A22/P66
V
SS
A21/P65
A20/P64
A19/P63
A18/P62
A17/P61
A16/P60
A15
A14
A13
A12
A11
A10
A09
A08
A07
A06
A05
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
CS0L/PB1
RAS0/PB0
INT0/PE0
INT1/PE1
V
CC
5
X0
X1
V
SS
INT2/SC1/PE2
INT3/SC2/PE3
DREQ0/PE4
DREQ1/PE5
DACK0/PE6
DACK1/PE7
OCPA0/PF7/ATG
SO2/OCPA2/PF6
SI2/OCPA1/PF5
SO1/TRG3/PF4
SI1/TRG2/PF3
SC0/OCPA3/PF2
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
D19/P23
D20/P24
D21/P25
D22/P26
D23/P27
D24
D25
D26
D27
D28
D29
D30
V
SS
D31
A00
V
CC
5
A01
A02
A03
A04
(Top view)
MB91101/MB91101A
6
s
PIN DESCRIPTION
*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
25 to 32
28 to 35
D16 to D23
C
Bit 16 to bit 23 of external data bus
P20 to P27
Can be configured as I/O ports when external data bus width is
set to 8-bit.
33 to 39,
41
36 to 42,
44
D24 to D30,
D31
C
Bit 24 to bit 31 of external data bus
42,
44 to 58
45,
47 to 61
A00,
A01 to A15
F
Bit 00 to bit 15 of external address bus
59 to 64,
66,
67
62 to 67,
69,
70
A16 to A21,
A22,
A23
F
Bit 16 to bit 23 of external address bus
P60 to P65,
P66,
P67
Can be configured as I/O ports when not used as address bus.
68
71
A24
L
Bit 24 of external address bus
EOP0
Can be configured as DMAC EOP output (ch. 0) when DMAC
EOP output is enabled.
19
22
RDY
C
External ready input
Inputs "0" when bus cycle is being executed and not
completed.
P80
Can be configured as a port when RDY is not used.
20
23
BGRNT
F
External bus release acknowledge output
Outputs "L" level when external bus is released.
P81
Can be configured as a port when BGRNT is not used.
21
24
BRQ
C
External bus release request input
Inputs "1" when release of external bus is required.
P82
Can be configured as a port when BRQ is not used.
22
25
RD
L
Read strobe output pin for external bus
23
26
WR0
L
Write strobe output pin for external bus
Relation between control signals and effective byte locations is
as follows:
Note: WR1 is Hi-Z during resetting.
Attach an external pull-up resister when using at 16-bit
bus width.
24
27
WR1
F
P85
Can be configured as a port when WR1 is not used.
16-bit bus width
8-bit bus width
D15 to D08
WR0
WR0
D07 to D00
WR1
(I/O port enabled)
7
MB91101/MB91101A
*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
11
14
CS0
L
Chip select 0 output ("L" active)
10
13
CS1
F
Chip select 1 output ("L" active)
PA1
Can be configured as a port when CS1 is not used.
9
12
CS2
F
Chip select 2 output ("L" active)
PA2
Can be configured as a port when CS2 is not used.
8
11
CS3
F
Chip select 3 output ("L" active)
PA3
Can be configured as a port when CS3 and EOP1 are not
used.
EOP1
EOP output pin for DMAC (ch. 1)
This function is available when EOP output for DMAC is
enabled.
7
10
CS4
F
Chip select 4 output ("L" active)
PA4
Can be configured as a port when CS4 is not used.
6
9
CS5
F
Chip select 5 output ("L" active)
PA5
Can be configured as a port when CS5 is not used.
5
8
CLK
F
System clock output
Outputs clock signal of external bus operating frequency.
PA6
Can be configured as a port when CLK is not used.
96
99
RAS0
F
RAS output for DRAM bank 0
Refer to the DRAM interface for details.
PB0
Can be configured as a port when RAS0 is not used.
97
100
CS0L
F
CASL output for DRAM bank 0
Refer to the DRAM interface for details.
PB1
Can be configured as a port when CS0L is not used.
98
1
CS0H
F
CASH output for DRAM bank 0
Refer to the DRAM interface for details.
PB2
Can be configured as a port when CS0H is not used.
99
2
DW0
F
WE output for DRAM bank 0 ("L" active)
Refer to the DRAM interface for details.
PB3
Can be configured as a port when DW0 is not used.
100
3
RAS1
F
RAS output for DRAM bank 1
Refer to the DRAM interface for details.
PB4
Can be configured as a port when RAS1 and EOP2 are not
used.
EOP2
DMAC EOP output (ch. 2)
This function is available when DMAC EOP output is enabled.
MB91101/MB91101A
8
*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
1
4
CS1L
F
CASL output for DRAM bank 1
Refer to the DRAM interface for details.
PB5
Can be configured as a port when CS1L and DREQ2 are not
used.
DREQ2
External transfer request input pin for DMA
This pin is used for input when external trigger is selected to
cause DMAC operation, and it is necessary to disable output for
other functions from this pin unless such output is made
intentionally.
2
5
CS1H
F
CASH output for DRAM bank 1
Refer to the DRAM interface for details.
PB6
Can be configured as a port when CS1H and DACK2 are not
used.
DACK2
External transfer request acknowledge output pin for DMAC (ch.
2)
This function is available when transfer request output for DMAC
is enabled.
3
6
DW1
F
WE output for DRAM bank 1 ("L" active)
Refer to the DRAM interface for details.
PB7
Can be configured as a port when DW1 is not used.
16 to 18
19 to 21
MD0 to MD2
G
Mode pins 0 to 2
MCU basic operation mode is set by these pins.
Directly connect these pins with V
CC
or V
SS
for use.
92
95
X0
A
Clock (oscillator) input
91
94
X1
A
Clock (oscillator) output
14
17
RST
B
External reset input
13
16
HST
H
Hardware standby input ("L" active)
12
15
NMI
H
NMI (non-maskable interrupt pin) input ("L" active)
95,
94
98,
97
INT0,
INT1
F
External interrupt request input pins
These pins are used for input during corresponding interrupt is
enabled, and it is necessary to disable output for other functions
from these pins unless such output is made intentionally.
PE0,
PE1
Can be configured as a I/O port when INT0, INT1 are not used.
89
92
INT2
F
External interrupt request input pin
This pin is used for input during corresponding interrupt is
enabled, and it is necessary to disable output for other functions
from this pin unless such output is made intentionally.
SC1
Clock I/O pin for UART1
Clock output is available when clock output of UART1 is enabled.
PE2
Can be configured as a I/O port when INT2 and SC1 are not
used.
This function is available when UART1 clock output is disabled.
9
MB91101/MB91101A
*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
88
91
INT3
F
External interrupt request input pin
This pin is used for input during corresponding interrupt is enabled,
and it is necessary to disable output for other functions from this
pin unless such output is made intentionally.
SC2
UART2 clock I/O pin
Clock output is available when UART2 clock output is enabled.
PE3
Can be configured as a I/O port when INT3 and SC2 are not used.
This function is available when UART2 clock output is disabled.
87,
86
90,
89
DREQ0,
DREQ1
F
External transfer request input pins for DMA
These pins are used for input when external trigger is selected to
cause DMAC operation, and it is necessary to disable output for
other functions from these pins unless such output is made
intentionally.
PE4,
PE5
Can be configured as a I/O port when DREQ0, DREQ1 are not
used.
85
88
DACK0
F
External transfer request acknowledge output pin for DMAC (ch. 0)
This function is available when transfer request output for DMAC is
enabled.
PE6
Can be configured as a I/O port when DACK0 is not used.
This function is available when transfer request acknowledge
output for DMAC or DACK0 output is disabled.
84
87
DACK1
F
External transfer request acknowledge output pin for DMAC (ch. 1)
This function is available when transfer request output for DMAC is
enabled.
PE7
Can be configured as a I/O port when DACK1 is not used.
This function is available when transfer request output for DMAC or
DACK1 output is disabled.
76
79
SI0
F
UART0 data input pin
This pin is used for input during UART0 is in input operation, and it
is necessary to disable output for other functions from this pin
unless such output is made intentionally.
TRG0
PWM timer external trigger input pin
This pin is used for input during PWM timer external trigger is in
input operation, and it is necessary to disable output for other
functions from this pin unless such output is made intentionally.
PF0
Can be configured as a I/O port when SI0 and TRG0 are not used.
MB91101/MB91101A
10
*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
77
80
SO0
F
UART0 data output pin
This function is available when UART0 data output is enabled.
TRG1
PWM timer external trigger input pin
This function is available when serial data output of PF1, UART0
are disabled.
PF1
Can be configured as a I/O port when SO0 and TRG1 are not
used.
This function is available when serial data output of UART0 is
disabled.
78
81
SC0
F
UART0 clock I/O pin
Clock output is available when UART0 clock output is enabled.
OCPA3
PWM timer output pin
This function is available when PWM timer output is enabled.
PF2
Can be configured as a I/O port when SC0 and OCPA3 are not
used.
This function is available when UART0 clock output is disabled.
79
82
SI1
F
UART1 data input pin
This pin is used for input during UART1 is in input operation, and it
is necessary to disable output for other functions from this pin
unless such output is made intentionally.
TRG2
PWM timer external trigger input pin
This pin is used for input during PWM timer external trigger is in
input operation, and it is necessary to disable output for other
functions from this pin unless such output is made intentionally.
PF3
Can be configured as a I/O port when SI1 and TRG2 are not used.
80
83
SO1
F
UART1 data output pin
This function is available when UART1 data output is enabled.
TRG3
PWM timer external trigger input pin
This function is available when PF4, UART1 data outputs are
disabled.
PF4
Can be configured as a I/O port when SO1 and TRG3 are not
used.
This function is available when UART1 data output is disabled.
81
84
SI2
F
UART2 data input pin
This pin is used for input during UART2 is in input operation, and it
is necessary to disable output for other functions from this pin
unless such output is made intentionally.
OCPA1
PWM timer output pin
This function is available when PWM timer output is enabled.
PF5
Can be configured as a I/O port when SI2 and OCPA1 are not
used.
11
MB91101/MB91101A
(Continued)
*1: FPT-100P-M05
*2: FPT-100P-M06
Note: In most of the above pins, I/O port and resource I/O are multiplexed e.g. P82 and BRQ. In case of conflict
between output of I/O port and resource I/O, priority is always given to the output of resource I/O.
Pin no.
Pin name
Circuit
type
Function
LQFP*
1
QFP*
2
82
85
SO2
F
UART2 data output pin
This function is available when UART2 data output is enabled.
OCPA2
PWM timer output pin
This function is available when PWM timer output is enabled.
PF6
Can be configured as a I/O port when SO2 and OCPA2 are not
used.
This function is available when UART2 data output is disabled.
83
86
OCPA0
F
PWM timer output pin
This function is available when PWM timer output is enabled.
PF7
Can be configured as a I/O port when OCPA0 and ATG are not
used.
This function is available when PWM timer output is disabled.
ATG
External trigger input pin for A/D converter
This pin is used for input when external trigger is selected to
cause A/D converter operation, and it is necessary to disable
output for other functions from this pin unless such output is
made intentionally.
72 to 75
75 to 78
AN0 to AN3
D
Analog input pins of A/D converter
This function is available when AIC register is set to specify
analog input mode.
69
72
AV
CC
--
Power supply pin (V
CC
) for A/D converter
70
73
AVRH
--
Reference voltage input (high) for A/D converter
Make sure to turn on and off this pin with potential of AVRH or
more applied to V
CC
.
71
74
AV
SS
/ AVRL
--
Power supply pin (V
SS
) for A/D converter and reference voltage
input pin (low)
43,
93
46,
96
V
CC
5
--
5 V power supply pin (V
CC
) for digital circuit
Always two pins must be connected to the power supply
(connect to 3 V power supply when operating at 3 V).
4
7
V
CC
3
--
Bypass capacitor pin for internal capacitor.
Also connect this pin to 3 V power supply when operating at
3 V.
15,
40,
65,
90
18,
43,
68,
93
V
SS
--
Earth level (V
SS
) for digital circuit
MB91101/MB91101A
12
s
DRAM CONTROL PIN
Pin name
Data bus 16-bit mode
Data bus 8-bit mode
Remarks
2CAS/1WR mode
1CAS/2WR mode
--
RAS0
Area 4 RAS
Area 4 RAS
Area 4 RAS
Correspondence of "L"
"H" to lower address 1
bit (A0) in data bus 16-
bit mode
"L": "0"
"H": "1"
CASL: CAS which A0
corresponds to
"0" area
CASH: CAS which A0
corresponds to
"1" area
WEL: WE which A0
corresponds to
"0" area
WEH: WE which A0
corresponds to
"1" area
RAS1
Area 5 RAS
Area 5 RAS
Area 5 RAS
CS0L
Area 4 CASL
Area 4 CAS
Area 4 CAS
CS0H
Area 4 CASH
Area 4 WEL
Area 4 CAS
CS1L
Area 5 CASL
Area 5 CAS
Area 5 CAS
CS1H
Area 5 CASH
Area 5 WEL
Area 5 CAS
CW0
Area 4 WE
Area 4 WEH
Area 4 WE
DW1
Area 5 WE
Area 5 WEH
Area 5 WE
13
MB91101/MB91101A
s
I/O CIRCUIT TYPE
(Continued)
Type
Circuit
Remarks
A
Oscillation feedback resistance 1 M
approx.
With standby control
B
CMOS level
Hysteresis input
Without standby control
With pull-up resistance
C
CMOS level I/O
With standby control
D
Analog input
X1
X0
Standby control signal
Clock input
V
SS
P-ch
R
P-ch
N-ch
V
CC
Digital input
R
Standby control signal
Digital input
Digital output
Digital output
P-ch
N-ch
R
Analog input
Digital output
Digital output
P-ch
N-ch
MB91101/MB91101A
14
(Continued)
Type
Circuit
Remarks
E
N-ch open-drain output
CMOS level input
With standby control
F
CMOS level output
CMOS level
Hysteresis input
With standby control
G
CMOS level input
Without standby control
H
CMOS level
Hysteresis input
Without standby control
R
P-ch
N-ch
Standby control signal
Digital input
Digital output
R
P-ch
N-ch
Standby control signal
Digital input
Digital output
Digital output
R
P-ch
N-ch
Digital input
R
P-ch
N-ch
Digital input
15
MB91101/MB91101A
(Continued)
Type
Circuit
Remarks
I
CMOS level output
CMOS level
Hysteresis input
Without standby control
J
CMOS level output
TTL level input
With standby control
K
CMOS level input/output
With standby control
Large current drive
L
CMOS level output
R
P-ch
N-ch
Digital input
Digital output
Digital output
R
P-ch
N-ch
TTL
Standby control signal
Digital input
Digital output
Digital output
R
P-ch
N-ch
Standby control signal
Digital input
Digital output
Digital output
P-ch
N-ch
Digital output
Digital output
MB91101/MB91101A
16
s
HANDLING DEVICES
1.
Preventing Latchup
In CMOS ICs, applying voltage higher than V
CC
or lower than V
SS
to input/output pin or applying voltage over
rating across V
CC
and V
SS
may cause latchup.
This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the
device. Make sure to prevent the voltage from exceeding the maximum rating.
Take care that the analog power supply (AV
CC
, AVR) and the analog input do not exceed the digital power
supply (V
CC
) when the analog power supply turned on or off.
2.
Treatment of Unused Pins
Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.
3.
External Reset Input
It takes at least 5 machine cycle to input "L" level to the RST pin and to ensure inner reset operation properly.
4.
Remarks for External Clock Operation
When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to
X0 must be supplied to X1 pin. However, in this case the stop mode must not be used (because X1 pin stops
at "H" output in stop mode).
And can be used to supply only to X0 pin with 5 V power supply at 12.5 MHz and less than.
X0
X1
Open
MB91101
X0
X1
MB91101
Using an external clock (normal)
Note: Can not be used stop mode (oscillation stop mode).
Using an external clock (can be used at 12.5 MHz and less than.)
(5 V power supply only)
Using an external clock
17
MB91101/MB91101A
5.
Power Supply Pins
When there are several V
CC
and V
SS
pins, each of them is equipotentially connected to its counterpart inside
of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions,
to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and
to observe the total output current standard, connect all V
CC
and V
SS
pins to the power supply or GND.
It is preferred to connect V
CC
and V
SS
of MB91101 to power supply with minimal impedance possible.
It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1
F between V
CC
and V
SS
at a position as close as possible to MB91101.
MB91101 has an internal regulator. When using with 5 V power supply, supply 5 V to V
CC
5 pin and make sure
to connect about 0.1
F bypass capacitor to V
CC
3 pin for regulator. And another 3 V power supply is needed
for the A/D convertor. When using with 3 V power supply, connect both V
CC
5 pin and V
CC
3 pin to the 3 V power
supply.
6.
Crystal Oscillator Circuit
Noises around X0 and X1 pins may cause malfunctions of MB91101. In designing the PC board, layout X0,
X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.
It is strongly recommended to design PC board so that X1 and X0 pins are surrounded by grounding area for
stable operation.
7.
Turning-on Sequence of A/D Converter Power Supply and Analog Input
Make sure to turn on the digital power supply (V
CC
) before turning on the A/D converter (AV
CC
, AVRH) and
applying voltage to analog input (AN0 to AN3).
Make sure to turn off digital power supply after power supply to A/D converters and analog inputs have been
switched off. (There are no such limitations in turning on power supplies. Analog and digital power supplies
may be turned on simultaneously.) Make sure that AVRH never exceeds AV
CC
when turning on/off power
supplies.
8.
Treatment of N.C. Pins
Make sure to leave N.C. pins open.
Connecting to a power supply
V
CC
5
AV
CC
AVRH
AV
SS
V
SS
V
CC
3
5 V
GND
[Using with 5 V power supply]
V
CC
5
AV
CC
AVRH
AV
SS
V
SS
V
CC
3
3 V
3 V
GND
[Using with 3 V power supply]
About
0.1
F
MB91101/MB91101A
18
9.
Fluctuation of Power Supply Voltage
Warranty range for normal operation against fluctuation of power supply voltage V
CC
is as given in rating.
However, sudden fluctuation of power supply voltage within the warranty range may cause malfunctions. It is
recommended to make every effort to stabilize the power supply voltage to IC. It is also recommended that by
controlling power supply as a reference of stabilizing, V
CC
ripple fluctuation (P-P value) at the commercial
frequency (50 Hz to 60 Hz) should be less than 10% of the standard V
CC
value and the transient regulation
should be less than 0.1 V/ms at instantaneous deviation like turning off the power supply.
10. Mode Setting Pins (MD0 to MD2)
Connect mode setting pins (MD0 to MD2) directly to V
CC
or V
SS
.
Arrange each mode setting pin and V
CC
or V
SS
patterns on the printed circuit board as close as possible and
make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises.
11. Internal DC Regulator
Internal DC regulator stops in stop mode. When the regulator stops owing to the increase of inner leakage
current (ICCH) in stop mode, malfunction caused by noise or any troubles about power supply in normal
operation, the internal 3 V power supply voltage may decrease less than the warranty range for normal operation.
So when using the internal regulator and stop mode with 5 V power supply, never fail to support externally so
that 3 V power supply voltage might not decrease. However, even in such a case, the internal regulator can be
restarted by inputting the reset procedure. (In this case, set the reset to "L" level within the oscillation stabilizing
waiting time.)
12. Turning on the Power Supply
When turning on the power supply, never fail to start from setting the RST pin to "L" level. And after the power
supply voltage goes to V
CC
level, at least after ensuring the time for 5 machine cycle, then set to "H" level.
13. Pin Condition at Turning on the Power Supply
The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on
the power supply and then starting oscillation and then the operation of the internal regulator becomes stable.
So it takes about 42 ms for the pin to be initialized from the oscillation starting at the source oscillation 12.5
MHz. Take care that the pin condition may be output condition at initial unstable condition.
(With the MB91101A, however, initalization can be achieved in less than about 42 ms after turning on the
internal power supply by maintaining the RST pin at "L" level.)
V
CC
5
V
CC
3
V
SS
3.6 k
6.8 k
0.1
F
approx.
5 V
Using STOP mode with 5 V power supply
19
MB91101/MB91101A
14. Source Oscillation Input at Turning on the Power Supply
At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing
waiting.
15. Hardware Stand-by at Turning on the Power Supply
When turning on the power supply with the HST pin being set to "L" level, the hardware doesn't stand by.
However the HST pin becomes available after the reset cancellation, the HST pin must once be back to "H" level.
16. Power on Reset
Make sure to make power on reset at turning on the power supply or returning on the power supply when the
power supply voltage is below the warranty range for normal operation.
MB91101/MB91101A
20
s
BLOCK DIAGRAM
AN0 to AN3
AV
CC
AV
SS
/AVRL
AVRH
Bit search module
Instruction cache (1 Kbyte)
D-bus (32 bits)
I-bus (16 bits)
C-bus (32 bits)
R-bus (16 bits)
Clock control unit
(Watchdog timer)
Interrupt control unit
10-bit A/D converter
(4 ch.)
Reload timer (3 ch.)
Port
Bus converter (32 bits
16 bits)
DRAM controller
Port 0 to port B
UART (3 ch.)
(Baud rate timer)
Bus controller
DMA controller (DMAC)
(8 ch.)
Bus converter
(Harvard
Princeton)
RAM (2 Kbytes)
PWM timer (4 ch.)
FR CPU
X0
X1
RST
HST
DREQ0 to
DREQ2
DACK0 to
DACK2
EOP0 to
EOP2
D16 to D31
A00 to A24
RD
WR0, WR1
RDY
CLK
CS0 to CS5
BRQ
BGRNT
SI0 to SI2
SO0 to SO2
SC0 to SC2
OCPA0 to OCPA3
TRG0 to TRG3
INT0 to INT3
NMI
ATG
4
4
3
3
3
4
4
RAS0
RAS1
CS0L
CS0H
CS1L
CS1H
DW0
DW1
6
3
3
2
25
16
MD0 to MD2, P20 to P27, P60 to P67,
P80 to P82, P85, PA1 to PA6,
PB0 to PB7, PE0 to PE7, PF0 to PF7,
V
CC
3, V
CC
5, V
SS
Other pins
Note: Pins are display for functions (Actually some pins are multiplexer).
When using REALOS, time control should be done by using external interrupt or inner timer.
21
MB91101/MB91101A
s
CPU CORE
1.
Memory Space
The FR family has a logical address space of 4 Gbytes (2
32
bytes) and the CPU linearly accesses the memory
space.
Direct addressing area
The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an
address can be specified in a direct operand of a code.
Direct areas consists of the following areas dependent on accessible data sizes.
Byte data access: 000
H
to 0FF
H
Half word data access: 000
H
to 1FF
H
Word data access: 000
H
to 3FF
H
Memory space
I/O area
I/O area
Access inhibited
Access inhibited
External area
Direct addressing area
See "
s
I/O MAP"
0000 0000
H
0000 0400
H
0000 0800
H
0001 0000
H
FFFF FFFF
H
External ROM/external bus mode
Embedded RAM
0000 1800
H
0000 1000
H
Address
MB91101/MB91101A
22
2.
Registers
The FR family has two types of registers; dedicated registers embedded on the CPU and general-purpose
registers on memory.
Dedicated registers
Program counter (PC):
32-bit length, indicates the location of the instruction to be executed.
Program status (PS):
32-bit length, register for storing register pointer or condition codes
Table base register (TBR):
Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap)
processing.
Return pointer (RP):
Holds address to resume operation after returning from a subroutine.
System stack pointer (SSP): Indicates system stack space.
User's stack pointer (USP): Indicates user's stack space.
Multiplication/division result register (MDH/MDL): 32-bit length, register for multiplication/division
Program status (PS)
The PS register is for holding program status and consists of a condition code register (CCR), a system condition
code register (SCR) and a interrupt level mask register (ILM).
PC
PS
TBR
RP
SSP
USP
MDH
MDL
Initial value
Program counter
Program status
Table base register
Return pointer
System stack pointer
User's stack pointer
Multiplication/division result register
XXXX XXXX
H
Indeterminate
000F
FC00
H
XXXX XXXX
H
Indeterminate
0000
0000
H
XXXX XXXX
H
Indeterminate
XXXX XXXX
H
Indeterminate
XXXX XXXX
H
Indeterminate
32 bits
--
ILM4 ILM3 ILM2 ILM1
--
ILM0
D1
D0
T
--
S
--
Z
C
V
N
I
31 to 21 20
19
18
17
11
to
15
16
10
9
8
7
5
6
2
0
1
3
4
ILM
SCR
CCR
PS
23
MB91101/MB91101A
Condition code register (CCR)
S-flag:
Specifies a stack pointer used as R15.
I-flag:
Controls user interrupt request enable/disable.
N-flag:
Indicates sign bit when division result is assumed to be in the 2's complement format.
Z-flag:
Indicates whether or not the result of division was "0".
V-flag:
Assumes the operand used in calculation in the 2's complement format and indicates whether
or not overflow has occurred.
C-flag:
Indicates if a carry or borrow from the MSB has occurred.
System condition code register (SCR)
T-flag:
Specifies whether or not to enable step trace trap.
Interrupt level mask register (ILM)
ILM4 to ILM0: Register for holding interrupt level mask value. The value held by this register is used as a
level mask. When an interrupt request issued to the CPU is higher than the level held by ILM,
the interrupt request is accepted.
ILM4
ILM3
ILM2
ILM1
ILM0
Interrupt level
High-low
0
0
0
0
0
0
High
:
:
:
:
0
1
0
0
0
15
:
:
:
:
1
1
1
1
1
31
Low
MB91101/MB91101A
24
s
GENERAL-PURPOSE REGISTERS
R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator
and a memory access pointer (field for indicating address).
Of the above 16 registers, following registers have special functions. To support the special functions, part of
the instruction set has been sophisticated to have enhanced functions.
R13: Virtual accumulator (AC)
R14: Frame pointer (FP)
R15: Stack pointer (SP)
Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 0000 0000
H
(SSP value).
Register bank structure
R0
R1
R12
R13
R14
R15
AC (accumulator)
FP (frame pointer)
SP (stack pointer)
32 bits
:
:
Initial value
XXXX XXXX
H
:
:
:
:
:
:
:
:
:
:
:
XXXX XXXX
H
0 0 0 0 0 0 0 0
H
25
MB91101/MB91101A
s
SETTING MODE
1.
Pin
Mode setting pins and modes
* : MB91101 does not support single-chip mode.
2.
Registers
Mode setting registers (MODR) and modes
Bus mode setting bits and functions
Note: Because of without internal ROM, MB91101 allows "10
B
" setting value only.
Mode setting
pins
Mode name
Reset vector
access area
External data
bus width
Bus mode
MD2 MD1 MD0
0
0
0
External vector mode 0
External
8 bits
External ROM/external bus
mode
0
0
1
External vector mode 1
External
16 bits
0
1
0
--
--
--
Inhibited
0
1
1
Internal vector mode
Internal
(Mode register)
Single-chip mode*
1
--
--
--
--
--
Inhibited
M1
M0
Functions
Note
0
0
Single-chip mode
0
1
Internal ROM/external bus mode
1
0
External ROM/external bus mode
1
1
--
Inhibited
M1
M0
*
*
*
*
*
*
Address
0000 07FF
H
Bus mode setting bit
W : Write only
X : Indeterminate
* : Always write "0" except for M1 and M0.
Initial value
XXXX XXXX
B
Access
W
MB91101/MB91101A
26
s
I/O MAP
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0000
H
(Vacancy)
0001
H
PDR2
Port 2 data register
R/W
X X X X X X X X
B
0002
H
to
0004
H
(Vacancy)
0005
H
PDR6
Port 6 data register
R/W
X X X X X X X X
B
0006
H
(Vacancy)
0007
H
0008
H
PDRB
Port B data register
R/W
X X X X X X X X
B
0009
H
PDRA
Port A data register
R/W
X X X X X X
B
000A
H
(Vacancy)
000B
H
PDR8
Port 8 data register
R/W
X X X X
B
000C
H
to
0011
H
(Vacancy)
0012
H
PDRE
Port E data register
R/W
X X X X X X X X
B
0013
H
PDRF
Port F data register
R/W
X X X X X X X X
B
0014
H
to
001B
H
(Vacancy)
001C
H
SSR0
Serial status register 0
R/W
0 0 0 0 1 0 0
B
001D
H
SIDR0/SODR0
Serial input register 0/serial output register 0
R/W
X X X X X X X X
B
001E
H
SCR0
Serial control register 0
R/W
0 0 0 0 0 1 0 0
B
001F
H
SMR0
Serial mode register 0
R/W
0 0 0 0 0
B
0020
H
SSR1
Serial status register 1
R/W
0 0 0 0 1 0 0
B
0021
H
SIDR1/SODR1
Serial input register 1/serial output register 1
R/W
X X X X X X X X
B
0022
H
SCR1
Serial control register 1
R/W
0 0 0 0 0 1 0 0
B
0023
H
SMR2
Serial mode register 1
R/W
0 0 0 0 0
B
0024
H
SSR2
Serial status register 2
R/W
0 0 0 0 1 0 0
B
0025
H
SIDR2/SODR2
Serial input register 2/serial output register 2
R/W
X X X X X X X X
B
0026
H
SCR2
Serial control register 2
R/W
0 0 0 0 0 1 0 0
B
0027
H
SMR2
Serial mode register 2
R/W
0 0 0 0 0
B
27
MB91101/MB91101A
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0028
H
TMRLR0
16-bit reload register ch. 0
W
X X X X X X X X
B
0029
H
X X X X X X X X
B
002A
H
TMR0
16-bit timer register ch. 0
R
X X X X X X X X
B
002B
H
X X X X X X X X
B
002C
H
(Vacancy)
002D
H
002E
H
TMCSR0
16-bit reload timer control status register
ch. 0
R/W
0 0 0 0
B
002F
H
0 0 0 0 0 0 0 0
B
0030
H
TMRLR1
16-bit reload register ch. 1
W
X X X X X X X X
B
0031
H
X X X X X X X X
B
0032
H
TMR1
16-bit timer register ch. 1
R
X X X X X X X X
B
0033
H
X X X X X X X X
B
0034
H
(Vacancy)
0035
H
0036
H
TMCSR1
16-bit reload timer control status register
ch. 1
R/W
0 0 0 0
B
0037
H
0 0 0 0 0 0 0 0
B
0038
H
ADCR
A/D converter data register
R
X X
B
0039
H
X X X X X X X X
B
003A
H
ADCS
A/D converter control status register
R/W
0 0 0 0 0 0 0 0
B
003B
H
0 0 0 0 0 0 0 0
B
003C
H
TMRLR2
16-bit reload register ch. 2
W
X X X X X X X X
B
003D
H
X X X X X X X X
B
003E
H
TMR2
16-bit timer register ch. 2
R
X X X X X X X X
B
003F
H
X X X X X X X X
B
0040
H
(Vacancy)
0041
H
0042
H
TMCSR2
16-bit reload timer control status register
ch. 2
R/W
0 0 0 0
B
0043
H
0 0 0 0 0 0 0 0
B
0044
H
to
0077
H
(Vacancy)
MB91101/MB91101A
28
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0078
H
UTIM0/UTIMR0
U-TIMER register ch. 0/reload register ch. 0
R/W
0 0 0 0 0 0 0 0
B
0079
H
0 0 0 0 0 0 0 0
B
007A
H
(Vacancy)
007B
H
UTIMC0
U-TIMER control register ch. 0
R/W
0 0 0 0 0 1
B
007C
H
UTIM1/UTIMR1
U-TIMER register ch. 1/reload register ch. 1
R/W
0 0 0 0 0 0 0 0
B
007D
H
0 0 0 0 0 0 0 0
B
007E
H
(Vacancy)
007F
H
UTIMC1
U-TIMER control register ch. 1
R/W
0 0 0 0 0 1
B
0080
H
UTIM2/UTIMR2
U-TIMER register ch. 2/reload register ch. 0
R/W
0 0 0 0 0 0 0 0
B
0081
H
0 0 0 0 0 0 0 0
B
0082
H
(Vacancy)
0083
H
UTIMC2
U-TIMER control register ch. 2
R/W
0 0 0 0 0 1
B
0084
H
to
0093
H
(Vacancy)
0094
H
EIRR
External interrupt cause register
R/W
0 0 0 0 0 0 0 0
B
0095
H
ENIR
Interrupt enable register
R/W
0 0 0 0 0 0 0 0
B
0096
H
to
0098
H
(Vacancy)
0099
H
ELVR
External interrupt request level setting
register
R/W
0 0 0 0 0 0 0 0
B
009A
H
to
00D1
H
(Vacancy)
00D2
H
DDRE
Port E data direction register
W
0 0 0 0 0 0 0 0
B
00D3
H
DDRF
Port F data direction register
W
0 0 0 0 0 0 0 0
B
00D4
H
to
00DB
H
(Vacancy)
00DC
H
GCN1
General control register 1
R/W
0 0 1 1 0 0 1 0
B
00DD
H
0 0 0 1 0 0 0 0
B
00DE
H
(Vacancy)
00DF
H
GCN2
General control register 2
R/W
0 0 0 0 0 0 0 0
B
29
MB91101/MB91101A
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
00E0
H
PTMR0
Ch. 0 timer register
R
1 1 1 1 1 1 1 1
B
00E1
H
1 1 1 1 1 1 1 1
B
00E2
H
PCSR0
Ch. 0 cycle setting register
W
X X X X X X X X
B
00E3
H
X X X X X X X X
B
00E4
H
PDUT0
Ch. 0 duty setting register
W
X X X X X X X X
B
00E5
H
X X X X X X X X
B
00E6
H
PCNH0
Ch. 0 control status register H
R/W
0 0 0 0 0 0 0
B
00E7
H
PCNL0
Ch. 0 control status register L
R/W
0 0 0 0 0 0 0 0
B
00E8
H
PTMR1
Ch. 1 timer register
R
1 1 1 1 1 1 1 1
B
00E9
H
1 1 1 1 1 1 1 1
B
00EA
H
PCSR1
Ch. 1 cycle setting register
W
X X X X X X X X
B
00EB
H
X X X X X X X X
B
00EC
H
PDUT1
Ch. 1 duty setting register
W
X X X X X X X X
B
00ED
H
X X X X X X X X
B
00EE
H
PCNH1
Ch. 1 control status register H
R/W
0 0 0 0 0 0 0
B
00EF
H
PCNL1
Ch. 1 control status register L
R/W
0 0 0 0 0 0 0 0
B
00F0
H
PTMR2
Ch. 2 timer register
R
1 1 1 1 1 1 1 1
B
00F1
H
1 1 1 1 1 1 1 1
B
00F2
H
PCSR2
Ch. 2 cycle setting register
W
X X X X X X X X
B
00F3
H
X X X X X X X X
B
00F4
H
PDUT2
Ch. 2 duty setting register
W
X X X X X X X X
B
00F5
H
X X X X X X X X
B
00F6
H
PCNH2
Ch. 2 control status register H
R/W
0 0 0 0 0 0 0
B
00F7
H
PCNL2
Ch. 2 control status register L
R/W
0 0 0 0 0 0 0 0
B
00F8
H
PTMR3
Ch. 3 timer register
R
1 1 1 1 1 1 1 1
B
00F9
H
1 1 1 1 1 1 1 1
B
00FA
H
PCSR3
Ch. 3 cycle setting register
W
X X X X X X X X
B
00FB
H
X X X X X X X X
B
00FC
H
PDUT3
Ch. 3 duty setting register
W
X X X X X X X X
B
00FD
H
X X X X X X X X
B
00FE
H
PCNH3
Ch. 3 control status register H
R/W
0 0 0 0 0 0 0
B
00FF
H
PCNL3
Ch. 3 control status register L
R/W
0 0 0 0 0 0 0 0
B
MB91101/MB91101A
30
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0100
H
to
01FF
H
(Vacancy)
0200
H
DPDP
DMAC parameter descriptor pointer
R/W
X X X X X X X X
B
0201
H
X X X X X X X X
B
0202
H
X X X X X X X X
B
0203
H
X 0 0 0 0 0 0 0
B
0204
H
DACSR
DMAC control status register
R/W
0 0 0 0 0 0 0 0
B
0205
H
0 0 0 0 0 0 0 0
B
0206
H
0 0 0 0 0 0 0 0
B
0207
H
0 0 0 0 0 0 0 0
B
0208
H
DATCR
DMAC pin control register
R/W
X X X X X X X X
B
0209
H
X X X X 0 0 0 0
B
020A
H
X X X X 0 0 0 0
B
020B
H
X X X X 0 0 0 0
B
020C
H
to
03E3
H
(Vacancy)
03E4
H
ICHCR
Instruction cache control register
R/W
B
03E5
H
B
03E6
H
B
03E7
H
0 0 0 0 0 0
B
03E8
H
to
03EF
H
(Vacancy)
03F0
H
BSD0
Bit search module 0-detection data register
W
X X X X X X X X
B
03F1
H
X X X X X X X X
B
03F2
H
X X X X X X X X
B
03F3
H
X X X X X X X X
B
03F4
H
BSD1
Bit search module 1-detection data register
R/W
X X X X X X X X
B
03F5
H
X X X X X X X X
B
03F6
H
X X X X X X X X
B
03F7
H
X X X X X X X X
B
31
MB91101/MB91101A
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
03F8
H
BSDC
Bit search module transition-detection data
register
W
X X X X X X X X
B
03F9
H
X X X X X X X X
B
03FA
H
X X X X X X X X
B
03FB
H
X X X X X X X X
B
03FC
H
BSRR
Bit search module detection result register
R
X X X X X X X X
B
03FD
H
X X X X X X X X
B
03FE
H
X X X X X X X X
B
03FF
H
X X X X X X X X
B
0400
H
ICR00
Interrupt control register 0
R/W
1 1 1 1 1
B
0401
H
ICR01
Interrupt control register 1
R/W
1 1 1 1 1
B
0402
H
ICR02
Interrupt control register 2
R/W
1 1 1 1 1
B
0403
H
ICR03
Interrupt control register 3
R/W
1 1 1 1 1
B
0404
H
ICR04
Interrupt control register 4
R/W
1 1 1 1 1
B
0405
H
ICR05
Interrupt control register 5
R/W
1 1 1 1 1
B
0406
H
ICR06
Interrupt control register 6
R/W
1 1 1 1 1
B
0407
H
ICR07
Interrupt control register 7
R/W
1 1 1 1 1
B
0408
H
ICR08
Interrupt control register 8
R/W
1 1 1 1 1
B
0409
H
ICR09
Interrupt control register 9
R/W
1 1 1 1 1
B
040A
H
ICR10
Interrupt control register 10
R/W
1 1 1 1 1
B
040B
H
ICR11
Interrupt control register 11
R/W
1 1 1 1 1
B
040C
H
ICR12
Interrupt control register 12
R/W
1 1 1 1 1
B
040D
H
ICR13
Interrupt control register 13
R/W
1 1 1 1 1
B
040E
H
ICR14
Interrupt control register 14
R/W
1 1 1 1 1
B
040F
H
ICR15
Interrupt control register 15
R/W
1 1 1 1 1
B
0410
H
ICR16
Interrupt control register 16
R/W
1 1 1 1 1
B
0411
H
ICR17
Interrupt control register 17
R/W
1 1 1 1 1
B
0412
H
ICR18
Interrupt control register 18
R/W
1 1 1 1 1
B
0413
H
ICR19
Interrupt control register 19
R/W
1 1 1 1 1
B
0414
H
ICR20
Interrupt control register 20
R/W
1 1 1 1 1
B
0415
H
ICR21
Interrupt control register 21
R/W
1 1 1 1 1
B
0416
H
ICR22
Interrupt control register 22
R/W
1 1 1 1 1
B
MB91101/MB91101A
32
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0417
H
ICR23
Interrupt control register 23
R/W
1 1 1 1 1
B
0418
H
ICR24
Interrupt control register 24
R/W
1 1 1 1 1
B
0419
H
ICR25
Interrupt control register 25
R/W
1 1 1 1 1
B
041A
H
ICR26
Interrupt control register 26
R/W
1 1 1 1 1
B
041B
H
ICR27
Interrupt control register 27
R/W
1 1 1 1 1
B
041C
H
ICR28
Interrupt control register 28
R/W
1 1 1 1 1
B
041D
H
ICR29
Interrupt control register 29
R/W
1 1 1 1 1
B
041E
H
ICR30
Interrupt control register 30
R/W
1 1 1 1 1
B
041F
H
ICR31
Interrupt control register 31
R/W
1 1 1 1 1
B
042F
H
ICR47
Interrupt control register 47
R/W
1 1 1 1 1
B
0430
H
DICR
Delayed interrupt control register
R/W
0
B
0431
H
HRCL
Hold request cancel request level setting
register
R/W
1 1 1 1 1
B
0432
H
to
047F
H
(Vacancy)
0480
H
RSRR/WTCR
Reset cause register/
watchdog peripheral control register
R/W
1X X X X 0 0
B
0481
H
STCR
Standby control register
R/W
0 0 0 1 1 1
B
0482
H
PDRR
DMA controller request squelch register
R/W
0 0 0 0
B
0483
H
CTBR
Timebase timer clear register
W
X X X X X X X X
B
0484
H
GCR
Gear control register
R/W
1 1 0 0 1 1 1
B
0485
H
WPR
Watchdog reset occurrence postpone
register
W
X X X X X X X X
B
0486
H
(Vacancy)
0487
H
0488
H
PCTR
PLL control register
R/W
0 0 0
B
0489
H
to
0600
H
(Vacancy)
0601
H
DDR2
Port 2 data direction register
W
0 0 0 0 0 0 0 0
B
0602
H
to
0604
H
(Vacancy)
0605
H
DDR6
Port 6 data direction register
W
0 0 0 0 0 0 0 0
B
0606
H
(Vacancy)
0607
H
33
MB91101/MB91101A
(Continued)
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0608
H
DDRB
Port B data direction register
W
0 0 0 0 0 0 0 0
B
0609
H
DDRA
Port A data direction register
W
0 0 0 0 0 0
B
060A
H
(Vacancy)
060B
H
DDR8
Port 8 data direction register
W
0 0 0 0
B
060C
H
ASR1
Area select register 1
W
0 0 0 0 0 0 0 0
B
060D
H
0 0 0 0 0 0 0 1
B
060E
H
AMR1
Area mask register 1
W
0 0 0 0 0 0 0 0
B
060F
H
0 0 0 0 0 0 0 0
B
0610
H
ASR2
Area select register 2
W
0 0 0 0 0 0 0 0
B
0611
H
0 0 0 0 0 0 1 0
B
0612
H
AMR2
Area mask register 2
W
0 0 0 0 0 0 0 0
B
0613
H
0 0 0 0 0 0 0 0
B
0614
H
ASR3
Area select register 3
W
0 0 0 0 0 0 0 0
B
0615
H
0 0 0 0 0 0 1 1
B
0616
H
AMR3
Area mask register 3
W
0 0 0 0 0 0 0 0
B
0617
H
0 0 0 0 0 0 0 0
B
0618
H
ASR4
Area select register 4
W
0 0 0 0 0 0 0 0
B
0619
H
0 0 0 0 0 1 0 0
B
061A
H
AMR4
Area mask register 4
W
0 0 0 0 0 0 0 0
B
061B
H
0 0 0 0 0 0 0 0
B
061C
H
ASR5
Area select register 5
W
0 0 0 0 0 0 0 0
B
061D
H
0 0 0 0 0 1 0 1
B
061E
H
AMR5
Area mask register 5
W
0 0 0 0 0 0 0 0
B
061F
H
0 0 0 0 0 0 0 0
B
0620
H
AMD0
Area mode register 0
R/W
0 0 1 1 1
B
0621
H
AMD1
Area mode register 1
R/W
0 0 0 0 0 0
B
0622
H
AMD32
Area mode register 32
R/W
0 0 0 0 0 0 0 0
B
0623
H
AMD4
Area mode register 4
R/W
0 0 0 0 0 0
B
0624
H
AMD5
Area mode register 5
R/W
0 0 0 0 0 0
B
0625
H
DSCR
DRAM signal control register
W
0 0 0 0 0 0 0 0
B
0626
H
RFCR
Refresh control register
R/W
X X X X X X
B
0627
H
0 0 0 0 0
B
MB91101/MB91101A
34
(Continued)
Note: Do not use (vacancy).
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0628
H
EPCR0
External pin control register 0
W
1 1 0 0
B
0629
H
1 1 1 1 1 1 1
B
062A
H
(Vacancy)
062B
H
EPCR1
External pin control register 1
W
1 1 1 1 1 1 1 1
B
062C
H
DMCR4
DRAM control register 4
R/W
0 0 0 0 0 0 0 0
B
062D
H
0 0 0 0 0 0 0
B
062E
H
DMCR5
DRAM control register 5
R/W
0 0 0 0 0 0 0 0
B
062F
H
0 0 0 0 0 0 0
B
0630
H
to
07FD
H
(Vacancy)
07FE
H
LER
Little endian register
W
0 0 0
B
07FF
H
MODR
Mode register
W
X X X X X X X X
B
35
MB91101/MB91101A
s
INTERRUPT CAUSES, INTERRUPT VECTORS
AND INTERRUPT CONTROL REGISTER ALLOCATIONS
(Continued)
Interrupt causes
Interrupt number
Interrupt level
TBR default
address
Decimal
Hexadecimal
Register
Offset
Reset
0
00
--
3FC
H
000FFFFC
H
Reserved for system
1
01
--
3F8
H
000FFFF8
H
Reserved for system
2
02
--
3F4
H
000FFFF4
H
Reserved for system
3
03
--
3F0
H
000FFFF0
H
Reserved for system
4
04
--
3EC
H
000FFFEC
H
Reserved for system
5
05
--
3E8
H
000FFFE8
H
Reserved for system
6
06
--
3E4
H
000FFFE4
H
Reserved for system
7
07
--
3E0
H
000FFFE0
H
Reserved for system
8
08
--
3DC
H
000FFFDC
H
Reserved for system
9
09
--
3D8
H
000FFFD8
H
Reserved for system
10
0A
--
3D4
H
000FFFD4
H
Reserved for system
11
0B
--
3D0
H
000FFFD0
H
Reserved for system
12
0C
--
3CC
H
000FFFCC
H
Reserved for system
13
0D
--
3C8
H
000FFFC8
H
Exception for undefined instruction
14
0E
--
3C4
H
000FFFC4
H
NMI request
15
0F
F
H
fixed
3C0
H
000FFFC0
H
External interrupt 0
16
10
ICR00
3BC
H
000FFFBC
H
External interrupt 1
17
11
ICR01
3B8
H
000FFFB8
H
External interrupt 2
18
12
ICR02
3B4
H
000FFFB4
H
External interrupt 3
19
13
ICR03
3B0
H
000FFFB0
H
UART0 receive complete
20
14
ICR04
3AC
H
000FFFAC
H
UART1 receive complete
21
15
ICR05
3A8
H
000FFFA8
H
UART2 receive complete
22
16
ICR06
3A4
H
000FFFA4
H
UART0 transmit complete
23
17
ICR07
3A0
H
000FFFA0
H
UART1 transmit complete
24
18
ICR08
39C
H
000FFF9C
H
UART2 transmit complete
25
19
ICR09
398
H
000FFF98
H
DMAC0 (complete, error)
26
1A
ICR10
394
H
000FFF94
H
DMAC1 (complete, error)
27
1B
ICR11
390
H
000FFF90
H
DMAC2 (complete, error)
28
1C
ICR12
38C
H
000FFF8C
H
DMAC3 (complete, error)
29
1D
ICR13
388
H
000FFF88
H
DMAC4 (complete, error)
30
1E
ICR14
384
H
000FFF84
H
DMAC5 (complete, error)
31
1F
ICR15
380
H
000FFF80
H
MB91101/MB91101A
36
(Continued)
Interrupt causes
Interrupt number
Interrupt level
TBR default
address
Decimal
Hexadecimal
Register
Offset
DMAC6 (complete, error)
32
20
ICR16
37C
H
000FFF7C
H
DMAC7 (complete, error)
33
21
ICR17
378
H
000FFF78
H
A/D converter (successive
approximation conversion type)
34
22
ICR18
374
H
000FFF74
H
16-bit reload timer 0
35
23
ICR19
370
H
000FFF70
H
16-bit reload timer 1
36
24
ICR20
36C
H
000FFF6C
H
16-bit reload timer 2
37
25
ICR21
368
H
000FFF68
H
PWM 0
38
26
ICR22
364
H
000FFF64
H
PWM 1
39
27
ICR23
360
H
000FFF60
H
PWM 2
40
28
ICR24
35C
H
000FFF5C
H
PWM 3
41
29
ICR25
358
H
000FFF58
H
U-TIMER 0
42
2A
ICR26
354
H
000FFF54
H
U-TIMER 1
43
2B
ICR27
350
H
000FFF50
H
U-TIMER 2
44
2C
ICR28
34C
H
000FFF4C
H
Reserved for system
45
2D
ICR29
348
H
000FFF48
H
Reserved for system
46
2E
ICR30
344
H
000FFF44
H
Reserved for system
47
2F
ICR31
340
H
000FFF40
H
Reserved for system
48
30
ICR32
33C
H
000FFF3C
H
Reserved for system
49
31
ICR33
338
H
000FFF38
H
Reserved for system
50
32
ICR34
334
H
000FFF34
H
Reserved for system
51
33
ICR35
330
H
000FFF30
H
Reserved for system
52
34
ICR36
32C
H
000FFF2C
H
Reserved for system
53
35
ICR37
328
H
000FFF28
H
Reserved for system
54
36
ICR38
324
H
000FFF24
H
Reserved for system
55
37
ICR39
320
H
000FFF20
H
Reserved for system
56
38
ICR40
31C
H
000FFF1C
H
Reserved for system
57
39
ICR41
318
H
000FFF18
H
Reserved for system
58
3A
ICR42
314
H
000FFF14
H
Reserved for system
59
3B
ICR43
310
H
000FFF10
H
Reserved for system
60
3C
ICR44
30C
H
000FFF0C
H
Reserved for system
61
3D
ICR45
308
H
000FFF08
H
Reserved for system
62
3E
ICR46
304
H
000FFF04
H
Delayed interrupt cause bit
63
3F
ICR47
300
H
000FFF00
H
37
MB91101/MB91101A
(Continued)
* : When using in REALOS/FR, interrupt 0x40, 0x41 for system code.
Interrupt causes
Interrupt number
Interrupt level
TBR default
address
Decimal
Hexadecimal
Register
Offset
Reserved for system (used in
REALOS*)
64
40
--
2FC
H
000FFEFC
H
Reserved for system (used in
REALOS*)
65
41
--
2F8
H
000FFEF8
H
Used in INT instructions
66
to
255
42
to
FF
--
2F4
H
to
000
H
000FFEF4
H
to
000FFC00
H
MB91101/MB91101A
38
s
PERIPHERAL RESOURCES
1.
I/O Ports
There are 2 types of I/O port register structure; port data register (PDR0 to PDRF) and data direction register
(DDR0 to DDRF), where bits PDR0 to PDRF and bits DDR0 to DDRF corresponds respectively. Each bit on
the register corresponds to an external pin. In port registers input/output register of the port configures input/
output function of the port, while corresponding bit (pin) configures input/output function in data direction
registers. Bit "0" specifies input and "1" specifies output.
For input (DDR = "0") setting;
PDR reading operation: reads level of corresponding external pin.
PDR writing operation: writes set value to PDR.
For output (DDR = "1") setting;
PDR reading operation: reads PDR value.
PDR writing operation: outputs PDR value to corresponding external pin.
Block diagram
PDR
DDR
(Port data register)
(Data direction register)
Resource output enable
Resource output
1
0
1
0
PDR read
Resource input
Pin
Data bus
39
MB91101/MB91101A
( )
W
Port data register
Data direction register
bit 7
bit 0
000001
H
000005
H
00000B
H
000009
H
000008
H
000012
H
000013
H
X X X X X X X X
B
X X X X X X X X
B
- - X - - X X X
B
- X X X X X X -
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
Address
Initial value
: Access
: Readable and writable
: Indeterminate
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
PDR2
PDR6
PDR8
PDRA
PDRB
PDRE
PDRF
( )
R/W
X
bit 7
bit 0
000601
H
000605
H
00060B
H
000609
H
000608
H
0000D2
H
0000D3
H
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
- - 0 - - 0 0 0
B
- 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
Address
Initial value
: Access
: Write only
: Unused
(W)
(W)
(W)
(W)
(W)
(W)
(W)
DDR2
DDR6
DDR8
DDRA
DDRB
DDRE
DDRF
MB91101/MB91101A
40
2.
DMA Controller (DMAC)
The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access)
transfer.
DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to
enhanced performance of the system.
8 channels
Mode: single/block transfer, burst transfer and continuous transfer: 3 kinds of transfer
Transfer all through the area
Max. 65536 of transfer cycles
Interrupt function right after the transfer
Selectable for address transfer increase/decrease by the software
External transfer request input pin, external transfer request accept output pin, external transfer complete
output pin three pins for each
Block diagram
Sequencer
Edge/level
detection circuit
Inner resource
Transfer request
DREQ0 to DREQ2
DACK0 to DACK2
EOP0 to EOP2
Interrupt request
Data buffer
Switcher
DPDP
DACSR
DATCR
Data bus
Mode
BLK DEC
INC / DEC
BLK
DMACT
SADR
DADR
3
3
3
3
8
5
41
MB91101/MB91101A
Registers (DMAC internal registers)
Registers (DMA descriptor)
bit 31
bit 0
00000200
H
00000201
H
00000202
H
00000203
H
00000204
H
00000205
H
00000206
H
00000207
H
00000208
H
00000209
H
0000020A
H
0000020B
H
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
X X X X X X X X
B
X X X X 0 0 0 0
B
X X X X 0 0 0 0
B
X X X X 0 0 0 0
B
Address
Initial value
: Access
: Readable and writable
: Indeterminate
DPDP
( )
R/W
X
bit 16
DACSR
DATCR
(R/W)
(R/W)
(R/W)
bit 31
bit 0
DPDP + 0
H
DPDP + 0C
H
DPDP + 54
H
DMA
ch.0
Descriptor
DMA
ch.1
Descriptor
DMA
ch.7
Descriptor
Address
MB91101/MB91101A
42
3.
UART
The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK
synchronous communication, and it has the following features.
The MB91101 consists of 3 channels of UART.
Full double double buffer
Both a synchronous (start-stop system) communication and CLK synchronous communication are available.
Supporting multi-processor mode
Perfect programmable baud rate
Any baud rate can be set by internal timer (refer to section "4. U-TIMER").
Any baud rate can be set by external clock.
Error checking function (parity, framing and overrun)
Transfer signal: NRZ code
Enable DMA transfer/start by interrupt.
43
MB91101/MB91101A
Block diagram
Control signals
From external clock
SI
(receive data)
Clock select
circuit
Receive interrupt
(to CPU)
Transmit interrupt
(to CPU)
Receive control circuit
Start bit detect
circuit
Receive bit counter
Receive parity
counter
Transmit control circuit
Transmit start
circuit
Transmit bit counter
Transmit parity
counter
Receive status
judge circuit
Receive shifter
Receive
complete
Transmit shifter
Transmit
start
Receive error
generate signal
for DMA
(to DMAC)
SIDR
SODR
R-bus
SMR
register
MD1
MD0
CS0
SCKE
SOE
SCR
register
SSR
register
Control signals
Transmit clock
Receive clock
SO (transmit data)
PEN
P
SBL
CL
A/D
REC
RXE
TXE
PE
ORE
FRE
RDRF
TDRE
RIE
TIE
SC (clock)
From U-TIMER
SC
MB91101/MB91101A
44
Register configuration
bit 15
bit 0
0000001E
H
00000022
H
00000026
H
0000001F
H
00000023
H
00000027
H
0000001C
H
00000020
H
00000024
H
0000001D
H
00000021
H
00000002
H
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
Address
Initial value
SCR0
SCR1
SCR2
SSR0
SSR1
SSR2
SMR0
SMR1
SMR2
SIDR0/SODR0
SIDR1/SIDR1
SIDR2/SIDR2
bit 8
0 0 0 0 0 1 0 0
B
0 0 0 0 0 1 0 0
B
0 0 0 0 0 1 0 0
B
0 0 - - 0 - 0 0
B
0 0 - - 0 - 0 0
B
0 0 - - 0 - 0 0
B
0 0 0 0 1 - 0 0
B
0 0 0 0 1 - 0 0
B
0 0 0 0 1 - 0 0
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
: Access
: Readable and writable
: Unused
: Indeterminate
( )
R/W
X
45
MB91101/MB91101A
4.
U-TIMER (16-bit Timer for UART Baud Rate Generation)
The U-TIMER is a 16-bit timer for generating UART baud rate. Combination of chip operating frequency and
reload value of U-TIMER allows flexible setting of baud rate.
The U-TIMER operates as an interval timer by using interrupt issued on counter underflow.
The MB91101 has 3 channel U-TIMER embedded on the chip. An interval of up to 2
16
can be counted.
Block diagram
Register configuration
UTIMR (reload register)
bit 15
bit 0
UTIM ( U-TIMER register)
bit 15
bit 0
Clock
Underflow
To UART
(Peripheral clock)
Control
f.f.
Load
bit 15
bit 0
00000078
H
00000079
H
0000007C
H
0000007D
H
00000080
H
00000081
H
0000007B
H
0000007F
H
00000083
H
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
Address
Initial value
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 - - 0 0 0 0 1
B
0 - - 0 0 0 0 1
B
0 - - 0 0 0 0 1
B
UTIM0/UTIMR0
UTIM1/UTIMR1
UTIM2/UTIMR2
UTIMC0
UTIMC1
UTIMC2
: Access
: Readable and writable
: Unused
( )
R/W
MB91101/MB91101A
46
5.
PWM Timer
The PWM timer can output high accurate PWM waves efficiently.
MB91101 has inner 4-channel PWM timers, and has the following features.
Each channel consists of a 16-bit down counter, a 16-bit data resister with a buffer for scyde setting, a 16-
bit compare resister with a buffer for duty setting, and a pin controller.
The count clock of a 16-bit down counter can be selected from the following four inner clocks.
Inner clock
,
/4,
/16,
/64
The counter value can be initialized "FFFF
H
" by the resetting or the counter borrow.
PWM output (each channel)
Resister description
Block diagram (general construction)
16-bit reload timer
ch.0
16-bit reload timer
ch.1
General control
register 2
TRG input
PWM timer ch.0
TRG input
PWM timer ch.1
TRG input
PWM timer ch.2
TRG input
PWM timer ch.3
General control
register 1
(cause selection)
External TRG0 to TRG3
4
4
PWM0
PWM1
PWM2
PWM3
47
MB91101/MB91101A
Block diagram (for one channel)
1 / 1
1 / 4
1 / 16
1 / 64
Peripheral clock
Prescaler
ck
Start
Borrow
PCSR
PDUT
cmp
Load
16-bit down counter
PPG mask
Reverse bit
S
R
Q
Interrupt
selection
IRQ
Enable
Soft trigger
Edge detect
TRG input
PWM output
MB91101/MB91101A
48
Register configuration
bit 15
bit 0
000000DC
H
000000DD
H
000000DF
H
000000E0
H
000000E1
H
000000E2
H
000000E3
H
000000E4
H
000000E5
H
000000E6
H
000000E7
H
000000E8
H
000000E9
H
000000EA
H
000000EB
H
000000EC
H
000000ED
H
000000EE
H
000000EF
H
000000F0
H
000000F1
H
000000F2
H
000000F3
H
000000F4
H
000000F5
H
000000F6
H
000000F7
H
000000F8
H
000000F9
H
000000FA
H
000000FB
H
000000FC
H
000000FD
H
000000FE
H
000000FF
H
(R/W)
(R/W)
(R)
(W)
(W)
(R/W)
(R/W)
(R)
(W)
(W)
(R/W)
(R/W)
(R)
(W)
(W)
(R/W)
(R/W)
(R)
(W)
(W)
(R/W)
(R/W)
Address
Initial value
bit 8
0 0 1 1 0 0 1 0
B
0 0 0 1 0 0 0 0
B
0 0 0 0 0 0 0 0
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
0 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
0 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
0 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
0 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
: Access
: Readable and writable
: Read only
: Write only
: Unused
: Indeterminate
( )
R/W
R
W
X
PCNH0
PCNL0
GCN2
PCNH1
PCNL1
PCNH2
PCNL2
PCNH3
PCNL3
GCN1
PTMR0
PCSR0
PDUT0
PTMR1
PCSR1
PDUT1
PTMR2
PCSR2
PDUT2
PTMR3
PCSR3
PDUT3
49
MB91101/MB91101A
6.
16-bit Reload Timer
The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload timer, a prescaler for generating
internal count clock and control registers.
Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock).
The DMA transfer can be started by the interruption.
The MB91101 consists of 3 channels of the 16-bit reload timer.
Block diagram
16-bit reload register
16-bit down counter UF
Clock selector
Reload
RELD
OUTE
OUTL
INTE
UF
CNTE
TRG
OUT
CTL.
CSL1
CSL0
MOD2
MOD1
MOD0
16
8
16
2
3
2
IN CTL.

2

2

2
1
3
5
3
Internal clock
Prescaler
clear
EXCK
GATE
2
Retrigger
IRQ
PWM (ch.0, ch.1)
A/D (ch.2)
R-bus
MB91101/MB91101A
50
Register configuration
bit 15
bit 0
0000002E
H
0000002F
H
00000036
H
00000037
H
00000042
H
00000043
H
0000002A
H
0000002B
H
00000032
H
00000033
H
0000003E
H
0000003F
H
00000028
H
00000029
H
00000030
H
00000031
H
0000003C
H
0000003D
H
- - - - 0 0 0 0
B
0 0 0 0 0 0 0 0
B
- - - -
0 0 0 0
B
0 0 0 0 0 0 0 0
B
- - - - 0 0 0 0
B
0 0 0 0 0 0 0 0
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
X X X X X X X X
B
Address
Initial value
: Access
: Readable and writable
: Read only
: Write only
: Unused
: Indeterminate
(R/W)
(R/W)
(R/W)
(R)
(R)
(R)
(W)
(W)
(W)
TMCSR0
TMCSR1
TMCSR2
TMR0
TMR1
TMR2
TMRLR0
TMRLR1
TMRLR2
( )
R/W
R
W
X
51
MB91101/MB91101A
7.
Bit Search Module
The bit search module detects transitions of data (0 to 1/1 to 0) on the data written on the input registers and
returns locations of the transitions.
Block diagram
Register configuration
Input latch
Single-detection data recovery
Bit search circuit
Search result
Address
decoder
Detection
mode
D-bus
000003F0
H
000003F1
H
000003F2
H
000003F3
H
000003F4
H
000003F5
H
000003F6
H
000003F7
H
000003F8
H
000003F9
H
000003FA
H
000003FB
H
000003FC
H
000003FE
H
000003FD
H
000003FF
H
bit 31
bit 0
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
XXXXXXXX
B
Address
Initial value
(W)
(W)
(W)
(W)
bit 16
: Access
: Readable and writable
: Read only
: Write only
: Indeterminate
( )
R/W
R
W
X
BSD0
BSD1
BSDC
BSRR
MB91101/MB91101A
52
8.
10-bit A/D Converter (Successive Approximation Conversion Type)
The A/D converter is the module which converts an analog input voltage to a digital value, and it has following
features.
Minimum converting time: 5.6
s/ch. (system clock: 25 MHz)
Inner sample and hold circuit
Resolution: 10 bits
Analog input can be selected from 4 channels by program.
Single convert mode: 1 channel is selected and converted.
Scan convert mode: Converting continuous channels. Maximum 4 channels are programmable.
Continuous convert mode: Converting the specified channel repeatedly.
Stop convert mode: After converting one channel then stop and wait till next activation synchronising at
the beginning of conversion can be peformed.
DMA transfer operation is available by interruption.
Operating factor can be selected from the software, the external trigger (falling edge), and 16-bit reroad timer
(rising edge).
Block diagram
Successive approximation
register
Internal voltage generator
AV
CC
AVR
AV
SS
MPX
Comparator
AN0
AN1
AN2
AN3
Sample & hold circuit
Data register (ADCR)
A/D control register (ADCS)
Prescaler
Operating clock
ATG
Trigger start
TIM0
(internal connection)
(16-bit reload timer ch.2)
Timer start
(Peripheral clock)
R-bus
Input circuit
Decoder
53
MB91101/MB91101A
Register configuration
bit 15
bit 0
0000003A
H
0000003B
H
00000038
H
00000039
H
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
- - - - - - X X
B
X X X X X X X X
B
Address
Initial value
ADCS
ADCR
(R/W)
(R)
: Access
: Readable and writable
: Read only
: Unused
: Indeterminate
( )
R/W
R
X
MB91101/MB91101A
54
9.
Interrupt Controller
The interrupt controller processes interrupt acknowledgments and arbitration between interrupts.
Block diagram
R-bus
LEVEL0*
4
IM
INT0*
2
OR
Priority judgment
NMI
NMI processing
RI00
RI47
(DLYIRQ)




DLYI*
1
Level judgment
ICR00
ICR47
Vector judgment
4
5
5
6
6
Level
vector
generation
HLDREQ
cancel
request
LEVEL4 to
HLDCAN*
3
VCT0*
5
VCT5 to
*1: DLYI stands for delayed interrupt module (delayed interrupt generation block) (refer to the section "11. Delayed Interrupt
Module" for detail).
*2: INT0 is a wake-up signal to clock control block in the sleep or stop status.
*3: HLDCAN is a bus release request signal for bus masters other than CPU.
*4: LEVEL5 to LEVEL0 are interrupt level outputs.
*5: VCT5 to VCT0 are interrupt vector outputs.
55
MB91101/MB91101A
Register configuration
ICR00
ICR01
ICR02
ICR03
ICR04
ICR05
ICR06
ICR07
ICR08
ICR09
ICR10
ICR11
ICR12
ICR13
ICR14
ICR15
ICR16
bit 7
bit 0
00000400
H
00000401
H
00000402
H
00000403
H
00000404
H
00000405
H
00000406
H
00000407
H
00000408
H
00000409
H
0000040A
H
0000040B
H
0000040C
H
0000040D
H
0000040E
H
0000040F
H
00000410
H
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
Address
Initial value
ICR17
ICR18
ICR19
ICR20
ICR21
ICR22
ICR23
ICR24
ICR25
ICR26
ICR27
ICR28
ICR29
ICR30
ICR31
ICR47
HRCL
DICR
bit 7
bit 0
00000411
H
00000412
H
00000413
H
00000414
H
00000415
H
00000416
H
00000417
H
00000418
H
00000419
H
0000041A
H
0000041B
H
0000041C
H
0000041D
H
0000041E
H
0000041F
H
0000042F
H
00000431
H
00000430
H
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - 11111
B
(R/W)
- - - - - - - 0
B
(R/W)
Address
Initial value
: Access
: Redable and writable
: Unused
( )
R/W
MB91101/MB91101A
56
10. External Interrupt/NMI Control Block
The external interrupt/NMI control block controls external interrupt request signals input to NMI pin and INT0
to INT3 pins.
Detecting levels can be selected from "H", "L", rising edge and falling edge (not for NMI pin).
Block diagram
Register configuration
Interrupt enable register
Interrupt cause register
Request level setting register
Gate
Cause F/F
Edge detection circuit
Interrupt
request
8
8
8
9
5
INT0 to INT3
NMI
R-bus
bit 15
bit 0
00000000
B
00000000
B
00000000
B
Address
Initial value
ENIR
ELVR
(R/W)
(R/W)
(R/W)
bit 8
EIRR
00000095
H
00000094
H
00000099
H
: Access
: Redable and writable
( )
R/W
57
MB91101/MB91101A
11. Delayed Interrupt Module
Delayed interrupt module is a module which generates a interrupt for changing a task. By using this delayed
interrupt module, an interrupt request to CPU can be generated/cancelled by the software.
Refer to the section "9. Interrupt Controller" for delayed interrupt module block diagram.
Register configuration
bit 7
bit 0
- - - - - - - 0
B
Address
Initial value
DICR
(R/W)
00000430
H
: Access
: Redable and writable
: Unused
( )
R/W
MB91101/MB91101A
58
12. Clock Generation (Low-power consumption mechanism)
The clock control block is a module which undertakes the following functions.
CPU clock generation (including gear function)
Peripheral clock generation (including gear function)
Reset generation and cause hold
Standby function (including hardware standby)
DMA request prohibit
PLL (multiplier circuit) embedded
Block diagram
Gear control register (GCR)
[Gear control block]
PCTR register
CPU gear
Peripheral
gear
Oscillator
circuit
X0
X1
1/2
PLL
Internal clock
generation
circuit
CPU clock
Internal bus clock
External bus clock
Peripheral
DMA clock
Internal
peripheral clock
[Stop/sleep control block]
Internal
interrupt request
Internal reset
Standby control
register (STCR)
STOP state
SLEEP state
CPU hold request
Internal reset
Reset
generation
F/F
CPU hold enable
HST pin
DMA
request
Power on sel
RST pin
DMA request prohibit
register (PDRR)
[DMA prohibit circuit]
Reset cause register (RSRR)
Timebase timer
Count clock
Watchdog reset
postpone register
[Watchdog control block]
Timebase timer clear
register (CTBR)
Watchdog reset generation
postpone register (WPR)
R-bus
Selection
circuit
[Reset cause circuit]
Status
transition
control circuit
59
MB91101/MB91101A
Register configuration
bit 15
bit 0
1 X X X X - 0 0
B
0 0 0 1 1 1 - -
B
- - - - 0 0 0 0
B
X X X X X X X X
B
1 1 0 0 1 1 - 1
B
X X X X X X X X
B
0 0 - - 0 - - -
B
Address
Initial value
bit 8
00000480
H
00000481
H
00000482
H
00000483
H
00000484
H
00000485
H
00000488
H
STCR
CTBR
WPR
RSRR/WTCR
PDRR
GCR
PCTR
(R/W)
(R/W)
(R/W)
(W)
(R/W)
(W)
(R/W)
: Access
: Redable and writable
: Write only
: Unused
: Indeterminate
( )
R/W
W
X
MB91101/MB91101A
60
13. External Bus Interface
The external bus interface controls the interface between the device and the external memory and also the
external I/O, and has the following features.
25-bit (32 Mbytes) address output
6 independent banks owing to the chip select function.
Can be set to anywhere on the logical address space for minimum unit 64 Kbytes.
Total 32 Mbytes
6 area setting is available by the address pin and the chip select pin.
8/16-bit bus width setting are available for every chip select area.
Programmable automatic memory wait (max. for 7 cycles) can be inserted.
DRAM interface support
Three kinds of DRAM interface: Double CAS DRAM (normally DRAM I/F)
Single CAS DRAM
Hyper DRAM
2 banks independent control (RAS, CAS, etc. control signals)
DRAM select is available from 2CAS/1WE and 1CAS/2WE.
Hi-speed page mode supported
CBR/self refresh supported
Programmable wave form
Unused address/data pin can be used for I/O port.
Little endian mode supported
Clock doubler: Internal bus 50 MHz, external bus 25 MHz
61
MB91101/MB91101A
Block diagram
Address bus
Data bus
A-OUT
External data bus
Write buffer
Read buffer
Switch
MUX
Switch
+1 or +2
Inpage
DMCR
DRAM control
Refresh counter
ASR
AMR
DATA BLOCK
ADDRESS BLOCK
Address buffer
Shifter
Comparator
External address bus
CS0 to CS5
RAS0, RAS1
CS0L, CS1L
CS0H, CS1H
DW0, DW1
Underflow
To TBT
External pin control block
Registers and control
RD
WR0, WR1
BRQ
BGRNT
CLK
RDY
All blocks control
32
6
8
3
4
32
MB91101/MB91101A
62
Register configuration
bit 31
bit 0
(W)
(W)
(W)
(W)
(W)
(W)
(W)
(W)
(W)
(W)
Address
Initial value
bit 16
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 1
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 1 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 1 1
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 1 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 1 0 1
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
: Access
: Redable and writable
: Write only
: Unused
: Indeterminate
( )
R/W
W
X
ASR1
AMR1
ASR2
AMR2
ASR3
AMR3
ASR4
AMR4
ASR5
AMR5
AMD0
AMD1
AMD32
AMD4
AMD5
DSCR
RFCR
EPCR0
DMCR4
DMCR5
LER
MODR
- - X X X X X X
B
0 0 - - - 0 0 0
B
- - - - 1 1 0 0
B
- 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 -
B
0 0 0 0 0 0 0 0
B
0 0 0 0 0 0 0 -
B
- - - - - 0 0 0
B
X X X X X X X X
B
- - - 0 0 1 1 1
B
0 - - 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
0 - - 0 0 0 0 0
B
0 - - 0 0 0 0 0
B
0 0 0 0 0 0 0 0
B
(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(W)
(R/W)
(W)
(W)
(R/W)
(R/W)
(W)
(W)
0000060C
H
0000060D
H
0000060E
H
0000060F
H
00000610
H
00000611
H
00000612
H
00000613
H
00000614
H
00000615
H
00000616
H
00000617
H
00000618
H
00000619
H
0000061A
H
0000061B
H
0000061C
H
0000061D
H
0000061E
H
0000061F
H
00000626
H
00000627
H
00000628
H
00000629
H
0000062B
H
0000062C
H
0000062D
H
0000062E
H
0000062F
H
000007FE
H
000007FF
H
00000620
H
00000621
H
00000622
H
00000623
H
00000624
H
00000625
H
EPCR1
63
MB91101/MB91101A
s
ELECTRICAL CHARACTERISTICS
1.
Absolute Maximum Ratings
(V
SS
= AV
SS
= 0.0 V)
*1: V
CC
5 must not be less than V
SS
0.3 V.
*2: Make sure that the voltage does not exceed V
CC
5 + 0.3 V, such as when turning on the device.
*3: Maximum output current is a peak current value measured at a corresponding pin.
*4: Average output current is an average current for a 100 ms period at a corresponding pin.
*5: Average total output current is an average current for a 100 ms period for all corresponding pins.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
Parameter
Symbol
Value
Unit
Remarks
Min.
Max.
Power supply
voltage
At 5 V power supply
V
CC
5
V
SS
0.3
V
SS
+ 6.5
V
V
CC
3
--
--
V
At 3 V power supply
V
CC
5
V
CC
3 0.3
V
SS
+ 6.5
V
*1
V
CC
3
V
SS
0.3
V
SS
+ 3.6
V
*1
Analog supply voltage
AV
CC
V
SS
0.3
V
SS
+ 3.6
V
*2
Analog reference voltage
AVRH
V
SS
0.3
V
SS
+ 3.6
V
*2
Analog pin input voltage
V
IA
V
SS
0.3
AV
CC
+ 0.3
V
Input voltage
V
I
V
SS
0.3
V
CC
5
+ 0.3
V
Output voltage
V
O
V
SS
0.3
V
CC
5
+ 0.3
V
"L" level maximum output current
I
OL
--
10
mA
*3
"L" level average output current
I
OLAV
--
4
mA
*4
"L" level maximum total output current
I
OL
--
100
mA
"L" level average total output current
I
OLAV
--
50
mA
*5
"H" level maximum output current
I
OH
--
10
mA
*3
"H" level average output current
I
OHAV
--
4
mA
*4
"H" level maximum total output current
I
OH
--
50
mA
"H" level average total output current
I
OHAV
--
20
mA
*5
Power consumption
P
D
--
500
mW
Operating temperature
T
A
0
+70
C
Storage temperature
Tstg
55
+150
C
MB91101/MB91101A
64
2.
Recommended Operating Conditions
(1) At 5 V operation (4.5 V to 5.5 V)
(V
SS
= AV
SS
= 0.0 V)
*1: At V
CC
5, the RAM state holding is not warranted in stop mode.
*2: V
CC
3 is used for the bypass capacitor pin.
*3: Use the ceramic capacitor or the capacitor whose frequency characteristic is equivalent to that of the ceramic
capacitor.
And select the larger capacity smoothing condenser to connect to the power supply (V
CC
5) than C
S
.
(2) At 3 V operation (2.7 V to 3.6 V)
(V
SS
= AV
SS
= 0.0 V)
* : Connect to V
CC
5 for the power supply pin.
Parameter
Symbol
Value
Unit
Remarks
Min.
Max.
Power supply voltage
V
CC
5
4.5
5.5
V
Normal operation
V
CC
5
*1
*1
V
Retaining the RAM state in
stop mode
V
CC
3
--
--
V
*2
Analog supply voltage
AV
CC
V
SS
+ 2.7
V
CC
+ 3.6
V
Analog reference voltage
AVRH
V
SS
0.3
AV
CC
V
Operating temperature
T
A
0
+70
C
Smoothing capacitor
C
S
0.1
1.0
F
V
CC
3 pin *2
Parameter
Symbol
Value
Unit
Remarks
Min.
Max.
Power supply voltage
V
CC
5
2.7
3.6
V
Normal operation
V
CC
5
2.7
3.6
V
Retaining the RAM state in
stop mode
V
CC
3
2.7
3.6
V
*
Analog power supply voltage
AV
CC
V
SS
+ 2.7
V
CC
+ 3.6
V
Analog reference voltage
AVRH
AV
SS
AV
CC
V
Operating temperature
T
A
0
+70
C
V
CC
5
AV
CC
AVRH
AV
SS
V
SS
V
CC
3
5 V
GND
Using with 5 V power supply
V
CC
5
AV
CC
AVRH
AV
SS
V
SS
V
CC
3
3 V
3 V
GND
Using with 3 V power supply
About
0.1
F
Connecting to a power supply
65
MB91101/MB91101A
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside
these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representative beforehand.
5.5
4.5
0
40
50
25
f
CP
/f
CPP
(MHz)
50
12.5
20
25
40
0
0
10
25
50
f
C
(MHz)
Internal clock
Supply voltage
Max. internal clock frequency setting
0.625
3.6
3.3
3.0
2.7
Normal operation warranty range (T
A
= 0
C to +70
C)
Net masked area are f
CPP
.
V
CC
(V)
12.5
PLL system (4 multiplication)
f
CP
/f
CPP
(MHz)
5
Source oscillating input clock
External clock
Self-oscillation
Notes:
When using PLL, the external clock must be used between 10.0 MHz to 12.5 MHz.
PLL oscillation stabilizing period > 100
s
The setting of internal clock must be within above ranges.
3.0 V
0.3 V
3.3 V
0.3 V
Power supply at 5 V
Power supply at 3 V
Divide-by-2 system
CPU
Peripheral
f
CP
f
CPP
MB91101/MB91101A
66
3.
DC Characteristics
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
* : V
CC
3 = 3.3
0.2 V (internal regulator output voltage) when using 5 V power supply, V
CC
3 = power supply voltage
when using 3 V power supply (internal regulator unused)
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
"H" level input
voltage
V
IH
Input pin except
for hysteresis
input
--
0.65
V
CC
3
--
V
CC
5 + 0.3
V
*
V
IHS
HST, NMI, RST,
PA1 to PA6,
PB0 to PB7,
PE0 to PE7,
PF0 to PF7
--
0.8
V
CC
3
--
V
CC
5 + 0.3
V
Hysteresis
input *
"L" level input
voltage
V
IL
Input other than
following
symbols
--
V
SS
0.3
--
0.25
V
CC
3
V
*
V
ILS
HST, NMI, RST,
PA1 to PA6,
PB0 to PB7,
PE0 to PE7,
PF0 to PF7
--
V
SS
0.3
--
0.2
V
CC
3
V
Hysteresis
input *
"H" level output
voltage
V
OH
D16 to D31,
A00 to A24,
P6 to PF
V
CC
5 = 4.5 V
I
OH
= 4.0 mA
V
CC
0.5
--
--
V
"L" level output
voltage
V
OL
D16 to D31,
A00 to A24,
P6 to PF
V
CC
5 = 4.5 V
I
OL
= 4.0 mA
--
--
0.4
V
Input leakage
current
(Hi-Z output
leakage current)
I
LI
D00 to D31,
A00 to A23,
P8 to PF
V
CC
5 = 5.5 V
0.45 V < V
I
< V
CC
5
--
+5
A
Pull-up
resistance
R
PULL
RST
V
CC
5 = 5.5 V
V
I
= 0.45 V
25
50
100
k
Power supply
current
I
CC
V
CC
F
C
= 12.5 MHz
V
CC
5 = 5.5 V
--
75
100
mA
(4 multiplication)
Operation at
50 MHz
I
CCS
V
CC
F
C
= 12.5 MHz
V
CC
5 = 5.5 V
--
40
60
mA Sleep mode
I
CCH
V
CC
T
A
= +25
C
V
CC
5 = 5.5 V
--
10
100
A Stop mode
Input
capacitance
C
IN
Except for
V
CC
5, V
CC
3,
AV
CC
, AV
SS
, V
SS
--
--
10
--
pF
67
MB91101/MB91101A
4.
AC Characteristics
Measurement Conditions
V
CC
= 5.0 V
10%
V
CC
= 2.7 V to 3.6 V
Load conditions
Parameter
Symbol
Value
Unit
Remarks
Min.
Typ.
Max.
"H" level input voltage
V
IH
--
2.4
--
V
"L" level input voltage
V
IL
--
0.8
--
V
"H" level output voltage
V
OH
--
2.4
--
V
"L" level output voltage
V
OL
--
0.8
--
V
Parameter
Symbol
Value
Unit
Remarks
Min.
Typ.
Max.
"H" level input voltage
V
IH
--
1/2
V
CC
--
V
"L" level input voltage
V
IL
--
1/2
V
CC
--
V
"H" level output voltage
V
OH
--
1/2
V
CC
--
V
"L" level output voltage
V
OL
--
1/2
V
CC
--
V
V
OH
V
OL
V
IH
V
IL
V
CC
0.0 V
Input
Output
V
OH
V
OL
V
IH
V
IL
V
CC
0.0 V
Input
Output
C = 50 pF
Output pin
(V
CC
= 5.0V 10%)
MB91101/MB91101A
68
Load capacitance - Delay characteristics (Output delay with reference to the internal)
35
30
25
20
15
10
5
0
0
20
40 50 60
80
100
120
C (pF)
5 V Fall
3 V Rise
5 V Rise
3 V Fall
(ns)
69
MB91101/MB91101A
(1) Clock Timing Rating
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
*1: Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock
multiplication system.
*2: These values are for a minimum clock of 10 MHz input to X0, a divide-by-2 system of the source oscillation and
a 1/8 gear.
*3: Values when using the doubler and CPU operation at 50 MHz.
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Max.
Clock frequency
f
C
X0, X1
When using PLL
10
12.5
MHz
f
C
X0, X1
Self-oscillation
(divide-by-2 input)
10
25
MHz
f
C
X0, X1
External clock
(divide-by-2 input)
10
25
MHz
Clock cycle time
t
C
X0, X1
When using PLL
80
100
ns
t
C
X0, X1
--
40
100
ns
Frequency shift ratio
(when locked)
f
--
When using PLL
--
5
%
*1
Input clock pulse width
P
WH
,
P
WL
X0, X1
--
25
--
ns
Input to X0
only, when
using 5 V
power supply
P
WH
,
P
WL
X0, X1
10
--
ns
Input to X0,
X1
Input clock rising/falling time
t
CR
,
t
CF
X0, X1
--
8
ns
(t
CR
+ t
CF
)
Internal operating clock
frequency
f
CP
--
CPU system
0.625*
2
50
MHz
f
CPB
--
Bus system
0.625*
2
25*
3
MHz
f
CPP
--
Peripheral system
0.625*
2
25
MHz
Internal operating clock
cycle time
t
CP
--
CPU system
20
1600*
2
ns
t
CPB
--
Bus system
40*
3
1600*
2
ns
t
CPP
--
Peripheral system
40
1600*
2
ns
f =
100 (%)
|
|
f
0
Center frequency f
0
+
+
MB91101/MB91101A
70
0.8 V
CC
0.2 V
CC
t
CF
t
CR
t
C
P
WL
P
WH
Clock timing rating measurement conditions
71
MB91101/MB91101A
(2) Clock Output Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CP
, t
CPB
(internal operating clock cycle time): Refer to "(1) Clock Timing Rating."
*1: t
CYC
is a frequency for 1 clock cycle including a gear cycle.
Use the doubler when CPU frequency is above 25 MHz.
*2: Rating at a gear cycle of
1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute "n" in the following equations with 1/2, 1/4, 1/8,
respectively.
Min. : (1 n/2)
t
CYC
10
Max. : (1 n/2)
t
CYC
+ 10
Select a gear cycle of
1 when using the doubler.
*3: Rating at a gear cycle of
1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute "n" in the following equations with 1/2, 1/4, 1/8,
respectively.
Min. : n/2
t
CYC
10
Max. : n/2
t
CYC
+ 10
Select a gear cycle of
1 when using the doubler.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
Cycle time
t
CYC
CLK
--
t
CP
--
ns
*1
t
CYC
CLK
Using the
doubler
t
CPB
--
ns
CLK
CLK
t
CHCL
CLK
--
1/2
t
CYC
10 1/2
t
CYC
+ 10
ns
*2
CLK
CLK
t
CLCH
CLK
1/2
t
CYC
10 1/2
t
CYC
+ 10
ns
*3
CLK
V
OH
V
OL
V
OH
t
CYC
t
CHCL
t
CLCH
MB91101/MB91101A
72
The relation between source oscillation input and CLK pin for configured by CHC/CCK1/CCK0 settings of GCR
(gear control register) is as follows:
However, in this chart source oscillation input means X0 input clock.
CCK1/0: "00"
Source oscillation input
(when using the doublure)
Source oscillation input
(1) PLL system
(CHC bit of GCR set to "0")
(2) 2 dividing system
(CHC bit of GCR set to "1")
(a) Gear
1 CLK pin
CCK1/0: "00"
(b) Gear
1/2 CLK pin
CCK1/0: "01"
(c) Gear
1/4 CLK pin
CCK1/0: "10"
(d) Gear
1/8 CLK pin
CCK1/0: "11"
t
CYC
t
CYC
t
CYC
t
CYC
t
CYC
(a) Gear
1 CLK pin
73
MB91101/MB91101A
Discreet type
( ): C
1
and C
2
internally connected 3 contacts type.
Oscillation frequency
[MHz]
Model
Load capacitance
C
1
= C
2
[pF]
Power supply voltage
V
CC
5 [V]
5.00 to 6.30
CSA
MG
30
2.9 to 5.5
CST
MGW
(30)
CSA
MG093
30
2.7 to 5.5
CST
MGW093
(30)
6.31 to 10.0
CSA
MTZ
30
2.9 to 5.5
CST
MTW
(30)
CSA
MTZ093
30
2.7 to 5.5
CST
MTW093
(30)
10.1 to 13.0
CSA
MTZ
30
3.0 to 5.5
CST
MTW
(30)
CSA
MTZ093
30
2.9 to 5.5
CST
MTW093
(30)
13.01 to 15.00
CSA
MXZ040
15
3.2 to 5.5
CST
MXW0C3
(15)
C
2
C
1
*
Recommended circuit (2 contacts)
X0
X1
Recommended circuit (3 contacts)
X0
X1
*
C
1
C
2
C
1
, C
2
internally
connected.
* : Murata Mfg. Co., Ltd.
Ceramic oscillator applications
MB91101/MB91101A
74
(3) Reset/Hardware Standby Input Ratings
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CP
(internal operating clock cycle time): Refer to "(1) Clock Timing Rating."
Parameter
Symbol Pin name Condition
Value
Unit
Remarks
Min.
Max.
Reset input time
t
RSTL
RST
--
t
CP
5
--
ns
Hardware standby input time
t
HSTL
HST
t
CP
5
--
ns
RST
HST
0.2 V
CC
0.2 V
CC
t
RSTL
, t
HSTL
75
MB91101/MB91101A
(4) Power on Supply Specifications (Power-on Reset)
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
C
(clock cycle time): Refer to "(1) Clock Timing Rating."
* : V
CC
< 0.2 V before the power supply rising
Parameter
Symbol Pin name
Condition
Value
Unit
Remarks
Min.
Max.
Power supply rising time
t
R
V
CC
V
CC
= 5.0 V
50
--
s
*
t
R
V
CC
--
30
ms
*
t
R
V
CC
V
CC
= 3.0/
3.3 V
50
--
s
*
t
R
V
CC
--
18
ms
*
Power supply shut off time
t
OFF
V
CC
--
1
--
ms
Repeated
operations
Oscillation stabilizing time
t
OSC
--
2
t
C
2
21
+ 100
s
--
ns
0.2 V
t
R
0.9
V
CC
V
CC
V
SS
A voltage rising rate of 50 mV/ms or
less is recommended.
V
CC
Sudden change in supply voltage during operation may initiate a power-on sequence.
To change supply voltage during operation, it is recommended to smoothly raise the voltage to avoid rapid
fluctuations in the supply voltage.
Note:
t
RSTL
: Reset input time
t
OFF
V
CC
RST
(Oscillation stabilizing time)
Note: Set RST pin to "L" level when turning on the device, at least the described above duration after the
supply voltage reaches Vcc is necessary before turning the RST to "H" level.
t
OSC
t
RSTL
+ (t
C
2
19
)
42 ms approx. 336 ms approx. (@12.5 MHz)
Stabilizing time *
*: Reset can't be done during regulator stabilizing time.
Regulator
MB91101/MB91101A
76
(5) Normal Bus Access Read/write Operation
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
*1: When bus timing is delayed by automatic wait insertion or RDY input, add (t
CYC
extended cycle number for
delay) to this rating.
*2: Rating at a gear cycle of
1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute "n" in the following equation with 1/2, 1/4, 1/8,
respectively.
Equation: (2 n/2)
t
CYC
25
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
CS0 to CS5 delay time
t
CHCSL
CLK,
CS0 to CS5
--
--
15
ns
t
CHCSH
CLK,
CS0 to CS5
--
15
ns
Address delay time
t
CHAV
CLK,
A24 to A00
--
15
ns
Data delay time
t
CHDV
CLK,
D31 to D16
--
15
ns
RD delay time
t
CLRL
CLK, RD
--
6
ns
t
CLRH
CLK, RD
--
6
ns
WR0, WR1 delay time
t
CLWL
CLK,
WR0, WR1
--
6
ns
t
CLWH
CLK,
WR0, WR1
--
6
ns
Valid address
valid data
input time
t
AVDV
A24 to A00,
D31 to D16
--
3/2
t
CYC
25
ns
*1
*2
RD
valid data input time t
RLDV
RD,
D31 to D16
--
t
CYC
10
ns
*1
Data set up
RD
time
t
DSRH
RD,
D31 to D16
10
--
ns
RD
data hold time
t
RHDX
RD,
D31 to D16
0
--
ns
77
MB91101/MB91101A
V
OH
CLK
V
OL
V
OH
V
OL
BA2
V
OH
t
CHCSL
t
CHAV
V
OL
V
OH
V
OL
t
CLRL
V
OL
t
CLWL
V
OL
t
CHDV
V
OL
V
OH
Write
V
OL
V
OH
t
CLRH
V
OH
V
IH
V
IL
V
IH
V
IL
t
DSRH
t
RHDX
t
CLWH
V
OH
Read
V
OH
V
OL
t
CHCSH
V
OH
CS0 to CS5
A24 to A00
RD
D31 to D16
WR0, WR1
D31 to D16
BA1
t
CYC
t
RLDV
t
AVDV
MB91101/MB91101A
78
(6) Ready Input Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RDY set up time
CLK
t
RDYS
RDY, CLK
--
15
--
ns
CLK
RDY hold time
t
RDYH
RDY, CLK
0
--
ns
CLK
V
OH
V
OH
V
OL
V
OL
V
IL
V
IH
V
IH
V
IL
t
RDYH
t
RDYH
RDY
When wait(s)
is inserted.
RDY
When no wait
is inserted.
V
IH
V
IL
V
IL
V
IH
t
CYC
t
RDYS
t
RDYS
79
MB91101/MB91101A
(7) Hold Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
Note: There is a delay time of more than 1 cycle from BRQ input to BGRNT change.
Parameter
Symbol Pin name Condition
Value
Unit
Remarks
Min.
Max.
BGRNT delay time
t
CHBGL
CLK,
BGRNT
--
--
6
ns
t
CHBGH
CLK,
BGRNT
--
6
ns
Pin floating
BGRNT
time
t
XHAL
BGRNT
t
CYC
10
t
CYC
+ 10
ns
BGRNT
pin valid time
t
HAHV
BGRNT
t
CYC
10
t
CYC
+ 10
ns
CLK
V
OH
t
CHBGL
V
OL
Each pin
High impedance
V
OH
V
OH
V
OH
V
OH
V
OL
V
OH
V
OL
V
OH
t
CHBGH
BRQ
BGRNT
t
CYC
t
XHAL
t
HAHV
MB91101/MB91101A
80
(8) Normal DRAM Mode Read/Write Cycle
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
CAS: CS0L to CS1H pins are for CAS signal outputs.
DW: DW0, DW1 and CS0H to CS1H are used for WE outputs.
*1: When Q1 cycle or Q4 cycle is extended for 1 cycle, add t
CYC
time to this rating.
*2: Rating at a gear cycle of
1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute "n" in the following equation with 1/2, 1/4, 1/8,
respectively.
Equation: (3 n/2)
t
CYC
16
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH
CLK, RAS
--
--
6
ns
t
CHRAL
CLK, RAS
--
6
ns
CAS delay time
t
CLCASL
CLK, CAS
--
6
ns
t
CLCASH
CLK, CAS
--
6
ns
ROW address delay time
t
CHRAV
CLK,
A24 to A00
--
15
ns
COLUMN address delay
time
t
CHCAV
CLK,
A24 to A00
--
15
ns
DW delay time
t
CHDWL
CLK, DW
--
15
ns
t
CHDWH
CLK, DW
--
15
ns
Output data delay time
t
CHDV1
CLK,
D31 to D16
--
15
ns
RAS
valid data input
time
t
RLDV
RAS,
D31 to D16
--
5/2
t
CYC
16
ns
*1
*2
CAS
valid data input
time
t
CLDV
CAS,
D31 to D16
--
t
CYC
17
ns
*1
CAS
data hold time
t
CADH
CAS,
D31 to D16
0
--
ns
81
MB91101/MB91101A
V
OL
V
OH
Write
V
OL
V
OH
D31 to D16
V
OL
V
OH
COLUMN address
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
CLK
V
OL
Q2
Q1
Q3
Q4
Q5
V
OH
V
OH
V
OH
V
OH
V
OH
V
OL
V
OL
V
OL
V
OH
t
CLRAH
t
CHRAL
V
OL
t
CLCASH
V
OH
t
CLCASH
t
CHCAV
ROW address
t
CHRAV
Read
V
IL
V
IH
V
IL
V
IH
t
CADH
V
OL
V
OH
t
CHDWL
t
CHDWH
t
CHDV1
D31 to D16
RAS
CAS
A24 to A00
DW
t
CYC
t
RLDV
t
CLDV
MB91101/MB91101A
82
(9) Normal DRAM Mode Fast Page Read/Write Cycle
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
CAS: CS0L to CS1H pins are for CAS signal outputs.
DW: DW0, DW1 and CS0H to CS1H are used for WE outputs.
* : When Q4 cycle is extended for 1 cycle, add t
CYC
time to this rating.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH
CLK, RAS
--
--
6
ns
CAS delay time
t
CLCASL
CLK, CAS
--
6
ns
t
CLCASH
CLK, CAS
--
6
ns
COLUMN address delay
time
t
CHCAV
CLK,
A24 to A00
--
15
ns
DW delay time
t
CHDWH
CLK, DW
--
15
ns
Output data delay time
t
CHDV1
CLK,
D31 to D16
--
15
ns
CAS
valid data input
time
t
CLDV
CAS,
D31 to D16
--
t
CYC
17
ns
*
CAS
data hold time
t
CADH
CAS,
D31 to D16
0
--
ns
83
MB91101/MB91101A
V
OL
V
OH
V
OL
V
OH
COLUMN address
V
OL
V
OH
V
IL
V
IH
V
IL
V
IH
t
CLCASH
t
CHCAV
COLUMN address
COLUMN address
V
OL
V
OH
V
OL
V
OH
V
OH
V
OL
V
OH
V
OL
V
OH
t
CHDWH
t
CHDV1
Write
Read
Read
V
IL
V
IH
Read
D31 to D16
CLK
D31 to D16
RAS
CAS
A24 to A00
DW
Q4
Q5
V
OH
V
OL
Q5
V
OL
Q4
Q5
V
OH
V
OL
t
CLRAH
V
OH
V
OH
V
OL
t
CLCASL
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
t
CADH
Write
t
CLDV
MB91101/MB91101A
84
(10) Single DRAM Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH2
CLK, RAS
--
--
6
ns
t
CHRAL2
CLK, RAS
6
ns
CAS delay time
t
CHCASL2
CLK, CAS
--
n/2
t
CYC
ns
t
CHCASH2
CLK, CAS
--
6
ns
ROW address delay time
t
CHRAV2
CLK,
A24 to A00
--
15
ns
COLUMN address delay
time
t
CHCAV2
CLK,
A24 to A00
--
15
ns
DW delay time
t
CHDWL2
CLK, DW
--
15
ns
t
CHDWH2
CLK, DW
--
15
ns
Output data delay time
t
CHDV2
CLK,
D31 to D16
--
15
ns
CAS
Valid data input
time
t
CLDV2
CAS,
D31 to D16
--
(1 n/2)
t
CYC
17
ns
CAS
data hold time
t
CADH2
CLK,
D31 to D16
0
--
ns
85
MB91101/MB91101A
Q1
Q2
Q3
Q4S
Q4S
Q4S
V
OH
t
CYC
t
CHCASL2
t
CHCASH2
t
CLRAH2
t
CHRAL2
t
CHRAV2
t
CHDWL2
t
CHDWH2
t
CHDV2
t
CHDV2
t
CADH2
t
CLDV2
t
CHCAV2
V
OH
ROW address
CLK
RAS
CAS
DW
A24 to A00
D31 to D16
D31 to D16
COLUMN-0
COLUMN-1
COLUMN-2
Read-0
Read-1
Read-2
Write-0
Write-2
Write-1
V
OL
V
OL
*1
*2
V
OH
V
OH
V
OH
V
OH
V
OH
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OL
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
IH
V
IL
V
IH
V
IL
V
OH
*1: Q4S indicates Q4SR (Read) of Single DRAM cycle or Q4SW (Write) cycle.
*2: indicates the timing when the bus cycle begins from the high spead page mode.
MB91101/MB91101A
86
(11) Hyper DRAM Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH3
CLK, RAS
--
--
6
ns
t
CHRAL3
CLK, RAS
--
6
ns
CAS delay time
t
CHCASL3
CLK, CAS
--
n/2
t
CYC
ns
t
CHCASH3
CLK, CAS
--
6
ns
ROW address delay time
t
CHRAV3
CLK,
A24 to A00
--
15
ns
COLUMN address delay
time
t
CHCAV3
CLK,
A24 to A00
--
15
ns
RD delay time
t
CHRL3
CLK, RD
--
15
ns
t
CHRH3
CLK, RD
--
15
ns
t
CLRL3
CLK, RD
--
15
ns
DW delay time
t
CHDWL3
CLK, DW
--
15
ns
t
CHDWH3
CLK, DW
--
15
ns
Output data delay time
t
CHDV3
CLK,
D31 to D16
--
15
ns
CAS
valid data input
time
t
CLDV3
CAS,
D31 to D16
--
t
CYC
17
ns
CAS
data hold time
t
CADH3
CLK,
D31 to D16
0
--
ns
87
MB91101/MB91101A
Q1
Q2
Q3
Q4H
Q4H
Q4H
V
OH
t
CYC
t
CHCASL3
t
CHCASH3
t
CLRAH3
t
CHRAL3
t
CHRAV3
t
CHCAV3
V
OH
ROW address
CLK
RAS
CAS
DW
RD
A24 to A00
D31 to D16
D31 to D16
COLUMN-0
COLUMN-1
COLUMN-2
V
OL
V
OL
V
OL
*1
V
OH
V
OH
V
OH
V
OH
V
OL
V
OL
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
t
CHDWL3
t
CHDWH3
t
CHDV3
t
CHRL3
t
CHRH3
t
CADH3
t
CLDV3
Read-0
Read-1
t
CLRL3
t
CHDV3
Write-0
Write-2
Write-1
*2
*2
V
OH
V
OH
V
OL
V
OL
V
OL
V
IH
V
IL
V
IH
V
IL
V
OH
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OL
V
OH
*1: Q4H indicates Q4HR (Read) of Single DRAM cycle or Q4HW (Write) cycle.
*2: indicates the timing when the bus cycle begins from the high spead page mode.
MB91101/MB91101A
88
(12) CBR Refresh
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
CAS: CS0L to CS1H pins are for CAS signal outputs.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH
CLK, RAS
--
--
6
ns
t
CHRAL
CLK, RAS
--
6
ns
CAS delay time
t
CLCASL
CLK, CAS
--
6
ns
t
CLCASH
CLK, CAS
--
6
ns
t
CLCASH
CLK
RAS
CAS
V
OL
V
OL
R4
V
OH
V
OL
t
CLRAH
R3
R2
R1
V
OL
V
OH
V
OH
V
OH
V
OH
V
OL
t
CHRAL
t
CLCASL
DW
t
CYC
89
MB91101/MB91101A
(13) Self Refresh
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
CAS: CS0L to CS1H pins are for CAS signal outputs.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RAS delay time
t
CLRAH
CLK, RAS
--
--
6
ns
t
CHRAL
CLK, RAS
--
6
ns
CAS delay time
t
CLCASL
CLK, CAS
--
6
ns
t
CLCASH
CLK, CAS
--
6
ns
CLK
RAS
CAS
V
OL
t
CHRAL
V
OH
t
CLCASL
t
CLRAH
V
OH
SR2
V
OH
SR3
V
OL
V
OL
SR3
V
OL
V
OH
V
OH
t
CLCASH
t
CYC
SR1
MB91101/MB91101A
90
(14) UART Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYCP
: A cycle time of peripheral system clock
Notes: This rating is for AC characteristics in CLK synchronous mode.
Parameter
Symbol Pin name Condition
Value
Unit
Remarks
Min.
Max.
Serial clock cycle time
t
SCYC
--
Internal
shift clock
mode
8
t
CYCP
--
ns
SCLK
SCLK
t
SCLCH
4
t
CYCP
10 4
t
CYCP
+10
ns
SCLK
SCLK
t
SCHCL
4
t
CYCP
10 4
t
CYCP
+10
ns
SCLK
SOUT delay time
t
SLOV
--
80
80
ns
Valid SIN
SCLK
t
IVSH
--
100
--
ns
SCLK
valid SIN hold
time
t
SHIX
--
60
--
ns
Serial clock "H" pulse width
t
SHSL
--
External
shift clock
mode
4
t
CYCP
--
ns
Serial clock "L" pulse width
t
SLSH
--
4
t
CYCP
--
ns
SCLK
SOUT delay time
t
SLOV
--
--
150
ns
Valid SIN
SCLK
t
IVSH
--
60
--
ns
SCLK
valid SIN hold
time
t
SHIX
--
60
--
ns
SCLK
SOUT
SIN
SCLK
SOUT
SIN
t
SCYC
t
SCLCH
t
SCHCL
t
SLOV
t
IVSH
t
SHIX
t
SHSL
t
SLSH
t
SLOV
t
IVSH
t
SHIX
V
OL
V
OL
V
OH
V
IL
V
IL
V
IH
V
IH
V
OL
V
OH
V
IL
V
IH
V
OL
V
OH
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
Internal shift clock mode
External shift clock mode
91
MB91101/MB91101A
(15) Trigger System Input Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYCP
: A cycle time of peripheral system clock
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
A/D start trigger input time
t
TRGH
,
t
TRGL
ATG
--
5
t
CYCP
--
ns
PWM external trigger input
time
t
TRGH
,
t
TRGL
TRG0 to TRG3
5
t
CYCP
--
ns
ATG
TRG0 to TRG3
t
TRGH
t
TRGL
V
IL
V
IL
V
IH
V
IH
MB91101/MB91101A
92
(16) DMA Controller Timing
(V
CC
5 = 5.0 V
10%, V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
(V
CC
5 = V
CC
3 = 2.7 V to 3.6 V,
V
SS
= AV
SS
= 0.0 V, T
A
= 0
C to +70
C)
t
CYC
(a cycle time of peripheral system clock): Refer to "(2) Clock Output Timing."
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
DREQ input pulse width t
DRWH
DREQ0 to DREQ2
--
2
t
CYC
--
ns
DACK delay time
(Normal bus)
(Normal DRAM)
t
CLDL
CLK,
DACK0 to DACK2
--
6
ns
t
CLDH
CLK,
DACK0 to DACK2
--
6
ns
EOP delay time
(Normal bus)
(Normal DRAM)
t
CLEL
CLK,
EOP0 to EOP2
--
6
ns
t
CLEH
CLK,
EOP0 to EOP2
--
6
ns
DACK delay time
(Single DRAM)
(Hyper DRAM)
t
CHDL
CLK,
DACK0 to DACK2
--
n/2
t
CYC
ns
t
CHDH
CLK,
DACK0 to DACK2
--
6
ns
EOP delay time
(Single DRAM)
(Hyper DRAM)
t
CHEL
CLK,
EOP0 to EOP2
--
n/2
t
CYC
ns
t
CHEH
CLK,
EOP0 to EOP2
--
6
ns
CLK
DREQ0 to DREQ2
V
OH
V
OH
V
IH
V
IH
V
OL
V
OL
V
OL
V
OL
V
OH
V
OH
DACK0 to DACK2
EOP0 to EOP2
(Normal bus)
(Normal DRAM)
DACK0 to DACK2
EOP0 to EOP2
(Single DRAM)
(Hyper DRAM)
t
CYC
t
DRWH
t
CLDL
t
CLEL
t
CHDL
t
CHEL
t
CLDH
t
CLEH
t
CHDH
93
MB91101/MB91101A
5.
A/D Converter Block Electrical Characteristics
(AV
CC
= 2.7 V to 3.6 V, AV
SS
= 0.0 V, AVRH = 2.7 V, T
A
= 0
C to +70
C)
*1: AV
CC
= 2.7 V 3.6 V
*2: Current value for A/D converters not in operation, CPU stop mode (V
CC
= AV
CC
= AVRH = 3.6 V)
Notes: As the absolute value of AVRH decreases, relative error increases.
Output impedance of external circuit of analog input under following conditions;
Output impedance of external circuit < 10 k
.
If output impedance of external circuit is too high, analog voltage sampling time may be too short for
accurate sampling (sampling time is 5.6
s for a machine clock of 25 MHz).
Parameter
Symbol
Pin name
Value
Unit
Min.
Typ.
Max.
Resolution
--
--
--
10
10
bit
Total error
--
--
--
--
4.0
LSB
Linearity error
--
--
--
--
3.5
LSB
Differentiation linearity error
--
--
--
--
2.0
LSB
Zero transition voltage
V
OT
AN0 to AN3
1.5
+0.5
+2.5
LSB
Full-scale transition voltage
V
FST
AN0 to AN3
AVRH 4.5 AVRH 1.5 AVRH + 0.5 LSB
Conversion time
--
--
5.6 *
1
--
--
s
Analog port input current
I
AIN
AN0 to AN3
--
0.1
10
A
Analog input voltage
V
AIN
AN0 to AN3
AV
SS
--
AVRH
V
Reference voltage
--
AVRH
AV
SS
--
AV
CC
V
Power supply current
I
A
AV
CC
--
4
--
mA
I
AH
AV
CC
--
--
5 *
2
A
Reference voltage supply current
I
R
AVRH
--
200
--
A
I
RH
AVRH
--
--
5 *
2
A
Conversion variance between channels
--
AN0 to AN3
--
--
4
LSB
R
ON1
R
ON1
:
0.2 k
R
ON2
:
1.4 k
R
ON3
:
1.4 k
R
ON4
:
0.2 k
C
0
:
16.6 pF
C
1
:
4.0 pF
R
ON2
R
ON3
R
ON4
C
0
C
1
Analog input
Note: Listed values are for reference purposes only.
Comparator
Sample and hold circuit
Analog input circuit model plan
MB91101/MB91101A
94
6.
A/D Converter Glossary
Resolution
The smallest change in analog voltage detected by A/D converter.
Linearity error
A deviation of actual conversion characteristic from a line connecting the zero-traction point (between "00 0000
0000"
"00 0000 0001") to the full-scale transition point (between "11 1111 1110"
"11 1111 1111").
Differential linearity error
A deviation of a step voltage for changing the LSB of output code from ideal input voltage.
(Continued)
3FF
3FE
3FD
004
003
002
001
AVRL
AVRH
Linearity error
Analog input
Actual conversion
characteristic
{1 LSB
(N 1) + V
OT
}
V
NT
Actual conversion
characteristic
Ideal characteristic
1 LSB =
[V]
V
FST
V
OT
1022
Linearity error of
digital output N =
V
NT
{1 LSB
(N 1) + V
OT
}
1 LSB
V
OT
: A voltage for causing transition of digital output from (000)
H
to (001)
H
(measured value)
V
FST
(measured
value)
V
OT
(measured value)
N1
AVRL
AVRH
Differential linearity error
Analog input
N2
N
N+1
Actual characteristic
Ideal characteristic
Actual conversion characteristic
V
NT
(measured value)
V
(N + 1)T
(measured value)
[LSB]
Differential linearity error
of digital output N =
V
(N + 1)T
V
NT
1 LSB
[LSB]
1
V
FST
: A voltage for causing transition of digital output from (3FE)
H
to (3FF)
H
V
NT
: A voltage for causing transition of digital output from (N 1)
H
to N
Digital output
Digital output
95
MB91101/MB91101A
(Continued)
Total error
A difference between actual value and theoretical value. The overall error includes zero-transition error, full-
scale transition error and linearity error.
V
NT
: A voltage for causing transition of digital output from (N 1) to N
3FF
3FE
3FD
004
003
002
001
AVRL
AVRH
Total error
Analog input
Actual conversion
characteristic
1.5 LSB'
{1 LSB'
(N 1)
+ 0.5 LSB'}
V
NT
(measured value)
Actual conversion
characteristic
Ideal characteristic
0.5 LSB'
(ideal value) = AVRL + 0.5 LSB'
[LSB]
V
OT
'
(ideal value) = AVRL 1.5 LSB' [V]
[V]
V
FST
'
Total error of digital output N =
V
NT
{1 LSB'
(N 1) + 0.5 LSB'}
1 LSB'
Digital output
1 LSB' (ideal value) =
[V]
AVRH AVRL
1024
MB91101/MB91101A
96
s
REFERENCE DATA
1.
Operating frequency vs. I
CC
characteristics
2.
V
CC
vs. I
CC
characteristics
90
80
70
60
50
40
30
20
10
0
0
10
20
30
40
50
(V
CC
)
3.6 V
3.3 V
3.0 V
2.7 V
I
CC
(mA)
90
80
70
60
50
40
30
20
10
0
0
10
20
30
40
50
(V
CC
)
4.5 V to 5.5 V
I
CC
(mA)
f (MHz)
f (MHz)
Internal DC - DC regulator is not used (V
CC
= 3 V)
Internal DC - DC regulator is used (V
CC
= 5 V)
Operating conditions : Source oscillation 12.5 MHz (crystal), PLL is used (50 M, 25 M, 12.5 M)
Gear : CPU = 1/1, Peripherals = 1/1
(Doubler is used for 50MHz, Gear peripherals = 1/2)
V
CC
(V)
V
CC
(V)
18
16
14
14
10
8
4
2
0
3.3
3.0
2.7
3.6
12
18
16
14
14
10
8
4
2
0
5.0
4.5
5.5
12
I
CC
(mA)
Icc (mA)
Gear : 1/1
Gear : 1/2
Gear : 1/4
Gear : 1/8
Gear : 1/8
(PLL : off)
Gear : 1/1
Gear : 1/2
Gear : 1/4
Gear : 1/8
Gear : 1/8
(PLL : off)
Internal DC - DC regulator is not used (V
CC
= 3 V)
Internal DC - DC regulator is used (V
CC
= 5 V)
Operating conditions : Source oscillation 12.5 MHz (crystal), divide-by-2 input, PLL : ON
Gear : CPU = Peripherals
97
MB91101/MB91101A
s
INSTRUCTIONS (165 INSTRUCTIONS)
1.
How to Read Instruction Set Summary
(1) Names of instructions
Instructions marked with * are not included in CPU specifications. These are extended instruction codes
added/extended at assembly language levels.
(2) Addressing modes specified as operands are listed in symbols.
Refer to "2. Addressing mode symbols" for further information.
(3) Instruction types
(4) Hexa-decimal expressions of instructions
(5) The number of machine cycles needed for execution
a: Memory access cycle and it has possibility of delay by Ready function.
b: Memory access cycle and it has possibility of delay by Ready function.
If an object register in a LD operation is referenced by an immediately following instruction, the interlock
function is activated and number of cycles needed for execution increases.
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or
if the instruction belongs to instruction format A group, the interlock function is activated and number of
cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number
of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
For a, b, c and d, minimum execution cycle is 1.
(6) Change in flag sign
Flag change
C : Change
: No change
0 : Clear
1 : Set
Flag meanings
N : Negative flag
Z : Zero flag
V : Over flag
C : Carry flag
(7) Operation carried out by instruction
Mnemonic
Type
OP
CYC
NZVC
Operation
Remarks
ADD
Rj,
Ri
* ADD
#s5,
Ri
,
,
A
C
,
,
A6
A4
,
,
1
1
,
,
CCCC
CCCC
,
,
Ri + Rj
Ri
Ri + s5
Ri
,
,
(1)
(2)
(3)
(4)
(5)
(6)
(7)
MB91101/MB91101A
98
2.
Addressing Mode Symbols
Ri
: Register direct (R0 to R15, AC, FP, SP)
Rj
: Register direct (R0 to R15, AC, FP, SP)
R13
: Register direct (R13, AC)
Ps
: Register direct (Program status register)
Rs
: Register direct (TBR, RP, SSP, USP, MDH, MDL)
CRi
: Register direct (CR0 to CR15)
CRj
: Register direct (CR0 to CR15)
#i8
: Unsigned 8-bit immediate (128 to 255)
Note: 128 to 1 are interpreted as 128 to 255
#i20
: Unsigned 20-bit immediate (0X80000 to 0XFFFFF)
Note: 0X7FFFF to 1 are interpreted as 0X7FFFF to 0XFFFFF
#i32
: Unsigned 32-bit immediate (0X80000000 to 0XFFFFFFFF)
Note: 0X80000000 to 1 are interpreted as 0X80000000 to 0XFFFFFFFF
#s5
: Signed 5-bit immediate (16 to 15)
#s10
: Signed 10-bit immediate (512 to 508, multiple of 4 only)
#u4
: Unsigned 4-bit immediate (0 to 15)
#u5
: Unsigned 5-bit immediate (0 to 31)
#u8
: Unsigned 8-bit immediate (0 to 255)
#u10
: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)
@dir8
: Unsigned 8-bit direct address (0 to 0XFF)
@dir9
: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
@dir10
: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)
label9
: Signed 9-bit branch address (0X100 to 0XFC, multiple of 2 only)
label12
: Signed 12-bit branch address (0X800 to 0X7FC, multiple of 2 only)
label20
: Signed 20-bit branch address (0X80000 to 0X7FFFF)
label32
: Signed 32-bit branch address (0X80000000 to 0X7FFFFFFF)
@Ri
: Register indirect (R0 to R15, AC, FP, SP)
@Rj
: Register indirect (R0 to R15, AC, FP, SP)
@(R13, Rj)
: Register relative indirect (Rj: R0 to R15, AC, FP, SP)
@(R14, disp10) : Register relative indirect (disp10: 0X200 to 0X1FC, multiple of 4 only)
@(R14, disp9) : Register relative indirect (disp9: 0X100 to 0XFE, multiple of 2 only)
@(R14, disp8) : Register relative indirect (disp8: 0X80 to 0X7F)
@(R15, udisp6) : Register relative (udisp6: 0 to 60, multiple of 4 only)
@Ri+
: Register indirect with post-increment (R0 to R15, AC, FP, SP)
@R13+
: Register indirect with post-increment (R13, AC)
@SP+
: Stack pop
@SP
: Stack push
(reglist)
: Register list
99
MB91101/MB91101A
3.
Instruction Types
ADD, ADDN, CMP, LSL, LSR and ASR instructions only
MSB
Type A
Ri
LSB
Rj
OP
Type B
Type C
Type *C'
Type D
Type E
Type F
16 bits
4
4
8
OP
i8/o8
Ri
4
8
4
Ri
u4/m4
OP
4
4
8
OP
s5/u5
Ri
7
5
4
OP
u8/rel8/dir/reglist
8
8
OP
SUB-OP
Ri
8
4
4
OP
rel11
5
11
MB91101/MB91101A
100
4.
Detailed Description of Instructions
Add/subtract operation instructions (10 instructions)
Compare operation instructions (3 instructions)
Logical operation instructions (12 instructions)
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
ADD
Rj, Ri
* ADD
#s5, Ri
ADD
#i4, Ri
ADD2
#i4, Ri
A
C'
C
C
A6
A4
A4
A5
1
1
1
1
C C C C
C C C C
C C C C
C C C C
Ri + Rj
Ri
Ri + s5
Ri
Ri + extu (i4)
Ri
Ri + extu (i4)
Ri
MSB is interpreted as
a sign in assembly
language
Zero-extension
Sign-extension
ADDC
Rj, Ri
A
A7
1
C C C C Ri + Rj + c
Ri
Add operation with
sign
ADDN
Rj, Ri
* ADDN
#s5, Ri
ADDN
#i4, Ri
ADDN2
#i4, Ri
A
C'
C
C
A2
A0
A0
A1
1
1
1
1


Ri + Rj
Ri
Ri + s5
Ri
Ri + extu (i4)
Ri
Ri + extu (i4)
Ri
MSB is interpreted as
a sign in assembly
language
Zero-extension
Sign-extension
SUB
Rj, Ri
A
AC
1
C C C C Ri Rj
Ri
SUBC
Rj, Ri
A
AD
1
C C C C Ri Rj c
Ri
Subtract operation with
carry
SUBN
Rj, Ri
A
AE
1
Ri Rj
Ri
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
CMP
Rj, Ri
* CMP
#s5, Ri
CMP
#i4, Ri
CMP2
#i4, Ri
A
C'
C
C
AA
A8
A8
A9
1
1
1
1
C C C C
C C C C
C C C C
C C C C
Ri Rj
Ri s5
Ri + extu (i4)
Ri + extu (i4)
MSB is interpreted as
a sign in assembly
language
Zero-extension
Sign-extension
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
AND
Rj, Ri
AND
Rj, @Ri
ANDH
Rj, @Ri
ANDB
Rj, @Ri
A
A
A
A
82
84
85
86
1
1 + 2a
1 + 2a
1 + 2a
C C
C C
C C
C C
Ri & = Rj
(Ri) & = Rj
(Ri) & = Rj
(Ri) & = Rj
Word
Word
Half word
Byte
OR
Rj, Ri
OR
Rj, @Ri
ORH
Rj, @Ri
ORB
Rj, @Ri
A
A
A
A
92
94
95
96
1
1 + 2a
1 + 2a
1 + 2a
C C
C C
C C
C C
Ri | = Rj
(Ri) | = Rj
(Ri) | = Rj
(Ri) | = Rj
Word
Word
Half word
Byte
EOR
Rj, Ri
EOR
Rj, @Ri
EORH
Rj, @Ri
EORB
Rj, @Ri
A
A
A
A
9A
9C
9D
9E
1
1 + 2a
1 + 2a
1 + 2a
C C
C C
C C
C C
Ri ^ = Rj
(Ri) ^ = Rj
(Ri) ^ = Rj
(Ri) ^ = Rj
Word
Word
Half word
Byte
101
MB91101/MB91101A
Bit manipulation arithmetic instructions (8 instructions)
*1: Assembler generates BANDL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates
BANDH if "u8&0xF0" leaves an active bit. Depending on the value in the "u8" format, both BANDL and BANDH
may be generated.
*2: Assembler generates BORL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates
BORH if "u8&0xF0" leaves an active bit.
*3: Assembler generates BEORL if result of logical operation "u8&0x0F" leaves an active (set) bit and generates
BEORH if "u8&0xF0" leaves an active bit.
Add/subtract operation instructions (10 instructions)
*1: DIVOS, DIV1
32, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.
*2: DIVOU and DIV1
32 are generated. A total instruction code length of 66 bytes.
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
BANDL
#u4, @Ri
(u4: 0 to 0F
H
)
BANDH
#u4, @Ri
(u4: 0 to 0F
H
)
* BAND
#u8, @Ri
*
1
C
C
80
81
1 + 2a
1 + 2a
(Ri) & = (F0
H
+ u4)
(Ri) & = ((u4<<4) + 0F
H
)
(Ri) & = u8
Manipulate lower 4 bits
Manipulate upper 4 bits
BORL
#u4, @Ri
(u4: 0 to 0F
H
)
BORH
#u4, @Ri
(u4: 0 to 0F
H
)
* BOR
#u8, @Ri
*
2
C
C
90
91
1 + 2a
1 + 2a
(Ri) | = u4
(Ri) | = (u4<<4)
(Ri) | = u8
Manipulate lower 4 bits
Manipulate upper 4 bits
BEORL
#u4, @Ri
(u4: 0 to 0F
H
)
BEORH
#u4, @Ri
(u4: 0 to 0F
H
)
* BEOR
#u8, @Ri
*
3
C
C
98
99
1 + 2a
1 + 2a
(Ri) ^ = u4
(Ri) ^ = (u4<<4)
(Ri) ^ = u8
Manipulate lower 4 bits
Manipulate upper 4 bits
BTSTL
#u4, @Ri
(u4: 0 to 0F
H
)
BTSTH
#u4, @Ri
(u4: 0 to 0F
H
)
C
C
88
89
2 + a
2 + a
0 C
C C
(Ri) & u4
(Ri) & (u4<<4)
Test lower 4 bits
Test upper 4 bits
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
MUL
Rj, Ri
MULU
Rj, Ri
MULH
Rj, Ri
MULUH
Rj, Ri
A
A
A
A
AF
AB
BF
BB
5
5
3
3
C C C
C C C
C C
C C
Rj
Ri
MDH, MDL
Rj
Ri
MDH, MDL
Rj
Ri
MDL
Rj
Ri
MDL
32-bit
32-bit = 64-bit
Unsigned
16-bit
16-bit = 32-bit
Unsigned
DIVOS
Ri
DIVOU
Ri
DIV1
Ri
DIV2
Ri
DIV3
DIV4S
* DIV
Ri
*
1
* DIVU
Ri
*
2
E
E
E
E
E
E
97 4
97 5
97 6
97 7
9F 6
9F 7
1
1
d
1
1
1


C C
C C


C C
C C
MDL/Ri
MDL,
MDL%Ri
MDH
MDL/Ri
MDL,
MDL%Ri
MDH
Step calculation
32-bit/32-bit = 32-bit
Unsigned
MB91101/MB91101A
102
Shift arithmetic instructions (9 instructions)
Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer
instruction) (3 instructions)
*1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection.
If an immediate value contains relative value or external reference, assembler selects i32.
Memory load instructions (13 instructions)
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler
description from disp8 to disp10 are as follows:
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
LSL
Rj, Ri
* LSL
#u5, Ri
LSL
#u4, Ri
LSL2
#u4, Ri
A
C'
C
C
B6
B4
B4
B5
1
1
1
1
C C C
C C C
C C C
C C C
Ri<<Rj
Ri
Ri<<u5
Ri
Ri<<u4
Ri
Ri<<(u4 + 16)
Ri
Logical shift
LSR
Rj, Ri
* LSR
#u5, Ri
LSR
#u4, Ri
LSR2
#u4, Ri
A
C'
C
C
B2
B0
B0
B1
1
1
1
1
C C C
C C C
C C C
C C C
Ri>>Rj
Ri
Ri>>u5
Ri
Ri>>u4
Ri
Ri>>(u4 + 16)
Ri
Logical shift
ASR
Rj, Ri
* ASR
#u5, Ri
ASR
#u4, Ri
ASR2
#u4, Ri
A
C'
C
C
BA
B8
B8
B9
1
1
1
1
C C C
C C C
C C C
C C C
Ri>>Rj
Ri
Ri>>u5
Ri
Ri>>u4
Ri
Ri>>(u4 + 16)
Ri
Logical shift
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
LDI: 32
#i32, Ri
LDI: 20
#i20, Ri
LDI: 8
#i8, Ri
* LDI
# {i8 | i20 | i32}, Ri
*
1
E
C
B
9F 8
9B
C0
3
2
1

i32
Ri
i20
Ri
i8
Ri
{i8 | i20 | i32}
Ri
Upper 12 bits are zero-
extended
Upper 24 bits are zero-
extended
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
LD
@Rj, Ri
LD
@(R13, Rj), Ri
LD
@(R14, disp10), Ri
LD
@(R15, udisp6), Ri
LD
@R15 +, Ri
LD
@R15 +, Rs
LD
@R15 +, PS
A
A
B
C
E
E
E
04
00
20
03
07 0
07 8
07 9
b
b
b
b
b
b
1 + a + b





C C C C
(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp10)
Ri
(R15 + udisp6)
Ri
(R15)
Ri, R15 + = 4
(R15)
Rs, R15 + = 4
(R15)
PS, R15 + = 4
Rs: Special-purpose
register
LDUH
@Rj, Ri
LDUH
@(R13, Rj), Ri
LDUH
@(R14, disp9), Ri
A
A
B
05
01
40
b
b
b


(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp9)
Ri
Zero-extension
Zero-extension
Zero-extension
LDUB
@Rj, Ri
LDUB
@(R13, Rj), Ri
LDUB
@(R14, disp8), Ri
A
A
B
06
02
60
b
b
b


(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp8)
Ri
Zero-extension
Zero-extension
Zero-extension
disp8
o8 = disp8
disp9
o8 = disp9>>1
disp10
o8 = disp10>>2
udisp6
u4 = udisp6>>2
Each disp is a code extension.
udisp4 is a 0 extension.
103
MB91101/MB91101A
Memory store instructions (13 instructions)
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler
description from disp8 to disp10 are as follows:
Transfer instructions between registers/special-purpose registers transfer instructions
(5 instructions)
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
ST
Ri, @Rj
ST
Ri, @(R13, Rj)
ST
Ri, @(R14, disp10)
ST
Ri, @(R15, udisp6)
ST
Ri, @R15
ST
Rs, @R15
ST
PS, @R15
A
A
B
C
E
E
E
14
10
30
13
17 0
17 8
17 9
a
a
a
a
a
a
a





Ri
(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp10)
Ri
(R15 + usidp6)
R15 = 4, Ri
(R15)
R15 = 4, Rs
(R15)
R15 = 4, PS
(R15)
Word
Word
Word
Rs: Special-purpose
register
STH
Ri, @Rj
STH
Ri, @(R13, Rj)
STH
Ri, @(R14, disp9)
A
A
B
15
11
50
a
a
a


Ri
(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp9)
Half word
Half word
Half word
STB
Ri, @Rj
STB
Ri, @(R13, Rj)
STB
Ri, @(R14, disp8)
A
A
B
16
12
70
a
a
a


Ri
(Rj)
Ri
(R13 + Rj)
Ri
(R14 + disp8)
Byte
Byte
Byte
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
MOV
Rj, Ri
MOV
Rs, Ri
MOV
Ri, Rs
MOV
PS, Ri
MOV
Ri, PS
A
A
A
E
E
8B
B7
B3
17 1
07 1
1
1
1
1
c
C C C C
Rj
Ri
Rs
Ri
Ri
Rs
PS
Ri
Ri
PS
Transfer between
general-purpose
registers
Rs: Special-purpose
register
Rs: Special-purpose
register
disp8
o8 = disp8
disp9
o8 = disp9>>1
disp10
o8 = disp10>>2
udisp6
u4 = udisp6>>2
Each disp is a code extension.
udisp4 is a 0 extension.
MB91101/MB91101A
104
Non-delay normal branch instructions (23 instructions)
Notes: "2/1" in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.
The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and
assembler discription label9 and label12 are as follows.
label9
rel8 = (label9 PC 2)/2
label12
rel11 = (label12 PC 2)/2
RETI must be operated while S flag = 0.
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
JMP
@Ri
E
97 0
2
Ri
PC
CALL
label12
CALL
@Ri
F
E
D0
97 1
2
2
PC + 2
RP,
PC + 2 + rel11
2
PC
PC + 2
RP, Ri
PC
RET
E
97 2
2
RP
PC
Return
INT
#u8
D
1F
3+3a
SSP = 4, PS
(SSP),
SSP = 4,
PC + 2
(SSP),
0
I flag,
0
S flag,
(TBR + 3FC u8
4)
PC
INTE
E
9F 3 3 + 3a SSP = 4, PS
(SSP),
SSP = 4,
PC + 2
(SSP),
0
S flag,
(TBR + 3D8 u8
4)
PC
For emulator
RETI
E
97 3 2 + 2a C C C C (R15)
PC, R15 = 4,
(R15)
PS, R15 = 4
BNO
label9
BRA
label9
BEQ
label9
BNE
label9
BC
label9
BNC
label9
BN
label9
BP
label9
BV
label9
BNV
label9
BLT
label9
BGE
label9
BLE
label9
BGT
label9
BLS
label9
BHI
label9
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E1
E0
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
1
2
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1















Non-branch
PC + 2 + rel8
2
PC
PCif Z = = 1
PCif Z = = 0
PCif C = = 1
PCif C = = 0
PCif N = = 1
PCif N = = 0
PCif V = = 1
PCif V = = 0
PCif V xor N = = 1
PCif V xor N = = 0
PCif (V xor N) or Z = = 1
PCif (V xor N) or Z = = 0
PCif C or Z = = 1
PCif C or Z = = 0
105
MB91101/MB91101A
Branch instructions with delays (20 instructions)
Notes: The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and
assembler discription label9 and label12 are as follows.
label9
rel8 = (label9 PC 2)/2
label12
rel11 = (label12 PC 2)/2
Delayed branch operation always executes next instruction (delay slot) before making a branch.
Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other
instruction is stored, this device may operate other operation than defined.
The instruction described "1" in the other cycle column than branch instruction.
The instruction described "a", "b", "c" or "d" in the cycle column.
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
JMP:D
@Ri
E
9F 0
1
Ri
PC
CALL:D
label12
CALL:D
@Ri
F
E
D8
9F 1
1
1
PC + 4
RP,
PC + 2 + rel11
2
PC
PC + 4
RP, Ri
PC
RET:D
E
9F 2
1
RP
PC
Return
BNO:D
label9
BRA:D
label9
BEQ:D
label9
BNE:D
label9
BC:D
label9
BNC:D
label9
BN:D
label9
BP:D
label9
BV:D
label9
BNV:D
label9
BLT:D
label9
BGE:D
label9
BLE:D
label9
BGT:D
label9
BLS:D
label9
BHI:D
label9
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
F1
F0
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1















Non-branch
PC + 2 + rel8
2
PC
PCif Z = = 1
PCif Z = = 0
PCif C = = 1
PCif C = = 0
PCif N = = 1
PCif N = = 0
PCif V = = 1
PCif V = = 0
PCif V xor N = = 1
PCif V xor N = = 0
PCif (V xor N) or Z = = 1
PCif (V xor N) or Z = = 0
PCif C or Z = = 1
PCif C or Z = = 0
MB91101/MB91101A
106
Direct addressing instructions
Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from
disp8 to disp10 are as follows:
Resource instructions (2 instructions)
Co-processor instructions (4 instructions)
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
DMOV
@dir10, R13
DMOV
R13, @dir10
DMOV
@dir10, @R13+
DMOV
@R13+, @dir10
DMOV
@dir10, @R15
DMOV
@R15+, @dir10
D
D
D
D
D
D
08
18
0C
1C
0B
1B
b
a
2a
2a
2a
2a





(dir10)
R13
R13
(dir10)
(dir10)
(R13), R13 + = 4
(R13)
(dir10), R13 + = 4
R15 = 4, (dir10)
(R15)
(R15)
(dir10), R15 + = 4
Word
Word
Word
Word
Word
Word
DMOVH
@dir9,
R13
DMOVH
R13, @dir9
DMOVH
@dir9,
@R13+
DMOVH
@R13+, @dir9
D
D
D
D
09
19
0D
1D
b
a
2a
2a



(dir9)
R13
R13
(dir9)
(dir9)
(R13), R13 + = 2
(R13)
(dir9), R13 + = 2
Half word
Half word
Half word
Half word
DMOVB
@dir8,
R13
DMOVB
R13, @dir8
DMOVB
@dir8,
@R13+
DMOVB
@R13+, @dir8
D
D
D
D
0A
1A
0E
1E
b
a
2a
2a



(dir8)
R13
R13
(dir8)
(dir8)
(R13), R13 + +
(R13)
(dir8), R13 + +
Byte
Byte
Byte
Byte
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
LDRES
@Ri+,
#u4
C
BC
a
(Ri)
u4 resource
Ri + = 4
u4: Channel number
STRES
#u4, @Ri+
C
BD
a
u4
resource
(Ri)
Ri + = 4
u4: Channel number
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
COPOP
#u4, #CC, CRj, CRi
COPLD
#u4, #CC, Rj,
CRi
COPST
#u4, #CC, CRj, Ri
COPSV
#u4, #CC, CRj, Ri
E
E
E
E
9F C
9F D
9F E
9F F
2 + a
1 + 2a
1 + 2a
1 + 2a



Calculation
Rj
CRi
CRj
Ri
CRj
Ri
No error traps
disp8
dir + disp8
disp9
dir = disp9>>1
disp10
dir = disp10>>2
Each disp is a code extension
107
MB91101/MB91101A
Other instructions (16 instructions)
*1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler
description s10 is as follows.
s10
s8 = s10>>2
*2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler
description u10 is as follows.
u10
u8 = u10>>2
*3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified,
assembler generates LDM1. Both LDM0 and LDM1 may be generated.
*4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following
calculation; a
(n 1) + b + 1 when "n" is number of registers specified.
*5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified,
assembler generates STM1. Both STM0 and STM1 may be generated.
*6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following
calculation; a
n + 1 when "n" is number of registers specified.
Mnemonic
Type
OP
Cycle N Z V C
Operation
Remarks
NOP
E
9F A
1
No changes
ANDCCR #u8
ORCCR
#u8
D
D
83
93
c
c
C C C C
C C C C
CCR and u8
CCR
CCR or u8
CCR
STILM
#u8
D
87
1
i8
ILM
Set ILM immediate
value
ADDSP
#s10
*
1
D
A3
1
R15 + = s10
ADD SP instruction
EXTSB
Ri
EXTUB
Ri
EXTSH
Ri
EXTUH
Ri
E
E
E
E
97 8
97 9
97 A
97 B
1
1
1
1



Sign extension 8
32 bits
Zero extension 8
32 bits
Sign extension 16
32 bits
Zero extension 16
32 bits
LDM0
(reglist)
LDM1
(reglist)
* LDM
(reglist)
*
3
D
D
8C
8D
*
4
*
4
(R15)
reglist,
R15 increment
(R15)
reglist,
R15 increment
(R15 + +)
reglist,
Load-multi R0 to R7
Load-multi R8 to R15
Load-multi R0 to R15
STM0
(reglist)
STM1
(reglist)
* STM2
(reglist)
*
5
D
D
8E
8F
*
6
*
6
R15 decrement,
reglist
(R15)
R15 decrement,
reglist
(R15)
reglist
(R15 + +)
Store-multi R0 to R7
Store-multi R8 to R15
Store-multi R0 to R15
ENTER
#u10
*
2
D
0F
1+a
R14
(R15 4),
R15 4
R14,
R15 u10
R15
Entrance processing
of function
LEAVE
E
9F 9
b
R14 + 4
R15,
(R15 4)
R14
Exit processing of
function
XCHB
@Rj, Ri
A
8A
2a
Ri
TEMP,
(Rj)
Ri,
TEMP
(Rj)
For SEMAFO
management
Byte data
MB91101/MB91101A
108
20-bit normal branch macro instructions
*1: CALL20
(1) If label20 PC 2 is between 0x800 and +0x7fe, instruction is generated as follows;
CALL
label12
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:20
#label20, Ri
CALL
@Ri
*2: BRA20
(1) If label20 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
BRA
label9
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:20
#label20, Ri
JMP
@Ri
*3: Bcc20 (BEQ20 to BHI20)
(1) If label20 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
Bcc
label9
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
Bxcc
false
xcc is a revolt condition of cc
LDI:20
#label20, Ri
JMP
@Ri
false:
Mnemonic
Operation
Remarks
* CALL20
label20, Ri
Next instruction address
RP, label20
PC
Ri: Temporary register
*
1
* BRA20
label20, Ri
* BEQ20
label20, Ri
* BNE20
label20, Ri
* BC20
label20, Ri
* BNC20
label20, Ri
* BN20
label20, Ri
* BP20
label20, Ri
* BV20
label20, Ri
* BNV20
label20, Ri
* BLT20
label20, Ri
* BGE20
label20, Ri
* BLE20
label20, Ri
* BGT20
label20, Ri
* BLS20
label20, Ri
* BHI20
label20, Ri
label20
PC
if (Z = = 1) then label20
PC
ifs/Z = = 0
ifs/C = = 1
ifs/C = = 0
ifs/N = = 1
ifs/N = = 0
ifs/V = = 1
ifs/V = = 0
ifs/V xor N = = 1
ifs/V xor N = = 0
ifs/(V xor N) or Z = = 1
ifs/(V xor N) or Z = = 0
ifs/C or Z = = 1
ifs/C or Z = = 0
Ri: Temporary register
*
2
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
109
MB91101/MB91101A
20-bit delayed branch macro instructions
*1: CALL20:D
(1) If label20 PC 2 is between 0x800 and +0x7fe, instruction is generated as follows;
CALL:D label12
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:20
#label20, Ri
CALL:D @Ri
*2: BRA20:D
(1) If label20 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
BRA:D
label9
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:20
#label20, Ri
JMP:D
@Ri
*3: Bcc20:D (BEQ20:D to BHI20:D)
(1) If label20 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
Bcc:D
label9
(2) If label20 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
Bxcc
false
xcc is a revolt condition of cc
LDI:20
#label20, Ri
JMP:D
@Ri
false:
Mnemonic
Operation
Remarks
* CALL20:D label20, Ri
Next instruction address + 2
RP, label20
PC
Ri: Temporary register
*
1
* BRA20:D label20, Ri
* BEQ20:D label20, Ri
* BNE20:D label20, Ri
* BC20:D
label20, Ri
* BNC20:D label20, Ri
* BN20:D
label20, Ri
* BP20:D
label20, Ri
* BV20:D
label20, Ri
* BNV20:D label20, Ri
* BLT20:D
label20, Ri
* BGE20:D label20, Ri
* BLE20:D
label20, Ri
* BGT20:D label20, Ri
* BLS20:D
label20, Ri
* BHI20:D
label20, Ri
label20
PC
if (Z = = 1) then label20
PC
ifs/Z = = 0
ifs/C = = 1
ifs/C = = 0
ifs/N = = 1
ifs/N = = 0
ifs/V = = 1
ifs/V = = 0
ifs/V xor N = = 1
ifs/V xor N = = 0
ifs/(V xor N) or Z = = 1
ifs/(V xor N) or Z = = 0
ifs/C or Z = = 1
ifs/C or Z = = 0
Ri: Temporary register
*
2
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
MB91101/MB91101A
110
32-bit normal macro branch instructions
*1: CALL32
(1) If label32 PC 2 is between 0x800 and +0x7fe, instruction is generated as follows;
CALL
label12
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:32
#label32, Ri
CALL
@Ri
*2: BRA32
(1) If label32 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
BRA
label9
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:32
#label32, Ri
JMP
@Ri
*3: Bcc32 (BEQ32 to BHI32)
(1) If label32 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
Bcc
label9
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
Bxcc
false
xcc is a revolt condition of cc
LDI:32
#label32, Ri
JMP
@Ri
false:
Mnemonic
Operation
Remarks
* CALL32
label32, Ri
Next instruction address
RP, label32
PC
Ri: Temporary register
*
1
* BRA32
label32, Ri
* BEQ32
label32, Ri
* BNE32
label32, Ri
* BC32
label32, Ri
* BNC32
label32, Ri
* BN32
label32, Ri
* BP32
label32, Ri
* BV32
label32, Ri
* BNV32
label32, Ri
* BLT32
label32, Ri
* BGE32
label32, Ri
* BLE32
label32, Ri
* BGT32
label32, Ri
* BLS32
label32, Ri
* BHI32
label32, Ri
label32
PC
if (Z = = 1) then label32
PC
ifs/Z = = 0
ifs/C = = 1
ifs/C = = 0
ifs/N = = 1
ifs/N = = 0
ifs/V = = 1
ifs/V = = 0
ifs/V xor N = = 1
ifs/V xor N = = 0
ifs/(V xor N) or Z = = 1
ifs/(V xor N) or Z = = 0
ifs/C or Z = = 1
ifs/C or Z = = 0
Ri: Temporary register
*
2
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
111
MB91101/MB91101A
32-bit delayed macro branch instructions
*1: CALL32:D
(1) If label32 PC 2 is between 0x800 and +0x7fe, instruction is generated as follows;
CALL:D label12
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:32
#label32, Ri
CALL:D @Ri
*2: BRA32:D
(1) If label32 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
BRA:D
label9
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
LDI:32
#label32, Ri
JMP:D
@Ri
*3: Bcc32:D (BEQ32:D to BHI32:D)
(1) If label32 PC 2 is between 0x100 and +0xfe, instruction is generated as follows;
Bcc:D
label9
(2) If label32 PC 2 is outside of the range given in (1) or includes external reference symbol, instruction is
generated as follows;
Bxcc
false
xcc is a revolt condition of cc
LDI:32
#label32, Ri
JMP:D
@Ri
false:
Mnemonic
Operation
Remarks
* CALL32:D label32, Ri
Next instruction address + 2
RP, label32
PC
Ri: Temporary register
*
1
* BRA32:D label32, Ri
* BEQ32:D label32, Ri
* BNE32:D label32, Ri
* BC32:D
label32, Ri
* BNC32:D label32, Ri
* BN32:D
label32, Ri
* BP32:D
label32, Ri
* BV32:D
label32, Ri
* BNV32:D label32, Ri
* BLT32:D
label32, Ri
* BGE32:D label32, Ri
* BLE32:D
label32, Ri
* BGT32:D label32, Ri
* BLS32:D
label32, Ri
* BHI32:D
label32, Ri
label32
PC
if (Z = = 1) then label32
PC
ifs/Z = = 0
ifs/C = = 1
ifs/C = = 0
ifs/N = = 1
ifs/N = = 0
ifs/V = = 1
ifs/V = = 0
ifs/V xor N = = 1
ifs/V xor N = = 0
ifs/(V xor N) or Z = = 1
ifs/(V xor N) or Z = = 0
ifs/C or Z = = 1
ifs/C or Z = = 0
Ri: Temporary register
*
2
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
Ri: Temporary register
*
3
MB91101/MB91101A
112
s
ORDERING INFORMATION
Part number
Package
Remarks
MB91101APFV
100-pin Plastic LQFP
(FPT-100P-M05)
MB91101APF
100-pin Plastic QFP
(FPT-100P-M06)
113
MB91101/MB91101A
s
PACKAGE DIMENSIONS
(Continued)
C
1995 FUJITSU LIMITED F100007S-2C-3
Details of "B" part
16.000.20(.630.008)SQ
14.000.10(.551.004)SQ
0.50(.0197)TYP
.007
.001
+.003
0.03
+0.08
0.18
INDEX
0.10(.004)
0.08(.003)
M
.059
.004
+.008
0.10
+0.20
1.50
.005
.001
+.002
0.02
+0.05
0.127
15.00
12.00
(.472)
REF
(.591)
NOM
"B"
"A"
25
26
1
100
75
51
50
76
0.500.20(.020.008)
Details of "A" part
0.40(.016)MAX
0.15(.006)MAX
0.15(.006)
0.15(.006)
0.100.10
(.004.004)
(STAND OFF)
0~10
LEAD No.
(Mouting height)
Dimensions in mm (inches)
(FPT-100P-M05)
100-pin Plastic LQFP
MB91101/MB91101A
114
(Continued)
Note: The design may be modified changed without notice, contact to Fujitsu sales division when using the device.
C
1994 FUJITSU LIMITED F100008-3C-2
"A"
"B"
0.10(.004)
0.53(.021)MAX
0.18(.007)MAX
Details of "A" part
0 10
Details of "B" part
12.35(.486)
REF
16.300.40
(.642.016)
0.05(.002)MIN
(STAND OFF)
0.150.05(.006.002)
INDEX
23.900.40(.941.016)
20.000.20(.787.008)
17.900.40
14.000.20
(.551.008)
(.705.016)
0.13(.005)
M
18.85(.742)REF
22.300.40(.878.016)
1
30
31
50
51
80
81
100
0.25(.010)
0.30(.012)
0.65(.0256)TYP
0.300.10
(.012.004)
LEAD No.
0.800.20
(.031.008)
3.35(.132)MAX
(Mounting height)
Dimensions in mm (inches)
(FPT-100P-M06)
100-pin Plastic QFP
115
MB91101/MB91101A
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9907
FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications,
and are not intended to be incorporated in devices for actual use.
Also, FUJITSU is unable to assume responsibility for
infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and
measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded
(such as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have an inherent chance of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for
export of those products from Japan.